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ABSTRACT

iii

In the last two decades, demand for broadband internet has far outpaced its 

availability. The Federal Communications Commission’s (FCC) 2020 Broadband 

Deployment report suggests that at least 22 million Americans living in rural areas 

lack access to broadband internet. With the COVID-19 pandemic affecting normal 

life, there is an overwhelming need to enable unserved and underserved communities 

to adapt to the “new normal”. To address this challenge, federal and state agencies are 

funding internet service providers (ISPs) to deploy infrastructure in rural 

communities. However, policymakers and ISPs need open-source tools to predict 

take-rates of broadband service and formulate effective strategies to increase the 

adoption of high-speed internet. We propose using an agent-based model grounded in 

“The Theory of Planned Behavior” -  a long-established behavioral theory that 

explains the consumer’s decision-making process. The model simulates residential 

broadband adoption by capturing the interaction of a broadband service’s attributes 

with consumer preferences. We demonstrate the model’s performance, present a case 

study of an unserved area, and perform a sensitivity analysis. The major findings 

support the appropriateness of using theoretically based agent-based models to predict 

take-rates of broadband service. We also find that the take-rates are highly influenced 

by presence of existing internet users in the area as well as affordable or subsidized 

prices. In the future, this model can be extended to study the impact of online 

education, telecommuting, telemedicine, and precision agriculture on a rural 

economy. This type of simulation can guide evidence-based decision-making for 

infrastructure investment based on demand as well as influence the design of market 

subsidies that aim to reduce the digital divide.
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1. INTRODUCTION

1.1. MOTIVATION

Inequity in high-speed internet access, better known as the “digital divide”, 

has been a matter of grave concern over the years. The 2020 Broadband Deployment 

report by the FCC states that as of December 2018, 22.3 % of the population living in 

rural areas and 27.3% in Tribal areas do not have access to a fixed high-speed 

broadband terrestrial service (FCC, 2020). Broadband enables economic growth as it 

has a positive impact on the sales and revenue of local businesses, household income, 

and number of operational businesses (Gallardo et al., 2018). Consequently, the 

digital divide in the USA is leaving out at least 22 million people from opportunities 

to enhance their lifestyles. Unfortunately, the access gap may be worse than what is 

reported by the FCC. Microsoft’s Airband Initiative anonymously tracked the 

bandwidth used by computers to install Microsoft updates and found that almost 160 

million people are not using internet at broadband speed.

The Federal Communications Commission (FCC) defines broadband as high

speed transmission of Internet data that is faster than dial-up services and is always 

connected(FCC, 2014). There are several ways to access broadband internet -  i) 

Satellite, ii) Wireless, iii) Digital Subscriber Line (DSL), iv) Cable, and v) Optical 

Fiber. Satellite internet is accessed via low-orbiting satellites that are linked directly 

to the end-consumer. Wireless service connects a household to the service provider 

via radio links. Wireless service may be fixed or mobile. DSL provides broadband 

through copper telephone lines to homes and businesses. The quality of service 

depends on the distance of the service station from the user. Cable internet is usually
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available in combination with television service at home where coaxial cables 

transmit data to computers as well as audio/video input to the TV set. The latest 

innovation in high-speed internet access is optical fiber, where data is transmitted in 

the form of light through thin glass fibers. Fiber can transmit data faster than any 

other wired or wireless medium.

The FCC acts as a regulatory body for defining the broadband internet speeds 

in response to the growing demand. Until 2015, broadband speeds were set at 4 

Megabits per second download speeds and 1 Megabit per second upload speed (4/1 

Mbps). Currently, broadband speeds are required to have at least 25 Megabits per 

second for downloading and 3 Mbps upload speed (25/3 Mbps).

Satellite, though available in every part of the country, is not a popular choice 

amongst rural consumers due to high cost, high latency, and dependency on weather 

conditions (BroadbandNow, 2021). Fixed wireless internet is a better alternative than 

satellite in terms of cost and reliability. However, a line-of-sight connection is needed 

with an access point located within a 10-mile radius, which limits availability. 

Considering these limitations, a wired medium may be a more suitable alternative for 

last-mile delivery of service in rural areas. However, this may not always be feasible 

for service providers as laying infrastructure for wired internet service could be 

costlier than wireless and satellite(Galloway, 2007).

There are two key challenges faced by government agencies and internet 

service providers to bridge this gap. Firstly, rural areas have a lower density of 

internet users compared to urban areas, which significantly drives up the cost of 

service per household (Canfield et al., 2019). This leaves unappealing revenue 

prospects for ISPs and therefore is a poor incentive to introduce service in these areas. 

Secondly, irrelevance of digital technology is another key issue for non-adopters
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(Horrigan, 2009). As of 2019, only 63% of Rural households own personal computers 

compared to 80% urban households. Furthermore, more than 35% of adults who are 

25 or older have attained up to high-school level education or lower in rural areas, 

leaving concerns about computer literacy(USDA, 2018).

In the context of the COVID-19 pandemic, the worst impacts of the digital 

divide became apparent because telecommuting to work and online courses became 

the new normal. This has brought a change in people’s attitude towards high-speed 

internet. According to a survey by Pew Research, 53% of Americans believe that 

broadband internet is “essential” while another 35% agreed that it is important during 

the pandemic (Vogles et al., 2020). An earlier survey also revealed that school-age 

children in lower-income families are likely to face challenges in completing their 

schoolwork due to technology limitations (Vogles, 2020). The increased dependency 

on internet despite the wide gap in access has made it a priority to provide service to 

as many unserved and underserved areas as possible.

The FCC defines unserved areas as those where ISPs can only provide up to 

10/1 Mbps speeds while underserved areas have less than 25/3 Mbps internet service. 

Under the Coronavirus, Aid, Relief, and Economic Security Act (CARES Act), the 

government-sanctioned $150 billion to states and local governments to fight the 

impact of the pandemic. States such as Missouri, Ohio and Tennessee set aside $10 

million, $20 million and $50 million respectively, to fund digital learning initiatives 

(de Wit, 2020). Even before the pandemic, the FCC was funding ISPs to expand 

internet services in unserved and underserved areas through the Connect America 

Funds (CAF) in 2018 and 2019. The United States Department of Agriculture 

(USDA) too, is actively involved in providing 25/3 Mbps broadband internet in rural 

areas where currently less than 90% of establishments have access to 10/1 Mbps or
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lower speeds. The USDA Broadband ReConnect Program invested over $663 million 

in high-speed broadband infrastructure in 2019 and another $675 million in 2020 to 

improve connectivity in rural areas across 33 states(USDA, 2021).

However, the services deployed in unserved and underserved areas with 

federal financial assistance can be successful only if they are adopted by consumers. 

Access alone is not sufficient to solve the digital divide. Research at the University of 

Missouri highlights the advantage given to fixed wireless/cable internet providers 

over fiber-based services due to the weighing formulas used by FCC in the Connect 

America Funds (CAF-II) bidding process in 2018 (Eisberg et al., 2020). Due to the 

higher per mile installation cost of fiber internet, lower-tier speeds (25 -  100 Mbps) 

provided by ISPs using technologies such as fixed wireless, were given preference. As 

a result, the ISPs which received most of the funds provide lower speeds at high cost 

to the consumer. This creates uncertainty about rural households being able to afford 

the service to fulfill their needs and the likelihood of achieving the funding’s purpose.

1.2. OBJECTIVE

While government agencies are actively funding ISPs to provide service in 

unserved and underserved areas, it is crucial to analyze the effectiveness of these 

policies in reducing the digital divide. A simulation tool to predict the take-rates for 

broadband expansion projects could not only help ISPs strategize the best subscription 

plans to provide but also help policymakers to strategically allocate funds. To date, 

there has been inadequate research on consumer decision-making dynamics in 

broadband adoption. This study addresses this gap by demonstrating the value of 

using simulation models to facilitate prediction of consumer behavior.



In this study, we propose and demonstrate an agent-based simulation model 

that considers consumers’ ability to afford and use internet services, as well as their 

attitude towards different attributes of broadband service, to predict adoption of a 

newly introduced internet service. To demonstrate the value of using this platform to 

conduct policy experiments, we address “what is a minimum viable subscription plan 

which fits the requirements of a majority of the consumers while also being within 

their budget?” In addition, we perform a sensitivity analysis of the influence of each 

input parameter to the predicted take-rates.

Our findings suggest that theoretically grounded models are an appropriate 

choice for modeling the broadband adoption phenomena in rural markets. A minimum 

viable broadband service needs to be reasonably priced while also providing high-tier 

(100 -  1000 Mbps) speeds. Overall, this model is most sensitive to percentage of 

existing internet adopters in the area and the price of the new broadband service, 

suggesting a higher presence of internet users in an area and lower or subsidized 

monthly cost can drive up the take-rates.

5
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2. LITERATURE REVIEW

This section consists of a review of past literature on agent-based modelling 

and key theories including the theory of planned behavior and small-world networks. 

We also summarize findings from broadband related empirical studies and simulation 

experiments.

2.1. AGENT-BASED MODELING

Agent-based modeling (ABM) is a simulation tool where agents with distinct 

properties interact with other agents and their environment to yield emergent 

outcomes (Bonabeau, 2002). Agents’ heterogeneity may be expressed in the form of 

motives, preferences, or attributes to give them complete autonomy in decision

making and allow for macro-level outcomes through micro-level behaviors. This 

bottom-up feature not only gives ABM an advantage over aggregate-level modeling 

(i.e., equation-based modeling) techniques but also makes it a sound choice for 

representing non-linear complex systems driven by human behavior. ABM differ 

from Equation-based modeling in terms of the primary focus, method of validation, 

heterogeneity, spatial representation and applicability (Fullsack, 2017). A comparison 

of agent-based modeling and equation-based modelling is elaborated in Table 2.1.

Emergent phenomena resulting from complex individual behavior can be 

simulated using ABM (e.g., panic-stricken people evacuating an enclosed area 

through a single exit). An evacuation simulation backed by real-world data revealed 

that introducing a pillar before the emergency exit can help streamline the outflow of 

the crowd and result in fewer stampede deaths (Bonabeau, 2002). This outcome is 

counter-intuitive in nature, and a demonstration of the capabilities of ABM. This



modeling technique has been applied to study a wide variety of other social systems 

including the emergence of slums (c), the spread of infectious diseases(Luke & 

Stamatakis, 2012), dismantling terrorist social networks(Keller et al., 2010), and 

technology adoption. (Kiesling et al., 2012). The latter is the most relevant application 

of ABM for this research. Technology adoption models have been developed in areas 

such as rooftop photovoltaic cell adoption(Mittal & Krejci, 2017; Rai & Robinson, 

2015), smart metering(Zhang & Nuttall, 2012), and organic farming 

practices(Kaufmann et al., 2009).

7

Table 2.1. Agent-based modelling vs Equation-based modelling

Characteristics Agent-based modeling 
(ABM)

Equation-based modeling 
(EBM)

Focus Micro-level behavior of 
individual entities

Overall behavior of the system

Validation Individual agent’s behavior as 
well as overall output can be 

compared with real-world 
systems

Only model output can be 
compared with real system 

behavior.

Heterogeneity Allows agents to have diverse 
decisions, characteristics, and 

preferences

System is considered as a 
whole, no room to capture 

diversity
Spatial Topological characteristics can Representation of physical

representation be represented at high or low 
resolution along with spatial 

details of agent -agent 
interactions

space lacks granularity to 
capture interaction between 

entities

Application Appropriate to model human 
social systems

Suitable for modeling physical 
systems driven by homogenous 

entities

In the field of organic practices, an empirically grounded model of diffusion of 

organic farm practices in two Eastern European countries was developed to explore 

the effects of peer influence, government subsidies, and expert advice. The major 

findings suggested that Estonian farmers were driven to adopt organic farming due to



positive influence received through agent-agent interactions whereas Latvian farmers 

were driven by subsidies as well as influence from their peers(Kaufmann et al., 2009).

ABM has been a popular choice for modeling the adoption of renewable 

energy innovations such as smart-metering technology, heat pumps, and residential 

solar panels. While some of the works used conceptual models that are theoretically 

based for policy analysis (Mittal & Krejci, 2017; Zhang & Nuttall, 2012), others are 

empirically grounded to study the respective diffusion phenomena(Rai & Robinson, 

2015). The empirically grounded model suggests that when an agent had a favorable 

opinion about solar energy and their ability to afford installation was greater than the 

payback, they are more likely to adopt the technology. The conceptual model on 

smart-metering technology suggests that promoting the technology in geographically 

dispersed areas and having competing products in the market leads to higher adoption.

A common feature in technology adoption models is the use of Theory of 

Planned Behavior to define the rules for individual agent’s decision-making. Further, 

the agent-agent interactions are spatially defined using a small-world network as it 

optimizes the diffusion of information and the effect of social influence on the agent’s 

decision-making. These aspects of agent-based modeling are discussed in greater 

detail in the subsequent sub-sections.

2.1.1. Theory of Planned Behavior. The Theory of Planned Behavior states 

that the intention to perform a behavior can be attributed to three belief constructs -  

attitude, subjective norms, and perceived behavioral control(Ajzen, 2012). Attitude is 

defined as an individual’s opinion of the behavior in question. Subjective norms can 

be elaborated as the influence an individual receives from their surroundings (e.g., 

their social network, mass media). Perceived Behavioral Control expresses the ease 

with which an individual can perform the behavior. Therefore, if an individual has a

8
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favorable opinion of a behavior, sees their peers engaging in the behavior, and has the 

means to perform it, they are likely to have the intention to engage in the behavior 

themselves (see Figure 2.1).

Figure 2.1. The theory of planned behavior model

The Theory of Planned Behavior (TPB) has been applied to numerous 

empirical studies such as predicting smoking cessation(Farnworth, 2008), dietary 

choices(Lien et al., 2002), preference towards B2C e-commerce (Pavlou, 2002), and 

adoption of Internet banking(Shih & Fang, 2004). In the smoking cessation study, 84 

smokers were interviewed twice over a span of 6 months with questions designed to 

measure the strength of each belief construct. The responses were fit using hierarchal 

linear regression to predict the intention to quit, attempt to quit, and timespan of 

avoiding smoking. The model showed high correlation between perceived behavioral 

control, perceived susceptibility, and intention to quit. The findings show that 

behavioral intention and perceived susceptibility are strong predictors of cessation 

behavior (Farnworth, 2008).
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In recent years, the theory of planned behavior has become a popular choice in 

the field of agent-based modeling to define behavioral rules for agents in technology 

adoption models (Kiesling et al., 2012). These are an improvement over the diffusion 

of innovation models where agents were assumed to be rational consumers with 

homogeneous preferences(Bass, 1969). A utilitarian approach allows agents to 

perceive the utility of the innovation as per their heterogeneous preferences which is 

equated to the attitude factor of TPB (see Figure 2.2) (Muelder & Filatova, 2018). The 

subjective norms are expressed as a social utility which is defined as the perceived 

utility of the agent’s neighbors in the social network. The perceived behavioral 

control is often used as a constraint that addresses the agent’s ability to afford and/or 

operate the innovation (Muelder & Filatova, 2018). The agents’ intrinsic properties 

can be initialized using survey data with questions designed specifically to measure 

the three belief components in the adoption decision(Rai & Henry, 2016). These 

empirically backed individual properties and theoretically grounded behavioral rules 

influence the outcomes of agent-agent interactions.

Economic utuitv

Environment
unlitv

Attitude

( omfort utilitc

Subjective Norm Intention BehaviorSocial utilm

lechnologv
Perceived

Behavioral
( ontrol

Income

Figure 2.2. Renewable energy adoption model
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2.1.2. Small-World Network. Defining topological characteristics of agent- 

agent interaction and information diffusion rules is also an advantage of agent-based 

models. Precisely conceptualizing presence, frequency, and strength of interaction can 

be enabled using popular graphs in network theory (Fullsack, 2017). Random-graphs 

generated with small-world characteristics have a high clustering coefficient and short 

average-path length (Watts & Strogatz, 1998). This model was inspired by the small- 

world phenomenon which states that any two individuals in geography are six degrees 

of separation away from each other (Kochen, 1989). The network could be any lattice 

with n nodes and k edges per node. Some edges are reconnected randomly with a 

rewiring probability p. This network is the middle-ground between a random and a 

regular lattice network as shown in Figure 2.3. This allows an optimized speed of 

information diffusion along with a high degree of clustering.

Random
Network

Small-world Regular Lattice
N etwork

Figure 2.3. Networks in decreasing order of randomness

Small-world networks have been used in technology adoption ABMs owing to 

their similarities with real-world social networks in terms of topological 

characteristics (Kiesling et al., 2012). The clustering of agents is done by measuring 

similarity and proximity in renewable energy adoption models (Mittal & Krejci, 2017;



Rai & Robinson, 2015). A small-world graph model was used to study the diffusion 

of telecommunications technology in an agent-based opinion dynamics model by 

varying the rewiring probability and faction of initial innovators(Kocsis & Kun,

2008). In this model, agents interacted with each other to upgrade their 

communications technology with the objective of minimizing their cost.

2.2. PAST LITERATURE ON BROADBAND

Earlier studies about broadband diffusion in the United States are mostly 

empirical in nature. In 2005, a nationwide survey in 44 states focusing on service 

attributes such as price, speed, installation complexity, reliability and always-on 

service to consumers was conducted (Scott, 2005). The survey was designed to 

measure people’s willingness to pay for each of the attributes. The estimates were 

highest for speed, reliability, and always-on feature in the service. A more recent 

empirical study aimed at determining willingness to pay was done by surveying 

households who presently do not subscribe to a residential broadband service (Carare 

et al., 2015). The authors collected 15,000 data samples and analyzed the factors of 

households which are most willing to pay for broadband service. They concluded that 

households with a computer, located remotely, or in minority communities are likely 

to adopt if service is priced reasonably. They predicted a 10% increase in demand if 

price fell by 15%. Both studies are helpful in highlighting the factors that are 

favorable to consumers and internet service demand. However, their findings 

determined from consumers living in urban as well as rural areas. It is unclear 

whether the respondents chose not to adopt broadband despite having access or is it 

because they are living in unserved/underserved areas. Surveying people who are

12



disadvantaged in terms of connectivity, could get better willingness to pay estimates 

for policymakers.

The barriers for telecommunication companies to provide in high-cost and 

low-density markets have been studied using a probit regression model (Glass & 

Stefanova, 2010). The article concluded that the rural market needs DSL internet, 

which was the most widely used technology at the time. DSL would be able to 

provide access to multimedia features on the internet, such as video streaming, which 

could promote diffusion. This helps understand the trends in rural broadband market 

demands when 70% of ISPs provided DSL internet at 1-3 Mbps download speed. The 

minimum requirement for an internet service to qualify as a broadband is currently 25 

Mbps. While these studies do give a general sense of the factors that drive adoption, 

they could be inadequate for policymakers as technology has evolved and the 

applications of internet in our lives has broadened.

Empirical studies in other countries have been done in the context of customer 

loyalty to the ISP (Akroush & Mahadin, 2019) and household valuation of service 

(Thomas & Finn, 2018). A confirmatory factor analysis of 1,297 responses from 

internet users in Jordan, shows that the customers feel more satisfied with service 

performance and price if the service provider has competent employees and is prompt 

in delivering effective solutions. In Canada, three studies using survey data from 2002 

to 2014 shows how federal investments have made a difference in actual usage of 

internet services at the household level. A major finding was that having internet 

access influences the subscription rate in an area. However, access alone cannot 

ensure usage as consumers demand valuable services that can make their lives easier. 

These articles show that reliability of service and higher perceived utility levels is 

significant to customers.

13



In the past, broadband diffusion across nations was simulated using a hybrid 

model with characteristics of Agent-based and System Dynamics modeling (Swinerd 

& McNaught, 2014). The authors simulated the diffusion of mobile phone, fixed 

internet and fixed broadband using the theory of planned behavior and diffusion of 

innovation to define agent’s interaction rules and validate the outcome with publicly 

available data. The primary focus of the paper was demonstrating the integration of 

two different modeling techniques rather than providing policy-level insights to 

promote broadband adoption. Further, this article also captures broadband diffusion 

phenomena at a wider geographic scale than the scope of this thesis. A digital divide 

inspired simulation was built by integrating ABM with a network simulator to 

measure economic impact as a result of increased throughput of wireless LTE services 

to agents (Legaspi et al., 2020). The ABM scattered consumers with heterogenous 

requirements in a region and sprouted base stations at random locations. The 

consumer and base station locations were fed in the network simulator which 

calculated the throughput to each consumer based on distance. Agents positively 

benefited if the throughput received is at par with their usage requirements. The 

economic impact of each base station is measured by the number of agents it can 

serve and how high well did the throughput matches their requirements. This study 

laid a foundation for broadband allocation policy experiments using both human and 

technical factors.

In the context of broadband adoption, empirical studies conducted in the 

United Kingdom, India, and South Korea integrate behavioral theories such as the 

technology acceptance model, diffusion of innovations, and theory of planned 

behavior to determine the factors that influencing residential broadband adoption 

(Choudrie & Dwivedi, 2006; Irani et al., 2009; Manzoor, 2014; Oh et al., 2003). In

14



Korea, broadband adoption was found to be influenced by compatibility with needs, 

trialability of the technology and visible popularity in use (Oh et al., 2003). The 

empirical study in India revealed social outcomes, service quality, availability of 

facilitating resources, and ability to use Internet applications as major factors 

influencing broadband adoption at household level (Manzoor, 2014). A similar study 

in the UK showed that utilitarian outcomes, social influence, perceived resources and 

self-efficacy, and behavioral intention were statistically significant to the adoption 

decision (Irani et al., 2009) (shown in Figure 2.4). We observe that belief constructs 

defined by the theory of planned behavior are common across these studies. The 

differences in results could be explained by cultural differences across the countries.

15

Figure 2.4. Empirically validated broadband adoption model

Theory of planned behavior is conceptually parsimonious and widely cited in 

the agent-based model literature. Therefore, we propose using an agent-based model 

grounded in the theory of planned behavior to predict the take-rates of broadband 

service. The agent-agent interaction is modeled using small-world network. Product
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attributes such as the price, download speeds, data-cap and reliability are used to 

allow agents to form their individual opinion and determine whether to adopt a 

service.
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3. MODEL OVERVIEW

The agent-based simulation is summarized in Figure 3.1. This simulation (1) 

defines the environment, (2) generates agents, (3) defines the interactions between 

agents, (4) defines the interactions between agents and the environment, and (5) 

calculates outcome metrics. The model is instantiated as a simulation on the Netlogo 

platform (Version 6.1.1). Netlogo is an open-source programming software, designed 

exclusively to facilitate agent-based modeling approaches (Wilensky, 1999).

Seed new service 
information to 

5% of the agents

Assign income 
levels, education 
levels and service 

preferences to 
agents

Create agent 
social network 

based on 
similarity in 

education and 
income levels

Maintain status 
quo

Adopt New 
Service

Wait till 
information 

diffuses
infoReceived?

Intention > 0
Share

information with 
neighbours and 
influence them/ 

Get influenced by 
other neighbours

Calculate utilityCalculate
Intention

Ability to afford 
and use InternetInitialuser?

infoReceived
“True”

T - l

Figure 3.1. Flowchart of the agent-based model

The model represents a scenario where a new ISP deploys a service accessible 

to all households within a zip-code. A fixed percentage of households are currently 

using a residential internet connection provided by an existing ISP and the rest of the 

households are considered non-adopters. The information of the new subscription 

plan diffuses throughout the area. The households decide whether to adopt the new 

service by forming individual opinions and receiving influence from their peers.



Based on their decision, the existing internet adopters switch to the new service and 

the previously non-adopting households become residential internet service adopters. 

The households which decide against adopting the new service maintain status quo. 

Figure 3.1 explains how this scenario is simulated by the agent-based model.

3.1. ENVIRONMENT

The NetLogo environment shown in Figure 3.2 includes input variables, 

simulation space, and outcome plots. The NetLogo world is square shaped 

representing an unserved or underserved zip-code. The 1,089-cell lattice represents a 

90 square mile area, which is the average area of a zip-code in the United States. Each 

cell is populated by residential consumers. Model inputs include the number of 

households per zip-code and percentage of users who have adopted internet at home. 

Agents are classified as an existing internet adopter using a Boolean parameter and 

color coded “blue” in the NetLogo environment. At initialization, the agents do not 

have information on new broadband services that are available in their area (see 

Figure 3.3). To model an unserved scenario, the current speed parameter is < 10 Mbps 

and < 25 Mbps for an underserved scenario. This is consistent with the FCC 

definitions of unserved and underserved areas (FCC, 2020). In the simulation, a new 

service is made available to all agents in both unserved and underserved scenarios. 

Additional input parameters include the current and new (1) price, (2) data-cap, and 

(3) reliability parameters. The price is the monthly amount charged by the service 

inclusive of taxes and equipment costs. The data-cap is the monthly limit of data that 

can be downloaded or uploaded in a month, and reliability captures the ISPs customer 

ratings (scale 0 -5) based on outage frequency and response

18
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Figure 3.2. The NetLogo environment. Includes users (blue) and non-users (red). The 
sliders on the left represent model inputs and the displays on the right represent model

outputs.

Figure 3.3. Environment setup at t=0

3.2. AGENTS

Each agent represents a household in a rural community. Agent’s 

characteristics include demographic information such as annual income, education 

attained, and preference towards advertised internet speed, monthly cost, data-cap and 

service reliability (see Figure 3.4).

For modeling take-rates for any given zip-code, the agent’s demographic 

levels may be assigned as per U.S. Census data. There are 14 income levels and 7 

education levels to ensure representation is consistent with U.S. Census Bureau. As



reported by(Horrigan, 2009), the primary reasons cited for non-adoption of internet 

are high monthly costs and the inability to operate a computer. The high monthly cost 

barrier is accounted for by assigning each agent with an affordability factor, 

calculated by multiplying the income level (normalized to 0-1 scale) with a random 

number between 0 to 1 (to eliminate a perfect correlation). Agent’s computer skills 

are expressed as a digital literacy factor, which is calculated using the product of a 

random number between 0 to 1 with the normalized education level (consistent with 

Krejci et al, 2017). We assume that wealthy and educated households are more likely 

to adopt broadband internet.

The agents have heterogeneous preferences for internet speed (ws), monthly 

costs (wp), data caps (wdc), and reliability (wr). The aim is to represent all possible 

combinations of preferences in internet service (e.g., consumers who do not mind the 

price if they get their desired bandwidth and those who can accept data-caps if costs 

are low. Each agent has a different weight on the utility of the broadband service (wu) 

and social influence (wsoc) they receive from their peers, randomly assigned from a 

uniform distribution. We assume that agents have diverse needs that may or may not 

require much bandwidth. In addition, we assume agents respond differently to social 

influence, ranging from resistive to responsive.

20
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Figure 3.4. Assigning heterogenous properties to agents
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3.3. INTERACTIONS BETWEEN AGENTS

The social network between agents is a small-world network. The agents 

choose their immediate social circle based on similarities in income and education of 

the agents within a radius of 5 units. The radius allows for clustering in the small- 

world network, which is a significant topological characteristic of real-world social 

networks (see Figure 3.5). These local connections represent the household’s 

immediate neighbors. Similarity between agents is calculated by normalizing the 

differences in the incomes (Inq and Incj) and education levels Edui and Eduj) of two 

agents. The similarity value varies between 0 and 1. The similarity index is calculated 

as shown in (1).

Similarity(i, j) = 0 .5 -
(Inq-Incj)

14 + 0.5 -
(Edui-Eduj)

7
(1)

An agent forms links with another agent only if their similarity value is greater than 

0.8. In addition, 50% of agents form links with one other randomly selected agent. 

The random connection represents other acquaintances that the members of the 

household have in the area. Random acquaintances include colleagues, classmates, 

relatives (consistent with Mittal & Krejci, 2017; Muelder & Filatova, 2018).

Figure 3.5. Small-world network of agents
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As the agents are forming their individual opinion about the new service, they 

are also influenced by their peers. The influence (I) received by an agent is a function 

of the perceived utility of broadband by their peers and the number of peers as given 

in equation (2) where Ui is the utility of an agent’s link-neighbor and N being the total 

number of link-neighbors (consistent with Snape et al., 2015). Agents with more 

neighbors who have a positive perceived utility of broadband are more likely to be 

positively influenced in their perception of the new broadband service.

I = ZiiiUi
N

(2)

3.4. INTERACTIONS BETWEEN AGENTS AND THE ENVIRONMENT

Based on the initial users' parameters, agents are classified as fixed residential 

internet adopters and non-adopters. Information about the new broadband service is 

randomly seeded to 5% of the agents. This represents the households which received 

information on the newly introduced residential internet service through an 

advertisement and decided to propagate the information to their peers. The following 

sub-sections describe how the product information diffuses through the model, 

calculations performed by agents to form opinion, and finally the decision-making 

process to adopt or reject the new internet service.

3.4.1. Check Utility. The agents pass on the product information to their 

respective linked neighbors. On receiving the information, the infoReceived? variable 

becomes “TRUE”. The initaluser? parameter is used to check if an agent is an existing 

internet user. If “TRUE” the agents calculate their utility U by comparing the service 

with the current plan. The comparison is done in terms of the speed provided, monthly 

cost, data-cap, and reliability rating. In this equation, ns and cs are the normalized
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values of the speed provided by both services. The monthly costs of both services are 

expressed as cp and np which are also scaled to 0 and 1. These attributes of the 

current service and new service are normalized and used in equation (3):

U = ws x (ns — cs) — wp x (np — cp) + wdc x (ndc — cdc)
(3)

+ wr x (nr — cr)

If an agent is not an existing internet adopter, the sum of affordability factor and 

digital literacy factor must exceed 0.5 for them to consider the broadband plan 

(Alonso-Betanzos et al., 2017). If the condition is not satisfied, the U is set to -1 

which indicates that the agent does not have the means to purchase or digital literacy 

to use the internet. As a result, these users will negatively influence other agents. This 

condition acts as the threshold for the Perceived Behavioral Control (PBC) of the 

agent. This threshold is waived for existing internet users as past studies reveal that 

PBC is not a significant predictor of behavior if a person already owns a similar 

product (Taylor & Todd, 1995). The agents that meet the PBC threshold calculate 

utility using equation (4). The value of utility is used as a measure of the attitude that 

an agent has towards the subscription plan (consistent with Muelder & Filatova, 

2018). A higher U value indicates that the agent has a favorable opinion of the 

broadband service.

U = ws x ns — wp x np + wdc x ndc + wr x nr (4)

3.4.2. Intention to Adopt. The decision to subscribe to the new broadband 

service depends upon the values of the utility and influence, and an individual agent’s 

weight for these beliefs. wu captures agent’s preference towards utility of the 

subscription plan and wsoc is the weight given to social utility. Intention to adopt is 

given by equation (5)The decision to subscribe to the new broadband service depends 

upon the values of the utility and influence, and an individual agent’s weight for these
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beliefs (Muelder & Filatova, 2018; Zhang & Nuttall, 2012). The variable wu captures 

agent’s preference towards utility of the subscription plan and wsoc is the weight 

given to social utility. Intention to adopt is given by equation (5):

Int = wu x U + wsoc x I (5)

If an agent has a favorable opinion of the broadband service (U>0) and has been 

positively influenced (I>0), the agent is more likely to adopt the service. If the agent’s 

calculated Int > 0, the agent adopts the new service and if Int <= 0, the agent rejects 

the new service. Existing internet users are assumed to have switched to the new 

service.

3.5. OUTCOME METRICS

The outcome of the simulation is evaluated in terms of (a) absolute number of 

new service subscribers and (b) percent of new service adopters. Since the number of 

households in a zip-code can be any value within 0 and 1000, the percentage of agents 

adopting the new subscription plan is a better metric for analysis. The percent of 

adopters can be used interchangeable with “penetration rate” or “take-rate” used by 

ISPs as a performance metric for their services. The new service adoption percent is 

calculated by counting the total number of agents with Intention (Int > 0) divided by 

the total number of agents in the model.
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4. METHODS

4.1. DATA

For the model demonstration and unserved area case study, the agents 

population, income, and education levels were assigned using census data (Census 

Reporter, 2019). The existing percentage of residential internet adopters was sourced 

from broadbandnow.com (BroadbandNow, 2021). The current service characteristics 

for both studies was sourced from the official website of the respective ISPs in 

question. For the model demonstration, the new service characteristics and the actual 

take-rate data were provided by Ralls Technologies from their November 2020 

dashboard report. The new service characteristics for the FCC funded fixed wireless 

service were sourced from the ISP’s website. The fiber service attributes were sourced 

from the CAF-II data discussed in the DEEDP report (Eisberg et al., 2020). The 

reliability ratings for all services were sourced from Google reviews, Facebook 

reviews and broadbandnow.com.

For the sensitivity analysis, the agent demographics were assigned randomly 

from a uniform distribution. The number of households were defined as per USDA 

data and the existing user percentage were set using U.S. Census Bureau data(ACS, 

2018b; USDA, 2019). The current and new service baseline, minimum and maximum 

values were sourced from broadbandnow.com (BroadbandNow, 2021c). All input 

data, outputs, plots, and code can be found in this GitHub repository, 

https://bit.ly/3ln8nVv.

https://bit.ly/3ln8nVv
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4.2. MODEL VALIDATION

For validation, we initialize the model to represent the broadband market in 

Perry (zip-code 63462) in Ralls County of Northeast Missouri. In 2019, a rural 

electric coop (Ralls Technology Fiber Solutions) started a new fiber service in the 

area where 70% of the households also had access to a DSL internet service provided 

by CenturyLink (BroadbandNow, 2021). As per census data, the environment is 

populated with 274 uniformly scattered agents (ACS, 2018). Each agent is assigned 

an income and education level to represent the distribution from the U.S. Census 

(Census Reporter, 2019). All service attributes (listed in Table 4.1) except reliability 

have been sourced from the ISPs website (CenturyLink, 2021; Ralls Technologies, 

2020). The average reliability rating for the new ISP was 3.7 out of 5 on the 

company’s Facebook page (http://bit.ly/2P2EMF6) whereas for the current ISP was 

3.2 out of 5 on broadbandnow.com (http://bit.ly/2OYPQTm).

The agents’ preferences ws, wp, wdc, wr, wu, and wsoc are assigned 

randomly from a uniform distribution. To demonstrate the predictive capability of the 

model, we ran the ABM 1,000 times at these settings and the mean output was 

compared with the actual penetration rate provided by Ralls Technologies.

Table 4.1. Current and new service attributes

Current 
or New? Technology Speed

(Mbps) Price ($) Reliability Data-cap
(GB)

Current DSL 40 64 3.2 1024
New Fiber 50 55 3.7 Unlimited

http://bit.ly/2P2EMF6
http://bit.ly/2OYPQTm
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Internet Provider Competition Map For Perry

Figure 4.1. Internet availability map for Perry. Red represents unserved areas, amber 
represents one ISP available, yellow represents availability of two ISPs

4.3. MODEL DEMONSTRATION

This experiment forecasts the take-rate in an unserved area, zip-code 63662 in 

Bollinger County, MO, which lacks reliable broadband connectivity. Bollinger 

County was highlighted as an area with acute connectivity problems and was reported 

to be in immediate need for high-speed internet (Facilitators et al., 2020). This section 

focuses on predicting the outcome of FCC’s policies during the CAF-II auction which 

gave the majority of the funds to lower speed ISPs. The ISP which won the most 

funds in CAF-II (Wisper Internet) also won the bid to provide broadband connectivity 

in Bollinger County, MO.

This area currently has Big Rivers Communication as the only fixed wireless 

provider with a maximum advertised speed up-to 7Mbps. Satellite Internet is an 

unfavorable choice as most residences do not have clear line of sight. Therefore, this 

zip-code can be classified as an unserved area. The take-rates were measured by 

allowing agents to compare the existing internet plans available in the area with the 

new service (fixed wireless) provided through the FCC funding (shown in Table 4.2).
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Table 4.2. Comparing attributes of current service and FCC funded service. The new 
service provides speeds at 25Mbps, 50Mbps and 100Mbps while charging more than

current service

SI
no.

Current 
or New? Technology Speed

(Mbps) Price ($) Data-cap
(GB) Reliability

1.
Current Fixed Wireless 7 114.99 Unlimited 3.3

New Fixed Wireless 25 125.00 Unlimited 3.2

2. Current Fixed Wireless 7 114.99 Unlimited 3.3
New Fixed Wireless 50 129.99 Unlimited 3.2

3. Current Fixed Wireless 7 114.99 Unlimited 3.3
New Fixed Wireless 100 149.99 Unlimited 3.2

The service attributes were sourced from websites of the respective ISPs (Big 

River Communication, 2021; Wisper Internet, 2021). The reliability ratings were 

sourced from broadbandnow.com (http://bit.ly/3cFXsCm, http://bit.ly/3rUvF7I). 

Further, the comparisons were also done with a high-speed fiber internet connection 

provided by a rural co-op to observe how policies favoring fiber infrastructure could 

potentially influence take-rates (see Table 4.3). The data for this service is sourced 

from the DEEDP report (Eisberg et al., 2020).

A total of 462 agents were initialized representing each household in the area. 

The agents’ income and education levels were assigned as per publicly available 

Census data (Census Reporter, 2019). The initial-users parameter is set to 60.1% as 

per FCC’s Form 477 data which shows what percentage of people could potentially 

access internet through a fixed wireless/cable provider (BroadbandNow, 2021). Each 

comparison was performed 1,000 times for a given set of inputs and the mean output 

and standard deviation are reported.

http://bit.ly/3cFXsCm
http://bit.ly/3rUvF7I
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Table 4.3. Comparing the current fixed wireless service with new fiber service. The
new service charges $35 to 65$ less for 1000Mbps and 100 Mbps speeds

SI
no.

Current 
or New? Technology Speed

(Mbps)
Price

($)
Data-cap

(GB) Reliability

1. Current Fixed Wireless 7 114.99 Unlimited 3.2
New Fiber 100 50.00 Unlimited 4.9

2. Current Fixed Wireless 7 114.99 Unlimited 3.2
New Fiber 1000 80.00 Unlimited 4.9

4.4. SENSITIVITY ANALYSIS

The sensitivity of all input variables is tested to determine which factors are 

most influential to the take-rate according to this agent-based model. The One-At-A- 

Time (OAT) method was used for sensitivity measuring the adoption percentage at 

the minimum and maximum possible input value while keeping the rest of the 

parameters at their baseline values. For sensitivity analysis, we allow agents’ 

demographics to be assigned arbitrarily from a uniform distribution.

The baseline, minimum and maximum values are reported in Table 5. Given 

that maximum population in rural area can be up to 2,500 and the number of 

individuals per household is approximately equal to 2.5, we set the maximum value 

number of households per zip-code as 1,000 (USDA, 2019). The baseline value for 

number of households is the assumed median number of households in a rural area.

The minimum value for this parameter is the least number of agents needed to 

initialize the small-world network (Watts & Strogatz, 1998). The baseline, minimum 

and maximum values existing users are set at 65%, 24.9% and 90.5% respectively. 

These values were sourced from American Community Survey which reported the 

trends of internet subscription rate across United States (ACS, 2018).
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Table 4.4. Baseline, minimum and maximum input values. The best-case scenarios 
facilitate higher adoption of the new service and vice-versa

Parameter Baseline Worst
Case

Best
Case Source

No. of
Households/zip-

code
500 10 1000 USDA

Existing Users 65% 24.9% 90.5% ACS, 2018
Current service characteristics

Current Speed 
(Mbps) 12 1000 5 Broadbandnow.com

Current Price 
($)

60 150 35 allconnect.com

Current 
Datacap (GB) 100 3000 30 Broadbandnow.com

Current 
reliability (out 

of 5)
3.2 4.9 2.8 Broadbandnow.com

New service characteristics
New Speed 

(Mbps) 100 25 1000 Broadbandnow.com

New Price ($) 60 150 35 allconnect.com
New Datacap 

(GB) 100 30 3000 Broadbandnow.com

New Reliability 
(out of 5) 3.2 2.8 4.9 Broadbandnow.com

Baseline Mean 
Adoption% 45.9%

The baseline value of current speed is the mean satellite internet speed, the 

minimum is mean 4G LTE internet speed, and the maximum value is highest speed 

for fiber internet reported by broadbandnow.com. Current and new price values were 

derived from the average (baseline), lowest (minimum) and highest subscription 

(maximum) cost reported by allconnect.com. The new speed baseline value is set to 

be equal to the highest speed provided by lower-tier ISPs as reported in the DEEDP 

report. The minimum speed is the baseline requirement by FCC while the maximum 

speed is equal to the highest speed provided by fiber internet service. The baseline



current and new reliability are the ratings given to DSL service in demonstrative 

study. The minimum and maximum values of reliability are equal to average reviews 

of satellite service and fiber service respectively. The data-cap baseline, minimum, 

and maximum values are sourced from broadbandnow.com. To account for the 

stochasticity in the model, each input setting was simulated 1,000 times. The mean 

output (new adoption percentage) for every setting is used to calculate sensitivity. 

Sensitivity is calculated as the percent change in new service adoption from the 

baseline.

31
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5. RESULTS AND DISCUSSION

This section describes the results and implications obtained in the 

demonstrative study and the unserved area case study. The results of the sensitivity 

analysis show the influence of every input parameter on the model outcomes.

5.1. MODEL VALIDATION

The mean output reported for the 274 households in Perry, MO was 69% with 

a standard deviation equal to 5% (see Table 5.1). The minimum value yielded by the 

model in 1,000 simulation runs was 57% while the maximum was 80%. The first 

quartile value was reported to be 70% and the third quartile 72%. The model 

overpredicted the mean take-rate for this scenario. However, the actual take-rate in the 

region falls within the confidence interval of the prediction (see Figure 5.1). This 

suggests that a theoretically driven, rather than an empirical model, may be a 

reasonable approximation for consumer decision-making in the context of broadband 

adoption.

Table 5.1. Model validation results

Technology Mean New Standard Actual
Adoption% Deviation Penetration

Fiber 69% 5% 62%
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Figure 5.1. Box-whisker plot for adoption% of new fiber internet

5.2. MODEL DEMONSTRATION

To demonstrate the value of using this model to conduct policy experiments, 

the ABM was also used to simulate the unserved area of Patton, MO in Bollinger 

County. The FCC-funded cable service was first compared with an existing major 

service provider in the zip-code. The fixed wireless service has only one subscription 

plan with unlimited data and this was compared to the three plans proposed by the 

new fixed wireless service (Wisper Internet). The comparison in Table 5.2 shows that 

the 50 Mbps plan reported the highest take-rate in 1,000 simulation runs. All three 

subscription plans achieved a take-rate of 22% to 25%. As seen in the box-whisker 

plot, even the maximum value is far less than the mean take-rates of the fiber internet 

(see Figure 5.2).

Both the 100 Mbps and the 1,000 Mbps perform far better against the current 

service with mean take-rates reported as 72% (standard deviation = 3%) and 78% 

(standard deviation = 2%) respectively (see Table 5.3). The cheaper costs for better
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service compared to the cable service could be the main reasons why agents adopted 

the service in greater numbers.

Table 5.2. Take-rates for FCC funded service

SI no. Technology Mean take-rate Standard deviation

1. Fixed Wireless 24% 3%

2. Fixed Wireless 25% 3%

3. Fixed Wireless 22% 3%

Table 5.3. Take-rates for fiber service

Sl no. Technology Mean take-rate Standard Deviation

1. Fiber 71% 3%
2. Fiber 78% 2%
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Figure 5.2. Comparisons of adoption% for every tier of service
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5.3. SENSITIVITY ANALYSIS

We performed sensitivity analysis to determine which model parameters have 

the most influence on the percent of new service adoption. The sensitivity for best- 

case and worst-case scenarios was measured by calculating the ratio of change in 

mean output (from baseline) and baseline output. The sensitivity measurements for 

all input parameters of variables are visualized in Figure 5.3.

Existng Users - 

New Price - 

Households/zip - 

Current daia-cap - 

Current Speed- 

Current Price - 

Current Reliability- 

New Speed- 

New data-cap - 

New Reliability-

Scenario

• Worst Case

• Best case

Figure 5.3. Sensitivity variation from worst case to best case

The first row shows the variation in the existing number of internet adopters in 

the region (see Table 5.4). The worst-case scenario (24.9%) meant fewer agents 

already had the capability to buy and use internet and most agents had to break the 

Perceived Behavioral Control barrier to have positive utility values (U).
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Table 5.4. Sensitivity measurement with baseline output as 46%

Worst Case Best Case

Variable Mean
Adoption

Percent
Change

Mean
Adoption

Percent
Change

Existing Users 26% -44% 77% 69%

New Price 6% -88% 53.87% 17%

Households/zip 0% -100% 41.28% -10%

Current data- 7% -85% 47.20% 3%
cap

Current Speed 6% -86% 46.21% 1%

Current Price 26% -44% 64.16% 40%

Current 13% -71% 50.19% 9%
Reliability
New Speed 40% -13% 74.16% 62%

New data-cap 43% -5% 75.04% 63%

New 32% -28% 63.06% 37%
Reliability

For the households per zip-code parameter, at the best-case scenario (90.5%), 

most agents were not subjected to the PBC threshold condition and therefore adopted 

the service if they had a higher preference towards any of the attributes of the service. 

These adopters positively influenced non-users and therefore yielded a higher 

adoption percentage. This parameter showed the highest variation in output (Worst- 

Case = -44%, Best-Case = 69%). The adoption percentage sees a non-linear increase 

with increasing existing users (see Figure 5.5).

The second most sensitive input parameter was “new price” (Worst-Case = 

88%, Best-Case = 17%). If the new service is costlier than the current service, fewer 

existing users preferred switching to the new service. These users may negatively 

influence other agents and thus lead to fewer adoptions overall.
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Figure 5.4. Sensitivity analysis of existing users

However, in the best-case, the adoption % does not spike much due to smaller 

difference from current service’s price. The adoption percentage declines sharply 

once the new service becomes more expensive than the current service. The slope of 

adoption is constant until $60 and then reduces more sharply with increasing cost (see 

Figure 5.6). This could mean that the new price has a threshold beyond which the 

adopters cannot positively influence non-adopters as they themselves reject the new 

service.

At the worst-case value of households/zip-code, the agents are scattered far 

from each other which leads to fewer local links, and most of the agent-agent 

interactions are through the random links established. Low population led to fewer 

interactions and most agents do not receive much positive influence from their social 

network. At the best-case value, high adoption percentage could have been observed 

due to high number of agents who had the income and education to consider buying 

the new service and therefore influence more agents positively.
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Figure 5.5. Sensitivity analysis of new price

The percent change in output was the second highest for this parameter (see 

Table 5.4) at the worst -case and best-case value (Worst-case = -100%, Best-case = - 

10%). We further observed the trends in adoption% as a function of households/zip- 

code (see Figure 5.7). At the worst-case scenario, none of the agents adopt the new 

service. The adoption increases rapidly with population density until 30% and then we 

see a gentle decline. It is counter-intuitive that a higher number of agents yields a 

lower adoption. This may be caused due to higher negative influence from a majority 

presence of non-adopters in the environment. At lower population density, there are 

larger standard deviations. This shows that the model is more stable when simulating 

densely populated areas.

The next four rows vary the current service attributes to measure the variation 

in adoption%. Data-cap shows the highest variation among all current service 

attributes. Agents favor unlimited usage even if the new speed offered is lower than

the current service.
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Figure 5.6. Sensitivity analysis of households/zip-code

Current speed yielded a variation similar to current data-cap. This could be 

because higher speed provided by the current service makes agents less likely to 

consider new service. The same could be used to explain the variation in adoption 

percentage for current price. At the worst-case value ($35), since current service 

became the cheaper choice, agents therefore rejected the new service. The best-case 

value ($150) being higher than the baseline new price, more agents adopt the new 

service. The new service adoption is moderately sensitive to reliability (Worst-Case = 

-71%, Best-Case = 9%). Agents were far more likely to stick with their current 

providers if they find their service more reliable. This suggests that agents perceive 

higher utility from the attributes which are directly related to usage experience of the 

current service.

In the last three rows of Table 5.4, the sensitivity of the remaining attributes of 

the new service are reported. The new speed provided had worst-case and best-case 

values set at 25 Mbps and 1000 Mbps, respectively. The agents end up with a high 

utility value for a larger difference in the current and new speed. The sensitivity
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reported for this parameter is second highest amongst all other new service attributes. 

New data-cap shows lower sensitivity than new speed for its worst-case (30 GB) and 

best-case values (3000 GB). The adoption percentage goes significantly higher at the 

best-case scenario, but there is moderate drop for the worst-case. New Reliability 

(Worst-Case =28%, Best-Case = 37%) showed the least sensitivity of all input 

parameters. This also suggests that agents preferred a new service if it provided better 

speeds at affordable prices.
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The primary objective of this research is to develop a simulation tool to 

predict high speed broadband service adoption rate in a rural area. The agent-based 

model creates an environment consisting of rural households that decide whether to 

adopt a new internet service introduced in the area based on the service attributes and 

influence received from their neighbors and peers. We demonstrate the model’s 

prediction capabilities followed by a case-study of an unserved area and explore the 

dynamics of the model through a sensitivity analysis.

The model demonstration slightly over-estimated broadband adoption in 

Perry, MO, but the true value was captured in the confidence interval. This gives us 

confidence about the output yielded by the agent-based model. This implies that the 

behavioral theory used to define agent rules and small-world network for spatial 

representation are appropriate to model the broadband adoption phenomena. This 

makes our agent-based model consistent with other conceptual models.

This set the foundation for the unserved area case study where a future market 

phenomenon was predicted due to current policies. The broadband service planned for 

the area is expected to be expensive for end-consumers but cheaper to deploy for the 

ISP. The low adoption rates yielded by the model suggest that this option may not 

prove to be a viable alternative to higher speed access. This is likely due to the 

combination of higher monthly costs and low reliability of the fixed wireless service. 

However, when a high-speed internet service was introduced to the agents for cheaper 

monthly costs, the adoption rates yielded were approximately three times higher. The 

fiber service provided 10 times higher speeds while charging 40-50% less monthly. 

This suggests that low-cost alternatives for consumers are critical for achieving high

6. CONCLUSION
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adoption rates for sustainable business models. Rather than assuming that access will 

translate into adoption, this model suggests that consumer subsidies may play an 

important role in driving adoption.

The sensitivity analysis suggests that rural areas with a high percentage of 

existing internet users would see higher take-rates for a new service. This outcome is 

consistent with the previous ABM literature, where the higher percentage of existing 

adopters yielded higher percentage of overall adoption of better communication 

technology (Kocsis & Kun, 2008). Lower costs provided by the new service were also 

observed as a key driver of broadband adoption. This is similar to the observations in 

earlier empirical studies where price was found to inversely influence demand (Carare 

et al., 2015; Glass & Stefanova, 2010). We also observe that best-case scenario 

values for attributes of current and new-service drive adoption. These outcomes are 

consistent with the findings of empirically studies which integrated behavioral 

theories. Higher utility positively influences the adoption behavior.

The model shows erratic outcomes when simulating the adoption phenomena 

for a sparsely populated area. The sensitivity analysis shows that lower 

households/zip-code yielded wider variations in adoption percentage. This suggests 

that in low density areas, a few individuals with extreme views may swing the opinion 

of the entire community to adopt or not adopt. This phenomenon needs to be verifies 

using empirical data. At the current stage, this model is not reliable for modeling low- 

population zip-codes. Another, major limitation in this simulation is input values of 

existing user parameter are taken from FCC Form 477 data. The Form 477 data 

considers a census block to be served even if an ISP can provide service only to a 

single user. For the sake of simplification, we assume that all households to which 

current service is available have adopted it. Further, our modeling strategy considers



residential internet subscription owners as existing internet adopters and does not 

consider the presence of mobile internet users in the area. Our model also assumes 

that new service is deployed in the entire area simultaneously and not phase-by-phase 

as done in real world. Service providers may have a contractual agreement with 

consumers which might limit consumer’s wish to immediately switch if a better 

service is available. This aspect is not accounted for in this model presently, but it can 

be included with the availability of empirical data. We also note that online reliability 

ratings fluctuate with time and so the predicted take-rates may also vary. This can be 

solved by using customer feedback recorded by ISPs for more stable prediction.

There is tremendous scope to increase the predictive capability of the agent- 

based model presented in this research. The two main steps towards validating and 

extending the model are elaborated below.

(i) Model Validation: The agent-based model is aimed at demonstrating the consumer 

adoption phenomena in the context of high-speed internet in rural areas. Empirical 

data could improve the predictive ability of the model and help answer more specific 

questions about policy effectiveness(Rai & Henry, 2016). The 3 key areas where 

empirical data could enhance this model are a) consumers’ preferences, b) spatial 

representation of service availability, and c) service usage data provided by ISPs.

A popular way to capture the heterogenous interactions between product 

attributes and consumer-decision making is by collecting demographic and stated 

preference data from consumers to initialize the agent-based model. Discrete choice 

experiments have been used to determine the product attributes significant to the 

consumer in studies related to adoption of e-groceries in urban areas (Gatta et al., 

2020), diffusion of solar PV in New Zealand (Araghi et al., 2014), and increase 

availability of wood in Swiss markets (Holm et al., 2016). In the context of rural
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broadband, a survey can be deployed to collect consumers’ demographics, their 

individual applications of internet, the utility associated with each attribute of 

subscription plans, and their response to peer influence. The data can be fitted using a 

random utility model and the estimates can be used to assign preference variables 

such as ws, wp, wdc, wr, wu, and wsoc. The discrete-choice experiment can also 

capture the reasons furnished by consumers to remain with their current service 

providers or without a broadband subscription. This can be very helpful in modelling 

agents who reject the service.

The internet service availability needs high resolution spatial representation 

especially for wired services. The FCC data has severe limitations in terms of 

accuracy. It would be valuable if ISP could provide data to researchers on their 

infrastructure layout in the geographical region they are providing or plan to provide 

service. The data could indicate residential and business establishments where 

connection is or could be provided. For wireless service, it would be valuable if we 

are provided data on the points where antennas are setup and the area that each 

antenna can service. There are existing models of wireless transmission that could be 

integrated to appropriately model signal strength.

Lastly, it would be helpful if ISPs could provide revealed preference data for 

take-rates of various subscription plans available. Along with the list of services, it 

would also be valuable to know the percentage of users subscribed to each of their 

plans. Since agent-based models can simulate adoption phenomena over a set 

timeframe, ISPs could provide historical trends of consumer adoption for each of their 

services. Additionally, more attributes of the service such as contractual terms, one

time costs, quality of service (QoS), and latency could also improve the model’s 

predictive capability.
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(ii) Model Extension: The current model’s utility is restricted to predicting the take- 

rate of residential internet service in a region. This could be a stepping-stone for more 

elaborate models which can distinguish between the needs of commercial and 

residential establishments.

The environment can be extended to simulate more than two internet services 

competing at the same time, such as fiber, satellite, LTE, and fixed wireless available 

simultaneously. The take-rate could be used to predict the revenue inflow for the ISP 

in an area. The revenue inflow can further be determined by varying the resolution of 

the geographic region for, such as a census block, multiple zip-codes, or multiple 

counties. This approach can help to develop an expansion strategy for a service 

provider.

Broadband’s impact on the sales and revenue of local businesses, household 

income, and number of operational businesses in an area can also be determined using 

this type of model. There is interest in studying the impact of specific applications of 

broadband such as telehealth and telemedicine, precision agriculture and online 

education on the lives of rural Americans. Policymakers could also use this type of 

model to study the fluctuations in rural populations because of local socio-economic 

development.
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