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ABSTRACT

iii

This research aims to mitigate eutrophication of freshwater habitats affected by 

urban stormwater runoff. Two highly impacted urban ponds near the Missouri S&T 

campus in Rolla were the focus of this research on the application of floating treatment 

wetlands (FTWs). An FTW consists of a man-made floating mat that is planted with 

emergent or floating macrophytes. The plants grow on the mat and their roots extend into 

the water column below the mat. Plant tissues, especially roots in direct contact with the 

water, take up nutrients, act as biofilm growth sites, and may facilitate precipitation of 

nutrients. With urbanization, ponds receive enhanced fluxes of nutrients from runoff that 

can negatively impact the ponds and downstream ecosystems. By mitigating the inflows 

of nutrients, FTWs can help maintain water quality and biodiversity of these systems. My 

research objectives were to examine nutrient (nitrogen and phosphorus) removal rates 

from microcosms containing different plants. Simulated stormwater runoff was added to 

lab microcosms containing coir fiber medium and bare-root plants. The removal rate of N 

and P from the water was monitored by taking samples over time. Based on a one-way 

ANOVA, there was a significant difference among the plant treatments for the rate of 

uptake for soluble reactive phosphorus (SRP) for rates per microcosm (P = 0.003) but not 

for rates per mass of plant used (P = 0.22). ANOVA did reveal significant differences 

among plant treatments for uptake rates of N per microcosm (P < 0.001) and per biomass 

of plant used (P < 0.001). Microcosms planted with Cladophora and Spirogyra (algae) 

and Scirpus atrovirens (Bulrush) had higher uptake rates of N compared to most other 

plants (Tukey post-hoc comparison, P < 0.05).
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1. INTRODUCTION

1.1. THE PROBLEM: STORMWATER RUNOFF

Stormwater runoff in urban areas can contribute excess nutrients, sediment, and 

other pollutants along with high flows to downstream water bodies. Nutrient pollution 

entering waterways is an increasing problem caused by human development (Arnold & 

Gibbons, 1996). Urbanization around waterways leads to greater amounts of suspended 

and deposited sediment in streams. Flooding can also be an issue caused by an increase of 

impervious surfaces and loss of vegetative cover in urban watersheds (Anderson, 1970). 

The constant stress of pollutants coming into a freshwater system in urban landscapes can 

damage the quality of streams and other freshwater systems.

Non-point sources of pollutants can contribute nutrients, sediment, and other 

unnatural chemical compounds to urban watersheds (Loperfido, 2013). These urban 

pollutants lead to stress in urban streams, wetlands, ponds, and lakes (Feminella &

Walsh, 2005). Excess nutrients can promote enhanced algal growth, which leads to 

eutrophication. Eutrophic waters can significantly affect aquatic life, such as fish 

populations (Willemsen, 1980). High algal growth and warm waters can trigger 

summerkill events, where lack of oxygen leads to fish death (Anderson, 2009). Eutrophic 

conditions can prevent autotrophic benthic communities from receiving sunlight by 

having excessive algae in overlying waters. This undesirable growth of algae can 

severely hurt ecosystem dynamics in freshwater communities. In addition, urban 

pollution can kill sensitive species that are unable to tolerate high concentrations of 

pollutants (De La Torre et al., 2005).
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In some settings, environmental engineers and urban planners are creating more 

stormwater retention ponds and constructed wetlands to collect and treat stormwater 

runoff. These basins are commonly seen along highways, in suburban neighborhoods or 

around shopping centers. In some cases, the retention ponds are aerated to reduce algal 

growth and add oxygen to improve water quality for fish and sensitive biota in these 

ecosystems (Kuntz, 2015).

1.1.1. Eutrophication. Eutrophication is an increase in primary production in 

ecosystems, usually related to enhanced concentrations of nutrients. In ponds and lakes, 

high growth of the phytoplankton (suspended algae) can create issues with water quality 

as well as visual appearance of the ecosystems (Stoermer, 1978). Once the phytoplankton 

die, bacteria break down the dead biomass, using oxygen in the process. This can deplete 

the pond of oxygen, often causing fish kills (Burkholder et al., 1999). When nutrient 

loading occurs, phytoplankton can quickly take over a pond (Kalff & Knoechel, 1978). 

They reproduce fast and can thrive in poor water quality environments such a drainage 

ditches and heavily polluted water bodies. Algae can cover ponds as suspended 

phytoplankton, causing benthic plants to suffer from limited light availability. Harmful 

algal blooms (HABs) have also been found to produce toxins that can affect human 

health (Pearson et al., 2010). Hypoxic zones are especially dangerous because the loss of 

oxygen in a short period of time can quickly harm the entire ecosystem and lead to 

catastrophic fish kills (Burkholder et al., 1999).

Algae is a common problem that costs the United States millions of dollars every 

year (Hoagland & Scatasta, 2006). In a 2000 Annual Report from NOAA, they estimated 

that the average economic impact for HABs from year 1987 to 1992 period was over



$740 million dollars (Anderson et al., 2000). Algal blooms can affect drinking water 

quality, recreation/tourism, commercial fisheries, and the high monetary cost to monitor 

and manage HABs (Anderson, 2009). Lake Erie, for example, provides water for about 

11 million people, but since the use of heavy fertilizers in the Midwest, the lake has been 

suffering from catastrophic HABs (Michalak et al., 2013). The EPA has invested millions 

of dollars in research, monitoring, and restoration of the Great Lake region (Russ, n.d.).

Algal blooms can lead to loss of fishing opportunities (Moore et al., 2019). For 

example, commercial fisherman on the Great Lakes are unable to create revenue when 

HABs are present (Wolf et al., 2017). Given that algal blooms can cause negative health 

affects (Center for Disease Control, 2018), restrictions are also put in place to prevent 

locals from enjoying recreation.

Eutrophication is usually related to common stormwater pollutants seen in urban 

areas: phosphate, nitrate, and ammonium (Barbosa et al., 2012). These nutrients come 

from a variety of sources. Phosphates can also occur naturally from the weathering of 

rocks, but in urban areas, it is most likely from fertilizers used on manicured lawns as 

well as animal waste (Carpenter et al., 1998). Nitrate can be found in lawn fertilizers and 

animal waste but it can also occur naturally from geologic deposits (McMahon et al., 

2011). Lastly, ammonium is also commonly found in fertilizer and animal waste, which 

can easily make its way into freshwater environments through pet waste or from eroded 

sewage pipes in older cities (Misiunas, 2008). All these pollutants can cause problems 

when added to a freshwater source in large quantities. Loss of biodiversity, poor water 

quality, habitat degradation, and other negative impacts are common in such polluted 

waterways (Sansalone & Buchberger, 1997).
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1.1.2. Water Quality. Poor water quality from non-point source pollutants is a 

common issue across the globe. Water is a key element for our lives from agricultural 

irrigation to our drinking water supply. As populations grow and as climate change 

intensifies, there is a higher demand for the use of fertilizers and pesticides (Tenkorang & 

Lowenberg-Deboer, 2009). When adding these to crops in large concentrations, the 

surrounding aquatic ecosystems are negatively impacted (Richter et al., 1997; Sharpley et 

al., 1994).

When regulations are not in place or rules are not followed, contaminants can 

easily make their way into drinking water. Flint, Michigan is an a example of a polluted 

water source affecting the lives of people with lead poisoning (Hanna-Attisha et al.,

2016). There are many other locations that are currently being cleaned up under the 

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 

also known as the Superfund. As of 2019. There are over 1344 contaminated Superfund 

sites that span across the United States (U.S. Environmental Protection Agency, 2016).

Heavy metals are also a concern in many urban environments. Heavy metals can 

come from a variety of sources including agricultural, domestic, and sewage runoff 

(Akpor, 2014). In high concentrations, heavy metals can be deadly to aquatic life (Baby 

et al., 2011). One concern with heavy metals is bioaccumulation in the food chain (Chen 

et al., 2000).

1.1.3. Habitat Quality. Urban ponds seen in local parks and neighborhoods can 

serve multiple purposes, including stormwater storage or treatment. Ponds in the city 

usually have trails around them, and people appreciate their aesthetic value. People can 

take their dogs on a walk and enjoy the fresh air, while others may recreationally fish in

4



the pond. However, many ponds that are not being effectively maintained or monitored 

by the community can easily become eutrophic. In the last 10 years, toxic cyanobacterial 

blooms in lakes and ponds across the U.S. have killed dogs (Backer et al., 2013). These 

areas have impacts beyond their ecosystem by potentially harming citizens’ pets.

Not only will stormwater runoff cause nutrient loading to urban ponds, it will also 

affect the geomorphology and hydrological connectivity of the aquatic ecosystem 

(Bracken & Croke, 2007). Heavy rainfall often causes high water velocity and discharge 

in urban streams. This can result in heavily eroded stream banks and significant sediment 

deposition downstream when the water velocity slows (Chin, 2006). Sediment deposition 

is known to smother macroinvertebrates resulting in altered trophic systems (Gray & 

Ward, 1982).

1.1.4. Biodiversity Loss. The biodiversity of aquatic ecosystems can provide 

many different ecosystem services. Ecosystem services are broken down into categories 

which include provisioning, regulating, cultural and supportive services (Bolund & 

Hunhammar, 1999). For example, people can eat fish from clean aquatic ecosystems, thus 

benefitting from ecosystem provisioning service. Clean water systems can be used for 

recreation, which enhances their overall cultural service. A rich, biodiverse body of water 

has healthy nutrient cycling and healthy levels of primary productivity, thereby regulating 

the ecosystem.

1.2. THE SOLUTION: FLOATING TREATMENT WETLANDS (FTWs)

Floating islands have been documented to attract fish as early as 237 AD 

(Alcaraz, 2005). However, the scientific value of such systems has increased in the last

5



three decades (Colares et al., 2020). There has been an exponential rise in publications 

for FTWs since 2006 (Colares et al., 2020). The top two countries studying this technique 

are China and the United States (Colares et al., 2020). FTWs used across the globe vary 

because of regional plant selection and different environmental factors (temperature, 

humidity, biotic region etc.). FTWs have varying treatment applications. They can treat 

wastewater, agricultural runoff, urban runoff and stormwater (Colares et al., 2020).

1.2.1. FTW Structure. Wetlands have excellent capabilities to retain nutrients 

and heavy metals. However, in an urban area, a constructed wetland may be neither 

viable nor affordable, if space or budget is an issue. FTWs have three components: an 

emergent macrophyte shoot, a floating base, and the roots of the selected plant(s) 

(Headley & Tanner, 2008). The size of FTWs can vary depending on the size of the pond. 

Many places implement multiple FTWs into their pond to remediate the nutrient loads 

(Winston et al., 2013a). FTWs can not only take up nutrients, like constructed wetlands, 

but they also provide the pond with habitats for aquatic organisms and contribute to food 

web support by supplying carbon (Knight et al., 2001).

Another benefit of FTWs is their visual appeal and uniqueness. Park visitors can 

experience the beauty of FTWs. However, FTWs are still a new technique and are not 

widely known or implemented in urban areas. Studies are lacking data for harvesting 

strategies and performance of specific plant species. The abilities of nutrient retention can 

vary based on plant selection and other environmental factors (Vymazal, 2007). FTWs 

can be configured in a variety of ways. Most scientists suggest a biodegradable floating 

mat (Z. Chen et al., 2016). The floating mat can encircle emergent hardy plants along 

with smaller macrophytes. FTWs can also be positioned in coconut fiber netting or

6



hydroponic pots (Garcia Chance & White, 2018). Since there are so many options for 

FTWs, it is easy to gather materials and place them within a polluted freshwater system.

1.2.2. FTW Capability. FTWs have been successful in different environments 

including stormwater retention basins (Winston et al., 2013b), wastewater treatment areas 

(Van De Moortel et al., 2010), urban ponds (Tanner & Headley, 2011), lakes (Lu et al., 

2018) and other freshwater systems. FTWs have been used all over the world and with a 

wide variety of plants.

Different plants have shown varying capabilities for taking up nutrients in FTW 

systems. Juncus effusus, a common tall grass sedge, has been successfully used to reduce 

nitrate and phosphate concentrations in a mesocosm study done in South Carolina (Garcia 

Chanc et al., 2019a). Also in South Carolina, Cannaflaccida (native south-eastern U.S 

aquatic plant) and Juncus effuses after two seasons as a FTW were capable of 

significantly reducing N and P while also reducing temperature, pH, and dissolved 

oxygen (White & Cousins, 2013). Irispseudacorus, yellow flag iris, can remove nutrients 

and heavy metals from simulated stormwater and constructed wetlands (Chen et al., 

2009; Keizer-Vlek et al., 2014; Wang et al., 2015). Pontederia cordata, pickerel weed, 

has been shown to be successful for nutrient uptake in several studies (Chen et al., 2009; 

Garcia Chanc et al., 2019a; Wang et al., 2015). In a nursery runoff study, Pontederia did 

significantly better than Juncus at reducing TP and TN (Spangler et al., 2019). Bulrush, 

was also successful in an FTW study for removing N and P over a seasonal period (Wang 

et al., 2015). Typha domingensis , southern cattail, efficiently removed phosphorus while 

the highest concentrations of N and P remained in the plant biomass in an FTW study (Di

7



Luca et al., 2019). However, there are many aquatic plants that have yet to be tested for 

their nutrient uptake rates.

Hybrid FTWs include the addition of another facilitator that will improve the 

nutrient removal efficiency. For example, FTWs can also be inoculated with additional 

rhizospheric microbes to facilitate the nutrient uptake process (Shahid et al., 2020). 

Aeration is commonly used to disrupt the diffusion effect by promoting mixing (Garcia 

Chance & White, 2018) and breaking up large mats of algae while keeping the dissolved 

oxygen (DO) high. The addition of other plants, including emergent and floating 

macrophytes, can be beneficial for nutrient removal (Nahlik & Mitsch, 2006).

1.2.3. FTW Feasibility. In many urban areas, stormwater retention basins are 

restricted by space (Pavlowsky, 2016). If space was not an issue, many environmental 

engineers could construct wetlands or additional riparian forest near the outflow of a 

pond to naturally reduce the high concentrations of pollutants. However, in many cases 

there is no room for a large constructed wetland. FTWs can solve the problem of limited 

space and nutrient enrichment. Instead of using terrestrial space, FTWs can be an 

addition to an already existing stormwater retention basin.

1.2.4. Plant Selection and Physiology. Emergent macrophytes are plants that are 

rooted in water with plant mass above the surface. Floating macrophytes are aquatic 

plants that float on the surface of the water. All plant types retain nutrients that are 

essential for their growth and reproduction (Caldwell et al., 2005). Nutrients can be 

distributed throughout the plant based on current biological needs. In constructed 

wetlands, the nutrients are usually sequestered in plant biomass (Breen, 1990). Nutrients 

in plant biomass can be used for growth, reproduction, and homeostasis/regulation of

8



cellular activities. Plants are capable of adjusting their metabolic processes when 

nutrients are scarce, resulting in larger root mass to interact with nutrient-rich soil 

(Hermans et al., 2006).

Plant senescence is one of the last developmental phases where the plant begins to 

degrade as a result of changing temperature (Woo et al., 2018). Plants in senescence 

show visible signs of chloroplast degradation with dis-colored leaves (Avila-Ospina et 

al., 2014). This phase is important because the plant is no longer investing energy into 

growth. During senescence the plant is investing energy into nutrient remobilization 

where nutrients will be used to develop organs and seeds (Roberts et al., 2012). 

Harvesting FTWs before senescence would be ideal to maintain high rates of nutrient 

removal (Garcia Chanc et al., 2019a).

1.3. GOALS AND HYPOTHESES

At Missouri University of Science and Technology (Missouri S&T), my research 

group has studied the issue of stormwater runoff and how to mitigate it using FTWs. The 

goals of this experiment were to measure nutrient uptake in microcosms with plants and 

mesocosms with FTW systems. With this research, decisions regarding local pollution in 

ponds can be made accordingly.

The hypotheses for my thesis were as follows:

• Selected aquatic plants (both floating and emergent macrophytes) for 

FTW applications reduce simulated stormwater pollutants in a controlled 

microcosm setting.

9



• Different aquatic taxa selected in this study have statistically different 

nutrient uptake rates.

Aquatic plants are the foundation of a FTW and by studying their ability to 

remove nutrients, it will strengthen the current scientific literature (Table 1.1). Urban 

planners can implement these ideas in storm water ponds. Engineers have options to 

create and design more ecologically viable FTWs that are biodegradable. These are just a 

few insights that can result from our experiments.

10

Table 1.1 Missouri plants used for this study with success shown in previous studies.

Selected Plant Com m on Nam e N ative to M issouri Previous Studies
Pontederia cordata Pickerel W eed Yes (G arcia Chanc et al., 

2019a) (Garcia Chanc 
et al., 2019b)

Iris virginica Blue Flag Iris Yes (C hen et al., 2009)
Juncus effusus Com m on R ush Yes (Garcia Chanc et al., 

2019a) (Garcia Chance 
& W hite, 2018) 

(Garcia Chanc et al., 
2019b)

Ceratophyllum
demersum

Coontail Yes (D ierberg et al., 2002; 
Sung et al., 2015)

Eleocharis Spikerush Eleocharis 
com pressa  native in  

M issouri

(Sim  et al., 2011)

Nasturtium  officinale W atercress Yes, in  O zark 
M ountain R egion

(H offm ann et al., 2008; 
V incent & Downes, 

1980)
Scirpus validus Bulrush Scirpus atrovirens, 

native M issouri 
species

(Picard et al., 2005; 
R ycew icz-Borecki et 
al., 2017; W u et al., 
2011; Zhang et al., 

2013)
O scillatoria Filam entous

Cyanobacteria
Yes (Chevalier et al., 2000; 

Suttle & Harrison, 
1986)

Spirogyra  or 
Cladophora

Filam entous
Algae

Yes (Adey et al., 1993; 
H avens et al., 1999; 

K im  et al., 2018)
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2. METHODOLOGY

Rolla, Missouri has two main ponds within the same Burgher watershed (Figure 

2.1), which is close to campus. Water samples were taken at the 14th and 16th street inlets 

of Frisco Lake, the western inlet of Ber Juan Pond, and the outlets of both ponds. 

Stormwater concentrations in the inflows to these ponds were about 200 pg/L of soluble 

reactive phosphorus (SRP), 2000 pg/L of nitrate-N, and 200 pg/L of ammonium-N 

(Figure 2.2).

Legend
MAJOR WATERSHEDS

BURGHER
DEIBLE

DUTRO CARTER
SCALE: r.axxr 
■ STREAMSLITTLE BEAVER

:k r o l l a  c ity l im its
lo serve as a reference to soma of I ha local 

faollllas and has baan compiled from various sources including survey, 
construction permits and field verification The City of RoUa does not 
guarantee complete accuracy of the contentsof this map All data should be 
considered approximate
File: K:\PERSONELANNE'iJROWfiTFLOOD BASIN MXD

SPRING

Figure 2.1 Rolla, Missouri Watersheds. Left circle Frisco Lake (Schuman Park) and right 
circle Ber Juan Pond. Image from the City of Rolla.
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The first flush phenomenon explains that during the beginning of a storm event, 

the nutrient concentrations are the highest (Sansalone & Buchberger, 1997). 

Concentrations before a storm event in Ber Juan Pond inflow for all nutrients were higher 

suggesting the stormwater is diluting current nutrients in the inflows (Figure 2.2). This 

also could suggest that old sewer pipes are leaking into Ber Juan Pond.

NH4, N 03 and SRP Concentrations for April 4th 2019
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Figure 2.2 Strom water pollutant concentrations on April 4th 2019 storm.

2.1. MICROCOSM EXPERIMENT SET -  UP

Large 17-L white plastic tubs were filled with 10 L of tap water and allowed to 

dechlorinate for 24 hours. Microcosm tubs were selectively spaced under equal amounts 

of LED illumination (under 4 ft. 16-watt LED Grow Shop light fixtures from Toggled).



Floating mats (made of Apache Mills, Inc. Anti-fatigue runner Gray Cast Vinyl Utility 

Runner) were cut to fit the microcosm tubs. Additionally, the mats were cut to allow a 

black plastic hydroponic pot to rest in the mat. These pots were used with pure shredded 

coconut fiber to stabilize emergent aquatic macrophytes. Microcosms (Figure 2.3) were 

aerated by use of aquarium pumps. Dissolved oxygen (DO) in microcosms ranged from 

7.5 to 8.9 mg/L.
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Figure 2.3 Experimental Chambers. Microcosm tubs with floating mat, coconut fiber and
emergent macrophyte in hydroponic pot.



Microcosm controls were created to monitor any environmental changes that 

would result in unreliable data. Microcosm experiments had at least one positive and one 

negative control. A positive control tub was filled with the same amount of water and 

nutrients as the treatments in the study. A negative control simply had tap water only.

2.1.1. Experimental Chambers. Climate-controlled chambers in Butler-Carlton 

Hall at Missouri University of Science and Technology were used to study plants in a 

controlled setting. Climate chambers were temperature controlled. During this study, the 

temperature was set between 20-25 °C. The full-spectrum lights were on the entire time 

of study. Air flow and humidity were consistent in the chambers.

2.1.2. Plant Origins. Plants were selected based on their local availability, and 

their native origins. Pontederia cordata was collected from Ben Branch Conservation 

Area with permission from Missouri Department of Conservation. Iris virginica, 

Eleocharis compressa, and Scirpus validus was collected from Millpond Plants who 

specializes in Missouri natives. Ceratophyllum demersum and pond algae was collected 

from the Ozark Research Field Station. Nasturtium officinale was collected from 

Roubioux Spring in Waynesville, MO.

2.1.3. Microcosm Dosages. Each microcosm tub was dosed with 500 pg/L 

solution of nitrate-N (as sodium nitrate) and 500 pg/L solution of phosphate-P (as 

monobasic potassium phosphate) at the start of each trial. These concentrations were 

determined based upon typical stormwater concentrations of the pond inflows measured 

during our lab’s preliminary research.

14
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Plants were thoroughly washed with tap water to remove any soil, sediment, or 

macroscopic organisms. The wet mass of plants was determined with a scale before 

placing into each microcosm.

2.1.4. Sampling. After spiking microcosms with nutrients, samples were taken at 

regular intervals (every few hours for two days for short trials, every other day for two 

weeks for longer trials) to measure uptake rates. Microcosms were mixed gently with the 

needle of a 60-mL syringe and then sampled in 15-mL increments from each corner of 

the tub to acquire a composite sample representative of the entire microcosm. The 

resulting 60 mL of microcosm water was filtered with a glass-fiber filter (25 mm 

Whatman GF/F filter) into plastic bottles, which were frozen until analysis.

2.2. WATER ANALYSIS

Soluble reactive phosphorus (SRP) was measured by the ammonium molybdate- 

ascorbic acid colorimetric method (APHA, 2012). A basic linear regression was used to 

convert absorbances to concentrations based on readings from blanks and standards of 

SRP. Nitrate-N was measured using a Dionex DX-500 ion chromatograph. Peak area of 

nitrate was integrated based on standards and blanks to give concentration in pg/L. A 

basic linear regression was used to standardize the values. Nitrate-N and SRP 

concentrations were analyzed over time for each trial to determine nutrient uptake rates.

2.3. NUTRIENT UPTAKE RATE CALCULATIONS

Nutrient uptake rates were calculated two different ways. The first way the 

nutrient uptake rate was calculated was the uptake rate of nutrients per time per



microcosm trial; microcosms usually had one plant per trial, although some plants 

(coontail, algae) were not individual plants. The change in concentration over time was 

then multiplied by 10 L to give the rate of nutrient mass removal in the 10 L of water in 

the microcosms. The units for this calculation were pg/hr.

For the second nutrient rate, the nutrient rate found in #1 was divided by the wet 

biomass for the plant in each replicate microcosm. The units for this rate were pg/hr/g of 

plant.

Each plant replicate for individual microcosm studies had their own nutrient 

uptake rates for both SRP and NO3-N. The ranges used to determine uptakes rates usually 

included the entire sampling interval. However, in some cases I used a different interval 

that had a more linear pattern to the change in concentrations over time.

2.4. STATISTICS

A one-way ANOVA test using SigmaStat version 4.0 was used to compare rates 

of nutrient uptake with different treatments based on the plants tested. Uptake rates were 

log-transformed before ANOVA to meet assumptions of parametric statistics. If ANOVA 

found a significance difference in uptake rates among plant treatments, then a Tukey test 

was used to compare individual treatments.

16
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3. RESULTS: AQUATIC PLANT SUCCESS

3.1. CERATOPHYLLUM DEMERSUM

Ceratophyllum demersum, commonly known as coontail, had an average nutrient 

retention rate of 42.7 gg/hr for SRP and 7.21 gg/hr for NO3 . The August 2019 

experiment was done in a non-temperature-controlled chamber (lab setting) with average 

room temperature of 22°C. Results are show in Figure 3.1 and Figure 3.2.

Figure 3.1 NO3 concentration (gg/L) for August 28th 2019 study.

Figure 3.2 SRP concentration (gg/L) for August 28th 2019 study.
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The blue flag iris had nutrient uptake rates of 16.7 and 46.6 pg/hr for SRP and 

NO3, respectively. The September 4th 2020 study took place in temperature controlled 

chambers set to 20oC. Results for this study are shown in Figure 3.3 and 3.4.

3.2. IRIS VIRGINICA

Figure 3.3 NO3 concentration (pg/L) for September 4th 2020 study.

Figure 3.4 SRP concentration (pg/L) for September 4th 2020 study.
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Bulrush has nutrient uptake rates of 6.52 pg/hr and 53.7 pg/hr for SRP and NO3, 

respectively. On September 4th 2020, the temperature controlled chamber was set to 

20°C. Results for this study are shown in Figure 3.5 and 3.6.

3.3. SCIRPUS ATROVIRENS

Figure 3.5 NO3 concentration (pg/L) for September 4th 2020 study.

Figure 3.6 SRP concentration (pg/L) for September 4th 2020 study.
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Pickerel weed had an average nutrient retention rate of 7.97 gg/hr and 48.61 gg/hr 

for SRP and NO3 respectively for two microcosm studies with four total replicates. On 

July 21st 2020 and September 4th 2020, the temperature controlled chamber was set to 

20°C. Results from this study are shown in Figure 3.7 through 3.10.

3.4. PONTEDERIA CORDATA

Figure 3.7 NO3 concentration (gg/L) for July 21st 2020 study.

Figure 3.8 SRP concentration (gg/L) for July 21st 2020 study.
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Figure 3.9 NO3 concentration (gg/L) for September 4th 2020 study.

Figure 3.10 SRP concentration (gg/L) for September 4th 2020 study.

3.5. ELEOCHARIS COMPRESSA

Eleocharis compressa (Spike Rush) had nutrient removal rates of 2.51 gg/hr and 

38.61 gg/hr for SRP and NO3 that are an average of two microcosm studies. On 

September 4th and July 21st 2020, the temperature controlled chamber was set to 20°C. 

Results from this study are shown in Figures 3.11 through 3.14.
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Figure 3.11 NO3 concentration (gg/L) for July 21st 2020 study.

Figure 3.12 SRP concentration (gg/L) for July 21st 2020 study.
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Figure 3.13 SRP concentration (gg/L) for September 4th 2020 study.

Figure 3.14 NO3 concentration (gg/L) for September 4th 2020 study.

3.6. ALGAE (CLADOPHORA AND SPIROGYRA)

Algal samples for nutrient uptake studies consisted mainly of Cladophora and 

Spirogyra. Algae had nutrient uptake rates of 33.8 and 355.2 pg/hr for SRP and NO3. 

July 21st 2020 study was in a temperature controlled chamber set to 20°C. Algae results 

from this study are in Figures 3.15 and 3.16.
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Figure 3.15 NO3 concentration (gg /L) for July 21st 2020 study.

Figure 3.16 SRP concentration (gg/L) for July 21st 2020 study.

3.7. LUDWIGIA DECURRENS

Water primrose, a floating macrophyte, had nutrient uptake rates of -0.362 pg/hr 

for SRP and 7.85 pg/hr for NO3-N. The July 21st 2020 study was done in a 20°C 

temperature controlled chamber. Results for this study are in Figures 3.17 and 3.18.
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Figure 3.17 NO3 concentration (gg/L) for July 21st 2020 study.

Figure 3.18 SRP concentration (gg/L) for July 21st 2020 study.

3.8. UPTAKE RATES BY PLANT

Nutrient rates are displayed in two different ways: gg/hr and gg/hr/g of plant 

mass. All replicates from different studies are displayed in Figures 3.19 to 3.22. There 

was high variability in replicates within each treatment (plant taxon). Algae had the



highest nutrient removal rates for SRP. However, water primrose had the highest NO3 

removal rates.
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Table 3.1 Treatment types with average nutrient uptake rates 
for nitrate-N and SRP.

Treatment Average SRP pg/hr Average NO3 pg/hr
Cladophora & 
Spirogyra

33.8 3.55 x 10 A2

Scirpus atrovirens 6.52 53.7
Ceratophyllum
demersum

42.7 7.21

Iris virginica 16.7 46.5
Pontederia cordata 7.97 48.6
Eleocharis compressa 2.51 38.6
Ludwigia decurrens -0.362* 7.85
* Ludwigia decurrens negative SRP rate means that, on average, SRP was being

released in this microcosm.

Figure 3.19 SRP uptake rates per microcosm for each treatment (pg/hr).
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Figure 3.20 NO3 uptake rates per microcosm for each plant (pg/hr).

Log SRP ug/hr/g vs. Treatment
• Log SRP ug/hr/g 

—  Log SRP ug/hr/g

Figure 3.21 SRP uptake rates per plant mass (pg/hr/g plant biomass).
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Figure 3.22 NO3 uptake rates per plant mass (pg/hr/g plant biomass).

Oneway Anova
A  Summary of Fit

Rsquare 0.594197
Adj Rsquare 0.438118
Root Mean Square Error 0.357654
Mean of Response 1.110811
Observations (or Sum Wgts) 37

A  Analysis of Variance
Sum of

Source DF Squares Mean Square F Ratio Prob > F
Treatment 10 4.8698423 0.486984 3.8070 0.0029*
Error 26 3.3258333 0.127917
C. Total 36 8.1956757

A  Means for Oneway Anova
Level Number Mean Std Error Lower 95% Upper 95%
Algae A 4 1.82500 0.17883 1.4574 2.1926
Algae B 4 1.17500 0.17883 0.8074 1.5426
Bulrush A 3 1.00000 0.20649 0.5755 1.4245
Coontail A 3 1.56667 0.20649 1.1422 1.9911
Iris A 4 1.32500 0.17883 0.9574 1.6926
Iris B 2 1.15000 0.25290 0.6302 1.6698
Pickerel Weed A 6 0.96667 0.14601 0.6665 1.2668
Pickerel Weed B 2 0.75000 0.25290 0.2302 1.2698
Spikerush A 3 0.50000 0.20649 0.0755 0.9245
Spikerush B 3 0.83333 0.20649 0.4089 1.2578
Water Primrose 3 0.83333 0.20649 0.4089 1.2578
Std Error uses a pooled estimate of error variance

Figure 3.23 Summary of ANOVA results for SRP (pg/hr).
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Oneway Anova 

Summary of Fit
Rsquare 0.356647
Adj Rsquare 0.109203
Root Mean Square Error 0.455909
Mean of Response -0.3
Observations (or Sum Wgts) 37

Analysis of Variance

Source DF
Sum of 

Squares Mean Square F Ratio Prob > F
Treatment 10 2.9958333 0.299583 1.4413 0.2177
Error 26 5.4041667 0.207853
C. Total 36 8.4000000

A Means for Oneway Anova
Level Number Mean Std Error Lower 95% Upper 95%
Algae A 4 0.25000 0.22795 -0.219 0.7186
Algae B 4 -0.20000 0.22795 -0.669 0.2686
Bulrush A 3 -0.16667 0.26322 -0.708 0.3744
Coontail A 3 -0.13333 0.26322 -0.674 0.4077
Iris A 4 -0.27500 0.22795 -0.744 0.1936
Iris B 2 -0.10000 0.32238 -0.763 0.5627
Pickerel Weed A 6 -0.56667 0.18612 -0.949 -0.1841
Pickerel Weed B 2 -0.70000 0.32238 -1.363 -0.0373
Spikerusb A 3 -0.73333 0.26322 -1.274 -0.1923
Spikerusb B 3 -0.53333 0.26322 -1.074 0.0077
Water Primrose 3 -0.16667 0.26322 -0.708 0.3744

Std Error uses a Dooled estimate of error variance

Figure 3.24 Summary of ANOVA results for SRP (gg/hr/g).

Oneway Anova

A Summary of Fit
Rsquare 0.899898
Adj Rsquare 0.861397
Root Mean Square Error 0.235544
Mean of Response 1.616216
Observations (or Sum Wgts) 37

Analysis of Variance
Sum of

Source DF F Ratio Prob > F
Treatment 10 12.967770 1.29678 23.3735 <.0001*
Error 26 1.442500 0.05548
C. Total 36 14.410270

Means for Oneway Anova
Level Num ber Mean Std Error Lower 95% Upper 95%
Algae A 4 2.85000 0.11777 2.6079 3.0921
Algae B 4 1.30000 0.11777 1.0579 1.5421
Bulrush A 3 1.76667 0.13599 1.4871 2.0462
Coontail A 3 0.76667 0.13599 0.4871 1.0462
Iris A 4 1.87500 0.11777 1.6329 2.1171
Iris B 2 1.55000 0.16655 1.2076 1.8924
Pickerel Weed A 6 1.85000 0.09616 1.6523 2.0477
Pickerel Weed B 2 1.05000 0.16655 0.7076 1.3924
Spikerush A 3 1.90000 0.13599 1.6205 2.1795
Spikerush B 3 1.33333 0.13599 1.0538 1.6129
Water Primrose 3 0.70000 0.13599 0.4205 0.9795

Std Error uses a pooled estimate of error variance

Figure 3.25 Summary of ANOVA results for NO3 (gg/hr).
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A Oneway Anova

A  Summary o f Fit
Rsquare 0.858127
Adj Rsquare 0.80356
Root Mean Square Error 0.267047
Mean of Response 0.240541
Observations (or Sum Wgts) 37

A  Analysis o f Variance
Sum of

Source DF Squares Mean Square F Ratio Prob > F
Treatment 10 11.215023 1.12150 15.7262 <.0001*
Error 26 1.854167 0.07131
C. Total 36 13.069189

Means for Oneway Anova
Level Number Mean Std Error Lower 95% Upper 95%
Algae A 4 1.3000 0.13352 1.026 1.574
Algae B 4 -0.0750 0.13352 -0.349 0.199
Bulrush A 3 0.6333 0.15418 0.316 0.950
Coontail A 3 -0.9333 0.15418 -1.250 -0.616
Iris A 4 0.3000 0.13352 0.026 0.574
Iris B 2 0.2500 0.18883 -0.138 0.638
Pickerel Weed A 6 0.3167 0.10902 0.093 0.541
Pickerel Weed B 2 -0.4000 0.18883 -0.788 -0.012
Spikerush A 3 0.6667 0.15418 0.350 0.984
Spikerush B 3 -0.0333 0.15418 -0.350 0.284
Water Primrose 3 0.0667 0.15418 
Std Error uses a pooled estimate of error variance

-0.250 0.384

Figure 3.26 Summary of ANOVA results for NO3 (gg/hr/g).

Based on a one-way ANOVA (Figures 3.23 through 3.26), there was a significant 

difference among the plant treatments for the rate of uptake for SRP for rates per 

microcosm (P = 0.0029). However, when the rates were accounted for mass of plant used 

there was no significance (P = 0.22). ANOVA did reveal significant differences among 

plant treatments for uptake rates of N per microcosm (P < 0.001) and per biomass of 

plant used (P < 0.001). Algae, water primrose, and bulrush had the highest uptake rates 

for N in the trials. Since the ANOVA showed statistical differences between treatment for 

SRP (per microcosm) and NO3 (per microcosm and plant), a Tukey test was performed to 

look at the comparison between individual treatments. It was found that algae was 

different from all other treatment groups when comparing uptake rates NO3 per 

microcosm (gg /hr). Iris treatments were also statistically different from water primrose
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and coontail when comparing uptake rates NO3 per microcosm (pg/hr). When accounting 

for biomass algae had statistically different NO3 nutrient rates (pg/hr/g) when compared 

to treatments: Pickerel weed, iris, coontail, and water primrose. Spikerush and Iris 

treatments was statistically different from coontail when comparing biomass accounted 

NO3 rates (pg/hr/g). SRP nutrient uptake rates per microcosm (pg/hr) only had statistical 

differences between spikerush replicate A with coontail and algae.

Controls in this study varied but in most cases each study had at least one positive 

and negative control. The average change in pg/hr over the course of the trials is 

displayed in table 3.2.

Table 3.2 Rate of change for control microcosms.

Average Rate of Change 

Positive Controls

Average rate of 

change negative

Date of Study

0.449 0 July 21st 2020

-1.07 -0.169 September 4th 2020

9.23 positive only April 11th 2019

0.612 0.190 July 31st 2019

2.30 0.00693 Average for selected 

studies
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4. DISCUSSION

4.1. DISCUSSION INTRODUCTION

This study aimed to compare a variety of different aquatic plants that can take up 

significant amounts of nitrate and phosphate. The successful plants found here are 

expected to be viable for FTW applications.

4.2. PLANT SELECTION

Native plants attract native life that is important for preserving an ecosystem. 

Plants also have complex life cycles in which senescence can affect their growth and 

nutrient removal rate. An undergraduate found while researching for an OURE project in 

my lab that senesced plants release nutrients as they are decomposing (Mesa, n.d.). 

Therefore, selecting plants at the beginning of their life cycle or season is beneficial for 

removing excess nutrients.

4.3. NUTRIENT UPTAKE RATES

Ceratophyllum demersum has been used in submerged aquatic vegetation (SAV) 

applications in which the floating macrophyte is completely submerged in the water 

column. Ceratophyllum demersum in a SAV application completely reduced SRP in just 

3.5 and 7.0 days (Dierberg et al., 2002). Similarly, my study showed that one replicate 

(coontail #2) of Ceratophyllum demersum reduced SRP to low detection levels after 48 

hours. Ceratophyllum demersum was found to have increasing values for N and P after an 

initial addition of nutrients (Song et al., 2019) similar to replicates shown in my study.



The spike of P released at the beginning of the study could suggest organic phosphorus 

from soil leached into the water column.

Irispseudacorus (similar species to Iris virgnica) recovered 31.5% and 26.3% of 

N and P in a 10-week mesocosm study (Chen et al. 2009). Compared to the other selected 

plants in the study, it had one of the lowest nutrient recovery rates. In my research, the 

average nutrient uptake rate for Iris virginica was 16.7 and 46.6 pg/hr for P and N, 

respectively. When compared to other emergent macrophytes in this study, Iris virginica 

had high rates of P uptake but low rates for N.

A mesocosm study found that Pontederia cordata (common name) facilitated the 

highest rates of N (0.31mg/L/day) and P (0.34 mg/L/day) removal (Garcia Chanc et al., 

2019a). My research found that N was removed by 11.7 mg/L/day and P 1.91 mg/L/day.

Eleocharis plantaginea (same genus as Eleocharis compressa) retained up to 91% 

of phosphate when combined with other aquatic plants in India (Shardendu et al., 2012). 

Eleocharis compressa has not been studied prior to my research. Eleocharis compressa 

gave promising nutrient uptake results of 2.51 and 38.6 pg/hr for SRP and nitrate 

respectively. Thus, Eleocharis compressa is a promising aquatic plant for FTWs.

Scirpus validus (bulrush) is a commonly studied FTW aquatic plant. In a large 

scale constructed wetlands study (Rycewicz-Borecki et al., 2017), Scirpus validus led to 

reductions of total dissolved phosphorus (23.1 to 7.8 mg/L) and nitrogen (87.1 to 4.7 

mg/L) during the 1-year duration. Scirpus validus was found to have the lowest biomass 

production when compared to other aquatic plants (Rycewicz-Borecki et al., 2017), 

which may explain the low rates of some replicates. My research found that the average
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nutrient uptake rate for Scirpus validus was 6.52 pg/hr for phosphate and 53.7 pg/hr for 

nitrate.

4.4. FLOATING TREATMENT WETLAND (FTW) MATERIALS

The materials used in an FTW system are important. The Apache Mills, Inc. Anti­

fatigue runner Gray Cast Vinyl Utility Runner from Lowe’s Home Improvement in 

addition to hydroponic pots filled with coconut fiber were used to assist the emergent 

plants to keep them afloat. Recent work at Missouri University of Science and 

Technology found that this mat can leach total phosphorus and ammonium (which was 

nitrified to nitrate) into the water (Campbell, C. unpublished data). Selecting mats where 

the chemical composition of the materials is known is key to understanding the nutrient 

cycling. Additionally, if using an FTW in an urban system for a long period of time, it is 

important to sterilize the mat, hydroponic pots, and coconut fiber. This will reduce the 

amount of algal growth and keep the FTW in a re-usable condition when removing 

during the winter season or when harvesting.

4.5. FURTHER RESEARCH

Harvesting strategies are important for recycling biomass and preventing nutrients 

within the plant from leaching back into the water column. Once plants reached 

senescence, they no longer took up nutrients. In an FTW application, harvesting should 

take place just before senescence. Harvesting strategies have the potential of removing 

nutrients before they are cycled back into the aquatic system. Little research has been 

done to analyze the success of different harvesting strategies.
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Algae is a key concern that is not always addressed in FTW papers. In microcosm 

and mesocosm studies where there are large pools of nutrient rich waters, algae can 

quickly establish. This is a problem when algae could be taking up the nutrients rather 

than the selected aquatic plant being studied. One way to account for algae is to use chl-a 

measurements, which can be taken through water samples or surface area scrubs to assess 

how much is present within the volume of water used for the study. Algae had high 

nutrient uptake rates and might have potential for FTWs. Algae could serve as a main 

driver or in addition to other aquatic plants in FTW applications. Algae can grow around 

other plants and could be harvested as well.

4.6. CHALLENGES

Some plants such as pickerel weed and spikerush had a spike in SRP 

concentrations within the first 24 hours of the experiment. This could be because the root 

biomass (once planted in the microcosm) was leaching nutrients after being washed. All 

emergent macrophytes in this study were previously planted in a nutrient-rich soil. This 

phenomenon could also be explained by the luxury consumption effect where plants take 

up nutrients in excess rather than maintaining their growth requirements (Chapin et al., 

1986). Plants’ collection locations and physiology are important for understanding where 

nutrients are going.

Initially this study aimed to compare temperature to nutrient rates of different 

aquatic plants. However, at the end of week-long microcosm studies, the plants appeared 

to be dying and suffering from the new environment. This could be because plants came 

from nutrient-rich soil and were put into large tubs of cooler water with no substrate



(besides the coconut fiber) for the root mass to attach. Additionally, before each plant 

was placed into a microcosm, they were thoroughly rinsed with tap water which could 

put them in initial shock. When switching temperatures and environments the plants 

quickly became stressed which could also explain the initial release of nutrients within 

the first 24 hours of most experimental runs.
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5. CONCLUSION

Floating treatment wetlands are a promising technique for treating nutrient-rich 

aquatic systems. Native plants should always be considered for selection when 

implementing an FTW. Native plants have shown to out-perform non-native plants in 

FTW applications in Italy (de Stefani et al., 2011), similar to the results found in this 

thesis. The native plants selected in this study showed high nutrient removal rates for 

both SRP and NO3.. A One-Way ANOVA showed statistical differences between 

treatments for NO3 for both microcosm and plant biomass nutrient rates (P = 0.0001). 

This suggests that the plants take up nutrients at different rates. This is expected since 

each plant has varying metabolisms, life cycles, and many times came from different 

areas. Out of all the selected plants, algae took up both N at the highest rate of 355.2 

pg/hr and second highest rate for P at 33.81 pg/hr). The highest nutrient uptake rate for 

SRP was for coontail. Bulrush had the second highest N rate of 53.7 pg/hr.

Based on this data, FTWs should be considered to remove nutrients from nutrient 

polluted water sources. Additionally, their other benefits such as providing a native plant 

habitat should be considered. Aquatic plants are the foundation of FTWs and are the 

working entities for removing the nutrients. More research needs to be done to better 

understand harvesting strategies, plant to root interactions, and detailed mass-balance 

models including nutrient pathways.
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APPENDIX

Figure A1. Stormwater graph for April 4th 2019.

•  NH4 Cock (u g /l)
• N03 Cone (ug/L)
• SRP Cone (ug/l)

Figure 3: 
Stormwater 
data for Feb 
7*2019. 
This is 
second day 
of storm 
with, no rain 
starting at 
16:30. The 
two outlets 
are included 
for the 
samples.

Figure A2. Stormwater graph for February 7th 2019.
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Figure A3. July 29th to 31st 2019. This study looked at Duckweed (Lenma minor) and Tall 
Yellow (Water Primrose). Increase of SRP given by Duckweed could have been 

explained by nutrient luxury uptake effect. These plants were collected at the inlet of 
Schuman pond where there are high nutrient concentrations coming into the pond.

N03 Concentrations for Microcosms 7-29 to 7-31 2019
600

0
0 5 10 15 20 25 30 35 40 45 50

Hours

•  Duckweed -■ •-- Negative Control •■ ■ • Positive Control •  Tall Yellow

Figure A4. July 29th to 31st 2019. This study looked at Duckweed (Lemna minor) and Tall 
Yellow (Water Primrose). Increase of NO3 given by duckweed and water primrose could 
have been explained by nutrient luxury uptake effect. These plants were collected at the 

inlet of Schuman pond where there are high nutrient concentrations coming in.
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SRP Concentrations for Microcosms 8-16 to 8-19 2019
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Figure A5. presents data from microcosm study on August 16th to the 19th of 2019. This 
study was done a lab setting. This study looked at Duckweed (Lemna minor) and Tall 

Yellow (Water Primrose). Increase of SRP given by duckweed and water primrose could 
have been explained by possible sediment or soluble particulates dissolved from plant 
matter. These plants were collected at the inlet of Schuman pond where there are high

nutrient concentrations coming in.

Figure A6. presents data from microcosm study on August 16th to the 19th of 2019. This 
study was done a lab setting. This study looked at Duckweed (Lemna minor) and Tall 

Yellow (Water Primrose). Negative controls in this study suggest possible contamination 
between the tubs most likely by human error. Nitrate values for this study are 

inconsistent, this was around when the IC column was going out.
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Figure A7. presents data from microcosm study on August 27th to the 30th of 2019. This 
study was done a lab setting. This study looked at ‘tall plant’ which was Sagittaria 

latifolia (broadleaf arrowhead). Negative controls in this study suggest possible 
contamination between the tubs most likely by human error. Micronutrients were used in 

this study and were found to interfere with results by reacting with PO4 ions.
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Figure A8. presents data from microcosm study on August 27th to the 30th of 2019. This 
study was done a lab setting. This study looked at ‘tall plant’ which was Sagittaria 

latifolia (broadleaf arrowhead). Negative controls in this study suggest possible 
contamination between the tubs most likely by human error. This experiment was used 

with micronutrients which interfered with nitrate concentrations.
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Figure A9. presents data from microcosm study on August 27th to the 30th of 2019. This 
study was done a lab setting. This study looked at Ludwigia decurrens (pondweed) and 
Ceratophyllum demersum (coontail). Coontail and pondweed showed uptake for SRP. 

However, the positive controls for this study increase which is likely explained by 
contamination from microcosm to microcosm.

Figure A10. presents data from microcosm study on August 27th to the 30th of 2019. This 
study was done a lab setting. This study looked at Ludwigia decurrens (pondweed) and 
Ceratophyllum demersum (coontail). Coontail and pondweed did not show uptake for

nitrate.
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Figure A11. presents data from 25C microcosm study on September 12th to the 15th of 
2020. This study was done in temperature-controlled chambers. Bulrush in the first two 

samples experienced a spike in SRP suggesting that nutrient-rich sediment from root 
mass was released when completely submerged in the water.

Figure A12. presents data from 25C microcosm study on September 12th to the 15th of 
2020. This study was done in temperature-controlled chambers. Iris in the first two 

samples experienced a spike in SRP suggesting that nutrient-rich sediment from root 
mass was released when completely submerged in the water.
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Figure A13. presents data from 25C microcosm study on September 12th to the 15th of 
2020. This study was done in temperature-controlled chambers. Pickerel Weed in the first 
two samples experienced a spike in SRP suggesting that nutrient-rich sediment from root 

mass was released when completely submerged in the water.
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Figure A14. presents data from 25C microcosm study on September 12th to the 15th of 
2020. This study was done in temperature-controlled chambers. Negative in the first two 

samples experienced a spike in SRP suggesting that nutrient-rich sediment from root 
mass could have contaminated the control tubs or there may have been sampling error.
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Figure A15. presents data from 25C microcosm study on September 12th to the 15th of 
2020. This study was done in temperature-controlled chambers. Spikerush in the first two 

samples experienced a spike in SRP suggesting that nutrient-rich sediment from root 
mass could have contaminated the tubs.
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