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ABSTRACT

Hot tearing has long been recognized as a major problem that plagues the 

development of the continuous casting process and results in low-quality products. 

Understanding of the mechanisms and the required conditions for the hot tearing 

formation is important for industries but has not been well-established yet. Thus, this 

research focuses on the hot tearing issue observed in continuous cast steel, by providing a 

summary of the current research progress and then introducing a new laboratory method 

to determine the thermo-mechanical properties relevant to hot tearing of different steel 

grades under different solidification conditions. In this method, an apparatus was 

developed to apply a certain amount of the strain to the solidifying steel shell at a 

controlled strain rate. A special mold, equipped with two water-cooled copper chills and 

an insulation sleeve, was designed to control the dendrite growth in the direction 

perpendicular to the applied strain and to ensure that the strain was applied in the region 

of controlled shell growth. The temperature, displacement and force were monitored and 

recorded as a function of time by a computer system during the test.

The in-situ hot tensile test was performed for a medium carbon steel using this 

apparatus to determine the thermo-mechanical properties of the solidifying casting.

Filling and solidification simulation software was used to predict the temperature profile 

during the experiment. It was found that the calculated temperature was in good 

agreement with the measured temperature in experiments. The fracture strength obtained 

with this method was comparable with that measured by the submerged-split chill tensile 

test, but was lower than that determined by the conventional hot tensile test.



v

ACKNOWLEDGMENTS

First and foremost, I would like to thank my husband, Jie Wan, and my family for 

their unwavering support and understanding throughout the courses of my master’s 

degree while attending Missouri University of Science and Technology. It has been my 

greatest honor to work with my advisors, Dr. Laura Bartlett, Dr. Ronald O’Malley and 

Dr. Simon Lekakh, on this project and I’m grateful for their exceptional guidance, 

knowledge, and dedication they provided. Many thanks to Dr. Mario Buchely who has 

helped me enormously with my experimentation and test program. I would like to also 

recognize Mr. Brian Bullock for his good advice and help with my experimental setup 

manufacture.

This project has been supported by the Peaslee Steel Manufacturing Research 

Center (PSMRC). A great appreciation to the PSMRC participating member companies 

for their financial and resource support as well as their insightful technical guidance.

I also appreciate my fellow graduate and undergraduate students for their help 

with my tests and sample preparation on this project.

Last but not least, I would like to extend my thanks to the staff of the MSE 

department who make our work and life easier and smoother. I am extremely grateful for 

their never-ending support and many cherished memories during my time at Missouri

S&T.



vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION................................................................................... iii

ABSTRACT....................................................................................................................... iv

ACKNOWLEDGMENTS.................................................................................................. v

LIST OF ILLUSTRATIONS.............................................................................................. x

LIST OF TABLES........................................................................................................... xiv

SECTION

1. INTRODUCTION.....................................................................................................1

PAPER

I. A REVIEW ON HOT TEARING OF STEELS....................................................... 6

ABSTRACT................................................................................................................... 6

1. INTRODUCTION...................................................................................................... 7

2. HOT TEARING CRITERION..................................................................................12

2.1. NON-MECHANICAL CRITERIA.................................................................. 13

2.2. MECHANICAL CRITERIA............................................................................ 15

2.2.1. Critical Stress Based Criteria..................................................................15

2.2.2. Critical Strain Based Criteria................................................................. 16

2.2.3. Critical Strain Rate Based Criteria......................................................... 17

2.2.4. Other Criteria Specifically Related to the Continuous Casting Process 18

3. EXPERIMENTAL METHODS............................................................................... 20

3.1. CONSTRAINED SHAPE CASTING TEST 20



3.2. HOT TENSILE TESTS.................................................................................... 22

3.3. BENDING TESTS............................................................................................ 24

3.4. SUBMERGED SPLIT-CHILL TENSILE (SSCT) TEST................................ 27

3.5. CONTROLLED DEFORMATION TEST FOR SOLIDIFYING STEEL
SHELL.............................................................................................................. 28

4. FACTORS INFLUENCING HOT TEARING........................................................ 31

4.1. COMPOSITION............................................................................................... 31

4.1.1. Carbon.................................................................................................... 31

4.1.2. Sulfur and Mn/S Ratio............................................................................ 35

4.1.3. Phosphorus............................................................................................. 37

4.2. SOLIDIFICATION STRUCTURE.................................................................. 38

4.3. STRESS, STRAIN AND STRAIN RATE....................................................... 41

5. CONCLUSION .......................................................................................................  42

ACKNOWLEDGEMENT............................................................................................ 43

REFERENCES ............................................................................................................  43

II. NEW EXPERIMENTAL APPARATUS TO INVESTIGATE HOT
TEARING BEHAVIOR IN STEEL........................................................................ 53

ABSTRACT ................................................................................................................  53

1. INTRODUCTION.................................................................................................... 54

2. EXPERIMENTAL PROCEDURE........................................................................... 58

2.1. CASTING AND MOLD DESIGN................................................................... 59

2.2. TEST APPARATUS......................................................................................... 60

2.3. TEST PROCEDURE........................................................................................ 62

vii

3. RESULTS AND DISCUSSION 64



3.1. THERMODYNAMIC MODELING................................................................ 64

3.2. CASTING SOLIDIFICATION SIMULATION.............................................. 65

3.3. CDT RESULTS................................................................................................ 66

4. CONCLUSIONS.................................................................................................... 71

ACKNOWLEDGEMENTS......................................................................................... 72

REFERENCES ............................................................................................................  72

III. DEVEOPING A METHOD TO INVESTIGATE MECHANICAL
BEHAVIOR OF STEEL NEAR ITS SOLIDUS TEMPERATURE..................... 75

ABSTRACT................................................................................................................. 75

1. INTRODUCTION.................................................................................................... 76

2. EXPERIMENTAL PROCEDURE........................................................................... 79

2.1. CONTROLLED DEFORMATION TEST (CDT)........................................... 79

2.1.1. Experimental Apparatus......................................................................... 79

2.1.2. Experimental Tests................................................................................. 82

2.2. THERMAL ANALYSIS.................................................................................. 83

2.2.1. Cooling Curve Analysis......................................................................... 83

2.2.2. Temperature Profile Simulation............................................................. 85

3. RESULTS................................................................................................................  86

3.1. SOLIDIFICATION PATTERN OF THE CASTING IN
INSULATING AREA...................................................................................... 86

3.2. THERMAL ANALYSIS.................................................................................. 87

3.3. CDT RESULTS................................................................................................ 89

4. DISCUSSION .........................................................................................................  91

viii

4.1. TEMPERATURE PROFILE AND SOLID SHELL 91



ix

4.2. FRACTURE STRENGTH................................................................................ 92

4.3. COMPARISON OF FRACTURE STRENGTH DETERMINED BY
DIFFERENT EXPERIMENTAL METHODS................................................. 93

5. CONCLUSIONS.................................................................................................... 95

ACKNOWLEDGEMENT...........................................................................................  95

REFERENCES............................................................................................................. 96

SECTION

2. CONCLUSIONS AND RECOMMENDATIONS................................................101

2.1. CONCLUSIONS............................................................................................ 101

2.2. RECOMMENDATIONS................................................................................ 103

BIBLIOGRAPHY............................................................................................................106

VITA................................................................................................................................109



x

LIST OF ILLUSTRATIONS

PAPER I Page

Figure 1. Schematic of mechanical properties in mushy zone and the corresponding
structures............................................................................................................. 9

Figure 2. Schematic of continuous casting process.......................................................... 11

Figure 3. Schematic of the test setup using a constrained T-shaped casting................. 21

Figure 4. Schematic of the experimental setup using a permanent steel mold................. 22

Figure 5. Schematic of the hot tensile test apparatus and specimen................................. 23

Figure 6. Schematic of thermal and deformation history for tensile test using Gleeble
system................................................................................................................ 24

Figure 7. Schematic of the three points bending test apparatus........................................ 25

Figure 8. Schematic of ingot bending test apparatus........................................................ 26

Figure 9. Schematic of the SSCT test apparatus............................................................... 27

Figure 10. Schematic of the controlled deformation test apparatus.................................29

Figure 11. (a) Typical non-equilibrium binary Fe-C phase diagram of carbon steel
and (b) total thermal strain (FcTH), strain caused by cooling (£c*) and strain 
caused by phase transformation (£c 5-y) as a function of carbon content........33

Figure 12. The calculated crack susceptibility (Sc), strain in brittle temperature range
and measured crack index as a function of carbon content............................34

Figure 13. Crack index as a function of carbon content................................................... 35

Figure 14. The influence of sulfur content on the BTR for different carbon steels.......... 36

Figure 15. Influence of the phosphorus content on the critical strain............................... 38

Figure 16. The liquid permeability in the mushy zone with different grain
morphologies................................................................................................... 39



xi

Figure 17. Solidification structure and internal cracks for (a) Al-Si killed steel and (b)
low C-Al killed steel, revealed by sulfur print...............................................40

Figure 18. Critical strain with different grain sizes at different temperatures.................40

PAPER II

Figure 1. Schematic diagram of mechanical properties in the mushy zone during
continuous casting of steels..............................................................................54

Figure 2. Schematic of different designs of constrained rod castings used to determine
hot tearing sensitivity in aluminum and magnesium castings..........................56

Figure 3. Schematic diagram of the SSCT test method...................................................58

Figure 4. Similarity of the solidification patterns in the continuous casting process and
the proposed testing method.............................................................................59

Figure 5. Side view of the test casting design showing the cylindrical test casting,
insulation sleeve used to delay solidification in the test area, and water cool 
-ed copper chills on each side of the casting used to induce solidification and 
allow mechanical locking of the test casting....................................................60

Figure 6. (a) Schematic of the Controlled Deformation Test (CDT) setup showing the 
main components of this apparatus, and (b) a detailed view of the attachment 
between the clamping bolts and the copper chill.............................................61

Figure 7. The controlled deformation test setup shows how the mold box and electric 
cylinder were attached to the steel frame, and the blue arrow in the picture 
indicates the direction of the movement of the electric cylinder......................61

Figure 8. (a) Assembly of the experimental setup, and (b) detail view of the position
of the LVDT and load cell................................................................................62

Figure 9. Calculated solid fraction and temperature curve for the studied steel by
Scheil equation, which was used to estimate the LIT (dotted lines)................64

Figure 10. MAGMASOFT solidification modeling shows (a) the solidification
sequence of the casting and (b) the cross sectional view of liquid fraction 
in the insulated area........................................................................................65

Figure 11. (a) Cross sectional view of the insulated area with the position of the
simulated thermocouples and, (b) simulated temperature history in different 
positions of the casting...................................................................................66



Figure 12. Load and displacement change during (a) Test 1 and (b) Test 2...................... 68

Figure 13. Results of the casting....................................................................................... 69

Figure 14. (a) An overview of the fracture surface after Test 1; (b) zoom of part of the 
fracture surface to show the growth direction of the dendrites; and (c) 
higher magnification SEM image to show a signal dendrite structure on 
the fracture surface...........................................................................................70

Figure 15. (a) and (c) Internal cracks that were observed in the insulated part after the 
test 2; (b) and (d) EDS mapping in the area of (a) and (c) to show the sulfur 
distribution in those area................................................................................. 71

PAPER III

Figure 1. Schematic of the CDT apparatus (front view)..................................................80

Figure 2. (a) Schematic of the mold and casting design (front view) and (b) the last
solidified cross section in insulation area with the positions of the simulated 
thermocouples ..................................................................................................  81

Figure 3. (a) Geometry of the casting with thermocouple tube and (b) the macro
structure of the insulated area............................................................................ 86

Figure 4. Cooling curve recorded during the test (Tc), its first derivative (T’c) and the
calculated Fourier Z curve................................................................................. 87

Figure 5. Comparison of the solid fraction calculated with Fourier method and that in
MAGMASOFT.................................................................................................. 88

Figure 6. Comparison of the measured temperature in experiment and calculated
temperature with MAGMASOFT at two locations: center and 10mm position 
away from the surface on the last solidified cross section...............................89

Figure 7. Force and displacement change during experimental tests................................ 90

Figure 8. Insulation part of the casting after (a) Test 1, (b) Test 2 and (c) Test 3 .............. 91

Figure 9. Comparison of fracture strength tested by CDT, SSCT test and CHT test at
different representative temperature.................................................................. 94

xii



xiii

SECTION

Figure 2.1. Solidification structure of the insulated area with (a) 10mm thick insula
-tion sleeve, (b) 4mm thick insulation sleeve.............................................. 104



xiv

LIST OF TABLES

PAPER I Page

Table 1. List of abbreviations in this paper......................................................................11

Table 2. A summary of different experimental methods used for investigation of the
hot tearing of steels......................................................................................... 30

PAPER II

Table 1. Measured steel chemistry in two tests (wt.%)....................................................67

PAPER III

Table 1. Compositions of steels used in this study (weight percent)...............................83

Table 2. Test conditions and calculated fracture strength for different tests...................93



1. INTRODUCTION

Continuous casting (CC) process is nowadays the dominating technology that is 

used to produce over 90% of the steels in the world owing to its inherent advantages of 

low cost, high yield, flexibility of operation, and ability to a high quality product. 

Although much research and development work has been performed to optimize the 

casting process and improve product quality, hot tearing has long been recognized as a 

severe problem in the CC process due to the poor mechanical properties of the mushy 

zone and the complex thermal-mechanical conditions encountered during the casting 

process.

Hot tearing is known as a common defect in steel casting that usually appears as a 

crack or fracture, either on the surface or inside of the casting [1]. It is generally 

considered to form in the mushy zone at the later stages of solidification in response to a 

localized applied load and resulting strain, which may arise from both thermal 

contraction and mechanical constraint [2] [3] [4]. As explained by Campbell [5], the hot 

tear is a failure of a weak material, proceeded by a separation of dendrites, frequently 

recognizable in micrographs in the form of segregated paths due to suction of solute- 

enriched liquid. The hot tears in continuously casting steel are mostly observed as 

dendritic cracks. That is because the dendritic structure is intrinsically more brittle along 

interdendritic region than within single dendrite due to the existence of low melting point 

liquid film between dendrites [6].

Hot tearing formation is significantly influenced by the mechanical properties of 

the steel shell during its solidification. According to the solidification theory, the mushy



zone can be divided into several different stages based on the mechanical properties of 

the material. These stages are identified by temperature and solid fraction values [7] [8] 

[9]. They are:

2

• Dendrite coherency point (DCP): dendrite branches start to touch with 

each other until a coherent dendritic network is formed. While the 

dendrites are still separated by surrounding liquid and the material is 

permeable to liquid phase. Only after the temperature drops below the 

coherency point, the “real” mushy zone is formed [10]. Above which the 

material is in a slurry state [11] [12] .

• Zero strength temperature (ZST): it is defined as the temperature during 

cooling at which forces can first be transmitted perpendicular to the 

solidification direction [8]. A segregated thin liquid film still exists 

between the dendrites. The ZST corresponds to a solid fraction in the 

range of 0.6 to 0.8 [13].

• Liquid impenetrable temperature (LIT): the dendrite arms are close 

enough to cut off the liquid feeding path. With increasing solid fraction, 

solute enriched liquid film is isolated in the inter-dendritic region. The LIT 

is commonly associated with a solid fraction of about 0.9.

• Zero ductility temperature (ZDT): as the solid fraction increases, the 

strength of the material increases and at some point, the material acquires 

plasticity (ductility) [14]. The transition temperature is defined as ZDT 

and the corresponding solid fraction is between 0.98~1 [6] [9].



Hot tear can easily occur in the mushy zone even a small amount of the strain is 

applied to the material. For the hot tears formed above the LIT, the deformation of the 

material can create a new path for the liquid feeding, so the cracks can be “healed” by the 

surrounding liquid. While when the temperature drops below the LIT, the liquid film is 

isolated to resist feeding to the cracking area through the dendrite arms. In this case, the 

cracks will be maintained. Based on this theory, the mushy zone is divided into the liquid 

feeding zone and the cracking zone by the LIT [14] [15]. And the temperature interval 

between the LIT and the ZDT is defined as the brittle temperature range (BTR), in which 

the material is vulnerable to the crack.

Over the years, much effort has been devoted to understand the mechanisms of 

the crack formation and to correlate the conditions required for hot tearing occurrence, as 

summarized by D. G. Eskin et al. [10]. Two steps should be taken into consideration in 

terms of crack formation: the nucleation and propagation. Porosities or voids are 

commonly considered as the initiation sites for the hot tear, although the pores should not 

necessarily develop into a crack [16] [17]. The liquid film surrounding the grain at late 

stages of solidification is believed as a stress concentration of semi-solid body, so the 

liquid-filled cavity acts as a crack initiator [18]. In addition, the dissolved gas, oxide bi­

film and other inclusions that entrained in the mushy zone can also work as the nuclei of 

the hot tear [5] [19]. The propagation of the crack, however, can be triggered by the 

rupture of the liquid film [20], through liquid film by sliding [21], and diffusion of 

vacancies from the solid to the crack [22], and so on. It is worth to note that the 

propagation of the crack is significantly determined by the applied stress or strain, and 

when it comes to the nucleation and propagation of the hot tears, experimental proof is

3



frequently replaced by an educated assumption. Therefore, in practical application, most 

of the existing hot tearing criteria deal with the conditions rather than with the 

mechanisms of hot tearing [10].

To estimate the hot tearing tendency in continuous casting steels, different casting 

conditions were investigated by many researchers and numerous hot tearing criteria were 

proposed. Most of these indicators are based upon the considerations of the solidification 

interval, brittle temperature range, thermal and mechanical conditions in the mushy zone, 

then associate with the mechanical properties of the material. Accordingly, many 

experimental approaches and validated numerical models have been developed, as 

summarized later in the first paper in this work. However, in most of the existing testing 

methods, hot tears were induced by the constraint of the solidification contraction. While 

for different steel grades, the amount of the solidification contraction is different due to 

the combined influences of the alloying elements and casting parameters, which makes it 

difficult to evaluate the hot tearing tendency for different steel grades. Moreover, since 

each of the existing criteria still has its own limitations to predict the occurrence of the 

hot tearing and most of the experimental approaches are still relatively simple that can 

only consider several factors, there’s no doubt that a standard hot tear testing system and 

evaluation method of hot tearing severity still need to be developed and established.

Hot tear in steels is a difficult research topic due to the complexity of the hot 

tearing mechanisms and the various casting processes. A well-established knowledge of 

this phenomenon is important for the industry to produce defect-free high quality 

products and develop new steel grades.

4
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This study was performed to bring a better understanding of the hot tearing 

phenomenon and provide a new method to investigate the hot tearing behavior that can be 

applied for a wide range of steel grades.
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PAPER

I. A REVIEW ON HOT TEARING OF STEELS

Yanru Lu, Laura N. Bartlett, Ronald J. O’Malley

Peaslee Steel Manufacturing Research Center, Department of Materials Science and
Engineering

Missouri University of Science and Technology 

1400 N Bishop Avenue, Rolla, MO, USA, 65409-034 

Phone: 573-341-4711 

Email: lnmkvf@mst.edu

ABSTRACT

Hot tearing is a common solidification defect in both continuous cast steels and 

mold castings, which has a significant impact on the quality of the final products. It is a 

complex phenomenon that involves in both the thermal and mechanical conditions and 

chemical element segregation that evolves during casting process. Over several decades, 

much effort has been invested into improving our understanding of the conditions 

required for the occurrence of hot tearing and to relate these conditions with casting 

parameters, like casting speed in continuous cast process, alloy composition, cooling 

conditions, etc. This review summarizes the results from previous investigations that 

have focused on the hot tearing phenomenon of steels, including criteria for hot tearing, 

experimental methods, and several validated models for different testing methods. The

mailto:lnmkvf@mst.edu


factors that influence hot tearing sensitivity are also reviewed and discussed in the 

present work.

Keywords: Hot tearing; Hot tearing criterion; Experimental method; Influence factor.

1. INTRODUCTION
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Hot tearing is a common solidification defect that usually appears as a crack or 

fracture in different alloys and steel castings [1]. It occurs when a casting is strained to 

failure in the semi-solid region during solidification and can lead to alloy and impurity 

element segregation, porosity formation, and precipitation of inclusions [2] [3]. The 

ability to understand and predict the conditions that cause hot tearing is important to steel 

mills and foundries for process design, quality control, and development of new steel 

grades.

Studies of the hot tearing have been started since the 1950s [4] [5]. A summary of 

hot tearing mechanisms given by D.G. Eskin [6], included both the nucleation and 

propagation of the hot tearing. Differing from cold cracking, hot tearing initiates above 

the solidus in mushy zone with a high solid fraction above about 90%. The hot tearing 

usually appears as solute enriched interdendritic cracks [7] [8], which is observed in the 

subsurface [9], halfway [10] [11] and centerline [12] [13] regions in the casting. These 

cracks may work as a weakened site that can result in void formation in the final product 

or fracture during the rolling process [14]. Owing to its deleterious effect on the casting 

quality, much effort has been expended to improve our understanding of the conditions 

that lead to the formation of the hot tearing in different casting processes.
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To better understand hot tear formation, the solidification process can be divided 

into three stages:

Stage 1: Formation of the primary dendrite during solidification from liquid steel. 

As cooling goes on, secondary dendrite arms start to form behind the primary dendrite 

tips. At this stage, since the dendrite arms do not touch with each other, there is no 

mechanical boding between the dendrites. If there is thermal or mechanical strain that is 

applied on the material in this stage, the deformation will be filled by surrounding liquid 

immediately.

Stage 2: As the temperature going down, the primary dendrites start to coarsen 

and the secondary dendrite arms start to reach out. Once the secondary dendrite arms start 

to interlock with each other, it will give the solid shell some strength. This point is 

defined as the zero strength temperature (ZST), above which the strength of material 

remains zero and below which the strength of the material starts to increase as the 

temperature drops. In the later of this stage, the secondary dendrite arms become compact 

and the free liquid feeding path is blocked [15] [16]. The liquid is isolated into liquid 

droplets in the interdendritic region. Under the applied strain, the hot tearing can easily 

occur during this stage. The deformation of the material creates a new liquid feeding 

path. Therefore, the cracks formed in this stage can be “healed” by the surrounding liquid 

and leave no internal crack. While even no internal cracks left, the hot tearing can still be 

detected by chemistry analysis because the that feeding liquid is solute enriched liquid 

resulting from microsegregation [8].

Stage 3: As the coarsening and compacting of dendrite arms, the interlocked 

secondary dendrite branches become indistinguishable and the material structure starts to



form columns without visible dendrite branches. The elements segregation lowers the 

melting point of the last liquid film. Thus, a thin liquid film can still exist between the 

columns structures during this stage, which makes the ductility of the material remains 

zero [17]. If there is strain that is perpendicular to the direction of the column structure, 

the hot tearing can still occur. The cracks formed in this stage cannot be refilled anymore, 

which will lead to the internal cracks in the final products. The critical temperature point 

below which the crack cannot be refilled by liquid metal is called liquid impenetrable 

temperature (LIT), which is commonly associated with a solid fraction of 0.9. And the 

temperature point below which there is no continuous liquid film existing is called zero 

ductility temperature (ZDT), which corresponds to a solid fraction of 0.98 to 1 [8]. The 

temperature difference between LIT and ZDT is defined as brittle temperature range 

(BTR). During continuous casting of steels, most of the internal cracks tend to occur in 

the BTR due to the thermal and mechanical constraint [18]. Thus, the BTR provides a 

qualitative guide to the hot tearing susceptibility [8] [19] [20] [21].

9
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Figure 1. Schematic of mechanical properties in mushy zone and the corresponding
structures [8].
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Figure 1 shows a schematic diagram of the mechanical properties in the semi­

solid region and corresponding solidification structures, including several key 

temperature points [8] [22]: ZST, LIT and ZDT.

To evaluate the hot tearing tendency for different alloys, many researchers have 

proposed different criteria and developed experimental methods to quantitatively study 

the cracking conditions, such as the alloy composition, thermal and mechanical 

conditions. A review on hot tearing criteria and experimental setups for aluminum alloys 

and magnesium alloys was given by D.G. Eskin et al. [16] and J. Song, et.al [23], 

respectively. For foundry shaped casting, the hot tearing is mainly induced by the 

solidification shrinkage caused strain, which is significantly influenced by the casting 

geometry and steel compositions [24] [25]. For continuous casting steels, as shown in 

Figure 2, the thermo-mechanical conditions are much more complex. During the casting 

process, the strand shell experiences both mechanical and thermal loads resulting from 

contraction and phase transformation, non-uniform cooling rates from surface to center, 

friction between the mold and strand, bending and straightening, soft reduction and so on. 

Besides, the thickness of solid shell changes as a function of time, which leads to the 

changes of the position of mushy zone and changes of the stress and strain profile in the 

mushy zone as a function of temperature. Therefore, much effort has been devoted to the 

understanding of the relationship between the hot tearing phenomenon and the casting 

parameters in continuous casting process, like casting speed, alloy composition, cooling 

and machine conditions. The objective of the present paper is to provide an overview of 

the current progress of the hot tearing studies for different steels. Thus, the hot tearing 

criteria and the experimental methods developed to study the hot tearing behavior are



summarized and compared. The factors that have influence on the hot tearing 

susceptibility are also discussed in this work.

11
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Figure 2. Schematic of continuous casting process [21]

A summary of the common abbreviations used in this paper was provided in 

Table 1.

Table 1. List of abbreviations in this paper.

ZST Zero strength temperature
LIT Liquid impenetrable temperature
ZDT Zero ductility temperature

BTR (ATb) Brittle temperature range
HCS Hot cracking susceptibility

CRC Constrained rod casting
SSCT Test Submerged split-chill tensile test
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2. HOT TEARING CRITERION

To predict the occurrence or tendency of the hot tearing, many theories and 

criteria have been proposed over the last few decades. The existing hot tearing criteria 

focus more on the conditions or causes of the hot tearing instead of the mechanisms, like 

nucleation or propagation. These criteria, which have been reviewed elsewhere [6] [23], 

can be generally divided into two categories: non-mechanical criteria and mechanical 

criteria. The non-mechanical criteria that consider the brittle temperature range, phase 

diagram, steel composition and so on, have been proposed by Clyne and Davies, Feurer, 

Katgerman, Suyitno and Kou [6] [16] [23]. Mechanical criteria have mainly been derived 

from the mechanical behavior of semi-solid metals and involves critical stress [26] [27] 

[28], critical strain [29] [30] or critical strain rate [31] criteria.

Different casting processes require specific considerations for hot tearing criteria. 

For foundry casting, most of the criteria that consider composition sensitivity are 

successful in predicting hot tearing, since the steel compositions have essential effect on 

the amount of solidification shrinkage and brittle temperature range. In most of these 

predictions and the experimental results, the hot tearing susceptibility increases with 

increasing in the alloy element content and then it decreases with further increasing in the 

content of that alloy element, which indicating that there is a maximum susceptibility of 

material at a certain composition [23]. However, these criteria cannot applied for 

dynamic processes, such as continuous casting. For the continuous casting process, a 

viable hot tearing criterion should correctly predict damage based on both composition
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and caster operating conditions. Thus, different hot tearing criteria that consider different 

aspects are introduced in this section.

2.1. NON-MECHANICAL CRITERIA

Clyne et al. [19] proposed the Hot Crack Susceptibility (HCS) criterion to 

estimate the cracking tendency. The criterion considers the local solidification time when 

the structure is most vulnerable to cracking, as shown below:

HCS = -  = (1)tR tg0- t40

here, tv is the vulnerable time period where the hot tearing can occur and tR is the time 

available for the stress relief. t99, t90, t40 correspond to the time when the local solid fraction 

is 0.99, 0.9 and 0.4, respectively.

In general, they suggest that the hot tearing occurs when the solid fraction is 

between 0.9 and 0.99 and that the stress relaxation and after-feeding can take place at a 

solid fraction between 0.4 and 0.9 [16]. With specific reference to the continuous casting 

steels, they estimate the period for which the material will be vulnerable to cracking as a 

function of depth below the strand surface. To do this, they apply a micro-segregation 

model to describe the segregation of carbon and phosphorus and consider this to examine 

the influence of the 5-y phase transformation on hot tearing sensitivity. This approach 

was used to predict hot tearing for continuous casting steel with varying levels of carbon 

[32].

Feurer’s criterion [33] considers that hot tearing occurs when the liquid feeding 

no longer accommodates shrinkage during solidification. Two terms proposed by Feurer 

are SPV and SRG. SPV is the maximum volumetric flow rate per unit volume and SRG



is the velocity of volume solidification shrinkage caused by density different between 

solid and liquid phase. SPV is formulated as follows:

14

fi d2ps
24 nc3pL2 (2)

where fi is the liquid volume fraction; d  is the secondary dendrite arm spacing; Ps is the 

effective feeding pressure; L is the length of porous network; c is the tortuosity constant of 

dendrite network; and y is the viscosity of the liquid phase.

SRG is given by the following equation:

SRG (t t )
1 dp 
p dt (3)

where V is a volume element of the solidifying mush with constant mass and t is time.

The Feurer’s criterion says that hot tearing is not possible if:

SPV > SRG. (4)

Based on the HCS proposed by Clyne et al. and the Feurer’s criterion, Katgerman 

[34] proposed a new HCS, as follows:

HCS = tr.r 4̂ (5)

where the t99 and t40 correspond to the time when the local solid fraction is 0.99 and 0.4, 

respectively. And the tcr is the time when liquid feeding can no longer occur. The time tcr 

is determined using Feurer’s criterion when the SPV equals to the SRG.

The Katgerman’s criterion along with the Feurer’s criterion have been widely

C99 tcr

used to study the influence of the casting speed on the hot tearing formation in the 

continuous casting process [6] [16] [33] [35]. It has also been used to predict and evaluate 

the hot tearing susceptibility for shape casting [36].
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2.2. MECHANICAL CRITERIA

2.2.1. Critical Stress Based Criteria. Typical strain rates encountered in 

continuous casting process have been reported to be on the order of 10"4/s to 10"3 /s [37]. 

However, higher strain rates of 10-1/s to 1/s were chosen by several researchers to 

minimize the shell growth during testing and measure the shell’s fracture stress directly 

[38] [39]. In order to estimate the critical fracture stress, a criterial stress based criterion 

was proposed by Y. M. Won et al. [8] also considering the influence of strain rate. To 

achieve this, the critical fracture stress of 5 phase and y phase for internal crack formation 

in the mushy zone was calculated using constitutive equations for each phase as follows:

£
Oc = s in h -1
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~\m Y
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• sin h 1 T ^ P ^ ) ]

mY
(7)

here, A and P are constants; m is constant related to strain-rate sensitivity; n is the strain­

hardening exponent; Q is the activation energy for deformation; and R is the gas constant. 

The value of A, P, m and n can be found based on the experimental measured data 

reported in [8].

The critical stress of steels for crack formation is predicted using equation [3], as 

follows:

=  ( 0 )  * [Sf>°c + rf>ac] f ° r 2 D T < T <  ZST (8)
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The relationship between fS and f s  can be determined using a microsegregation 

model, which takes composition and cooling conditions into consideration. Oc is the 

critical stress when the solid fraction is c/ s. The predicted hot tearing trends were in good 

agreement with the experimental results reported by [38] [40].

2.2.2. Critical Strain Based Criteria. In recent studies, it has been suggested that 

critical strain and/or strain rate is a better criterion for hot tearing than stress [24]. Studies 

on residual strain/stress have shown that tensile stress is not required to generate hot 

tearing but that tensile strain is required to form a hot tear. Thereby, if the true strain is 

higher than the critical fracture strain, hot tearing will occur [23].

A. Yamanaka et al. [41] proposed a critical fracture strain by performing 

experiments using a tensile test on a cylindrical ingot with liquid core. The critical strain 

was determined to be 1.6% by comparing the occurrence of the cracks with the applied 

effective strain. The effective strain was defined as the accumulated strain in the BTR. To 

calculate the effective strain, the movement of the BTR needs to be considered. By 

correlating the time-strain history and the movement of the BTR, the effective strain can 

be estimated.

Many researchers [42] [43] [44] have suggested that critical strain decreases with 

increasing strain rate and solute element content because the BTR widens. A relationship 

for the critical strain as a function of the BTR and strain rate has been developed by Y.

M. Won et al. [8]:

£c = Em AT% (9)

where $ is a constant; and m* and n* are the strain rate sensitivity and the BTR exponent 

on the critical rate, respectively. The BTR (ATb) has been expressed as follows:
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ATb = LIT - ZDT = T(/s = 0.9) -  T(/s = 0.99) (10)

in which the LIT and ZDT correspond to the temperature at which the solid fractions are

0.9 and 0.99, respectively, which is reported by many researchers [22] [19] [20]. The 

BTR is calculated using a microsegregation analysis, in which incomplete solute back- 

diffusion, diffusion length scale, cooling rate, alloy composition, and phase 

transformations are considered [45].

2.2.3. Critical Strain Rate Based Criteria. In addition to critical stress and 

critical strain based criteria, a strain rate based criterion, the RDG criterion, has also been 

proposed by M. Rappaz et al. [3] and applied by different researchers [46] [47] [48]. The 

RDG criterion was proposed based on the maximum strain rate (s) that the mushy zone 

can sustain before the hot tear occurs. It considers a mass balance for the liquid and solid 

phases and allows for calculating the pressure drop contributions in the mushy zone. This 

model was derived from columnar dendritic structure assuming that the tensile 

deformation is perpendicular to the growth direction of the dendrites. When the 

interdendritic liquid feeding cannot compensate for the thermal contraction and 

solidification shrinkage at a given strain rate, hot tearing will initiate. The maximum 

strain rate can be expressed as follows [46]:

^crit =  ̂ r -tj GApmax 
(1+P)B [ 180̂ — VTfiA]

With A = irTi (1~/s)/s2
Tc (1 ~fs)3 dT and B = i C dT (11)Tc (1 ~fs)3c

where p is the dynamic viscosity of the liquid phase, G is the thermal gradient, vt is the 

velocity of the isotherms, (  is the solidification shrinkage factor, A and B are integrals 

over the temperature interval between the coalescence Tc and the liquidus temperature Tl,
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the value of the Tc varies based on alloy chemistry, morphology and precipitates. And fs 

is the fraction of solid. The Apmax is the maximum pressure drop that the mushy zone can 

bear, which was estimated to be around 90 kPa for stainless steel in welding process [49]. 

The RDG criterion has been widely used and further developed in simulations of hot tear 

formation [46] [47].

2.2.4. Other Criteria Specifically Related to the Continuous Casting Process.

Y. M. Won et al. [50] developed a specific crack susceptibility to describe the possibility 

of hot tearing of the strand during continuous casting within the mold. The development 

of the specific crack susceptibility involves in the analysis of critical strain and a crack 

susceptibility coefficient. The critical strain was calculated by equation [4], as discussed 

previously. The crack susceptibility was expressed as follows:

sc = fo r  ZDT < T  < LIT
c ac(T) J

sc = 0 fo r  LIT < T  < TL or omax{T) < 0 (12)

The crack susceptibility coefficient, Sc, is defined as the instantaneous possibility 

of solidification cracking at a position, and the specific crack susceptibility, SSC, was 

proposed as follows:

L ^ Sc dt dA:Sr _i c
C u.c U.,nm

lA s t f *  dAs
(13)

here Am is the area of mushy zone in the brittle temperature range, As is the area of 

solidified shell, tc is the casting time. The specific crack susceptibility is reported to 

successfully predict the effect of carbon content, slab width, narrow face taper and 

casting speed on the hot tearing of continuous cast steels.
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Z. Han et al. [51] proposed a critical strain based model to predict hot tearing 

near the solidifying front in slab casting. The tensile strains at the solidifying front caused

by bulging, straightening, and misalignment of the support rollers in a four-point­

unbending bow-type caster was calculated, respectively:

_  160055b 
£B -  12

Es = 100 * ( j  — s) * 1
Rn-1

1

£m =
300SSM 

~2

(14)

(15)

(16)

here, S is solidified shell thickness, l is roll pitch, 5b is slab bulging deflection, 

thickness, Rn-i and Rn are the unbending radii, and 5m  is the roll misalignment. 

bulging deflection is calculated by the equation [12]:

s B = - ^ V tB 32EeS3

where P is the ferrostatic pressure of liquid steel, t is the time for slab to travel 

pitch, and Ee is the equivalent elastic modulus that can be calculated using the 

equation:

d  is slab 

The

(17)

a roll­

following

Ee = ^ ^ * 1 0 6 N/cm2 (18)e rs-ioo v ’

here, Ts is solidus and Tm is the average of the surface temperature and the solidus

temperature. Thus, the total strain at the solidifying front was calculated by the sum of £b,

£s and £m. When the total strain exceeds the critical strain, the hot tears will occur. Their

prediction matches with the experimental results and was further developed by coupling

this model with a microsegregation model [51].
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3. EXPERIMENTAL METHODS

Over the years, researchers have developed many different experimental tools to 

investigate hot tearing. For example, the ring mold test [52] [53] [54] and several 

different constrained rod casting (CRC) [55] [56] tests were widely used in the 

investigation of the hot tearing susceptibility for aluminum alloys and magnesium alloys. 

Several different constrained shape castings were also used to study the hot tearing in 

steel casting. These testing methods employ different constraint conditions to induce 

stress or strain during solidification to promote the formation of hot tearing. For the 

continuous casting steel, as discussed in the previous section, the solidifying strand shell 

is always in a dynamic state and it experiences much more complicated 

thermomechanical conditions. Therefore, more sophisticated setups were designed to 

study the mechanical properties of solidifying steels and reproduce the condition of the 

hot tear formation in the continuous casting process. Thus, these typical testing methods 

used for different casting processes are discussed in this section and summarized in Table

2 .

3.1. CONSTRAINED SHAPE CASTING TEST

Different constrained sand casting tests have been developed to study the hot 

tearing behavior in shape steel castings. One of the most widely used tests is the 

constrained T-shaped casting using sand mold, as shown in Figure 3. Monroe and 

Beckermann [57] [58] used a T section sand mold with force and displacement 

measurement devices to quantitatively study the hot tearing behavior of low carbon low



alloy steels. The measured force and displacement in this approach were in good 

agreement with their simulated force and displacement predictions, respectively. 

Bhiogade et al. [24] used the constrained T-shaped casting to study the influence of the 

stress, strain and strain rate on the hot tearing susceptibility of a stainless steel. Their 

results showed that the strain or strain rate are better predictors for hot tearing than stress. 

A bracket-shaped sand casting with different size of sand cores was designed by D.

Galles et al. [59] to study the casting distortion. The distortion was caused by the 

combination of core expansion and steel contraction during solidification. The stress 

during the test was simulated with the commercial software ABAOUS2 using a user- 

defined elasto-visco-plastic model and the distortion was predicted accurately in their 

work.
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Figure 3. Schematic of the test setup using a constrained T-shaped casting [58].

In addition to sand molding processes, a permanent mold was developed by Cerri 

et al. [60] and was used by Hadzic et al. [61] to develop a viscoplastic damage model to 

predict hot tear formation in the steel casting, as shown in Figure 4. The water-cooled 

chills were used to ensure the directional solidification in the casting and to constrain the



ends of the casting to induce tensile stresses during solidification process. The damage 

model for hot tearing prediction was developed based on Cocks constitutive model using 

commercial software MAGMASOFT and ABAQUS. A good correlation between 

experimental findings and predicted damage is observed in their works [61].
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200mm

Figure 4. Schematic of the experimental setup using a permanent steel mold [61]. 

3.2. HOT TENSILE TESTS

As discussed in the previous section, the brittle temperature range (ATb), which 

was defined by the temperature different between the ZST (or LIT) and ZDT, gives a 

qualitative indication of the hot tearing susceptibility [6] [16]. Therefore, it is of great 

interest to experimentally determine these critical temperature points. M. B. Santillana 

[22] proposed an apparatus that can be used to perform the hot tensile test at a 

temperature range from 1100°C to 1520°C. The schematic of this apparatus is shown in 

Figure 5. A high frequency induction coil was used to heat the central region of a 

cylindrical sample, which has a diameter of 10mm and a length of 100mm. The 

temperature of the molten zone was controlled by an R-type thermocouple welded to the
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sample surface. A load cell and a two-color optical pyrometer were used to measure the 

force and temperature during the test, respectively. The sample was heated, melted and 

solidified sequentially under controlled conditions. The hot tensile test was conducted 

between the temperature range of liquidus and solidus in 10°C increments. After testing, 

the ZST and ZDT were determined based on post-mortem analysis of the tensile 

specimens.

q u a r tz  tu b e M elling Zone

Ar gas
Load cellatmosphere
1961N)

W ater jacket

The mute mini Sample
(010X 100mm)

Two-color pyrometer High speed camera

Induction coll
Marker un it m rn110LOG KHz

15KVV

W ater jacket

Figure 5. Schematic of the hot tensile test apparatus and specimen [22]

Similar hot tensile tests have also been performed using Gleeble™ systems to 

study the high temperature mechanical properties for different steel grades. D. J. Seol and 

his coworkers [62] have used Gleeble™ 1500 system to study the mechanical behaviors 

of carbon steel in the temperature range of mushy zone; Wenli et al. [63] have used 

Gleeble™ 3800 system to determine the ZST and ZDT for a 6.5 wt.% electrical steel. 

W.T. Lankford [64] has used Gleeble™ 510 to study the effects of isothermal treatments, 

temperature, and cooling rate on the hot ductility for low carbon steels with different 

amount of alloy elements. A typical thermal and deformation historical cycle of the



tensile test is shown in Figure 6. The test was performed at different temperature in the 

mushy zone. Thus the critical temperature points were determined by analyzing the 

strength and displacement under different temperatures.
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Figure 6. Schematic of thermal and deformation history for tensile test using Gleeble
system.

3.3. BENDING TESTS

Bending tests were designed by several researchers to study the hot tearing 

phenomenon in continuous casting process [65] [66] [67] [68] to estimate the critical 

strain for the hot tearing formation under different conditions. Matsumiya et al. [69] used 

a horizontal three point bending test to investigate the critical strain for six different 

carbon steels. The schematic of the testing apparatus is shown in Figure 7. The specimen 

was 45cm long, 8cm wide and 3.5cm high that was cut off from the columnar crystal 

zone to ensure that the longitudinal direction of the specimen was consistent with the 

casting direction. The center of the top surface of the specimen was heated by a specially 

designed high-frequency induction heater to ensure uniform temperature distribution in
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the width direction. The test was conducted at various degrees of bending. By analyzing 

the amount of the strain that was applied to the liquid-solid interface and comparing with 

the existence or nonexistence of the crack, the critical strain for the hot tearing formation 

was determined.

Figure 7. Schematic of the three points bending test apparatus (1-induction heating coil, 
2- ram, 3-fulcra, 4-specimen being bent, 5-liquid pool, 6-mushy zone, 7-thermocouple)

[69]

The horizontal three points bending test provides a quantitative way to estimate 

the critical strain for different grades of steel. To better compare with the continuous 

casting process, larger scale experiments were also proposed [70] [71]. Moreover, since 

the hot tearing formation in continuous casting steel also involves element segregation, 

more sophisticated experimental methods have been developed to study the hot tearing as 

well as to reveal the macrosegregation.

Koshikawa et al. [72] [73] [74] [75] proposed an ingot bending test (also called 

the “ingot punching test”), which consists of a tool that applies deformation at the surface 

of a solidifying 450 kg steel ingot. Figure 8 (a) shows the schematic of the initial state of 

the test apparatus that was developed at Nippon Steel & Sumitomo Metal Corporation. 

The molten metal was poured at 1640°C and after a certain amount of time, the top right



mold was removed. Then, a cylinder tool was used to push the solidifying ingot 

perpendicular to the surface of the ingot. The velocity and displacement of the punching 

tool were controlled by a hydraulic system and temperature was measured by 

thermocouple during the test. More details about the experiment procedure can be found 

in [74].
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Figure 8. Schematic of ingot bending test apparatus [74].

Valuable information about the hot tearing formation and segregation is provided 

by the ingot bending test. Koshikawa et al. [72] [73] developed a so-called “two-phase" 

model, which considers the macrosegregation resulting from both the solid phase 

deformation and liquid flow in the mushy zone, to simulate the macrosegregation and 

compare with their experimental results. A finite element model was developed to 

analyze the thermomechanical stress/strain in the bending test [74]. Excellent agreement 

was found between the simulation results and the position and intensity of the hot tears

obtained from the measurements.



27

3.4. SUBMERGED SPLIT-CHILL TENSILE (SSCT) TEST

The submerged split-chill tensile (SSCT) test, which was initially proposed by 

Ackermann et al. [76] to study the high temperature mechanical properties of aluminum 

alloys, was developed and applied by Hiebler and other researchers [38] [40] [77] [78] to 

study the mechanical behavior of the solidifying steel shell and investigate the 

relationship between the hot tearing susceptibility and process parameters encountered in 

the continuous casting process. Figure 9 shows a schematic of the SSCT test apparatus 

and the relationship of the SSCT test with continuous casting conditions. A water-cooled 

cooper or steel test body, which can be split into two halves, was submerged into the 

liquid steel contained in an induction furnace. After a shell of sufficient thickness has 

formed around the test body, the lower part was moved downwards at a controlled 

velocity. The force and displacement were recorded during the test.

Figure 9. Schematic of the SSCT test apparatus [79]

Different experiments were carried out based on the SSCT test. Suzuki et al. [40]

used the SSCT test to study the fracture strength of solidifying steel shells containing
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0.004 to 0.7 wt.% C. Their test results show that the fracture strength at a very early stage 

of solidification of the shell thickness with a thickness of 1 to 5mm was around 1 to 3.5 

MPa. After analyzing the friction force between the shell and the mold and comparing 

with the measured data, a reasonable upper limit of the casting speed of a caster with 

sinusoidally oscillating mold was suggested to be about 8.5 m/min. Bernhard et al. [38] 

used the SSCT test to study the effect of phosphorous content on the hot tearing 

susceptibility for different carbon steels. By analyzing the relationship between the P 

content and the shell strength and comparing with the characterizations of the solid shell, 

the authors observed that hot ductility decreased with an increasing P content for both 

high carbon and low carbon steels over a wide range of strain rates. Reiter et al. [79], 

Bernhard et al. [39] and Hiebler et al. [80] developed different computational models to 

simulate the thermomechanical behavior in SSCT test, such as temperature history, shell 

thickness, solidification force, and failure location to analyze the stress and strain profile 

in the test and determine the critical strain for hot tear formation. Due to the high cooling 

rate and thin solid shell during SSCT test, this method is more suitable for analysis of the 

cracking susceptibility of the steel shell in the mold region or early stage out of the mold.

3.5. CONTROLLED DEFORMATION TEST FOR SOLIDIFYING STEEL 
SHELL

In recent study, the concept of the controlled deformation test for solidifying steel 

shell was proposed by the Lu et al. [81], which can be used to study the mechanical 

properties of the steel shell in different solidification stages. The steel shell was deformed 

by the applied strain, which was controlled by the electric cylinder coupled with a servo­

motor. A special mold configuration, with two water-cooled cooper chills and an



insulation sleeve, was developed to control the dendrite growth in the direction 

perpendicular to the applied strain and to ensure that the strain is applied in the region of 

controlled shell growth. Figure 10 shows the schematic of the setup with illustration of 

the solidification pattern in testing area and applied strain during the test. The force, 

displacement and temperature were monitored as a function of time. The temperature 

filed in the whole casting was simulated by MAGMASOFT 5.3.1.
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Figure 10. Schematic of the controlled deformation test apparatus.

Various experiments can be carried out using this method. The cooling rate and 

solidification structure in the testing area can be controlled and adjusted by the material 

type and thickness of the insulation sleeve. The shell thickness during the test can be 

controlled by the solidification time, which corresponds to the different stages during 

solidification process. Thus, several types of studies can be performed: solidification 

behavior under constrained mold design; mechanical properties of the material in a wide 

temperature range; critical stress/strain for the cracking formation in different stages of 

solidification, and so on. The numerical deformation model of the current method is also 

under development now and will be released soon.
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Table 2. A summary of different experimental methods used for investigation of the hot
tearing of steels

Experime
ntal

Methods
Application scenarios limitations References

Constraine 
d shape 
casting 
test

Mostly used in mold 
casting, based on the 
severity of cracks determine 
hot tearing susceptibility, 
critical stress and/or critical 
strain.

Cannot control the amount 
of strain.
Limited application in 
continuous casting 
process.

[24],
[57-61]

Hot tensile 
test

Used to determine the 
critical temperature points 
and study the high 
temperature mechanical 
properties.

Re-melting the specimen, 
cannot represent the real 
solidification condition.
Limited consideration of 
segregation.

[6], [16], 
[22],

[62-64]

Bending
test

Mostly used in continuous 
cast steel, determine the 
critical strain/stress. Ingot 
bending test has good 
correlation with continuous 
cast process.

Re-melting the specimen, 
cannot represent the real 
solidification condition.
Limited application in 
mold casting.

[65-75]

SSCT test

Mostly used in continuous 
cast steel, determine the 
fracture strength, critical 
strain/stress. Good 
correlation with continuous 
casting process in the mold 
region or early stage out of 
the mold.

Limited application in 
mold casting and later 
stage out of the mold in 
continuous casting 
process.
Hard to determine real 
strain during the test.

[38-40],
[76-80]

Controlled 
deformatio 
n test

Can be used in mold casting 
and continuous cast steel, 
determine the amount of 
solidification shrinkage, 
fracture strength, critical 
strain/stress.

Limited application in 
mold region or early stage 
out of the mold region in 
continuous casting 
process.
Hard to determine real 
strain during the test.

[81]
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4. FACTORS INFLUENCING HOT TEARING

The factors that have an influence on hot tearing susceptibility have been 

discussed for many years. Both alloy constitution and processing parameters are 

influential. Wide freezing range alloys tend to promote increased hot tearing 

susceptibility because these alloys spend more time in a vulnerable state during 

solidification, where hot tearing easily occurs [6]. The existence of segregating elements 

widens the BTR by forming low melting point liquid films in the interdendritic region 

and on grain boundaries. Processing parameters, such as casting speed, primary and 

secondary cooling intensity, mold taper, strand bending, soft-reduction, and so on, affect 

hot tearing by their influence on the solid shell thickness, solidification structure, thermal 

and mechanical strain profile in mushy zone. Common factors that have a direct influence 

on the hot tearing sensitivity are summarized in this section.

4.1. COMPOSITION

It is well established that high purity metals are not prone to hot tearing because 

the pure metal does not exhibit a semi-solid stage during solidification [82]. For 

commercial alloyed steels, different alloying elements have different influences on the 

hot tearing susceptibility based on their effects on the solidification process and their 

segregation tendency.

4.1.1. Carbon. Carbon is one of the most important alloying elements in steels. It 

affects the hot tearing susceptibility not only by changing the BTR but also through the 5- 

Y phase transformation. The total thermal strain of steel is generally expressed as the sum
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of the strain caused by cooling and the strain caused by phase transformation [83]. Figure 

11 (a) and (b) show a typical non-equilibrium binary Fe-C phase diagram of carbon steel 

and thermal strains as a function of carbon content, respectively. The BTR changes as a 

function of carbon content as shown in Figure 11 (a). For the steel with a carbon content 

below C1, the total thermal strain is only a function of temperature because solidification 

is already completed before the 5-y phase transformation begins. For steels with a carbon 

content above C2, the total thermal strain is only a function of temperature because the 5- 

Y phase transformation finished above the LIT. For steels with a carbon content between 

C1 and C2, the total internal strain varies by changing of the phase transformation induced 

strain £c 5-y, as shown in Figure 11 (b). Thus, there is a Cmax at which all the 5-y phase 

transformation occurs in the BTR, which causes a maximum total internal thermal strain, 

or in another words, a maximum tendency to the hot tearing.

Since the BTR and 5-y phase transformation are influenced by solute elements 

such as sulfur and phosphorus, the values of C1, C2 and Cmax also vary with different steel 

composition. In previous studies, both experimental measurements and computational 

models were used to analyze the effect of carbon content on the hot tearing susceptibility 

for different grades of steel. Won et al. [50] have investigated the steels with the 

compositions of (0.05-0.6)C-0.03Si-0.4Mn-0.02P-0.02S. The relationship between the 

crack susceptibility and the carbon content is shown in Figure 12. Based on their work, 

the maximum hot tearing tendency appears at a carbon content of 0.12%, which is 

consistent with Kim’s [83] results.
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Figure 11. (a) Typical non-equilibrium binary Fe-C phase diagram of carbon steel and (b) 
total thermal strain (FcTH), strain caused by cooling (Fc*) and strain caused by phase 

transformation (Fc 5-y) as a function of carbon content [83].
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Figure 12. The calculated crack susceptibility (Sc), strain in brittle temperature range and 
measured crack index as a function of carbon content [50].

For steels with a medium or high carbon content, the relationship of hot tearing 

susceptibility and the carbon content was given by K. Wunnenberg and R. Flender [84]. 

They used a crack index to reflect steel’s susceptibility to hot tearing. The crack index 

was developed to combine individual parameters measured on microsections, including 

crack length, crack opening, spacing between adjoining cracks, and number of cracks. A 

high index means that the steel is more vulnerable to the hot tearing. This study was 

performed using steels containing (0.09-1.16)C-(1.5-1.6)Mn-0.025S. Between 0.2 and 

0.35% carbon, the crack index is reduced. For steels over 0.4% carbon, the susceptibility 

increases rapidly to a maximum at 0.86% and at 1.16%C, the susceptibility to cracking 

drops again, and is equivalent to a 0.6%C steel.

Additional studies on the effects of carbon on the hot tearing susceptibility were 

also performed by many researchers [13] [19] [64] [85]. However, it is difficult to 

quantitatively analyze the effects of carbon on cracking in isolation because of the 

interactions among other alloying elements in these studies.



35

Figure 13. Crack index as a function of carbon content [84].

4.1.2. Sulfur and Mn/S Ratio. Sulfur has been shown to have a significant 

influence on hot tearing in many studies. It is well established that sulfur will increase the 

hot tearing vulnerability of steels by forming a low melting point liquid films in the 

interdendritic region or on grain boundaries. With its low partition ratio, sulfur has a very 

strong tendency to segregate during solidification, which will lower the non-equilibrium 

solidus temperature where the last solidified liquid phase [86] is present. As a result, even 

when the temperature of the bulk alloy drops below the equilibrium solidus temperature, 

there can still be a liquid film that exists interdendritically and along the grain 

boundaries. As a result, the segregation of sulfur widens the BTR and creates a path for 

hot tear formation [22] [21] [83] [87]. A. Chojecki et al. [88] studied the influence of 

sulfur content on the BTR for different carbon steels, as shown in Figure 14. Evan small 

amounts of sulfur significantly increases the BTR [89].



36

Figure 14. The influence of sulfur content on the BTR for different carbon steels [88].

As solidification takes place, the existence of sulfur will result in the formation of 

either MnS or FeS. When the local interdendritic concentration of Mn and S in the 

residual liquid is higher than the solubility product constant of MnS, it will begin to 

precipitate [90]. The formation of MnS or FeS is determined by the relative concentration 

of Mn and S. Under equilibrium conditions, MnS is generally more stable than FeS. 

During solidification, however, sulfur is expected to segregate strongly to inter-dendritic 

region due to its low partition ratio. If the content of sulfur is much higher than Mn, or 

there is residual segregated sulfur in liquid unreacted with Mn, FeS will form. The 

formation of pure FeS will dramatically decrease the solidification temperature of the 

interdendritic liquid because the FeS has a low melting point of approximately 1200 0C 

[22].

Many investigators [13] [84] [64] [90] [41] [91] have demonstrated that there is a 

critical value of the Mn/S ratio below which a high susceptibility to cracking is expected. 

Alvarez de Toledo et al. [90] developed a critical value of Mn/S based on literature data 

and their results from rolling continuous cast billets, which they expressed as:
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(Mn/S)c = 1.345 * S'0'7934 (18)

A reasonable agreement between the experimental data and their theoretically 

equation was observed. Steel grades with high Mn/S ratio, or more specifically higher 

Mn, are not as prone to the hot tearing as steels with a low Mn/S ratio.

4.1.3. Phosphorus. Compared with carbon and sulfur, less research has been 

reported that studies the influences of phosphorus on the hot tearing. Phosphorus is 

generally deleterious to steel ductility, but it is employed in some alloys to strengthen 

steels where carbon content is restricted. However, phosphorus not only affects hot 

tearing tendency, but also can lead to cold work embrittlement [92]. To ensure the 

product quality, the amount of phosphorus in steels is normally minimized. The 

segregation tendency of phosphorus to the grain boundaries is weak compared with that 

of sulfur [93]. According to F. Weinberg [94], under equilibrium conditions, P is 

enriched in y and 5 iron by a factor between 102 and 103 on a monolayer at the grain 

boundary, and S by a factor of 104. However, it is still possible that the incipient melting 

may occur at grain boundaries due to the segregation of phosphorus.

Several studies [8] [19] [64] [87] [89] have been conducted to theoretically or 

experimentally study the influence of the phosphorus on the hot tearing. W. Wang et al. 

[89] used a coupled macro-heat transfer and micro-segregation model to investigate the 

effect of phosphorus on crack susceptibility. Their results show that, for hypo-peritectic 

steels, increasing phosphorus widens the BTR. The study showed that both the thermal 

strain and the difference in deformation energy will increase. The effects of the observed 

difference in deformation energy is demonstrated and discussed in [8]. Qualitatively, the 

deformation energy change influences the possibility of cracking in the BTR. Thus, hypo-
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peritectic steel is more sensitive to cracking than other steels. A similar conclusion was 

obtained in Young Mok Won’s work [8], in which the steel with a higher phosphorus 

content tended to crack at a lower strain. This tendency was observed in steels over a 

wide carbon range, as shown in Figure 15.

Figure 15. Influence of the phosphorus content on the critical strain [8]. When the 
accumulated strain exceeds the critical strain, the hot tearing will occur.

4.2. SOLIDIFICATION STRUCTURE

The hot tearing susceptibility of steel is influenced by both the grain morphology 

and the grain size. Due to the change of the grain morphology and size, the liquid feeding 

ability, amount of strain and strain rate, the propagation paths of hot tears will also 

change. Y. Li [95] highlighted the impact of grain morphology on the liquid permeability 

in the mushy zone in Figure 16, which further influences the liquid feeding ability. Lower 

liquid permeability at the late stage of solidification will cause the incomplete feeding, 

thus increase the hot tearing tendency.
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Figure 16. The liquid permeability in the mushy zone with different grain morphologies
[95].

H. Fujii et al. [96] studied the influence of the solidification structure on the hot 

tearing formation by comparing the hot cracks formed in two different steels with 

different structures. One steel was Al-Si killed and another one was low C-Al killed. 

These two steels were cast on a bow-type casting machine. The Al-Si killed steel 

contained different grain structures on the inner-radius side and outer-radius side of the 

slab: the outer-radius side being an equiaxed structure (due to equiaxed grain settling) 

and the inner-radius side being a columnar structure. The low C-Al killed steel exhibited 

a fully columnar structure on both sides. The internal cracks were revealed by the sulfur 

print technique, as shown in Figure 17. By comparing the hot tear formation during the 

casting for the two steels, the author suggested that the columnar cast structure was more 

susceptible to hot tearing compared with equiaxed cast structure.



40

Figure 17. Solidification structure and internal cracks for (a) Al-Si killed steel and (b) 
low C-Al killed steel, revealed by sulfur print [96].

An investigation on the influence of the grain size on the hot tearing susceptibility 

was performed by Shinozaki et al. [97]. They carried out experiments to study the critical 

strain for a 347 stainless steel in the liquidus-solidus temperature range. The columnar 

grain size of the specimen varies from 69 to 210 pm. Figure 18 shows their measured 

critical strain values for different grain sizes and temperatures. In general, the larger grain 

sizes exhibited a lower critical strain at all temperatures. A similar conclusion was 

reached in a study of different Al alloys by Y. Yoshida [98] and F. Matsuda [99].

5 U S 3 4 7 -G ra in  s ize  69/* m
S U S 34 7*G ra in  s iz e  1 6 8 t /m
S U S 3 4 7 -G ra in  s iz o  1 7 9 /* m
S U S 3 4 7 -G ra m  s iz e  210 it m2.5

A

1470 1460 1450 1440 1430 1420

Tem perature ( C )

Figure 18. Critical strain with different grain sizes at different temperatures [97].
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4.3. STRESS, STRAIN AND STRAIN RATE

It is well known that stress and/or strain is required for the formation of the hot 

tears. In the continuous casting process, the stress or strain can originate from mold 

friction, thermal stress, ferrostatic pressure, gravity forces from the weight of the casting, 

bending and straightening, and other mechanically induced forces resulting from 

operating irregularities, such as misalignment between successive support rolls or mold 

distortion [64]. Some researchers [17] [100] [101] have suggested that hot tearing occurs 

in the mushy zone when the maximum principle stress exceeds the local yield stress at 

temperature, while other researchers [102] [29] suggest that the material will crack if the 

local strain exceeds a critical value. However, Won et al. [50] stated that neither the 

absolute stress nor strain value is enough to predict the possibility of cracking during 

continuous casting process because the stress and strain in the solidifying shell both 

change as a function of temperature and movement of the semi-solid region. Moreover, in 

the continuous casting process, a large portion of the mushy zone solidifies in a stress- 

free state due to the existence of liquid. Thus, efforts in their investigation were focused 

on the influence of both strain and strain rate on hot tearing susceptibility.

To explore the combined effects of strain and strain rate on the hot tearing 

susceptibility, both theoretical studies and experimental measurement have been carried 

out. Some researchers [50] [102] [103] found that the critical strain for internal cracking 

is independent of strain rate, while others have reported contradicting results [64] [87]

[42] [43]. An informative interpretation on how to determine the critical value of strain 

that can lead to the hot tearing was given by A. Yamanaka et al. [41]. They defined an 

effective strain, which is defined as the accumulated strain that occurs in the BTR. For
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different strain rates, especially under the conditions with low strain rate and high cooling 

rate, the movement of mushy zone is large during the deformation. When the effective 

strain at the solid shell exceeded the critical strain, hot tearing occurs. The effective strain 

that accumulated in the solid shell depends on not only the strain rate, but also the BTR. 

Currently, the combined effects of these many different influencing factors make it 

difficult to select a single model to describe the hot tearing susceptibility that is valid for 

a broad range of alloys and process conditions.

5. CONCLUSION

In this review, the basic mechanisms and factors influencing the hot tearing 

phenomenon have been reviewed and discussed, and hot tearing criteria and the 

experimental methods used for investigating the hot tearing of steels have been 

summarized. From these analyses, it is clear that hot tearing can be alleviated by 

minimizing the tensile stress and/or strain during the casting process, increasing the high 

temperature strength and ductility of the alloy, and/or by narrowing the BTR of the 

solidifying steel. To predict hot tearing behavior under different conditions, a more 

reliable predictive model or criterion that can relate these requirements to casting 

parameters is still needed. Moreover, although various experimental methods have been 

developed to study the high temperature mechanical properties and evaluating the hot 

tearing susceptibility for different steels, in order to obtain comparable hot tearing 

susceptibility, a standardized hot tearing testing approach and evaluation system still

needs to be established.
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ABSTRACT

Hot Tearing is a complex thermo-mechanical phenomenon occurring in the semi­

solid region. Strain in this region can induce cracking and localized alloying element 

segregation. An apparatus for investigating hot tearing was developed utilizing a servo­

motor controlled cylinder to apply a predetermined amount of strain to the solidifying 

shell. A special mold was developed using filling and solidification modeling to ensure 

that dendrite growth was perpendicular to applied strain. A computer-automated system 

was utilized to control the strain and strain rate and measure the force and displacement. 

Solidification experiments utilizing AISI 1020 steel validated the apparatus capabilities 

and optimized testing parameters.

Keywords: Hot tearing, Strain and strain rate, Directional solidification.
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1. INTRODUCTION

Hot tearing is a common irreversible defect that usually appears as cracks, 

segregation or fractures in the mushy zone during solidification of steel. It occurs when a 

casting is strained to failure in the semi-solid region during solidification and can lead to 

alloy and impurity element segregation, porosity formation, and precipitation of 

inclusions [1-2]. These defects can be accentuated by poor caster alignment and damaged 

support rolls, as well as non-uniform cooling [3- 4] and soft cooling that can induce shell 

bulging. During solidification, the existence of residual low melting point liquid results in 

reduced ductility and increased susceptibility to cracking. This can be magnified by a 

coarse columnar grain structure, entrapped porosity, and segregation of alloying elements 

and impurities like Mn, C, Si, S, P [5]. As shown in Figure 1, the ductility of the 

solidifying steel shell remains almost zero as long as a liquid film exists between the 

dendrites [6]. Therefore, if there is sufficient strain that is perpendicular to the direction 

of dendrite growth, a hot tear can be generated.

mushy zone

^  Strain

surrounding
molten steel

Ductility
ZeroZero

im penetrable strengthductility
temp

Strength Liquidus
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ZSTZDT

Figure 1. Schematic diagram of mechanical properties in the mushy zone during
continuous casting of steels [6].
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The ability to fully understand and predict the casting parameters and conditions 

that cause hot tearing is very important to steel mills and foundries for process design, 

quality control, and development of new steel grades. Hot tearing has been studied for 

decades [7-8] by a lot of researchers. However, the effects of segregation of alloying 

elements such as C, Mn, Al, Si, and S etc. on hot tearing sensitivity are still not well 

known. This often makes it difficult to predict the hot tearing susceptibility for new steel 

grades.

Over the years, researchers have developed many different experimental tools to 

investigate hot tearing behavior. Some of these methods have employed different 

constraint conditions to induce stress or strain on the solidifying solid shell to promote 

the formation of hot tearing [9-12] during solidification process. Wang et al. [13] used a 

ring mold to study the hot tearing susceptibility of Mg alloys. The constrained rod casting 

(CRC) approach has also been used by several other researchers, which usually consists 

of rod-shaped castings with different lengths or diameters, as shown schematically in 

Figure 2 [14-15]. In these tests, the stress is introduced by constraining shrinkage of the 

solidifying casting to initiate hot tearing in the area that experiences the maximum stress, 

such as the conjunction area of the round cap and the column in Figure 2 (a).

These CRC experimental methods have been widely used to determine hot tearing 

sensitivity of both Mg and Al alloys in sand mold as well as in permanent molds, as 

summarized by J. Song and coworkers [7]. However, both of these methods are 

qualitative and do not provide a quantitative measure of critical stress or strain for hot 

tearing.
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(b)
Figure 2. Schematic of different designs of constrained rod castings used to determine hot 
tearing sensitivity in aluminum and magnesium castings: (a) a design that varies the rod 

length [14] and (b) a design that varies the rod diameter [15].

Fewer experimental methods have been designed to study the hot tearing 

susceptibility of steels. One of the most widely used tests is the constrained T-shaped 

casting. Monroe and Beckermann [16] used a T section setup with a force and 

displacement measurement devices to quantitatively study the hot tearing behavior of low 

carbon low alloy steels. The measured force and displacement in this approach were in



57

good agreement with their simulated force and displacement, respectively. However, the 

relationship between their measured data with the critical stress or critical strain was not 

discussed in their work. Bhiogade et al. [17] used the constrained T-shaped casting to 

study hot tearing susceptibility of a stainless steel and showed that strain and strain rate 

are more critical for hot tearing than stress. All of the proceeding constrained casting 

testing approaches share a common drawback; they all rely on solidification shrinkage 

contraction to develop the strain to form hot tearing. In addition, the amount of 

contraction and the hot tearing susceptibility will vary as a function of steel composition, 

which makes it difficult to compare the hot tearing susceptibility for different steel grades 

at a consistent level of strain.

In recent studies, the submerged split-chill tensile (SSCT) test was developed by 

Ackermann et al. and applied by Hiebler and other researchers [18-20] to apply 

controlled deformation to the solidifying steel shell. As shown in Figure 3, a solid cooper 

or steel test body, which can be split into two halves, was submerged into the liquid steel. 

After a shell of sufficient thickness has formed around the test body, the lower part was 

moved downwards at a controlled velocity. The force and displacement were recorded 

during the test. This method allows researchers to study the mechanical behavior of the 

solidifying steel shell and investigate the relationship between the hot tearing 

susceptibility and process parameters encountered in the continuous casting process. 

However, the experiment setup for this test involves immersion of a water cooled copper 

or steel test body into molten steel contained in an induction furnace. Therefore, this 

experiment must be extremely well designed for the safety of the operation and to protect 

the testing devices from high temperature.
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Figure 3. Schematic diagram of the SSCT test method.

To study the hot tearing behavior for different steel grades, a novel approach was 

developed that overcomes these shortcomings and provides a repeatable and quantitative 

method of measuring hot tearing susceptibility at controllable strain rates for applications 

in the continuous casting process.

2. EXPERIMENTAL PROCEDURE

The Controlled Deformation Test (CDT) was developed in the current study to 

investigate hot tearing in a quantitative way in a solidifying casting. To apply a controlled 

strain to the mushy zone (see Figure 1) and develop test conditions that are comparable 

with the continuous casting process, the dendrite growth direction in the solidifying area 

of casting should be perpendicular to the direction of the applied strain and the solid shell 

growth in that area should be uniform. Figure 4 shows a schematic of the continuous 

casting process and highlights the dendritic nature of the expected shell growth. The 

experimental conditions of the CDT were designed to produce uniform shell growth in a



cylindrical casting in which controlled amounts of deformation could be induced on the 

shell to replicate strains encountered in continuous casting.
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Figure 4. Similarity of the solidification patterns in the continuous casting process and the
proposed testing method.

2.1. CASTING AND MOLD DESIGN

A resin bonded, silica sand mold was designed to provide directional 

solidification and a uniform shell growth in the cylindrical, tensile-bar shaped casting, as 

shown in Figure 5. A low thermal conductivity insulation sleeve was imbedded into the 

no-bake sand mold to delay solidification in the test area. The pouring cup also served as 

a large central riser to ensure proper feeding of the casting during solidification. Two 

water cooled copper chills were used in the mold to freeze the ends of the bar casting in 

order to allow transfer of the computer controlled linear displacement to the partial shell 

in the insulation sleeve area, as shown in Figure 5. The diameter of the reduced section of 

the casting is 50 mm, and the total length of the casting is 280 mm.

To examine the solidification pattern and evaluate the uniformity of solid shell 

growth in the insulation sleeve area, filling and solidification software MAGMASOFT
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(Version 5.3) was used to simulate the solidification process and determine testing 

temperature.

Figure 5. Side view of the test casting design showing the cylindrical test casting, 
insulation sleeve used to delay solidification in the test area, and water cooled copper 
chills on each side of the casting used to induce solidification and allow mechanical

locking of the test casting.

2.2. TEST APPARATUS

A schematic of the CDT apparatus is shown in Figure 6 (a). The test was designed 

to control displacement with high precision and measure the resultant displacement and 

force on the solidifying shell as a function of time. Thus, it is possible to apply a certain 

amount of strain to the solidifying solid shell at a controlled strain rate. The experimental 

setup consists of an electric cylinder, which was powered by a servo motor and controlled 

by an electric drive. Rotational movement of servomotor was translated to reciprocate 

linear movement using high gear ratio electric cylinder. A 20KN compression & tension 

load cell and a 25mm linear variable differential transformer (LVDT) were used to 

control and monitor force and displacement as a function of time. Copper chills were
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water cooled to intensify solidification and protect heating the load cell. A threaded steel 

rod, with two clamping nuts on the end, penetrates the copper chills and protrudes on 

both sides into the casting cavity, as shown in the detailed view in Figure 6 (b). At the left 

side, the threaded rod was fixed to the platform, and at the right side, the threaded rod 

was connected to the load cell (and electric cylinder) by a flange coupling.

Casting Insulation Copper Load Electric Servo
sleeve chill cell cylinder motor

(a) (b)
Figure 6. (a) Schematic of the Controlled Deformation Test (CDT) setup showing the 

main components of this apparatus, and (b) a detailed view of the attachment between the
clamping bolts and the copper chill.

Mold box Protective plate

Frame and platform

Figure 7. The controlled deformation test setup shows how the mold box and electric 
cylinder were attached to the steel frame, and the blue arrow in the picture indicates the 

direction of the movement of the electric cylinder.



All of the components were placed on a custom-made platform, as shown 

schematically in Figure 7. The electric cylinder, servo motor and drive were fixed to the 

platform. A protective steel plate was used between the sand mold and the electric 

cylinder to protect the device. A steel flask was used as the “mold box” to keep the sand 

mold rigid and to support the copper chills.

2.3. TEST PROCEDURE

Two different experiments were carried out in this study to check the capabilities 

of the test setup and optimize the test parameters. For both tests, a medium carbon steel 

with target composition of 0.25 wt%. C - 0.3 wt%. Si -  0.5 wt%. Mn -  0.035 wt%. P -  

0.03 wt%. S were used. For each test, before testing, a no-bake sand mold was prepared 

separately in the mold box, and then placed in the proper position on the platform. Figure 

8(a) shows the experimental setup assembly; Figure 8(b) shows a close view of the 

LVDT and load cell. LabView software was used to control the movement of the motor. 

Additionally, LabView data acquisition input modules were connected to the LVDT and 

the load cell to collect and record the displacement and force data as a function of time.
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Figure 8. (a) Assembly of the experimental setup, and (b) detail view of the position of
the LVDT and load cell.
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High purity induction iron, ferrosilicon, electrolytic manganese and cast iron were 

melted in a coreless 100 lbs capacity induction furnace under argon cover with a flow 

rate of 45 SCFH. The cast iron served as a source of carbon. When there was a small 

liquid pool was observed, the pyrite powder was added into the furnace as the source of 

sulfur. The molten metal was tapped at 1650 °C into a teapot ladle and killed by 0.05 

wt.% high purity aluminum shots in the ladle. Then the liquid metal was poured into the 

sand mold at 1550°C in 5~6 s. At the same time, the force and displacement changes 

were monitored in the computer. Before the start of the deformation test, to avoid any 

premature deformation in the casting, the solidification contraction was compensated for 

by slowly moving the electric cylinder to maintain zero force reading on the load cell. 

After a specified amount of time, the casting was pulled by the electric cylinder at a 

constant strain rate.

In the first test (Test 1), multiple deformation steps were applied during the test 

and the casting was totally fractured after the test. A 4% strain was used at each 

deformation step in this test and the strain rate was 5*10-3 /s. In the second test (Test 2), 

the test was stopped immediately after a load drop or a load deviation was observed on 

the load cell readings, which indicates the yield or failure of the material. The strain rate 

in Test 2 was 10-3 /s. These two tests varied the test start time. For Test 1, the test start 

time was 300 s after pouring. For Test 2, it was 480 s after pouring. The test start time 

was selected based on the MAGMASOFT solidification analysis of the steel. More 

details about how to determine the test start time will be discussed in the following

section.
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3. RESULTS AND DISCUSSION

3.1. THERMODYNAMIC MODELING

To determine the test start time after pouring, the solid fraction vs temperature 

curve for the current steel grade (0.25 wt%. C - 0.3 wt%. Si -  0.5 wt%. Mn -  0.035 wt%. 

P -  0.03 wt%. S) was calculated using the Schiel solidification model in FactSage 

(Version 7.1) thermodynamic software. Figure 9 shows the calculated solid fraction as a 

function of temperature. The liquid impenetrable temperature (LIT), which is considered 

the point below which the dendrites are connected enough to resist the feeding of the 

interdendritic liquid [4] [21], has been shown to correspond to a solid fraction of 90% 

[22-23]. Therefore, from the solid fraction -  temperature curve, the LIT for the steel 

composition of interest was determined to be 1420 °C for the current steel composition.

Figure 9. Calculated solid fraction and temperature curve for the studied steel by Scheil 
equation, which was used to estimate the LIT (dotted lines).
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3.2. CASTING SOLIDIFICATION SIMULATION

Figure 10 shows the results of the solidification simulation using MAGMASOFT. 

Figure 10 (a) shows the predicted fraction of liquid at 6 minutes after solidification. It 

should be noted that the two sides of the casting were fully solidified because of the water 

cooled copper chills while the area within the insulation sleeve (short for insulated area) 

was only partially solidified. A cross section view of solid fraction the insulated area is 

shown in Figure 10 (b) and this reveals that a uniform solid shell was predicted to form in 

this area.

(a) (b)
Figure 10. MAGMASOFT solidification modeling shows (a) the solidification sequence 

of the casting and (b) the cross sectional view of liquid fraction in the insulated area.

The last solidified cross section in the casting was near to the center of the 

insulated part of the casting, based on the solidification simulation. To establish 

relationship between the temperature and time, the temperature at two fixed locations 

within the last solidified cross section was predicted, as shown in Figure 11 (a). One 

predicted temperature was in the center of the casting and another one was in 10mm 

radial position from the surface. Figure 11(b) shows the simulated temperature history of



these two points. Test 1 was aimed to check the accuracy of the setup and examine the 

structure of the fracture surface, so the test start time was decided as 300 s to make sure 

there still had liquid metal when the start of the test. Test 2 was design to start the test 

when the solid shell in the insulated area was about 10mm. Thus, when the temperature at 

the 10mm thickness position is equal to the LIT, the corresponding time is the test start 

time, which was determined to be 480 s.
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Figure 11. (a) Cross sectional view of the insulated area with the position of the simulated 
thermocouples and, (b) simulated temperature history in different positions of the casting.

3.3. CDT RESULTS

Table 1 gives the target and measured chemistry of the steels employed in the two 

tests. The main elements were measured by optical emission spectroscopy (OES).

LECO* combustion method was used for C, S. The measured compositions were in good 

agreement with the targeted chemistry. It should be noticed that the measured sulfur was 

slightly higher than the expected amount, which may have been caused by the



segregation of sulfur, since the samples used for measuring the sulfur were cut from the 

insulated area, which was the last area in the casting to solidify.
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Table 1. Measured steel chemistry in two tests (wt.%).
Elem ent (wt. %) Fe *C M n *S (ppm) P Si A l

Target Bal. 0 .17~0 .23 0 .3~0 .6 300 < 0.04 0 .3~0 .4 0.05
Test 1 Bal. 0.23 0.55 319 0.014 0 .38 0.054
Test 2 Bal. 0 .20 0 .59 353 0.021 0.35 0.045

Figures 12 (a) and (b) show the load and displacement measurements obtained 

during Test 1 and Test 2, respectively. When pouring the metal into the mold, the liquid 

metal flow pushed the copper chill, which was connected with the load cell and the load 

cell measured the resultant compression force. As solidification started, the compression 

force began to decrease because of solidification contraction and solid section shrinkage. 

For Test 1, the test started 300s after pouring, which is indicated by the change of the 

displacement. Four deformation steps were applied to the casting in this test at a constant 

strain rate of 5*10-3 /s and each deformation step was at a 4% strain. It should be noted 

that the amount of strain was calculated using the length of the insulation sleeve as the 

gauge length. Among these four deformation steps, the last step had the maximum tensile 

force of about 2.6KN.

For Test 2, before the start of the test, the holding time before applying strain to 

the casting was longer compared with the waiting time in Test 1 to ensure that a thicker 

solid shell formed before strain was applied. A larger solidification contraction was 

observed, which was related to thicker solid shell that formed in the test. To compensate 

the solidification contraction, a “negative” displacement was applied to keep the
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measured force near zero. The deformation test started at 480 s after pouring at the strain 

rate of 10-3 /s. The maximum force in this test was around 13KN. Shell deformation was 

stopped immediately after the first observed load drop.

(a)

(b)
Figure 12. Load and displacement change during (a) Test 1 and (b) Test 2.

Figure 13 shows the results of the whole test casting, detailing the insulated area 

after Test 1 and Test 2, respectively. After the Test 1, the casting was totally broken. And 

the failure position was close to the center of the insulation sleeve, which was expected. 

For Test 2, some surface cracks were observed on the casting surface.
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(b) (c)

Figure 13. Results of the casting: (a) Complete casting after Test 1, (b) insulated area 
after Test 1, and (c) insulated area after Test 2.

An overview of the fracture surface after Test 1 is shown in Figure 14 (a). 

Columnar structure was observed on the upper side of the surface. On the lower side, 

there was evidence of liquid flow, which means when the test started, liquid was still 

present in the center of the insulated part and this liquid flowed to the lower side of the 

fracture site during the test. Figure 14 (b) shows a closer view of a part of the fracture 

surface, which was highlighted by the red box in the Figure 14 (a). Figure 14 (b) confirms 

that the dendrite structures grows from the surface towards the center of the casting in the 

insulated area, which satisfies with the requirement of the experimental design. Under 

higher magnification Figure 14 (c), single isolated dendrites can also be observed.
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(a) (b) (c)

Figure 14. (a) An overview of the fracture surface after Test 1; (b) zoom of part of the 
fracture surface to show the growth direction of the dendrites; and (c) higher 

magnification SEM image to show a signal dendrite structure on the fracture surface.

To observe the internal crack, the insulated part of Test 2 was sectioned from top 

to the bottom along longitudinal direction. Then small specimens were sectioned, 

mounted and polished for crack observation and chemistry analysis. As shown in Figure 

15 (a) and (c), small internal cracks were found to be perpendicular to the direction of the 

external strain. Figure 15 (b) and (d) show the sulfur distribution in the area of (a) and (c) 

respectively, which were obtained by ASPEX EDS mapping. It should be noted that in 

the crack area, the sulfur concentration was higher than other area. It is well known that 

sulfur has a low partition ratio and it is easy to segregate to the inter-dendritic region, 

which can flow and accumulate at the crack site as damage occurs [24]. Those low- 

melting compositions increase the internal crack sensitivity and their enrichment at the 

crack site serves as a signature of the hot tearing. By comparing the sulfur EDS mapping 

with the position of the cracks, it can be demonstrated that these internal cracks are the 

results of hot tearing.
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(a) (b)

(c) (d)
Figure 15. (a) and (c) Internal cracks that were observed in the insulated part after the test 

2; (b) and (d) EDS mapping in the area of (a) and (c) to show the sulfur distribution in
those area.

4. CONCLUSIONS

In the present study, a laboratory method to investigate hot tearing formation in 

the continuous casting process was developed and tested. For the mold design, two water 

cooled copper chills and a centrally located low thermal conductivity insulation sleeve 

were used to control the solidification of the casting. Solidification simulations show that 

the insulated area is the last area to solidify in the mold. The solid shell grows from the 

surface towards the center uniformly in the insulated area, which satisfies the 

experimental requirements to simulate continuous casting shell growth. Two different



tests were carried out in the present work. These tests confirm the capabilities of this 

experimental setup to induce hot tearing under controlled thermo-mechanical conditions. 

Test results indicate that the experimental setup has the ability to monitor the force and 

displacement change during the solidification of the casting and successfully create 

conditions for hot tear formation. A test method to quantitatively evaluate and compare 

the hot tearing susceptibility for different grades of steel has been demonstrated, and 

testing on a variety of alloy systems of interest are still ongoing.
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ABSTRACT

Crack formation in continuous cast steel is significantly influenced by mechanical 

properties of the solid shell near its solidus temperature. Thus, a new investigating 

method to study the high temperature mechanical behavior for solidifying steel shell was 

introduced in the present work. In this method, an apparatus was designed utilizing an 

electric cylinder that is controlled by a servo-motor to apply a specified amount of strain 

to the solidifying steel shell at a controlled strain rate. A special mold configuration was 

developed to control the dendrite growth in the direction perpendicular to the applied 

strain and to ensure that the strain is applied in the region of controlled shell growth. 

Real-time load, displacement and temperature data was monitored by a computer-assisted 

data acquisition system. The temperature profile of the casting was predicted by 

MAGMASOFT 5.3.1 and compared with experimental data. Fourier thermal analysis 

method was applied to calculate solid fraction and coupled with temperature profile to

mailto:lnmkvf@mst.edu
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determine the solid shell thickness/area during the test. The fracture strength at different 

temperature for a medium carbon steel was determined and compared with that from the 

other test methods, such as submerged split-chill tensile test and hot tensile test. 

Keywords: Experimental apparatus, Solidification crack, Thermal analysis, Temperature 

profile, Fracture strength

1. INTRODUCTION

In recent years, as a common solidification defect, the hot tearing has been 

recognized as a major concern that plagues the development of the continuous casting 

(CC) process. Hot tearing usually appears as a crack in the casting. These cracks have 

been observed on both surface and inside of the slabs, as shown by the practical data 

summarized by Brimacombe et al. [1]. The surface cracks were claimed to form at the 

solidification front at an early stage of solidification and propagates to the surface of the 

solidifying shell at the lower part of the CC mold or just below the mold [2]. The internal 

cracks were found to occur in the later stages of solidification when the volume fraction 

solid is above 85 to 95 percent [3] [4]. The prevention of hot tearing formation during the 

CC process requires both the well-established understanding of high temperature 

mechanical properties of the cast material and the analysis of the strand deformation 

during the casting process.

The thermal mechanical properties of the solidifying steel shell are very critical 

for the formation of hot tearings, especially for the internal cracks. Industrial and 

laboratory studies show that most of internal cracks initiate near the equilibrium solidus
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temperature and usually appear as interdendritic cracks [5] [6]. During the solidification, 

the alloy and impurity elements are continuously rejected into the remaining liquid, 

which makes the melting point of the residual liquid is lower than the equilibrium solidus 

temperature of the bulk material. The residual low melting point liquid then gathers in the 

interdendritic region and results in reduced ductility of the material. In CC process, the 

solidifying steel shell experiences both mechanical and thermal stress loads resulting 

from the contraction and phase transformation, non-uniform cooling rate from surface to 

center, friction between the mold and strand, bending and straightening, soft reduction 

and so on. Under the combined effect of the existence of the low melting liquid and the 

strain, the interdendritic crack occurs.

The mechanical properties of solidifying steel shell can be characterized by zero 

strength temperature (ZST) and zero ductility temperature (ZDT), which have been 

investigated by many other researchers [7] [8] [9]. Many studies show that the ZST and 

ZDT were related to a solid fraction of 0.6~0.8 and 0.98~1, respectively [3] [9] [10] [11] 

[12]. The temperature range between ZST and ZDT is the so-called brittle temperature 

range (BTR). It was reported that there is a critical stress [13] [14] or strain [15] [16] 

within the BTR, above which the hot tearing happens. The critical stress was estimated as 

the critical fracture stress [6] or yield stress [17] [18] at that temperature. Thus, the 

determination of the fracture strength or yield stress of solidifying steel shell is 

significant for understanding the crack sensitivity of steels.

The conventional hot tensile (CHT) test after re-melting the specimen has been 

widely used to determine the ZST, ZDT as well as the mechanical properties of the 

solidifying steel [3] [19] [20] [21]. In this method, the center part of a cylindrical sample,



which usually had a diameter of around 10mm and a length of around 100mm, was 

heated by an induction coil or joule resistant heater. The center part of the specimen was 

heated, melted and solidified sequentially under controlled thermal cycle. The tensile 

tests were performed in the temperature range of liquids temperature and below solidus 

temperature at certain steps. After the experimental tests, post-mortem analysis was 

performed to determine the critical temperature points, strength and ductility under 

different temperatures. However, since the temperature profile in the testing area in this 

method was nearly uniform during the test and there was temperature gradient along the 

longitudinal direction, the dendrite growth direction was parallel to the tensile direction. 

To compare with the solidification conditions in CC process, the submerged split-chill 

tensile (SSCT) test, which was initially developed by Ackerman et al. [22], was applied 

by Hiebler et al. [23] and the other researchers [24] [25] [26] to study the mechanical 

behavior of the solidifying steel shell. The SSCT test consists in a water-cooled cooper or 

steel test body, which can be split into two halves, was submerged into the liquid steel 

contained in an induction furnace. After a shell of sufficient thickness has formed around 

the test body, the lower part was moved downwards at a controlled velocity. The force 

and displacement were recorded during the test. The cooling conditions and dendrite 

growth direction in this method were comparable with that in early stage of CC process. 

Thus, this method was widely used in study the tensile strength and other mechanical 

properties of the initially formed shell (usually less than 10mm in shell thickness) under 

CC conditions.

Since the dendrite growth direction cannot be well-controlled in CHT test and 

SSCT test has been mainly used to study the early stage of solidification in the CC
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process, in the present study, a new method has been developed to study the mechanical 

properties of solidifying steel shell under controlled solidification condition. For this 

purpose, the in-situ high temperature tensile tests have been conducted using the 

proposed apparatus. The thermal analysis was performed to analyze the solid shell 

thickness/area and to choose the representative temperature during the test. The measured 

fracture strength was determined and compared with the results from CHT test and SSCT 

test.

2. EXPERIMENTAL PROCEDURE

2.1. CONTROLLED DEFORMATION TEST (CDT)

2.1.1. Experimental Apparatus. The Controlled Deformation Test (CDT) has 

been initially developed by the Lu et al. and is presented in detail in Reference [27]. The 

schematic of the CDT apparatus is shown in Figure 1. This test was designed to apply a 

certain amount of strain to the solidifying or solidified solid shell at a controlled strain 

rate and measure the resultant displacement and force as a function of time. A resin 

bonded, no-bake silica sand mold was designed to provide directional solidification and a 

uniform shell growth in the cylindrical, tensile-bar shaped casting. The dimension of the 

casting is shown in Figure 2. A low thermal conductivity insulation sleeve was imbedded 

into the no-bake sand mold to delay solidification in the testing area. Two water cooled 

copper chills were used in the mold to freeze the ends of the bar casting in order to allow 

transfer of the computer controlled linear displacement to the partially solidified shell in 

the insulation sleeve area of casting. An electric cylinder, which was powered by a servo



motor and controlled by an electric drive, was used to apply the controlled strain to the 

casting. A 20KN compression & tension load cell and a 25mm linear variable differential 

transformer (LVDT) were used to control and monitor force and displacement during the 

test. A threaded steel rod, with two clamping nuts on the end, penetrates the copper chills 

and protrudes on both sides into the casting cavity. At the left side, the threaded rod was 

fixed to the platform, and at the right side, the threaded rod was connected to the load cell 

(and electric cylinder) by a flange coupling. The design of the threaded rod and clamping 

nuts ensures the mechanical lock between the casting and the electric cylinder during the 

test. LabView software coupled with MotionView software were used to control the 

movement of the servomotor. The rotational movement of servomotor was translated to 

reciprocate linear movement of electric cylinder. Additionally, LabView data acquisition 

input modules were connected to the load cell, LVDT and thermocouples to collect and 

record the force, displacement and temperature data as a function of time.

80

Figure 1. Schematic of the CDT apparatus (front view): (1) sand mold and casting, 
including insulation sleeve and water-cooled copper chills; (2) steel nuts; (3) flanging 
connectors; (4) load cell; (5) steel connector; (6) electric cylinder; (7) servo motor; (8)

platform.
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(a)

Figure 2. (a) Schematic of the mold and casting design (front view) and (b) the last 
solidified cross section in insulation area with the positions of the simulated

thermocouples.

In the present work, the CDT apparatus was further developed by simultaneously 

monitoring the temperature history at the different positions in the last solidified cross 

casting section. The obtained cooling curves were compared to the temperature profile 

predicted by MAGMASOFT (Version 5.3) simulation and a thickness of solid shell 

during solidification time were determined. Preliminary simulations were done to find 

desired thermocouple position in the casting. In actual experiments, two S-type 

thermocouples were embedded into the sand mold cavity at the locations found from 

simulation (refer to fig 2 (b)). One thermocouple was in the center of the casting and 

another one was in around 10mm thickness position from the surface. To protect the 

thermocouple wires, the bare wires with a diameter of 0.2mm were installed in a double 

holes ceramic tube, which has an outer diameter of 2.4mm. Then the weld tip of the 

thermocouple was covered by a thin layer of zircon-colloidal silica slurry used for 

investment casting ceramic mold, which was mixed in 3 to 1 ratio of 200 mesh zircon 

powder and liquid colloidal silica. To avoid the influence of the thermocouple on the



crack formation of the casting during deformation, two preliminary repeated tests were 

performed just to measure the temperature history during solidification without 

mechanical load. During experiment, temperature sampling rate was 2 readings per 

second. The actual tests were performed with the same mold configuration and the melt 

superheat which were used in preliminary trials but without embedded thermocouples.

2.1.2. Experimental Tests. Three different tests were performed to check the 

capabilities of the test apparatus and estimate the fracture strength of the solid shell under 

different temperature in this work. The composition of the steels used in these tests is 

shown in Table 1. High purity induction iron, ferrosilicon, electrolytic manganese and 

cast iron were melted in a coreless 100 lbs. capacity induction furnace under argon cover 

with a flow rate of 45 SCFH. The cast iron served as a source of carbon. When a small 

liquid pool was observed in the furnace, the pyrite powder was added as a source of 

sulfur. The molten metal was tapped at 1650°C into a teapot ladle and killed in-stream by 

0.05 wt.% high purity aluminum shots. The melt was poured into the sand mold installed 

in the apparatus frame at around 1550°C with 4~5 s mold pouring time At that moment, 

the force and displacement changes were monitored and solidification contraction was 

compensated by slowly moving the electric cylinder to maintain zero force reading on the 

load cell before the start of the deformation test, to avoid any premature deformation in 

the casting. After elapsing a certain amount of solidification time, the casting was pulled 

by the electric cylinder at the strain rate of 10-3/s or 5*10-3/s. Once the measured load 

started to drop, the applied deformation was stopped. It was done because the drop of the 

load indicated the failure of the casting. After applied force, the casting was released to 

freely cool down.
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Table 1. Compositions of steels used in this study (weight percent).
Fe *C Mn *S (ppm) P Si Al

Bal. 0.19~0.21 0.50~0.60 300~320 <0.02 0.30~0.40 0.04

2.2. THERMAL ANALYSIS

2.2.1. Cooling Curve Analysis. The Fourier thermal analysis method (short for 

Fourier method) was adopted to analyze the cooling curves measured during experiments 

and to estimate the solid fraction. The following analysis was developed based on the 

methodology suggested by Fras et al. [28]. The critical requirement for this method is 

determination of “the zero curve (Z curve)” or “the base line”. The Z curve represents the 

hypothetical first derivative of the cooling curve assuming that the metal doesn’t undergo 

any phase transformation during the solidification process [29]. In another words, the Z 

curve overlap the first derivative of the cooling curve in single phase parts (for T > 

liquidus and T < solidus) of the sample during the cooling process [30]. This method 

considers the effect of thermal gradient in the casting during solidification and assumes 

that heat transfer by heat conduction is dominant in the metal-mold systems. Considering 

a cylindrical mold with a heat source, the Fourier Eq. can be written as:

dT = aV2T+  _ L ^dt cy dt

where: Cv is the volumetric specific heat, Q is the latent heat of solidification, a is the 

thermal diffusivity.

Eq. 1 can be rearranged as Eq. 2.

(1)

^  = cv ( j ^ -  zf) with zF = aV2T (2)

where: zF is the Fourier Z curve.
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To determine the Z curve, considering a cylindrical casting, the laplacian V2T can 

be calculated as:

72T = 737 0 ' S (3)

Considering the cylindrical casting, which has a symmetric temperature filed with 

respect to the horizontal axis of the used in experiment cylindrical casting, a minimum 

data of two temperature points is necessary to determine the V2. When temperatures Ti 

and T2 in two points, at radii Ri and R2 respectively in the test casting are known, then 

V2T in Eq. 3 yields:

V2T = 4(J? ?
r2-r2 (4)

Determination of the Z curve is also influenced by a. Because before and after 

solidification, Z curve overlaps the first derivative of the cooling curve, then the thermal 

diffusivity a can be determined by:

dT/dta v2t (5)

During the solidification range, since the thermo-physical properties of solid and 

liquid can be variable, it can be assumed that the change in thermal diffusivity in mushy 

zone between liquid and fully solid conditions is proportional to the fraction of solid 

phase. The same assumption can be applied to the specific heat capacity (Cv) as well. To 

determine the a and Cv value, solid fraction was estimated by a first order approximation:

t- tb
fs = te (6)

where: f  is the solid fraction, tb and te is the time of beginning and end of solidification 

determined from the first derivative of the cooling curve.

Hence, the a and Cv value can be determined by:
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a(t) = ab( l  -  fs(t) ) + aefs (t) (7)

Cv = Cvi( 1 — fs(t) ) + Cvsfs(t) (8)

where, ab and ae are the beginning and final values of thermal diffusivity, respectively, 

determined by Eq. 5 with experimental data, and Cvi and Cvs are the specific heat 

capacities of liquid and solid.

Then the latent heat and solid fraction can be calculated as [28] [31]:

L = t b Cv -  z?) (V d t (9)

fs(t ) = Cr -  zF) (t) d t  ( 10)

In the present work, after each trial experiment, the solidified casting were 

sectioned at the location of the thermocouples and their position in the casting was 

measured accurately. The cooling curves obtained in trial experiments were analyzed by 

the Fourier method. To achieve that, a computer program was developed to process data 

and calculate the latent heat as well as the relationship between the temperature and solid 

fraction.

2.2.2. Temperature Profile Simulation. MAGMASOFT (Version 5.3.1) was 

used to run solidification simulation and to determine the temperature profile at a mesh 

size of 1mm within the casting. The calculated latent heat and solid fraction by Fourier 

method were compared with the material properties in MAGMASOFT to validate the 

database. On the last solidified cross section, 25 thermocouple points were set at a step 

size of 1mm in radial direction. The measured cooling curves were compared with the 

simulated cooling curve at same positions. Consequently, the temperature profile



calculated with MAGMASOFT is taken to analyze the solid shell thickness and 

determine the average temperature of solid shell during tests.

3. RESULTS

3.1. SOLIDIFICATION PATTERN OF THE CASTING IN INSULATING AREA

Figure 3 (a) shows a casting obtained in the trial test. The position of the insulated 

area was highlighted by the red box. The insulated area of the casting was then sectioned 

from the top to the bottom along the longitudinal direction. The surface was ground and 

etched by hot HCl-water solution for 20 minutes to reveal the macro structures, as shown 

in Figure 3 (b). It can be seen that the columnar structures were formed in the upper side 

of the insulation area and more equiaxed structures were formed in the lower side. This 

difference could be caused by the settling of formed solid in the upper part due to the 

gravity. Similar structures were also observed in another work done by Fujii et al. [32]. 

The vertical dendritic structures ensure that the applied strain will be in perpendicular to 

the direction of the dendrite growth.
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(a) (b)

Figure 3. (a) Geometry of the casting with thermocouple tube and (b) the macro structure
of the insulated area.
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3.2. THERMAL ANALYSIS

Figure 4 shows a cooling curve recorded from the center thermocouple during the 

solidification, experimental cooling rate, and calculated Fourier Z curve. In this 

experiment, the actual positions of the thermocouples were measured in the sectioned 

casting for central as R=0 and for wall as R=15.5mm. The start and end solidification 

time were estimated from the first derivative as t = 8.5 s and t = 359.5s, respectively, 

using method suggested in the reference [33]. The difference between the first derivative 

of the cooling curve and the Z curve at any given time represents the generated heat of 

the solidification reactions at that point. Therefore, the latent heat of solidification can be 

calculated by Eq. 9 by integrating the area between first derivative and Z curve, which 

was equals 251249 J/Kg. The latent heat of same steel grade in MAGMASOFT is 256000 

J/Kg, which is in reasonable agreement with the calculated latent heat by the Fourier 

method.

Figure 4. Cooling curve recorded during the test (Tc), its first derivative (T’c) and the
calculated Fourier Z curve.



The calculated solid fraction using Eq. 10 vs time is shown in Figure 5. This 

calculated result was compared with the solid fraction in MAGMASOFT database used 

in solidification simulation. It is observed that, in general, the solid fraction by Fourier 

method shows a reasonable match with that in MAGMASOFT database. Only a slight 

difference happened in the late stage of solidification. That might be caused by the 

change of the local composition due to the segregation. Therefore, it is believed that the 

solid fraction followed from Fourier method analysis of the experimental cooling curve is 

reasonable valid and was used to determine the solid shell in the casting during 

experimental trials.
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Figure 5. Comparison of the solid fraction calculated with Fourier method and that in
MAGMASOFT.

The comparison of the measured temperature in experiments and simulated 

temperature by MAGMASOFT is shown in Figure 6. The simulated temperatures were in



reasonable agreement with the measured temperatures. Thus, the material properties in 

MAGMASOFT were valid for the steel studied in the present work and the 

MAGMASOFT can be used to predict the temperature profile during the tests.
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Figure 6. Comparison of the measured temperature in experiment and calculated 
temperature with MAGMASOFT at two locations: center and 10mm position away from 

the surface on the last solidified cross section.

3.3. CDT RESULTS

Three formal tests were performed with variation in solidification time and strain 

rate. Solidification time for Test 1 and Test 2 were 300s and 390s, respectively. These 

two tests had a same strain rate of 10-3/s. Test 3 had a longer solidification time of 420s 

with a higher strain rate of 5*10-3/s. The measured force and displacement are shown in 

Figure 6.
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Figure 7. Force and displacement change during experimental tests.

Figure 7 shows the part of casting solidified inside of the insulation sleeve in Test 

1 ~ Test 3, respectively. Fracture was observed in the castings after all three tests. From 

Figure 7 (a) we should noticed that there was a gas bubble on the top of the casting and 

the fracture was cross the air bubble. The gas bubble may have influence on the crack 

formation during the deformation test. In order to release the trapped air and improve the 

surface quality of the casting, a small gas vent was added on the top of insulation part in 

Test 2 and Test 3. Therefore, the air bubble and surface quality problem were eliminated 

in Test 2 and Test 3. It was also noticed that the fracture in these two tests happened in 

the same location in the casting but differed with that in Test 1 due to the existence of the

vent.
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(a) (b)

(c)
Figure 8. Insulation part of the casting after (a) Test 1, (b) Test 2 and (c) Test 3.

4. DISCUSSION

4.1. TEMPERATURE PROFILE AND SOLID SHELL

The temperature profile of the casting was imported from MAGMASOFT after 

the solidification simulation, which was taken to analyze the solid shell thickness/area 

and determine the temperature of solid shell during tests. In the present work, the solid 

shell was defined as the region where the temperature was below ZST. For carbon steel, 

the ZST was reported corresponding to a solid fraction of 0.75 [10] [19] [9], which is also 

used in this work. Based on the thermal analysis in the previous section, the ZST was 

determined as 1480°C. Compare the start time (300s, 390s and 420s, respectively) to 

apply strain in three tests and the cooling curve in Figure 6, it was found that in Test 1, 

the temperature measured in 10mm position was close to the ZST and the center



temperature was above the ZST. While in Test 2 ~ Test 3, the center temperature was 

below the ZST and the temperature difference in two position was lower than 7°C. 

Therefore, in Test 1, around 10mm thick solid shell formed. In Test 2 and Test 3, the 

whole cross section was in solid state.

4.2. FRACTURE STRENGTH

It is difficult to determine the fracture strength for specific temperature when 

temperature gradient has taken place in the casting during test. Thus, a “representative 

temperature” to represent the fracture strength of the shell should be chosen. Yu et al.

[34] carried out a hot tensile test with temperature gradient (TG tensile test) in the testing 

area to study the high temperature mechanical properties of the solidifying steel shell. In 

this method, one side of the specimen was heated to ZST and the other side was cooled 

and kept to a temperature that was similar to the interface temperature between the mold 

and casting in continuous casting process. The tensile force was applied perpendicular to 

the temperature gradient. The fracture strength measured by this method was compared 

with that measured using the conventional hot tensile test in uniform temperature profile. 

It was found that when the average temperature in testing area, (ZST + temperature in 

cold side)/2, in TG tensile test is equal to the temperature in conventional hot tensile test, 

the measured fracture strengths by these two methods were close. Therefore, the average 

temperature in solid shell was chosen as the “representative temperature”. Similarly, the 

average temperature of solid shell was also used as the “representative temperature” 

when analyzing the fracture strength in SSCT test [35] [36]. In the present study, the test 

duration for Test 1 ~ Test 3 were 2s, 20s and 3.7s, respectively. Considering the

92
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temperature change during each test, the mean of the “representative temperature” within 

testing time was elected to calculate the fracture strength. In addition, based on the 

temperature profile changing during the test, the increment of solid shell thickness in Test 

1 can be ignored due to the short testing time. A summary of the experimental conditions 

and calculated fracture strengths of three tests is shown in Table 2.

Table 2. Test conditions and calculated fracture strength for different tests.

No. Strain
Rate

Solidification 
Time before 
the Test (s)

Testing
Duration

(s)

Max.
Tr

(°C)

Min.
Tr

(°C)

Mean
Tr

(°C)

Fracture
Strength
(MPa)

Test
1

10"3/s 300 2 1475 1474 1474.5 0.47

Test
2

10"3/s 390 20 1395 1364 1379.5 3.87

Test
3

5*10-
3/s 420 3.7 1349 1344 1346.5 4.50

(*Max. TR and Min. TR: maximum and minimum "representative temperature" within testing time)

4.3. COMPARISON OF FRACTURE STRENGTH DETERMINED BY 
DIFFERENT EXPERIMENTAL METHODS

The fracture strength tested by the controlled deformation test (CDT) in the 

present study is plotted against the mean “representative temperature” and compared with 

that measured with other testing methods (Figure 9). The submerged split-chill tensile 

(SSCT) test performed by Suzuki et al. [24] had a strain rate of 1/s. The strain rate was 

1* 10-2/s for the conventional hot tensile (CHT) test conducted by Shin et al. [8]. The 

fracture strength by the CDT increases with decreasing representative temperature, and is 

in reasonable agreement with that by SSCT test, irrespective of the strain rate. On the 

other hand, the fracture strength increases steeply with decreasing temperature in CHT
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test. The main contributing factor to this discrepancy was the dendrite growth direction in 

testing area. In both CDT and SSCT test, the dendrite was perpendicular to the applied 

strain, while in CHT test, radial dendrite growth is hard to control due to the uniform 

temperature distribution in testing area. Since the cooling rate and solidification pattern 

within the insulation sleeve in CDT can be controlled by the material type and thickness 

of the sleeve, the proposed CDT can be used to study the mechanical behavior of the 

solidifying steel shell in the later stages of solidification in continuous casting (CC) 

process. Thus, the CDT coupled with the SSCT test will be a valuable tool to study the 

thermo-mechanical behavior in the different stages of solidification in CC process.

Figure 9. Comparison of fracture strength tested by CDT, SSCT test and CHT test at 
different representative temperature. Error bar in CDT shows the representative 

temperature change during each test.
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Attempts have been made to develop a new method to determine the high 

temperature mechanical properties of steel during solidification with the following 

results:

1) Testing apparatus has been developed for applying controlled strain to the 

solidifying steel shell with controlled dendrite growth. Real-time load, displacement and 

temperature can be monitored during the test.

2) The cooling curves measured in this work was in reasonable agreement 

with the simulated cooling curves by MAGMASOFT. The calculated latent heat and 

solid fraction from the measured cooling curve have also matched well with that obtained 

from MAGMASOFT.

3) The fracture strength measured with CDT was in the same order of 

magnitude with that tested with SSCT tests, although it was lower and increase less with 

decreasing temperature than the fracture strength determined by the CHT test. It was 

possibly due to the different dendrite growth directions during the test: in CDT and SSCT 

test, the dendrite was perpendicular to the applied strain, while in CHT test, the dendrite 

was randomly distributed or parallel to the tensile direction.
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SECTION

2. CONCLUSIONS AND RECOMMENDATIONS

2.1. CONCLUSIONS

The purpose of this study has been to provide an understanding of the conditions 

and mechanisms that cause the hot tearing as well as to develop a quantitative method for 

measuring the hot tearing formation in continuous casting process. Therefore, the current 

investigation of hot tearing has been summarized and a new experimental method, the 

controlled deformation test, was developed and tested.

Most of the hot tears have been found to initiate at the late stage of solidification 

and appear as interdendritic cracks [14] [23], which usually involves in the existence of 

the interdendritc liquid film as well as strain and/or stress. To predict the hot tearing 

formation, both non-mechanical criteria and mechanical criteria have been developed 

considering the different influence factors under different casting conditions (Paper I). 

Previous studies show that these alloying elements, like carbon [15] [24] [25], sulfur [26] 

[25] [27], phosphorus [26] [28] [29] and so on, influence the hot tearing susceptibility of 

steels mainly by changing the brittle temperature range and the total strain during 

solidification. It has also been found that the dendrite solidification structure is more 

vulnerable to crack compared with the equiaxed structure because the interdendritc 

region can work as a path for the propagation of the crack under tensile strain [30]. 

However, the synergistic effects of different alloy additions, segregation effects, heating 

and cooling, solidification structure to hot tear formation during casting are currently not
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well known. In addition, although various experimental methods have been developed to 

evaluate the hot tearing sensitivity of different steels, in order to obtain comparable hot 

tearing susceptibility, a standardized hot tearing testing approach and evaluation system 

still needs to be established.

The controlled deformation test was then developed to provide a new tool to study 

the thermo-mechanical properties of solidifying steel and to assess the hot tearing 

sensitivity for different steel grades. Experimental results show that the applied strain and 

strain rate could be well controlled by this apparatus. Real-time load, displacement and 

temperature were monitored and stable data was obtained during the test. The dendrites 

grow from surface towards the center of the casting in the part within the insulation 

sleeve, which make sure the direction of the dendrite growth was perpendicular to the 

applied strain in the testing area. The measured cooling curves in experiments were in 

reasonable agreement with that calculated by the filling and solidification software 

package. Thus, this software was believed to be reasonable valid to predict the 

temperature profile of casting during test.

The fracture strength at different temperatures of a medium carbon steel was 

determined with the controlled deformation test (CDT). Results show that the fracture 

strength measured by the controlled deformation test was in the same order of magnitude 

with that tested with the submerged-split chill tensile (SSCT) test, while it was lower and 

increase less with decreasing temperature than the fracture strength determined by the 

conventional hot tensile (CHT) test (Paper III). It was believed that the dendrite growth 

direction causes this difference: in CDT and SSCT test, the dendrite was perpendicular to
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the applied strain, while in CHT test, the dendrite was randomly distributed or parallel to 

the tensile direction.

2.2. RECOMMENDATIONS

In current study, the controlled deformation test (CDT) was developed to study 

the thermo-mechanical properties of the solidifying steel shell and to evaluate the hot 

tearing sensitivity for different steel grades under continuous casting (CC) condition. 

Compared with the widely used submerged-split chill tensile (SSCT) test [31] [32] [33], 

which was mainly used to study the tensile strength and other mechanical properties of 

the initially formed shell (usually less than 10mm in shell thickness) under CC condition, 

the current CDT has lower cooling rate in the testing area. Therefore, it is more suitable 

for the study of the mechanical behavior of the steel shell at later stage of solidification in 

CC process. Since the cooling rate and temperature gradient in the testing area are mainly 

controlled by the mold material and sleeve, this method can be potentially designed to 

mimic the different solidification conditions during different casting processes. Figure 2.1 

provides an example to show the influence of the thickness of the insulation sleeve on the 

solidification structure within testing area. It was shown that more dendritic structures 

were formed with a thinner insulation sleeve. In addition, the solid shell thickness during 

the test was significantly determined by the elapsed solidification time before the applied 

strain. Thus, experiments can be designed and performed to study the mechanical 

properties of the casting at different solidification stages.
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(a)

(b)

Figure 2.1. Solidification structure of the insulated area with (a) 10mm thick insulation 
sleeve, (b) 4mm thick insulation sleeve. Samples were etched with HCl-water solution at 

the temperature range of 65~70°C for 25 minutes.

Fracture strength of solidifying steel shell at different temperature was measured 

and discussed in Paper III. However, to determine the critical strain/stress for the hot 

tearing formation, it is important to capture the point where the hot tearing was just 

initiated. Current load curves show that the casting underwent the elastic deformation 

first during the test, then it was plastic deformation. The transformation from elastic 

deformation to plastic deformation might be an indicator for the hot tearing initiation. 

Therefore, in order to decide the critical strain/stress, different experiments should be 

conducted to stop the deformation before and after the load deviation occurs.
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The stress can be directly calculated based on the solid shell area and measured 

force during the test. While the local strain happened within the “gauge length” is hard to 

determine since the total strain is applied to the whole casting as well as the parts in the 

setup. In addition, the solidification process proceeds during the test and the solid shell 

changes all the time, which makes it much more difficult to determine the real strain 

during the test. A possible solution to help analyzing the real strain is to develop a 

numerical model that can simulate the thermo-mechanical process during the test, which 

requires the accurate temperature profile prediction, material properties, and proper 

models that can be used to describe the thermal mechanical behaviors for both semi-solid 

and solid material.
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