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ABSTRACT

Non-metallic inclusions are mainly comprised of oxides, sulfides, and nitrides, and 

are formed in liquid steel during the melting and refining process, as a result of reoxidation, 

worn-out refractories, or entrained slag. The notch toughness of high strength steels is 

particularly susceptible to the type, number, size, and distribution of non-metallic 

inclusions. High manganese and aluminum austenitic steels, or Fe-Mn-Al steels, have 

gained much interest in the military and automotive sector because of their excellent 

combinations of high strength and toughness. However, these steels are subject to both 

oxide bifilms and aluminum nitride, AlN, inclusions which form during melting and 

casting. During the casting process, the gating system plays an important role in 

determining the casting quality and the overall level of inclusions and bifilm defects. Two 

solutions to control inclusions during mold filling include molten metal filtration and 

design of novel “naturally pressurized” gating systems that control metal flow into the 

casting cavity and reduce air entrainment. However, the use of filters and these naturally 

pressurized gating systems add an additional cost and generally reduce casting yield. In 

the current study, the effects of filtration and gating design on reduction of bifilms and 

inclusions in Fe-Mn-Al steel were determined using two novel mold designs. A parallel 

gating study involving an aluminum deoxidized, cast composition of SAE 8630 was also 

performed. The results of this study showed that ceramic foam filters were more effective 

at removing solid oxide bifilms and aluminum nitride inclusions from Fe-Mn-Al steel 

castings than the naturally pressurized gating systems. Future studies should be directed 

at developing naturally pressurized gating systems with filters.
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1. INTRODUCTION

1.1. PROJECT PURPOSE AND OVERVIEW

The control of inclusions in the steelmaking and casting process has become 

increasingly important because of the demand for high-quality castings and increased 

mechanical property requirements. Non-metallic inclusions are mainly oxides, nitrides or 

sulfides and are generally undesirable for surface quality, machinability, and mechanical 

properties, especially fatigue and toughness.[1-2] Most of the applications of steel castings 

for industries such as rail, mining, construction, power generation, and military 

applications require high strength with high toughness and good ductility (typically greater 

than 10% elongation). For high strength steels of similar strength and microstructure, 

ductility and especially fracture and notch toughness are a strong function of steel 

cleanliness. The fracture toughness of high strength steels with good ductility is controlled 

by the size of the plastic zone ahead of the propagating crack as well as the number, type, 

morphology and distribution of inclusions within the plastic zone that can fracture or de­

bond from the matrix.[3] Recent research has shown as much as a 65% reduction in the 

dynamic fracture toughness of quenched and tempered Cr-Mo-Ni cast steels when the 

inclusion density was doubled from 115 to 247 #/mm2.[4]

Inclusions can form endogenously as a result of the deoxidation practice as well as 

during subsequent refining operations. Exogenous inclusions are generally formed external 

to the refining process and are more detrimental to mechanical properties because they are 

typically much larger than endogenous inclusions. Exogenous inclusions can result from 

slag entrainment, worn refractories, mold erosion, and reoxidation of the melt during
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pouring and mold filling operations. Recent work has shown that up to 80% of the 

inclusions found in steel castings may be the result of reoxidation products that are often 

created during pouring and mold filling.[5] Other filling related reoxidation defects such as 

solid oxide bifilms and entrained gas defects are particularly detrimental to toughness and 

ductility and can cost the foundry in weld repair and casting rejects. Inclusions can be 

discrete or clustered, however, oxide bifilms are solid oxide films that become folded into 

the melt during pouring and mold filling. During mold filling, bifilms can result from air 

entrainment and abrupt changes in molten metal flow rate and direction that result in 

hydraulic jumps and eddy current formation when the liquid is in the turbulent regime.[6] 

For surface reactive metals such as aluminum alloys, ductile irons, and aluminum added 

steels, these conditions result in entrained surface oxide films that are primarily composed 

of alumina, spinel, or complex magnesium oxides.[7,8] These oxides films typically have a 

thickness of less than a micron, however, they are extensive in area, and can be up to tens 

of millimeters in length, essentially producing a crack-like flaw and a significant reduction 

in mechanical properties.[7] Bifilms can also absorb dissolved gases and act as nucleation 

sites for both gas and shrinkage microporosity.[8]

Unfortunately, prediction of the actual metal damage due to reoxidation inclusions 

and bifilm defects created by the filling process is largely based on theory. Most foundries 

in the United States are still using the rule-of-thumb gating practices for steel castings that 

were developed by the American Foundry Society in the 1960’s; and these rules do not 

consider the effect of turbulent fill on metal damage.[9,10] Work by Campbell has shown 

that surface turbulence plays a critical role in the entrainment of oxide bifilms in aluminum 

alloys and that for smooth flow, the velocity of any metal should not exceed a critical
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velocity of 0.5 m/s.[9] In reality however, practical industrial gating design is often a 

compromise between metal quality and yield. Recent advances in gating systems with 

counter gravity filling in aluminum alloys have shown a reduction in the overall level of 

defects, however the beneficial use of these systems at reducing the level of inclusions and 

bifilm defects has not been proven out. In addition, these gating systems often add 

additional mass to the system and can reduce the already poor yield of steel castings when 

compared with aluminum alloys. Molten metal filtration using various types of ceramic 

filters in the gating system is another solution remove inclusions. However, the efficiency 

of inclusion filtration varies with the type of filter and has been shown to be a function of 

physical and chemical characteristics of the inclusion [11]. In addition, many foundries are 

hesitant to add filters as they create additional expense. Modern use of computational fluid 

mechanics and heat transfer simulation packages that model filling and solidification have 

greatly enhanced the ability to spot potential areas of excessive metal velocity and air 

entrainment. Commercially available simulation packages can model the change in metal 

flow due to the incorporation of filters, however, they cannot predict the filtration 

efficiency of the filter. Additionally, these simulation tools do not incorporate the actual 

formation of oxide defects during different filling conditions and they cannot predict the 

effect of filling related defects on porosity or mechanical properties. In addition, the 

computational models do not take into account the thermodynamics or morphology of 

inclusion and bifilm formation that will be different based on the chemistry and deoxidation 

practice of the steel. Because of this, serious consequences can occur when attempting to 

interpret simulation results. This highlights the need for studies that link filling and
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solidification modeling to actual measured defect levels as a function of gating practice 

and the associated effect on mechanical properties.

High manganese and aluminum steels, or Fe-Mn-Al steels, are particularly sensitive 

to reoxidation and solid oxide film formation during melt transfer operations and mold 

filling. These steels typically contain between 3-12 wt.% of aluminum, which is balanced 

by additions of 15 to 30 wt.% Mn and 0.7 to 1.2% wt.% C to produce a mainly austenitic 

steel with high combinations of strength and toughness.[12] Depending on the composition, 

the addition of Al produces up to an 18% reduction in density below that of quenched and 

tempered martensitic steels without a sacrifice in mechanical properties.[13] However, the 

elevated levels of aluminum also promote the formation of alumina bifilms during melting 

and pouring of these steels. Figure 1.1 (a) shows an optical micrograph of an oxide bifilm 

defect in a Fe-Mn-Al steel casting caused by turbulent filling of the mold cavity. These 

bifilm defects cause a reduction in Charpy V notch, CVN, impact toughness and an oxide 

bifilm defect are shown covering the fracture surface in Figure 1.1 (b). Oxide bifilms in 

FeMnAl steels can also absorb nitrogen resulting in nucleation of gas porosity as well as 

precipitation of AlN plates during subsequent heat treatment.

Solid AlN inclusions are also stable in FeMnAl steels during steelmaking and their 

hard and angular morphology negatively affects ductility and toughness. As shown in 

Figure 1.1 (c), the CVN breaking energy at -40°C in a nominal Fe-30wt.%Mn-9wt.%Al- 

1wt.%Si-0.9wt.%C-0.5 wt.% Mo composition steel was reduced by almost 50% when the 

AlN particle density increased to 50 inclusions/mm2.[14]
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Figure 1.1. Defects in FeMnAl castings. (a) Optical micrograph of an oxide bifilm defect 
in a Fe-Mn-Al steel casting caused by turbulent filling of the mold cavity. (b) The 

secondary electron micrograph of a fractured Charpy V notch, CVN, test specimen shows 
that low energy fracture was initiated by a large complex aluminum oxide bifilm defect. 

(c) CVN, breaking energy at -40°C in a nominal Fe-30%Mn-9%Al-1%Si-0.9%C- 
0.5%Mo composition steel is a strong function of AlN particle density (14)

The above review highlights three very important conclusion: bifilm and inclusion 

defects caused by pouring and mold filling can greatly decrease the quality and toughness 

of steel castings, computational models cannot currently predict their occurrence, and the 

filling conditions that produce these defects are not well understood or controlled. This 

discussion shows the need for a comprehensive study to quantitatively evaluate the role of 

different filling conditions on steel casting quality and mechanical properties. The goal will 

be to determine a best practices gating system for FeMnAl steel castings in comparison to 

gating systems commonly used for high strength low alloy steel castings. In the current 

study, a combination of computational fluid dynamics and solidification modeling software 

was utilized to design a series of identical laboratory and industrially produced steel test 

castings with different gating systems to produce different filling conditions; (1) a 

horizontal gated pressurized system, (2) a horizontal gated non-pressurized system, and (3) 

two different naturally pressurized systems that employed a terminal vortex spin trap at the 

end of the runner. The efficiency of inclusion removal by filtration utilizing a ceramic
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foam filter was also evaluated. The ability of these gating systems to reduce inclusions and 

bifilm defects in a lightweight FeMnAl steel was quantitatively compared to that of a cast 

composition of SAE 8630 steel utilizing a combination of computational fluid dynamics, 

optical metallography, automated non-metallic inclusion analysis, and evaluation of CVN 

impact toughness. The outcome of this project is intended to significantly increase the 

technical understanding of how filling affects metal quality and mechanical properties in 

steel castings that are prone to reoxidation defects.

1.2. NON-METALLIC INCLUSIONS IN STEEL

Efforts to control non-metallic inclusions in steel have gained prominence over the 

last 50 years because of the increased demand for cleaner steels with higher mechanical 

property performance. A greater understanding of the effect of the type, size and 

morphology of inclusions, casting performance combined with research on their origins 

within the manufacturing process have led to increased casting quality and a reduction in 

costs associated with defect re-work and casting rejections.

1.2.1. Classification of Inclusions. The sources of inclusion formation can be 

briefly described as exogenous or endogenous in nature. The inclusions that are generated 

primarily in the steelmaking process (deoxidation practices) are called endogenous 

inclusions, while inclusions which originate from the external sources like worn-out 

refractories, reoxidation and entrapped slag are called exogenous inclusions. Most 

inclusions can be classified as oxides, sulfides, or nitride-based inclusions. [1]

Endogenous inclusions are formed in liquid steel because of deoxidation practice 

and subsequent refining additions as well as during cooling and solidification. The 

deoxidation practice generally dictates type, number, size, and distribution of endogenous



7

inclusions in steel castings. Deoxidation is the practice of adding small amounts of reactive 

elements to liquid steel that have a high thermodynamic affinity to react with dissolved 

oxygen within the melt. This aids in the removal of excess oxygen from steel by forming 

stable solid or liquid oxide inclusions, thus preventing the formation of blow holes that are 

formed when the oxygen in steel combines with the excess carbon to form carbon 

monoxide. [15] The most common deoxidizers used in steel foundries are aluminum, 

manganese, silicon, and calcium or a combination of these elements. Sometimes complex 

deoxidation practices are also performed in the presence of other metals like titanium and 

zirconium that are used to control nitrogen. This process of addition of deoxidizers to steel 

is called killing the steel, since there is no gas evolution during solidification.

Solid alumina in low alloy aluminum killed steels and liquid manganese silicate 

inclusions in manganese and silicon killed steels are the primary deoxidation products.[2] 

Various alumina morphologies have been reported in steel like dendritic, faceted, 

aggregates, planar and spherical. The morphology of these inclusions and their growth is 

controlled by a variety of factors like holding time, liquid flow conditions and the degree 

of supersaturation with respect to dissolved aluminum and oxygen.[16] The spherical 

alumina inclusions shown in Figure 1.2 (a) are singular and have a sizes that typically range 

from 1pm to 5 pm. Faceted inclusions in Figure 1.2(b) occur as a result of slow growth 

rate in Al-killed steels and are obtained at low degrees of supersaturation. As shown by 

Steinmetz et al., the effect of deoxidant and oxygen concentration on oxide inclusion 

morphology is shown schematically as seen in Figure 1.3. At low deoxidation levels, 

spherical inclusions are formed. As the deoxidizer activity continuously increases, oxides 

become more stable, leading to dendritic growth of inclusions by accelerated growth rates.
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As the activity of O decreases and the activity of deoxidizer increases, the dendritic growth 

become more compact changing to faceted shapes.[19] The formation of clustered alumina 

results from the collision and coalescence of individual inclusions because of high 

convective currents in the melt and a high difference in surface energy with the molten 

steel as seen in Figure 1.2(c).[15,17] Clustered inclusions and sharp and angular inclusions 

are generally more detrimental to toughness than spherical inclusions that are isolated.

(a) (b) (c)

Figure 1.2. Morphologies of alumina inclusions. (a) The alumina inclusions are formed in 
various morphologies like (a) spherical (b) faceted and (c) clusters. The faceted 

inclusions are products of slow growth rates while clusters are formed because of high
convective currents in the melt [18]

Precipitated inclusions are formed during the cooling and solidification stages of 

steelmaking and occur when the concentration of nitrogen/sulfur/oxygen in steels reduces 

and their solubility increases. [2] Sulfide inclusions precipitate during the final stages of 

solidification as the remaining liquid is enriched in sulfur. These sulfides are mainly 

manganese sulfide inclusions. The morphology and distribution of manganese sulfide 

inclusions have a significant effect on final properties of steel. [20, 21] Type I manganese 

sulfide inclusions are globular in shape and distributed randomly. These inclusions are 

formed when the activity of oxygen is high in the melt and are prevalent in Mn and Si
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killed steels. Type II MnS inclusions occur as dendritic or fan like structures on grain 

boundaries and are eutectic in shape and distribution. These inclusions are found in steels 

in which strong deoxidizers like Ti and Al are used. Type II MnS are the most detrimental 

to toughness and elongation. The Type II inclusions occur in colonies and their volume 

fraction increases with the sulfur content of steel and cooling rate.

Figure 1.3. The growth of the different morphologies of oxide inclusions shown as a 
function of the deoxidizer activity (dashed line) and O activity (solid line) [19]

Type III MnS have an irregular shape and are isolated. Both type II and type III 

sulfides are more deleterious to the properties of steel than type I. The different types of 

manganese sulfide inclusions are shown in Figure 1.4. [22]
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Depending on the steel composition and deoxidation conditions, different nitride 

inclusions are also stable in liquid steel. For example, it is well known that TiN is stable 

during steelmaking and casting.

(a) (b) (c)

Figure 1.4. The manganese sulfides appear in various morphologies as shown in (a) 
globular type I sulfide (b) eutectic type II sulfide (c) type III angular faceted sulfide [20]

For that reason, Ti is commonly added before pouring to getter nitrogen and prevent 

embrittlement from AlN precipitation on austenite grain boundaries in the solid state. 

However, in FeMnAl steels, these inclusions are stable in the liquid. AlN inclusions have 

a hexagonal crystal structure and are observed to possess an angular morphology. [23, 24] 

The work done by Gigacher et al. [25] on high Mn-Al alloyed steel, show that AlN inclusions 

along with MnS are formed as primary inclusions in the melt. The influence of oxygen in 

AlN formation is high, since both oxygen and nitrogen compete with aluminum for 

formation of either alumina or AlN, respectively. Manganese is known to increase the 

solubility of nitrogen in steel and this increases the amount of AlN formation in FeMnAl 

steels as shown for a Fe-20Mn-1.3Al steel in work done by Park et al. [26]
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The presence of these hard and angular AlN and AI2O3 inclusions are detrimental 

to the mechanical properties of high strength steels, especially ductility and notch 

toughness. Schulte et al. showed almost a 50% reduction in CVN toughness in a Fe- 

30wt.%Mn-9wt.%Al-1wt.%Si-0.9wt.%C-0.5 wt.% Mo when the number density of AlN 

inclusions increased to more than 50/mm2.[14] Hard alumina and AlN inclusions can also 

cause excessive tool wear during machining. MnS inclusions are more ductile, however, in 

high amounts, these inclusions can also result in poor ductility and toughness in both steel 

castings and hot rolled steels [28].

Exogenous inclusions result from outside of the deoxidation practices and 

subsequent precipitation reactions that happen as the steel solidifies and cools. These 

inclusions are the result of slag entrainment, entrainment of worn refractories, or as a 

consequence of reoxidation. Reoxidation inclusions are exogenous inclusions that are 

products of unintentional reaction of the liquid metal with the air. The work by Beckerman 

[30] on the composition of reoxidation inclusions shows that the composition of the 

inclusions varies as a function of deoxidation practice and oxygen concentration. Air 

entrainment during melt transfer and mold filling leads to reoxidation inclusions which is 

one of the most common sources of endogenous inclusions in steel castings. Reoxidation 

inclusions affect a number of various quality aspects of steel castings such as surface 

quality, machinability, and mechanical properties. High molten metal velocity, splashing, 

as well as improper gating system designs containing sharp corners, abrupt changes in 

direction, and downhill filling conditions all lead to the formation of reoxidation inclusions 

in steel.[31]. Once these inclusions are formed, they travel to the casting cavity and end up 

in the final part. [32]. The work by Griffin and Bates in 1991[5] showed that reoxidation
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inclusions lead to 83% of inclusions in low alloy steel castings and 48% of inclusions in 

stainless steel castings as shown in Figure 1.5.[5] Air entrainment and air entrapment are 

two distinct concepts that are often misunderstood in the metal casting industry. While air 

entrainment is the formation of bubbles which form due to irregularities in the flow of the 

molten metal, air entrapment refers to formation of pockets of air in the molten metal due 

to poor mold design or improper venting.

Figure 1.5. The work by Griffin and Bates showed that 83 % of all inclusions in low alloy 
steel castings are caused as the result of reoxidation [5]

. The work done by AJ. Melendez et al. [33] showed the inclusion volume fraction 

as a function of relative volume of entrained air, as observed in Figure 1.6, during mold 

filling. For air at room temperature it is seen that 3.5 cubic feet of air is entrained per cubic 

foot of steel during mold filling conditions. This leads to the presence of one cubic inch of 

inclusions per cubic foot of steel for a low alloy steel [34]. The exogenous inclusions can
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also act as sites for heterogeneous nucleation for precipitation of new inclusions that form 

from the breakdown of the slag and dross that are formed during steelmaking operations. 

[16,24] Moreover, the glazed slag layer from previous pours can contaminate ladles and result 

in exogenous inclusion formation. The erosion of the refractory lining and walls are 

another major source of exogenous inclusions.[24]

Figure 1.6. For a low carbon alloy steel, the variation in total inclusion volume (Vinc) is 
shown as a function of relative entrained air volume (Va) at room temperature and when 

air is at 1600°C [34]. Vs indicates the total steel volume in the mold

1.2.2. Effect of Inclusions on Casting Quality. The presence of inclusions has a 

negative impact on the mechanical properties of steel castings like fracture toughness, 

tensile strength, and fatigue. The mechanical properties of a particular type of steel are 

affected by various properties of the inclusions like their quantity, type, size, orientation, 

and distribution/24 Though the inclusions can be classified as micro and macro inclusions 

according to their size, the shape of the inclusions also plays an important role. As shown 

in Figure 1.10(a), ductile fracture in steels occurs by the process of nucleation, growth, and 

coalescence of microvoids around inclusions and other second phase precipitants, leading
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to final fracture. If the steel matrix is ductile enough to accommodate the plastic strain, 

this will result in crack tip blunting during fracture as shown in Figure 1.7 (a). In the case 

of brittle fracture, the presence of inclusions in the matrix, act as sites for cleavage crack 

initiation as seen in Figure 1.7(b). [35] For steels with high strength and sufficient ductility, 

such as quenched and tempered martensitic steels and FeMnAl steels, ductile fracture is 

the predominant fracture mode.

Ductile fracture happens by the following steps:

• Nucleation of voids around hard particles in the matrix by cleavage or debonding

• Growth of voids caused by these failures

• Coalescing of voids and their joining with the main crack

This leads to a formation of a fractured surface with a fibrous appearance 

characterized by dimples or cup and cone fracture.[36] For steels of similar microstructures 

and chemistries, the fracture toughness is influenced by various factors that such as the 

type, size, morphology, and distribution of inclusions as well as the solidification structure 

and the segregation of impurities. Deoxidation practice and oxygen content plays a major 

role because it affects the shape, morphology and distribution of inclusions.[16] The 

presence of strong deoxidizers like aluminum promotes type II eutectic sulfides which have 

a dendritic structure and are distributed as chain like formations along grain boundaries. 

These sulfides act as extreme stress raisers and are associated with low ductility in steel.[21] 

The work done by Chao Gu et al.(37), shows the stress distribution in the steel matrix around 

simulated Mg-Al-O, Al-Ca-O-S, TiN and MnS inclusions as shown in Figure 1.8. It is 

observed that the residual stress changes with the shape of the inclusion. Sharp edged
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inclusions acted as severe stress raisers leading to stress concentrations as high as 2GPa at

the inclusion-steel interface.

(a) (b)

Figure 1.7. Inclusions leading to fracture. (a) An inclusion acting as a nucleation site for 
microvoid nucleation leading to ductile fracture (b) an inclusion acting as an initiator of a

cleavage crack leading to brittle fracture [35]

(a) (b)

Figure 1.8. The stress concentration between different inclusions and steel matrix was 
simulated for different inclusion types and morphologies. (a) MgAlO (b) Al-Ca-O-S (c)

TiN (d) MnS [37]
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The nucleation of voids is therefore easier when the inclusion is hard and rigid and 

angular or when the inclusion has low cohesion with the surrounding matrix. It is observed 

that for hard and brittle inclusions, the void formation can be by inclusion fracture in the 

plastic zone ahead of the crack tip or by decohesion at the interface of inclusion/matrix.[38]. 

Bartlett et al. showed that the presence of TiN inclusions in 4130 steels lead to brittle 

fracture causing large void formation from fractured TiN that drastically reduced 

toughness. Heats that were deoxidized with Ca or Al, displayed globular inclusions with 

ductile fracture and higher dynamic fracture toughness. Reducing the inclusion content is 

shown to increase resistance to void nucleation and improve mechanical properties of steel. 

[4] The work by Knott et al., shows that decreasing the volume fraction of sulfide inclusions 

increases the crack opening displacement of steel.[39]. The presence of small inclusions are 

not as significant in crack initiation as very large inclusions are >5pm, although they do 

encourage in crack propagation and low energy fracture when they are closely spaced as 

seen in Figure 1.9.[38]

Figure 1.9. The nucleation of micro voids created by the presence of inclusions aiding in 
crack propagation and subsequent fracture [38]
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Various models have been proposed by researchers to understand the effects of 

volume fraction, spacing, inclusion density and resistance to void nucleation on fracture 

toughness in high strength steels. The work done by Speich and Spitz on the impact of 

sulfide inclusions on Charpy V notch test of 4340 alloys, showed that the measure of 

toughness increased with decreasing volume fraction of manganese sulfide inclusions [40]. 

The model proposed by Rice and Johnson is given in equation 3.

K ic = (2YEL)05 (1)

Here, K ic is the critical stress intensity factor, Y is the yield strength, E is the elastic 

modulus and L is the distance between inclusions. The fracture toughness, evaluated as 

critical stress intensity factor (Kic) directly increases with the distance between the 

inclusions.[41]

Hahn et al. expanding on the above work and the following relationship is given in 

equation 4.

K ic = [2YE (n/6) (1/3) D] F(-1/6) (2)

Here, D is the diameter of inclusions and F is the volume fraction of inclusions. It shows 

an increase in the spacing between inclusions with decreasing volume fraction. [4,42]

1.3. BIFILMS

1.3.1. Formation. Bifilms are formed when highly surface reactive molten 

metal is exposed to oxygen in the air and forms a solid oxide film on the surface which can 

become folded over itself and entrained within the melt. Since the internal layers of these
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oxide films are not bonded together, they often contain a layer of entrapped gas. The 

formation of solid oxide bifilms is depicted in Figure 1.10. [43] Bifilms can be formed as a 

result of turbulent flow, eddy currents, and fragmentation of the molten metal meniscus 

during melt transfer, pouring, and mold filling operations. These films can also absorb 

gasses and serve as heterogeneous sites for gas and micro shrinkage porosity during 

solidification. [6] The presence of bifilms exerts a major influence on the reduction of 

resulting mechanical properties.

Liquid A1Oxide Layer

Entrained
Double Oxide

Film

Figure 1.10. The formation of a bifilm defect generally takes place due to turbulent flow 
of metal. In the image (1) the turbulence in aluminum is observed while the image (2) 

shows the formation of bifilm with two unbonded internal side wetted by all direction in
the outer direction [43]
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Aluminum alloys are known to be especially sensitive to the formation of bifilm 

defects during furnace charging, melt transfer, and pouring operations. These oxide biflms 

are not able to readily float to the surface and be removed as well as discrete oxide particles.

The feature of an unbonded internal surface with a perfectly wetted outer surface is 

a key component of bifilms.[8,44] Surface turbulence is a major reason for bifilm formation 

and this is largely because of gravity pouring and creation of a plunging jet and poorly 

designed gating or rigging systems that encourage turbulent filling and splashing. Each 

time the surface of the liquid metal is broken, new surfaces are exposed to air leading to 

high entrainment of gases. [45] The effect of pouring distance was studied by Pavlak et al. 

on Al-7Si-Mg-Cu alloy. Pouring distance increases the velocity at the base of the 

downsprue and increased amount of gas porosity and oxide film formation. [46]

Bifilms are formed in different shapes and sizes like tangled, network layer, 

globular or strip clustered. They can appear as wrinkles on the casting surface or just 

beneath the surface and are sometimes several millimeters in thickness depending on their 

age. The young bifilms are characterized by their low thickness with only a few nanometers 

and are formed with relatively short oxidation times.[8] Formation of MgO bifilms have 

also been observed in ductile iron castings and can leads to cracking and failures. [7]

Hydrogen porosity nucleation in bifilms has been a major source of concern for 

researchers. It is seen that hydrogen porosity cannot nucleate heterogeneously or 

homogenously without the presence of bifilms. The work by Dispinar et al., shows that 

hydrogen gas entrapped in excess of solubility limit, comes out of solution and expands 

the bifilms into a pore as seen in Figure 1.11. [47]
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Since the bifilms are formed in all size and shapes, these defects constitute some of 

the most detrimental defects in castings. The work done by Griffith and Sayed, on gassed 

and degassed Al-7Si-0.3Mg alloys shows that, the size of the oxide films was directly 

related to the amount of H found in the castings. When H content was 0.18cm3/100g Al, 

they found films of area 4mm2 while for 0.08cm3/100g Al the bifilm are area reduced to 

1.8mm2.[48]

air <1JP
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Figure 1.11. Hydrogen induced porosity formation. (a) The bifilm observed with an air 
gap in the matrix (b) the formation of an dense and an thin layer of bifilm that is formed 

because of pore expansion due to hydrogen diffusion or pressure change (c) The new 
enlarged area of the bifilm preventing its return to normal size [47]

1.3.2. Effect on Mechanical Properties. The presence of bifilms has a negative 

impact on the mechanical strength of the castings. For example, it was found that the bifilm 

index had an impact on the ultimate tensile strength and the elongation in A356 alloys as 

shown in the Figure 1.12.[47] The Weibull analysis performed on Al-7Si-0.3Mg castings 

showed that decreasing hydrogen content in bifilms caused a 400% increase in Weibull 

modulus and a 200% increase in elongation.[8] The work done by Liu and Samuel of A356
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castings, established a linear relationship between the percentage elongation and log area 

percentage inclusions/oxide films.[49] The work done by Hsu et al., on ductile iron (ASTM 

60-42-10) castings using different gating systems shows a clear impact of turbulence and 

bifilms on mechanical properties of castings. They used a top gating and a bottom gating 

system with a ceramic filter, and the Weibull modulus of 3.4 in the top gated system with 

a horizontal casting and 12 in the bottom gated system with a vertical casting as seen in 

Figure 1.13. This is attributed to the random distribution of bifilms in the top gated 

systems.[7]

(b)

Figure 1.12. The RPT was performed on A356 alloys, showing that the bifilm index had a 
direct impact on the (a) ultimate tensile strength and (b) elongation in the test

specimens [47]
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Figure 1.13. The Weibull modulus for the top gated system is 3.4 while for the bottom 
gated system it was observed to be 12. The difference in elongation, was attributed to the 

random distribution of bifilms in the top gated system [7]

In carbon steel castings, when right amount of deoxidizers (Al and Ca) are not used, 

it leads to the generation of thick solid oxide films. [50] This causes deep folds constituting 

of bifilms on the surface. When the surface oxide of the bifilm, is partially melted it gets 

scrambled in the melt and transforms into a sticky ball which floats out easily.[51] When the 

oxide film formed has a high melting temperature, it forms as a solid oxide film and gets 

entrained in the liquid melt. Some authors have suggested that bifilms in steel are also 

responsible for gas porosity and the resulting reduction in mechanical properties.[52] The 

presence of these bifilms can act as cracks, initiating failure. As previously noted, bifilm 

formation in FeMnAl steels can be problematic and is attributed to the high aluminum 

content of these alloys.
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1.4. HIGH MANGANESE HIGH ALUMINUM STEELS

The high manganese high aluminum steel or FeMnAl steel is a derivative of 

austenitic manganese steel that was first developed by Sir Robert Hadfield in 1882.[53] 

FeMnAl steels generally contain 0.7-1.4% carbon, 6-25% manganese and 5-12% 

aluminum and possess properties like high toughness, high wear resistance, and oxidation 

resistance.[12]

The reduction density is mainly found to be a function of aluminum and manganese 

[13]. The presence of aluminum in these alloys offers a reduction density as observed in 

Figure 1.14, where a linear reduction is density is found as a combination of lattice 

parameter dilation and mass reduction as a function of aluminum. From the Figure 1.14, a 

reduction of 17% density is observed for a 12% aluminum addition.

Figure 1.14. Increasing the aluminum from 6.5 to 12% in a Fe-30Mn-XAl-0.9C steel 
leads to a total reduction in density from 7.5 to 6.2 g/cm3[13]

The work done by Kalashnikov et al. to achieve the best combination of strength, 

ductility and impact toughness in FeMnAl alloys shows that, a composition of 25-31%Mn,
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6.2-9.7%Al, 0.7-1%C is optimum.[54] The addition of silicon is shown to prevent the 

precipitation of P-Mn[55] while the addition of molybdenum was shown to mitigate the 

impact of phosphorus on the fracture toughness in steel[56]. Thus, an alloy composition of 

Fe-28-30Mn-9Al-1C-0.9Si-0.5Mo has been commonly used by researchers for 

investigation. [57-59]

1.4.1. Composition and Heat Treatment. The strength of FeMnAl steel can be 

greatly increased by the precipitation of K-carbides during aging. It was observed in 

FeMnAl alloys that at sufficiently high carbon and Al concentration, these alloys age 

hardened between 550-600°C providing a Brinell hardness between 345-475.[60,61]After 

age hardening alloys with 20-35%Mn, 10%Al, and 0.4%-1.4%C four phases have been 

identified ( austenite, ferrite, K-carbide, and P-Mn).[62]. Increased amounts of aluminum or 

carbon is linked to higher volume fraction of k -carbide volume fraction while prolonged 

aging leads to P-Mn precipitation and loss of tensile ductility.[63]. Homogenous 

precipitation of K-carbide happens under 650°C, while above 650°C, heterogeneous 

nucleation of K-carbide appears on grain boundaries. Between temperatures of 500-650°C, 

the greatest strength in FeMnAl alloys have been reported and the aging temperature of 

550°C has been commonly reported for alloys of composition Fe-30Mn-9Al-1C-0.9Si- 

0.5Mo.[13,61,64]Before aging, the FeMnAl specimens are solution treated at temperatures of 

1000°C or greater.[57]. For a FeMnAl alloy of composition Fe-30Mn-9Al-0.9C, 5-ferrite is 

the primary phase followed by austenite formation well after the liquidus temperature of 

1332°C. [65]In solution treated condition, an austenitic matrix with less than 10% ferrite 

was observed. For a fully austenitic microstructure steel, yield strengths up to 700Mpa and 

Charpy V notch toughness up to 200J have been observed. For an alloy composition of Fe-
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32Mn-8.5Al-0.9C tensile strengths of up to 823Mpa with elongations of 64% have been 

reported in the solution treated condition [66]. Solution treated steels have a higher impact 

toughness but lower strength than the aged steels due to the precipitation of K-carbides in 

aged specimens. K-carbide precipitation increases the strength and hardness in aged steels 

but reduces impact toughness leading to brittle fracture in overaged steels. However, work 

done by Van Aken et al. for a steel composition of Fe-30.4Mn-8.83Al-1.07Si-0.9C-0.53Mo 

showed good combinations of both strength and toughness in underaged steels with 

ultimate tensile strengths of 953Mpa and a CVN toughness of 37 J at -40°C. [68]

1.4.2. Inclusions. The presence of high aluminum and manganese contents in 

FeMnAl steel affects leads to the formation of oxide and nitride inclusions as well as solid 

oxide bifilms. Inclusions like AlN, AlN-MnO, AlN-MnS and MnS have been frequently 

reported in high aluminum high manganese steels.[69] The presence of AhO 3 , MnO and 

M nAhO4 have also been reported in a few studies.[69 70]The morphologies of different 

inclusions formed in a Fe-(10-20)Mn-(1-6.0)Al steel are shown in Figure 1.15.[70] The work 

done by Schulte et al. on nominal Fe-30Mn-9Al-1Si-0.9C-0.5Mo steel shows that the 

presence of AlN inclusions have direct impact on reducing the CVN energy. An increase 

in concentration of aluminum nitride inclusions from 12 inclusions/mm2 to 210 

inclusions/mm2 resulted in a decrease in Charpy v notch toughness from 35J to 19J at - 

40°C (14). The use of a teapot style ladle for pouring the castings helped to reduce entrained 

inclusions and increase the notch toughness from 10J to 40J. Ductile fracture as a result of 

microvoid nucleation and coalescence around AlN inclusions was found to be the major

failure mode.
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Figure 1.15. Secondary electron images of the different inclusions identified by Park et 
al. in a Fe-(10-20) Mn-(1-6) Al composition steel [70]

1.5. FILTRATION

Refining of inclusions in steel is a process which has challenged steelmakers for a 

long time and this process can be broadly classified as chemical and physical process. 

While ladle refining can be classified as a chemical refining process, filtration is classified 

as a physical refining process. Filters are widely used for both aluminum and steel castings 

and they can be broadly classified as three types, monolithic filters, tabular filters and foam 

ceramic filters (FCF) as shown in Figure 1.16(71-75).The foam ceramic filters are considered 

one of the best in the casting industry because of their properties like high filtration 

efficiency, turbulence reduction, good refractoriness and their ability to resist erosion.(75)

1.5.1. Filtration Mechanism. The filtration mechanisms can be of two types, cake 

filtration and deep bed filtration namely. In cake bed filtration, inclusions accumulate on 

the surface of the filter where the inclusions are similar in size or larger than the diameter 

of the pores. The other kind of filtration is called the deep bed filtration which occurs where 

the particles having a diameter smaller than the pore. In this case the inclusions get attached 

to the walls of the pores. In the cake filtration method, there is a large rise is back pressure
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or AP with inclusion capture while in deep bed filtration a more gradual rise in AP with 

inclusion capture is observed. This is mainly because the inclusions are distributed 

throughout the filter thickness in deep bed filtration. It should be noted in the deep bed 

filtration that the diameter of the particles are smaller than the smallest opening, the 

“window size” as shown in Figure 1.17. The filters are usually classified based on the size 

of the pores which are represented as “ppi” (pores per inch).

Figure 1.16. Photographs showing (a) tabular filters (b) monolithic filters (9) (c) ceramic
foam filters [72]

(a)

(b)

Figure 1.17. Cake filtration showing the filter medium. (a) The wavy lines and particles 
represent the incoming inclusions and impurities in the melt (b) the deep bed filtration 

process where “p” represents the cell size and 0  represents the “window size”[72]
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The structure of the foam filter is designed in such a way that it has an unique, 

tortuous path which helps the inclusions to get trapped in the walls which not only allows 

for inclusion removal but also ensures smooth turbulent free filling into the casting cavity 

as seen in Figure 1.18 [74]

Figure 1.18. A filter enables in trapping particles from the incoming metal and helps to 
reduce turbulence when the metal passes to the other side of the filter [74]

The inclusion removal efficiency of a filter is determined by the following equation

1 (71)

(3)

q_ = inclusion filtration efficiency

Ci = concentration of inclusions in the melt at the inlet to the filter

Co = concentration of inclusions in the melt at the outlet of the filter
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1.5.2. Parameters Affecting Filtration. There are various parameters which 

determine the efficiency of inclusion removal in a filter. They are tortuosity, wetting 

behavior, permeability, pore count, velocity of the melt, length of the filter and alloy type. 

[91,92,93]. Tortuosity can be briefly described as the ratio between the original path that a fluid 

undertakes in its streamlined motion and the path during its convoluted flow in a porous 

media as shown in Figure 1.19. Work by GS Armatas [75], has shown that for porous media, 

if  we consider only the pore geometry and no other parameters, the matrix which contains 

a high porosity/low ppi will have the least tortuosity and vice versa.

Figure 1.19. The comparison between the streamlined flow of a fluid (green line) and the 
flow path of the fluid inside a porous media (red line) (76)

The work done by Sarina Bao et al.(77) on AkO 3 and SiC, shows that wetting is 

dependent on temperature, since higher temperatures leads to a decrease in surface tension 

and improves wettability. The permeability of a filter can be used to characterize ceramic 

foam filters (FCF) since they aid in predicting pressure drop at a specific flow rate or vice 

versa. The experiments conducted by Kexu Zhang[73] on permeability of CFF of different 

ppi shows that there is no specific permeability for a type of filter and it is a factor which
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is expressed as a function of fluid flow. Regarding the effect of velocity of metal flow on 

the filter, the equation derived by Apelian et al. as shown in the following equation (2). (71)

(4)

where, q. = filtration efficiency 

K0 = kinetic parameter 

L = length of the filter 

Um = superficial melt velocity

The equation (2) shows that filtration efficiency increases at the melt velocity decreases 

and the efficiency increases with increase in filter length.

1.6. GATING SYSTEM IN CASTINGS

A lot of research has been conducted over the years on understanding gating 

systems and it has been observed that the size of and design of the flow patterns have an 

impact on the final quality of the castings. The requirements that are essential for designing 

a good gating system are as follows

• The mold must fill quickly to minimize air entrainment and prevent premature 

freezing

• Reduction of turbulence in metal flow into the gates

• Prevention of reoxidation of metal in the casting

• Compatibility with the pouring system that is being used

• Removal of slag and dross defects entrained during filling
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• Prevention of distortion and hot tearing during solidification

• Easy removal

• Maximization of casting yield

1.6.1. Components of a Gating System. In a gating or rigging system, the major 

elements are the pouring basin, down sprue, sprue well, runner, gates and the casting as 

shown in Figure 1.20.(78) Gating systems are the entrance path for molten metal into the 

casting cavity and hence play a significant role in maintaining casting quality during 

production.(79,80).

1.6.2. Pouring Cup. A pouring cup is the first point of contact from a ladle to the 

mold and designing a good pouring cup is essential to avoid bubbles or splashing. 

Traditionally, a conical cup is used which is simple and economical for small castings. But 

in conical cups, the high velocity of the metal and the vortex effect leads to air aspiration 

and oxide formation. [9] In an offset rectangular pouring basin as shown in Figure 1.21, the 

initial metal falls directly into the basin first, allowing entrained air to rise and the flow to 

stabilize, before rolling over a dam into the sprue. This also helps to separate the bubbles 

and slag, which float to the top, from entering the sprue and minimizes metal spillage and 

vortex formation. In this type of pouring basins, it is essential to keep the pouring basin 

full, to prevent air and dross from entering the system. [9,10]. Figure 1.21(c), shows a direct 

comparison in velocity between the three pouring basins where the offset pouring clearly 

has a better flow velocity.[81]

1.6.3. Downsprue. The down sprue connects the pouring cup to the runners and 

the gates. The sizing and shape of the sprue plays a major role in determining the final 

quality of the casting. An oversized sprue affects metal quality by taking in air
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continuously, leading to surface turbulence and oxidation of the binder in the sand. A 

tapered down sprue is better than a cylindrical sprue as it helps to keep the sprue full to 

prevent aspiration of gases into the cavities. In commonly used sprue and runner systems, 

a circular sprue is attached to a rectangular runner.

Figure 1.20. Elements of a gating system showing the pouring cup, sprue, sprue base, 
runner, runner extension, and multiple gates leading into the casting (78)

Velocitv
(n \  s ' )

Direct p o u r Offset b a s in :Conical cupNo gating W ithout  s topper
4 Hi

(a) (b)

Figure 1.21. Use of offset basin and an undercut (a) An offset pouring basin helps to 
control the flow of the incoming liquid from the ladles and stabilizes it and an undercut 

that is provided to the basin to slow down the flow of metal and prevent it from splashing 
over the pouring basin (c) comparison of flow velocity between the three pouring

systems[81]
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In this system, the liquid metal continuously sways back and forth with the runner 

unable to fill the runner completely. The use a sprue well helps to minimize the damage as 

it reduces the velocity of the incoming metal and subsequently reducing the kinetic energy 

of the molten metal.[10] Research done by Jezierski et al., shows that a slimmer runner 

leads to a better laminar flow of the metal. A short tapered rectangular sprue offers various 

advantages like minimizing metal velocity, prevention of vortex formation, and aspiration 

of gases.[82] The taper should ideally mimic the shape of the pouring stream and can be 

estimated by the following formula.

Abottom of sprue / Atop of sprue (h pouring cup / h total) 0.5 (5)

where A is the area and h is the height of the sprue. Thus, a sprue should be ideally a single, 

smooth, nearly vertical tapering channel, without any interruptions as seen in Figure 

1.22.[82].

Figure 1.22. The transition of a sprue from a circular opening to a slim rectangular cross 
section ensures smooth filling and flow velocity. (red = high velocity)

(blue = low velocity) [82]
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1.6.4. Runners. The runner connects the base of the sprue to the gates. A tapered 

runner attached with a runner well is a modification from the traditional rectangular runner, 

since long flat thin runners provide more slag and doss to be trapped. The runner wells and 

extensions also aid in trapping the initially damaged metal entering the gating system. For 

obtaining smooth filling, a laminar flow of metal is essential where the metal flows in 

parallel layers. The Reynolds, number (Re), is used to characterize the flow of metal as a 

turbulent or laminar flow.[10] The Reynolds number is given by,

Re = (pVd) / (p) (6)

where p is the density of the metal, V is the velocity of the metal, d is the diameter and p 

is the viscosity of the metal. At Re lower than 2000, viscous forces prevail, leading to a 

smooth and laminar flow while Re over 2000 is considered as turbulent flow, where the 

velocity and direction of flow of the metal changes erratically. [9,10]

The Weber number is a dimensionless quantity which helps to establish the relationship 

between the kinetic energy of a fluid and the stabilizing surface tension forces, given by

We=pLv2/ o (7)

where p is the density of the molten metal, L is the radius (characteristic length) of the 

channel, v is the molten metal velocity and o is the surface tension of the molten metal. 

When We = 1, the inertial and surface forces are roughly balanced. A Weber number in the 

range of 0-2.0 defines the range of flow conditions that are free from surface turbulence. 

Molten metal velocity has the greatest effect on the Weber number and as the Weber
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number keeps increasing, the kinetic energy becomes more dominant leading to high 

splashing turbulent flow of metal.[52]

1.6.5. Gating. Gating systems for horizontally parted sand molds are traditionally 

designed using a gating ratio. The gating ratio is the ratio of the total cross-sectional area 

of the sprue, total runners, and total gates, (A sprue: A runners: Agates). A gating system can be 

classified as a pressurized or non-pressurized gating system depending on where the choke 

is present. A choke is the smallest cross-sectional area and determines the rate at which the 

liquid metal enters the mold. [52] For a non-pressurized system, the choke is present at the 

base of the sprue. So, a non-pressurized system might have a gating ratio of 1: 3: 4. These 

kind of gating systems are commonly used for aluminum and turbulent sensitive alloys. 

The liquid metal at the base of the sprue comes at a very high velocity which is controlled 

by the sprue well. Since the runners and gates have an area greater than the choke, the 

velocity subsequently reduces, and the metal enters the gating smoothly in a laminar pattern 

with low Reynolds number. [9,10]

For a pressurized system, the choke is present at the gates. Thus, a gating ratio, 

something akin to 2:4:1 might be found for these kinds of systems. They are commonly 

used for metals like gray iron which are not sensitive to damage and turbulence. Due to the 

high velocity and turbulence, these alloys experience oxidation and mold erosion higher 

than the non-pressurized system. The violent mixing of the metal inside these systems also 

leads to slag and dross accumulation and gas porosity.[10]

Due to increased demand for better quality castings and to avoid the formation of 

bubbles, bifilms and reoxidation defects, new gating systems have been developed which 

are discussed below. The presence of an extended runner with a runner well, helps in
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controlling the velocity of the metal with the high pressure head and also collect the 

incoming metal carrying slag and dross, But once the runner becomes full, it leads to a 

sudden rise in pressure into the gate leading to high velocity and splashing causing 

reoxidation inclusions and bifilm formation.[82] Another important type of gating system 

that has gained prominence over the last few years is the naturally pressurized vortex filling 

system as shown in Figure 1.23. (81, 82) In this system the runner is extended into a runner 

well where the vortex helps in reduction of the high velocities of the metal entering the 

mold cavity. (82) Though the vortex gating system aided in reducing the velocity of the

Figure 1.23. The vortex gate showing the presence of a gate and the velocity tracker 
which collects the incoming metal from the runner and traps all the slag and aids in

velocity control (82,10)
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metal, it leads to centrifugal formation of bubbles where into the middle of the system, 

where the bubbles coalesce into one major bubble and might force its way into the casting. 

To avoid this problem, a terminal spin trap is used for the castings as shown in Figure 1.24. 

In this type of gating system, where the runners are extended into the terminal spin traps, 

which act as a well for the incoming metal with high velocity, carrying slag, dross and 

other impurities. Moreover, the presence of the centrifugal spin trap also aids in the buildup 

of gradual pressure on the back of the runner. Thus, unlike the runner extension seen above, 

there is no immediate spurt in pressure, preventing any splashes of bifilm defects.

Figure 1.24. A gating system with a terminal trap. The terminal trap apart from 
controlling the incoming velocity, also collects the slag, dross and the inclusions carried 

by the incoming metal. This ensures the casting filled with new metal and a stable 
velocity as shown where the scale is absolute velocity in m/s [82]

Using a system with the vortex spin trap and using a bottom gated system, also 

eliminates the need of a filter unlike the traditional pressurized and non-pressurized gating 

systems. [10,82] Since the vortex trap acts as a reservoir to collect the incoming metal and 

control the velocity, it eliminates the need of filtration. The presence and use of a tapered 

rectangular sprue unlike the conventional tapered cylindrical sprue help to keep the sprue
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fill up with metal faster, thus keeping it full to avoid any gases being aspired into the system 

or bubbling to take place.

1.6.6. Riser/Feeder. Risers are feeders are designed to ensure that the casting is fed 

with metal completely and to prevent hotspot formation. To feed the casting effectively, a 

riser must have a longer solidification time than the casting and prevention of heat loss is 

an important consideration. Risers can be either top risers or side risers depending on their 

placement. Since the riser must feed the casting completely, it is ensured that the volume 

of the riser is at least 1.2 times the volume of the casting and external sleeves is available 

in risers to prevent heat loss. [9,10]

Using the above methods and results from previous researchers [9,10,81,82], an off step 

pouring basin with an undercut followed by a rectangular down sprue to enable laminar 

flow of metal would be an optimum choice. The presence of a vortex terminal trap to collect 

the incoming metal, slag and dross, to ensure smooth filling of metal in the bottom gated 

system, would be an ideal system of choice for the steel maker to obtain quality castings. 

Since the slag and dross are collected by the terminal spin trap this eliminates the necessity

to use a filter.
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ABSTRACT

The efficiency of ceramic foam filters in removing different inclusion populations 

in a Fe-30Mn-9Al-1Si-0.9C-0.5 Mo steel was investigated. A mold design was created 

utilizing fluid flow and solidification modelling software. The design utilized a common 

pouring cup attached to two different but balanced gating systems. One runner utilized a 

ceramic foam filter while the other runner was unfiltered. Three molds were poured in 

sequence from a teapot style ladle. Metallographic samples revealed extensive Al and Mn 

rich oxide bifilms in samples taken before the filter. Samples sectioned after the filter did 

not contain bifilms. AlN or complex AlN-MnS or AlN-MnO comprised more than 70% of 

all inclusions. Samples sectioned from the first two molds showed an inclusion removal 

efficiency of 38% and 39%, respectively. Larger inclusions greater than 3^m were more 

efficiently filtered. The third mold with the greatest number of larger inclusions showed 

the highest inclusion removal efficiency of 55%.
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1. INTRODUCTION

Lightweight high strength steel with aluminum contents between 4-12wt.%Al have 

found applications for military vehicles as well as in the automotive sector because of a 

combination of low density, high strength, and good toughness. Fully austenitic cast steels 

of composition Fe-30Mn-9Al-0.9C-1.0Si-0.5Mo offer almost a 15% lower density 

compared to quenched and tempered SAE 4130 cast steels with equivalent strengths and 

dynamic fracture toughness.1 It should be noted that all compositions in the following study 

are in weight percent unless otherwise stated.

1.1. NON-METALLIC INCLUSIONS IN FeMnAl STEELS

Internal defects in FeMnAlC steels such as microporosity and the presence of 

faceted aluminum nitride inclusions are a major contributor for loss of toughness in these 

steels.2 A high aluminum content of 5-12% is also responsible for the formation of solid 

oxide bifilms that can be entrained during pouring and filling and this has been linked to 

a significant loss in tensile strength, ductility and fatigue life in aluminum castings.3 Studies 

by Schulte et al.4 show that the population density of AlN inclusions directly affects the 

impact properties of a Fe-30Mn-9Al-1Si-0.9C-0.5Mo. In the solution treated and aged 

condition, Charpy V notch (CVN) toughness at -40°C decreased from 35J to 19J as the 

concentration of AlN increased from 12 inclusions/mm2 to 210 inclusions/mm2.4 Clean 

steelmaking practices using argon cover can help reduce nitrogen pickup. However, high 

nitrogen in charge materials, exposure to air during metal transfer as well as during pouring 

and filling always results in a significant amount of AlN inclusions in these castings.
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1.2. FILTRATION

There have been constant efforts in foundries to increase cleanliness and reduce 

inclusions in both high and low alloy steel castings. The use of foam ceramic filters (FCF) 

is currently one of the best engineering solutions for increasing metal cleanliness and 

reducing velocity and turbulence during mold filling. The cellular structure of foam 

ceramic filters results in deep bed filtration leading to attachment of inclusions within the 

porous network. The forces of adhesion, that is good wettability, and the presence of a large 

specific area within the foam filter improves the efficiency of non-metallic inclusion 

removal.5 The porous cellular structure that is present in a FCF plays a major role since it 

provides a high surface area and torturous flow path that increases the coefficient of mass 

transfer between the metal and filter surface.6 Filtration of alumina inclusions using 

ceramic filters has been studied by Apelian et al. for a steel composition of Fe-0.012C- 

0.04Ni between with between 12-20ppm of oxygen. It was shown that inclusions greater 

than 2.5gm were trapped by the filter.7 In the study by Tian et al. on steels consisting of 

composition Fe-0.66Mn-0.005P-0.29C-0.095Cu-0.092Cr-0.001Mo, zirconia filters were 

shown to have up to a 90% removal efficiency for alumina inclusions.8

The filtration efficiency expression for liquid metal filtration can be expressed as:

n = (Ci-Co)/Ci (1)

where n = inclusion removal efficiency 

Ci = concentration of inclusions at inlet of the filter 

Co= concentration of inclusions at the outlet of the filter.7
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The use of FCFs in castings has been shown to increase the yield of the castings, 

reduce the rejection rate, and improve the machinability of the casting.6 The use of filters 

gives improvement in the yield and quality of steel castings and understanding of how 

inclusions in FeMnAlC steels are filtered by these filters is of high priority. Although there 

has been some work published on the filtration of alumina inclusions utilizing foam filters, 

the effectiveness of these filters in inclusion removal of FeMnAl steel castings has not been 

investigated. The goal of this study is to determine the inclusion filtration efficiency of 

ceramic foam filters at removing different inclusion populations and oxide bifilms from a 

Fe-30Mn-9Al-0.9C-1Si-0.5Mo steel. In this regard, a mold was designed that allowed 

balanced filling of two identical Y-block castings in the same mold that were attached to 

two different but balanced rigging systems. One side of the gating systems included a 10 

ppi (pores per inch) zirconia ceramic foam filter while the other side was unfiltered. In the 

current study the effectiveness of ceramic foam filters at removing different inclusion 

populations from the melt was evaluated directly from the filter inlet and outlet in the 

runner utilizing a scanning electron microscope with automated feature analysis. The effect 

of pouring order on the filtration efficiency was also determined in this study. Subsequent 

investigations will be performed to determine the effect of filtration on casting quality and 

mechanical properties.

2. METHODOLOGY

The solidification software MagmaSoft (5.3) was used to design the mold. The 

design of the mold and experimental procedure has been adapted from the paper by 

Chakraborty et al.9 The design consisted of two modified Y-block castings, where one of



43

the runners is fitted with a ceramic filter (FOSECO STELEX ZR 10ppi filter) of 

dimensions 10cmX10cmX2.5cm, while the other did not have any filters. The dimensions 

of the vertically parted molds are 70cmX20cmX35cm. A drawing of the mold is shown in 

Figure 1.

The designs used similar castings, sprues, runners, and gates while the gating ratio 

used was different to accommodate the filter in one of them while balancing the filling into 

the castings. Hence the gating ratios of the two molds were 1:2:3.8 (with filter) and 

1:2.6:3.8 (without filter). Figure 2 shows the absolute velocity of filling at different stages, 

namely 10%, 20%, 30% and 50% full. It is shown that the presence of a filter helps in 

slowing down the velocity at one runner, while the filling is faster in the other runner.

Figure 1. Drawing of the vertically parted mold design showing the two-bottom gated 
modified Y-block castings attached to two balanced gating systems. The gating system 

on the right contains the filter while the other gating system on the left is unfiltered
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Flow through the ingates of the castings takes place at a velocity of less than 0.44 

m/s which is lower than the critical velocity of 0.45 m/s recommended by Campbell to 

minimize any air entrainment and reoxidation defects.10 Figure 3 shows the temperature at 

the end of filling for the steel. The steel was poured at a temperature of 1519°C. Figure 3 

shows the temperature profile just after filling with all temperatures in the casting and 

rigging system above 1450°C. The liquidus temperature for this composition of steel was 

determined utilizing Thermocalc thermodynamic modeling software to be 1338°C. Figures 

2 and 3 indicate that the filling of the casting happened at an absolute velocity which was 

less than the critical velocity and at the end of the pour all the parts of the casting had a 

temperature higher than the liquidus, therefore avoiding any problems regarding premature 

solidification.

Thermodynamic modelling for the Fe-30Mn-9Al-1Si-0.9C-0.5Mo steel 

composition was performed using the Thermo-Calc 2017a software. Figure 4 shows the 

phases that form as a function of equilibrium cooling. The steel was modeled with 0.007% 

N, 0.005% O, and 0.005% S in order to determine the stability of different inclusions. 

Figure 4 also shows stable precipitation of AhO3 (corundum) and AlN at temperatures well 

above the liquidus. MnS forms below the liquidus temperature during solidification. It 

should be noted that sulfur tends to highly segregate to interdendritic regions and this can 

increase the stability of MnS during solidification of FeMnAlC steels.11

High purity induction iron, ferrosilicon, ferromolybdenum, electrolytic manganese, 

high purity aluminum and high purity graphite were melted in a coreless 90.7kg (200lb) 

ferrous capacity induction furnace under argon cover with a flow rate of 25 SCFH.
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Figure 2. The velocity profile during filling at (a) 10% (b) 20% (c) 30% and 50% filled

Figure 3. The temperature profile directly after filling shows that all temperatures are 
above the calculated liquidus temperature of 1338°C at all points in the design
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Figure 4. Thermodynamic modeling of the equilibrium solidification of a Fe-30Mn-9Al- 
1Si-0.9C-0.5Mo steel with 0.007% N, 0.005% O, and 0.005% S. AlN and M 2O3 are 

stable in the liquid well above the liquidus. MnS forms after the liquidus during
solidification

The target chemistry was Fe-30%Mn-9% Al-1%Si- 0.9%C-0.5%Mo. The mass of 

the total charge was 160lb (72.56kg). The molten metal was tapped at 1630°C into a teapot 

style ladle which was used to pour the metal into the three molds. The first mold consisted 

of metal poured from the bottom one-third of the ladle while the second mold consisted of 

metal from the middle of the ladle. The last mold was poured from the metal at the top of 

the ladle.

Specimens were sectioned for microstructural and inclusion analysis at a distance 

of 10 mm from the inlet and outlet side of the filter as shown in Figure 5(b). The chemistry 

analysis was performed by optical emission arc spectroscopy and combustion analysis 

using the LECO CS 500 for carbon and sulfur and a LECO TC 600 for determining the
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total oxygen and nitrogen contents. Specimens were sectioned before and after the filter in 

the same location for each of the three castings and three sets of samples were obtained 

from each of them, as shown in Figure 5(c), and observed under an optical microscope. A 

representative optical micrograph of a sample taken from the inlet side of the filter is shown 

in Figure 5(d) to contain a large bifilm defect. Polishing was performed utilizing standard 

metallographic techniques and inclusion analysis was performed using automated 

inclusion analysis and was conducted utilizing an ASPEX PICA 1020 scanning electron 

microscope (SEM). The chemistries of the inclusions and the matrix were also observed 

using energy dispersive X-ray spectroscopy (EDS). The bifilms were quantified using 

ImageJ software.

3. RESULTS

The computer filling simulation exhibited a filling time of 9 seconds. This was in 

close accordance with the actual filling time of the first mold which was recorded to be 9s. 

The filling time for molds two and three were 12s and 17s. This could be because of factors 

like less metallostatic pressure as the ladle was drained and slight differences in tilt speed 

during pouring. The simulation produced results in close accordance to the first mold 

poured.

The total oxygen, nitrogen and sulfur contents results are shown in Table 1 and 

were measured using inert gas fusion and combustion infrared detection techniques. The 

samples were taken in the runner area directly after the filter in all three castings as shown 

in Figures 5 (b and c) as well as from the unfiltered runner area in the same relative position 

(Figure 5(a)). Table 1 compares the results. Nitrogen was largely constant at 45ppm
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regardless of pouring order in the samples taken in the unfiltered runner area. However, 

the filtered runners show a decrease in total nitrogen content when compared to the samples 

taken from the unfiltered runners. It is important to remind the reader that these molds 

were poured from a teapot ladle in which the first metal from the ladle may contain the 

cleanest metal while the last metal poured from the ladle will likely have the highest 

amount of possible slag as well as oxide and nitride inclusions. However, throughout the 

three molds all the samples taken in the unfiltered runner and after filtration showed oxygen 

levels less than 10ppm and this did not appear to be influenced by filtration. Total nitrogen 

decreased with pouring order from 34 to 22ppm in filtered specimens. Sulfur was also 

invariant of pouring order and filtration with a value around 32ppm as shown in Table 1.

3.1. CHEMISTRY ANALYSIS

Table 2 gives the target and measured chemistry of the steel in weight percent as 

measured by optical emission spectroscopy, OES, for all the elements except carbon and 

sulfur, which were measured by combustion infrared detection techniques in a LECO C/S 

analyzer. The certified standards used for calibration of the OES had chemistries similar to 

the composition of the steel. The measured chemistry is reasonably close to the target 

chemistry. It should be noted that the molybdenum level was slightly higher than the 

anticipated, 0.7% Mo when 0.5%Mo was expected and the carbon content was slightly 

lower, 0.8%C when 0.9%C was expected.
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Figure 5. Experimental procedure for sectioning filter and obtaining specimens for AFA 
analysis. (a) The design showing the position of the filter (b) Representative image 
showing how the filter was sectioned (c) Representative image showing where the 

metallographic and inclusion analysis samples sectioned from each side of the filter. (d) 
Optical micrograph of one of the samples taken before the filter

Table 1. LECO analysis of N, O, and S (ppm) content from samples taken from unfiltered
runners and after filters

Unfiltered Runner Runner After Filtration

Mold 1 Mold 2 Mold 3 Mold 1 Mold 2 Mold 3

Nitrogen 45 ± 5 45 ± 9 46 ± 2 34 ± 2 26 ± 2 22 ± 4

Oxygen 7 ± 3 6 ± 2 5 ± 1 6 ± 1 7 ± 2 5 ± 2

Sulfur 29 ± 5 33 ± 2 32 ± 4 32 ± 3 30 ± 5 33 ± 4

Optical micrographs of samples sectioned directly before the filter for all the three 

molds are presented in Figures 6 (a-c). The matrix consists of mainly austenite with less 

than 10 to 15% ferrite. The most notable feature in Figure 6 (a-c) is the presence of 

extensive oxide bifilms that are increasing in prevalence in the order of filling.
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Table 2. Measured chemistry and target composition in weight percent as determined
using OES and LECO C/S analyzer

Fe C* Si Mn S* Mo Ni Al

Target Bal. 0.9 1 30 - 0.5 - 9

Measured Bal. 0.82 0.99 29.10 0.002 0.70 0.15 9.4

These networks of oxide bifilms were found in of all the samples taken before the 

filters in all the molds. In some cases, they are associated with areas of porosity caused 

through thickness failure of inlet gating system resulting from bifilm separation. The 

microstructures of samples taken after the filter are shown in Figure 7. Bifilms were 

quantified by determining the average area coverage utilizing image analysis on optical 

micrographs.

3.2. BIFILM AND INCLUSION ANALYSIS

Bifilms were not observed in filtered specimens as shown in Figure 7. It should be 

noted that the areas presented in Figures 6 and 7 were sectioned in the same positions 

before and after the filter in each of the three gating systems as shown in Figures 5 (b and 

c). The composition of the bifilm defects was characterized utilizing an SEM with EDS 

and compared with the matrix austenite chemistries. Figure 8 shows the backscattered 

electron images of a network of bifilm defects from the area before the filter in mold 1. 

EDS analysis confirmed that the bifilms are mainly composed of aluminum and manganese 

oxides as shown in Table 3. Previous unpublished work by the authors show that nitrogen 

and possibly hydrogen gas may nucleate on the bifilms during solidification, causing
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porosity and growth of coarse AlN plates during subsequent heat treatment, making these 

defects even more detrimental to casting quality.

(a) (b) (c)

Figure 6. Optical micrographs of sections taken before the filter show a matrix of mainly 
austenite with less than 15% ferrite. Extensive bifilm defects and associated porosity are

shown in the microstructure
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(a) (b) (c)

Figure 7. Optical micrographs of samples taken after the filter in (a) mold 1 (b) mold 2 
(c) mold 3 show that bifilms have been effectively removed by filtration

Table 3. Comparison of bifilm chemistries compared with the matrix chemistry in 
_________ ___________ samples sectioned before the filter ___________________

Mn (wt. %) Al (wt. %) O (wt. %)

Mold 1 23±7 13±8 25±15

Mold 2 23±6 13±7 24±10

Mold 3 23±2 16±11 29±10

Austenite 32±3 7±0.5 0.9±0.2

matrix
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Figure 8. The backscattered electron image of a network of bifilms present in the 
sectioned sample taken before the filter from mold 1. It shows areas of bifilms that were

determined to be mainly aluminum oxide

As seen from Table 3, the bifilms were composed of mainly alumina and possibly 

in combination with manganese oxides. However, the high amount of Mn in the matrix 

contributes to a background effect and thus the presence of Mn in these bifilms is difficult 

to resolve. Inclusion analysis of samples sectioned before and after the filter was 

accomplished utilizing an ASPEX PICA 1020 SEM with automated feature analysis. A 

backscattered electron detector (BSED) and a magnification of 500X was used for the 

analysis.

An emission current of 32-34pA with a dwell time of 12ps were considered for the 

analysis. Areas of bifilms and pores were excluded from the inclusion analysis based on 

size (greater than 10pm for bifilms) and chemistry. For example, pores and bifilms were 

found to have either high carbon levels, and since the diamond paste used for polishing can 

accumulate in the cracks in the bifilms and pores, or high concentrations of iron and 

manganese at or above the matrix composition and without any other elements in the case 

of porosity and bifilm cracks. Inclusions were also differentiated from the bifilms and
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pores from the nitrogen and/or sulfur levels that were always greater than 4% in all 

inclusions. From Table 1, it is observed that the amount of total oxygen in chemistry 

samples was low (<10ppm). Additionally, EDS is not very accurate at determining oxygen. 

Thus, inclusions were classified depending on the amount of Al, Mn, S, and N. The 

representative chemistries of different inclusions by type is shown in Table 4. Most of the 

inclusions observed were aluminum nitride AlN, manganese sulfide MnS and complex 

inclusions consisting of an AlN core with a capping layer of MnS. Some representative 

backscattered electron, BSE, images of AlN and complex AlN-MnS are shown in Figure 

9. Figure 9(a) shows singular AlN inclusion that has nucleated and grown in the liquid. As 

the steel solidifies, sulfur will be enriched in the liquid and MnS inclusions will precipitate 

below the liquidus, utilizing AlN as a nucleation site as shown in Figure 9(b and c).

Table 4. The average chemistry of the different types of inclusions obtained using EDS

Al (wt %) N (wt %) Mn (wt %) S (wt %)

AlN 56.2 22.9 20.1 0.70

AlN-MnS 33.4 16.2 43.9 6.2

AlN-MnO 37.2 21.3 40.4 0.86

Automated inclusion analysis was performed on samples sectioned from identical 

locations from each of the mold gating systems before and after the filter as shown in the 

drawings in Figure 5 (b and c). The following nomenclature will be adopted to identify the 

respective samples; mold 1, before filter (M1BF), mold 1, after filter (M1AF), mold 2,
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before filter (M2BF), mold 2, after filter(M2AF), mold 3, before filter(M3BF), mold 3, 

after filter (M3AF).

(a) (b)

Figure 9. SEM images of different inclusions found in the steel (a) An image of an 
aluminum nitride inclusion (b and c) A complex AlN-MnS inclusion with the AlN at its 

core and (c) a MnS inclusion around the AlN

Figure 10 shows the inclusion density by type for specimens sectioned before the 

filter. It was found that the AlN inclusions formed most of the inclusions followed by AlN- 

MnO and AlN-MnS. MnO and MnS were observed to precipitate on AlN. MnS inclusions 

had an inclusion density of less than 5/mm2. It should be noted that the MnS inclusions 

will form below the liquidus temperature as observed from Figure 4 and are thus unaffected 

by filtration.

Complex oxysulfides of Al and Mn and Ti-Mo carbides were found in trace 

amounts in all the three molds. However, these inclusions accounted for only 1-1.5% of 

the total amount of inclusions and was therefore excluded from the analysis. Figure 11 

shows the inclusion density by type for samples sectioned after the filter in all three molds. 

The density of AlN decreased in the filtered samples by 27-28% in the first two molds and 

by 38% in the last mold poured.
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Figure 10. Inclusion density of inclusions by type, taken from the three molds before the 
filter, indicating a high density of AlN inclusions

Figure 11. Inclusion density of inclusions by type, taken from the three molds after the 
filter, indicating a reduction in AlN inclusions and a slight increase in the number of MnS

inclusions

The percentage of MnS increases slightly; however, MnS forms after filling of the 

gating system and during solidification and thus for analysis of the filtration effectiveness, 

MnS is excluded from the analysis. The inclusions forming in the liquid, and thus subject 

to filtration, were considered to be AlN and complex AlN-MnS and AlN-MnO inclusions.
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Figure 12. The area fraction of inclusion coverage as a function of filtration and mold 
pouring order shows a reduction in the amount of inclusions in filtered specimens by as

much as 54% in mold 3
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The total area fraction of inclusion coverage in the filtered and unfiltered samples 

as a function of mold pouring order is given in Figure 12. Mold 1 showed the highest area 

fraction of inclusions before filtration at 456 ppm followed by mold 2 and mold 3 at 405 

and 345 ppm, respectively. The samples taken after the filter were much cleaner and 

showed an average decrease in inclusion area of 174 ppm. The efficiency of inclusion 

removal by the filter was greatest in the last mold poured with a 54% overall reduction in 

the area fraction of inclusions. Figure 13 (a-c) show size distribution plot between the 

average inclusion size and the inclusion density for inclusions that are stable during filling.

All the three molds show a reduction in the inclusion density between the unfiltered 

and filtered samples. From Figures 13 (a and b), it can be noted that most inclusions were 

between 2-3pm. The inclusion removal efficiency for inclusions greater than 3 pm was 

found to be 30.3% and 28.6% for the molds 1 and 2, while for the third mold it was 58.2%. 

The area fraction of the aluminum nitride inclusions as a function of the average size of 

inclusions for the three molds considering filtered and unfiltered sections are represented 

in Figures 14 (a to c).



57

25

20 

15 

10 

5 

0

>
"tncOl
T 3

Co
" c n
_ DUc

M1BF
M1AF

0-1 1-2 2-3 3-4 4-5 >5
Size of inclusions (^m) Size of inclusions ( ^m)

(a) (b)

Size of inclusions (^m) 

(c)

Figure 13. Inclusion density as a function of the size distribution the unfiltered and 
filtered samples in (a) mold 1 (b) mold 2 and (c) mold 3

The area fraction of AlN was shown to decrease in filtered samples taken from 

each of the molds. The results are similar to those presented for the total number of stable 

inclusions in the melt presented in Figure 12. Larger AlN inclusions, >2-3gm, were 

removed from the melt more efficiently by the filter than smaller AlN inclusions. The 

filtration is most significant in the third mold, as shown in Figure 14 (c) as there is a higher 

percentage of larger sized aluminum nitride inclusions in the unfiltered sections.
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Figure 14. Size distribution of aluminum nitride inclusions as a function of area fraction 

for filtered and unfiltered samples in (a) mold 1 (b) mold 2 and (c) mold 3

It is also observed that the filtered areas from mold 3, have a maximum inclusion 

size of 6-8 pm, indicating that the larger sized AlN inclusions have been mostly removed 

by the filter.
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4. DISCUSSION

Figure 15 shows the measured N, O, and S contents from samples taken from 

unfiltered runners and from samples taken just behind the filter as described in Figure 5. 

The amount of sulfur and oxygen was not much different in the unfiltered and filtered 

runners and that did not appear to vary with pouring order. The sulfur concentration 

corresponds directly to the amount of sulfide inclusions (MnS and complex AlN-MnS) in 

the castings. Thermodynamic modeling in Figure 4 shows that MnS is stable below the 

liquidus near the end of solidification and this is consistent with the work of Vaz Penna et 

al. who show MnS precipitation after the liquidus in a Fe-30Mn-9Al-1C- 1Si-0.5Mo steel 

with 40 to 400 ppm S.12 Thus, MnS did not form until after filling and during solidification 

and therefore the consistency of the sulfur concentrations in Figure 15 between the filtered 

and unfiltered runner areas is understandable. This is consistent with the work of others 

who have shown that inclusions in these steels mainly consist of AlN and AlN-MnS 

complex inclusions in which MnS is often found to precipitate heterogeneously on AlN 

during solidification.1,2,4,11 The amount of measured total oxygen in Figure 15 is low in all 

the samples and was less than 10 ppm.

This is consistent with the inclusion analysis presented in Figures 10 and 11 that 

show less than 10 inclusions/mm2 were complex oxide inclusions. In general, endogenous 

oxide inclusions such as alumina and manganese spinel are not as prevalent as AlN in 

castings poured from FeMnAlC steels that are induction melted and this has been reported 

by several studies.1, 2,4,11

Samples taken from the unfiltered runner show no real difference in the amount of 

nitrogen as a function of pouring order as shown in Figure 15. However, filtered specimens
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show a substantial decrease in total nitrogen, decreasing from around 45 ppm N to 35 ppm 

N in mold 1 to less than 22 ppm N in mold 3. The amount of nitrogen in these steels 

appears to be directly correlated to the amount aluminum nitride inclusions. This is 

consistent with the inclusion analysis presented in Figures 11 and 14 that shows a reduction 

in the area fraction and number of AlN and complex AlN inclusions with filtration.
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Figure 15. LECO analysis of N, O, and S concentration content from samples taken from 
the unfiltered runners and in the runners after filters as a function of mold pouring order

The total nitrogen contribution from the inclusions was determined from samples 

sectioned after the filter and compared to the measured nitrogen in the unfiltered and
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filtered runners. The method used for calculating the nitrogen content based on inclusion 

was obtained from the work by M Harris et al.13

The areal average elemental composition of inclusions is calculated for each 

element as follows:

A  total
(2)

where %m is the areal average mass percent of a given element, %x is the amount of 

respective element in an individual inclusion, Ainclusion and Atotal are the area of the 

individual inclusion and total area of all measured inclusions. The mass balance calculation 

was performed using the compositional data obtained from the EDS inclusion analysis and 

the following equation.13

_  % m  Af  p i Wj 
Mppm -  WQpm

(3)

In the above equation, Mppm is the mass fraction in ppm of a given element in the steel 

sample contained within the inclusions, Af is the total inclusion area fraction, pi and pm are 

the densities of the inclusions associated with the given element and the density of the 

matrix, respectively. wi is the mass fraction of the given element in the associated inclusion 

compound.13

As shown in Figure 16, nitrogen decreases after filtration and the filtered nitrogen 

contents are in very good agreement with the nitrogen contribution from the inclusions. 

The efficiency of solid inclusion filtration increases with pouring order as shown from 

Figures 13 and this is supported by the measured nitrogen contents in Figures 15 and 16. 

The measured amount of total nitrogen observed in the filtrated steels is also somewhat
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lower than previous induction melted Fe-30Mn-(3-9) Al-(0.9-1.8) C steels in which the 

total nitrogen content that varied between 50 and 150 ppm.2 It should be noted that results 

indicate that the steel in the current study was very clean even in the unfiltered condition 

with total inclusion densities before filtration ranging from 50 to 70 inclusions/mm2 as 

shown in Figure 1.

Figure 16. Calculated total nitrogen contribution of inclusions from specimens sectioned 
before and after the filter as compared to the measured total nitrogen after filtration

The total inclusion density of the current steel can be compared with the results of 

Bartlett et al.,2 who showed total inclusion densities ranging from 70 to 146 inclusions/mm2 

in induction melted Fe-30Mn-(3-9)Al-(0.9-1.8)C steels. The optical microstructural 

analysis of the samples in Figures 6 and 8 revealed extensive bifilm networks in samples 

taken before the filter with high amounts of porosity. The percentage of area covered by 

bifilms in samples taken before and after the filters in molds one, two and three were 1.78, 

2.04 and 2.46%, respectively. Bifilms were not observed in samples taken after the filter. 

The velocity of the metal was the highest at the base of the downsprue and before the filter 

expansion area as shown in Figure 2. In some regions, the velocity reaches as high as 2m/s,
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which is above the critical value 0.45m/s. This leads to mixing of the metal with the air 

and the formation of a surface skin of the metal oxide that folds onto itself with along with 

a volume of entrapped air, leading to formation of aluminum oxide bifilms and associated 

porosity. This phenomena of bifilm formation and air entrainment has been widely reported 

in aluminum castings14-16. The high amount of aluminum in these steels makes these alloys 

particularly susceptible to bifilm formation and EDS elemental analysis of the bifilm 

defects in the current study shows that they are made of primarily aluminum oxide and 

perhaps in some cases Al-Mn-O spinel as shown in Figure 8 and Table 3. The filter was 

effective at removing the bifilm defects from the steel as shown in Figure 8. This is an 

encouraging result that has not been previously documented for high Mn and Al steels. It 

should be noted that the bifilms may have contributed to some inclusion removal because 

of their large area to volume ratio and a possible “inclusion netting” mechanism. However, 

inclusions were not observed to be attached or associated with bifilms when observed both 

optically and with an SEM. Additionally, the high initial velocity in front of the filter of 

greater than 1 m/s, as shown in Figure 2, may tend to push inclusions through these 

networks suggesting that most of the inclusions were captured by the filter. Further studies 

are planned to determine the mechanism of inclusion attachment within the filter.

Inclusions in the FeMnAlC steel consisted mainly of AlN and complex AlN-MnS 

and AlN-MnO inclusions. Very few oxide inclusions were observed, other than bifilm 

defects, and this is consistent with previous studies that report that inclusions in these steels 

are mainly AlN, and complex AlN-MnS and AlN-MnO type inclusions as previously noted 

for industrially induction melted and cast Fe-30Mn-9Al-(0.6-1.6)Si-0.9C-0.5Mo steels.1,2 

The presence of mainly AlN and complex AlN-MnS and AlN-MnO inclusions in this study
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are consistent with previous studies of similar compositions of Fe-30Mn-XAl-0.9C steels 

with Al contents between 3 and 9%Al.1,2,4,17 A comparison of the inclusion removal of 

samples taken from before and after the filter for all the three molds is shown in Figure 12. 

The density of AlN decreased in the filtered samples by 27-28% in the first two molds and 

by 38% in the last mold poured. The filtration efficiency has been calculated using 

Equation 1 and the area fraction of inclusions before and after filtration as per the method 

used by Apelian et al.(7) Filtration efficiency of all the nitride based inclusions that form in 

the liquid (AlN, AlN-MnO and AlN-MnS namely) was between 38 and 39% for the first 

two molds poured and increased to 55% in the last mold poured. It is shown in Figure 13, 

that although the incoming inclusion densities are largely similar, the last molds poured 

tended to have a higher percentage of larger inclusions, >3pm, and these larger inclusions 

tend to be filtered out more efficiently. The inclusion removal efficiency for inclusions 

greater than 3 pm was found to be 30.3% and 28.6% for the first two molds, while for the 

third molds it was 58.2%. A study for a similar mold design and inclusion filtration study 

was recently performed by Chakraborty et al. on a SAE 316 steel that was deoxidized by 

aluminum, generating a large amount of solid alumina inclusions.9 The efficiency of solid 

nitride inclusion filtration in the current study in mold 1 and mold 3 was higher by 20% 

and 10%, respectively, than in the study by Chakraborty et al.9

From Figures 10 and 11, it was observed that aluminum nitride inclusions had 

the highest inclusion density among all inclusions. The analysis of aluminum nitride 

inclusions across the three sets of molds becomes of paramount importance since it plays 

a major role in determining the impact toughness of the steel.4 It was also observed that the 

filter displayed an efficiency of 37% removal of AlN inclusions in the first mold followed
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by 45% and 61% removal of AlN inclusions in the second and third mold respectively. 

Figure 13 shows that the samples taken after the filter had a higher amount of smaller sized 

inclusions than large sized inclusions The difference in the bar graphs in Figure 13 show 

that since the larger inclusions float to the top and since mold three was poured at the end, 

it consisted of a high number of larger (>3 pm) sized inclusions. A similar trend is observed 

in the filtration of alumina inclusions by Chakraborty et al.9 This is understandable since 

the smaller sized inclusions would have passed through the pores of the ceramic filter while 

the larger sized inclusions are more easily filtered out.

5. CONCLUSION

The filtration of inclusions from the melt of a Fe-30Mn-9Al-1Si-0.9C-0.7Mo 

steel was studied as a function of pouring order and utilizing a novel mold design consisting 

of two castings connected to two separate but balanced rigging designs. One of the gating 

systems utilized a zirconia 10 ppi foam filter in the runner system while the other one was 

unfiltered. The three molds were prepared using no-bake sand and the metal was poured 

using a tea pot ladle. Results showed a decrease in the number and area fraction of 

inclusions with filtration as well as elimination of bifilm defects in samples sectioned 

directly after the filter in the runner system. Samples taken before the filter were covered 

with bifilms on their surface, which were mainly composed of aluminum and manganese 

oxides. Samples taken after the filter showed an elimination of bifilms. These results show 

that filters are extremely effective at removal of bifilm defects from high manganese and 

aluminum steels. AlN inclusions contributed to approximately 50% of the total inclusion 

population, while AlN-MnS and AlN-MnO contributed about 20% of the total inclusions.
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The filtration efficiency of inclusions from the melt increased from 38% to 39% in mold 1 

and 2, to 55% for mold 3. The filter displayed an efficiency of AlN removal from 37% to 

61% from mold 1 to mold 3. Mold 3 exhibited the highest amount of large size inclusions 

in the size distribution analysis and showed the highest inclusion filtration rate. These 

results show that ceramic foam filters are very effective at decreasing bifilm defects and at 

filtration of large inclusions from the steel and should be used when a high degree of 

cleanliness and toughness is desired. Future work will quantify the effect of filtration on 

casting quality and toughness and verify the inclusion capture mechanism within the filter.

ACKNOWLEDGEMENTS

The authors greatly acknowledge the contributions of the many undergraduate 

research assistants that contributed to this research: Kyle Dunsford, Trevor Constance, 

Ryan Van Dyke, and Steen Anthony. This project was supported in part by the W olf 

Endowed Funds for metal casting education and research at Missouri University of Science 

and Technology. The authors also greatly acknowledge MAGMA LLC for their support 

of the metal casting program at Missouri S&T and the contribution to the modeling work 

within this manuscript.

REFERENCES

1. Laura Bartlett, David Van Aken “High Manganese and Aluminum Steels for the 
Military and Transportation Industry”, The Minerals, Metals and Materials Society, 
Vol 66, No 1, (2014)

2. L.N.Bartlett, D.C.Van Aken “Effect of Aluminum and carbon on dynamic fracture 
toughness of FeMnAlC steels”, American Foundry Society, AFS Transactions, Paper 
13-1344,(2013)



67

3. R.Gopalan and Narayan. K. Prabhu “Oxide Bifilms in aluminum alloy castings: A 
review”, Materials Science and Technology,Vol 27, Issue 12, Pages 1757-1769, (2011)

4. A.M.Schulte, S.N.Lekakh, D.C.Van Aken, V.L.Richards “ Phosphorus mitigation in 
cast lightweight Fe-Mn-Al-C steel’” 114th MetalCasting Congress, Orlando, Florida, 
March (2013)

5. A.N. Leonov, M.M.Dechko “ Theory of design of foam ceramic filters for cleaning 
molten metals”, Refractories and Industrial ceramics, Vol 40, Nos 11-12, (1999)

6. V.N.Antsiferov, S.E.Porozova “ Foam Ceramic Filters for molten metals: Reality and 
Prospects”, Powder Metallurgy and Metal Ceramics, Vol 42, Nos 9-10, (2003)

7. D.Apelian, R.Mutharasan, S. Ali “Removal of inclusions from steel melts by 
filtration”, Journal of Materials Science 20, Pp, 3501-3514, (1985)

8. Chenguo Tian, “On the removal of non-metallic inclusions from molten steel through 
filtration”, Thesis: Mining and Metallurgical Engineering, MNpill University, May 
(1990)

9. S. Chakraborty, L. Bartlett, R. O ’Malley, M. Xu, “Efficiency of solid inclusion removal 
from the steel melt by foam ceramic filter: Design and Experimental Validation”,122nd 
AFS MetalCasting Congress, American Foundry Society, (2018)

10. Campbell J., “Complete Casting Handbook”, Elsevier Ltd., Oxford, UK (2011)

11. R. Vaz Penna, L.N. Bartlett, and T. Constance, “Understanding the Role of Inclusions 
on the Dynamic Fracture Toughness of High Strength Lightweight FeMnAl Steels,” 
International Journal of Metal Casting, October, (2018) In Press

12. Gunter Gigacher, Wilfred Krieger, Piotr R Scheller, Corinna Thomser, “Non-metallic 
Inclusions in High Manganese Alloy steels” Steel Research International, Vol 76, Issue 
9, pp.644-649, (2005)

13. M. Harris et al., "Evolution of Non- Metallic Inclusions in Foundry Steel Casting 
Processes Processes," Proceedings of the 69th Annual Technical and Operating 
Conference, Steel Founders Society of America (SFSA) (2015, Chicago Illinois), Steel 
Founders society of America (SFSA) (Dec 2015)

14. D. Dispinar, and J. Campbell, “Porosity, hydrogen, and bifilm content in Al alloy 
castings,” Materials Science and Engineering, 528 pp. 3860-3865 (2011)

15. G. Bozchaloei, N. Varahram, P. Davami, S. Kim, “Effect of oxide bifilms on the 
mechanical properties of cast Al-7Si-0.3M g alloy and the roll of runner height after 
filter on their formation” Materials Science and Engineering A, Vol 548 pp. 99-105 
(2012)



68

16. B. Farhoodi, R. Raiszadeh, and M. Ghanaatian, “Role of Double Oxide Film Defects 
in the Formation of Gas Porosity in Commercial Purity and Sr-containing Al Alloys,” 
Journal of Materials Science and Technology., Vol 30, pp. 154-162 (2014).

17. L. Bartlett, A. Dash, D. Van Aken, V. Richards, and K. Peaslee, “Dynamic Fracture 
Toughness of High Strength Cast Steels,” Transactions of the American Foundry 
Society, pp. 17-33 (2013)



69

II. QUANTIFYING THE EFFECT OF FILLING CONDITIONS ON 8630 STEEL
CASTING QUALITY

K. Balasubramanian,1L.N. Bartlett,1, M. Xu2

1Missouri University of Science and Technology,
Rolla, MO and 2Georgia Southern University, Statesboro, GA

Keywords: vortex gate, non-metallic inclusions, air entrapment, simulation

ABSTRACT

Gating systems play an important role in determining the quality and mechanical 

properties of castings. Recently developed naturally pressurized gating systems have been 

proclaimed by some to completely eliminate defects in steel castings, however, this has not 

been quantitatively studied. In the current study, the efficiency of different gating systems 

on reduction of inclusions and the corresponding improvement in notch toughness in 

quenched and tempered SAE 8630 high strength steel castings was studied using a 

combination of fluid flow and solidification modeling software and coupled with 

experimental studies on industrially produced test castings. A novel mold design allowed 

for the simultaneous comparison of four different “best practices” gating systems. These 

systems included two horizontally gated castings with a pressurized system and a non- 

pressurized system as well as two naturally pressurized countergravity systems. The test 

castings were identical modified Y-block castings and were modeled to have critical 

microporosity of less than 0.06% and Niyama criterion greater than five. This was done to 

minimize variation in solidification and to eliminate the effect of microporosity on
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toughness. Inclusion analysis revealed presence of mainly alumina and complex alumina 

and manganese sulfide inclusions. The naturally pressurized system provided the cleanest 

casting with the highest Charpy V notch, CVN, toughness. Eutectic type II MnS that 

formed during solidification negatively affected notch toughness and this obscured the 

effect of pre-existing alumina inclusions. The pressurized system was shown to have the 

highest inclusion fraction.

1. INTRODUCTION

Over the last few decades many investigations have been conducted by researchers 

to develop “best practices” gating systems that improve steel casting quality (1). Since the 

liquid melt enters a casting system through the rigging or gating system these systems play 

a significant role in either increasing or degrading casting quality.

Research has shown that a well-designed gating system can help decrease molten 

metal turbulence, reduce the slag, dross, and air entrainment within the casting and also 

capture detrimental inclusions that might enter the casting cavity.(2) Various other defects 

such as blows, cold shuts, ripple marks etc. can also be directly related to the gating system 

and metal flow during mold filling.(3) When the metal filling is turbulent, it can lead to air 

entrainment, oxide bifilm formation, and reoxidation inclusions as well as sand inclusions 

from mold erosion. It has been shown that reoxidation inclusions resulting from pouring 

and mold filling can comprise up to 83% of the inclusions in low alloy steel castings and 

48% of inclusions in stainless steel castings.[4] The presence of excessive amounts of filling 

related inclusions is often detrimental to machinability, casting surface quality, and 

mechanical properties. Control of reoxidation inclusions is important as it is estimated that
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up to 20% of the manufacturing costs associated with the production of steel castings are 

associated with repair and rework that results from these filling related defects.

Various types of flows that can occur in gating systems can entrain air into the 

molten metal such as the metal falling from a height, formation of breaker waves, or waves 

returning from the runner after hitting an obstacle. These cases lead to the entrainment of 

oxygen which subsequently causes formation of oxides that get entrapped in the liquid 

metal as reoxidation inclusions.(5) Therefore, gating systems must be properly designed to 

limit metal turbulence during filling and exposure of the molten metal with air. For 

obtaining smooth filling, laminar flow of the molten metal is essential. The Reynolds, 

number (Re), is used to characterize the flow of metal as a turbulent or laminar flow.[6] The 

Reynolds number is given by,

Re = (pVd) / (p) (1)

where p is the density of the metal, V is the velocity of the metal, d is the diameter and p 

is the viscosity of the metal. At Re lower than 2000, viscous forces prevail, leading to a 

smooth and laminar flow while Re over 2000 is considered as turbulent flow, where the 

velocity and direction of flow of the metal changes erratically. [1,6]

However, it has been shown that surface turbulence (predicted by the Weber 

number) and the amount of time the liquid metal is in contact with the air have more of an 

effect on air entrainment and reoxidation than Re alone. The Weber number is a 

dimensionless quantity which helps to establish the relationship between the kinetic energy 

of a fluid and the stabilizing surface tension forces and is given by Equation 2.
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We=pLv2/ o (2)

where p is the density of the molten metal, L is the radius (characteristic length) of the 

channel, v is the molten metal velocity and o is the surface tension of the molten metal. As 

the Weber number increases, the kinetic energy becomes more dominant leading to high 

splashing an turbulent flow of the metal.[7] It is shown that molten metal velocity has the 

greatest effect on the Weber number and therefore one way to decrease turbulent flow and 

reduce the amount of filling related defects is to decrease metal velocity, however, cold 

shut formation and misruns can occur when the flowrate is below a critical level. Thus, 

design of gating systems has a direct impact on proper filling of castings.(5) Campbell gives 

a critical ingate velocity of 0.5 m/s where the molten metal is safe from entrainment 

problems.[8] However, in practice it is often hard to achieve this in an industrial foundry 

and ingate speeds between 0.5 and 1.0 m/s are often recommended.[8]

Most steel foundries use adaptations of the gating system shown in Figure 1 for a 

horizontally parted mold, which has been widely accepted for more than 50 years. This 

design has a number of features to control molten metal velocity, eliminate oxide damaged 

metal, and minimize turbulent flow. For example, rectangular pouring basins are preferred 

over conical pouring cups because they minimize air aspiration, allow for stabilization of 

the molten metal flow, and allow entrained air bubbles to rise in the basin without being 

washed into the downsprue.

Tapering the downsprue reduces air aspiration and a sprue well helps to minimize 

the turbulence due to high velocity and molten metal changes in direction. Curved, 

rectangular runners and gates also minimize air aspiration and promote laminar flow. 

Runner extensions and runner wells are utilized to decrease the gate velocity and provide
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removal of the first metal into the mold which likely contains high amounts of reoxidation 

defects from the initial pouring event.

Figure 1. Horizontally parted gating systems that are typically used in the steel casting
industry [9]

The work that has been done thus far on investigating the pouring conditions, and 

their impact on formation of oxide inclusions have suggested that, minimizing the velocity 

of the incoming metal has a sizeable impact on reduction of air entrainment defects with 

the goal to limit the gate velocity to 0.5 m/s or less .(10) Historically, both pressurized and 

non-pressurized gating systems have been employed in design of horizontally gated sand 

molds. However, these castings use the gravity filling method and in practice, it is often 

difficult to avoid high gate velocities, metal splashing, and surface turbulence.

With the demand for cleaner quality castings constantly arising, new bottom-gated, 

or countergravity, systems are being developed to prevent air entrainment and enable better 

filling results.(6) The vortex gate, vortex spin trap, and the trident so called “Naturally 

Pressurized” countergravity gating systems have recently been developed and use 

centrifugal spin traps which help to reduce velocity and eliminate damaged metal from
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entering the casting.[11] The vortex gate leads directly into the casting and utilizes a filter 

to reduce turbulence due to metal spin. This system effectively reduces the incoming metal 

velocity; however, it centrifuges the bubbles into the casting that can lead to oxide defects 

and blows. The trident gate was found to be more effective and has a complex design 

system that incorporates the use of two filters and a bubble trap and has proven its 

capabilities in aluminum alloys, however, the use of filters adds an additional cost that 

most foundries are not willing to encumber.(12) Vortex spin trap gating systems with 

extended runners were found to be as effective as trident gates at reducing metal velocity 

and are less expensive and complex to implement because they do not use filters.

Although these novel gating systems have shown great promise in computer 

simulations, there has been limited studies that link the design, modeling, and actual 

performance of these gating systems in industrial steel castings. Competition in the 

foundry industry and the need for higher quality products with complex designs has made 

computer modeling of molten metal flow and solidification simulations almost essential 

with the goal of minimizing critical gate velocity (13). However, the use of these software 

packages cannot accurately predict filling related defects and as such as reoxidation 

inclusions and bifilms. The goal of this study is to use a combination of computational 

computer modeling coupled with experimental validation to optimize and compare the 

filling conditions of four different “best practices” gating systems during the pouring of 

SAE 8630 steel castings. A novel mold design was designed to simultaneously evaluate 

two countergravity vortex spin trap gating systems in comparison to traditionally side gated 

pressurized and nonpressurized systems. The cleanliness of the resulting castings was then
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evaluated using scanning electron microscopy, SEM, with automated feature analysis 

(AFA) and correlated to Charpy V notch toughness.

2. DESIGN OF MOLDS AND TEST CASTINGS

The commercially available filling and solidification software, MagmaSoft (5.3.1) 

was used for designing the molds. The mold design is shown in Figure 2 (a) and (b). The 

test castings are shown in gray in Figure 2 and were designed to be modified y-block 

castings of length 180 mm and a height of 85 mm. The castings were designed in such a 

way to accommodate a flat surface for obtaining samples to understand the effect of filling 

conditions on surface quality and provide an evaluation surface for floatation of reoxidation 

inclusions. For the study of CVN impact toughness, the length and width of the narrow 

section of the y-block was designed to accommodate sectioning of eight ASTM E23 

standard sized CVN bars in two layers of four bars each. The size of the castings was 

identical between different gating systems to minimize the effect of solidification on the 

microstructure and mechanical properties. The goal of the current study is to study the 

effect of filling conditions on steel cleanliness and CVN toughness. Therefore, other 

defects such as shrinkage and microporosity should be minimized. It is also important to 

“catch” filling related damage in the evaluation area of the castings and minimize floatation 

of inclusions into risers. Keeping these two requirements in consideration, the castings and 

gating systems were meticulously designed to ensure that most of the inclusions that 

entered the gate from the filling process remained in the castings while at the same time, 

producing sound metal with low levels of microporosity, <0.08%, in the evaluation area. 

Table 1 shows the nomenclature for the different gating systems that will be used as
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abbreviations. As shown in Figure 2, for the traditionally gated non-pressurized, NP, 

pressurized, P, and the naturally pressurized system with a side riser, SR, these conditions 

were satisfied by using a vented top chill (shown in blue) and a side riser (shown in red) to 

produce a high thermal gradient and low microporosity. The second naturally pressurized 

system incorporated a top riser to observe the filling of the molten metal into the casting 

cavity during the pouring operation. However, the solidification conditions in the test area 

were almost identical to the others. The top riser system was also provided with a sleeve 

as observed in Figure 2(b). All four of the different gating systems were connected to a 

single offset pouring basin which was designed using the guidelines suggested by John 

Campbell.(7) The pouring basin had an undercut which helped in controlling the velocity

(a) (b)

Figure 2. The complete design of the four gating systems in (a) isometric view (b) top
view

of the incoming metal. The pouring basin was also provided with a curved radius to ensure 

the easy flow of metal into the downsprue, minimizing any air entrainment defects. The 

pouring basin had three downsprues attached to it. The central conical downsprue from
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the pouring basin lead to a sprue well and subsequently into a runner with a Y-split into a 

traditional pressurized, P, and nonpressurized, NP, system. These systems were designed 

according to recommendations from the American Foundry Society Steel Technical 

Division and incorporated runner extensions and runner wells to catch the first metal into 

the mold. The gating ratio for the pressurized system was found to be 1:3:1.4 and the non­

pressurized system was found to be 1:3:8.

Each of the naturally pressurized systems are fed by different sprues that gradually 

transitioned into flat rectangular runners with vortex spin traps at the end of runner 

extensions. The Y-block castings were countergravity filled from a bottom fan gate with 

an enlargement taper at the interface of the casting to prevent hydraulic jumps. The 

downsprues were designed in such a way that all the sprues were completely full before 

25% of filling was completed to avoid air entrainment defects and obtain a clean casting. 

The velocity through each ingate was minimized as much as possible.

Castings were designed to have similar solidification characteristics and a low level 

of microporosity, <0.06%-0.08%. Since the goal of the project concentrated on studying 

the formation and influence of inclusions caused by reoxidation in different gating systems, 

it was important to eliminate the presence of macro and microporosity in castings. While 

the castings were devoid of macroporosities, the microporosity was ensured to be less than 

0.08% as shown in Figure 3. The Niyama criterion has been shown to be a good predictor 

of microporosity in steel castings and was designed to be above six for all the castings to 

obtain casting with a high amount of soundness. In Figure 4(a), it is observed that the top 

risered casting had a Niyama criterion above six near the shoulders from where the Charpy 

bars are intended to be taken. Figure 4(b) shows the casting of the naturally pressurized
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side riser system where the top section of the entire casting had a Niyama criterion greater 

than six. From the scale it must be noted that the uncolored regions display a Niyama 

number greater than 6, while the colored regions have a Niyama of less than 6. The castings 

of all other gating systems show similar Niyama trends as what is shown in Figure 4(b). 

Once the solidification criterion was successfully satisfied, the gating systems for the 

different gating systems were designed. The runner and gating systems for the castings 

were designed to obtain an ingate velocity of less than 0.5 to 0.8 m/s and to reduce air 

entrapment defects. The air entrapment result was used in the pouring simulation stage to 

evaluate the presence of wave formation, eddy currents and any fragmentation that was 

caused from the filling of the liquid metal. Figures 5(a-d) shows the progressive filling of 

metal into the naturally pressurized top riser system, TR, at 30%, 35%, 50% and 75% 

respectively. At 30% it is observed that the incoming metal hits the base of the gate but 

because of the curvature provided there is no swirl, or any metal fallback observed. At 35% 

filling of the casting, the metal starts entering the casting with a velocity of less than 0.5m/s 

and with a flat and quiescent filling profile. Since different gating systems fill up at slightly 

different speeds, the naturally pressurized top riser system fills up in 8.5 seconds while the 

pressurized and the non-pressurized systems take close to 12 seconds for filling. The 

velocity at the base of the gates in the pressurized and the non-pressurized systems was 

around 0.8m/s but the filling velocity inside the casting was found to be 0.5m/s as shown 

in Figure 6(a). The air entrapment in the gating system shown in Figure 7(a) was found to 

be 6-8% while the air entrapment in the casting was found to be less than 3%. The naturally 

pressurized vortex spin trap systems incorporated a cylindrical overflow attached to a

runner extension.
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Figure 3. The castings were designed to ensure a microporosity less than 0.08%. 
(a) TR system with a low microporosity in the top sections (b) The clipped SR casting 
had a microporosity lower than 0.08%. The microporosity displayed by the NP and P

systems were similar to the SR casting
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(a)

(b)

Figure 4. The castings were designed to have a Niyama number of greater than 6 for 
obtaining quality castings without shrinkage defect. (a) the casting from top riser system 

(b) casting from the pressurized and non-pressurized system. The transparent regions
indicate a Niyama value greater than 6
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The high velocity incoming metal in the runner initially bypasses the bottom gate 

and the vortex spin trap works as anticipated for reducing the velocity of the metal into the 

gate as shown in Figure 3. The velocity of the metal flow inside the casting was found to 

be 0.5-0.6m/s as shown in Figure 6(b). The air entrapment in the gating system was found 

to be 6-10% while the air entrapment in the casting was found to be less than 3% as shown

Figure 5. The velocity profile during filling for the top riser naturally pressurized gating 
system at (a) 30% (b) 35% (c) 50% and (d) 75% of complete filling of the mold observed 

between a scale of 0-1.5m/s. observed between a scale of 0-1.5 m/s. Molten metal is 
shown to enter the casting at less than 0.5 m/s and with a flat and quiescent filling profile
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Figure 6. The velocity profile of filling when the molten metal enters the casting in (a) 
the naturally pressurized top riser system (b) the naturally pressurized side riser system 

(c) the pressurized system and (d) the non-pressurized system. In (c and d), gate velocity 
was slightly higher in the traditional pressurized and non-pressurized systems and 

increased from less than 0.5 m/s to 0.8m/s

in Figure 7(b). Air entrapment less than 15% is considered a well-designed gating in 

castings and the design shows good agreement with the expected values for a good quality 

casting.

In the pressurized system, the velocity of the metal into the casting was found to be 

less than 0.7m/s and in the non-pressurized system, the velocity less than 0.5m/s as shown
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in Figure 6(c and d). The air entrapment in the castings of both the pressurized system and 

non-pressurized system was less than 6% as shown in Figure 7(c) and 7(d), respectively.

Figure 7. The air entrapment for filling when the metal enters the casting in (a) TR 
system (b) SR system (c) NP system (d) P system taken between a scale of 0-15%. All 

the castings were designed to have air entrapment lower than 15%

3. EXPERIMENTAL PROCEDURE

The molds for this study were 3D printed using furan bonded alumina ceramic sand. 

The complete dimensions of the mold box was 990mm in length, 700mm in width and
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550mm in height. As shown in Figure 8, the cope box on these quad molds consisted of 

the risers and the traditionally gated casting cavities while the drag box contained the 

runners and the gates. The parting line was irregular and the naturally pressurized casting 

cavities were printed separately as cores and glued into place. Openings were provided in 

the cope box for inserting the chills. Alumina tubes were inserted into holes in the steel 

chills as vents to prevent misrun.

To understand the industrial conditions and replicate actual industrial practices, an 

SAE 8630 steel alloy was poured by a partner foundry into two quad molds. The steel was 

melted in a 1000lb induction furnace. The melt was protected from oxidation by surface 

protective argon liquid, the EGAL process, during steelmaking. The steel was tapped into 

a 1000lb teapot style ladle and the ladle temperature was recorded to be 1605°C (2921°F). 

The steel was aluminum killed in the ladle prior to pouring. Immersion samples were 

obtained in the ladle just prior to pouring and the temperature in the ladle just before the 

pour was recorded as 1605°C. The filling time for each mold was measured to be 11 

seconds. The top of the castings was sectioned for inclusion analysis. The locations of 

samples for inclusion analysis are shown in Figure 10. Samples were sectioned from a 

depth of approximately 7.5mm from the top surface of the castings, as shown in Figure 

10(a). Five samples, numbered 1, 2, 3, 4 and 5 according to their positions as shown in 

Figure 10(b) were obtained for the castings with side risers and four samples were taken 

for inclusion analysis in the casting with the top riser as shown in Figure 10(c). Since the 

inclusions tend to float to the top, it was decided that analysis near the of the top surface 

would be the ideal location for inclusion analysis. The remaining casting was sectioned, 

15mm from one end and 25mm from the top (shown as a yellow box), to obtain samples
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for chemistry analysis as seen in Figure 10(b). The position of the samples was kept 

constant throughout the castings. A LECO TC500 was used for oxygen and nitrogen 

analysis while a LECO CS600 was used for carbon and sulfur analysis. The vortex 

overflows that were designed in both the naturally pressurized systems were also sectioned 

to study the inclusion population. The sectioning of the overflows of the top riser system 

is seen in Figure 11(a). The overflow from the top riser system was sectioned vertically in 

half and from one of the halves, three samples were obtained.

Figure 8. CAD drawing of the mold assembly shows the cope box containing the risers 
and the casting cavities while the drag box contains the runners and the gates

Figure 9. Image of the mold directly after pouring at the industrial partner foundry shows
a full pouring basin and no spillage
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The three samples were named OA11, OA12 and OA13 respectively from top to 

bottom for the top riser system. Similarly, the sectioning of overflows of the naturally 

pressurized side riser system is seen in Figure 11(b). Since this overflow was smaller than 

the other was, two samples were obtained, namely OB11 and OB12.

(c ) (d) (e)
Figure 10. CAD drawing of castings showing the location of chemistry samples, 

inclusion analysis samples, and CVN test bars. (a) 7.5 mm from the top of the side 
risered castings were sectioned and 5 samples were sectioned for inclusion analysis 

according to their positions directly beneath as shown in (b). LECO chemistry analysis of 
total C, S, O, and N was obtained at a depth of 15 mm into the casting. (c) Specimens for 
inclusion analysis were taken from the shoulders of the TR system. (d) Locations of the 

CVN bars taken from the SR, NP and P systems in two different layers, 1 and 2. (e) 
Locations of CVN bars taken for the TR system below the shoulders of the casting
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The samples were metallographically polished and inclusion analysis was 

performed. Inclusion analysis of samples was accomplished utilizing an ASPEX PICA 

1020 SEM with automated feature analysis. A backscattered electron detector (BSED) and 

a magnification of 500X was used for the analysis. An emission current of 32pA with a 

dwell time of 12ps was considered for the analysis. To understand and compare the impact 

toughness of various gating systems, Charpy V-notch tests were performed at room 

temperature as per ASTM E23. The pressurized, non-pressurized and naturally pressurized 

side riser system’s castings were sectioned into two layers of 18mm each as shown in the 

Figure 10(d). From the first layer 4 samples were obtained, namely 1, 2, 3 and 4 and from 

the second layer, four samples were obtained, namely 5, 6, 7 and 8. From Figure 4(a), it 

was observed that the naturally pressurized top riser system had a low Niyama criterion the 

mid-section. To avoid this shrinkage affecting mechanical properties, samples from this 

particular system were obtained as shown in Figure 10(e) from the shoulders of the casting. 

These test bars were initially machined to dimensions of 12mmX12mmX55mm. The bars 

were normalized by soaking at 900°C for 30 minutes in protective atmosphere and cooled. 

The bars were then austenitized at 870°C for 30 minutes, quenched in room temperature 

water, and subsequently tempered at 600°C for 30 minutes and water quenched 

immediately. The bars were then machined as per ASTM E23 standards and tested at room 

temperature using a Tinius Olsen model 84 pendulum type impact testing machine. The 

area directly under the fracture surface of selected specimens were metallographically 

polished to understand the relationship between area fraction of inclusions and impact 

toughness.
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(a)

(b)

Figure 11. CAD drawing showing the position of samples obtained for inclusion analysis 
from the vortex overflows in the naturally pressurized systems. These are named OA11, 
OA12 and OA13 for the top riser, TR, system as shown in (a). (b) Two samples were 

obtained for inclusion analysis and named OB11 and OB12 from the side riser, SR,
system

4. RESULTS

For the results and discussion section, the following abbreviation would be used for

the different gating systems.
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Table 1. Abbreviation of different gating systems and the molds

TR Naturally pressurized Top Riser system

SR Naturally pressurized Side Riser system

NP Non-Pressurized system

P Pressurized system

1 Samples/data obtained from mold 1

2 Samples/ data obtained from mold 2

4.1. CHEMISTRY ANALYSIS

The immersion samplers that were obtained from the ladle before the pour were 

analyzed using the optical emission spectroscopy (OES). Table 2 gives the measured 

chemistry for all the elements except carbon and sulfur which were measured using 

combustion infrared detection techniques in a LECO C/S analyzer. For analyzing the 

carbon, oxygen, sulfur and nitrogen levels, samples were sectioned from the casting as 

shown in Figure 8(b) and the results are shown in Table 2.

Table 2. Steel chemistry in weight percent as determined using OES and LECO*

Fe Al C Cr Cu Fe Mn Mo Ni Si O* N* S*

Bal 0.01 0.33 0.60 0.07 97.1 0.71 0.18 0.58 0.31 .003 0.006 0.006

A comparison of the total oxygen, nitrogen, and sulfur levels for mold 1 and mold 

2 are given in Figures 12(a) and 12(b), respectively. The oxygen and nitrogen levels in all 

of the four gating systems were relatively constant in mold 1. The oxygen content varied
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around 55-60 ppm while the nitrogen content was found to be between 75-78 ppm. 

However, for mold 2 while nitrogen levels remained constant and were similar to the levels 

in mold 1, the total oxygen levels showed a significant variation. The pressurized, P, system 

exhibited the highest oxygen content at 70 ppm while the nonpressurized system with the 

top riser, TR, showed the lowest amount of total oxygen at 43ppm. The sulfur levels in the 

pressurized system were the highest in both of the molds, however, the average sulfur 

content was around 50 to 65 ppm in all of the castings except for the pressurized system in 

mold one which had significantly higher sulfur at 78 ppm.

Figure 12. Total oxygen, sulfur, and nitrogen (in ppm) for samples taken from the 
castings of different gating systems. (a) The naturally pressurized top riser (TR) and side 

riser (SR) systems and traditional nonpressurized (NP) and pressurized (P) gating 
systems for (a) mold 1 and (b) mold 2

Optical micrographs of the polished specimens sectioned underneath the top 

surface of the castings are shown in Figure 13. Inclusions were present in clusters in the 

different gating systems in both the molds. The optical micrographs that were observed for 

the TR, SR, NP, and P systems of mold 1 are shown in Figures 13 (a), 13(b), 13(c) and 

13(d) respectively.
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'(a) (b)

(c) (d)
Figure 13. The optical micrographs taken from the different gating systems in mold 1 

reveal the presence of inclusions present in clusters throughout the samples. (a) Naturally 
pressurized top riser (b) Naturally pressurized side riser (c) Non-pressurized system (d)

Pressurized system

4.2. NON-METALLIC INCLUSION ANALYSIS

Inclusion analysis of samples was accomplished utilizing ASPEX PICA 1020 SEM 

with automated feature analysis. Inclusion analysis revealed that most of the inclusions 

found in the samples were manganese sulfide (MnS), alumina (AhO 3) and complex AhO 3 

-  MnS inclusions. Some representative backscattered electron, BSE, images of inclusions 

are shown in Figure 14.
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(a) (b) (c)
Figure 14. Backscattered electron images of different inclusions and their corresponding 

chemistries observed in the 8630 steel castings. (a) An alumina inclusion, (b) type 1 
MnS, (c) an image showing a complex alumina-manganese sulfide inclusion

Inclusion analysis was performed on samples that were sectioned just below the 

surface of the castings. Figure 15 shows the area fraction of alumina inclusions with 

respect to different positions in the casting as denoted in Figure 10. In both the molds, the 

non-pressurized system had an area fraction of alumina between 200-400 ppm. The 

naturally pressurized SR systems, apart from position five in mold 1, had an average area 

fraction between 180 to 250 ppm. The pressurized system in the second mold had high area 

fraction, ranging from 180 ppm to a maximum alumina area fraction of coverage of 1450

ppm .

Figure 16 shows the area fraction of alumina inclusions between the naturally 

pressurized top riser, TR, systems of mold 1 and mold 2. It can be observed that except for 

a single position where the area fraction was 1200 ppm of alumina, the remaining positions 

had a lower area fraction between 120-300 ppm. The total average area fraction of the 

alumina, MnS and the complex AhO 3-MnS inclusions across different positions is shown 

in Figure 17(a) and 17(b) for mold 1 and mold 2, respectively. The overall comparison of 

alumina inclusions in mold 1 showed that the area fraction was between 200-300 ppm. The
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complex Al2O3-MnS and MnS was highest in the nonpressurized TR system in both the 

molds. In mold 2 it was observed that the nonpressurized TR system and the pressurized 

system exhibit very high standard deviations owing to the high value of alumina area 

fraction as shown seen in position 3 of Figure 16 and positions 3 and 4 of Figure 15(b).
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Figure 15. The area fraction of alumina inclusions with respect to the different positions 
from the top sections of castings from (a) mold 1 and (b) mold 2. The gating systems in 
mold 1 had an area fraction between 180-500 ppm. The pressurized system of mold two 

had high inclusion density compared to the rest of the systems

The SR and the NP systems in both the molds showed consistent values for all the 

inclusions across both the molds. The size distribution of the combined alumina and 

alumina + MnS inclusion can be seen in Figure 18(a) and 18(b) for mold 1 and mold 2 

respectively. Both the molds exhibit similar trends with respect to the size distribution of 

inclusions and 60-70% of the total inclusions were found to be between 0-3pm. The TR 

system had the maximum percentage of inclusions above 3 pm.
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Figure 16. The area fraction of alumina inclusions comparison between the two molds for 
the TR gating system across different positions. An area fraction between 120-300ppm 

was found consistently for all positions except one peak of 1200ppm

The analysis of the overflows for mold 1 is shown in Figure 19 for the naturally

pressurized top riser and the side riser system. There were no trends with respect to the 

positions, but the overflows showed a higher area fraction of alumina inclusions than the 

castings compared from Figure 19 for both the TR and the SR systems.
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(a) (b)

Figure 17. The overall average area fraction of alumina, AhO 3-MnS complex inclusions 
and the MnS inclusions for (a) mold 1 and (b) mold 2 respectively. The NP and SR 

system showed consistent values while the TR exhibited highest values for the complex
and MnS inclusions respectively

Size of inclusions(pm )
(a)

Size of inclusions(pm )

(b)

Figure 18. Comparison of size distribution of alumina and the complex inclusions for all 
the four systems in (a) mold 1 and (b) mold 2. It is seen that 60-70% of all inclusions are 
<3 pm. Mold 2 has higher size of inclusions than mold 1 which is attributed to inclusion

floatation in teapot ladle
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4.3. MECHANICAL PROPERTIES

The Charpy bars were tested for hardness (HRC scale) and the CVN impact 

toughness at room temperature. The comparison of CVN and toughness for mold 1 and 

mold 2 is shown in Figure 20(a) and 20(b) respectively. The tempered hardness varied 

somewhat between 35 and 38 HRC. In both the molds, it was observed that hardness and 

toughness were inversely proportional to each. In both the molds, the TR system exhibited 

the highest impact toughness while the SR and the NP systems displayed an average of 44 

J of toughness.

Fractography was performed on the fractured surface of the bar taken from the 

pressurized system of mold 1 to understand the nature of the fracture. The specimens all 

displayed ductile fracture, however, as observed from Figure 21, the presence of large areas 

of type II eutectic manganese sulfides were noted on the fracture surface on most all of the 

fracture surfaces and these were the major inclusions observed on the fracture surface and 

likely contributed to the low energy ductile rupture observed in Figure 21.
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Figure 19. Inclusion analysis in overflows. (a) The area fraction of alumina and the 

complex inclusions plotted for the different sections of the overflow for the TR system
(b) positions in the SR systems
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Figure 20. The hardness and toughness properties were compared for the bars obtained 
from the two layers of the castings from each gating system in (a) mold 1 and (b) mold 2. 

The hardness and toughness properties were inversely proportional, and the TR system 
exhibited the highest impact toughness in both the molds

(a) (b) (c)

Figure 21. From the pressurized system of mold 1, fractography was performed on the 
bars which showed the presence of type II eutectic manganese sulfides formed in the 

chain or fan structure. (b) EDS analysis showed the MnS inclusions were composed of 
roughly 45%Mn and 27% sulfur by weight

5. DISCUSSION

The simulation for the entire system showed a filling time of 12 seconds while the 

actual mold filled in 11.4 seconds during the pour showing the accuracy of the simulation
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in predicting mold filling. The non-pressurized system was observed to have the best 

casting surface quality. It has been shown that the filling methods have large impact on 

the final surface quality of the castings and that a quiet turbulence-free filling method 

provides a better surface quality to the casting with reduced defects [14, 15]. It must be noted 

that there were no major defects on any of the surfaces and the chill used on the top of these 

systems were not zircon washed. The hot metal coming in contact with the chill and some 

small amount of reaction with the chill might have played an effect on minor surface 

irregularities. Analysis of the casting chemistries from Figure 12 showed that the nitrogen 

levels remained relatively constant between 70-75 ppm, while the sulfur content showed a 

variation in mold 1, with the pressurized system at 75ppm and the TR systems showing 

around 55ppm. The remaining two systems in mold 1 and all the systems in mold 2 showed 

around 65ppm of sulfur.

To track the source of sulfur, the immersion sampler obtained from the ladle was 

sectioned and analyzed for chemistry which showed the concentration (ppm) of nitrogen 

to be 69.2 ± 4.95, oxygen to be 34.05 ± 6.71 and sulfur to be 63.38 ± 4.62. This shows that 

there was no sulfur pickup from the mold. The rise in oxygen levels when compared 

between the immersion sampler and the castings shown in Figure 12, indicates that the 

oxygen pickup may have been because of reoxidation. The total oxygen contribution from 

the inclusions was determined from chemistry samples and compared to the measured 

oxygen in the top section of the castings. The software used for finding the measured 

oxygen from the inclusion analysis was obtained from the work by M Harris et al.[16] As 

shown in Figure 22, the total average oxygen content is in very good agreement with the 

oxygen obtained from the inclusions in mold 1. The two peaks found in the TR system and
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the P system in mold 2 was because of the high alumina content in the third position of TR 

system and third and fourth position of P system respectively as observed in Figure 16 and 

Figure 15(b).

The optical microstructural analysis as shown in Figure 13, indicated that the 

alumina inclusions were found in clusters. In the work by Yin et al, it is seen that there 

exists a strong long-range attraction force between alumina inclusions in low-carbon 

aluminum-killed steels.[17]. T.B.Braun et al.[18], showed that, the clusters of alumina 

inclusions are formed because of the collision and coalescence of individual alumina 

inclusions as a result of convective currents in the melt. To understand the types of 

inclusions and their formation, thermodynamic modelling for the 8630-steel composition 

was performed using the JMatPro software. The steel was modelled with 0.006 wt% 

oxygen, 0.0075 wt% nitrogen and 0.007wt% of sulfur to understand the formation and 

stability of the inclusions. Figure 23 shows the phases that formed as a function of 

equilibrium cooling. It is observed that the liquidus of the system was 1435°C. Stable 

precipitation of alumina as observed at steelmaking temperatures. MnS formed below the 

liquidus temperature during solidification.

The inclusion analysis shown in Figure 15, indicates that there was no definite 

pattern of inclusions acquired with respect to positions. In mold 1 except position 2 of the 

pressurized system and position 5 of the SR system, the rest of the positions for all the 

systems exhibited an area fraction between 160-240ppm. In mold 2, the area fraction of 

inclusions remained almost constant except two of the positions in the pressurized system 

displaying huge deviations. Figure 18 shows that the third position in mold 2 showed an 

area fraction of 1200 ppm of alumina.
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(a) (b)
Figure 22. Calculated total oxygen contribution of inclusions from specimens obtained 
from the top section of the castings as compared to the measured oxygen from LECO

analysis

Tem p erature  (0C )

Figure 23. Thermodynamic modeling of the equilibrium solidification of 8630 steel with 
0.0075% N, 0.006% O, and 0.007% S. AhO 3 is stable in the liquid well above the 

liquidus. MnS forms after the liquidus during solidification

Using Magmasoft 5.4.1. alumina inclusion tracers with density 3g/cc were used to 

simulate and predict the formation and accumulation of reoxidation inclusions. As 

observed in Figure 24(a) (marked by a black circle), for the TR system, the accumulation
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of inclusions takes place in the locations where the sample 3 was obtained as shown in 

8(d). Similarly, in 24(b), a high concentration of inclusions is obtained from the same 

location where sample 3 and 4 were acquired. Comparing the above data with Figure 15(b) 

and 16, it is seen that the simulation results correlate well with the inclusion analysis 

indicating high alumina concentration in the same locations for the TR and P systems. This 

validates the presence and accumulation of inclusions in certain areas compared to the 

others. In both the images, the white areas show the accumulation of alumina inclusions. 

However, it must be remembered that, these areas may not be the final location of 

inclusions. There are possibilities for movement of inclusions once solidification begins 

and the presence of the white areas indicating area fraction of alumina are subject to 

relocation.

Figure 18(a and b) shows the size distribution of the alumina and the complex 

inclusions across the different gating systems for the two molds. Mold 2 was found to have 

larger sized inclusion than mold 1. This indicates that the cleaner metal enters the first mold 

from the bottom half of the teapot ladle while the second mold collects metal from the top 

half of the teapot ladle. Due to inclusion floatation, mold 1 has cleaner metal than mold 2. 

This leads to the accumulation of higher sized inclusions in mold 2. Moreover, the TR 

system had a higher percentage of larger sized inclusions, than the other systems. Since the 

TR systems was provided with a top riser while the remaining three systems had a side 

riser, the movement of larger sized inclusions towards the top riser, leads to the 

accumulation of larger sized inclusions near its evaluation area.
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(a) (b)

Figure 24. Magmasoft inclusion tracer analysis showing the position of reoxidation 
inclusions after filling. (a) The accumulation of alumina inclusions observed in the TR 

system where sample 3 was obtained for analysis (b) The alumina inclusion accumulation 
in pressurized system where samples 3 and 4 were obtained for analysis indicated using

black circles on the castings

Figure 19(a) and (b) show the area fraction of alumina inclusions in the spin traps 

in the vortex overflows or spin traps. It was observed that the area fraction of alumina 

inclusions in the overflows were higher than that in the castings. The area fraction of 

alumina inclusions in the overflow of SR system was on average 8% higher than that in the 

casting while the overflow of the TR system showed a 65% increase in alumina inclusions 

in the vortex spin trap than in the casting. The spin traps were designed primarily to trap 

the incoming metal containing slag, dross, and other inclusions to prevent them from 

entering the casting. The high area fraction shows that the terminal spin traps functioned 

efficiently. The overflow from the TR system showed a higher inclusion content than the 

SR system and this could be attributed to the inclusion floatation. The plot showing the 

hardness and toughness values for the different systems is shown in Figure 20 and it can 

be observed in both the molds that the TR system had the highest toughness. Except for
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the pressurized system of mold 1, in both the molds, layers 1 and 2 respectively, did not 

show a statistically significant difference in the impact toughness. The TR system from 

mold 2 showed a maximum toughness of 56±4 J while the pressurized system from mold 

1 showed the least toughness of 43J. The difference in the variation in toughness of layer 

1 and layer 2 of the P system, could be a function of hardness. In an earlier study performed 

by Stephens (19), for 8630 steel, a hardness of 32.5HRC and a CVN toughness of 32 J was 

obtained at 25°C. In the current experiment, a maximum toughness of 52 J is observed and 

an average toughness of 45±6 J at an average hardness of 35HRC taken across all the 

systems. As seen in Figure 21, the presence of the eutectic type II manganese sulfides was 

the main factor leading to loss in fracture toughness. To understand the relationship 

between the MnS inclusions and toughness, a polished section was obtained directly 

beneath the fracture surface of the test bars. In Figure 25, the MnS inclusion density 

obtained from the sections underneath the Charpy bars is plotted against the corresponding 

toughness. An inverse relationship between the inclusion density of manganese sulfides 

and toughness of the inclusions is observed as shown in Figure 25. The TR system shows 

the least MnS inclusions across both the layers and hence the highest toughness among all 

the systems. The consistency in the amount of MnS density across both the systems and 

the associated toughness shows that the toughness was dependent on the MnS inclusions 

in all the gating systems across both the molds. From literature (20-22), among the three types 

of sulfides, the type II which are formed as a chains or fan like structures in interdendritic 

regions during solidification and are the most detrimental to the mechanical properties of 

steel. The toughness of notched bars was reduced as much as 50% with the presence of 

these eutectic sulfides. Type II sulfide inclusions cover large areas of the surface which
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leads to high stress concentration and easy crack initiation and propagation causing 

premature ductile failure in steels and a corresponding loss in strength and toughness.
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Figure 25. Notch toughness plotted along with the density of manganese sulfide 
inclusions for (a) mold 1 and (b) mold 2. It was observed that the toughness and the 

inclusion density display an inverse trend for both the molds

6. CONCLUSION

To understand the effect of filling on steel castings and quantify them, four gating 

systems, namely, a non-pressurized system with a side riser, pressurized system with a side 

riser, a naturally pressurized top riser and a naturally pressurized side riser system were 

designed using MagmaSoft 5.3.1. The solidification parameters like macro and 

microporosity, Niyama criterion and hotspots were simulated. The runners and gates were 

designed to minimize ingate velocity to less than 0.8m/s and air entrapment less than 15%. 

The two naturally pressurized systems were provided with vortex overflows to collect the 

incoming new metal and to reduce the velocity of liquid metal for smoother filling. A 

common pouring basin was designed to unite the system and the castings were chilled and
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vented. Alumina and manganese sulfide were the major inclusions found. Alumina 

inclusions were mainly found in clusters throughout the castings from all the four systems. 

The overall comparison of inclusions from samples obtained from the top layer of the 

castings showed that the top riser performed the best, followed by the non-pressurized 

system. The pressurized system exhibited high area fraction of alumina inclusions. 

Sectioning of overflows revealed that the area fraction of inclusions in overflows were 

higher than in the castings proving that the overflows collected most of the damaged 

incoming metal and slag effectively. The naturally pressurized system with a top riser was 

shown to have the highest toughness among all the systems. The type II eutectic MnS were 

the major reason for low energy ductile fracture. The naturally pressurized gating systems 

with overflows provided castings with better surface quality and lower inclusions. The 

naturally pressurized systems provide better quality metal and would be a good fit for 

producing cleaner castings with good mechanical properties for 8630 steel.
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ABSTRACT

High manganese and aluminum steels, or FeMnAl steels, have excellent 

combinations of strength and toughness and display up to a 17% reduction in density when 

compared with quenched and tempered low alloy martensitic steels. Military applications 

for FeMnAl steel castings require good ballistic performance and a low level of casting 

defects. However, filling related defects such as inclusions and oxide bifilms are 

problematic in these steels because of the high aluminum content and because these defects 

can sharply reduce mechanical properties. In the current study, the effect o f  different 

gating systems on reducing the amount of filling related defects in nominal composition 

Fe-29%Mn-8.2%Al-0.91%C-0.88%Si-0.49%Mo steel castings was studied using a 

combination of computer modeling of fluid flow and solidification, automated inclusion 

analysis, and evaluation of mechanical properties in test castings. Four different gating 

systems were evaluated in the same mold and included a traditional-styled non-pressurized 

system and pressurized system and two naturally pressurized systems, one with a side riser
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and one system with a top riser. Parameters such as critical velocity of metal flow, air 

entrapment, microporosity and Niyama criterion were considered and a design was 

developed with a common pouring basin using solidification software. Optical and electron 

microscopy revealed the presence of alumina bifilms that were entrained into the castings 

during filling in each of the gating systems. Notch toughness was evaluated using standard 

sized Charpy V notch bars that were broke at room temperature and showed a decrease in 

notch toughness and an increase in variability with an increase in the percentage of bifilms. 

The results showed that a well-designed traditional-style nonpressurized gating system 

with runner extensions, a runner well, and keeping the gate velocity less than 0.7 m/s 

produced the cleanest castings with the highest average notch toughness of 160J and the 

least mechanical property variance.

1. INTRODUCTION

FeMnAl steels, are high toughness steels that are based on high manganese 

austenitic Hadfield steel and have additions of up to 12%Al.(1) These FeMnAl steels have 

reduced densities because of the added aluminum content that usually ranges between 4­

10% and dilation of the austenite crystal structure with the addition of manganese between 

20-30%. Most studies of cast FeMnAl steels have centered around a composition of Fe- 

30Mn-9Al-0.9C-1.0Si-0.5Mo. For this composition, a 15% reduction in density is 

observed when compared to quenched and tempered SAE 4130 steel castings with similar 

strength and dynamic fracture toughness.(2)

The presence of inclusions and oxide bifilms are one of the major reasons for the 

loss of toughness in these steels. Brittle and faceted aluminum nitride, AlN, inclusions are
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stable at steelmaking temperatures in these alloys and this can decrease the ductility and 

toughness when these inclusions are present in significant amounts. The work done by 

Schulte et al. on a Fe-30Mn-9Al-1Si-0.9C-0.5Mo steel casting showed that the presence 

of AlN inclusions decreased the Charpy V-notch (CVN) breaking energy from 35J to 19J 

as the concentration of AlN increased from 12 inclusions/mm2 to 210 inclusions/mm2(3) 

The high aluminum content in these alloys is also problematic with regard to the formation 

of solid oxide films that form as the surface of the melt reacts with oxygen in the 

atmosphere. This leads to the formation of solid oxide bifilm defects, which can be 

entrained in the steel during steelmaking and pouring, leading to a loss in strength, fatigue 

life and ductility in castings. Bifilms are formed when the molten metal is exposed to the 

atmosphere and forms a solid film which folds over itself and gets entrained in the melt, 

often containing a layer of trapped gas. (4, 5) Surface turbulence is an important contributor 

for bifilm formation because poorly designed molds provide the possibility for hydraulic 

jumping and splashing of metal. This provides the opportunity for the liquid metal to divide 

into droplets, exposing the melt and causing the formation of new bifilms by air 

entrainment.(6) Bifilms have been known to an adverse effect on the mechanical properties 

of aluminum castings and the work done on AA356 castings by Liu and Samuel, 

established a linear relationship between the percentage elongation and log area percentage 

of oxide films(7). These bifilms can also serve as nucleation sites for gas porosity such as

hydrogen during solidification and can act as sites of failure when stress is acted upon it.

(8)

Gating systems play an integral role in determining the final quality of the casting, 

since the liquid metal enters the casting through the gate. A well-designed gating system
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helps to decrease the turbulence in the flow of the liquid metal, reduces the slag, dross and 

air entrapment and captures inclusions in the gating system instead of the casting (9). The 

various defects like cold shuts, ripple marks etc. that are usually formed in castings can be 

directly related to how the fluid metal behaves during mold filling (10). During pouring of 

the liquid metal from the ladle into the mold, prevention of air entrainment is extremely 

important. During mold filling, the formation of breaker waves, low pressure areas created 

by liquid metal moving past sharp corners and the metal rebounding off obstacles leads to 

air entrainment. These subsequently leads to the oxide formation which occurs either as 

inclusions or bifilms in the steel castings. The pouring basin, the sprues, the runner and the 

gates must be designed and optimized to reduce or eliminate air entrapment to reduce 

reoxidation inclusion formation.(11) The work that has been done thus far on investigating 

the pouring conditions, and their impact on formation of oxide inclusions have suggested 

that, minimizing the velocity of the incoming metal has a sizeable impact on reduction of 

air entrainment defects.(12) Pressurized and non-pressurized systems, in which the choke in 

the system is present either at the gates or at the base of the sprue, respectively have 

traditionally been used in foundries for more than 50 years. Despite the advent of fluid flow 

and solidification modeling, their application is still largely based on ideal gating ratio 

calculations and rules of thumb. Although computer aided fluid flow and modeling and 

solidification software has come a long way in recent years, these software packages cannot 

accurately predict the amount or location of reoxidation inclusions during filling and the 

databases of different alloys and thermodynamic data is limited. Novel naturally 

pressurized gating practices have been introduced in the recent years to reduce filling 

related defects and improve mechanical properties, however, their application often
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requires the trade-off of decreasing casting yield. (13) The vortex spin gate and the trident 

gate systems are two such bottom gated systems which have vortex surge cylinders or 

centrifugal traps which lower the velocity of the metal through the gate and aid in capturing 

the first metal into the gating system which is likely highly damaged from air exposure.(14) 

The presence of a terminal spin trap at the end of a runner extension not only aids in 

reducing the velocity of the incoming metal for smoother filling but also collects the slag 

and dross carried by the liquid metal. This enables cleaner metal to fill the castings. (14) 

These naturally pressurized systems have not been evaluated in FeMnAl steels. The goal 

of this study is to quantitatively evaluate the effect of different gating systems, namely a 

pressurized system, a non-pressurized system, and two naturally pressurized systems on 

casting cleanliness and notch toughness of nominal composition Fe-29Mn-8.2Al-0.91C- 

0.88Si-0.49Mo steel castings.

2. DESIGN OF TEST CASTINGS

The design and solidification software Magmasoft (5.3.1) was used for the 

designing the molds. The material used for the simulation from the database is 

GX120Mn13 (1.2%C and 13%Mn) which is the closest available to the target composition, 

Fe--29Mn-8.2Al-0.91C-0.88Si-0.49Mo. The test castings are shown in gray in Figure 1 

and were designed to be modified y-block castings of length 180 mm and a height of 85 

mm. The castings were designed in such a way to accommodate a flat surface for obtaining 

samples to understand the effect of filling conditions on surface quality and provide an 

evaluation surface for floatation of reoxidation inclusions. For the study of CVN impact 

toughness, the length and width of the narrow section of the y-block was designed to
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accommodate sectioning of eight ASTM E23 standard sized CVN bars in two layers of 

four bars each. The size of the castings was identical between different gating systems to 

minimize the effect of solidification on the microstructure and mechanical properties. 

Table 1 shows the nomenclature for the different gating systems that will be used as 

abbreviations. The goal of the current study is to study the effect of filling conditions on 

steel cleanliness and CVN toughness for FeMnAl steel. Therefore, other defects such as 

shrinkage and microporosity were minimized. It is also important to “catch” filling related 

damage in the evaluation area of the castings and minimize floatation of inclusions into 

risers. Keeping these two requirements in consideration, the castings and gating systems 

were meticulously designed to ensure that most of the inclusions that entered the gate from 

the filling process remained in the castings while at the same time, producing sound metal 

with low levels of microporosity, <0.08%, in the evaluation area. The y-block castings 

were designed to have a flat surface for inspection of surface quality and the presence of 

bifilms and inclusions. The design consisted of four different gating systems as shown in 

Figure 1, namely a traditional pressurized system with a side riser, a traditional non- 

pressurized system with a side riser, a naturally pressurized side riser system and a naturally 

pressurized top riser system. As shown in Figure 1, for the traditionally gated non- 

pressurized, NP, pressurized, P, and the naturally pressurized system with a side riser, SR, 

these conditions were satisfied by using a vented top chill (shown in blue) and a side riser 

(shown in red) to produce a high thermal gradient and low microporosity. The second 

naturally pressurized system incorporated a top riser to observe the filling of the molten 

metal into the casting cavity during the pouring operation. However, the solidification 

conditions in the test area were almost identical to the others. The detailed explanation of
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the mold design has been provided in the author’s earlier paper, where the same mold 

design was utilized for analysis of 8630 steel composition. (15) The pouring basin had an 

undercut which helped in controlling the velocity of the incoming metal. The pouring basin 

was also provided with an offset having a curved radius to ensure easy flow of metal into 

the down sprue eliminating any air entrainment defects. The parameters considered for the 

design was velocity of steel flow to be less than 0.8m/s as shown in Figure 2, a Niyama 

criterion greater than 6(C-s)05/mm, micro porosity less than 0.08% and absence of any 

hotspots or macroporosity. As shown in the author’s earlier paper, it is important to 

mention that the solidification parameters like Niyama criterion and microporosity 

displayed similar trends for FeMnAl steel as seen in 8630 castings.

(a) (b)

Figure 1. The complete design of the four gating systems in (a) isometric view (b) top
view

While the pressurized, non-pressurized and the naturally pressurized side riser 

systems, had a Niyama value greater than 6(C-s)05/mm throughout the castings, the top 

riser system as seen in Figure 2(b), had a Niyama greater than 5(C-s)05/mm in the mid­
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section o f the casting and greater than 6(C-s)05/mm near the shoulders. Niyama values 

greater than 6(C-s)05/mm are shown by the uncolored region.

(a) (b)

Figure 2. The castings were designed to have a Niyama number o f greater than 
6(C-s)1/2/mm for obtaining quality castings with low levels o f microporosity. (a) The 

casting from top riser naturally pressurized system (b) Castings from the pressurized and
non-pressurized systems

The velocity at the base of the castings in the naturally pressurized systems and at 

the gates in the pressurized and non-pressurized systems was found to be lower than 

0.8m/s. The naturally pressurized systems were provided with overflows while the 

pressurized and the non-pressurized systems were provided with runner wells. The 

overflows aid in controlling the velocity of the metal and in collecting the incoming 

inclusions and slag, so that new metal without any impurities enters the castings. An 

elevated gate was attached to either of the split runners leading into the gates. The gating 

ratio for the pressurized system was found to be 1:3:1.4 and the non-pressurized system 

was found to be 1:3:8. Air entrapment was considered while designing the gating systems 

and the castings were designed in such a way that the overall air entrapment in the gates
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and the castings was maintained below 15% for all the four gating systems. The naturally 

pressurized side riser system and the pressurized and the non-pressurized systems were 

also chilled from the top to ensure a high thermal gradient and greater riser feeding 

distance. A low carbon steel insert that was zircon-coated was used as the chill. The chills 

were vented by drilling holes through them and inserting ceramic alumina tubes. The 

naturally pressurized top riser system was provided with a sleeve and remained an open 

riser.

3. EXPERIM ENTAL PROCEDURE

The molds for this study were 3D printed using furan bonded ceramic sand at the 

University of Northern Iowa. The complete dimensions of the mold box was 990mm in 

length, 700mm in width and 550mm in height. The cope box consisted of the risers and the 

traditionally gated casting cavities while the drag box contained the runners and the gates. 

The parting line was irregular and the naturally pressurized casting cavities were printed 

separately as cores and glued into place. Openings were provided in the cope box for 

inserting the zircon-washed chills. Alumina tubes were inserted into drilled holes in the 

chills as vents to prevent misrun. These vents were then packed tightly around the holes 

using no-bake sand.

A 1000-pound furnace was used for melting the charge. The target composition was 

Fe-29Mn-8.2Al-0.91C-0.88Si-0.49Mo. The steel was poured into two molds sequentially 

using a tea pot ladle. Immersion samples were taken at every stage of charge addition and 

from the ladle. The temperature in the ladle just before the pour was 1561°C. The filling
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time for each mold was measured to be approximately 11 seconds. Once the molds were 

shaken out, they were sectioned for further analysis.

Figure 3. The velocity for filling when the metal enters the casting at various filling times 
in the(a) naturally pressurized top riser system (b) naturally pressurized side riser system 
(c) pressurized system (d) the non-pressurized system. All the castings were designed to

have ingate velocities less than 0.8m/s

The top surface of the castings of all the four gating systems were analyzed for any 

defects related to surface irregularities caused during solidification. The top surface of the 

castings were sectioned for inclusion and bifilm analysis. The sample preparation methods 

for the naturally pressurized top riser, naturally pressurized side riser, non-pressurized and 

the pressurized system is shown in Figure 4. The locations for inclusion and bifilm analysis 

were sectioned at a depth of 7.5mm from the top surface of the castings, as shown in Figure
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4(a), where the yellow section shows the sectioned region. Five samples, numbered 1, 2, 

3, 4 and 5 according to their positions as shown in Figure 4(b) were obtained from the top 

section. For representative purposes, the positions are marked in Figure 4(b). The authors 

would like to remind the readers that the five samples for inclusion analysis were obtained 

from the bottom side of the sectioned 7.5mm layer. Since the inclusions have a tendency 

to float to the top, it was decided that the analysis of this top surface would be the ideal 

location for inclusion analysis. From one end of the remaining casting, a block was 

sectioned for obtaining samples for chemistry analysis. The position of the 5 samples from 

the top skin and location of chemistry samples was kept constant throughout the castings 

for an even comparison of inclusion distribution and chemistry across the gating systems. 

LECO TC500 was used for oxygen and nitrogen analysis while a LECO CS600 was used 

for carbon and sulfur analysis. In the top riser system, because of a lower Niyama criterion 

in the mid-section as observed in Figure 4(c), samples were sectioned from either of the 

shoulders beside the top riser. Four samples were obtained for the analysis as seen in Figure 

4(c), where the yellow region shows the sectioned part. These samples were polished using 

standard metallographic procedures and analyzed for inclusions and bifilms.

Due to the high volume of bifilms found on the top surface of the castings, the 

percentage area coverage of bifilms was used as a measure to determine cleanliness. To 

understand the effect of casting cleanliness on the impact toughness of the castings 

obtained from the different gating systems, standard Charpy tests were performed at room 

temperature as per ASTM E23 standards. As shown in Figure 4(d), for the pressurized, 

non-pressurized and naturally pressurized side riser systems, two layers of bars were 

obtained from the mid-sections of the castings. From the first layer, 4 bars were obtained,
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namely 1, 2, 3 and 4 and from the second layer, four bars were obtained, namely 5, 6, 7 

and 8.

(c) (d) (e)

Figure 4. Experimental CAD drawing of castings showing the location of chemistry 
samples, inclusion analysis samples, and CVN test bars. (a) 7.5 mm from the top of the 
side risered castings were sectioned and 5 samples were sectioned for inclusion analysis 

according to their positions directly beneath as shown in (b). LECO chemistry analysis of 
total C, S, O, and N was obtained at a depth of 15 mm into the casting. (c) Specimens for 
inclusion analysis were taken from the shoulders of the TR system. (d) Locations of the 

CVN bars taken from the SR, NP and P systems in two different layers, 1 and 2. (e) 
Locations of CVN bars taken for the TR system below the shoulders of the casting

From Figure 2(a), the naturally pressurized top riser system had a low Niyama 

criterion in the mid-section. To avoid this shrinkage from affecting the mechanical 

property, bars from this system were obtained as shown in Figure 4(e) from the shoulders 

of the casting. Rectangular specimens were machined from the resulting castings and 

solution treated in a protective atmosphere at 1050°C for two hours and then rapidly 

quenched in water. The bars were then machined to dimensions of 10mmX10mmX55mm
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according to ASTM E23 standards. Ten hardness values were taken on the ends of each 

machined bar using an INSTRON Rockwell tester. Charpy tests were conducted room 

temperature using a TINIUS OLSEN Model 84 impact testing machine. Representative 

fractured bars were retained for inclusion analysis and fractography using scanning 

electron microscopy.

4. RESULTS

For the results and discussion section, the abbreviation shown in Table 1 would be 

used for the different gating systems.

4.1. CHEM ISTRY

The immersion samplers that were obtained from the ladle before the pour were 

used to analyze the chemistry using optical emission spectrometry (OES). Table 1 gives 

the measured chemistry which were measured using OES and combustion infrared 

detection techniques in a LECO C/S analyzer.

Table 1. Abbreviation for the different gating systems and the molds

TR Naturally pressurized Top Riser system

SR Naturally pressurized Side Riser system

NP Non-Pressurized system

P Pressurized system

1 Samples/data obtained from mold 1

2 Samples/ data obtained from mold 2
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Table 2. Target and measured chemistry in weight percent as determined using OES and
LECO*

Element Al C* Cr Cu Fe Mn Mo Ni Si O S

Target 8.2 0.91 61.72 29 0.49 0.88

Ladle 7.88 0.9* 0.06 0.03 60.25 29.36 0.34 0.003 1.11 0.0015 0.005

The certified standards used for calibration of the OES had chemistries similar to 

the composition of the steel. Combustion analysis was performed for analyzing the 

concentrations of carbon, sulfur, nitrogen and oxygen. The results are shown in Figure 5 

for mold 1 and 2 respectively. The sulfur levels in both mold 1 and mold 2 were constant 

between 50-60ppm. The oxygen levels were less than 5 ppm in mold 1 for the TR, NP, and 

P systems while it was 26.5ppm for SR systems with high standard deviation. For mold 2, 

the oxygen levels were between 30-45ppm with high standard deviations for all the four 

gating systems. The nitrogen concentration for the TR systems in both the molds remained 

constant at 15ppm while for the other gating systems, it was generally higher in mold 2 

than mold 1 as observed in Figure 5(b).

4.2. BIFILM  ANALYSIS

The samples obtained from the top skin of the casings were metallographically 

polished and observed under the optical microscope for inclusions and bifilms. They were
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found to have a dense network of bifilms as shown in the Figure 6(a).Since the bifilms 

interfere with the automated inclusion analysis, providing very little area for inclusion
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Figure 5. Measured concentrations of oxygen, sulfur, and nitrogen (in ppm) for samples 

taken from the castings of different gating systems for (a) mold 1 and (b) mold 2

characterization, only optical microscopic bifilm evaluation was performed on these 

samples. Fifteen images were randomly captured for every sample at a magnification of 

5X and it was ensured that the areas of 2 samples did not overlap. Using ImageJ software, 

a threshold is applied as shown in Figure 6(b) and the percentage area cover of the bifilms 

is calculated. The average of the fifteen values of percentage area cover of bifilm was 

obtained per sample. As seen in Figure 4(a) and 4(b), there were 5 samples obtained from 

the top SR, NP, and P gating system and 4 samples from the top of TR system. Figure 7(a 

and b) show the percentage of bifilm area coverage as a function of location for each gating 

system. It must be remembered that the values shown in Figure 7, are average values 

obtained from fifteen images taken from that sample. It was observed that in mold 1, the 

SR system showed consistently high bifilm area around 3-4% throughout all the positions.
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The TR system showed 1-2% bifilm cover while the P and the NP displayed 1-2% except 

for position 1 and 4, where high film cover was observed. Except the SR system, mold 1 

and mold 2 were found to have comparable area cover of bifilms for all positions.

Figure 6. Bifilm analysis on images using ImageJ. (a) An image captured from the top 
riser system of mold 1, showing the presence of bifilms (b) Using ImageJ software, a 

threshold is created to identify the bifilms from the matrix and thus the percentage area
cover of bifilms per sample is calculated

Figure 8 shows the cumulative area % of bifilm cover for all the positions. The TR 

system for mold 1 and mold 2 showed a bifilm cover of 1.5%. A huge variation in SR 

system was observed since mold 1 had an average of 3% across the 5 samples while the
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mold 2 SR system showed around 1.4%. The NP system of mold 1 and mold 2 showed a 

variation of 0.3% in their bifilm areas and a high standard deviation was observed for the 

NP system of mold 1. The pressurized system in mold 2 had a bifilm cover of 1.8% while 

the mold 1 had an average of 1% bifilm cover.

(a) (b)

Figure 7. The percentage area of bifilm cover obtained as a function of position in the 
casting as referenced in Figure 4 for (a) mold 1 and (b) mold 2
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Figure 8. The percentage area of bifilm cover obtained as an average of all the samples 
obtained from the different positions of top layer of the castings as referenced in Figure 4 

of various gating systems for mold 1 and mold 2
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4.3. M ECHANICAL PRO PERTIES

From the bars, machined to ASTM standards, ten values of hardness were obtained 

from every bar using the Rockwell B scale and Hardness measurements are shown in 

Figure 9 (a and b) for mold 1 and mold 2, respectively.

It can be observed from Figure 9(a), that the hardness of the castings from mold 1 

was between 93-97 HRB. For mold 2, the hardness of the castings was slightly higher and 

ranged from 97-100HRB. It was observed that the standard deviation of the hardness values 

was very low indicating the consistency in values. It must be remembered here that the 

values represent the average of four bars taken per layer of the casting with 10 

measurements of hardness taken on every bar.

A comparison of toughness between layer 1 and layer 2 of the castings in mold 1 

and mold 2 showed that, the castings obtained from layer 2 had higher toughness than layer 

1 for the TR and SR systems. In the pressurized system of mold 1, layer 1 had a toughness 

of 171±9.31J and layer 2 had a toughness of 150±3.5J. In mold 2, the first and second 

layers of the P and NP systems had comparable values. Overall, for both the molds, the P 

and NP systems had an impact toughness either comparable or greater than that of the 

naturally pressurized systems. The fractography performed on the surfaces of the Charpy 

bars that were broken showed the presence of dense network of bifilms. Figure 10(a, b, c, 

and d) show SEM images of a fractured surface of a broken Charpy bar, taken from the SR 

system, mold 2. Figure 10(a and c) shows the matrix chemistry of the fractured surface 

obtained using EDS, shown by the red dot, which is similar to the measured chemistry of 

the specimen. Figures 10(b and d) show the chemistry of the bifilms which were rich in

aluminum oxide on the fractured surface.
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Figure 9. The hardness of and notch toughness from layer 1 and layer 2 of the castings of 
various gating systems shown for (a) mold 1 and (b) mold 2, respectively. Toughness 

was generally higher for samples sectioned from layer 2 and was not related to hardness.
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(a) (b)

(c ) (d)

Figure 10. Backscattered electron images of fractured Charpy bars obtained from the SR 
system of mold 2 showing a dense layer of bifilms rich in aluminum oxide. The red dots 
indicate the location for chemistry analysis presented in the inset images. (a and c) The 

matrix chemistry was similar to the nominal steel composition. (b and d) The 
composition of the bifilms was determined to be mainly alumina

5. DISCUSSION

The chemistry analysis shown in Figure 5(a), showed that the maximum oxygen 

concentration was found in the SR system, while the remaining three gating systems
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showed oxygen concentration less than 5ppm for mold 1. In Figure 5(b), for mold 2, it was 

observed that that concentration of oxygen was between 35-45ppm, while high standard 

deviations were observed across all samples. Figure 7 (a), showed the area percentage 

covered by bifilm according to position and SR system consistently showed high peaks 

because of the presence of large areas of bifilms. This is validated by the high oxygen 

content found in the LECO samples in mold 1, where the SR systems exhibited 

concentrations over 25ppm. Figure 8 showed the trends of combined area cover of bifilms 

across all positions for all the gating systems. The amount of total oxygen showed a direct 

correlation with the area of bifilm coverage in the samples as show in Figure 11. Figure 9 

(a and b), show the average hardness for mold 1 to be 98±1.3HRB and mold 2 to be 

97±1.25HRB, which is 228BHN and 222BHN when converted according to ASTM 

standard E140(16). From Figure 9(a), the CVN toughness of the bars from mold 1, was the 

lowest for layer 1 of SR system at 125±47J and highest for the pressurized system at 

171±9J. Similar trends were observed for mold 2, as the naturally pressurized systems 

showed lower toughness with larger variance.

The mechanical properties of the current steel composition can be compared to the 

work done by Rairu et al., for a steel of composition Fe-29.8Mn-0.96C-1.24Si-0.55Mo- 

8.4Al. A hardness of 218 BHN, a CVN energy of 152 J was reported for samples in solution 

treated condition. It must also be noted, that the sulfur, oxygen and nitrogen concentrations 

were comparable in this steel to the data reported in Figure 5.(17)Bartlett et al. has similarly 

reported a hardness of 192BHN and CVN energy of 190J for solution treated and water 

quenched steel of composition Fe-30Mn-9Al-1.07Si-0.9C. (2) From the data reported in 

previous works and comparing with the data obtained in Figure 9, it is observed that a well-
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designed gating system offers improved hardness and toughness values for similar 

compositions of FeMnAl steel.

TR SR NP P

Figure 11. A comparison shown between the total oxygen concentration (ppm) and area 
% of bifilm cover in the castings obtained from different gating systems for mold 1 and 
mold 2. The amount of total oxygen was found to correlate to the total amount of bifilm

coverage

To understand the contributing factor for failure and loss of toughness, a 

comparison between bifilm area % and toughness was studied. Figure 12(a) showed the 

average of the toughness of the eight Charpy bars taken from each gating system and the 

average of the bifilms obtained from the top section of the castings for mold 1 and Figure 

12(b) for mold 2 respectively.

From Figure 12, it is seen that the toughness and area of bifilm cover share an 

inverse relationship with each other. For all the gating systems, a reduction in toughness is 

caused by an increase in area of bifilms present in the castings. The work by Dispinar et 

al., on A356 castings establishes a similar relationship. They found that the bifilm index,
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which is a sum of the lengths of bifilms present in the casting, is inversely proportional to 

the toughness of the alloy. (19)From earlier works by Dispinar and Campbell on effects of 

entrained films on mechanical properties of castings, it is observed that the presence of 

folded double oxide bifilms in the steel matrix lead to porosity formation, hydrogen 

precipitation, and the unbonded sides of the bifilms that act as cracks in the matrix.
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Figure 12. The comparison between the 8-notch toughness obtained from layer 1 and 
layer 2 of every gating system and the area % of bifilm cover from the top section of the

casting for (a) mold 1 and (b) mold 2
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The section beneath the fractured surface was analyzed for bifilms and inclusions. 

The bifilms analysis showed a direct comparison between the breaking energy and the area 

cover of bifilm area. Figure 13 shows a plot between the breaking energy of the fractured 

bars that were sectioned and the area of bifilm cover underneath the fractured surface. The 

values shown are an average of the bifilm area for the bars considered in every layer and 

their average corresponding breaking energy. It can be observed that as the bifilm cover 

increases, as seen in the SR system, there is a direct drop in the breaking energy. Moreover, 

in the other gating systems, there was a close correlation between the breaking energy and
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the bifilm cover percentage like the NP system and the P system, where the values for mold 

1 and mold 2 were similar to each other. The bifilms acts as a stress-raisers, which leads 

to premature and brittle fracture subsequently leading to a loss in toughness, ductility and 

mechanical strength. (4-7)

Figure 13. A comparison between the breaking energy and the area cover of bifilms 
obtained from right underneath the Charpy bar. It can be observed that the bifilms were 

the reason for failure and had a direct impact on the toughness of the steel

A bar from the SR system that was sectioned right underneath the fractured surface 

was polished and observed under the SEM. The Figure 14(a) captured at 75X and (b) 

captured at 250X, show a wide bifilm cover present on the surface of the sample and the 

composition of the bifilm is seen indicated by the red dot as measured using the EDS. 

Figure 13 and 14 clearly show that the bifilms were the main mode of failure and loss in
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toughness in these castings. Inclusion analysis was also performed on the surfaces of the 

castings below the fracture and it was seen that AlN, AlN-MnO and AlN-MnS were the 

dominant inclusions in the castings with the presence of some complex nitrides as shown 

in Figure 15. No definite trends were established between the breaking energies and the 

area fraction or inclusion density of the inclusions.

(a) (b)

Figure 14. Backscattered electron images of the area sectioned underneath the fractured 
surface of a Charpy bar from the SR system shows alumina bifilms on the surface 

confirming that the bifilms were the main reason for failure

TR1 SR1 NP1 P1

(a) (b)

Figure 15. The area fraction of the AlN, AlN-MnO and AlN-MnS inclusions shown for 
the different gating systems obtained from the surface underneath the fractured Charpy 

bars. No trends were observed in the inclusion analysis correlating them to fracture
toughness
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6. CONCLUSION

The effectiveness of four different gating systems in reducing filling related defects 

in Fe-29Mn-8.2Al-0.91C-0.88Si-0.49Mo steel castings was quantitatively studied. The 

different systems included a non-pressurized system with a side riser, a pressurized system 

with a side riser, a naturally pressurized system with a top riser, and a naturally pressurized 

side riser system and were designed using commercially available filling and solidification 

modeling software. Solidification parameters were controlled by using identical castings 

and defects such as microporosity were minimized so that they did not affect the 

mechanical property results. All gating systems were also designed to minimize ingate 

velocity to less than 0.8m/s and air entrapment less than 15%. A common pouring basin 

was designed to unite the system so that it eliminated pouring variance between molds. 

An extensive network of bifilms was found across all the samples with the nonpressurized 

side riser system having a maximum 3.5% area coverage of bifilms in mold 1. The total 

oxygen concentration showed a correlation with the area percentage of bifilms. Hardness 

and CVN breaking energy results showed that the pressurized and non-pressurized system 

showed a maximum CVN energy of 160-175J consistently, while the nonpressurized 

systems had the lowest breaking energy and the greatest variance. For FeMnAl steel 

castings, the traditional pressurized and non-pressurized gating systems help in achieving 

cleaner castings with good mechanical properties, while the naturally pressurized gating 

systems had a higher bifilm content and hence lower mechanical properties.
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SECTION 

2. CONCLUSION

Two methods for increasing steel casting cleanliness were quantitatively studied, 

filtration and use of novel gating designs. Filtration utilizing ceramic foam filters was 

studied for removal of inclusions in high manganese and aluminum, or FeMnAl, steels. 

The bifilms in the FeMnAl steel were also effectively filtered by the foam filters. The Fe- 

30Mn-9Al-0.9C-1Si-0.5Mo steel studied had primarily AlN inclusions and the filters 

showed a maximum of 61% effectivity in reducing the AlN population in the last mold 

poured and an increase of 39% in effectivity from the first mold in the sequence to be 

poured. The last mold, which was poured from the top portion of a teapot ladle had the 

highest proportion of large sized inclusions (>5gm) and the highest filtration rate. This 

showed that the efficiency of ceramic foam filters is greater for larger inclusions in FeMnAl 

steel.

The second part of this study quantitatively evaluated the ability of different gating 

systems to reduce the filling related defects and increase the mechanical properties of two 

different steel alloys, a SAE 8630 steel and a Fe-29Mn-8.2Al-0.91C-0.88Si-0.49Mo steel. 

The following gating systems were studied, a naturally pressurized system with a side riser, 

a naturally pressurized system with a top riser, a pressurized and a non-pressurized system. 

For 8630 steel castings, the naturally pressurized top riser system showed the lowest 

inclusion area fraction among the four gating systems and the highest breaking energy of 

55J. Alumina and alumina-manganese sulfide complex were the primary inclusions. 

Fractography showed that the presence of eutectic type II MnS inclusions were the reason
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for failure in these castings. The overflows showed a higher inclusion area fraction than 

the castings. The location of the inclusions obtained in the castings were similar to the 

predictions made by the flow simulation software used to design the gating systems. For 

FeMnAl castings of composition Fe-29Mn-8.2Al-0.91C-0.88Si-0.49Mo, extensive layers 

of bifilms were found in the castings. The naturally pressurized side riser system had the 

highest area cover of bifilms and the lowest breaking energy of 140J. The pressurized and 

non-pressurized systems showed consistently 165J of breaking energy. The bifilms had a 

direct impact on the mechanical strength of the castings and were found to be the reason 

for lower energy ductile failure in some specimens. The breaking energy shared an inverse 

relationship with the area coverage of bifilms. It was observed that the naturally pressurized 

top riser and side riser system performed well for the 8630 steel, while the traditional 

pressurized and nonpressurized gating systems performed better for FeMnAl steel castings. 

From the filtration project, it was observed that the Charpy samples obtained from filtered 

castings showed better toughness properties than unfiltered castings. The overflows 

collected the incoming new metal with the slag, dross and inclusion defects and aided in 

controlling the velocity of the liquid metal. Therefore, a well-designed nonpressurized 

gating system with the presence of a filter is ideal to reduce reoxidation inclusion defects 

and improve the quality and notch toughness of FeMnAl castings. Further work should be 

done to ascertain the effects of these gating systems on the notch toughness of low alloy 

steels like 8630 using Mn-Si as a deoxidant to prevent the occurrence of type II eutectic 

MnS that may obscure the influence of reoxidation inclusions.
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