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ABSTRACT

This research focuses on the processing and mechanical properties of zirconium 

carbide ceramics (ZrCx). The first goal of this project was to densify near stoichiometric 

(i.e., x as close to 1 as possible) and nominally phase pure ZrCx. The maximum 

stoichiometry achieved for the ZrCx (C/Zr ratio of 0.92) was measured using gas fusion 

analysis. Hot pressing was used to obtain dense ZrCx. Archimedes was used to determine 

the relative density of hot pressed ZrCx at >95%. Scanning electron microscopy (SEM) 

was used to determine the overall microstructure of the hot pressed ZrCx. The measured 

porosity was ~4 vol% and additional unreacted carbon was observed in SEM images. The 

average grain size was 2.7 ± 1.4 pm with a maximum observed grain size of 17.5 pm.

The second goal of the project was to measure the hardness, flexure strength, and fracture 

toughness of ZrCx at room temperature. Flexure strength at elevated temperatures, from 

1600 to 2400°C, was also measured. Vickers’ hardness was measured at two different 

loads and decreased from 19.5 GPa at a load of 0.5 kgf to 17.0 GPa at a load of 1 kgf. 

Flexure strength was 362.3 ± 46 MPa at room temperature and was roughly constant up 

to 2200°C where the strength decreased to 283 ± 34 MPa. Fracture toughness was 

determined to be 2.9 ± 0.1 M Pam1/2 at room temperature. A Griffith-type analysis was 

used in determining the strength limiting flaws in the room temperature tests which was 

determined to be the largest grains of ZrC in the microstructure. The test bars used in the 

high temperature tests showed a slight increase in the average grain size but still within 

the standard deviation of the room temperature test bars.
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1. INTRODUCTION

Zirconium carbide (ZrCx) has been researched for high-speed tooling, hypersonic 

vehicles, rocket nozzles, and nuclear reactor core materials.1-6 ZrCx is classified as an 

ultra-high temperature ceramic (UHTC) as it exhibits a melting temperature above 3000 

°C. Most recently, ZrCx is being considered for use in nuclear fuel applications. ZrCx is 

attractive for use in nuclear reactors due to improved high temperature properties and 

resistance to nuclear fission product corrosion, as compared to SiC.7 ZrC could therefore 

be a replacement for SiC as a structural and fission product barrier coating in Tri

structural Isotropic (TRISO) fuel particles, and as an oxygen getter in nuclear fuels.2,5 

ZrCx has long been stated as a potential replacement for SiC in nuclear fuels due to its 

high melting point. While ZrCx has favorable material properties that makes it attractive 

as a substitute for SiC, there are still some issues that require additional research. One 

reason that ZrCx has not been made a replacement for SiC is due to the range of 

compositions that ZrCx is stable in. ZrCx exists over a wide range of carbon 

stoichiometries with a C/Zr ratio of 0.6-0.98. Impurities, such as hafnium, can also affect 

the properties of Zr based ceramics, as has been observed in ZrB2 based ceramics.8 

Further, hafnium is a strong neutron absorber, so the impurity content in Zr-based 

ceramics would need to be controlled.9

Much of the current research on ZrC ceramics does not include the measured 

impurity content, or the carbon stoichiometry of the tested ZrCx. The ZrCx lattice can be 

stable with almost half of the carbon sites being vacancies. The wide stoichiometric range 

would surely have an effect on properties. Carbon vacancies affect the lattice parameter 

as well as the densification of ZrC. Further, oxygen and nitrogen can substitute for carbon
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sites on the lattice, allowing for greater oxygen impurities in substoichiometric 

compositions of ZrCx.

Understanding the impurities and carbon content in ZrC is important to be able to 

identify intrinsic properties. Some basic mechanical properties of ZrCx have been 

reported in the technical literature. 911 The values reported in the literature vary widely, 

most likely due to the different ZrCx stoichiometries, with the exact composition not 

always reported. The purpose of this research was to investigate the mechanical 

properties of near stoichiometric ZrCx with low impurities, including low Hf, measured 

carbon stoichiometry, and known oxygen content.
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2. LITERATURE REVIEW

The study of ZrC began during the 1950s and 1960s, when it was being 

researched for thermionic emissions to turn heat into energy.14 In the 1970s and 1980s 

ZrC started to be researched as a potential replacement for silicon carbide (SiC), which is 

currently being used as a barrier coating material for TRISO (tri-isotropic) nuclear fuel.5 

More recently, this possibility has been re-investigated due to higher purity synthesis 

routes for ZrC becoming available. ZrC processed in these early studies contained 

various impurities, including hafnium, oxygen, nitrogen, and carbon. In a study by 

Leipold et al., the impurities of both hafnium and oxygen/nitrogen were measured to be 

as high as 2 wt%.15 Another reason that ZrC was being studied was as a potential 

additive to uranium carbide (UC), designed to decrease the evaporation of uranium from 

the cathode of thermionic converters.16 High temperature reactors (HTRs) are operated at 

temperatures in excess of 1600 °C, which is considered the upper limit for the current 

SiC technology. ZrC could be a good replacement material due to its high melting point 

at high carbon stoichiometries.2

2.1 CRYSTAL STRUCTURE

Zirconium carbide (ZrCx) is a group IV-V transition metal carbide that 

crystallizes in the rock salt structure, Fm3m structure (space group 225).17,18 A 

representation of the ZrCx crystal structure is depicted in Figure 2.1. In the rock salt 

structure, the Zr atoms form a metallic face-centered cubic (FCC) structure with the C 

atoms filling in the interstitial octahedral sites. The crystal structure has a combination of
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ionic, covalent, and metallic bonds. The ionic bonds in ZrC arise because of the 

difference in electronegativity between the C and Zr atoms, covalent bonding occurs 

from the interactions between the 2p state of carbon and the 4p state of Zr, and the 

metallic bonding is due to the ionized atoms, causing positive Zr atoms and delocalized 

electrons that move through the lattice freely.19 The mixture of bonding gives ZrCx a 

unique mixture of properties including its high melting temperature, (~3550 °C), high 

hardness (~20 GPa), good thermal conductivity ( > 10W m- 1 K-1), and good electrical 

conductivity (~200 x 104 Q- 1 m- 1).10,20

Figure 2.1. ZrCx rock salt crystal structure.18

ZrCx deviates from its stoichiometric composition by forming vacancies in the 

carbon sublattice. The range of stoichiometry (C/Zr ratio) can be from ~0.6 to 1, as is 

shown in Figure 2.2.21
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Figure 2.2. The zirconium-carbon phase diagram.21

The ZrCx lattice parameter changes based on the carbon stoichiometry. Equation 1 

is a model based on literature values, shown in Figure 2.3, of impurity content, where a is 

the lattice parameter, x is the C/Zr atomic ratio, and y  is the (O + N)/Zr atomic ratio.

Overall, the presence of oxygen in the lattice is shown to decrease the lattice parameter.

azrCx(ON)y = 4.5621 — 0.2080x2 + 0.3418x — 0.80y(1 — x) (1)

Figure 2.3 shows a fit of a parabolic curve in the lattice parameter with respect to 

the C/Zr ratio from Jackson et al.18 The peak in the lattice parameter is due to a 

competing influence between increasing carbon content and increased bond strength up 

to a C/Zr ratio of about 0.85. The lattice expands with increasing carbon content due to 

more space needed for interstitials, but at a ratio of 0.85 the lattice contracts with greater 

carbon content due to increased bond strength.18 In carbon rich ZrC the lattice parameter



does not significantly depend on the C/Zr ratio due to the precipitation of excess carbon 

when the ratio exceeds 0.98.22 Oxygen also has an effect on the lattice parameter. Oxygen 

replaces more than one carbon atom thereby decreasing the lattice parameter.23 If oxygen 

content is not measured, basing the carbon content on the lattice parameter alone will 

result in incorrect values.
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Figure 2.3. Lattice parameter of ZrC as a function of the C/Zr ratio. 18

2.2 PROCESSING OF ZIRCONIUM CARBIDE CERAMICS

ZrCx can be produced in a variety of ways and various fabrication techniques that

can provide varying characteristics to samples including microstructure, chemical 

composition, and impurity concentrations. The methods to produce ZrCx include solid 

phase reactions, solution-based precursors, and vapor phase reaction methods.



2.2.1 Solid Phase Reaction. Carbothermal reduction of ZrO2 powders by C has 

historically been the most common synthesis route used to obtain ZrC, this method is 

commonly used for commercially available ZrC powders.24 This method requires high 

temperatures for long dwell times to obtain high purity ZrCx powders. The reaction 

requires a strictly controlled atmosphere (vacuum or inert gas) to ensure the final purity 

of the ZrCx. Due to the way this reaction propagates, with the C diffusing into the ZrO2, 

the formation of ZrC is highly localized.25 The ZrO2 and C powders need to be well 

mixed and dispersed together to ensure a compete reaction. The carbothermal reduction 

often results in the formation of an oxycarbide ZrCxOy due to carbon deficiencies and the 

solubility of oxygen in zirconium carbide.26 The carbon sublattice can have a large 

number of vacancies and the oxygen impurities usually sit in those vacancies. The 

oxygen impurities can influence densification and thermomechanical properties in ZrCx 

ceramics.27

Through the “Reaction” module calculations in FactSage 7.2, it was determined 

that this carbothermal reduction is endothermic and favorable above 1100 °C under mild 

vacuum (~150 mTorr). The total reaction, shown in Equation 2, can be split into two 

steps, Equations 3 and 4. The first reaction is zirconia and carbon reacting to form a 

zirconium oxycarbide, and in the second step the oxycarbide reacts with the remaining 

carbon to form ZrC.

7

ZrO2 (s)+ 3C(s) = ZrC (s) + 2 CO (g) (2)

ZrO2 (s) + C(s) ^  ZrCxOy(s) +CO(g) (3)

ZrCxOy(s) + C(s) ^  ZrC (s) + CO (g) (4)



8

Another solid phase method is the combustion synthesis reaction. This reaction is 

a direct reaction of C with Zr (Equation 5) or ZrH2 (Equation 6). It is often used in cases 

where higher purity or controlled carbon stoichiometry is desired. The combustion 

method consists of heating up a pressed green body to a temperature known as an ignition 

temperature after which heat is released. The heat released from the reaction is enough to 

sustain the reaction to completion as long as the particles are in contact. This reaction is 

so energetic that green bodies can break apart if there is not an external confinement 

pressure. Methods that utilize ZrH2 to form and densify ZrC in one furnace run, reduce 

possible oxygen impurities by preventing the formation of surface oxides that occur 

during handling of the powder between the reaction furnace and the hot press. Two major 

benefits of the hydride method are the lower reaction temperature and less carbon 

required to complete the reaction. While ZrC can be formed at lower temperatures using 

this method, oxygen also tends to remain in the lattice. To remove the oxygen in the 

lattice, higher temperatures are required.28

Zr(s) + C(s) = ZrC(s) (5)

ZrH2(s) + C(s) = ZrC(s) +H2(s) (6)

The hydride-based route, in which ZrH2 is reacted with a carbon source 

transitions from exothermic to endothermic at approximately 925 °C. This reaction is 

favorable even at room temperature, as determined from FactSage 7.2 “Reaction” module 

calculations. The metallic Zr reaction is favorable at all temperatures.

With the reactive route, a greater range of stoichiometries can be prepared and the 

time to reaction completion is lower compared to the carbothermal reaction method. Sub

stoichiometric C/Zr ratios, which are difficult to prepare via carbothermal reduction due



to the abundance of oxygen and zirconia remaining in synthesized ZrC, are more easily 

synthesized with the hydride route. During reaction ZrH2 readily decomposes when 

heated resulting in reactions of ZrH2 and metallic Zr likely reacting together as the 

system is heated. While a purer product can be made with the combustion reaction there 

are issues in using this method for bulk production of ZrCx. The two main issues are the 

exothermic nature of the reaction and the zirconium reactant being highly pyrophoric and 

susceptible to oxidation.

2.2.2 Solution-Based Fabrication. Solution-based precursors can be used to 

synthesize ZrCx.2,19 The solution-based method allows for increased mixing on a 

molecular scale. This increased mixing makes for a more efficiently diffused reaction 

allowing for decreased temperature and time for the reaction. The most common 

solution-based route for the production of ZrCx powders is Sol-gel processing. Most 

commonly Zr n-propoxide or zirconium oxychloride and a carbon source, such as alcohol 

or sugar, are used to produce a polymer containing Zr-O-Zr links. The final product is 

separated from the solvent by drying and then is carbothermal reacted. Most solution- 

based routes make ZrO2 that has to undergo carbothermal reduction to make ZrC.

Varying stoichiometries of ZrCx can be achieved using different proportions of the 

reactant precursors. The solution-based method also has the disadvantage of residual 

oxygen impurities.

9
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2.2.3 Vapor Phase Fabrication. Producing ZrCx using vapor phase reactions is 

mainly used to create coatings, and is the most common method used for nuclear fuel 

coatings. The high melting temperature of ZrCx causes the coatings to be deposited by 

vapor phase deposition such as chemical vapor deposition (CVD), evaporation, or 

sputtering.1,29,30 For the nuclear fuel concept, such as Tri-structural Isotropic (TRISO) 

fuel particles, the preferred method is CVD to produce high purity, uniform, and defect 

free ZrC coatings onto the particles. The process that is used is reacting a zirconium 

halide with a gaseous hydrocarbon compound such as methane (CH4) at temperatures 

between 1300 and 1500°C to produce a gaseous ZrC which is then deposited on a suitable 

substrate. Several zirconium halides have been used in this method including chloride, 

iodide, and bromide. The process can be shown by the reaction below.

ZrX4 + CH4 + 2(1 -  x) H2 ^  ZrCx + 4HX (X = Cl, I, Br, x < 1) (7)

The reaction takes place in a controlled inert environment to avoid gaseous 

impurities such as oxygen from being included in the final product. This CVD method 

can also produce varying stoichiometries of ZrCx by controlling the flow of CH4 and 

hydrogen. After deposition, heat treatments can be used to achieve reasonable densities of 

the coatings.

2.3 SINTERING AND DENSIFICATION

Densification of ZrC is difficult and often requires sintering temperatures above 

2000°C. There are a few densification methods that have been used to densify ZrCx 

including pressureless sintering, hot pressing, reactive hot pressing, and spark plasma 

sintering.
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In addition to the varying densification methods. To aid in densification, sintering 

aids are often added. These sintering aids are usually a Zr source and/or a C source, such 

as a metallic zirconium, ZrH2, or graphite.11,31 In addition to improving densification, Zr- 

containing sintering aids can also be used to enable controlled reductions to define the 

C/Zr ratio. This technique has been used with additions of both Zr and ZrH2 to produce 

near-stoichiometric ZrC before hot-pressing.11,31 In the case of C-containing sintering 

aids, the benefit is balanced between the two effects. Additions of extra carbon increase 

densification through the removal of surface oxides on prepared powders, but decrease 

densification due to the reduction in carbon vacancies.31 A comparison of the same hot- 

pressing schedules used for varying ZrC compositions shows that increased carbon 

vacancies decreased the C/Zr ratio and increased the final density of the resulting ZrCx 

ceramic, shown in Table 2.1.

After the carbothermal reduction, the prepared ZrC powder undergoes final 

densification to form bulk ZrC. Densification of ZrC is easier at lower C/Zr ratios due to 

increased carbon vacancies which enhance carbon mobility.32

Table 2.1. Effects of C/Zr ratio on densification of ZrC ceramics during hot pressing.

Composition
Grain Size 

(km)

Temperature

(°C)

Pressure

(MPa)

Relative 

Density (%)
Reference

ZrC 3.7 ± 1.3 2100 30 91.9
Wei et al.11

ZrC0.9 30.6 ± 10.8 2100 30 97.3

ZrC - 2000 30 83
Wang et 

al.31



2.3.1 Pressureless Sintering. Few studies have involved the pressureless 

sintering of ZrC due to the difficulty in densifying without additives or extensive high- 

energy milling. Silvestroni et al. pressurelessly sintered ZrC with up to 20 vol% MoSi2 

additions at 1950°C for one hour.33 The ZrC without additives reached a final density of 

~73% compared to the ZrC with 20 vol% MoSi2 which reached a final relative density of 

~97% at 1950°C. Zhou et al. used high-energy ball milling, as well as additives, to help 

densify ZrC.34 The high-energy ball milling had a great effect on the final density, the 

milled ZrC had a final relative density of ~86% at 1900°C and ~98% at 2100°C, dwell 

times were two hours . Schonfeld et al. sintered ZrC at temperatures ranging from 1850 -  

2000°C with varying carbon stochiometries.35 Batched, stoichiometric ZrC achieved a 

maximum relative density of ~86% at 2000°C, while lowering or raising the carbon 

content increased the density to above 95%. Sacks et al. utilized nanocrystalline ZrC 

powders to obtain relative densities of ~99%.36 Sacks et al. also used a two-step sintering 

process wherein the ZrC was “pre-sintered” at 1600°C for two hours and then fully 

sintered at temperatures up to 1950°C for an additional two hours. In order to 

pressurelessly sinter ZrC, high temperatures at extended dwell times are needed to obtain 

densities above 90%. The high temperatures required can be lowered using a sintering 

aid or with a decrease in the starting powder particle size.

2.3.2 Hot Pressing. Hot pressing is the most conventional method used in the 

densification of ZrCx. During hot pressing, the powder is densified using high 

temperatures and applying an external pressure. Wang et al. hot pressed ZrC at 1900°C 

under a 30 MPa applied pressure for one hour, resulting in a relative density of 80%.17 

Applying pressure increased density by ~6% from the pressureless sintering processed

12



used by Silvestroni et al. at a lower temperature. Wang et al. basically showed that ZrC 

could achieve a relative density of ~ 92% by hot pressing at 2000°C without additives or 

high energy milling. Shen et al. hot pressed ZrC at 1900 and 2000°C for one hour under a 

30 MPa pressure and achieved relative densities of ~94 % and ~95%, respectively.37 The 

increase in density from Weng et al. to Shen et al. can be attributed to the decrease in 

particle size of the ZrC in Shen et al.. ZrC Hot pressing lowers the dwell time required at 

high temperatures compared to pressureless sintering.

2.3.3 Reactive Hot Pressing. Reactive hot-pressing (RHP) allows for 

densification at lower temperature than the traditional hot-pressing method and 

carbothermal route. This is due to synthesis reactions and sintering taking place 

concurrently, as opposed to just sintering a pre-reacted material. Nachiappan et al. used 

RHP to produce ZrC by using zirconium metal and graphite as the starting materials.38 

The starting powders underwent RHP for 30 minutes using a 40 MPa pressure at varying 

temperatures (1200 to 1600°C) and over a range of compositions. The stoichiometric 

samples did not get more than 85% dense. The sub-stoichiometric samples densified up 

to 99% relative density after heat treatment at 1800°C for one hour, while those without 

the heat treatment contained unreacted starting material. Rangaraj et al. used Zr and 

graphite reactants for RHP at 1200°C for one hour and obtained densities up 93% and 

99% for stoichiometric and sub-stoichiometric ZrC respectively.39 RHP also occurs 

when the starting materials are ZrC and ZrH2. This method will always result in sub

stoichiometric ZrC. Wei et al. performed RHP as a two-step process, reactive sintering 

and hot pressing, with the first step being performed at 1300°C for 30 minutes then hot 

pressing up to 2100°C for one hour under a 30 MPa pressure.11 Densities for their study

13



were >95% using this method. RHP can lower the sintering temperature compared to 

conventional hot pressing but RHP requires an additional heat treatment stage to ensure 

that the stoichiometry is uniform across the sample.

2.3.4 Spark Plasma Sintering. Spark plasma sintering (SPS) has been used to 

obtain dense materials at lower temperatures and shorter dwell times. Wei et al. obtained 

98% relative density for ZrC at 1700°C under a 60 MPa applied pressure and a dwell 

time of 24 minutes.40 Specimens with densities above 95% were obtained in as little as 5 

minutes of dwell time. Utilizing higher pressures, Sciti et al. performed SPS of ZrC with 

no additions at 2100°C for 3 minutes under a 65 MPa pressure to obtain a 98% relative 

density.13 Further, Jackson et al. obtained a relative density of ~98% from a dwell time of 

6 minutes at 2000°C and 70 MPa.41 SPS has the advantage of shorter dwell times at 

temperature which minimizes grain growth at the elevated densification temperatures.
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2.4 MECHANICAL PROPERTIES

The mechanical properties of ZrCx at room temperature have been studied with a 

focus on strength, fracture toughness, and hardness.5,10,11,13,42 Even with the studies done 

on ZrCx, there are some inconsistencies with the values reported in different studies, 

particularly with strengths ranging from ~220 MPa to ~410 MPa. These differences 

between studies can be attributed to impurities, vacancies, microstructure, and porosity. 

Many of the studies reporting these values are not properly characterizing these factors in

the literature.



2.4.1 Room Temperature. Elastic modulus for ZrC has been reported in the 

literature over a range from ~250 to ~400 MPa depending on porosity, stoichiometry, and 

free carbon.43 Feng et al. and Wei et al., with near stoichiometric ZrCx and similar 

densities, measured the Young’s modulus to be 404 ± 11 GPa and 401 ± 13 GPa, 

respectively.10,11 Wei et al. also tested sub-stoichiometric ZrC0.6 to have a Young’s 

modulus of 255 ± 13 GPa. Work by Chang et al. calculated the polycrystalline elastic 

modulus of ZrC from single crystal measurements to be 406 GPa.44

Room temperature strengths for ZrCx can vary due to stoichiometry, additives and 

grain size. In the study by Wei at al., different ZrCx stoichiometries were densified at 

different temperatures resulting in grain size differences between the same compositions. 

For the composition ZrC0.6, the strength ranged from ~320 MPa at a grain size of 14 pm 

to ~220 MPa at a grain size of 62 pm. Shen et al. showed an increase in the strength of 

ZrCx from 446 MPa to 512 MPa due to a 5 mol% tungsten additions.37 Wei et al. shows 

that overall the strength of ZrCx decreased with decreasing carbon content.11

Fracture toughness of ZrCx does not appear to vary greatly due to carbon content, 

as seen in the study by Wei et al. where fracture toughness values were in the range of 2.1 

to 2.6 MPa*m1/2 and was largely controlled by grain size, smaller grain sizes made the 

crack path more tortuous enhancing the fracture toughness. Feng et al. reported a fracture 

toughness of 2.3 ± 0.2 MPa*m1/2 and Katoh et al. reported a fracture toughness of 2.7 ±

0.3 MPa*m1/2.2 Fracture toughness for near stoichiometric ZrCx thus appears to fall 

around ~2.5 MPa*m1/2.

Hardness of ZrCx varies widely in literature from 12 to 30 GPa. This range is due 

to stoichiometry, porosity, and hardness indentation load. Many hardness values are

15
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reported without the load used to produce the indents, as well as not reporting the ZrCx 

stoichiometry. Sciti et al. reported a hardness of 17.9 GPa under a 1 kgf and 25.2 GPa 

using a nanoindentation technique.13 Min-hage et al. reported a hardness of 13 GPa for 

ZrC0.97 without load or grain size being reported.12

2.4.2 Elevated Temperature. Few studies have been conducted with respect to 

the mechanical properties of ZrCx at elevated temperatures. However, Fedotov et al.. 

reported strength values for ZrC, under a mild vacuum with a C/Zr of 0.96 and a grain 

size of 250pm, up 2600°C 45 The strengths of the ZrC reached a maximum at ~200 MPa 

at 2000°C, an increase over the ~150 MPa strength values at room temperature. Strength 

then decreased to 40 MPa at 2600°C. Gridneva et. al. measured the strength of ZrC with a 

C/Zr of 0.95, 2.5% porosity, and a grain size of 10 pm under a mild vacuum up 

to1800°C.46 They reported a maximum strength of ~220 MPa at 1000°C, decreasing to 

~150 MPa at 1500°C.46 Gridneva et al. also measured hardness as a function of 

temperature, where hardness was found to decrease linearly from ~20 GPa at room 

temperature to ~4 GPa at 1000°C. A study by Leipold et al. found that the mechanical 

properties at high temperatures were controlled by impurities.15 Many of the reported 

elevated temperature mechanical properties are from older studies which generally did 

not report impurities or the carbon stoichiometry. A more recent study by Shen et al. 

reported strengths up to 1800°C, measured in flowing argon.37 The ZrC tested was 94% 

dense with a grain size of ~ 11 pm. The strengths from 1000°C to 1600°C were about 350 

MPa, and then decreasing to ~300 MPa at 1800°C.37 The increase in strengths from the 

older studies might be due to a decrease in impurities for the tested ZrCx, although some 

studies did not report their impurities.
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PAPER

I. PROCESSING AND ROOM TEMPERATURE PROPERTIES OF ZIRCONIUM
CARBIDE

ABSTRACT

Zirconium carbide (ZrC) powder, batched to a ratio of 0.98 C/Zr, was prepared by 

carbothermal reduction of ZrO2 with carbon black. Nominally pure ZrC powder had a 

mean particle size of 2.4 pm. The synthesized powder was hot pressed at 2150°C to a 

relative density of >95%. The mean grain size was 2.7 pm ± 1.4 with a maximum 

observed grain size of 17.5 pm. The final hot-pressed billets had a C/Zr ratio of 0.92 as 

determined by gas fusion analysis. The mechanical properties of ZrC0.92 were measured 

at room temperature. Vickers’ hardness decreased from 19.5 GPa at a load of 0.5 kgf to 

17.0 GPa at a load of 1 kgf. Flexural strength was 362.3 ± 46 MPa, Young’s modulus 

was 397 ± 13 MPa, and fracture toughness was 2.9 ± 0.1 MPa*m1/2. Analysis of 

mechanical behavior revealed that the largest ZrC grains were the strength-limiting flaw 

in these ceramics.

1. INTRODUCTION

Zirconium carbide (ZrCx) is stable across a wide range of carbon stoichiometries 

from x = 0.63 to 0.98, where x is the C/Zr ratio. Zirconium carbide is a material 

belonging to the ultra-high temperature ceramics (UHTC) class of materials that is 

characterized by melting temperatures above 3000°C. In addition to its high melting
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temperature, (~3550 °C), other properties such as high hardness (~20 GPa), good flexural 

strength (~ 400 MPa), wear resistance, and resistance to nuclear fission product corrosion 

make ZrCx of interest for use in extreme environments.1,2 These properties make ZrCx 

useful for high-speed tooling, hypersonic vehicles, rocket nozzles, and nuclear reactor 

core materials.3-8

The processing and mechanical properties of ZrCx have been reported.1,9-11 

Densification is difficult due to strong covalent bonds and low self-diffusion rates.8 To 

densify ZrCx, high temperatures and pressures are needed. ZrCx also gets more difficult 

to densify with increasing C stoichiometry due to fewer vacancies, resulting in lower 

plasticity and mass transport rates. To improve the densification of ZrCx, additions of C, 

ZrH2, and various transition metal carbides (MC) have been used.2,9,12 Sintering additives 

can, however, change the ZrCx stoichiometry and microstructure. ZrH2 additives lower 

the stoichiometry of the ZrCx, producing more vacancies that allow for increased 

movement within the structure and result in improved densification. However, ZrH2 also 

generates increased grain growth at higher temperatures.9 Additions of C improve 

densification by reducing the oxide impurity content on the surface of the powder 

particles that inhibits densification. Removal of surface oxides increases sinterability 

while unreacted carbon reduces grain growth by grain pinning.12 In addition to 

approaches that use additives, reactive hot pressing (RHP) has been used to produce 

dense ZrC ceramics. RHP decreases the densification temperature and allows for 

deformation of the ZrH2, after H2 volatilization but before reacting with C to form ZrC.13

Not many studies have reported the effects of C stoichiometry and impurities on 

the mechanical properties of ZrCx. Lower C stoichiometry seems to decrease the hardness



of ZrC.9 Further, small quantities of Hf (a few atomic percent) are present in all Zr 

resources in nature, and the presence of Hf has been reported to decrease thermodynamic 

properties in ZrB2.14,15

The objective of the present study was to investigate the room temperature mechanical 

properties of low impurity, including low Hf, near stoichiometric ZrCx.
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2. EXPERIMENTAL PROCEDURE

2.1 PROCESSING

The precursor powders used in this study were ZrO2 (Materion, Mayfield Heights, 

OH) and carbon black (N110, J. M. Huber Corporation, Edison, NJ). The ZrO2 had a 

reported purity of 99.7 wt% with a reported particle size of less than 45 pm and Hf 

content of 0.0026 wt%. The ZrO2 was attrition milled for one hour (Model HD-01, Union 

Process, Akron, OH) with 3 mm spherical yttria stabilized ZrO2 media to reduce particle 

size, after which point the average particle size of the attrition milled ZrO2 was 2.3 pm. 

The carbon black powder had an average size of 0.38 pm. The powders were batched to a 

molar ratio of C/Zr = 0.98. The batched powders were ball mixed for 4 hours in acetone 

with cylindrical yttria stabilized ZrO2 media in order to obtain a homogenous mixture. 

The slurry was then dried via rotary evaporation (Rotavapor R-124, Buchi, Flawil, 

Germany) under mild vacuum at a temperature of 65°C and a rotation speed of 60 rpm. 

The mixed powder was passed through a 100-mesh sieve to break up any large 

agglomerates, and then uniaxially pressed into pellets for carbothermal reduction.
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The carbothermal reduction occurred in a graphite furnace (3060-FP20, Thermal 

Technology, Santa Rosa, CA) and the pressed pellets were placed in a graphite crucible. 

The pellets were heated at 10 °C/ min under vacuum (~150 mtorr) to 1800°C and held at 

temperature for 4.5 hours. This reaction temperature was chosen to promote removal of 

residual oxygen from the ZrC lattice. The reacted powder was ball mixed for 4 hours in 

acetone with ZrO2 media to break up the pellets. The powder was dried and passed 

through a 100-mesh sieve. The average particle size of the reacted powder was 2.4 pm.

The reacted powder was hot-pressed in a 47 mm x 31 mm rectangular graphite die 

lined with graphite foil and coated with boron nitride. The graphite die was loaded into a 

hot press (HP20-3060-20; Thermal Technology, Santa Rosa, CA) and heated at 

25°C/min to 1600°C, with a one hour hold under mild vacuum (~150 mtorr), and then 

heated to 1650°C and held for 10 minutes. The holds were used to remove any surface 

oxides on the powder surfaces resulting from exposure to the air after reaction of the 

powder. After the 1650 °C hold, the furnace was backfilled with helium and a uniaxial 

pressure of 32 MPa was applied. The temperature was then increased at a rate of 50 

°C/min to 2150 °C for the final hot-pressing temperature. The sample was held for 35 

min at 2150 °C. After the 35 min hold, the furnace was cooled at a rate of 45 °C/min to 

1600 °C. At that temperature, the uniaxial pressure of 32 MPa was removed. From 1600 

°C the furnace was allowed to naturally cool to room temperature.

2.2 CHARACTERIZATION

The density of the hot-pressed billets was measured using a modified 

Archimedes’ method. The billets were placed in distilled water and boiled for two hours,



then placed under mild vacuum for 30 minutes before measurement. Scanning electron 

microscopy (SEM; Raith eLine) was used to examine microstructures. To prepare the 

specimens for microscopy, the reaction layer on the outside of the billets was removed 

and a cross section was taken from the billet followed by polishing to a 0.25 pm finish 

using successively finer diamond abrasives. The resulting polished specimens were 

thermally etched at 1600 °C for 30 minutes to increase the visibility of the grain 

boundaries. A low voltage of 5kV was used to increase orientation contrast. The grain 

size was determined from SEM images using ImageJ software (National Institutes of 

Health, Bethesda, MD). The grain size was averaged from over 1000 grains using Feret’s 

diameter. X-ray diffraction (XRD; X’Pert Pro, PANalytical, Almelo, Netherlands) 

analysis was used to identify the phases in the finished hot-pressed billets. The billets 

were crushed and ground with a zirconia mortar and pestle, then passed through a 200- 

mesh sieve. Diffraction patterns were obtained by scanning from 15-138° two theta using 

a step size of 0.03°, an effective scan step time of 9.8 minutes. Carbon stoichiometry and 

oxygen content were measured via the gas fusion method using oxygen (TC 500, LECO, 

St. Joseph, MI) and carbon (CS 600, LECO) analyzers. Raman spectroscopy (Aramis 

Labram, Horiba Jobin Yvon, Edison, NJ) was performed with a He-Ne laser, no filter, a 

hole size of 500 pm, and a slit size of 150 pm at 50x magnification. The Raman 

spectrums were obtained from 200 to 2000 wavenumber (cm-1) with a 15 second 

acquisition time, averaging three acquisitions for each scan.

21
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2.3 MECHANICAL TESTING

Billets were cut into bars by electrical discharge machining (EDM: AgieCut 

HSS150, GF Manufacturing Technology, Switzerland). After cutting, the sides of the 

bars that were in contact with the EDM wire were surface ground (FSG-3A818, 

Chevalier, Santa Fe Springs, CA) to remove any damage from the wire cutting. Bars for 

testing flexure strength and fracture toughness were cut to 3 mm x 4 mm x 45 mm, which 

are size B-bars according to ASTM C1161. The tensile surface of the bars was then 

ground using a 600-grit diamond grinding wheel then chamfered and hand polished to a 

0.25 gm surface finish. Testing used a crosshead rate of 0.50 mm/min, and five bars were 

tested for flexure strength. Fracture toughness was determined by chevron notch testing 

(ASTM C1421), with six bars tested. A chevron notch was machined into the bars with a 

pneumatic saw (Accu-cut 5200, Aremco Products, Ossining, NY). The bars were tested 

using an instrumented load frame (Instron 5881, Instron, Norwood, MA). For fracture 

toughness, a preload of around 60 N was oscillated three times before breaking the bars. 

After breaking the bars in the first test, the two halves from each bar were notched again 

for further testing in an ASTM C1161 A-bar fixture. The dimensions of the notches were 

measured after testing using a digital optical microscope. Hardness was measured by 

Vickers indentation (ASTM C1327), with two different indentation loads, 9.81 N and 

4.91 N, and a dwell time of 10 seconds each, with 10 indents for each load per specimen. 

A lighter load was used due to higher loads causing a large amount of spalling around the 

sides of the indents. Dynamic elastic and shear moduli were determined using impulse 

excitation (ASTM 1259). The static elastic modulus was also measured from the four-
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point bending tests, using the measured deflection at the center of the beam and assuming 

that the bottom load train was more rigid than the specimen.

3. RESULTS AND DISCUSSION

3.1 DENSITY AND MICROSTRUCTURE

Single phase ZrCx was formed by hot pressing. The diffraction peaks were 

indexed to ZrC using powder diffraction file (PDF) 01-073-0477 as shown in Figure 1. 

ZrCx has a rock salt structure and all of the peaks were indexed to ZrC with no unindexed 

peaks. The material appears to be single phase ZrC by XRD.

The hot-pressed ZrCx was near fully dense with a uniform grain size. The relative 

densities were >95% for all tested billets. The average grain size of the hot-pressed ZrCx 

was 2.7 ± 1.4 pm with a maximum observed grain size of 17.5 pm. SEM analysis of the 

microstructure, as shown in Figure 2, was consistent with density measurements, 

revealing ~4% porosity for hot-pressed specimens. Most of the porosity in the billets was 

intragranular porosity. Porosity appeared in SEM images as black circles with charging 

around the edges. In addition, a second black phase with no charging was observed, 

which is consistent with the presence of carbon inclusions. The pores and the secondary 

phase are isolated and smaller than the grain size, indicating that they should not affect 

the strength of the material.

The second black phase was identified as carbon with Raman spectroscopy. The 

peaks shown in Figure 3 are from carbon with the peak at ~1350 cm-1 referred to as the 

disorder-induced (D) peak and the peak at ~1582 cm-1 referred to as the graphite (G)
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peak. Fully ordered graphite only has one peak, the G peak. The G peak relates to the in

plane stretching mode of graphite and the D peak is related to a double resonance in 

disordered carbon.16 Dash et al. observed similar carbon inclusions using TEM and 

revealed that the inclusions were made of a network of graphite ribbons.16 The ZrC in 

the present study was produced by carbothermal reduction in a graphite furnace and hot- 

pressed in a graphite furnace and die. The carbon present as a second phase could either 

be unreacted carbon from the initial batch or due to interactions with the furnace or hot 

press. The total carbon content of the hot-pressed billets was measured using carbon 

analysis. The calculated carbon to zirconium ratio was 0.92. Oxygen analysis identified 

the oxygen content to be below 0.5 wt% for all samples. Varying levels of C and O in the 

ZrC structure change the lattice parameter, increasing the lattice parameter with 

increasing C content.17 The lattice parameters for the specimens averaged 4.6945 A. This 

lattice parameter is close to the C-rich values reported by Rejasse et al.17 Calculating the 

C/Zr ratio with the equation from Rejasse et al., and the lattice parameter measured using 

XRD in the present study, resulted in a predicted C/Zr molar ratio at 0.94, which is 

equivalent to ZrCo.94. This number is different from the ratio calculated using carbon 

analysis, which is likely due to the presence of some oxygen dissolved onto carbon 

vacancies in the lattice, which resulted in a lattice parameter matching more closely to the 

more C rich specimens of Rejasse et al..

3.2 MECHANICAL PROPERTIES

Mechanical properties for the ZrCo.92 produced in this study were tested at room 

temperature, and the results are summarized in Table 1. Dynamic measurements of
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modulus resulted in a Young’s modulus of 397 ± 13 GPa and a shear modulus of 161 ± 4 

GPa. The static, average Young’s modulus, measured in four-point bending was slightly 

lower, at 371 ± 12 GPa. The slightly lower value for the static measurements is not 

surprising, given the potential for load train compliance issues with these types of 

measurements. The modulus value measured using impulse excitation falls within 

reported values in the literature for similar C/Zr ratios.9,18 Vickers hardness was 17.0 

GPa when measured using a load of 1 kgf and 19.5 GPa for a load of 0.5 kgf. A lower 

load was used due to spalling around some indents when higher loads were used. 

Hardness for ZrCx has been reported from about 20 to 34 GPa.18 Hardness can be affected 

by porosity, C/Zr ratio, and load. For similar compositions, Vickers hardness measured at 

1 kgf has been measured to be 17.9 GPa9,11. Lower loads around 0.5 kgf increased the 

hardness to around 20 GPa19 and nanoindentation has measured hardness values in the 

range of 25 to 30 GPa7,11 Based on the porosity, C/Zr ratio, and the loads used, the 

hardness values for the ZrC in this study fall within the values reported in other studies.

Flexural strength was measured at 362 ± 46 MPa. The measured strength is 

greater than values from previous studies, which have been in the range of 100-300 

MPa18,1. The higher strength in the present study can be attributed to lower levels of 

porosity and smaller grain sizes compared to the other studies. For the reported strengths 

of around 100 MPa, the grain size was ~50 pm and porosity was 9%.46 Strengths 

measured in three-point bending range from 370 to 407 MPa,9,11 which are similar to 

values from the present study, although three-point bending should provide higher values 

than the four-point bend tests in the current study, given a similar critical flaw size. The 

average fracture toughness was 2.9 ± 0.1 MPa*m1/2. Literature values for fracture
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toughness range from 2.3 ± 0.2 MPa*m1/2 to 2.7 ± 0.3 MPa*m1/2.1,4 The current study 

values fall within the standard deviation of values found in the literature.

The critical flaw size was estimated using a Griffith type failure analysis. The 

crack geometry constants were assumed to be Y=1.59 or Y=1.99, which are both used for 

semi-elliptical surface cracks. Using the average strength and fracture toughness values 

from the present study, the calculated flaw size was in the range of 16 to 25 ^m. From 

microstructure analysis, the largest grain size that was observed was 17.5 p,m. Hence, the 

likely critical flaw is consistent with the size of the largest grains in the microstructure.

4. SUMMARY

Near stochiometric zirconium carbide with minimal impurities was produced 

using carbothermal reduction. Ceramics were hot-pressed to relative densities of 95% or 

greater at 2150 °C for 35 minutes in a flowing helium atmosphere. The average grain size 

achieved was 2.7 ± 1.4 p,m with a maximum grain size of 17.5 p,m. The flexural strength 

was 362 MPa. Young’s modulus was between 397 and 371 GPa, based on dynamic vs. 

static modulus measurements, respectively. Fracture toughness was ~2.9 MPa*m1/2. The 

largest grains in the microstructure were determined to be the critical flaw in four-point 

bending.
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Figure 1. XRD pattern of hot-pressed ZrC indexed to the rock salt structure.

Figure 2. SEM micrograph of a polished cross section of hot-pressed ZrC.
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Figure 3. Raman spectrum of the dark inclusions within ZrCx grains.

Table 1. Summarized mechanical properties of ZrC0.92.

C o m p o s i t i o n

R e l a t i v e

D e n s i t y

( % )

G r a i n

S i z e

( Mm )

Y o u n g ’ s

M o d u l u s

( G P a )

S h e a r

M o d u l u s

( G P a )

H a r d n e s s

( G P a )

F l e x u r a l

S t r e n g t h

( M P a )

F r a c t u r e

T o u g h n e s s

( M P a ^ m 1/2)

ZrC0.92 95.9 2.7 ± 1.4 397 ± 13 161 ± 4 17.0 -  19.5 362 ± 46 2.9 ± 0.1
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II. ULTRA HIGH TEMPERTURE STRENGTH OF ZIRCONIUM CARBIDE

ABSTRACT

The ultra-high temperature mechanical properties were tested for zirconium 

carbide (ZrCx) ceramics produced from powder synthesized by carbothermally reducing 

zirconia and carbon black in an effort to prepare phase pure ZrCx and determine its 

intrinsic properties. Powder was prepared with a carbon stoichiometry of 0.92 and then 

hot pressed at a temperature of 2150°C at a 32 MPa applied pressure. ZrC0.92 

compositions having a relative density of at least 95% were machined to produce 

specimens for mechanical property measurements. The elevated temperature strength, 

from 1600°C to 2000°C, ranged from 375 MPa to ~340 MPa, decreasing to 283 MPa at 

2200°C, and further decreasing to 245 MPa at 2400°C. The ZrC0.92 produced in this study 

showed significant strength retention at temperatures above 2000°C.

1. INTRODUCTION

Zirconium carbide (ZrCx) is a transition metal carbide that belongs to a class of 

materials known as ultra-high temperature ceramics (UHTCs). This class of materials is 

known for having melting temperatures above 3000°C. The high melting temperature and 

resistance to nuclear fission product corrosion has made ZrCx a material of interest for 

use in nuclear reactors.1-3

Room temperature properties of ZrC ceramics have been reported extensively,4,5 

but for use in extreme environments elevated temperature testing is needed to determine
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if ZrCx is stable for use in those environments. Few studies have been conducted at 

elevated temperatures for mechanical properties of ZrCx. The strength of ZrCx has been 

reported up to 2600°C by Fedotov et al..6 Fedotov et al. tested bars of carburized Zr with 

a C/Zr ratio of 0.96 and a grain size of 250 pm under a mild vacuum. The strength of the 

ZrC0.96 was ~150 MPa at room temperature, reaching a maximum of ~200 MPa at 

2000°C, and decreasing to 40 MPa at 2600°C.6 Gridneva et al. measured the strength of 

ZrC up to 1800°C in mild vacuum and reported a maximum strength of ~220 MPa at 

1000°C, which decreased to ~120 MPa at 1500°C.7 Their ZrC had a C/Zr of 0.95, 

porosity of 2.5%, and an average grain size of 10 pm. A more recent study by Shen et al. 

reported strengths up to 1800°C in flowing argon, the strengths from 1000°C to 1600°C 

were about 350 MPa and then decreased to ~300 MPa at 1800°C.8 The ZrC measured in 

the study had a density of about 94% and a grain size of 10.9 ± 3.0 pm.8 In the previous 

studies, most of the researchers do not list the impurities of C/Zr. In the older studies. the 

tests at elevated temperature were done only in mild vacuum, probably contributing to 

greater oxidation of the surface of the bars tested. Further, in most of the previous studies, 

information about the preparation of the test bars is not provided beyond basic 

dimensions, and this can have an impact on the strengths.

The purpose of this study is to report the strength of ZrC0.92 at elevated 

temperatures, while also reporting impurities, methods used to prepare and test the bars, 

as well as post-mortem analysis to determine failure origins.
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2. EXPERIMENTAL PROCEDURE

2.1 PROCESSING

ZrO2 (Materion, Reactor Grade, Mayfield Heights, OH) and carbon black (N110,

J. M. Huber Corporation, Edison, NJ) were used as the precursor powders for this study. 

The ZrO2 had a reported purity of 99.7 wt%. The ZrO2 powder had a starting particle size 

in the range of ~45 pm. After attrition milling the powder for one hour, using 3 mm 

diameter ZrO2 milling media in acetone, the particle size was reduced to an average of 

~2.3 pm. The average particle size of the carbon black powder was 0.38 pm. The powder 

used in this study was batched to a molar ratio of C/Zr = 0.98. A homogenous mixture of 

the batched powders was obtained by ball mixing for four hours in acetone with 

cylindrical ZrO2 media. The resulting slurry was dried via rotary evaporation under mild 

vacuum at a temperature of 65°C and a rotation speed of 60 rpm. The dried powder was 

then passed through a 100-mesh sieve to break up any large agglomerates, and then 

uniaxially pressed into pellets for carbothermal reduction.

The carbothermal reduction was accomplished in a graphite furnace. The pressed 

pellets were placed in a graphite crucible and heated at 10°C/ min under vacuum (~150 

mtorr) to 1800°C and held at temperature for 4.5 hours. The reacted pellets were crushed 

by ball milling for 4 hours in acetone with ZrO2 media. The powder was dried via rotary 

evaporation and passed through a 100-mesh sieve. The average particle size of the 

reacted powder was 2.4 pm, determined using a laser diffraction particle size analyzer 

(Microtrac S3500, Montgomeryville, PA).

The reacted powder was hot-pressed in a 63.5 mm x 63.5 mm rectangular graphite 

die lined with graphite foil and coated with boron nitride. The graphite die was loaded
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into a hot press and heated at 25°C/min to 1600°C, with a one hour hold under mild 

vacuum (~150 mtorr), and then heated to 1650°C and held for 10 minutes. The 

isothermal holds were used to promote removal of oxide impurities from the surfaces of 

the powder particles. After the 1650°C hold, the furnace was backfilled with helium and a 

uniaxial pressure of 32 MPa was applied. The temperature was then increased at a rate of 

50°C/min to 2150°C for the final hot-pressing temperature. The sample was held for 35 

min at 2150°C. After the 35 min hold, the furnace was cooled at a rate of 45°C/min to 

1600°C. At that temperature, the uniaxial pressure of 32 MPa was removed. From 

1600°C the furnace was allowed to naturally cool to room temperature.

2.2 CHARACTERIZATION

Archimedes’ method was used to measure the bulk density of the billets, with an 

assumed theoretical density of 6.73 g/cm3. The billets were placed in boiling distilled 

water for two hours and then placed under mild vacuum for at least 30 minutes to saturate 

the open pores with water. Scanning electron microscopy (SEM; Raith eLine, Dormund, 

Germany) was used to examine the microstructures from cross-sectioned specimens 

produced from the billets from surface grinding (FSG-3A818, Chevalier, Santa Fe 

Springs, CA) with a 600 grit diamond wheel and polishing with successively finer 

diamond abrasives to a 0.25 pm surface finish. A low voltage of 5kV was used to 

increase channeling contrast. Grain size was measured from SEM images using Image J 

software (National Institutes of Health, Bethesda, MD), using the Feret’s diameter. At 

least 100 grains per specimen were measured to determine average grain sizes. The bars



tested at elevated temperatures were cross sectioned and polished for microscopy using 

the polishing procedure as outlined above.
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2.3 MECHANICAL TESTING

Flexure strengths were measured using four-point bending on polished bars at 

elevated temperatures from 1600°C to 2400°C following ASTM C1211. Five bars were 

tested at each temperature to determine the average flexure strength. Hot pressed billets 

were machined into 3.0 mm by 4.0 mm by 45 mm bars by electrical discharge machining 

(EDM: AgieCut HSS150, GF Manufacturing Technology, Switzerland). The tensile 

surface was polished to a 0.25 pm finish using diamond abrasives. The bars were tested 

using an instrumented load frame (33R4204, Instron, Norwood, MA). The elevated 

temperature testing was performed in an induction heated environmental chamber under 

flowing argon. A two-color optical pyrometer, sited on the susceptor, was used to control 

the temperature. The heating profile used was 100°C/min to each test temperature with a 

five minute isothermal hold before testing to insure the testing fixture and test specimen 

had equilibrated. The crosshead rate was 2.5 mm/min, which remained the same across 

all elevated temperatures.

3. RESULTS AND DISCUSSION

3.1 DENSITY AND MICROSTRUCTURE

Hot-pressed ZrC0.92 had a relative density greater than 95%. The average grain 

size of the hot-pressed billet was 2.7 ± 1.4 pm. SEM analysis of the microstructure,
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shown in Figure 1, agrees with the measured density. Porosity was about 4% in the billets 

which is consistent with the density measurements. About half of the porosity is 

intragranular. Porosity seen in the SEM images appear as black circles with charging 

around the edges. The carbon inclusions are seen as black phase with no charging around 

the edges. The microstructure was the same as the specimens tested in the previous 

study, with intragranular pores and carbon impurities. As seen in the previous study, the 

porosity and carbon inclusions are smaller than the grain size and were determined to not 

be the strength limiting flaw. The room temperature strength reported in the previous 

study was 362 ± 46 MPa with the strength limiting flaw being the larger grains in the 

microstructure (~17 gm).

3.2 MECHANICAL PROPERTIES

The room temperature strength is 362 MPa with an increased average strength at 

1600°C to 375 MPa. The strengths at room temperature and 1600°C are within the 

standard deviation of each other. High temperature testing in this study shows that the 

average strength values, summarized in Table 1, stay relatively consistent at ~350 MPa 

up to 2000 °C, with strength then decreasing to 283 MPa at 2200°C and 245 MPa at 2400 

°C. The strength starts to decrease after 1600°C, similar to what was observed by Shen et 

al..37 The strength limiting flaw in the pervious study was the larger grains in the 

microstructure it is possible that this is also the strength controlling flaw at the 

temperatures between room temperature and 1600°C. The high temperature strengths are 

well above some literature reported values, shown in Figure 2.
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The strength decreases above 1600°C. The strength decreases at 1800°C to 339 ± 

30 MPa, then to 342 ± 32 MPa at 2000°C, to 283 ± 34 MPa at 2200°C, and then to 245 ± 

14 MPa at 2400°C. From the results of the current study, the strengths were all above the 

strength values in the older studies. The combination of porosity, grain size, and 

decreased impurities all contributed to an increase in strength in this study. The grain size 

in this study was 2.7 gm, as compared to the grain sizes of Fedotov et al., Gridneva et al., 

and Shen et al. with grain sizes of 250 gm, 10 gm, and 10.9 gm respectively. The 

porosity may play a lesser role in the high strengths in the current study. The porosity in 

Gridneva et al. and Shen et al. was 2.5% and 4.6%, respectively. The oxygen content in 

this study, compared to other studies, does not show a strong correlation to strength with 

the older studies having lower oxygen content than current studies. Fedotov et al. and 

Gridneva et al. measured oxygen impurities of 0.1 wt% and 0.05 wt %, respectively.

Shen et al. and the current study measured higher oxygen contents of 0.64 wt% and <0.5 

wt%, respectively. While the grain size and impurities might have an impact on the 

elevated temperature strengths, another possibility that could affect the strength in these 

older studies is how the bars were processed for mechanical testing. The older studies 

typically do not mention how the test bars were prepared for testing (e.g., machine, 

polished etc.), with some studies also not including the testing atmosphere. Fedotov et al. 

and Gridneva et al. mention testing in a mild vacuum. Shen et al. tested in a flowing 

argon atmosphere. The other studies do not mention testing atmosphere and this can 

greatly affect the strengths of the tested materials

The decrease in strength at the higher temperatures might be caused by oxidation 

of the surface of the test bars, leading to etching of the grain boundaries. With increases



in temperature the test bars were held for longer times at elevated temperatures, this 

could have increased the oxidation of the surface layer decreasing strength, but this was 

not studied in detail. In a study by Lanin et al.9 ZrC0.96 was tested, however the 

processing methods were not mentioned. They observed increases in strength around 

1600°C before decreasing at higher temperatures, with the decrease in strength attributed 

to a relaxation in stress and microplasticity. Shaffer et al.10 hot pressed ZrCx at 2250°C 

under a 14 MPa applied pressure, and they also observed strength increases at higher 

temperature and attributed these increases to internal stress relaxation. Gridneva et al. did 

not mention the processing methods used to make their ZrC0.95. Gridneva et al. also noted 

a strength increase at elevated temperatures and attributed it to decreasing porosity and 

grain size, as well as increasing strength of the grain boundaries. Shen et al. references 

grain boundary strength as well. At 1800°C the intergranular strength of the hot pressed 

ZrCx tested in Shen et al. was weak, resulting in grain sliding and grain pull out.8 The 

grain boundaries were strengthened with tungsten additions. They proposed that the 

tungsten additions decreased the oxygen in the grain boundaries, thus increasing the grain 

boundary strength. In Shen et al., the high temperature strength at 1600°C is within 

standard deviation and while the strength at 1800°C is not within standard deviation the 

decrease from 1600°C to 1800°C is comparable to the current study. Fedotov et al. has a 

consistent strength up to 1500°C and as seen in the current study a decrease in strength 

above 2000°C, all of the strengths are >100 MPa lower and this can be attributed to the 

large grain size of 250 pm. The older studies do not go into detail about how the bars 

were prepared for strength testing, and since strength is not necessarily a material
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property it can be strongly controlled by sample processing. The porosity, impurities, 

grain size, sample preparation all have an impact on the final strengths.
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3.3 SURFACE MICROSTRUCTURE

While the microstructure of the bars tested at elevated temperatures did not 

change in any statistically significant way, the grain sizes have increased slightly at the 

higher temperatures, as seen in Table 1. The average grain size increased as the test 

temperature increased. The room temperature grain size was 2.7 pm increasing at 

elevated temperatures and reaching a maximum of 4 pm at 2200°C. With this increase in 

average grain size, the largest grains, which were determined to be the strength limiting 

flaws, are also likely increasing in size which would result in decreased strengths at 

elevated temperatures. However, the overall grain size average stayed within the standard 

deviation of the as hot-pressed grain size. The tensile surface of the of the bars was 

oxidized and the morphology of the oxide layer changes based on the test temperature, as 

shown in Figure 3. The surface at 1800°C shows etching preferentially along the grain 

boundaries. In Shen et al., the decrease in the strength of the grain boundaries of the ZrCx 

was attributed to the increased oxygen along the grain boundaries. At temperatures above 

1000°C grain boundary diffusion predominates the reaction.4 At 2000°C there is no 

visible grain structure any more, more of a uniform, rocky surface. At 2200°C the grain 

boundaries can be seen again. as well as a large number of pores within each grain. ZrCx 

can diffuse oxygen to create an oxycarbide then the oxycarbide will start to precipitate 

carbon and ZrO2 . At temperatures above 470°C a zirconium oxycarbide surface phase 

forms which starts to form amorphous ZrO2 and C, cubic zirconia starts to nucleate



forming an oxide layer with the free carbon stabilizing the cubic zirconia, then oxygen 

starts to defuse through the oxide layer to the free carbon forming carbon dioxide (CO2) 

leaving voids and pores in the zirconia layer.11 The carbon precipitation could be what is 

causing the porous microstructure.
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4. SUMMARY

Flexure strengths of ZrC0.92 were measured up to 2400°C in a flowing argon 

atmosphere. Relatively dense, ~95%, billets of ZrC0.92 with an average grain size of ~3 

gm were produced by hot pressing. Strength between room temperature and 1600°C 

remained fairly constant at ~362 MPa ± 46 MPa, decreasing to ~340 MPa between 1800 

and 2000°C, further decreasing at 2200 and 2400°C to 283 MPa and 245 MPa, 

respectively.
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Figure 1. Secondary electron micrograph of a polished cross section of the hot-pressed
ZrC ceramic.

Temperature (°C)

Figure 2. Elevated temperature flexural strength of ZrCx.
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Figure 3. SEM images of the tensile surface of the elevated strength bars at 1800°C (a),
2000°C (b), 2200°C (c).

Table 1. High temperature strength and grain size.

Temperature
(°C)

RT 1600 1800 2000 2200 2400

Flexural
Strength
(MPa)

362 ± 46 375 ± 65 339 ± 30 342 ± 32 283 ± 34 245 ± 14

Tested Bars 
Grain Size 

(Fm)
2.7 ± 1.4 2.8 ± 1.4 3.1 ± 1.5 3.7 ± 1.5 4.0 ± 1.5 3.7 ± 1.4
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SECTION 

3. CONCLUSIONS

The research presented in this thesis focused on the properties of ZrC ceramics. 

More specifically, this research was focused on the baseline properties of near 

stochiometric ZrCx. To date many of the studies on ZrCx do not include important details 

with respect to the ZrCx tested. For example, some studies do not include the C/Zr ratio 

or impurities in the material. Experimentally, the carbothermal reduction method was 

used to prepare near-stoichiometric ZrC with minimal impurities. Materials were 

characterized by XRD, SEM, and Raman spectroscopy. The ZrC tested during this study 

had an average grain size of 2.7 pm ± 1.4 pm with a relative density of ~96%, a 

secondary graphitic phase was identified using Raman spectroscopy. The strength of ZrC 

with a C/Zr ratio of 0.92 was 375 ± 65 MPa. The sample had a toughness of 2.9 ± 0.1 

MPa*m1/2. Vickers hardness was 17 GPa with a load of 1 kgf and 19.5 GPA with a load 

of 0.5 kgf. The results of the first part of the thesis contributes to the current state of 

knowledge of ZrCx mechanical properties. The strength at room temperature correlated 

with the largest grains in the microstructure. Reducing the size of the largest flaw would 

be expected to improve the strength of the material.

The mechanical properties of ZrCx at elevated temperatures were also studied. 

The strength was measured at elevated temperatures, staying with the standard deviation 

of room temperature strength until 2200°C where the strength dropped to 283 ± 34 MPa, 

and then decreased to 245 ± 14 MPa at 2400 °C. The elevated temperature property data 

is lacking. At elevated temperatures, the mechanical properties can be improved by using



higher purity powders. The higher purity powders and improved processing produced 

phase pure microstructures with higher densities than seen from the historical studies.

The high temperature strength values in older studies tend to be much lower than in the 

current study, is stable out to 2000°C, showing more promise for extreme environment 

applications. Controlling the impurities is essential to controlling the mechanical 

properties of ZrC ceramics. The mechanical properties of the ZrC weaken during 

exposure to oxidation. ZrC readily oxidizes above 500°C, so finding a way to improve 

oxidation resistance will be necessary to protect ZrC for structural applications.
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This research focused on the mechanical properties of ZrCx at room temperature 

as well as the high temperature strength of ZrCx. Several suggestions are presented in this 

section for advancing understanding and improving the mechanical properties of ZrCx 

ceramics.

1. The composition studied in this work was ZrC0.92. ZrCx exists in a wider range of 

stoichiometries. Further study on the other compositions of ZrCx will be able to 

shine a brighter light on the functions of ZrCx.

2. Varying the grain size of monolithic ZrCx. It was found in this study that the 

limiting factor in the strength of at least the room temperature bars was the grain 

size. Reducing the grain size could increase the strength of ZrCx. However, finer 

grain size can enhance the effect of creep and this could prove troublesome at 

high temperature testing.

3. In addition to different stoichiometries of ZrCx further study into the oxycarbide 

formed is needed. Oxygen readily dissolves into the ZrC lattice onto carbon 

vacancy sites. With ZrCx ability to retain oxygen finding out the mechanical 

strengths of oxycarbide with varying oxygen compositions will be able to show 

how oxygen effects the strengths of ZrCx in application.

4. Strength was the only mechanical property tested at high temperatures. To more 

clearly understand the effects of elevated temperatures on ZrCx other mechanical 

properties should be tested, fracture toughness, hardness, and elastic modulus.

4. FUTURE WORK



47

REFERENCES

1. Wang Y, Liu Q, Liu J, Zhang L, Cheng L. Deposition mechanism for chemical 
vapor deposition of zirconium carbide coatings. J Am Ceram Soc. 
2008;91(4):1249-52.

2. Katoh Y, Vasudevamurthy G, Nozawa T, Snead LL. Properties of zirconium 
carbide for nuclear fuel applications. J Nucl Mater. 2013;441(1-3):718-42.

3. Gosset D, Dolle M, Simeone D, Baldinozzi G, Thome L. Structural evolution of 
zirconium carbide under ion irradiation. J Nucl Mater. 2008;373(1-3):123-9.

4. Vasudevamurthy G, Knight TW, Roberts E, Adams TM. Laboratory production of 
zirconium carbide compacts for use in inert matrix fuels. J Nucl Mater. 
2008;374:241-7.

5. Vasudevamurthy G, Katoh Y, Aihara J, Sawa K, Snead LL. Microstructure and 
mechanical properties of heat-treated and neutron irradiated TRISO-ZrC coatings. 
J Nucl Mater. 2015;464:245-55.

6. Fahrenholtz WG, Wuchina EJ, Lee WE, Zhou Y. Ultra-high temperature ceramics: 
materials for extreme environment applications. Hoboken: John Wiley & Sons; 
2014. p. 361-415.

7. Snead LL, Katoh Y, Kondo S. Effects of fast neutron irradiation on zirconium 
carbide. J Nucl Mater. 2010;399(2-3):200-7.

8. Lonergan JM, McClane DL, Fahrenholtz WG, Hilmas GE. Thermal Properties of 
Hf-Doped ZrB2 Ceramics. J Am Ceram Soc. 2015;98(9):2689-91.

9. Gosset D. Absorber materials for Generation IV reactors. Structural Materials for 
Generation IV Nuclear Reactors. Elsevier Ltd; 2017. 533-567 p.

10. Feng L, Fahrenholtz WG, Hilmas GE, Watts J, Zhou Y. Densification, 
microstructure, and mechanical properties of ZrC-SiC ceramics. J Am Ceram Soc. 
2019;(102):5786-95.

11. Wei B, Chen L, Wang Y, Zhang H, Peng S, Ouyang J, et al. Densification, 
mechanical and thermal properties of ZrC1 -  x ceramics fabricated by two-step 
reactive hot pressing of ZrC and ZrH2 powders. J Eur Ceram Soc. 
2018;38(2):411-9.

12. Min-haga E. Sintering and. mechanical properties of ZrC-ZrOa composites. J 
Mater Sci. 1988;23(1988):2865-70.



48

13. Sciti D, Guicciardi S, Nygren M. Spark plasma sintering and mechanical 
behaviour of ZrC-based composites. Scr Mater. 2008;59(6):638-41.

14. Hopkins BJ, Ross KJ. The work function of uranium. Proc Phys Soc. 
1962;79(1):447-8.

15. Leipold MH, Nielsen TH. Mechanical Properties of Hot-Pressed Zirconium 
Carbide Tested to 2600°C. J Am Ceram Soc. 1964;47(9):419-24.

16. Allinson JD, Riviere JC. High temperature, short term, compatibility of some 
refractory metals with the thermionic converter fuel UCZrC. J Nucl Mater. 1965 
Oct 1;17(2):97—110.

17. Wang X-G, Liu J-X, Kan Y-M, Zhang G-J. Effect of solid solution formation on 
densification of hot-pressed ZrC ceramics with MC (M = V, Nb, and Ta) 
additions. J Eur Ceram Soc. 2012;32(8):1795-802.

18. Jackson HF, Lee WE. Properties and Characteristics of ZrC. In: Comprehensive 
Nuclear Materials. London: Elsevier Science; 2012. p. 339-72.

19. Harrison RW, Lee WE. Processing and properties of ZrC , ZrN and ZrCN 
ceramics : a review. Adv Appl Ceram. 2016;115(5):294-307.

20. Pierson HO. 4 - Carbides of Group IV: Titanium, Zirconium, and Hafnium 
Carbides. In: Pierson HOBT-H of RC and N, editor. Westwood, NJ: William 
Andrew Publishing; 1996. p. 55-80.

21. Fernandez-Guillermet. Analysis of thermochemical properties and phase stability 
in the zirconium-carbon system. Am J Alloy Compd. 1995;217(1):69-89.

22. Sara R V. The System Zirconium—Carbon. J Am Ceram Soc. 1965;48(5):243-7.

23. Sarkar SK, Miller AD, Mueller JI. Solubility of oxygen in ZrC. Jounal Am Ceram 
Soc. 1972;55(12):628-30.

24. David J, Trolliard G, Gendre M, Maitre A. TEM study of the reaction mechanisms 
involved in the carbothermal reduction of zirconia. J Eur Ceram Soc. 
2013;33:165-79.

25. Sondhi A, Morandi C, Reidy RF, Scharf TW. Theoretical and experimental 
investigations on the mechanism of carbothermal reduction of zirconia. Ceram Int. 
2013;39(4):4489-97.

26. Maitre A, Lefort P. Solid state reaction of zirconia with carbon. Solid State Ionics. 
1997;104:109-22.



49

27. Gendre M, Maitre A, Trolliard G. Synthesis of zirconium oxycarbide (ZrCxOy) 
powders: Influence of stoichiometry on densification kinetics during spark plasma 
sintering and on mechanical properties. J Eur Ceram Soc. 2011;31(13):2377-85.

28. Feng L, Lee S, Lee H. Nano-sized zirconium carbide powder: Synthesis and 
densification using a spark plasma sintering apparatus. Int J Refract Met Hard 
Mater. 2017;64:98-105.

29. Zhu R, He H, Lin Z, Jiang S, Zhang J. Amorphous/crystalline ZrC alternating 
multilayers deposited by magnetron sputtering at room temperature. Mater Today 
Commun. 2020;24(April):101143.

30. Bunshah RF, Nimmagadda R, Dunford W, Movchan BA, Demchishin A V., 
Chursanov NA. Structure and properties of refractory compounds deposited by 
electron beam evaporation. Thin Solid Films. 1978;54(1):85-106.

31. Wang X-G, Guo W-M, Kan Y-M, Zhang G-J, Wang P-L. Densification behavior 
and properties of hot-pressed ZrC ceramics with Zr and graphite additives. J Eur 
Ceram Soc. 20n;31(6):1103-n.

32. Van Loo FJJ, Wakelkamp W, Bastin GF, Metselaar R. Diffusion of carbon in 
TiC1-y and ZrC1-y. Solid State Ionics. 1989 Feb 1;32-33:824-32.

33. Silvestroni L, Sciti D. Microstructure and properties of pressureless sintered ZrC- 
based materials. J Mater Res. 2008;23(7):1882-9.

34. Zhao L, Jia D, Duan X, Yang Z, Zhou Y. Pressureless sintering of ZrC-based 
ceramics by enhancing powder sinterability. Int J Refract Met Hard Mater. 
2011;29(4):516-21.

35. Schonfeld K, Martin HP, Michaelis A. Pressureless sintering of ZrC with variable 
stoichiometry. J Adv Ceram. 2017;6(2):165-75.

36. Sacks MD, Wang C, Yang Z, Jain A. Carbothermal reduction synthesis of 
nanocrystalline zirconium carbide and hafnium carbide powders using solution- 
derived precursors. 2004;9:6057-66.

37. Shen Y, Wang X, Jiang D. Strong ZrC ceramics at high temperatures with the 
addition of W. J Am Ceram Soc. 2019;102:3090-6.

38. Nachiappan C, Rangaraj L, Divakar C, Jayaram V. Synthesis and densification of 
monolithic zirconium carbide by reactive hot pressing. J Am Ceram Soc. 
2010;93(5):1341-6.

39. Rangaraj L, Chakrabarti T, Kannan R, Jayaram V. Effect of applied pressure on 
densification of monolithic ZrC x ceramic by reactive hot pressing. J Mater Res. 
2016;31(4):506-15.



50

40. Wei X, Back C, Izhvanov O, Haines CD, Olevsky EA. Zirconium carbide 
produced by spark plasma sintering and hot pressing: Densification kinetics, grain 
growth, and thermal properties. Materials (Basel). 2016;9(7).

41. Jackson HF, Jayaseelan DD, Lee WE, Reece MJ, Inam F. Laser Melting of Spark 
Plasma-Sintered Zirconium Carbide : Thermophysical Properties of a Generation 
IV Very High-Temperature Reactor Material. Int J Appl Ceram Technol. 
2010;7(3):316-26.

42. Wei X, Back C, Izhvanov O, Khasanov OL, Haines CD, Olevsky EA. Spark 
plasma sintering of commercial zirconium carbide powders: Densification 
behavior and mechanical properties. Materials (Basel). 2015;8(9):6043-61.

43. Lanin AG, Zubarev PV, Valsov KP. Mechanical and Thermophysical Properties of 
Materials in HTGR Fuel Bundles. At Energiya. 1993;74(1):42-7.

44. Chang R, Graham LJ. Low-temperature elastic properties of ZrC and TiC. J Appl 
Phys. 1966;37(10):3778-83.

45. Fedotov MA, Yanchur VP. Temperture Dependence of the Strength and Placticity 
of Carbides Obtained by Continuous Saturation. Inorg Mater. 1976;12(3):421-5.

46. Gridneva IV, Mil’man YV, Rymashevskii GA, Trefilov VI, Chugunova SI. Effect 
of temperature on the strength characteristics of zirconium carbide. Powder Metall 
Met Ceram. 1976;15(8):638-45.



51

VITA

Nicole Mary Korklan was born in Tucson, Arizona. She is from Tucson, Arizona 

where she attended high school at Catalina Foothill High School. Nicole graduated high 

school in the spring of 2012 and moved to Rolla, Missouri to attend Missouri University 

of Science and Technology later that same year. Nicole received her Bachelor of Science 

degree in Ceramic Engineering in 2016.

Nicole began her graduate work at Missouri University of Science and 

Technology in August of 2017. Nicole focused her research on the processing and 

properties of ZrC ceramics. Nicole received her Master of Science. degree in Ceramic 

Engineering from Missouri University of Science and Technology in August 2020.


	Intrinsic mechanical properties of zirconium carbide ceramics
	Recommended Citation

	tmp.1601480882.pdf.8ZICv

