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ABSTRACT

Cyber-Physical Systems (CPSs) are complex systems that integrate physical 

systems with their counterpart cyber components to form a close loop solution. Due to 

the ability of deep learning in providing sensor data-based models for analyzing physical 

systems, it has received increased interest in the CPS community in recent years. 

However, developing vision data-based deep learning models for CPSs remains critical 

since the models heavily rely on intensive, tedious efforts of humans to annotate training 

data. Besides, most of the models have a high tradeoff between quality and computational 

cost. This research studies deep learning algorithms to achieve affordable and upgradable 

network architecture which will provide better performance. Two important applications 

of CPS are studied in this work. In the first study, a Mask Region-based Convolutional 

Neural Network (Mask R-CNN) was adopted to segment regions of interest from 

surveillance videos of manufacturing plants. Then, the Mask R-CNN model was 

modified to have consistent detection results from videos using temporal coherence 

information of detected objects. This method was extended to the second study, a task of 

bridge inspection to detect and segment critical structural components. A cellular 

automata-based pattern recognition algorithm was integrated with the Mask R-CNN 

model to find the crack propagation rate in the structural components. Decision-makers 

can make a maintenance decision based on the rate. A discrete event simulation model 

was also developed to validate the proposed methodology. The work of this research 

demonstrates approaches to developing and implementing vision data-based deep neural 

networks to make the CPS more affordable, scalable, and efficient.
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1. INTRODUCTION

Cyber-physical systems (CPS) are complex engineering systems integrated with 

physical and cyber processes. One of the prospective methods of adding new capabilities 

to the cyber process of CPS is the use of computer vision because of their exquisite 

capability of integrating with physical systems [1]. Computer vision is the science that 

aims to mimic the capability of human eyes to see and sense the world. This science uses 

computational methods to extract the required information from visual images. Smart 

manufacturing, smart transportation, smart infrastructure systems are some of the 

applications that utilize video surveillance and inspection video data. For many decades 

researchers are actively researching these fields. Therefore, many applications of 

computer vision have been developed [2, 3, 4]. However, computer vision in developing 

complex adaptive cyber-physical systems has not been explored remarkably. Therefore, 

this field requires further exploration.

In this thesis, vision data-based deep learning models were developed and 

integrated with existing engineering systems to turn those systems into complex adaptive 

cyber-physical systems to tackle complex societal problems in two important 

applications. Figure 1 shows how our cyber models are interconnected with the physical 

process to control the physical world. This thesis chose to utilize the recent success of the 

deep learning method [5, 6, 7]. The recent success of deep learning methods brought new 

capabilities to develop new artificial intelligence, and machine learning techniques to 

tackle various socio-technical problems [8]. The availability of parallel computation 

coupled with the large-scale labeled datasets and the recent breakthrough of the deep



learning algorithms reinforce the idea of developing vision data-based deep learning 

models to create complex adaptive cyber-physical systems.

2

Cyber Modeling

Sensing Controlling

physical physicalPhysical
world world

Figure 1. Cyber-Physical systems

Artificial intelligence assisted computer vision platforms are capable of 

functioning in increasingly complex environments. Artificial intelligence along with 

operators’ skills leads to better efficiency and fewer errors. However, all machine vision 

platforms cannot provide similar benefits. Computer vision can yield the best result when 

strategically integrated into the intended operation to enhance both the machine and 

human intelligence simultaneously. Successful integration of computer vision, machine 

intelligence, and human intelligence can overcome the limitation of manual quality 

control, tracking inventories, and tracking industrial tools or objects in industrial 

applications. Therefore, in this thesis, a complex system was developed using a regional- 

based deep learning algorithm to detect and track industrial objects in complex



manufacturing scenes. Mask Region-based Convolutional Neural Network (Mask R- 

CNN) [9] object detector was used to detect and segment important industrial objects 

from video frames. Temporal coherence analysis was added in the post-processing phase 

to further improve the segmentation quality. To train the model, transfer learning was 

used to make the model adaptable to new tasks. This also increases the affordability of 

the model as it requires only a few annotated training data.

The developed computer vision-based deep learning model is not only applicable 

to the manufacturing industry but also helps many other application fields. Inspecting 

complex engineering systems like bridges, buildings, pipelines, etc. are a few examples 

of such applications. Complex engineering infrastructure systems deteriorate over time, 

their proper inspection, monitoring, and maintenance are becoming very important. The 

traditional practice depends on the periodic visual inspection by humans, which is 

inadequate because inspection reports vary significantly among different inspectors due 

to their individually varying educational background, experiences, and physical 

conditions. Besides, inspection data collection is time-consuming, it requires dangerous 

field activities, sometimes need to block traffic. Therefore, to overcome these challenges 

this thesis develops a visual data based deep learning model that can analyze the data to 

detect critical structural components using the data collected by unmanned aerial vehicles 

(UAV). A self-organizing cellular automata-based pattern recognition algorithm was 

added with the deep neural model to find out the crack propagation rate in the structural 

components. A discrete event simulation model was also developed to validate the 

proposed inspection model.

3



4

The remaining part of this thesis is organized as below. Section 2 describes 

vision-based deep learning model in the manufacturing field. Section 3 describes the 

modeling and simulation of a robotic bridge inspection. Finally, Section 4 draws 

conclusions and suggests future research.
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PAPER

I. A REGION-BASED DEEP LEARNING ALGORITHM FOR DETECTING AND 
TRACKING OBJECTS IN MANUFACTURING PLANTS

Muhammad Monjurul Karim, David Doell, Ravon Lingard, Zhaozheng Yin, Ming C.
Leu, Ruwen Qin

Missouri University of Science and Technology, Rolla, MO 65409

ABSTRACT

In today’s competitive production era, the ability to identify and track important 

objects in a near real-time manner is greatly desired among manufacturers who are 

moving towards the streamline production. Manually keeping track of every object in a 

complex manufacturing plant is infeasible; therefore, an automatic system of that 

functionality is greatly in need. This study was motivated to develop a Mask Region- 

based Convolutional Neural Network (Mask R-CNN) model to semantically segment 

objects and important zones in manufacturing plants. The Mask R-CNN was trained 

through transfer learning that used a neural network (NN) pre-trained with the MS- 

COCO dataset as the starting point and further fine-tuned that NN using a limited number 

of annotated images. Then the Mask R-CNN model was modified to have consistent 

detection results from videos, which was realized through the use of a two-staged 

detection threshold and the analysis of the temporal coherence information of detected 

objects. The function of object tracking was added to the system for identifying the



misplacement of objects. The effectiveness and efficiency of the proposed system were 

demonstrated by analyzing a sample of video footage.

6

1. INTRODUCTION

Visually finding an object in a complex manufacturing plant is a basic 

requirement of various industrial tasks like quality management, packaging, and sorting 

to name a few. Moreover, according to the industry 4.0 paradigm, monitoring objects and 

tracking their position in real time are needed for controlling production processes [1]. 

This capability also facilitates the recognition of human-object interaction, which will 

help to make machines and components become autonomous and self-organizing, thus 

reducing the manufacturing complexity [2, 3]. However, manually keeping track of 

objects lacks efficiency and reliability. Therefore, an automatic system of that 

functionality is greatly in need.

Automated object detection and tracking in complex manufacturing scenes are 

very important for developing a smart manufacturing industry, however, this remains a 

very challenging task. Researchers adopted some traditional solutions for this task 

including the use of weight or magnetic sensors [4, 5, 6]. The radio frequency 

identification (RFID) technology is also commonly used to track objects [7, 8, 9]. This 

technology requires an RFID active tag attached with the object, a tag reader, and radio 

communication between them, thus requiring a large initial cost. Meanwhile, to attach 

tags to every tools and objects in a factory is unrealistic. A more practical approach is 

computer vision that does not require attaching any material or sensors to objects of
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tracking. Computer vision detects and tracks objects through analyzing the video data, for 

example, using deep learning [10, 11]. Region-based convolutional neural network (R- 

CNN) has been shown to be effective in detecting and localizing objects in images [12]. 

Faster R-CNN proposed by He et al. [13] is a feature extractor that uses a region proposal 

network (RPN) to generate region proposals instead of using traditional selective search 

[14]. The RPN simultaneously regresses region bounding boxes and detection scores of 

an object. Mask R-CNN [15] is an extension of faster R-CNN, which performs the region 

segmentation at the pixel level. Recently, the YOLO [16] and SSD [17] use a single 

network which don’t have the RPN and RoI-pooling layers, thus faster compared to 

Faster R-CNN and Mask R-CNN. However, YOLO and SSD are outperformed by Mask 

R-CNN and Faster R-CNN in detecting small objects.

Abovementioned deep learning algorithms work well in detecting objects in static 

images. Yet, results may not be consistent when they are applied to videos. Therefore, the 

temporal coherence of an object in successive frames has been introduced to address the 

issue of inconsistent detection [18, 19, 20], wherein the tubelet and optical flow are used 

to propagate features from one frame to another. However, the approaches in the 

literature are computationally expensive due to the requirement for repeated motion 

estimation and feature propagation, making the solution process very slow. Seq-NMS 

[21] has modification only in the post-processing phase and, thus, it is faster than the 

algorithms in [18, 19, 20]. Yet Seq-NMS tends to increase the number of false positive 

detections because it does not put a penalty on these detections or add additional 

constraints to prevent the occurrence.



This paper presents a study that extended Mask R-CNN by referring to the 

temporal coherence information of objects in videos and implementing a two-staged 

detection threshold. The temporal information includes high scoring objects in 

neighboring frames and their spatial locations. The two-staged detection threshold was 

introduced to boost up weak detections in a frame by referring to objects with high 

detection scores in neighboring frames. The spatial locations of these objects were used 

to prevent the propagation of false positive detections to other frames. This study further 

created the ability to track the location of any detected object and notify users if the 

object is not in the right place for it. In implementation of the proposed method, transfer 

learning [22] was used to adapt a deep learning feature extractor to the application 

setting.

The remainder of this paper is organized as follow: Section 2 delineates the 

proposed method for object detection and tracking, followed by examples illustrating the 

implementation of the method. Results from the examples are illustrated in Section 4. 

Conclusions and future work are summarized at the end, in Section 5

8

2. METHODOLOGY

The proposed framework for the object detection and tracking system is 

illustrated in Figure. 1. The system can use the plant’s own Closed Circuit TV (CCTV) or 

surveillance cameras to capture videos of the work floor. Video streams of a monitored 

area are fed to the system. The classifier of the system uses a deep learning algorithm to 

semantically detect objects in that area. Then, the initial detection result is further refined
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by referring to the temporal coherence information of objects in videos. The system 

measures the distance between the location of each detected object and the location for 

the object in the designated zone. If the measured distance is larger than the pre-specified 

threshold value for the object, indicating that the object is outside the zone, a notification 

will be generated and sent to users through an interface. Provided with this system, users 

can track every object and find the location of it when the object is misplaced. The deep 

learning algorithm of object detection and tracking, which is the focus of this paper, is 

discussed in the following.

Figure 1. Schematic diagram of the object detection and tracking system

2.1. DEVELOPMENT OF A REGION BASED DEEP LEARNING ALGORITHM  
BASED ON TRANSFER LEARNING

Region-based CNN (R-CNN) has been shown to be effective in detecting and

localizing objects in images. Mask R-CNN, a type of R-CNN performing the region

segmentation at the pixel level, was chosen as the segmentation tool by this study. Figure

2 illustrates the structure of Mask R-CNN. Having an architecture of ResNet [23] based

Feature Pyramid Network (FPN), the backbone of the network is a feature extractor that
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generates the feature map of each input image. A region proposal network (RPN) creates 

region of interests (ROIs) and extracts them from the feature map. The extracted feature 

maps are further aligned with the input image and converted into fixed size feature maps 

by a layer named Region of Interests Align (RoIAlign). The fixed-size feature maps of 

RoIs are fed into two independent branches: the network head branch performing 

classification and bounding box generation, and the mask branch for independently 

generating instance masks. Interested readers can refer to [15] for details.

Conv.
layers

M ask Branch

Figure 2. Architecture of Mask R-CNN

In this study, the Mask R-CNN was initialized by adopting the ResNet-50 feature 

extractor [23] whose weights have been pre-trained on the Microsoft COCO dataset [24] 

that has more than 120,000 labeled images and contains around 1.5 millions of object 

instances in 80 categories. Then, transfer learning was used to adapt the ResNet-50 

feature extractor to the specific setting of this study. Specifically, the ResNet-50 was 

fine-tuned using a small set of training images collected from the intended manufacturing
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application. The ground truth of the training dataset was created by manually annotating 

the images with class labels. The training was a two-stage process. In the first stage, the 

network head and the mask branch were trained while all layers before the head were 

fixed. In the second stage, besides the network head and the mask branch the last few 

layers of the ResNet Backbone (C5) were trained as well.

2.2. TEMPORAL COHERENCE WITH A TWO-STAGED DETECTION 
THRESHOLD

False detections can be reduced by incorporating the temporal coherence 

information of objects in successive frames. The temporal information used by this study 

include objects with high detection scores in preceding frames and their spatial locations. 

The temporal coherence of objects in videos was incorporated in the post-processing 

phase of the Mask R-CNN.

Consider a single video clip that consists of N frames, index by i. In each frame 

the detector returns Mt objects indexed by j. An object in a frame is highly likely present 

in the neighboring frames within a range of displacement with similar confidence. Under 

this assumption, a two-staged detection threshold was introduced in this study to 

propagate detection results from one frame to succeeding frames. Let Ojj designate 

object j  in frame i. The center of the bounding box for Ojj is specified by its 

coordinates Ct,j ■= (Xij/ytj). In p frames, Cjj may shift to a surrounding pixel with a 

spatial displacement of (pAx, pAy) where Ax and Ay are the average displacement on x 

and y axes, respectively.
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Figure 3. An illustration of spatial displacements. The yellow dot represents the center 
location of the bounding box for an object. In each frame it gets displaced by (Ax, Ay),

approximately

The detection score for object j  in frame i is S jj. The detection threshold is a 

range [tu tu]. The detector immediately returns a positive detection if Sjj > tu. Let 0 t be 

the set of such detected objects. The detection score and the center location of these 

objects in frame i, (Sjj, Cjj), are stored for analyzing the succeeding four frames. If tx < 

Stj  < tu, the existence of this weakly detected object Ojj is checked by referring to a pair 

of preceding successive frames up to three times, starting from the nearest pair (frames 

i — 1 and i — 2) to the farthest pair (frames i -3  and i — 4). That is, if Ojj is found in 

both 0 t-1 and 0 i-2, and the spatial displacements of Cjj from frame i — 1 and i — 2 are 

within (Ax, Ay) and (2Ax, 2Ay), respectively, this weakly detected object is added to 0 t 

and the detection score of it is updated by taking the average of Si-1j  and Si-2j . 

Otherwise, Ojj is searched in 0 i-2 and 0 i-3 and the displacements of Ctj  from frames 

i — 2 and i — 3 are measured to determine if it is a positive detection. Ojj will be 

searched from 0 i-3 and 0 i-4 if needed. If Ojj is not found to be a positive detection after 

three times of time coherence analysis, it is not reported as a positive detection. It is 

noticed that searching an object in pairs of successive frames will minimize the risk of



propagating false positive detection to succeeding frames. The algorithm for the two- 

staged process for detecting multiple objects from videos bases on the temporal 

coherence information of objects is summarized as the pseudocode below:

13

A lg o rith m  1 tw o -s ta g e d  d e te c tio n  o f  m u ltip le  o b je c ts  in  v id e o s  b a se d  o n  th e  te m p o ra l c o h e re n c e  in fo rm a tio n

l fo r i  =  1 to N  do t> iV is the  n u m b e r  o f  fram es
2 fo r  j  =  1 to M i do t  Mj is  th e  n u m b e r  o f  o b je c ts  in  i fram e
3 i f  S u  > tu then * S  is th e  d e te c t io n  sc o re  a n d  t is th e  d e te c t io n  th re sh o ld
4 In c lu d e  o b je c t on  in  th e  se t Oi w ith  its d e te c tio n  sco re , S n ,  an d  th e  c e n te r  lo c a tio n , C n

5 else i f  $ , ]  £  t; then

ft fo r  cj =  1,2 ,3  do > C is  the  c e n te r  c o o rd in a te  o f  d e te c te d  b o u n d in g  box
7 i f  0U  € Oi-q f l  0 ,■_(,,+1, &  IlC y  -  CH j h  <  q M  &  WCij -  C i-(„+i) j lb  < { q  +  1 )Ad then

X le t S  i j  =  ( S  , - f j j  +  J , - ( #+ i ) j ) / 2
9 I n c lu d e  o b je c t  O jj in th e  se t 0 ,  w ith  its S i,y, a n d  Q j

10 b reak

II end i f

12 end fo r

13 end i f

14 iSuppress o,,j > E lim in a te  low  sc o rin g  o b je c t O jj f ro m  the  d e te c tio n  list
15 end fo r

16 end fo r

Figure 4. Pseudocode showing the two-staged detection method of multiple objects in 
videos based on the temporal coherence information

2.3. OBJECT TRACKING

The bounding box for the designated region for object j  is denoted as Rj ■=

{wj, hj, (xf, y f  )}, where Wy and hj are the width and height of the box, respectively, and 

(xf , y f )  is the coordinates of the center. If the center of the bounding box for object j  in 

frame i,Ci:j , is outside Rj, A notification label Pjj is generated:

1 if |xj j  -  xf  | > 0.5Wy or |yfjy -  y f | > 0.5hy 
1,1 0 otherwise (1)
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If at least one notification label returns 1 (i.e., there exists Pj j  = 1 for j  e 

{1,2,..., Mi}), a warning is sent to the user through the interface.

3. IMPLEMENTATION DETAILS

The proposed method was evaluated through experiments in two manufacturing 

scenes (a workstation and a production line) and under three different lighting scenarios: 

normal, underexposed and overexposed lighting conditions. The illumination level at 

different locations of manufacturing plants such as warehouse, work area, assembly area, 

and inspection area, can be very different. Therefore, this study tested the impact of 

lighting condition to detection results.

3.1. EXPERIMENTS AND DATA COLLECTION

A workstation was replicated in the lab and a camera was installed on the top of 

the workstation. The camera captured videos of workers when they operate at that 

workstation with a frame rate of 30fps. The videos are then converted to images to create 

the training dataset. A dataset (A) of 4,405 frames was acquired in this lab setup. Then, 

this dataset was duplicated to create a new dataset (B) by reducing the brightness of the 

images by 90% . Similarly, another dataset (C) was created by increasing the brightness 

level by 70%.

Using a video stream of an actual production line available on YouTube, three 

more datasets (D, E, and F) were collected. Dataset D is the original video that consists of 

400 frames under a normal lighting condition. Datasets E and F were created in the same



manner as datasets B and C, respectively. The size of all the image data is 1024 x 578 

pixels and the resolution is 96 dpi.

3.2. MODEL TRAINING AND FINE-TUNING

The ResNet-50 feature extractor was initialized with weights pre-trained on the 

Microsoft COCO dataset. The model was fine-tuned using a small set of training dataset 

composed of 40 images from the workstation dataset. The ground truth data of the 

training dataset were carefully created by manually annotating the images with 6 class 

labels, namely hammer, screwdriver, wrench, ratchet, plier, and allen key. In the first 

stage, the network head and the mask head was trained for 30 epochs and all the 

parameters in the previous layers were fixed. In the second stage, in addition with the 

heads, the ResNet Backbone C5 were trained for 30 additional epochs, and all other 

layers were fixed. Each epoch consists of 100 training iterations. Stochastic gradient 

descent was used as the optimizer and the momentum was 0.9. The learning rate was 

0.001 for the first 30 epochs of training, and it is reduced to 0.0001 for the remainder 30 

epochs of training. The batch size of one image was used on a single NVIDIA Geforce 

GTX 1080 Ti GPU for this fine-tuning process that took about 14 hours to complete.

The model was further fine-tuned for the production line using a training dataset 

of 10 images. This dataset has only one class label, package. But the production line had 

more complex background than the workstation. This time, the network head and the 

mask head were trained for 25 epochs and all other layers were the same as those 

obtained from the first stage training for the workstation example.

15
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4. RESULT AND DISCUSSION

The object tracking system was evaluated on a workstation with the following 

configuration: a 2.90 GHz Intel Xeon W-2102 CPU with 4 CPU cores, 16GB of RAM 

and an NVIDIA Geforce GTX 1080 Ti GPU. In the evaluation, the lower boundary of 

detection threshold, tl, was 0.5 and the upper boundary, tu was 0.8. To quantify the model 

effectiveness, a validation dataset of 280 images was created by taking images from the 

normal, overexposed, and underexposed lighting conditions. 240 out of 280 images were 

relevant to the workstation scene and the remaining 40 images were from the production 

line scene. In total 1691 ground truth labels were considered in the evaluation.

4.1. QUANTITATIVE RESULT

Intersection over Union (IoU) is the intersection between the predicted bounding 

box and the ground truth bounding box over the union of them. This ratio was used to 

determine whether a predicted object can be considered as a correct detection. In the 

experimental studies of this paper, the IoU value must exceed 0.60 to be considered as a 

correct detection.

Table 1 compares the object detection ability of Mask R-CNN without temporal 

coherence to the one with temporal coherence under each of the three lightness 

conditions. Three classic assessment matrices have been used. The assessment metrics 

are in this comparison:

• Precision: it counts the number of correctly predicted classes out of the total 

number of predictions



17

• Recall: it counts the number of correctly predicted classes out of total number of 

ground-truth objects

• F1-Score: it is the harmonic mean of precision and recall

Table 1. Results on Mask R-CNN model and Mask R-CNN + temporal coherence
Illumination level Precision Recall F1

Normal 0.963 0.950 0.957
Mask R-CNN Underexposed 0.935 0.922 0.928

Overexposed 0.733 0.493 0.590
Normal 0.991 0.979 0.985

Mask R-CNN + Temporal coherence Underexposed 0.993 0.929 0.960
Overexposed 0.727 0.500 0.593

From Table 1 it can be seen that the Mask R-CNN model obtained a high 

precision (96.3%), recall (95% ), and F1- Score (95.7% ) under the normal lighting 

condition. These three scores dropped by around 3% under the underexposed lighting 

condition, and over 20% under the overexposed condition. Adding the temporal 

coherence information to the Mask R-CNN increased the precision for about 3% under 

the normal lighting condition and 6% under the underexposed condition. The 

improvements are due to the fact that the temporal coherence information was used for 

lowering the amount of false positive detections. The improvement of recall was near 3% 

under the normal lighting condition and only 0.5% under the underexposed condition, 

indicating the temporal coherence information helps improve the ability to correctly 

detect more relevant objects under normal lighting condition. However, the addition of 

temporal coherence to the Mask R-CNN did not improve either the precision or recall 

under the overexposed lighting condition. This is because edges of objects may not be
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differentiable from their background under an overexposed condition, as shown in the left 

column of Figure 7(b). The detection result may get worse after applying temporal 

coherence to the object detection if there were false detections in several continuous 

frames.

To evaluate the pixel-wise accuracy of the proposed algorithm, an overlapping 

grid of ground truth objects and corresponding predictions was calculated under various 

lighting conditions.

Figure 5. Overlapping grid between ground truth and prediction under (a) normal, (b) 
underexposed, and (c) overexposed lighting conditions

Figure 5 shows three examples of the overlapping grid with each of them under 

one of the three lighting conditions. In Figure 5 the ground truth classes are listed on the 

horizontal axis, and on the vertical axis the predicted classes are listed in the decreasing 

order of detection probability. Each grid describes the IoU value of the detected class. It 

can be seen from Figure 5(a) and 5(b) that the IoU values for all detected classes are 

higher than 60% under the normal and underexposed lighting conditions. However, under 

the overexposed lighting condition, the class wrench is not listed in the vertical axis as its



IoU value is lower than 60%. Moreover, the IoU value of 4 classes (wrench, plier, 

screwdriver, and ratchet) out of 6 classes in this condition is lower than the corresponding 

values under the other two lighting conditions. The result shows that adding temporal 

coherence to the Mask R-CNN performs well in the pixel level segmentation under both 

normal and underexposed lighting conditions, but not under the overexposed lighting 

condition.
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4.2. QUALITATIVE RESULT

Figure 6 illustrates how notifications were generated when objects were moved 

out of their designated area. The system highlighted an object with a red mask when it 

was moved to the outside of the designated region for it.

Figure 6. Setup of the workstation. (a) Six tools are highlighted with green mask. From 
left to right, the tools are wrench, ratchet, screwdriver, plier, Allen key and hammer. The 

red box indicates the designated area for these tools; (b) a notification is generated by 
highlighting the hammer with red mask as it gets out of its predefined designated area; (c)

notifications generated for plier and ratchet

Figure 7(a), (b), and (c) show some successful examples of object detection by the 

proposed detecting and tracking system in the workstation scene under various lighting 

conditions. All these experiments were done in the workstation replicated in the lab. 

Under all three lighting conditions, the proposed system segmented objects successfully.
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Masks tightly overlapped with the corresponding objects. No obvious false positives were 

found in those examples. Examples in Figure 7(d) show that there were no false positive 

detections in the production line scene. This is because the temporal information was 

used to suppress their appearance. The system also successfully generated notifications 

when objects were outside of the designated region.

Figure 8 illustrates some failed examples. Figure 8(a) and (b) are examples of 

false negative detections where some objects were not detected. It is found that false 

negative detections occurred when there was a motion blur in multiple successive frames, 

larger than the defined temporal window size.

Figure 7. Successful examples of object detection using the proposed system. (a) and (d) 
are under the normal lighting condition; (b) is under underexposed lighting condition; and

(c) is under overexposed lighting condition



Figure 8(a) shows such situations where the hammer (in the red bounding box) 

was not get detected because of motion blur. Moreover, the change of lighting condition 

may make objects unrecognizable, resulting detection failures. For example in Figure 

8(b), in the overexposed lighting condition edges of wrench and ratchet were not 

recognizable, and under the underexposed lighting condition the plier handle was not 

recognizable. As a result the detector cannot detect these objects. Figure 8(c) illustrates 

another two examples of false positive detections where a screwdriver and a hammer 

were misclassified as a wrench and a plier, respectively. This is because a single camera 

cannot reveal the full appearance details of objects.

5. CONCLUSION

This paper presents a vision sensor based system for simultaneously detecting and 

segmenting industrial objects. This ability enables manufacturers to know the exact 

location of an object. The essence component of this system is an improved Mask R- 

CNN developed in the study of this paper. The post-processing phase of this network was 

modified to further refine the initial detection result using a two-staged detection 

threshold and the temporal coherence information of objects in successive frames. The 

temporal coherence method successfully recovers false negative detection to improve the 

detection result. The final detection result of an object was compared with its predefined 

location to know if a misplacement of the object from its original location was identified.

Results of the proposed algorithm are very promising to be used in real 

manufacturing settings. This algorithm achieved over 96% F1-score in normal and

21



underexposed lighting conditions. Yet, detection quality needs to be improved under 

some challenging conditions such as: when motion blur is presented for a relatively long 

period of time; when the illumination level is too high; and when the camera viewpoint is 

limited. Future work would be focused on those matters to further refine the detection 

quality.
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Figure 8. Overlapping grid between ground truth and prediction under (a) normal, (b) 
underexposed, and (c) overexposed lighting conditions
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ABSTRACT

Inspection and preservation of the aging bridges to extend their service life has 

been recognized as one of the important tasks of the State Departments of Transportation. 

Yet manual inspection procedure is not efficient to determine the safety status of the 

bridges in order to facilitate the implementation of appropriate maintenance. In this 

paper, a complex model involving a remotely controlled robotic platform is proposed to 

inspect the safety status of the bridges which will eliminate labor-intensive inspection. 

Mobile cameras from unmanned airborne vehicles (UAV) are used to collect bridge 

inspection data in order to record the periodic changes of bridge components. All the 

UAVs are controlled via a control station and continuously feed image data to a deep 

learning-based detection algorithm to analyze the data to detect critical structural 

components. A cellular automata based pattern recognition algorithm is used to find the 

pattern of structural damage. A simulation model is developed to validate the proposed 

method by knowing the frequency and time required for each task involved in bridge 

inspection and maintenance. The effectiveness of the model is demonstrated by 

simulating the bridge inspection and maintenance with the proposed model for five years
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in AnyLogic. The simulated result shows around 80% of man-hour can be saved with the 

proposed approach.

1. INTRODUCTION

The U.S transportation system has more than 600,000 bridges, average age of 

these bridges are 42 years, however, most of these exceed the lifetime they were built to 

have [1]. As a means for transportation, hundreds of thousands of civilians use bridges 

every day. According to regulation, each bridge requires inspection every two years to 

ensure safety for the civilians [2]. This means that every month, around 25,000 bridges 

need to be inspected. The current bridge inspection process is manual, involving visual 

inspection with heavy lifting equipment and requires people to work from a dangerous 

height. Moreover, it requires the closure of the road during the time of inspection causing 

traffic congestions. The average inspection cost per bridge ranges from $4,500-$10,000. 

These make the bridge inspection operation one of the most costly operations in the state 

Department of Transportation [3]. To address this issue, a remotely controlled robotic 

platform is required to inspect the safety status of the bridges that will eliminate labor­

intensive inspection and allow the bridges to be visually assessed from a remote location.

Recent years have witnessed the rising of research interests in infrastructure 

inspection methodology [4, 5, 6]. To automate the inspection process, researchers have 

proposed many methods. For example, laser scanning method has been developed for 

data collecting [7, 8, 9]. This technique uses pulse of laser light to acquire geometric data 

for bridge inspection. However, this approach requires heavy laser equipment that is very



expensive. Besides, success of this method is largely dependent upon the diligence and 

education of inspection workers. Therefore, researchers have started developing robotic 

system for inspecting the safety status of bridges. For example, Oh et al. [10] proposed a 

robotic system that involves a specially designed car, a robot mechanism, and control 

system to gather crack data from the bridge using computer vision. Tung et al. [11] 

developed a mobile manipulator imaging system for the automation of bridge crack 

inspection. This approach requires two charge coupled cameras on a mobile vehicle to 

collect bridge images. Most of these robotic based approaches require a ground vehicle to 

carry the camera that also causes the closure of the road. Besides, in a bridge, there are 

many places that are inaccessible by ground vehicles [12, 13, 14]. Therefore, we propose 

a remotely controlled robotic platform using a mobile camera from an unmanned airborne 

vehicle (UAV) to collect bridge image data.

On the other hand, to analyze the data researchers have studied various approach 

to find out the cracks in the bridges from the image data. For example, Sohn et al. [15] 

monitored crack changes in the concrete structure. They focused on quantifying the 

periodic change in the cracks from multi-temporal images. Ito et al. [16] presented a 

system to inspect concrete block by means of analyzing fine crack extraction. All these 

approaches only detect cracks of a certain type. These approaches cannot be used for 

detecting multiple types of damages in the bridges. To address these drawbacks, recently 

deep learning based approaches are thoroughly studied to determine the damage in 

structure. Karim et al. [17] developed a two-staged threshold based object detection 

method that can detect multiple objects in an image. They used Mask R-CNN [18] based 

object detector. However, these approaches just only detect cracks in the bridges at the
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exact time of inspection. These approaches cannot detect a pattern of crack propagation 

from the images. Besides, all the approaches are problem specific and are studied as 

separate problems. Therefore, a complex system having the capability of solving all these 

separate problems as a single problem is greatly in need. Motivated by this need, in this 

paper a model has been developed combining bridge data collection, data processing, and 

data analyzing system together to have a complex system to efficiently inspect structural 

health condition.

In this paper a system is developed to eliminate the gap. The system uses a region 

based deep learning algorithm to accurately detect and segment cracks in the images of 

structural components. Then a cellular automata based pattern recognition algorithm has 

been used to get the pattern of crack propagation in the structural component. For pattern 

recognition, 5 rules have been established to simulate real-world crack propagation in 

bridges. Bridge experts can take the maintenance decision from the crack propagation 

rate of the bridges. To validate the proposed model, a simulation model has also been 

developed in this study to simulate the proposed model for five years in order to 

determine the frequency and time required for complete bridge inspection and 

maintenance. This simulation model can work as a decision support tool for taking 

maintenance decision by the decision makers.

The remainder of this paper is organized as follow: Section 2 delineates the 

conceptual model for bridge crack detection and segmentation using UAV, followed by 

examples illustrating the implementation of the method. Numerical simulation and 

discussion from the examples are illustrated in Section 4. Conclusions and future work 

are summarized at the end, in Section 5.
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2. METHODOLOGY

The proposed model for bridge inspection with UAV is illustrated in Figure 1. In 

a certain region, a robot such as a UAV takes videos of a bridge during the inspection. 

After completing the inspection, the video data are converted into image data. Each 

image then passes through a deep learning segmentation tool frame by frame. The 

segmentation tool is pre-trained on a large dataset. This segmentation tool detects and 

segments cracks of the bridge in images. Images not containing any crack information are 

discarded from the pool of image frames. Then heatmaps of detected images are 

generated. These heatmaps of cracked images are given as input to the cellular automata. 

The rules of the cellular automata then determine the crack propagation rate. Based on 

the crack propagation rate, decision makers make maintenance decision.

Decision making
1. Data collection with UAV

Training dataset

training

Segmentation
Testmg dataset Segmentationtool 3. Pattern recognition

Detected cracks2. C ra ck  detection and segmentation w ith deep learning with cellular automata

Figure 1. Proposed model for bridge inspection with unmanned airborne vehicle
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2.1. DEEP LEARNING ALGORITHM

Mask R-CNN is a region based convolutional neural network, can effectively 

detect and segment detected objects at the pixel level. In this study, Mask R-CNN has 

been chosen as the segmentation tool for detecting and localizing cracks in the structural 

components. Figure 2 illustrates the structure of this algorithm. This algorithm has a 

ResNet [19] based Feature Pyramid Network (FPN) which works as the feature extractor 

to generate feature map from the input image. Then a Region Proposal Network (RPN) is 

applied to the feature maps. An RPN is a neural network that slides over the image to 

create possible proposal boxes which are called anchors. These anchors are ranked to find 

the top anchors that are likely to contain objects. These are called the Region of Interests 

(RoI). Then these RoIs are aligned with the input image and converted into fixed size 

feature maps by a layer called Region of Interests Align (RoIAlign). These fixed-size 

feature maps are passed through two independent branches: network head branch to 

perform object classification and bounding box generation, and the mask branch to 

generate instance masks on top of the detected objects. Interested readers can refer to [18] 

for details.

In this study, a trained Mask R-CNN takes all the input images and detects all 

possible cracks in the images.

2.2. CELLULAR AUTOMATA

After detecting the possible cracks in an image a cellular automata based pattern 

recognition algorithm is applied to the images. The purpose of this cellular automata is to 

simulate the crack propagation in the bridge structure. Based on the simulation result,
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crack propagation rate can be determined. An image containing cracks can be considered 

as a lattice space of many cells. The idea of cellular automata is that the behavior of each 

cell is dependent on the behavior of the neighboring cells. For example, if a cell without 

crack is surrounded by many cracked cells, it is highly likely that the crack will be 

propagated to the cell without crack. Let’s consider a cellular automaton consists of a 

regular lattice of sites. Each site takes on k possible values, and is updated in discrete 

time steps according to a rule 0 that depends on the value of sites in some neighborhood 

around it. Figure 3 shows a neighborhood structures considered for two-dimensional 

cellular automata. For this study, number of rules 0 = 5. Based on these 5 rules, cells are 

updated in discrete time steps.

Figure 2. Architecture of the Mask R-CNN

2.3. SIMULATION

The developed model in this study is a discrete event model. Which is simulated 

using a proprietary simulation software namely Anylogic. In the Anylogic, the discrete 

event model is specified graphically as a process flowchart where blocks represent
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operations. The flowchart starts with source that generates agents and inject them into the 

process and ends with sink blocks that remove them. The paper describes the 

development of a simulation model for bridge inspection with UAV with time windows 

within AnyLogic simulation environment. The defined agents for the simulation are 

UAVs, deep learning machines and maintenance team.
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Figure 3. Cells location in a lattice space and the rules associated in each cell. Here, (i,j) 
is the location of the target cell. Which is surrounded by 8 neighbors

3. APPLICATION OF THE PROPOSED MODEL

Real world bridge image data has been used in this study as the starting point. For 

bridge data collection a mobile camera attached with a multicopter UAV has been used. 

The camera captured videos of two bridges (bridge 1 and bridge 2) at two different 

locations. The average speed (v) of the UAV was 20 mph. The framerate of the captured 

video is 30fps with 3840 x 2160 resolution. A testing dataset (D) has been created with 

4672 images from bridge 1 and 2. The segmentation tool is fine-tuned with a training 

dataset (T0) of 1500 images containing cracks.
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3.1. MODEL TRAINING AND FINE-TUNING

ResNet feature extractor of the segmentation tool was initialized with weights 

pre-trained on the Microsoft COCO dataset. The model was fine-tuned using T0 . At first, 

the network head was trained for 30 epochs and all the parameters in the previous layers 

were fixed. Then, the ResNet Backbone C5 and the network head were trained for 100 

additional epochs, and all other layers were fixed. Each epoch consists of 100 training 

iterations. Stochastic gradient descent was used as the optimizer and the momentum was 

0.9. The learning rate was 0.001 for the first 30 epochs of training, and it is reduced to 

0.0001 for the remainder 100 epochs of training. The batch size of one image was used 

on a single NVIDIA Geforce GTX 1080Ti GPU for this training process that took about 

22 hours to complete.

Figure 4. Examples of detected cracks with the deep learning algorithm

3.2. CRACK DETECTION

The trained segmentation tool is tested on the dataset D. The tool successfully 

detected and segmented the cracks in the concrete structure. Figure 4 shows some
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successful examples of the detected cracks. The red masks indicate the segmented cracks. 

The masks tightly overlapped with the corresponding cracks. No obvious false positives 

were found in those examples. From the figure, it can be seen that, cracks position and 

pattern are random. However, the detector detected the cracks from a different angle. 

Moreover, there was motion blur because of the UAV motion. This motion blur may 

somehow affect the detection result in some frames. However, those undetected frames 

can be ignored from the consideration. As the frame rate of the camera was 30fps. That 

means many frames are almost identical to each other. Therefore, few of the identical 

frames can obviously be ignored and will not hamper the overall result. The detected 

images are used for giving input to the cellular automata.

3.3. IDENTIFYING CRACK PROPAGATION RATE WITH CELLULAR 
AUTOMATA

A cellular automata has been simulated to determine the crack propagation rate of 

the bridge based on the rule of crack propagation described in Section 2.3. To simplify 

the simulation, we initiated the simulation with a lattice space of size 100 x 100. 

Simulation is initiated by the heat map of an image containing crack. Initial probability 

for each cell in the region other than the cracked region of being cracked is considered 

0.1 and not being cracked is considered 0.9. Update interval for each iteration is 

considered 100ms. At each iteration, crack will be propagated based on the five rules set 

for the simulation. The lattice space contains 10,000 cells. Total number of iteration (/) 

required for completely turning all these cells into cracked cells is calculated. The higher 

iteration required for this complete transition means the crack propagation rate is slow. 

For N cells and I iteration, the crack propagation rate, r = . In the Figure 5, three



iterations (at three different time steps) are shown. The yellow cracks get propagated at 

each time interval. Observing the crack propagation rate, decision makers can take 

decision when and what part of the bridge will require maintenance.
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Figure 5. Crack propagation at 3 time steps. The yellow cells represent cracked cells. At
each update interval, it gets propagated

4. NUMERICAL SIMULATION AND DISCUSSION

To validate the proposed model a numerical simulation is performed using 

discrete-event simulation of AnyLogic software. The whole model is simulated for 5 

years in two bridges of two different size. Length of bridge 1 and 2 are 900 meters and 

700 meters respectively. Deep learning machine can process 2 images per second. Hour 

is considered as the unit time for the simulation. Three main agents have been considered, 

which UAV, deep learning machine and maintenance team are. For simulation individual 

logic has been developed for each agent.
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4.1. LOGIC FOR UAV

Two different process flow diagram has been developed for inspecting two 

different bridge. Figure 6 indicates the logic for both the bridge inspection by the UAV. 

The upper logic in the figure represents the logic for bridge 1 and the lower logic of the 

figure represents the logic for the bridge 2. Source nodes generate UAV. 

timeMeasureStart function takes the start time of the bridge inspection. Then next two 

moveTo functions determine the movement of the UAVs in the predefined path in 

Anylogic. Range of the UAV speed is set 15 to 20mph. TimeMeasureEnd() function 

calculates cycle time required for bridge inspection. Sink nodes remove the UAV from 

the process flow. From the figure, it can be seen that for the first bridge in 5 years there 

will be a total of 89 cycles of inspection and for bridge 2, 81 cycles of inspection.

Figure 6. Logic for UAV operation

4.2. DEEP LEARNING LOGIC AND DECISION MAKING

After completing one cycle of inspection, information is generated and is 

transferred to the deep learning machine. Deep learning machine processes the data. The 

machine can perform image processing and pattern recognition at a speed of 2fps. The 

processing of data is represented by the delay() functions (dl_delay, dl_delay1) in the 

process flow of the AnyLogic. After processing the data again information will be



generated which will again be processed for decision making. The delay for decision 

making is represented as decision_delay() functions. Similar to UAV, here also time is 

measured with timeMeasure() functions.
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Figure 7. Logic for deep learning and decision making

4.3. LOGIC FOR MAINTENANCE

Based on the crack propagation rate, the maintenance team will decide to go for 

maintenance if required. Here, the selectOutput() function determines the probability of 

maintenance requirement. This probability of maintenance required is determined by the 

bridge expert based on the crack propagation rate generated by the cellular automata. For 

simplicity in this simulation, the probability of doing maintenance is considered 0.7 for 

bridge 1 and 0.6 for bridge 2.

From the process flow diagram, it is visible that for bridge 1, maintenance was 

required for 61 times out of 89 times and for bridge 2, it was required for 52 times out of 

81 times of inspection. If crack propagation rate is low, it can be assumed that bridge 

maintenance is not required as the bridge is in good condition. Hence, for a certain period 

of time bridge inspection is not necessary as it also can be assumed that there will not be 

any sudden deterioration in the bridge. In this study, we assumed the duration of this 

period is two months and represented by the delay() function in the process flow diagram.
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The red bounding boxes in the process flow diagram indicates the process for not doing 

maintenance.

Figure 8. Logic for maintenance 

4.4. STATISTICS REPORT

After simulating the model for five years, a statistical report has been generated in 

the AnyLogic. Figure 9 (a) represents the cycle time required for UAV inspection. UAV1 

represents the inspection for bridge 1 and Uav2 represents inspection for bridge 2. Figure 

9(b) represents the histogram of the time required for each cycle. From the histogram, it 

is visible that, the mean time required for each cycle of inspection is 0.54 hour and 0.47 

hour respectively for bridge 1 and 2.

Figure 9. (a) cycle time of inspection (b) histogram of cycle times



Figure 10(a) Represents the cycle time required for deep learning machine and 

decision making. DeepLearning_bridge1 represents the data processing time required for 

bridge 1 and DeepLearning_bridge2 represents data processing time required for bridge 

2. Figure 10(b) represents the histogram of the time required for each cycle. From the 

histogram, it is visible that, the mean time required for each cycle is 9.05 hours and 7.54 

hours for bridge 1 and 2 respectively.
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Figure 10. (a) Cycle time for deep learning and decision making (b) histogram of cycle
times

Figure 11. (a) Cycle time for maintenance (b) histogram of cycle times

Figure 11(a) Represents the cycle time required for maintenance. Mtc_bridge1 

represents the time required for bridge 1 and Mtc_bridge2 represents the time required



for bridge 2. Figure 11(b) represents the histogram of the time required for each cycle. 

From the histogram, it is visible that, the mean time required for each cycle is 57.18 

hours and 44.74 hours respectively for bridge 1 and 2.

Table 1 illustrates the frequency and time required by the agents in 5 years’ time 

period. From the table, it can be seen that bridge 1 takes higher time for all three 

activities (i.e. inspection, deep learning, and maintenance) than bridge 2.

40

Table 1. Frequency and time required by the agents in five years

Agents Frequency Time
(hour)

Total
Time
(hour)

Inspection & UAV inspection 89 48 854Bridge 1 Analysis Deep learning used 89 805
Maintenance Maintenance required 61 3,488 3,488
Inspection & UAV inspection 81 38 648Bridge 2 Analysis Deep learning used 81 610
Maintenance Maintenance required 52 2,326 2,326

It can be observed from the simulated result, total of 854 hours for bridge 1 and 

648 hours for bridge 2 will be required for inspecting and analyzing the data in the five 

years of period. On the other hand, traditional manual bridge inspection requires 24 man­

hours to 48 man-hours for a bridge of 1000 meter length [20]. Therefore, the traditional 

method may require 2,136 man-hours to 4,272 man-hours to complete inspecting bridge 1 

in five years. This signifies that UAV based bridge inspection method can save 60% to 

80% of the inspection time.
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5. CONCLUSION

This paper presents a vision sensor-based system that monitors and inspects 

bridges to detect and locate cracks in the bridges. This ability enables the state 

department of transport to know the exact location of a crack in the structural component. 

After detecting the location of the cracks, a cellular automata based pattern recognition 

algorithm determines the crack propagation rate. Based on this rate, decision-makers can 

easily make a maintenance schedule. This paper, also presents an AnyLogic based 

simulation model to validate the proposed method. This simulation model could be used 

as a decision support tool for advanced analysis of the bridge inspection and maintenance 

schedule. Results of the simulation model are promising enough to be useful in a real- 

world scenario.

In this study, real bridge image data are used to locate the cracks in the structure. 

However, instead of using all the images as the input of cellular automata, some sample 

images were used. Besides, 5 rules are assumed to simulate crack propagation. Our future 

work will focus on performing a complete case study using all the images to validate the 

assumptions and make a comparative study between the simulated result and real 

observational result.
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SECTION

2. CONCLUSIONS AND FUTURE WORK

Computer vision-based deep learning models have been developed and integrated 

with complex engineering systems to develop complex adaptive cyber-physical systems. 

The developed systems have the capability of simultaneously detecting and segmenting 

objects in a complex scenario. The developed model showed promising success in the 

manufacturing industry. The system developed in this thesis will enable manufacturers to 

know the exact location of an object, which is almost impossible to track manually in a 

large manufacturing plant. Several new techniques were pioneered in the research. 

Temporal coherence analysis (TCA) was one of them. TCA was proposed to improve the 

efficiency of the developed system. Various lighting conditions were simulated to 

replicate the actual manufacturing settings and tested with the developed system. 

Promising results, including experimental results and theoretical analysis, demonstrate 

the prospect of using the proposed CPS in real manufacturing settings.

This research was extended to the problem domain of bridge inspection. A vision 

sensor based system was proposed to monitor and inspect bridges to detect and locate 

cracks in the bridges. A cellular automata-based pattern recognition algorithm was 

integrated to add the additional capability of determining the crack propagation rate from 

the visual images. The emergence behavior of the self-organizing cellular automata 

makes the system a complex adaptive system. To justify the effectiveness of the proposed 

system, a discrete event simulation model was also developed. The analysis with the
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simulation model shows that the proposed system can reduce 80% of the inspection time. 

This simulation model can also be used as a decision support tool for advanced analysis 

of the bridge inspection image data.

As vision data-based CPS is an emerging research topic, there are still many 

opportunities to conduct further research. Our future research work will focus on the 

following:

• The selection of neural network architecture for specific CPS still lacks a 

knowledge-driven method. This area of NN architecture selection requires 

further exploration. Our future work will focus on finding the best network 

architecture for CPS.

• Another important research direction is investigating the best system 

integration method in a CPS. Although deep NN provides advanced 

capabilities to the CPS, inappropriate system integration will underm 

the effectiveness of the deep learning in CPS. Therefore, there should be 

appropriate engineering methods and practices to effectively integrate 

deep learning methods into CPS.

• Another future direction of research is developing interactive deep 

learning models that keep humans in the loop. Traditional deep learning 

models are not adaptable to new data because it works like a black box on 

new data [10]. This does not take domain knowledge from the experts.

Our future work will focus to develop deep NN that will take inputs from 

human experts during execution to update the model.
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