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ABSTRACT 

 

This study introduces an experimental investigation of the behavior of concrete 

filled fiber reinforced polymer (FRP) tubes (CFFTs) under cyclic axial compression. The 

FRP used in this study were either small rupture strain FRP (SRS-FRP) or large rupture 

strain FRP (LRS-FRP). This paper also presents the first-ever experimental study on the 

behavior of concrete confined using hybrid LRS-FRP and SRS-FRP. LRS-FRP included 

PEN (polyethylene napthalate) and PET (polyethylene terephthalate) where both of them 

having ultimate axial strain larger than 5%, and low stiffness. SRP-FRP included carbon 

and glass FRP having small rupture strains, smaller than 2%, and high stiffness. The 

behavior of CFFTs having different confinement ratios were investigated in terms of 

ductility, ultimate strain, confinement effectiveness, and energy dissipation capacity. The 

results revealed that LRS-FRP showed highly ductile behavior and significant energy 

dissipation capacity with the same strength enhancement as of SRS-FRP. Furthermore, 

using the hybrid CFFTs remarkably improved the ductility and energy dissipation capacity 

of SRS-CFFTs.  
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SECTION 

1. INTRODUCTION 

 

1.1 BACKGROUND 

In the past few decades, rapid growth has been observed in the applications of FRP 

confinement for new construction and strengthening/retrofitting of reinforced concrete 

elements. Application of FRP confinement instead of steel is preferable due to easy 

installation, high strength to weight-ratio, corrosion resistance, and relatively low 

maintenance cost. Concrete filled fiber reinforced polymer (FRP) tubes (CFFTs) has 

proven to be able to increase the strength and ductility of the structures. It consists of outer 

FRP tube filled with plain concrete inside, where FRP provides lateral confinement during 

axial compression. 

Carbon and glass are the most common fibers used commercially for manufacturing 

FRP having rupture strain of around 2%. Many studies have proven their application in 

strength enhancement of structure elements. However, due to small rupture strain (SRS) of 

these FRPs their application is limited in seismic areas as the SRS-CFFT does not provide 

ductility. In recent years, a new category of FRP has emerged as an alternative to SRS-

FRPs called large rupture strain FRPs (LRS-FRP). Owing to large rupture strain property 

of LRS-FRP, CFFT shows higher ductile behavior which can be an efficient system in 

seismic areas. LRS-FRP include PEN (polyethylene napthalate) and PET (polyethylene 

terephthalate) with rupture strain of more than 5%. Moreover, PEN and PET are cheaper 

and environment-friendly, since they are produced using recycled material, than SRS-FRP.  
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Although a large number of studies has been done on SRS-CFFTs, significantly 

less studies were carried out to understand the behavior of LRS-CFFTs. Moreover, while 

a confined element would be subjected to cyclic reversed strains during an earthquake, 

relatively a limited number of studies investigated the axial cyclic load behavior of LRS-

FRP confined concrete. Hence, this paper investigates experimentally the performance of 

CFFTs with varying confinement ratio under cyclic axial compressive loading. The 

performance of CFFTs is studied in terms of strength enhancement, ductility, and energy 

dissipation capacity. 

 

1.2. THESIS ORGANIZATION 

This thesis was organized into two sections. In Section 1, the background of 

concrete-filled FRP tubes and previous studies were discussed along with objective of the 

research. Two jounal papers were also included in Section 1. 

 In Paper I, the cyclic axial compression behavior of concrete- filled FRP tubes 

(CFFTs) was discussed. This study was performed for LRS-CFFTs, SRS-CFFTs and 

Hybrid LRS-SRS-CFFTs. Test results were discussed in terms of strength, ductility, 

confinement pressure, dilation properties and energy dissipation capacity. Strength 

evaluation using existing models and statistical results of this study were also discussed. 

In Paper II, the behavior of CFFT under cyclic axial compression loading was 

discussed. In this study, a different type of SRS-FRP i.e. Carbon-FRP and LRS-FRP was 

used to study the behavior of CFFT. The performance of CFFTs is studied in terms of 

strength enhancement, ductility, and energy dissipation capacity. 
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Section 2 concludes the summary and findings of the above-mentioned papers. 

Section 2 also recommend work for future research. 

 

1.3. OBJECTIVES 

The research on cyclic axial compression behavior for LRS-CFFT was limited. 

Moreover, no experimental study has been conducted on hybrid LRS-SRS CFFTs. This 

research study was conducted to understand the behavior of CFFTs under cyclic axial 

compression behavior. 

  For the first part, CFFTs with varying confinement ratios were tested under cyclic axial 

compression loading. Types of FRP used in this study were: PET-FRP and PEN-FRP 

categorized as LRS-FRP, and Glass-FRP categorized as SRS-FRP. Test results will be 

discussed to better under the behavior of CFFTs. 

 For the second part, experimental study for different types of FRP: LRS-FRP (PET AND 

PEN-FRP), and SRS-FRP (Carbon-FRP) was conducted. Strength enhancement, ductility, 

and energy dissipation capacity will be studied. Evaluation of strength obtained from the 

existing models and tested results with also be done. 
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PAPER  

I. CYCLIC AXIAL COMPRESSION BEHAVIOR OF CONCRETE-FILLED 

HYBRID LARGE RUPTURE STRAIN FRP TUBES 

Monika Nain1; Mohanad M. Abdulazeez 2, S.M.ASCE; and Mohamed A. ElGawady3§, 

Ph.D., M. ASCE 

 

ABSTRACT  

This paper experimentally investigates the behavior of concrete filled fiber 

reinforced polymer (FRP) tubes (CFFTs) under cyclic axial compression. The FRP used in 

this study were either small rupture strain FRP (SRS-FRP), large rupture strain FRP (LRS-

FRP) or hybrid LRS-FRP and SRS-FRP. LRS-FRP are manufactured out of polyethylene 

naphthalate (PEN) and polyethylene terephthalate (PET) obtained from recycled plastics. 

Hence, they are much cheaper and environment-friendly than SRS-FRP i.e. glass FRP 

(GFRP) or carbon FRP (CFRP). LRS-FRP has high tensile rupture strain (usually greater 

than 5%) compared to 1-2% for GFRP and CFRP. This study presents the results of 

seventeen cylinders having different confinement ratios to investigate the behavior of 

concrete filled LRS-FRP, hybrid LRS-FRP, and GFRP tubes in terms of ductility, ultimate 

strain, strength improvement, and energy dissipation. A comparison has been conducted 

between the attained experimental results and existing analytical models in this study. The 

                                                 

1Graduate Research Assistance, Dept. of Civil, Architectural, and Environmental Engineering, Missouri 

University of Science and Technology, Rolla, MO. 65409; mnb94@mst.edu 
2Graduate Research Assistance and PhD student, Dept. of Civil, Architectural, and Environmental 

Engineering, Missouri University of Science and Technology, Rolla, MO. 65409; mma548@mst.edu 
3 Benavides Associate Professor, Dept. of Civil, Architectural, and Environmental Engineering, Missouri 

University of Science and Technology, Rolla, MO. 65409; elgawadym@mst.edu  
§Corresponding author 

 

mailto:mma548@mst.edu
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results showed that using LRS-FRP significantly improved the ductility and ultimate 

strength of the confined concrete. The hybrid confinement improves the ductility and 

energy dissipation capacity of the concrete. 

 

1. INTRODUCTION 

Fiber reinforced polymer (FRP) is a promising material in structural engineering 

applications because of its high strength, easy installation, corrosion resistance, and 

lightweight nature. Both the strength and the ductility of concrete members can be 

increased by using the appropriate amount of FRP confinement. In the past few decades, 

rapid growth has been observed in the applications of FRP confinement for new 

construction and strengthening/retrofitting of reinforced concrete elements (Abdelkarim 

and ElGawady 2014; Abdelkarim et al. 2016; Abdulazeez 2017; Abdulazeez et al. 2017; 

Fam and Rizkalla 2001; Fam and Rizkalla 2002; Lam and Teng 2001; Mirmiran and 

Shahawy 1997; Mirmiran et al. 1998; Moustafa and ElGawady 2016; Ozbakkaloglu 2013; 

Ozbakkaloglu and Akin 2011; Ozbakkaloglu and Oehlers 2008; Saleem et al. 2016; Youssf 

et al. 2014).  

Carbon and glass are the most common fibers used commercially for manufacturing 

FRP. However, these FRP suffered from small rupture strain (SRS). In recent years, 

polyethylene naphthalate (PEN) and polyethylene terephthalate (PET)-FRP have emerged 

as alternatives to SRS-FRP with large rupture strain (LRS) of more than 5% (Abdelkarim 

and ElGawady 2014; Abdelkarim et al. 2016; Fam and Rizkalla 2001; Fam and Rizkalla 

2002; Lam and Teng 2001; Mirmiran and Shahawy 1997; Mirmiran et al. 1998; Moustafa 

and ElGawady 2016; Ozbakkaloglu 2013; Ozbakkaloglu and Akin 2011; Ozbakkaloglu 
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and Oehlers 2008; Saleem et al. 2016; Youssf et al. 2014). Furthermore, PEN and PET are 

cheaper and environment-friendly, since they are produced using recycled material, than 

conventional fiber.  

Few studies were carried out to understand the behavior of LRS-FRP confined 

concrete and compared their behavior to SRS-FRP confined concrete (Anggawidjaja et al. 

2006; Dai et al. 2011; Dai and Bai 2014). These studies showed that LRS-CFFTs, despite 

having low stiffness, could efficiently improve the ductility of confined concrete elements. 

At the ultimate state, the large strain of FRP allows the fiber composite to contribute 

enough force while avoiding fiber rupture and thereby improves the ductility (Dai and Bai 

2014). Similar to SRS-FRP-confined concrete, Moon (2012) also reported that the LRS-

FRP-confined concrete’s response increases almost linearly with the increase in the number 

of layers of FRP. Abdelkarim and ElGawady (2015) were the first to numerically 

investigate the performance of hybrid LRS-SRS-FRP confined concrete. The study showed 

the outstanding performance of LRS-SRS FRP confined concrete in terms of ductility, 

deformation capacity, and energy dissipation capacity. 

 

2. RESEARCH SIGNIFICANCE 

Although a numerous number of studies has been carried out on SRS-FRP, 

significantly less amount of work was carried out on the LRS-FRP. Furthermore, while a 

confined element would be subjected to cyclic reversed strains during an earthquake, 

relatively a limited number of studies investigated the axial cyclic load behavior of LRS-

FRP confined concrete (Bai et al. 2013; Bai 2014; Jirawattanasomkul et al. 2013; Rousakis 
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2013). Hence, this paper investigates experimentally the performance of concrete-filled 

LRS-FRP and hybrid LRS-SRS-FRP cylinders under cyclic axial compressive loading. 

This study includes investigating the effects of the confinement ratio, wrapping 

sequence, and types of fiber (LRS, SRS, LRS-SRS) on the behavior of CFFTs to provide 

a better understanding of LRS-FRP confined concrete in terms of strength, rupture strain, 

ductility, and energy dissipation. Finally, the obtained results in term of the confined 

strength were compared with the available confinement models. 

 

 3. EXPERIMENTAL WORKS  

Seventeen CFFTs’ cylinders (Fig. 1), each cylinder having a dimension of 156 mm 

x 305 mm (6-inch x 12-inch), were tested under static cyclic axial compression during this 

study. The main variables were the confinement ratio (CR) define per equation 1 and the 

different types of fibers (Fig. 2 and Table 1).  

𝐶𝑅 =
𝑓𝑙

𝑓′𝑐
      (1) 

𝑓𝑙 =
2𝐸𝑓𝜀𝑓𝑡𝑓

𝐷𝑓
⁄       (2) 

where fl is the confining pressure, f’c is the compressive strength of unconfined concrete, 

𝐸𝑓 is the FRP axial modulus of elasticity, 𝑡𝑓 is the total thickness of the FRP tube, 𝜀𝑓 is the 

axial ultimate tensile strain of the FRP, and 𝐷𝑓 is the internal diameter of the FRP tube.  

The CFFT specimens were divided into three groups based on the used-fiber type: 

concrete filled SRS fiber tubes (SRS-CFFT), concrete filled LRS fiber tubes (LRS-CFFT), 

and concrete-filled hybrid fiber tubes (H-CFFT). The LRS-CFFT group had six cylinders 

P1 through P6 using only either PET (PET-CFFT) or PEN (PEN-CFFT) fibers with a 
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different number of plies ranging from one to three. The SRS-CFFT had three cylinders P7 

through P9 using glass FRP with a different number of plies ranging from one to three.  

The H-CFFT group had eight cylinders P10 through P17 with different 

combinations of three plies of LRS-FRP and SRS-FRP (Table 1). Two FRP sequences 

were used: either LRS-FRP was wrapped first followed by wrapping the SRS-FRP or vice 

versa. The former is designated as #PEN-#GFRP-CFFTs or #PET-#GFRP-CFFTs. While 

the later is designated as #GFRP-#PEN-CFFTs or #GFRP-#PET-CFFTs where # stand for 

the number of layers of FRP used. 

 

3.1. FRP TUBES PREPARATION  

The FRP tubes were made by manual wet lay-up of FRP plies wrapped around a 

Sonotube using an epoxy resin. The required numbers of FRP layers were continuously 

wrapped around the Sonotube and the last FRP layer had an overlap length of 30% of the 

 

 

 
 

Fig. 1: CFFT specimens before testing 
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Fig. 2: Types of FRP used in the experiment (a) Glass, (b) PET, and (c) PEN 

 

 

tube perimeter in the circumferential direction. Two components of epoxy, namely A and 

B, were mixed for 5 mins and then fiber was made fully saturated with epoxy using a roller. 

FRP was wrapped around the Sonotube according to the required number of plies, and then 

additional epoxy was applied as an overcoat to ensure enough wetting of the FRP. After 

curing, Sonotube was removed and hollow FRP tube was produced. The prepared CFFT 

specimens had confinement ratios ranging from 0.15 to 0.58 (Table 1). 

Once the FRP tubes were manufactured they were left to cure at ambient 

temperature 24°C (76°F) in the laboratory for 7 days; then, concrete was poured into the 

tubes and left to cure in the laboratory at ambient temperature 24°C (76°F) for 28-days.  

 

3.2. FRP PROPERTIES 

The properties of PET-FRP, PEN-FRP, and GFRP were determined from coupon 

tensile tests according to ASTM D3039 (Table 2). Three coupons of each type of FRP were 

prepared with a different number of plies ranging from one to three. Each coupon was 254 

mm (10 inches) in length and 25.4 mm (1 inch) in width 
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Table 1: Summary of the tested cylinders 

 
Cylinder 

label 
FRP type 

FRP plies # Total FRP 

plies 

thickness 

[mm (inch)] 

Confinement 

ratio (CR) PET PEN GFRP 
L

R
S

-C
F

F
T

 

P1 

PET 

1 - - 3.3 (0.13) 0.15 

P2 2 - - 6.6 (0.26) 0.29 

P3 3 - - 9.9 (0.39) 0.44 

P4 

PEN 

- 1 - 3.0 (0.12) 0.19 

P5 - 2 - 6.0 (0.24) 0.37 

P6 - 3 - 9.1 (0.36) 0.56 

S
R

S
-

C
F

F
T

 

P7 

Glass 

- - 1 1.27 (0.05) 0.19 

P8 - - 2 2.54 (0.1) 0.39 

P9 - - 3 3.81 (0.15) 0.58 

H
-C

F
F

T
 

P10 PET-Glass 

(in/out) 

2 - 1 7.87 (0.31) 0.49 

P11 1 - 2 5.84 (0.23) 0.53 

P12 PEN-Glass 

(in/out) 

- 2 1 7.27 (0.29) 0.57 

P13 - 1 2 5.54 (0.22) 0.57 

P14 Glass-PET 

(in/out) 

1 - 2 5.84 (0.23) 0.53 

P15 2 - 1 7.87 (0.31) 0.49 

P16 Glass-PEN 

(in/out) 

- 1 2 5.54 (0.22) 0.57 

P17 - 2 1 7.27 (0.29) 0.57 

  

 

These coupons were cut from FRP plates that were made by manual wet lay-up 

following the same procedure that was used for manufacturing the FRP tubes (Fig. 3). The 

plates were left to cure at laboratory ambient temperature for one week before cutting the 

coupons with required dimensions. Aluminum tabs were bonded at the two ends of each 

FRP coupons before the tensile tests to ensure uniform stress distribution during the tensile 

testing as well as to minimize stress concentrations near the gripping zone (Fig. 3).  
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Two strain gauges were attached to the middle of each coupon to measure the 

longitudinal and transverse strains. A clip gauge were also attached to the middle 127 mm 

(5 inch) to measure the axial strain. The specimens were tested using MTS 880 and a 

loading rate of 12.7 mm/min. (0.5 inches/min). 

 

 

  

(a) (b) 

 

(c) 

 

Fig. 3: FRP coupons (a) PET, (b) hybrid, and (c) hybrid coupons close up view 

 

 

The LRS-FRP coupons show bilinear stress-strain relationship (Fig. 4) and failure 

was due to longitudinal slippage between fibers at the middle section whereas the SRS-

FRP coupons show linear stress-strain relationship up to rupture (Fig. 4) and failure was 

due to rupture of the FRP at mid-height. Table 2 and Fig. 4 show the two different values 

of elastic modulus for LRS-FRP coupons, namely the initial elastic modulus (E1) and post 

elastic modulus (E2). 

GFRP 

layers 

PET 

layers 

Aluminum 
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(a) (b) 

 

(c) 

 

Fig. 4: FRP three coupons tensile test results (a) PET, (b) PEN, and (c) GFRP 

 

 

 

 

Table 2: Properties of the used FRP 

Properties Glass PET PEN 

Thickness/ply 

[mm (inch)] 
1.27 (0.05) 3.3 (0.13) 3.0 (0.12) 

E1 /E2 [GPa (ksi)] 21 (3,045) 5.1(739.6)/2.4 (348) 11.3 (16389)/3.1 (449.6) 

Ultimate strain 

(%) 
1.1±0.05 7.7±0.01 5.7±0.01 

 

E1=5.1 GPa 

E2=2.4 GPa 

E1=11.3 GPa 

E2=3.1 GPa 

E=21 GPa 
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3.3. CONCRETE 

The CFFT specimens were poured in one batch using the concrete mixture shown 

in Table 3. The average 28-day compressive strength of three concrete cylinders was 

determined per ASTM C39 as 48.3 MPa (7.0 ksi) with a standard deviation of 0.27.  

 

 

Table 3: Concrete Mix 

w/c 
Cement 

[kg/m3 (lb/ft3)] 

Water 

[kg/m3 (lb/ft3)] 

Fine aggregate 

[kg/m3 (lb/ft3)] 

Coarse aggregate 

[kg/m3 (lb/ft3)] 

0.5 451 (28.15) 226 (14.1) 512 (32) 512(32) 

 

 

4. TEST SETUP AND INSTRUMENTATION 

The CFFT specimens were tested at ages ranging from 28 to 58 days. The CFFT 

specimens were tested using a MTS 2500 having a capacity of 2,400 kN (539 kips). At the 

beginning of testing a CFFT specimen, the MTS 2500 was preloaded with 44.5 kN (10.1 

kips) to ensure full contact between the test specimen and the loading plate. The hoop and 

axial strains of the cylinders were measured using eight strain gauges located at the mid-

height of each CFFT specimen (Fig. 5). Four push pots and two LVDTs that were 180o 

apart were also installed to measure the axial displacements along the middle one-third and 

of the total heights, respectively, of each CFFT (Figs. 5 and 6). A data logger recorded the 

measured data. 

The load was applied in a displacement control with a constant loading rate of 0.5 

mm/minute (0.02 inch/minute). The cylinders were subjected to cyclic axial compression 



 

 

14 

loading until rupture of the FRP or reaching the ultimate load of the testing machine (Fig. 

7). The loading steps included the following axial displacement of 0.02”, 0.04”, 0.08”, 

0.12”, 0.16”, 0.20”, 0.35”, 0.50”, 0.75”, and 1.00” until failure. Each loading step was 

repeated for three cycles (Carter et al. 2014). During experiment, fixed-pinned testing 

condition was there; the top platen was fixed, and the bottom was a ball-jointed platen 

allowing free rotation to represent a pinned connection. 

 

5. RESULTS AND DISCUSSION 

5.1. GENERAL BEHAVIOR 

Table 4 summarizes the results of the investigated CFFTs in terms of ultimate load 

capacity Pmax, displacement, ultimate axial strain (ɛlu), and ultimate hoop strain (ɛhu). The 

axial strains were the average of the two LVDTs mounted on each specimen, while the 

hoop strains were the average value recorded by strain gauges mounted on each FRP tube. 

 

 

 
 

Fig. 5: Positions of strain gauges 
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Fig. 7: Cyclic compression loading regime 

 

  

(a) (b) 

Fig. 6: The CFFT (a) Instrumentation layout, and (b) Specimen during the test 

LVDT LVDT 
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As shown in table 4, LRS-CFFT specimens performed better than SRS-CFFT in 

terms of strength. H-CFFT outperformed the performance of LRS-PET-CFFT and SRS-

CFFT. It is worth noting that the capacity of specimens P6, P10, and P12 exceeded the 

capacity of the MTS compression machine, so the specimens did not reach to their ultimate 

loads. 

 

5.2. MODES OF FAILURE 

Figs. 8 through 10 show the failure modes of the test specimens. Failure in all 

specimens occurred due to FRP rupture with loud noise in the case of SRS-FRP and limited 

noise in the case of LRS-FRP. Furthermore, the LRS-FRP rupture occurred locally along 

few horizontal circumferential lines typically at the mid-height of a test specimen as well 

as along few vertical lines (Figs. 8 and 9). The SRS-FRP rupture occurred along diagonal 

and zigzag lines with larger ruptured areas (Fig. 10) which explains the noise difference 

between rupture of LRS-FRP and SRS-FRP. Partial debonding of the FRP also occurred 

within the overlapping zone for few LRS-CFFT specimens; however, the final failure mode 

was due to FRP rupture. 

Figs. 11 through 14 show the failure modes of the H-CFFT. The sequence of 

wrapping the FRP layers played an important role in determining the failure mode of the 

tested specimens. When the LRS-FRP layers were wrapped first (inside) followed by the 

SRS-FRP (outside), the failure dominated by rupture of the LRS-FRP. However, when the 

GFRP was inside and LRS-FRP was outside, failure was dominated by overlapping layer 

slippage and debonding. The reason might be bending of overlying layers caused by thicker 

LRS-FRP. In this case, the rupture of FRP is governed by GFRP (inside). 
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Table 4: Results of the tested Concrete-filled FRP Tubes 

 Cylinder 

Label 
FRP type 

Pmax 

[kN (kip)] 

Ultimate 

Displacement 

[mm (inch)] 

Ultimate 

Axial 

Strain 

(ɛlu) (%) 

Ultimate 

Hoop 

Strain 

(ɛhu) % 
L

R
S

-C
F

F
T

 

P1 

PET 

1,227 (276) 26.4 (1.04) 8.6 2.2 

P2 1,649 (371) 32.9 (1.3) 11.1 2.3 

P3 2,369 (533) 38.4 (1.5) 12.6 2.8 

P4 

PEN 

1,409 (317) 15.5 (0.6) 5.1 1.05 

P5 2,072 (466) 16.1 (0.6) 5.3 1.10 

P6 2,384 (536)* 19.4 (0.76)* 6.3* 0.85* 

S
R

S
-C

F
F

T
 

P7 

GFRP 

1,372 (308) 5.9 (0.23) 1.9 0.44 

P8 1,822 (410) 9.2 (0.4) 2.9 0.54 

P9 2,035 (458) 8.3 (0.3) 2.7 0.55 

H
-C

F
F

T
 

P10 PET-GFRP 

(in/out) 

2,384 (536)* 17.6 (0.7)* 5.7* 1.38* 

P11 2,009 (452) 16.4 (0.65) 5.4 0.79 

P12 PEN-GFRP 

(in/out) 

2,384 (536)* 36 (1.4)* 11.8* 1.2* 

P13 2,013 (453) 14 (0.6) 4.6 1.1 

P14 PET-GFRP 

(out/in) 

1,895 (426) 18.2 (0.7) 5.9 0.67 

P15 2,012 (452) 25.1 (1) 8.2 2.1 

P16 PEN-GFRP 

(out/in) 

2,133 (479) 12.9 (0.5) 4.2 0.76 

P17 2,100 (472) 24.3 (0.96) 7.9 N/A 

* The ultimate axial strength exceeded that of the MTS machine  and   

 * N/A: malfunction strain gauges 



 

 

18 

   

(a) (b) (c) 

 

Fig. 8: PET-CFFTs rupture (a) P1 (1 layer), (b) P2 (2 layer), and (c) P3 (3 layer) 

 

 

 

 

   

(a) (b) (c) 

 

Fig. 9: PEN-CFFTs rupture (a) P4 (1 layer), (b) P5 (2 layer), and (c) P6 (3 layer) 
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(a) (b) (c) 

 

Fig. 10: GFRP-CFFTs rupture (a) P7 (1 layer), (b) P8 (2 layer), and (c) P9 (3 layer) 

 

 

 

 

  

(a) (b) 

 

Fig. 11: H-CFFT [in/out] rupture (a) P10 (2 PET/1 GFRP), and (b) P11 (1 PET/2 GFRP) 
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(a) (b) 

 

Fig. 12: H-CFFT [in/out] rupture (a) P12 (2 PEN/1 GFRP), and (b) P13 (1 PEN/2 GFRP) 

 

 

 

 

 

  
(a) (b) 

 

Fig. 13: H-CFFT [in/out] rupture (a) P14 (1 GFRP/2 PET), and (b) P15 (2 GFRP/1 PET) 
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(a) (b) 

 

Fig. 14: H-CFFT [in/out] rupture (a) P16 (1 GFRP/2 PEN), and (b) P17 (2 GFRP/1 PEN) 

 

 

5.3. STRESS-STRAIN BEHAVIOR 

Figs. 15 through 21 represent the normalized stress (f’cc/f’cu) versus strain curves 

of the CFFTs’; where f’cc is the axial concrete confined stress and f’cu is the axial stress of 

unconfined concrete. The horizontal positive axis represents axial strain; while the 

horizontal negative axis represents hoop strain. 

For the PET-CFFTs (Fig. 15), the first portion of the normalized stress-strain curve 

was ascending parabolic-type, showing the increase in confined strength capacity by 1.4-

2.7 as compared to unconfined concrete strength depending on the number of PET-FRP 

layers used. Beyond that a descending curve with the strength dropped to that of the 

unconfined concrete at axial strain of 2% was observed in both P1 and P2 (Figs. 15 (a) and 

(b)). However, using three layers of PET (Fig. 15 (c)), the strength loss in the second 

portion is insignificant and it can be considered as ascending curve. The reason is sufficient 

confinement provided by the three layers of PET-FRP. It is worth to mention that the reason 
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behind the second descending part drop was due to the lateral expansion of concrete, which 

leads to release of stress and drop was observed. 

For the PEN-CFFTs, the first portion of the curve shows similar behavior as LRS-

PET FRP with an increase in stress capacity by 1.5-2.5 over the unconfined concrete 

strength. The second part shows a small drop of strength and then followed by ascending 

curve. It is worth to mention that in Fig. 16 (c) (P6), the plateau at the top occurs because 

the MTS machine loading cell reached its capacity without rupture of the CFFT specimen.  

In general, for the LRS-FRP, the descending curve for PET is followed by 

ascending curve, where passive confinement of FRP plays its main role, PET-FRP 

significantly recovers the strength loss and ductility is improved. While using the PEN-

FRP significantly improves the strength and ductility of CFFTs’. 

Fig. 17 shows the normalized stress-strain behavior of SRS-FRP tubes (P7, P8, and 

P9). The SRS-CFFTs’ shows increase in capacity by 1.5-2.0 times the unconfined concrete 

strength with the increasing of the number of FRP layers used. However, small rupture 

strain value of 0.01%-0.025% was attained. The curve is ascending linearly up to ultimate 

strength until rupture with less ductility achieved. 

For LRS-CFFT and SRS-CFFT, the ultimate strains for LRS-FRP are higher than 

the SRS-FRP for the same number of layer, and thereby LRS-CFFTs’ provide better 

ductility than SRS-CFFTs’. 

Figs. 18 to 21 show the normalized stress-strain behavior of H-CFFTs’ (P10 to 

P17).  The H-CFFTs’ show almost the same behavior as of LRS, but the curve after strength 

drop i.e. initial rupture of FRP is either ascending or descending depending on the number 

of LRS FRP (PET or PEN) used.  
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For CFFTs’ P10 (2 PET/1 GFRP) and P12 (2 PEN/1 GFRP) (Figs. 18 (a) and 19 

(a)), before the strength drop there was an increase in the confined strength by 2.75 up to 

the axial strain of 3.5% and 5% for P10 and P12; respectively. After FRP rupture, the curve 

is ascending and able to recover 65% and 40% of the strength for P10 and P12; 

respectively, and provides ductility improvement observed noticeably for P12. For the 

specimens P11 (1 PET/2 GFRP) and P13 (1 PEN/2 GFRP) (Figs. 18 (b) and 19 (b)), the 

rupture axial strain was 2% and 1.5%; respectively, followed by descending curve with a 

negligible increase in strength.  

For CFFTs’ P14 (2 GFRP/1 PET) and P16 (2 GFRP/1 PEN) (Figs. 20 (a) and 21 

(a)), the rupture axial strain was 2.3% and 3%; respectively, followed by a sharp 

descending curve with no increase in strength. For CFFTs’ P15 (1 GFRP/2 PET) and P17 

(1 GFRP/2 PEN) (Figs. 20 (b) and 21 (b)), there was an increase in the confined strength 

by 2.3 up to the axial strain of 2.3% and 2.8% for P15 and P17; respectively. After FRP 

rupture, the curve is ascending and able to recover 80% and 90% of the strength for P15 

and P17; respectively, and provides more ductile behavior. It is worth to notice that in Fig. 

21 (b), the only axial strain is shown due to some technical test deficiencies that prohibited 

the getting of the hoop strain values.  

A hybrid system having 2 LRS FRP/1 GFRP reveals more strength gain and 

ductility improvement due to the sufficient confinement provided by LRS FRP. Moreover, 

in term of the H-CFFTs’ strength, by placing LRS-FRP inside more confined strength has 

been attained reaching 2.75 for P10 and P12. However, in term of the H-CFFTs’ ductility, 

by placing LRS-FRP outside more ductility behavior has been achieved.  
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To conclude, it is observed that in CFFTs’ the first part of the curve is governed by 

the concrete strength and the slope is similar to both confined and unconfined concrete, 

whereas the second part is governed by characteristics of FRP and the slope increases by 

increasing number of layers. With the strength gain, ductility is also provided by LRS FRP 

in both LRS-CFFTs’ and H-CFFTs’ because of large rupture strain and efficient 

confinement.  

 

 

  

(a) (b) 

 

(c) 
 

Fig. 15: Normalized stress via strain curves of PET-CFFTs (a) P1 (1 layer), (b) P2 (2 

layers), and (c) P3 (3 layers) 
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(a) (b) 

 

(c) 

 

Fig. 16: Normalized stress via strain curves of PEN-CFFTs (a) P4 (1 layer), (b) P5 (2 

layers), and (c) P6 (3 layers) 

 

 

5.4. EFFECT OF CONFINEMENT PRESSURE  

The ultimate capacity and stress-strain behavior of CFFTs are a function in the FRP 

confinement pressure. The stress-strain response of both FRP confined and unconfined 

concrete is similar when the applied axial stress is lower than the strength of unconfined 

concrete. However, when the axial stress reaches the maximum strength of unconfined 

concrete; then FRP starts applying pressure on the concrete core to counter the concrete 

dilation until the rupture of FRP. This lateral confinement provided by FRP to prevent the 

lateral expansion of concrete is passive in nature. 
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(a) (b) 

 
(c) 

 

Fig. 17: Normalized stress via strain curves of GFRP-CFFTs (a) P7 (1 layer), (b) P8 (2 

layers), and (c) P9 (3 layers) 

 

 

The tension applied by the passive confinement of FRP in the hoop direction which 

prevents concrete failure and significantly improve the compressive strength and ductility 

of CFFTs. Therefore, the lateral confinement provided by FRP provides a highly ductile 

compression member despite the presence of brittle nature of both concrete and FRP. Table 

5 shows the test results in terms of ultimate confinement effectiveness (f’cc/f’c) and strain 

gain with respect to confinement ratio (CR), where f'cc is the ultimate strength of confined 

concrete, f'c is the compressive strength of unconfined concrete i.e. 48.3 MPa (7 ksi), ɛcc 

and ɛcu (0.13 inch/inch) are the ultimate axial strain of the confined and unconfined concrete 
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(a) (b) 

 

Fig. 18: Normalized stress via strain curves of H-CFFTs (a) P10 (2 PET/1 GFRP), and 

(b) P11 (1 PET/2 GFRP) 

 

 

 

 

  

(a) (b) 

 

Fig. 19: Normalized stress via strain curves of H-CFFTs (a) P12 (2 PEN/1 GFRP), and 

(b) P13 (1 PEN/2 GFRP) 
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(a) (b) 

 

Fig. 20: Normalized stress via strain curves of H-CFFTs (a) P14 (2 GFRP/1 PET), and 

(b) P15 (1 GFRP/2 PET) 

 

 

 

 

    

(a) (b) 

 

Fig. 21: Normalized stress via strain curves of H-CFFTs (a) P16 (2 GFRP/1 PEN), and 

(b) P17 (1 GFRP/2 PEN) 

 

 

Sharp drop 

Sharp drop 
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respectively. Confinement efficiency increased with the CR increasing (Fig. 22). Despite 

having the same confinement ratio, LRS-CFFTs were more efficient than SRS-CFFTs in 

terms of providing an increase in load carrying capacity in the post-peak state (Fig. 22 (a)). 

The reason for this difference in the behavior can be the greater ultimate rupture strain 

value of LRS-FRP (greater than 5%) than glass FRP (2%). This clearly indicates the effect 

of higher rupture strain on the confinement which highly influences the behavior of 

concrete in terms of strength. 

In case of LRS-CFFTs, both ductility and strength have increased with the increase 

in confinement ratio whereas the only strength of concrete improved for GFRP (Table 5). 

The ultimate axial strength of CFFTs’ with PET and PEN was almost the same whereas, 

PET-CFFTs were more ductile than PEN-CFFTs. The reason was the higher value of 

ultimate strain and thickness in case of PET as compared to PEN-FRP. PET has reached 

the rupture strain value of up to 10%, PEN up to 6% whereas GFRP has lower rupture 

strain value of 2%. 

In case of H-CFFTs, Fig. 22 (b) clearly indicate that the CFFTs having the sequence 

LRS-FRP inside and GFRP outside shows greater confinement effectiveness than GFRP 

inside and LRS-FRP outside sequence. The reason was confinement effectiveness in case 

of H-CFFT depends on the FRP present inside. Therefore, when LRS-FRP was inside it 

was more effective due to large rupture strain value than GFRP. It can also be observed 

that LRS-CFFTs having smaller CR than H-CFFTs have equal confinement effectiveness 

as of H-CFFT. 
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Table 5: Test Results of tested CFFTs 

 f'cc  

[MPa(ksi)] 

Confinement 

effectiveness 

(f'cc/f'c) 

ɛcc 

(inch/inch) 
 ɛcc/ɛcu 

fl
**  

[MPa (ksi)] 
CR*** 

P1 67.5 (9.78) 1.39 0.09 6.92 7.1 (1.02) 0.15 

P2 90.3 (13.11) 1.87 0.11 8.46 14.2 (2.05) 0.29 

P3 129.8 (18.84) 2.69 0.13 10.00 21.3 (3.08) 0.44 

P4 77.2 (11.20) 1.60 0.05 3.85 9.1 (1.31) 0.19 

P5 113.5 (16.47) 2.35 0.05 3.85 18.01 (2.6) 0.37 

P6 130.5* (18.94) 2.71 0.06 4.62 27.1 (3.92) 0.56 

P7 75.2 (10.91) 1.56 0.019 1.46 9.4 (1.36) 0.19 

P8 99.9 (14.49) 2.07 0.03 2.31 18.7 (2.71) 0.39 

P9 111.5 (16.18) 2.31 0.027 2.08 28.1 (4.07) 0.58 

P10 130.7* (18.96) 2.71 0.057 4.38 23.5 (3.41) 0.49 

P11 110.2 (15.98) 2.28 0.054 4.15 25.8 (3.74) 0.53 

P12 130.6* (18.95) 2.71 0.118 9.08 27.4 (3.97) 0.57 

P13 110.4 (16.01) 2.29 0.046 3.54 27.7 (4.02) 0.57 

P14 103.8 (15.06) 2.15 0.059 4.54 25.8 (3.74) 0.53 

P15 110.3 (16) 2.29 0.082 6.31 23.5 (3.41) 0.49 

P16 116.9 (16.96) 2.42 0.04 3.08 27.7 (4.02) 0.57 

P17 115.1 (16.7) 2.39 0.079 6.08 27.4 (3.97) 0.57 

 
*  MTS machine capacity was reached 
** Confinement pressure from Eq.2 
***CR: Confinement ratio from Eq.1 
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(a) 

 
(b) 

 

Fig. 22: Confinement effectiveness vs. confinement ratio of (a) LRS-CFFTs’ and SRS-

CFFTs’ (P1-P9) (b) all 3 layers CFFTs’ 

 

 

5.5. EFFECT OF SEQUENCE OF HYBRID CFFTS 

H-CFFTs’ is investigated with different FRP application sequences by placing 

SRS-FRP at the inner surface (in)- in direct contact with the concrete infill; and LRS-FRP 

at the outer (out) surface in contact with the other FRP layer; and vice versa. From Fig. 23, 

it can be observed that there is 27% increase in stress and 50% in strain when LRS-FRP is 

placed inside and SRS-FRP outside. The reason for this was the difference between rupture 
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strain values of both FRP plies. When LRS-FRP was placed inside, the outer SRS-FRP 

was controlled by LRS-FRP and rupture occurred at higher hoop strain. However, when 

SRS-FRP was placed inside, the outer LRS-FRP was controlled by SRS-FRP and rupture 

occurred at lower hoop strain. In terms of strength and ductility, placing LRS-FRP inside 

and SRS-FRP outside improved the performance of such CFFT (Fig. 23). 

In terms of energy dissipation, H-CCFTs’ having LRS-FRP inside and SRS-FRP 

outside is an efficient system (Fig. 32) because of the effective confinement provided by 

PET and PEN to CFFT. Hence, H-CFFT having sequence LRS-FRP (inside) and SRS-FRP 

(outside) performs more efficient in terms of strength, ductility, and energy dissipation 

capacity. 

 

5.6. DILATION PROPERTIES 

 To understand the behavior of CFFTs’, it is important to study the volumetric 

response of concrete. The volumetric strain is defined as the volume change per unit 

volume change. 

 

 

  
(a) (b) 

 

Fig. 23: Envelope curve for normalized stress via axial strain (a) 2 PET-1G-CFFT, and 

(b) 2 PEN-G-CFFT 



 

 

33 

ɛ𝒗 =  ɛ𝒍 + 𝟐ɛ𝒓      (3) 

where ɛv is volumetric strain, ɛl is an axial strain, and ɛr is hoop strain. It is well known that 

unconfined concrete experiences a volume reduction up to 0.9 f’c, thereafter concrete 

experiences volume expansion i.e. volume change direction is reversed. This volume 

expansion is unstable beyond the peak strength. However, it is observed that in case of 

CFFTs’, the linearly increasing hoop stress eventually reduce this volume expansion if an 

adequate amount of confinement by FRP is provided (Samaan et al. 1998).  

Figs. 24 to 26 shows the volumetric strain curves for CFFTs’. Volume reduction 

and volume expansion are shown on positive and negative axis, respectively. For one and 

two layers of PET-CFFTs (Fig. 24(a)), it can be observed that direction of volumetric strain 

changes from reduction to expansion below the compressive strength of concrete once but 

expansion is soon taken over by reduction. Hence, concrete failed in compaction. However, 

for three layers of PET compaction is taken over by expansion at a normalized axial stress 

of approximately 1.8, but in the end, concrete failed in compaction (Fig. 24 (a)). 

 From Figs. 24 (b), despite some volume expansion beyond the compressive strength of 

concrete, volume expansion is curtailed by increasing hoop stress of FRP. For three layers 

of PEN-CFFTs (Fig. 24 (b)), it can be observed that volumetric strain changes from 

reduction to expansion at the normalized axial stress of 2, and this expansion continues to 

increase until rupture. 

 From Fig. 24 (c), it can be observed that volume expansion continues until failure 

after initial volume reduction of concrete up to the compressive strength of concrete. This 

is due to inadequate confinement provided by SRS-CFFTs’. For PET-G-CFFTs’, it is 

observed that volumetric strain changes from reduction to expansion above the 



 

 

34 

compressive strength of unconfined concrete at 1.5 (Fig. 25). This expansion continues 

until failure. For 2-PEN-1-G-CFFTs’, similar behavior is observed as of PET-G-CFFTs’ 

(Fig. 25). However, in case of 1-PEN-2-G-CFFTs’ failure is due to volume expansion 

experienced at below compressive strength of compressive strength of unconfined concrete 

at 0.8 (Fig. 26).  

For SRS-LRS-CFFTs (Figs. 25 and 26), it is observed that volumetric strain 

changes from reduction to expansion above the compressive strength of unconfined 

concrete at 1.5 and 2 respectively.  

 

  

  

(a) (b) 

 

(c) 
 

Fig. 24: Volumetric strain (ɛv) curves (a) PET-CFFTs, (b) PEN-CFFTs, and (c) SRS-

CFFTs 
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Fig. 25: Volumetric Strain curves of H-CFFTs 

 

 

 

 

 
 

Fig. 26: Volumetric Strain curves of H-CFFTs 

 

 

It can be concluded from the above discussion that the increasing hoop stress of 

FRP curtails the volume expansion and with an adequate amount of confinement from FRP 

volume expansion can be effectively prevented. 
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5.7. ENERGY DISSIPATION  

Cumulative energy dissipation is a crucial parameter as it is a measure of the 

ability of a structural member to dissipate the input seismic and hence to sustain the 

earthquake ground motions. In cyclic load experiment, the dissipated energy can be 

calculated as the difference between the input energy; i.e. toughness, and elastic energy. 

Hence, the dissipated energy in any given cycle of loading can be calculated as the area 

enclosed by 

the load-displacement curve. The cumulative energy dissipation is calculated by adding the 

values of energy dissipated for the first cycle of each loading displacement protocol. Figs. 

27 to 29 show the relationship between the cumulative dissipated energy and the axial 

displacement for the CFFT specimens.  

LRS-FRP have the lower stiffness value which can be a concern for the sudden 

failure of CFFTs’. However, from Figs. 27 (a) and (b), it can be concluded that energy 

dissipation capacity of LRS-CFFTs’ is significant. The large rupture strain values of PET 

and PEN-FRP balances the lower stiffness of LRS-FRP, and prevent the sudden failure of 

CFFTs’. SRS-FRP having higher stiffness have a lower value of energy dissipated 

compared to LRS FRP (Fig. 28). PET has a 466.6% more energy dissipation capacity than 

SRS-FRP whereas PEN has 220% more energy dissipation capacity than SRS-FRP.  It can 

be concluded that LRS-CFFTs’ shows an efficient system to be used in seismic areas as 

energy dissipation capacity of LRS-FRP is significant. 

From Fig. 29, it can be observed that PET-G-CFFTs’ also exhibit a significant 

energy dissipation by 286.7% more than SRS-CFFTs’ (Fig. 29 (a)), whereas PEN-G-

CFFTs’ has 506% more energy dissipation capacity than SRS-CFFTs’ (Fig. 29 (b)). 
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(a) (b) 

 

Fig. 27: Cumulative energy dissipation via axial displacement of LRS-CFFTs (a) PET-

CFFTs, and (b) PEN-CFFTs 

 

 

 

 

 

 

Fig. 28: Cumulative energy dissipation via axial displacement of SRS-CFFTs 

.  
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(a) (b) 

 

Fig. 29: Cumulative energy dissipation via axial displacement of H-CFFTs (a) PET-G-

CFFT, and (b) PEN-G-CFFT 

 

 

5.8. ULTIMATE STRENGTH EVALUATION OF CFFTS USING EXISTING   

MODELS 

The ultimate compressive strengths obtained from the experimental results are 

compared with confinement analytical models developed by Saafi et al. (1999), Shehata et 

al. (2002), Ilki and Kumbasar (2003),  Shao et al. (2006), and Teng et al. (2009) as shown 

in Table 6. Fig. 30 shows the compressive strength values of the obtained test results of the 

17 CFFTs’ (Table 1) compared to the analytical models. While Table 7 shows the statistical 

analysis of the models accuracy by using three statistical indicators (Average, standard 

deviation (STD), and coefficient of variance (COV)). 

Based on the general observation, it can be seen from Table 6 and Fig. 34 that the 

analytical models proposed by Teng et al. (2009) and Shao et al. (2006) were in close 

accuracy agreement with the obtained experimental results for lower confinement ratio 

values. However, for higher confinement ratio values, Teng et. al. (2009) overestimated 
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and Shao et. al. (2006) underestimated the strength. While the others existing models were 

underestimated the strength by 14%. No model present in the study was able to estimate 

the behavior for high confinement ratio values. 

 

 

Table 6: Available analytical confinement models 

Model 
Confined Compressive 

Strength 
Confinement pressure 𝑓𝑙   

(Saafi et al. 1999) 
𝑓𝑐𝑐

′

𝑓𝑐𝑜
′ = 1 + 2.2(

𝑓𝑙

𝑓𝑐𝑜
′ )−0.16 𝑓𝑙 =

2𝑓𝑓𝑛𝑡𝑓

𝐷
 (4) 

(Shehata et al. 2002) 
𝑓𝑐𝑐

′

𝑓𝑐𝑜
′ = 1 + 2.0

𝑓𝑙

𝑓𝑐𝑜
′  𝑓𝑙 =

2𝑓𝑓𝑛𝑡𝑓

𝐷
 (5) 

(Ilki and Kumbasar 

2003) 

𝑓𝑐𝑐
′

𝑓𝑐𝑜
′ = 1 + 2.23

𝑓𝑙

𝑓𝑐𝑜
′  𝑓𝑙 =

𝑓𝑓𝜌𝑓

2
       𝜌𝑓 =

4𝑛𝑡𝑓

𝐷
 (6) 

(Shao et al. 2006) 
𝑓𝑐𝑐

′

𝑓𝑐𝑜
′ = 1 + 6

𝑓𝑙

𝑓𝑐𝑜
′

0.7

 𝑓𝑙 =
2𝑓𝑓𝑛𝑡𝑓

𝐷
 (7) 

(Teng et al. 2009) 
𝑓𝑐𝑐

′

𝑓𝑐𝑜
′ = 1 + 3.5

𝑓𝑙𝑒

𝑓𝑐𝑜
′  𝑓𝑙𝑒 =

ɛ𝑓𝑒𝐸𝑓𝑛𝑡𝑓

𝑅
 (8) 

 

 

 

 

Table 7: Statistical result of the evaluated analytical models 

Model Average 
Standard 

Deviation 
COV 

# over 

estimated 

CFFTs’ 

Saafi et al. (1999) 

Shehata et al. (2002) 

Ilki and Kumbasar (2003) 

Shao et al. (2006) 

Teng et al. (2009) 

1.14 

0.95 

0.85 

0.90 

0.93 

0.12 

0.09 

0.08 

0.08 

0.09 

0.11 

0.09 

0.09 

0.09 

0.10 

5 

0 

1 

3 

14 
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(a) (b) 

 

Fig. 30: Ratio of analytical compressive strength and test compressive strength via (a) 

confinement ratio, and (b) test compressive strength 

 

 

6. CONCLUSION 

In this paper, an experimental study was investigated to explain the cyclic 

compressive behavior of concrete confined to large rupture strain FRP (LRS-FRP) or 

hybrid LRS-FRP and G-FRP (SRS-FRP). Seventeen cylinders were tested for different 

confinement ratio. 

1. LRS-FRP is more efficient in terms of strength and ultimate strain than SRS-FRP. LRS-

FRP reached the ultimate rupture strain up to 10% whereas SRS-FRP’s strain value is 

2%. 

2. In terms of strength gain, ductility, and energy dissipation capacity, PET-FRP has better 

performance than PEN-FRP. 

3. Increasing the confinement by more number of layers of LRS-FRP leads to increase in 

strength and ultimate strain as similar to SRS-FRP. 
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4. In terms of strength, H-CFFTs’ is more efficient than both the LRS-FRP and SRS-FRP. 

In terms of ultimate strain, H-CFFTs’ showed higher ultimate strain than SRS-FRP and 

PEN but PET-FRP alone is more efficient. 

5. In terms of wrapping sequence in H-CFFTs, H- CFFT having LRS-FRP inside and SRS-

FRP outside was effective in terms of strength and increases ultimate axial strain.  

6. LRS-CFFTs’ and H-CFFTs’ both are efficient in terms of energy dissipation. 

Finally, the new H-CFFTs’ is a promising system for improved durability and 

strength of concrete-filled FRP tubes. In seismic areas, it can be an effective system due to 

its ductility and energy dissipated capacity. 
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II.BEHAVIOR OF CONCRETE-FILLED HYBRID SMALL AND LARGE 

RUPTURE STRAIN FRP TUBES UNDER CYCLIC AXIAL COMPRESSION 

Monika Nain4; Mohanad M. Abdulazeez 5, S.M.ASCE; and Mohamed A. ElGawady6§, 

Ph.D., M. ASCE 

 

ABSTRACT  

This paper presents the results of an experimental study on the behavior of concrete 

filled fiber reinforced polymer (FRP) tubes (CFFTs) under cyclic axial compression. The 

main objective of this study is to observe the compressive behavior of large rupture strain 

FRP (LRS-FRP), small rupture strain FRP (SRS-FRP) and hybrid LRS-SRS-FRP CFFTs. 

Twelve cylinders having different confinement ratios investigated to understand the 

behavior of CFFTs in terms of ductility, ultimate strain, confinement effectiveness, and 

energy dissipation capacity. Owing to the large rupture strain property of LRS-FRP, CFFTs 

shows highly ductile behavior and significant energy dissipation capacity. The hybrid 

CFFT improves the ductility and energy dissipation capacity of the SRS-FRP confined 

concrete. 
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1. INTRODUCTION 

 External confinement of concrete with FRP has proven to be able to increase the 

strength and ductility of the structures. Application of FRP instead of steel is preferable 

due to easy installation, high strength to weight-ratio, corrosion resistance, and relatively 

low maintenance cost. FRP materials such as carbon, glass, and aramid are frequently used 

FRPs types in the market. Many researchers have proven their application in strength 

enhancement (Choi and Xiao 2009; Dawood and ElGawady 2013; Fanggi and 

Ozbakkaloglu 2013; Mirmiran and Shahawy 1997; Ozbakkaloglu et al. 2013; Seible et al. 

1997; Shao 2003; Spoelstra and Monti 1999; Wu and Wei 2010). However, due to small 

rupture strain (SRS) their application is limited in seismic areas as the fiber ruptured sooner 

and does not provide ductility.  

 In recent years, a new category of FRP has emerged as an alternative to SRS-FRPs 

called LRS-FRP. LRS-FRP include PEN (polyethylene napthalate) and PET (polyethylene 

terephthalate) having properties of large rupture strain (LRS), larger than 5%, and low 

stiffness (Bai et al. 2013; Bai 2014; Dai and Ueda 2012; Nain et al. 2017; Saleem et al. 

2018). Due to large rupture strain, they can fulfill the ductility requirement and 

strengthening in seismic areas.  Moreover, LRS-FRP are usually made of recycled 

materials (plastic bottles) giving cheaper and environment friendly solution. 

Despite the large number of studies on CFFTs, fewer studies are available on LRS-

FRP as most of them are focused on SRS-FRP behavior (Anggawidjaja et al. 2006; Dai et 

al. 2011; Dai and Bai 2014). These studies showed that LRS-CFFTs can lead to more 

ductile behavior and energy dissipation capacity with same level of strength enhancement.  
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Most of research work presented studies on comparison between the behavior of 

SRS-CFFTs and LRS-CFFTs but Abdelkarim and ElGawady (2015) were the first to 

numerically investigate the performance of hybrid LRS-SRS-FRP (H-CFFT) confined 

concrete under monotonic axial compressive loading. No experimental work has been done 

to study the effect of this new H-CFFT with different combination of FRP under cyclic 

axial compression. The study showed the outstanding performance of H-CFFT in terms of 

ductility, deformation capacity, and energy dissipation capacity. 

 

2. RESEARCH SIGNIFICANCE 

Many experimental and analytical studies on the compressive behavior of SRS-

CFFT have been carried out, comparatively less research work has been done on LRS-

FRP. Moreover, most of the studies are exclusively focused on monotonic behavior. For 

the seismic design and retrofit of structural members¸ it is necessary to understand the 

behavior of CFFTS under cyclic axial compression. A very limited experimental work has 

been done on the cyclic compressive behavior (Bai et al. 2013; Bai 2014; 

Jirawattanasomkul et al. 2013; Rousakis 2013). This paper is therefore experimentally 

investigates the performance of LRS-CFFTs (PET AND PEN), SRS-CFFTs with carbon 

FRP (CFRP), and H-CFFTs under cyclic axial compressive loading. 

The study reported in this paper was aimed at investigating the effects of the types 

of fiber (PET, PEN, and Carbon) on the behavior of CFFTs in terms of strength, ductility,  

and energy dissipation.   

 

 



 

 

48 

3. EXPERIMENTAL PROGRAM  

In this study, twelve CFFTs having different confinement ratio (CR) were tested 

under cyclic axial compression (Table 1). The dimension of each cylinder was 156 mm x 

305 mm (6 inch x 12 inch). The CR (Equation 1) is defined as the ratio of confining 

pressure (fl) and compressive strength of unconfined concrete (f’c). 

𝐶𝑅 =
𝑓𝑙

𝑓′𝑐
 (1) 

𝑓𝑙 =
2𝐸𝑓𝜀𝑓𝑡𝑓

𝐷𝑓
⁄  (2) 

where 𝐸𝑓 is the FRP tube hoop modulus of elasticity, 𝑡𝑓 is the total thickness of the FRP 

tube, 𝜀𝑓 is the hoop ultimate tensile strain of the FRP tube, and 𝐷𝑓 is the internal diameter 

of the FRP tube.  

 In this study, CFFTs were majorly divided into three categories (Table 1) 

depending on the type of FRP used (Fig. 1): LRS-CFFT, SRS-CFFT, and H-CFFT. LRS-

CFFT stands for large rupture strain FRP i.e. PET and PEN having six cylinders (P1 to P6) 

with varying FRP layers ranging from one to three. SRS-CFFT stands for small rupture 

strain FRP i.e. carbon having three cylinders (C1 to C3) with varying FRP layers ranging 

from 1 to 3. H-CFFT stands for hybrid CFFT, using both LRS and SRS FRP. It consists of 

3 cylinders (C4 to C6) having LRS-FRP inside and SRS-FRP outside. From previous 

studies (Nain et al. 2017), it is observed that in case of H-CFFTs sequence of LRS-SRS 

(in/out) was more efficient in terms of ductility and energy dissipation capacity. Hence, 

LRS-FRP outside and SRS-FRP inside sequence for H-CFFT is not tested.  
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Fig. 1: Types of FRP used in the experiment 

 

 

3.1. FRP TUBES PREPARATION 

The FRP tubes were fabricated using manual wet layup procedure with a 30% 

overlap length of the tube’s perimeter (Fig. 2). The fiber was impregnated with the epoxy 

using a roller and wrapped around a sonotube. The excess epoxy was squeezed out and 

cured for 24 hours at room temperature. After curing, sonotube was removed, and a hollow 

cylindrical FRP tubes was produced. Tyfo® S epoxy having two components A and B were 

used in the process. 

 

3.2. FRP COUPON TENSILE TESTS 

To determine the properties of FRP, flat FRP coupons were prepared and tested 

(Fig. 3 and Table. 2). FRP plates were prepared in starting using same FRP material and 

curing procedure, and flat FRP coupons were cut from those FRP plates. All the coupons 

 

PEN 

PET 

Carbon 
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Table 1: Tested CFFTs 

 Cylinder 

label 
FRP type 

FRP plies # 
Total FRP 

plies thickness 

[mm (inch)] 

Confinement 

ratio (CR) PET PEN CFRP 

L
R

S
-C

F
F

T
 

P1 

PET 

1 - - 3.3 (0.13) 0.15 

P2 2 - - 6.6 (0.26) 0.29 

P3 3 - - 9.9 (0.39) 0.44 

P4 

PEN 

- 1 - 3.0 (0.12) 0.19 

P5 - 2 - 6.0 (0.24) 0.37 

P6 - 3 - 9.1 (0.36) 0.56 

S
R

S
-C

F
F

T
 

C1 

CFRP 

- - 1 0.76 (0.03) 0.23 

C2 - - 2 1.78 (0.07) 0.46 

C3 - - 3 2.54 (0.10) 0.69 

H
-C

F
F

T
 C4 

PET-CFRP 

(in/out) 
1 - 2 5.08 (0.20) 0.61 

C5 PEN-CFRP 

(in/out) 

- 1 2 4.78 (0.19) 0.65 

C6 - 2 1 6.76 (0.27) 0.60 
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Fig. 2: Fabricated Hollow Cylindrical FRP tubes 

 

 

were 254 mm (10 inches) long and 25.4 mm (1 inch) wide. Each end of the coupon was 

tabbed using aluminum tabs. Strain gauges in the middle and extensometer were used to 

calculate strain. Three identical coupons of each FRP were prepared.  The coupons were 

tested using MTS 880 at loading rate of 0.5 inches/minute. 

LRS-FRP coupons show bilinear stress-strain relationship whereas SRS-FRP 

coupons show linear stress-strain relationship up to rupture (Fig. 4). In case of LRS-FRP 

coupons, failure is observed due to longitudinal slippage between the fibers and in case of 

SRS-FRP coupons, rupture of the FRP at mid-height is observed. 

 

3.3. CONCRETE MIX 

Concrete was poured inside the hollow FRP tubes and cured for 28 days at 

laboratory ambient temperature 29°C (84.20°F). The CFFT specimens were poured in one 

batch using the concrete mixture shown in Table 3 (Nain et al. 2017). The average 28-day 

compressive strength of the three number of concrete cylinders was determined per ASTM 

C39 as 50.3 MPa (7.3 ksi) with a standard deviation of 0.31 ksi.  
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4. TEST PROCEDURE AND LOADING PROTOCOL  

For each CFFT, four axial and hoop strain gauges were installed at the mid-height 

of the CFFT. First strain gauge was installed within the overlapping zone and other three 

were symmetrically distributed and evenly placed at 90° outside the overlapping zone. 

Moreover, additional four hoop strain gauges were symmetrically installed in between the 

existing strain gauges (Figs. 5 and 6 (a)). In addition, two linear variable displacement 

transducers (LVDTs) at 180° were installed to measure axial displacement along total 

height (Fig. 6 (b)). 

 

 

 
 

(a) (b) 

 

(c) 

 

Fig. 3: FRP coupons (a) LRS, (b) SRS, and (c) H-FRP 
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(a) (b) 

 
(c) 

 

Fig. 4: FRP coupons tensile test results (a) PET, (b) PEN, and (c) CFRP 

 

 

 

 

Table 2: Results of Flat Coupon Test of FRP 

Properties Carbon PET PEN 

Thickness/ply [mm (inch)] 0.76 (0.03) 3.3 (0.13) 3.0 (0.12) 

E [GPa (ksi)] 111.5 (16,179) 2.4 (348) 3.9 (449.6) 

Ultimate strain (%) 0.8±0.01 7.7±0.01 5.7±0.01 

 

 

 

PET PEN 

CFRP 
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Table 3: Concrete Mix 

w/c 
Cement 

[kg/m3 (lb/ft3)] 

Water 

[kg/m3 (lb/ft3)] 

Fine aggregate 

[kg/m3 (lb/ft3)] 

Coarse aggregate 

[kg/m3 (lb/ft3)] 

0.5 451 (28.15) 226 (14.1) 512 (32) 512(32) 

 

 

The cylinders were subjected to cyclic axial compression loading until rupture of 

the FRP or reaching the ultimate load of the testing machine (Fig. 7). All CFFTs tests were 

carried out using an MTS 2500 having capacity of 2,400 kN (539 kips) with displacement 

control at a rate of 0.5 mm/minute (0.02 inch/minute). The CFFTs were first preloaded to 

44.5 kN (10 kips). Each loading step was repeated for three cycles (Carter et al. 2014). A 

data logger system was used to record all the test data, including strains, loads, and 

displacements. 

 

 

 

 

Fig. 5: Positions of the mounted strain gauges 
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(a) (b) 

 

Fig. 6: The CFFT (a) Schematic, and (b) CFFT Test in progress 

 

 

 

 

 

 

Fig. 7: Cyclic compression loading protocol (Carter et al. 2014) 

 

LVDT 
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5. TEST RESULTS  

5.1. GENERAL BEHAVIOR 

 CFFT were experimentally tested under cyclic axial compression and results were 

discussed in terms of confinement effectiveness, ductility, dilation properties and energy 

dissipation. Table 4 represents the results of the tested CFFTs in terms of ultimate load 

capacity Pmax, displacement, ultimate axial strain (ɛlu), and ultimate hoop strain (ɛhu).  

Average of the two LVDTs were used to calculate axial strains. However, strain gauges 

data were used to calculate hoop strains at mid-height. H-CFFT shows the same strength 

enhancement as LRS-PET-CFFT and SRS-CFFT. It is worth noting that the capacity of 

specimens P6, P10, and P12 exceeded the capacity of the MTS compression machine, so 

the specimens were not tested until complete rupture of the FRP. 

 

5.2. FAILURE MODE 

Typical failures of the tested CFFTs’ are represented in Figs. 8 to 12. All the LRS- 

CFFTs’ failed by the rupture of the FRP in the hoop direction (Figs. 8 and 9). LRS-PET-

CFFT failed at the overlap location (Fig. 8) whereas none of the LRS-PEN-CFFTs failed 

at overlap location (Fig. 9). The rupture of FRP were concentrated in the central zone of 

CFFT. 

The failure of SRS-CFFTs’ was dominated by the rupture of the FRP in the hoop 

direction (Fig. 10) either in the central zone or in the entire height of tube. Due to higher 

stiffness of CFRP, the rupture of CFFT was sudden with loudly noise as compared to LRS-

CFFT. It is worth to mention that no rupture of FRP is observed in the case of 3-layers 

PEN and 3-layers CFRP-CFFTs’ as MTS loading cell reached the ultimate capacity. 
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Table 4: Test CFFTs and Key Test Results 

 
Cylinder 

label 

FRP 

Parameter 
Pmax [kN (kip)] 

Ultimate 

displacement 

[mm (inch)] 

Ultimate 

axial 

strain 

(ɛlu) (%) 

Ultimate 

hoop 

strain 

(ɛhu) % 

L
R

S
-C

F
F

T
 

P1 

PET 

1,227 (276) 26.4 (1.04) 8.6 2.2 

P2 1,649 (371) 32.9 (1.30) 11.1 2.3 

P3 2,369 (533) 38.4 (1.50) 12.6 2.8 

P4 

PEN 

1,409 (317) 15.5 (0.60) 5.1 1.05 

P5 2,072 (466) 16.1 (0.60) 5.3 1.10 

P6 2,384 (536)* 19.4 (0.76)* 6.3* 0.85* 

S
R

S
-C

F
F

T
 

C1 

CFRP 

1,744 (392) 7.12 (0.28) 1.1 0.83 

C2 2,255 (507) 9.4 (0.37) 1.5 0.95 

C3 2,371 (533)* 8.3 (0.34)* 1.9* 0.45* 

H
-C

F
F

T
 

C4 
PET-CFRP  

(in/out) 
2,384 (536)* 15.2 (0.60)* 2.5* 0.47* 

C5 PEN-CFRP 

(in/out) 

2,384 (536)* 7.62 (0.30)* 2.1* 0.41* 

C6 2,349 (528) 19.3 (0.76) 7.3 0.91 
* MTS machine exceeded the allowable capacity 

 

 

The failure modes of the H-CFFTs are shown in Fig. 11. For 1 PET/2 CFRP (Fig. 

11(a)), failure occurred due to rupture of SRS-FRP. The orientation of final rupture is 

diagonal initiated by hoop rupture of SRS-FRP. For 1 PEN/2 CFRP (Fig. 11(b)), no rupture 

is observed and MTS machine reached the capacity of loading cell before failure. For 2 

PEN/ 1 CFRP (Fig. 11(c)), hoop rupture of SRS-FRP in the central zone was observed 

similar to LRS-CFFTs and SRS-CFFTs. 
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(a) (b) (c) 

 

Fig. 8: PET-CFFTs after failure (a) P1 (1 layer), (b) P2 (2 layer), and (c) P3 (3 layer) 

 

 

 

 

  
 

 

(a) (b) (c) 

 

Fig. 9: PEN-CFFTs after failure (a) P4 (1 layer), (b) P5 (2 layer), and (c) P6 (3 layer) 
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(a) (b) (c) 

 

Fig. 10: CFRP-CFFTs after failure (a) C1 (1 layer), (b) C2 (2 layer), and (c) C3 (3 layer) 

 

 

 

 

 
 

 
 

 
 

(a) (b) (c) 

 

Fig. 11: H-CFFT after failure [in/out] (a) C4 (1 PET/2 CFRP), (b) C5 (1 PEN/2 CFRP), 

and (c) C6 (2 PEN/1 CFRP) 
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5.3. AXIAL STRESS-STRAIN RESPONSE 

Normalized stress-strain curves of cyclically tested CFFTs are shown in Figs. 12 to 

16. Axial strain and hoop strain are represented by positive and negative x-axis 

respectively. 

The normalized stress-strain behavior of LRS-PET FRP tubes (P1, P2, and P3) is 

represented in Fig.12. CFFTs’ exhibit an ascending first branch with an increase of 40-150 

% in confined strength capacity depending upon number of FRP layers used. The stress-

strain behavior in second branch was influenced significantly by the amount of confining 

FRP. Figs. 12 (a) and (b) shows CFFTs P1 and P2 experienced initial strength softening 

i.e. a sudden drop in strength followed by 40% recovery in strength. This strength drop is 

associated with the brittle nature of concrete.  However, for CFFT P3 (Fig. 12 (c)), the 

second portion is of a continuously ascending type with an insignificant softening curve. 

This behavior is associated with sufficient confinement provided by PET-FRP. CFFTs 

shows ductile behavior with 8-12% of axial strain. 

The normalized stress-strain behavior of LRS-PEN FRP tubes (P4, P5, and P6) is 

represented by Fig. 13. CFFTs exhibit an ascending first branch i.e. similar behavior as of 

LRS-PET FRP.  The first branch of the curve shows an increase of 50%- 150% in confined 

strength capacity for one to three layers of FRP. The second branch experienced initial 

strength softening with a strength drop of 10% - 20% and then followed by ascending 

curve. It is worth to mention that in Fig. 13 (c) (P6), the plateau at the top occurs because 

the MTS machine loading cell reached its capacity without rupture of the CFFT specimen. 

CFFTs’ shows ductile behavior with 5-6% of axial strain. 
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 The normalized stress-strain behavior of SRS-FRP tubes (C1, C2 and C3) is 

represented by Fig.14. CFFTs’ exhibit an ascending linear curve up to ultimate strength 

with an increase in confined strength capacity by 100-150%. However, less ductility is 

achieved with small rupture strain value of 1%. From Fig. 14 (c), plateau at the top 

represents capacity of MTS machine loading cell reached. No rupture of FRP is observed, 

it is due to the high stiffness modulus of CFRP. 

The normalized stress-strain behavior of H-PET-CFRP (C4) is represented by Fig. 

15. The H-CFFT exhibit an ascending linear curve reaching the ultimate capacity of MTS 

machinne loading cell. The increase in confined strength by 150% is observed with rupture 

of FRP at 2.5% axial strain. 

The normalized stress-strain behavior of H-PEN-CFRP (C5 and C6) is represented 

by Fig. 16. The H-CFFT exhibit an ascending linear curve reaching the ultimate capacity 

of MTS machine loading cell (Fig. 16 (a)). The increase in confined strength by 150% is 

observed.  Due to presence of LRS-PEN FRP with CFRP there is increase in ductility of 

SRS-CFFTs. However, CFFT C6 (Fig. 16 (b)) exhibit ascending first branch followed by 

descending branch. However, ductility of CFFT is improved with an axial strain of 6%. 

To conclude, a hybrid system having 1 LRS FRP/2 CFRP reveals more strength 

gain due to the higher stiffness of CFRP. Moreover, with the strength gain, ductility is also 

provided by LRS FRP in both LRS-CFFTs’ and H-CFFTs’ because of large rupture strain 

and efficient confinement.  

 

 



 

 

62 

  

(a) (b) 

 

(c) 

 

Fig. 12: Normalized Stress via strain curves of PET-CFFTs (a) P1 (1 layer), (b) P2 (2 

layers), and (c) P3 (3 layers) 

 

 

5.4. CONFINEMENT PRESSURE  

 Under axial compression, CFFT is subjected to lateral confinement provided by the 

FRP tube. This lateral confinement provides tension in the hoop direction and prevents 

concrete expansion. Hence, strength and ductility can be increased significantly due to 

presence of this lateral confinement. 

The results of the tested CFFTs’ are represented by table 5. The ultimate 

confinement effectiveness (f’cc/f’c) where f'cc is the ultimate strength of confined concrete, 

f'c is the compressive strength of unconfined concrete i.e. 50.3 MPa (7.3 ksi) and strain 
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gain with respect to confinement ratio (CR) where ɛcc and ɛcu (0.13 inch/inch) are the 

ultimate axial strain of the confined and unconfined concrete; respectively.  Fig. 22 shows 

the relation between confinement effectiveness and confinement ratio. 

Table 5 shows that SRS-CFFTs’ were more efficient than LRS-CFFTs’ in terms of 

confinement effectiveness. However, both LRS-CFFTs and H-CFFTs shows more ductile 

behavior irrespective of same confinement ratio.  

As shown in Fig 17 (a), for one and two layers  of CFFTs, SRS-CFFT shows higher 

confinement effectiveness of 20%-25% and 13%-50% than LRS-CFFTs respectively. 

 

 

  

(a) (b) 

 

(c) 

 

Fig. 13: Normalized Stress via strain curves of PEN-CFFTs (a) P4 (1 layer), (b) P5 (2 

layers), and (c) P6 (3 layers) 
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(a) (b) 

 
(c) 

 

Fig. 14: Normalized Stress via strain curves of CFRP-CFFTs (a) C1 (1 layer), (b) C2 (2 

layers), and (c) C3 (3 layers) 

 

 

 

 

 

 

Fig. 15: Normalized Stress via strain curves of H-CFFTs [C4 (1 PET/2 CFRP)] 
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(a) (b) 

 

Fig. 16: Normalized Stress via strain curves of H-CFFTs (a) C5 (1 PEN/2 CFRP), and (b) 

C6 (2 PEN/1 CFRP) 

 

 

However, for three layers of FRPs both LRS-CFFTs and SRS-CFFTs performs 

shows same confinement effectiveness. 

From Fig. 17 (a) and Table 5, it can be concluded that LRS-PEN-CFFTs performed 

better in terms of confinement effectiveness than LRS-PET-CFFTs. However, LRS-PET-

CFFTs were more ductile than LRS-PEN-CFFTs. The reason was the higher rupture strain 

value of PET-FRP (6-8%) than PEN-FRP (4-5%).  

Confinement effectiveness via confinement ratio of all the three layers CFFTs i.e. 

SRS-CFFT, LRS-CFFT, and H-CFFT are represented by Fig. 17 (b). Despite difference in 

confinement ratios, all tested CFFTs’ shows same confinement effectiveness. From Fig. 

22, it can be observed that there is a linear increase in the confinement effectiveness for 

CR range between 0.1-0.4 (Fig.17 (a)) but it is constant for CR above 0.4 (Fig.17 (a)). 

Hence, LRS-CFFT and H-CFFT shows same strength enhancement as SRS-CFFT but 

more ductile behavior. 
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Table 5: Key Test Results of CFFTs 

 
Cylinder 

label 

f'cc 

[MPa (ksi)] 

Confine

ment 

effective

ness 

(f'cc/f'c) 

ɛcc 

(inch/inc) 

ɛcc/ɛc

u 

fl
** 

[MPa (ksi)] 
CR*** 

L
R

S
-C

F
F

T
 

     P1 67.5 (9.78) 1.39 0.09 6.92 7.1 (1.02) 0.15 

P2 
90.3 

(13.11) 
1.87 0.11 8.46 14.2 (2.05) 0.29 

P3 
129.8 

(18.84) 
2.69 0.13 10.00 21.3 (3.08) 0.44 

P4 
77.2 

(11.20) 
1.60 0.05 3.85 9.1 (1.31) 0.19 

P5 
113.5 

(16.47) 
2.35 0.05 3.85 18.01 (2.6) 0.37 

P6 
130.5* 

(18.94) 
2.71 0.06 4.62 27.1 (3.92) 0.56 

S
R

S
-C

F
F

T
 

      C1 
95.5 

(13.86) 
1.98 0.011 0.85 7.2 (1.66) 0.23 

C2 
123.6 

(17.93) 
2.56 0.015 1.15 14.9 (3.32) 0.46 

C3 
129.9* 

(18.85) 
2.69 0.019 1.46 22.2 (4.98) 0.69 

      C4 
130.7* 

(18.96) 
2.71 0.025 1.92 22.2 (4.38) 0.61 

C5 
130.6* 

(18.95) 
2.71 0.021 1.62 23.6 (4.66) 0.65 

C6 
128.7 

(18.67) 
2.67 0.073 5.62 25.6 (4.34) 0.60 

 
*  MTS machine capacity was reached 

** Confinement pressure from Eq.2 

***CR: Confinement ratio from Eq.1 
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(a) 

 
(b) 

 

Fig. 17: Confinement effectiveness vs. confinement ratio of (a) LRS-CFFTs’ and SRS-

CFFTs’ (P1-P6, C1-C3), and (b) all 3 layers CFFTs’ 

 

 

5.5. CONCRETE DILATION BEHAVIOR  

 It is a well-known phenomenon that unconfined concrete experiences volumetric 

dilation after initial volume reduction up to 90% of the compressive strength (Chen 2007). 

This volumetric dilation phenomenon originates from the formation of cracks under axial 
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stresses. However, in case of the CFFTs, confinement provided by the FRP passively 

restricts the volume dilation of concrete under compression.  

The volumetric strain curves for CFFTs’ are represented by Figs.18 to 20. For LRS-

PET-CFFTs, the direction got reversed from volume reduction to expansion at 0.9 f’c, but 

in the end concrete failed in compaction (Fig.18 (a)). The reason is the confinement 

pressure from FRP prevents the expansion of concrete. Failure is controlled by compaction 

at 1.3 and 1.8 of normalized axial stress reached by P1, P2, and P3 respectively depending 

on number of FRP layers used. 

 Depending on the confinement provided by FRP, volume expansion in CFFTs is 

prevented by FRP at 1.5 normalized axial stress (Fig. 18 (b)) and failed in compaction in 

case of one and two layers of FRP-CFFTs. For three layers of PEN-CFFT, failed in 

expansion but direction got reversed from volume reduction to volume expansion after 

100% increase in normalize stress. 

 For SRS-CFFTs’, due to presence of insufficient confinement CFFT got failed in 

expansion (Fig.18 (c)). However, for three layers of SRS-FRP volume expansion is 

curtailed by FRP up to 250% of normalized stress (Fig. 18 (c)). The reason is high 

confinement pressure provided by FRP. 

 For H-CFFTs’, absence of volume expansion is observed in case of 1LRS-2SRS-

CFFTs up to 250% increase in the normalized stresses (Fig. 19 and 20) However, in case 

of 2LRS-1SRS-CFFTs expansion after increase of 50% in stress is observed (Fig. 20). The 

reason could be the higher stiffness available due to presence of two layers of SRS-FRP.   
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(a) (b) 

 
(c) 

 

Fig. 18: Volumetric Strain curves of CFFTs (a) PET-CFFTs, (b) PEN-CFFTs, and (c) 

CFRP-CFFTs 

 

 

 

 

 
 

Fig. 19: Volumetric Strain curves of H-CFFTs: C4 (1 PET/2 CFRP) 
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Fig. 20: Volumetric Strain curves of H-CFFTs: PEN/CFRP 

 

 

5.6. ENERGY DISSIPATION CAPACITY 

Energy dissipation capacity is one of the most important crucial parameter in 

seismic design criteria for a structure. Cumulative energy dissipation can be calculated by 

summing up the dissipated energy for the first cycle in successive load-displacement cycle. 

Figs. 21 to 23 show the cumulative energy dissipation capacity of tested CFFTs. 

From Fig. 21, it can be observed that LRS-CFFTs energy dissipation capacity is 

significant. The reason for this significant energy dissipation capacity is the large rupture 

strain value which provides ductility to the system. However, SRS-CFFTs have lower 

value of energy dissipation capacity (Fig. 22). The reason is smaller rupture strain value 

and high stiffness value of CFRP. It can be concluded that LRS-CFFTs’ shows an efficient 

system to be used in seismic areas as energy dissipation capacity of LRS-FRP is significant. 

Fig. 23 shows the energy dissipation capacity of H-CFFT. It can be observed that 

1 LRS-2 SRS-CFFT has higher energy dissipation capacity than 3-SRS-CFFT. It is worth 

to mentioned, that 1 PEN- 2 CFRP-CFFT (Fig. 23 (a)) reached the ultimate capacity 

without failure of FRP rupture. Moreover, 2 PEN-1 CFRP-CFFT (Fig. 23 (b)) has also 
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improved the energy dissipation capacity of SRS-CFFT. Hence, by H-CFFT energy 

dissipation capacity of SRS-CFFTs can be improved by significant amount. However, 

LRS- CFFT are better efficient system that H-CFFT and SRS-CFFT. 

 

 

  

(a) (b) 

 

Fig. 21: Cumulative energy dissipation via axial displacement of LRS-CFFTs (a) PET-

CFFTs, and (b) PEN-CFFTs 

 

 

 

 

 

 

Fig. 22: Cumulative energy dissipation via axial displacement of SRS-CFFTs, CFRP- 

CFFTs 
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(a) (b) 

 

Fig. 23: Cumulative energy dissipation via axial displacement of H-CFFTs (in/out) 

(a) PET-C-CFFT, and (b) PEN-C-CFFT 

 

 

5.7. COMPARISON WITH EXISTING MODELS 

 The ultimate compressive strength obtained from the tested CFFTs are compared 

with the present confinement models. Models used in this study are: Saafi et al. (1999), 

Shehata et al. (2002), Ilki and Kumbasar (2003), Shao et al. (2006), and Teng et al. (2009) 

(Table 6).   

Fig. 24 shows the ratio of analytical compressive strength and test compressive 

strength via (a) confinement ratio, and (b) test compressive strength. Table 7 shows the 

statistical result of the evaluated analytical models having average, standard deviation 

(SD), coefficient of variation (COV), and number of overestimated CFFTs.  

From Fig. 24 (a) and table 7, it can be observed that Shao el al. (2006) and Teng et 

al. (2009) models have estimated the strength most accurate for C.R. having values lesser 

than 0.50. However, for C.R. having values greater than 0.50, Teng et al. has overestimated 

the strength whereas Shao et al. has underestimated the strength. Shehata et al. (2002) and 
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Ilki et al. (2003) underestimated the strength by 10%-30%. This same results were oberved 

with SRS-Glass-CFFTs and H-CFFTs with glass FRP. Therefore, no model exactly predict 

the behavior of CFFTs with higher C.R. 

 

 

Table 6: Available analytical confinement models 

Model 
Confined Compressive 

Strength 
Confinement pressure 𝑓𝑙   

(Saafi et al. 1999) 
𝑓𝑐𝑐

′

𝑓𝑐𝑜
′ = 1 + 2.2(

𝑓𝑙

𝑓𝑐𝑜
′ )−0.16 𝑓𝑙 =

2𝑓𝑓𝑛𝑡𝑓

𝐷
 (4) 

(Shehata et al. 2002) 
𝑓𝑐𝑐

′

𝑓𝑐𝑜
′ = 1 + 2.0

𝑓𝑙

𝑓𝑐𝑜
′  𝑓𝑙 =

2𝑓𝑓𝑛𝑡𝑓

𝐷
 (5) 

(Ilki and Kumbasar 

2003) 

𝑓𝑐𝑐
′

𝑓𝑐𝑜
′ = 1 + 2.23

𝑓𝑙

𝑓𝑐𝑜
′  𝑓𝑙 =

𝑓𝑓𝜌𝑓

2
       𝜌𝑓 =

4𝑛𝑡𝑓

𝐷
 (6) 

(Shao et al. 2006) 
𝑓𝑐𝑐

′

𝑓𝑐𝑜
′ = 1 + 6

𝑓𝑙

𝑓𝑐𝑜
′

0.7

 𝑓𝑙 =
2𝑓𝑓𝑛𝑡𝑓

𝐷
 (7) 

(Teng et al. 2009) 
𝑓𝑐𝑐

′

𝑓𝑐𝑜
′ = 1 + 3.5

𝑓𝑙𝑒

𝑓𝑐𝑜
′  𝑓𝑙𝑒 =

ɛ𝑓𝑒𝐸𝑓𝑛𝑡𝑓

𝑅
 (8) 

 

 

 

 

  
(a) (b) 

 

Figure 24: Ratio of analytical compressive strength and test compressive strength via 

(a) confinement ratio, and (b) test compressive strength 
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Table 7: Statistical result of the evaluated analytical models 

Model Average 
Standard 

Deviation 
COV 

# over estimated 

CFFTs’ 

Saafi et al. (1999) 0.96 0.08 0.09 2 

Shehata et al. (2002) 0.87 0.08 0.10 0 

Ilki and Kumbasar (2003) 0.91 0.08 0.09 0 

Shao et al. (2006) 0.93 0.09 0.09 2 

Teng et al. (2009) 1.17 0.13 0.11 10 

 

 

6. CONCLUSION 

In this paper, an experimental study was investigated to explain the cyclic 

compressive behavior of concrete confined to large rupture strain FRP (LRS-FRP) or 

hybrid LRS-FRP and CFRP (SRS-FRP). Twelve cylinders were tested for different 

confinement ratio. The study concluded the following notes. 

1.  LRS-FRP is more ductile than SRS-FRP with same strength enhancement as of CFRP. 

2.  Between LRS-FRP, PET-FRP has better performance than PEN-FRP in terms of 

ductility, and energy dissipation capacity. 

3.  H-CFFT improves the ductility of SRS-FRP with same strength enhancement. 

However, LRS-FRP performs better than H-CFFT in terms of strength, ductility. 

4.  In terms of energy dissipation, LRS-CFFTs’ and H-CFFTs’ both are efficient than SRS-

CFFTs. 

Finally, LRS-CFFTs is a promising system for improved ductility and strength of 

concrete-filled FRP tubes. In seismic areas, it can be an effective system due to its ductility 

and energy dissipated capacity. Moreover, ductility and energy dissipation capacity. 
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SECTION 

2. SUMMARY, FINDINGS AND FUTURE WORK RECOMMENDATIONS 

 

2.1. SUMMARY AND FINDINGS 

The applications of FRP composites in the civil engineering field had increased and 

resulted new and different types of FRP materials to meet the structural requirements.  The 

thesis presented the experimental study on cyclic compressive behavior of three types of 

concrete-filled FRP tubes namely SRS-CFFTs, LRS-CFFTs, and H-CFFTs. FRPs were 

categorized into two groups such as SRS-FRP having Glass and Carbon-FRP, and LRS-

FRP having PET and PEN-FRP.  

Results of this experimental study were also compared with existing analytical 

models to predict the compressive strength of CFFTs. The study concluded the following 

notes. 

1.  SRS-CFFTs increase the compressive strength of unconfined concrete by 1.5-2.5. 

However, SRS-CFFTs shows less ductile behavior. 

2.  The energy dissipation capacity of SRS-CFFTs is significantly small. 

3.  LRS-CFFTs show same strength enhancement as of SRS-CFFTs but high ductile 

behavior with significant energy dissipation capacity. 

4.  H-CFFTs show similar increase in strength as of SRS-CFFTs and LRS-CFFTs having 

greater ductility and energy dissipation capacity than SRS-CFFTs. 

5.  LRS-CFFTs performs better than H-CFFTs. 

In seismic regions, LRS-CFFTs can be a promising system in terms of ductility and 

energy dissipation capacity. Evaluation of experimental results and analytical models show 
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Teng et. al. and Shao et. al. models predicted well for CFFTs having lower C.R. However, 

no model was able to predict the strength of CFFTs having large C.R. 

 

2.2. FUTURE WORK RECOMMENDATIONS 

 The compressive behavior of different types of CFFTs were experimentally 

investigated. However, a few further investigations were recommended to investigate. 

1.  The significance of bond between concrete and FRP need to be studied 

2.  Effect of overlapping length of FRP on failure mode  

3.  Finite model for H-CFFT to be evaluated 

4.  The large-scale investigation on H-CFFT was necessary to study different parameters. 
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