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ABSTRACT

A formation of cheap and agile robots can be deployed for space, mining, patrolling,

search and rescue applications due to reduced system and mission cost, redundancy, im-

proved system accuracy, reconfigurability, and structural flexibility. However, the perfor-

mance of the formation can be altered by an adversary. Therefore, this thesis investigates

the effect of adversarial inputs or attacks on a nonholonomic leader-follower-based robot

formation and introduces novel detection and mitigation schemes.

First, an observer is designed for each robot in the formation in order to estimate its

state vector and to compute the control law. Based on the healthy operation of the robot

and its formation, it has been shown that in the case of false data injection (FDI) attack on

the actuator of a robot, the state estimation error or residual increases thus indicating the

onset of an attack. Next, a functional link neural network is incorporated into the observer

to learn the attack input and to minimize its effect by modifying the controller.

Subsequently, the effects of a covert attack are studied by relaxing the assumption

that sensors are attack-resilient. It is shown that the residual-based method from Paper 1

is ineffective when the sensors are injected by a signal that modifies the residual in the

presence of an actuator attack. Next, an auxiliary system consisting of an observer for each

robot, which is not known to the adversary, is introduced to detect covert attacks.

Performance assurance and stability of the formation during healthy and under attack

are shown using Lyapunov analysis by relaxing the separation principle. Simulation results

verify theoretical results for both FDI and covert attacks.
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SECTION

1. INTRODUCTION

The need for formation arises from the necessity of deploying multiple robots to

accomplish an objective. Mining, space interferometry [29], patrolling, search and rescue

[21], mapping, environmental monitoring [24], are applications that require multiple robots.

It could be possible to employ a single robot with multiple functionalities to accomplish

the task, but adding more features to a single robot would make it bulky and expensive.

Additionally, the robot would require more processing power requiring a higher mission

time which would eventually translate to a high mission cost [6]. The mission would also

have a single point of failure. Futhermore, a single robot cannot make use of distributed

data collection schemes to improve system accuracy. It is also hard to adapt this single

robot for different applications/scenarios. Therefore, the motivation to employ a group of

cheaper, agile robots over a single expensive and heavy robot has become a priority.

A formation controller dictates how a group of robots should behave. Formation

control can be centralized, decentralized, or distributed. Formation controllers in the

literature can also be classified as behavior-based [1][2], virtual structure, consensus-based

[28], neighbor and center reference, and leader-follower [31][9][4]. In behavior-based

methods, each robot behaves a certain way in response to its environment consisting of

obstacles, goal points, or other robots. For instance, a robot can have a move-to-goal and

a move-away-from-obstacle behaviors. In virtual structure approach, all robots maintain a

formation by positioning themselves at different points of a virtual geometric structure such

as a triangle, a square, a circle.
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The consensus-based approach, on the other hand, requires all robots to exchange

individual position information with their neighbors and come to an agreement on the final

position; a weighted average of the initial position. In the leader-follower strategy, a few

robots are assigned the role of leader; while others, are given the role of follower. The

objective of the leaders is to follow a reference trajectory, while the goal of the follower is

to maintain a fixed distance from the leader while avoiding obstacles. One of the strategies

by which a follower tracks its leader is the separation-bearing-based formation control [9],

where the follower maintains a fixed separation and relative orientation with respect to its

leader. In this effort, leader-follower separation-bearing-based formation control strategy

will be considered.

Such a formation of robots (a multi-agent system (MAS) )can be viewed as a cyber

physical systems (CPS). This would be subject to attacks by an adversary. CPS attacks

include false data injection (FDI) [22], replay [23], and others, on the sensors/actuators,

blackhole, packet loss, time delay, denial of service (DOS), and so on on the communication

links. Literature discussing secure control design in the presence of the aforementioned

attacks include [22][23][26][19][13][25]. When it comes to MAS, specifically multi-robot

formations it was noticed that attack detection and mitigation schemes are developed for

linear, double-integrator, or kinematic robot models. To the best knowledge of the authors,

no suchwork has been attempted for a dynamic, nonholonomic, communication-constrained

system like the leader-follower separation-bearing-based formation which is the primary

motivation of this thesis. Such a formation is typical in cooperative adaptive cruise control

(CACC) or in tank formations.

Detailed work has been done with regards to kinematic control for wheel mobile

robots (WMR) [18] and [35]. A dynamic backstepping-based controller for known and

unknown dynamics of a single robot was developed in [14] and [15]. For the purpose

of learning the unknown robot dynamics online, an artificial neural network (NN) was

employed. The effort in [7] deals with the separation-bearing techniques for a kinematic
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WMR. The separation-bearing technique is employed when a follower localizes itself with

respect to its leader. The work [9] discuss the dynamic backstepping controller for the

leader-follower case, employing the separation-bearing technique. This framework was

extended to the case where the robot dynamics are unknown [10] and robot state vectors

were not completely measurable [11]. Additionally, [8] extends the work to near-optimal

adaptive controllers.

Though the leader-follower separation-bearing literature touches almost all the as-

pects of control, security has not been integrated into the framework nor has the effect of

attack. This leaves the formation vulnerable to adversarial inputs from the environment or

due to tampering. The effects of such attacks on this formation have not been carried out.

A secondary motivation for pursuing the current work is to provide techniques to secure

future vehicular transportation systems.

Threats on automated vehicles have been reported. In [5], possible attacks and

attack surfaces were introduced. In [27], methods by which self-driving and cooperative

self-driving vehicles could be affected by cyber-attacks is highlighted, contrasting the

security and privacy measures for self-driving and cooperative self-driving vehicles. In

[16], it is shown how one attacked vehicle can effect the efficiency of the entire platoon

employing CACC. The paper [33] shows how an adversary could manipulate the data being

transmitted from an attacked vehicle to its follower vehicle, which could ultimately lead to

a crash. This effort also discusses possible attack detection and attack mitigation strategies.

In [34], decision trees are used to detect attacks, and the authors in [12] use a dynamic

monitor to collect information at different time instants to detect attacks. The effort in [3]

uses trajectory planning to guarantee attack-resiliency in robots.
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A robot formation could be destabilized by various attacks. These attacks could be

on the actuator, sensor, or communication links. The attacks can also be a combination of

one or more attacks. This work consists of two papers which study the effects of adversarial

inputs on robot actuators and sensors, their detection and mitigation. The organization of

this thesis is presented next.

1.1. ORGANIZATION

This thesis consists of two papers. Paper I discusses a residual-based approach to

detect and mitigate an actuator attack for different attack scenarios. Paper II on the other

hand discusses the detection of a covert attack when the residual-based approach can no

longer be trusted.

In Paper I, under the assumptions that the robot dynamic model was known and

the communication networks and the sensors were attack-resilient, the attack detection and

mitigation scheme was proposed to secure the leader and follower robots from attacks on

the actuator and/or the signals sent from the CPU of the robot to the actuators in case

of tampering [5]. This attack-resilient framework was built for nonlinear, nonholonomic

leader-follower formation on top of the system designed in [9]. For detecting the attack an

observer was designed on every robot in the formation. Based on the residual generated by

comparing the robot output vector and the observer output vector the robot checks if it was

under attack. If under attack, it activated the attack mitigation scheme; which learned the

attack signal and canceled the effect of the attack by increasing the control torque.

In Paper II, the sensor resiliency assumption was relaxed and the scenario where

the actuators and sensors of a robot could simultaneously be compromised was considered.

The motivation being to study the formation when it was attacked by a smart adversary;

one that can attack the actuators while simultaneously modifying the sensor data; thereby

staying undetected [32]. The goal of this paper was to design a detection scheme if such a

‘covert’ attack were to occur.
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1.2. CONTRIBUTION

In Paper I, a novel observer was designed for each robot in the formation. The

observer designed had dynamics similar to the robot but it had a dual tracking objective;

to track the assigned leader (if it was a follower robot; the virtual cart if it was a leader

robot) as well as to track the robot output vector on the basis of the residual. The observer

also computed the control torque estimate. Using Lyapunov analysis, it was shown that this

observer-based control torque gave zero tracking and zero estimation errors in the absence of

actuator attacks. This information was used to detect attacks (by monitoring the estimation

error or residual). Based on the fact that NN’s are universal function approximators, a novel

attack mitigation scheme was designed by using the attack affected observer tracking error

and the residual to tune an NN online such that it learnt the attack signal (assumed to be

smooth). This attack signal estimate was used to cancel out the effect of the attack signal

at the actuator. Apart from this, the leader backstepping-based control was modified from

[10] and [14]. The new leader control has better stability properties (Lyapunov tracking

error function is negative definite rather than negative semi-definite).

Paper II was concerned with designing a novel covert attack, which includes an

actuator attack combined with a sensor attack, to deceive the residual-based attack detection

scheme of Paper I. The purpose of the actuator attack is to destabilize the tracking objective

whereas the purpose of the sensor attack is to keep the robot unaware of the actuator attack

so that a feedback control/mitigating signal is not asserted. Next a novel attack detector

was designed by extending the robot dynamics [30] with an auxiliary system consisting

of a linear spring-mass-damper (LSMD) and a torsional spring-mass-damper (TSMD). A

filter-tracking error based controller [20] and an observer-based residual was constructed

for the auxiliary system which successfully detected the covert attack.
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ABSTRACT

In this paper, the effects of actuator attacks and their mitigation on a nonholonomic

leader-follower-based robot formation are discussed. The robots use dynamic backstepping-

based tracking controllers to achieve their formation objectives. An observer is designed

for each robot in the formation to estimate its state and consequently to compute its control

law. It is shown that in the case of a false data injection (FDI) attack on the actuator of

a robot, the state estimation error or residual increases, indicating the onset of an attack.

Next, a functional link neural network (FLNN) is incorporated into the observer to learn the

attack input and to minimize its effect by modifying the controller. Performance assurance

and stability of the formation during healthy and under attack are shown using Lyapunov

analysis by relaxing the separation principle.
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1. INTRODUCTION

Tasks that are difficult to be accomplished by an expensive and bulky robot can be

accomplished by a group of cheap, agile robots. Such tasks could be applicable to mining,

space interferometry [29], patrolling, search and rescue [21], mapping, environmental

monitoring [25], etc. Benefits of using multiple robots include reduced system and mission

cost, redundancy, improved system accuracy, reconfigurability, and structural flexibility [6].

Formation control techniques, which are utilized to manage such a group of robots, include

behavior-based [1][2], virtual structure, consensus [28], neighbor and center reference,

leader-follower [31][9][4], and so on.

In behavior-based methods, each robot switches between different controllers (be-

haviors) in response to different stimulus, such as obstacles, goal points, or other robots.

In virtual structure approach, all robots maintain a formation by positioning themselves at

different points of a virtual structure. Consensus requires all robots to exchange individual

position information with their neighbors and come to an agreement on the final position,

which will be a weighted average of the initial position. In the leader-follower strategy, each

robot takes on the role of a leader or a follower. The behavior of the leader is not affected

by the followers and it follows a desired reference trajectory, while the goal of the followers

is to follow the leader while maintaining a desired formation and avoiding obstacles. One

of the strategies by which followers can follow the leader is the separation-bearing-based

formation control [9]. The leader-follower approach will be utilized in the current work.

Adversarial inputs can effect the sensors, the actuators, or the communication. At

the actuator/sensor, fault data injection (FDI) [22], replay attacks [23], and on the commu-

nication network attacks such as blackhole, packet loss, time delay, denial of service (DOS)

can be observed. Literature [[22][23][25][19][13][26]] discusses the design of a secure
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controller in the presence of the aforementioned attacks. In the following, the literature on

the type of attacks that can adversely affect the formation will be analyzed to highlight the

importance of designing secure formation control protocols. Subsequently, the literature

for separation-bearing-based formation control where a dynamic robot representation that

captures the nonholonomic and nonlinear properties of a car-like vehicle will be reviewed.

In this work, the interest is in securing the formation control of multi-robot systems. In

[5] and [27], methods by which self-driving and cooperative self-driving vehicles can be

affected by cyber-attacks are highlighted. In [16], it is demonstrated how a compromised

vehicle can destroy the efficiency of the entire platoon in the presence of cooperative adap-

tive cruise control (CACC). In [33], it was shown how an adversary can manipulate the data

being transmitted from a vehicle under attack to its followers leading to a crash and possible

attack detection and mitigation strategies. In [34], decision trees are used to detect attacks,

whereas [12] uses a dynamic monitor that collects information at different time instants to

detect attacks, and [3] uses trajectory planning to guarantee that the robots are resilient to

attacks. The objective of this paper is to design a distributed attack detection and mitigation

scheme for each robot in the formation and the entire formation.

In [18] and [35], the trajectory-tracking controllers are designed by considering the

kinematic models and assuming perfect velocity tracking. In [14], a dynamic backstepping-

based position and velocity controller was developed by incorporating the robot dynamic

model. Torque control was designed, removing the perfect velocity tracking assumption.

The authors of [15] took the idea further by considering the robot dynamics to be unknown

and a neural network (NN) is utilized. In [7], separation-bearing and separation-separation-

bearing techniques are introduced by considering the kinematics of the wheeled mobile

robot (WMR).

In [9], the dynamic backstepping controller of [14] is extended to the leader-follower

case by employing the separation-bearing [7] techniques. This framework was extended to

the case of leader and the follower framework when the dynamics are unknown [10] with
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state and output feedback [11]. An NN-based robust integral of the sign of the error (RISE)

feedback was utilized in [10] for the purpose of learning the unmodeled dynamics while

making sure the formation errors go to zero asymptotically.

In [11], one NN is used to estimate the robot’s angular and linear velocities while the

other NN is used to estimate the unknown robot dynamics online. The paper [8] discusses

near-optimal adaptive control of leader-follower formation. In contrast, the objective here

is to design an attack-resilient framework for nonlinear, nonholonomic leader-follower

formation by extending the work of [9] under the assumption that the dynamics are known.

No such work exists in the literature. An assumption that the communication networks and

the sensors are resilient to attacks is made. Attacks are assumed only on the leader and

follower robot actuators and/or the signals sent from the CPU of the robot to the actuators.

The latter could occur in case of a malware onboard the robot CPU [5].

The paper is organized as follows. In Section, 2 the dynamic, nonholonomic, and

separation-bearing-based formation control framework is introduced. In Section 3, an

observer is designed for each robot. Note the purpose of the observer is to estimate the state

vector of the robot and to design the control input. Additionally, the difference between

the measured and observed state vector defined as the residual is used to design a threshold

for attack detection. By comparing the residual against this threshold, an attack can be

detected. Upon detection, the mitigation scheme designed in Section 4 will be applied.

Simulations are used to verify the mathematical results in section 5 and conclusions are

drawn in Section 6.
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2. PROBLEM FORMULATION

The robot kinematics and dynamics are given by

Ûxk
p =


cos θk −dk sin θk

sin θk dk cos θk

0 1



vk

ωk

 ,
ÛV

k
= −M

k−1
(V

k
m(x

k
p, Ûx

k
p)V

k
+ F

k
(V

k
)) + M

k−1
τk, (1)

yk =xk,

where k denotes if the robot is a leader or follower. The superscript i is used to denote

the leader, and the superscript j is used for the follower, where j = {1, . . . , . . . ,N} with N

being the total number of followers. Ignoring the superscript k, x =
[
xT

p ,V
T
]T
∈ R(p+c)

and xp =
[
x , y, θ

]T
∈ Rp, with x , y , and θ being the robots X-Y position in the Cartesian

coordinates and the orientation respectively. Here V = [v,ω]T ∈ Rc is the velocity vector

with v and ω being the robot’s linear and angular velocity respectively. The transformed

robot mass matrix, the centripetal and Coriolis matrix, and the surface friction are denoted

as M , Vm(q, Ûq) and F(V), respectively. For details on how the transformed system and

matrices are obtained, the readers are referred to [14].

Remark 1. For the nonholonomic system given by (1) with p generalized coordinates q, m

independent constraints, and c actuators, the number of actuators is equal to the number

of degrees of freedom (c = p − m).

Remark 2. The transformed mass matrix M is a constant matrix and the transformed

Coriolis matrix Vm(q, Ûq) is a zero matrix.

Based on Remark 2, the Coriolis matrix is not considered. The following assumptions are

stated as follows.

Assumption 1. The robot kinematics and dynamics are known.
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Assumption 2. There is one-way communication in a leader-follower pair with zero com-

munication delay.

Remark 3. Every follower robot is assigned a leader robot. The assigned leader robot for

the follower robot ‘ j’ will be denoted by the superscript ‘π.’

Figure 1. Formation and communication topology.

Next an attack detection and mitigation scheme on the robot formation utilizing the

backstepping-based trajectory-tracking controller [9] is designed. A brief overview is given

next so as to give the reader a continuity from the previous work done in leader-follower

separation-bearing formation control to the present work.

2.1. TRAJECTORY TRACKING USING BACKSTEPPING CONTROL STRUC-
TURE

For navigation, the leader i tracks a reference cart with unicycle dynamics. This

reference cart has linear and angular velocities as decided by the path-planner [14]. The

following assumption on the velocities is made.

Assumption 3. The linear and angular velocities of the reference cart are bounded with

the linear velocity vr(t) ≥ 0 for all t.

The reference cart dynamics are

Ûx r = vr cos θr Ûyr = vr sin θr Ûθr = ωr, (2)



12











(
,

)










(
,

)

 












Ψ




2








Figure 2. Separation-bearing formation control.

where xr =
[
x r, yr, θr, vr,ωr

]T with x r and yr being the reference cart’s X and Y Cartesian

coordinates, respectively, θr being the orientation of the reference cart, and ωr being the

reference cart’s angular velocity. Now the separation-bearing technique is used by the

follower j to track its leader π with the objective being to design a backstepping controller

such that

lim
t→∞
(Lπ jd − Lπ j) = 0 lim

t→∞
(Ψπ jd − Ψπ j) = 0, (3)

is satisfied, where Lπ j is the separation and Ψπ j is the bearing of the follower j with respect

to the π robot in front of it. Here Lπ jd is the desired separation and Ψπ jd is the desired

bearing. A network wide extended Kalman filter (EKF) [22] can be used to obtain Lπ j and

Ψπ j . In this paper, the following assumptions are made.

Assumption 4. The follower ‘ j’ can measure its separation and bearing with respect to its

assigned leader robot ‘π’ by using its onboard sensor suite.
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Assumption 5. The linear and angular velocities of the ‘πth’ robot are bounded and

vπ(t) ≥ 0 for all time ‘t’.

For the separation-bearing methodology to work for tracking some information has to be

sent from the πth robot to the jth robot. To facilitate this, the assumption is introduced.

Assumption 6. The ‘πth’ robot communicates its linear and angular velocity (vπ,wπ) as

well as its orientation ’θπ’ and linear and angular acceleration (Ûvπ, Ûωπ) to its follower ‘ j’.

The state vector of the robot will be used for computing the control velocity. To ensure the

availability of the states, the following assumption is introduced next.

Assumption 7. Each robot is equipped with sensors to measure the robot’s own linear

velocity ‘v’, angular velocity ‘ω’ and orientation ‘θ’.

Since the follower robot is not aware of its global location, it is impossible to use the regular

robot kinematics. Instead, the kinematics for the follower is developed on the basis of (3).

The follower kinematics are given by

Ûx j
p = f j

p (x
j, xπ), (4)

where

f j
p =


v j cos γ j − vπ cosΨπ j + d jw j sin γ j

1
Lπ j

(
vπ sinΨπ j − v j sin γ j + d jw j cos γ j ) − wπ

ω j


,

with the function f j
p (x j, xπ) representing the kinematics of the j th follower with respect to

the πth robot, γ j = Ψπ j + θπ j and θπ j = θπ − θ j .

The position and velocity tracking error for the leader and the follower are defined

in [14] and [9]. The tracking errors and the control laws will be covered briefly as they will

be part of the proofs. The position-tracking error for a robot tracking its assigned leader is
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given by

ek
p =


ek

1

ek
2

ek
3


=


cos θk sin θk 0

− sin θk cos θk 0

0 0 1



x k
r − x k

y k
r − y k

θk
r − θ

k


, (5)

where x k
r = x r, y k

r = yr , for the leader and x k
r = x π, y k

r = yπ, for the follower. For the

follower,


x πr − x j

yπr − y j

 is transformed to the separation-bearing coordinates [9]. θk
r is the

dynamic reference orientation for the robot. The dynamics of θk
r are given by

Ûθi
r =

1
di

(
vr sin(θr − θi

r) − ki
3ei

3

)
, (6)

for the leader and

Ûθ
j
r =

1
d j

(
ωπLπ jd cos(Ψπ jd + θπ j) + vπ sin(θπ − θ j

r ) + k j
2e j

2

)
, (7)

for the follower. Here dk is the diameter of the robots wheels. The velocity tracking error

is given by

ek
c =


ek

4

ek
5

 = V
k
c − V

k
=


vk

c

ωk
c

 −

vk

ωk

 , (8)

with V
k
c being the control velocity that achieves the tracking objectives of the robot. The

leader control velocity is given by

V
i
c =


vi

c

ωi
c

 =


vr cos(θr − θi) + ki
1ei

1

1
di

(
vr sin(θr − θi

r) + ki
2ei

2
) , (9)
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while the follower control velocity is given by

V
j
c =


v

j
c

ω
j
c

 =


vπ cos θπ j + k j
1e j

1 − ω
πLπ jd sin(Ψπ jd + θπ j)

1
d j

(
ωπLπ jd cos(Ψπ jd + θπ j) + vπ sin(θπ − θ j

r ) + k j
2e j

2 + k j
3e j

3

) . (10)

In this work,V i
c and θi

r help with the stability analysis. The position-tracking error dynamics

are obtained by differentiating (5) and substituting equations (1), (2), and (6) to get

Ûei
p =


−ki

1ei
1 + ω

iei
2 + ei

4

−ki
2ei

2 − ω
iei

1 + diei
5

− 1
di (ki

2ei
2 + ki

3ei
3) + ei

5


+


0

2vr sin
(

ei3
2

)
cos

(
θr −

θir+θ
i

2

)
0


, (11)

Ûe j
p =


−k j

1e j
1 + ω

je j
2 + e j

4

−k j
2e j

2 − k j
3e j

3 − ω
je j

1 + d je j
5

−
k j

3
d j e

j
3 + e j

5


+


0

2vπ sin
(

e j3
2

)
cos

(
θπ − θ

j
r+θ

j

2

)
0


, (12)

Ûek
c = −K k

4 ek
c , (13)

with K k = [k k
1 , k

k
2 , k

k
3 , k

k
4 ] being a vector of positive gains, and K k

4 = k k
4 I2×2.

The feedback linearizing control torque τk that cancels the robot nonlinearities and

introduces the auxiliary control uk has the structure given by

τk =M
k
uk + F

k
(V

k
), (14)

uk =
ÛV

k

c + k k
4 (V

k
c − V

k
). (15)

Next the following lemmas are stated.
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Lemma 1 (Leader Backstepping Control). Given the nonholonomic robot system with

dynamics (1) tracking the reference cart (2), let a smooth velocity controlV
i
c, torque control

τi, and control input ui for the leader i be given by (9), (14), and (15), respectively. Then,

there exists a vector of positive constants K i = [ki
1, k

i
2, k

i
3, k

i
4]

T such that the leader position

and velocity tracking errors, (5) and (8) respectively, go to zero asymptotically.

Proof. See Appendix. �

Lemma 2 (Follower Backstepping Control). [10] Given the nonholonomic robot system

with dynamics (4) adhering to the leader-follower criterion of (3), let a smooth velocity

control V
j
c, torque control τ

j , and control input u j for the follower j be given by (10), (14),

and (15), respectively. Then, there exists a vector of positive constants K j = [k j
1, k

j
2, k

j
3, k

j
4]

T

such that the follower position and velocity tracking errors, (5) and (8) respectively, go to

zero asymptotically.

Proof. See the Appendix. �

2.2. FORMATION STABILITY

Now that the stability with respect to tracking of the individual robots have been

shown, the desired formation stability is discussed next.

Theorem 1 (Formation Stability). Consider a formation of N + 1 robots with a leader i

and N followers with each follower receiving information from its assigned leader. If the

hypotheses of Lemma 1 and Lemma 2 hold then the formation error (ei j = [eiT e1T
... eNT

]T )

where ei j ∈ R(p+c)(1+N)×1 the augmented position, and velocity tracking error systems for

the leader i and N followers, respectively goes to zero asymptotically.

Proof. See Appendix. �
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3. OBSERVER DESIGN FOR ATTACK DETECTION

Before proceeding, the following assumptions are stated.

Assumption 8. Sensors and the communication links of the robots do not experience

attacks. Attacks only take place on the robot actuators or on the control signals received

by the actuator.

Since the goal of present attack detection andmitigation scheme is distributed, the following

assumption is made.

Assumption 9. The adversary can attack multiple robots at a time.

The next assumption is made keeping in mind that the attacker is not interested in putting

the robots out of commission.

Assumption 10. The robots in the formation do not collide with other robots in the presence

of attacks. Conversely, the formation is input-to-state stable during the onset of actuator

attack input.

In this section, an observer is designed to estimate the robot state vector. The

estimated state vector will then be used to compute the backstepping control estimate ûk .

A residual is generated by comparing the estimated robot states with the actual robot states.

This residual can be used to design a threshold for the attack-free case. Lemmas 3 and

4 show that in the attack-free condition, the observer-based control law asymptotically

stabilizes the tracking and estimation error in the leader and follower, respectively, relaxing

the separation principle. Theorem 2 shows the asymptotic stability (AS) of the formation if

Lemmas 3 and 4 hold. In the latter part of this section, it will be seen how the residual can

be monitored for actuator attack detection.
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Before designing the observer, with some abuse of notation and using (1) and (4),

the robot dynamics for the leader and follower can be rewritten in a compact form as

Ûxi = f i(xi) + Bi τ̂i,

Ûx j = f j(x j, xπ) + B j τ̂ j . (16)

Here, Bk =


0

M
k−1

 , τ̂
k is the torque designed by using the observer state information, and

f i(xi) and f j(x j, xπ j) capture the kinematics and dynamics of the leader and follower robot,

respectively. In the presence of an attack, the robot dynamics change to

Ûxi = f i(xi) + Bi τ̂i + Biwi,

Ûx j = f j(x j, xπ) + B j τ̂ j + B jw j, (17)

where wk is assumed to be a smooth and bounded attack signal (i.e., ‖wk ‖ ≤ wk
b). The

observer dynamics takes the form

Û̂xi = f i(x̂i) + Bi τ̂i − Li x̃i,

Û̂x j = f j(x̂ j, xπ) + B j τ̂ j − L j x̃ j, (18)

where x̂k , is the estimated state, Lk = diag{lk
1 , l

k
2 , l

k
3 , l

k
4 , l

k
5 } > 0, is a user defined gain

matrix, and

x̃k = x̂k − xk, (19)

is the residual. From (18), it is clear that the observer has the same form as the robot. It will

be seen that the trajectory-tracking objectives of the follower are the same as the robot with

the additional objective of estimating the robot state vector. The position-tracking error for
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Figure 3. Attack detection and mitigation scheme.

the observer is similar to (5) and is given by


êk

1

êk
2

êk
3


=


cos θ̂k sin θ̂k 0

− sin θ̂k cos θ̂k 0

0 0 1



x k
r − x̂ k

y k
r − ŷ k

θ̂k
r − θ̂

k


, (20)

with x k
r and y k

r having the same definitions as before. θ̂k
r is the dynamic reference orientation

of the observer. The dynamics of θ̂k
r are

Û̂θi
r =

1
di

(
vr sin(θr − θ̂i

r) − ki
3êi

3

)
, (21)

for the leader robot’s observer and

Û̂θ
j
r =

1
d j

(
ωπLπ jd cos(Ψπ jd + θ̂π j) + vπ sin(θπ − θ̂ j

r ) + k j
2 ê j

2

)
, (22)
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for the follower robot’s observer. The velocity-tracking error êk
c is


êk

4

êk
5

 = V̂
k

c − V̂
k
=


v̂k

c

ω̂k
c

 −

v̂k

ω̂k

 , (23)

with V̂
k

c being the desired control velocity. The augmented observer position and velocity

tracking error dynamics are given by

Û̂ei =



−ki
1êi

1 + ω̂
i êi

2 + êi
4

−ki
2êi

2 − ω̂
i êi

1 + di êi
5

− 1
di (ki

2êi
2 + ki

3êi
3) + êi

5

−ki
4êi

4

−ki
4êi

5


+


0

2vr sin
(

êi3
2

)
cos

(
θr −

θ̂ir+θ̂
i

2

)
03×1



+




cos θ̂i sin θ̂i 0

− sin θ̂i cos θ̂i 0

0 0 1


03×2

02×3 I2×2


Li x̃i, (24)

Û̂e j =



−k j
1 ê j

1 + ω̂
j ê j

2 + ê j
4

−k j
2 ê j

2 − k j
3 ê j

3 − ω̂
j ê j

1 + d j ê j
5

−
k j

3
dj

ê j
3 + ê j

5 − k j
4 ê j

4

−k j
4 ê j

5


+


0

2vπ sin
(

ê j3
2

)
cos

(
θπ − θ̂

j
r+θ̂

j

2

)
03×1


+




cos γ̂ j −L̂π j sin γ̂ j −ê j

2

sin γ̂ j L̂π j cos γ̂ j ê j
1

0 0 1


03×2

02×3 I2×2


L j x̃ j, (25)
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where êk =


êk

p

êk
c

 . The estimate of the desired control velocity for the leader is given by

V̂
i

c =


vr cos(θr − θ̂i) + ki

1êi
1

1
di

(
vr sin(θr − θ̂i

r) + ki
2êi

2

) , (26)

and the estimate of the desired control velocity for the follower is given by

V̂
j

c =


vπ cos θ̂π j + k j

1 ê j
1 − ω

πLπ jd sin(Ψπ jd + θ̂π j)

1
dj

(
ωπLπ jd cos(Ψπ jd + θ̂π j) + vπ sin(θ̂π jr) + k j

2 ê j
2 + k j

3 ê j
3

) . (27)

Since the estimated desired control velocity V̂
k

c is being used to stabilize the tracking error

dynamics instead of the desired control velocity V
k
c , the velocity tracking error throughout

the rest of this work is defined to be

ek
c = V̂

k

c − V
k
. (28)

Taking equation (28) into consideration, the position tracking error dynamics of the robot

become


Ûei
1

Ûei
2

Ûei
3


=


−ki

1ei
1 + ω

iei
2 + ei

4

−ki
2ei

2 − ω
iei

1 + diei
5

− 1
di (ki

2ei
2 + ki

3ei
3) + ei

5


+


−ṽi

c

2vr sin
(

ei3
2

)
cos

(
θr −

θir+θ
i

2

)
− diω̃i

c

−ω̃i
c


, (29)
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for the leader and


Ûe j
1

Ûe j
2

Ûe j
3


=


−k j

1e j
1 + ω

je j
2 + e j

4

−k j
2e j

2 − k j
3e j

3 − ω
je j

1 + d je j
5

−
k j

3
d j e

j
3 + e j

5


+



−ṽ
j
c

2vπ sin
(

e j3
2

)
cos

(
θπ −

θ
j
r+θ

j

2

)
−d jω̃

j
c

−ω̃
j
c


, (30)

for the follower robot with Ṽ
k
c = V̂

k

c − V
k
c . The estimated control torque is given by

τ̂
k
= M

k
ûk + F

k
(V̂

k
), (31)

with ûk being the estimated auxiliary control input defined as

ûk =
Û̂
V

k
c + k k

4 (V̂
k

c − V̂
k
), (32)

Due to the change of the control torque of (1) to τ̂i, the robot velocity dynamics ÛV
i
is given

by

ÛV
k
=M

k−1

(−F
k
(V

k
) + M

k
ûk + F

k
(V̂

k
))

=ûk + M
k−1

(F
k
(V̂

k
) − F

k
(V

k
) + wk).

The substitution M
k−1

(F
k
(V̂

k
) − F

k
(V

k
)) = Ñ k(Ṽ

k
) =


ñk
v

ñk
ω

 simplifies equation () to

ÛV
k
=
Û̂
V

k
c + K k

4 (V̂
k

c − V k) − K k
4 Ṽ

k
+ Ñ k(Ṽ

k
) + M

k−1
wk, (33)
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and the velocity tracking error dynamics of the robot become

Ûek
c = −K k

4 ek
c + K k

4 Ṽ
k
− Ñ k(Ṽ

k
) − M

k−1
wk . (34)

The estimation error dynamics is given by

Û̃xk = Û̂xk − Ûxk, (35)

which can be further simplified for the leader and follower robot as

Û̃xi = f̃ i(x̃i) − Li x̃i − Biwi,

Û̃x j = f̃ j(x̃ j, xπ) − L j x̃ j − B jw j, (36)

by substituting equations (17) and (18). Here f̃ i(x̃i) = f i(x̂i) − f i(xi), and f̃ j(x̃ j, xπ) =

f i(x̂ j, xπ) − f i(x j, xπ). The velocity estimation error dynamics are given by

Û̃
V

k
= −Ñ k(Ṽ

k
) − Lk

c Ṽ
k
− M

−1k
wk (37)

with Lk
c = diag{lk

4 , l
k
5 }

3.1. ATTACK-FREE SCENARIO

In the absence of attack, the following two Lemmas and Theorem are defined.

Lemma 3. Given the nonholonomic robot system with dynamics (1) tracking the reference

cart (2), let a smooth velocity control estimate V̂
i

c, control input estimate ûi, and torque

control estimate τ̂
i
for the leader i be given by (26),(32) and (31) respectively. Then there

exists vector of positive constants K i = [ki
1, k

i
2, k

i
3, k

i
4]

T and Li = [li
1, l

i
2, l

i
3, l

i
4, l

i
5]

T such that

the leader position and redefined velocity tracking errors, and the leader state estimation

error given by (5), (28) and (19) respectively go to zero asymptotically.
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Proof. See the Appendix. �

Lemma 4. Given the nonholonomic robot system with dynamics (4) adhering to the leader

follower criterion of (3), let a smooth velocity control estimate V̂
j

c, control input estimate û j ,

and torque control estimate τ̂
j
for the follower j be given by (27),(32) and (31) respectively.

Then there exists vector of positive constants K j = [k j
1, k

j
2, k

j
3, k

j
4]

T and L j = [l j
1, l

j
2, l

j
3, l

j
4, l

j
5]

T

such that the follower tracking errors, and the follower state estimation error given by (5),

(8) and (19) respectively go to zero asymptotically.

Proof. See the Appendix. �

For calculating the attack detection threshold, the stability of the leader-follower formation

in Theorem 2 is considered.

Theorem 2. Consider a formation of N + 1 robots with a leader i and N followers with

each follower receiving information from its assigned leader. If the hypotheses of Lemma

3 and Lemma 4 hold then the formation error ei j and the formation estimation error

x̃i j = [x̃iT x̃1T ... x̃NT
]T where x̃i j ∈ R(p+c)×(1+N) which is the augmented position and

orientation, and velocity estimation error for the leader i and N followers, respectively goes

to zero asymptotically.

Proof. See the Appendix. �

3.2. ACTUATOR ATTACK SCENARIO

In the case of an attack the following Lemmas and Theorem hold.

Lemma 5. Given the nonholonomic robot system with dynamics (1) tracking the reference

cart (2), let a smooth velocity control estimate V̂
i

c, control input estimate ûi, and torque

control estimate τ̂
i
for the leader i be given by (26),(32) and (31) respectively. Then there

exists vector of positive constants K i = [ki
1, k

i
2, k

i
3, k

i
4]

T and Li = [li
1, l

i
2, l

i
3, l

i
4, l

i
5]

T such that
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the leader’s position and orientation, redefined velocity tracking errors, and the observer

state estimation error given by (5), (28) and (19) respectively are UUB with bounds as per

(B-29).

Proof. See the Appendix. �

Lemma 6. Given the nonholonomic robot system with dynamics (4) adhering to the leader

follower criterion of (3), let a smooth velocity control estimate V̂
j

c, control input estimate û j ,

and torque control estimate τ̂
j
for the follower j be given by (27),(32) and (31) respectively.

Then there exists vector of positive constants K j = [k j
1, k

j
2, k

j
3, k

j
4]

T and L j = [l j
1, l

j
2, l

j
3, l

j
4, l

j
5]

T

such that the follower position and orientation, redefined velocity tracking errors, and the

observer state estimation error given by (5), (28) and (19) respectively are UUBwith bounds

as per (B-32).

Proof. See the Appendix. �

Theorem 3. Consider a formation of N + 1 robots with a leader i and N followers with

each follower receiving information from its assigned leader. If the hypotheses of Lemma

5 and Lemma 6 hold then the formation tracking error ei j and the formation estimation x̃i j

for the leader i and N followers, respectively is UUB with bounds (B-34)

Proof. See the Appendix. �

Based on Theorems 2 and 3 the following corollary can be stated.

Corollary 1. The estimation error bounds given in Theorem 2 can be used by the formation

robots as a threshold for attack detection.

From a practical standpoint, a small constant δ can be used for attack detection

instead of zero.
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4. ACTUATOR ATTACK MITIGATION

In this section an attack mitigating input ŵk for the robots is designed so as to learn

the attack by using a function approximator such as a neural network for the purpose of

compensation. The attack input on the actuator can be approximated by using a NN defined

by

wk = W kT
φ(xk
) + εk, (38)

where W k is the target weight matrix assumed to be bounded above such that ‖W k ‖ ≤

W k
M for a standard bounded actuator attack and φ(.) ∈ Rs×1 is a basis function, xk =

[xkT
, xT

r , x̃
kT , Û̃xkT

]T is the input to the basis function, and εk is the error in function approx-

imation s.t. ‖εk ‖ ≤ εk
b . The norm of the weights ‖W k ‖ is assumed to be bounded and φ(.)

is known to be bounded as it is a standard basis function such as the logistic sigmoid, or the

tangent sigmoid. The estimated attack signal can now be expressed by

τmit = ŵk = Ŵ kT φ(xk
) − Lk

mite
k
c . (39)

where Ŵ k , is an estimate of the target weight matrix and Lk
mit = M

k diag{lk
1mit, l

k
2mit}, is a

diagonal gain matrix. The weight estimation error is defined as W̃ k = Ŵ k −W k .

Remark 4. The tracking error ek
c in equations (39), (48) and (49) is introduced for the

purpose of analysis. In the actual implementation ek
c will be rewritten in terms of êk

c and

Ṽ
k
.

ek
c = Ṽ

k
+ êk

c . (40)
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The control torque is now appended by −τmit to compensate the attack input. The robot

velocity dynamics are now given by

ÛV
k
=
Û̂
V

k
c + K k

4 ek
c − K k

4 Ṽ
k
+ Ñ k(Ṽ

k
) + M

k−1 (
W kT φ(xk

) + εk
)
− M

k−1

Ŵ kT φ(xk
)

+ M
k−1

Lk
mite

k
c

=
Û̂
V

k
c +

(
K k

4 + M
k−1

Lk
mit

)
ek

c − K k
4 Ṽ

k
+ Ñ k(Ṽ

k
) − M

k−1

W̃ kT φ(xk
) + M

k−1

εk, (41)

and the tracking error dynamics are given by

Ûek
c = −

(
K k

4 + M
k−1

Lk
mit

)
ek

c + K k
4 Ṽ

k
− Ñ k(Ṽ

k
) + M

k−1

W̃ kT φ(xk
) − M

k−1

εk . (42)

The overall robot dynamics are now given by

Ûxi = f i(xi) + Bi τ̂i − BiW̃ iTφ(xi
) + Biεi + Bi Li

mite
i
c,

Ûx j = f j(x j, xπ) + B j τ̂ j − B jW̃ jTφ(x j
) + B jε j + B j L j

mite
j
c, (43)

The estimation error dynamics in (36) changes to

Û̃xi = f̃ i(x̃i) − Li x̃i + BiW̃ iTφ(xi
) − Bi Li

mite
i
c − Biεi,

Û̃x j = f̃ j(x̃ j, xπ) − L j x̃ j + B jW̃ jTφ(x j
) − B j L j

mite
j
c − B jε j (44)

For the stability of the estimation error dynamics, the structure of the observer is changed

from (18) to

Û̂xi = f i(x̂i) + Bi τ̂i − Li x̃i + Bi Li
mit ê

i
c,

Û̂x j = f j(x̂ j, xπ) + B j τ̂ j − L j x̃ j + B j L j
mit ê

j
c, (45)
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when the attack is detected. The equations (40) and (45) and (44) expressed as

Û̃xi = f̃ i(x̃i) − Li x̃i + BiW̃ iT φ(xi
) − Bi Li

mitṼ
i
− Biεi,

Û̃x j = f̃ j(x̃ j, xπ) − L j x̃ j + B jW̃ jT φ(x j
) − B j L j

mitṼ
j
− B jε j . (46)

The velocity estimation error dynamics during mitigation is given by

Û̃
V

k
= −Ñ k(Ṽ

k
) − Lk

c Ṽ
k
+ M

−1k
W̃ kT

φ(xk
) − M

−1k
εk . (47)

Lemma 7. Given the attacked nonholonomic robot system in (17), by modifying the control

law so that the tracking error dynamics is modified to (42), the estimation error dynamics

to (46), and the tuning law for the FLNN selected as (48), the attack affected tracking and

estimation error bound given in Lemma 5 is reduced to (B-39) and the NN weight estimation

error W̃ i is uniformly ultimately bounded (UUB).

Û̂W i = −Fiφ(xi
)

(
Ṽ

i
+ ei

c

)T
M

i−1

− κiFiŴ i . (48)

Proof. See the Appendix. �

Lemma 8. Given the attacked nonholonomic robot system in (17), by modifying the control

law so that the tracking error dynamics is modified to (42), the estimation error dynamics to

(46), and by selecting the tuning law for the FLNN as per (49), the tracking and estimation

error bound given in Lemma 6 is reduced to B-44 and the NN weight estimation error W̃ j

is UUB.

Û̂W j = −F jφ(x j
)

(
Ṽ

j
+ e j

c

)T
M

j−1
− κ j F jŴ j . (49)

Proof. See the Appendix. �

Next the formation stability is assessed in the following theorem.
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Theorem 4. Consider a formation of N + 1 robots with a leader i and N followers. Let

a spanning tree exist with the leader as the root node. If the hypotheses of Lemma 7 and

Lemma 8 hold then the formation tracking error ei j and the formation estimation error x̃i j ,

and W̃ i j = diag
(
W̃ i,W̃1, . . . ,W̃ N )

where W̃ i j ∈ Rs×c×(1+N) is the augmented NN weight

estimation error for the leader i and N followers, respectively is UUB with bounds (B-48)

and (B-49).

Proof. See the Appendix. �

5. RESULTS AND DISCUSSION

For the purpose of simulation, a right-wing formation consisting of a leader robot

i and two follower robots j = {1,2} is taken as per Figure 4. The robots parameters are

chosen as [9] mass m = 5, moment of inertia I = 3, perpendicular distance of the wheels

from the center of mass R = 0.175, wheel radius r = 0.08, distance from center of mass

to the rear axle d = 0.4, linear coefficient of static friction µ1 = 0.2, linear coefficient

of dynamic friction µ2 = 0.2, angular coefficient of static friction µ3 = 0.2, angular

coefficient of dynamic friction µ4 = 0.2, the transformed mass matrix M =


m 0

0 I

 ,
F =


µ1 sign v + µ2v

µ3 signω + µ4ω

 . The control gains are selected as k1 = 3, k2 = 2, k3 = 2 and

k4 = 2. The observer gains are selected as l1 = 1, l2 = 1, l3 = 1, l4 = 3 and l5 = 3. Note that

the subscripts have been removed wherever the values for the leader and follower robots are

identical. The reference cart linear velocity is given by vr = 0.8 and the angular velocity

is given by ωr =


0.15 10 ≤ t ≤ 25

−0.15 40 ≤ t ≤ 55

0 otherwise

. The separation between a leader and follower

is Lπ j = 2m and the bearing is Ψπ j = −120◦. The actuator attacks performed by the



30

�
�

�
�

�

1

2

( , )�
�1

Ψ
�1

( , )�
12

Ψ
12

( , , )�
�

�
�

�
�

( , , )�
1

�
1

�
1

( , )
�


�

Figure 4. Leader-follower formation under actuator attack.

attacker on the robot formation are given by wi =


2.0 + 1 sin 2t

0.5 + 2 sin 5t

 , w
1 =


4 + 0.1 sin 0.5t

1 + 0.1 sin 0.5t

 ,
and w2 =


4 + 0.1 sin 0.5t

1 + 0.1 sin 0.5t

 . The NN gain matrix F is taken as 10 × I and the scalar gain

κ = 0.1.

5.1. ATTACK-FREE SCENARIO

Figure 5 shows the formation trajectories of the formation given in Figure 4 in a

no-attack scenario. Figure 6 gives the euclidean norm of the tracking errors while Figure 7

gives the euclidean norm of the estimation errors.

5.2. ATTACK CASE 1

In the case there is an attack on the formation leader robot at t = 90s, the formation

trajectory deviates from its original trajectory which is evident in Figure 9. The tracking

and estimation errors can be seen in Figures 10 and 11. Notice that the formation estimation
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Figure 5. Attack-free formation trajectories.
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Figure 6. Attack-free tracking errors.



32

0 20 40 60 80 100 120

‖x̃
i
‖

0

0.5

1

1.5

0 20 40 60 80 100 120

‖x̃
i
‖

0

0.5

1

1.5

0 20 40 60 80 100 120

‖x̃
i
‖

0

0.5

1

1.5

Figure 7. Attack-free estimation errors.

errors are unaffected by this attack but the tracking errors are slightly affected. This could

be explained by the fact that the attack on the leader causes the leader to change its velocity

suddenly but the follower cannot change it’s course instantaneously due to physical and

actuator limitations. In addition the follower is unaware of the attack on the leader due to

minimal communication among the robots in the formation.

5.3. ATTACK CASE 2

When an attack occurs on the follower 1 at t = 80s, the tracking error of the follower

2 is temporarily affected as observed in Figure 13. If the attack had a fast time-varying

component, then the follower 2 will be effected accordingly. The tracking errors of the

leader are completely unaffected as expected. The estimation errors can be observed in

Figures 14. Just like in attack case 1, only the estimation error of the robot under attack

increases whereas the estimation errors of other robots are unaffected.
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Figure 8. Attack case 1.
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Figure 9. Formation trajectories with leader under attack.
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Figure 10. Tracking error norm with leader under attack.
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Figure 11. Estimation error norm with leader under attack.
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Figure 12. Attack case 2.

0 20 40 60 80 100 120

‖
e
i
‖

0

0.5

1

1.5

0 20 40 60 80 100 120

‖
e
1
‖

0

0.5

1

1.5

Time (s)
0 20 40 60 80 100 120

‖
e
2
‖

0

0.5

1

1.5

Figure 13. Tracking error norm with follower 1 under attack.
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Figure 14. Estimation errors with follower 1 under attack.

5.4. ATTACK CASE 3

In this case, distributed attacks occurring on different robots of the formation at

varying time instants is considered. The attack on robot i occurs at t = 90, at t = 80 on

robot 1, and at t = 100 on robot 2. The mitigation is initiated 5seconds after the attack

in order to study the effect of the attack. Figure 16 shows the effect of the attacks and

the mitigation on the formation trajectory. Figure 17 shows the effect of attack on all the

tracking errors before and post-mitigation.

The tracking error of follower 2 is effected the most due to cumulative effect of

attacks on the robots preceding it. After mitigation is initiated, the tracking error has a

much lower bound than the case when attack happens in case 1 and 2. The estimation

error for all the three robots behaves as expected as depicted in Figure 18. Finally, Figure

19 illustrates the norm of the NN weights. Each NN is initialized at zero and only begins

learning the attack 5 seconds after the attack begins. The weights of the follower NN

converge very quickly whereas the leader NN weight convergence takes time due to the

selection of gain matrices.
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Figure 15. Formation distributed actuator attack mitigation.

Figure 16. Formation trajectories after attack mitigation.
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Figure 17. Tracking error norm with entire formation under attack.
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Figure 18. Estimation errors after attack mitigation.
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6. CONCLUSION AND FUTURE WORK

In this work, an observer for the leader and the follower are designed that effectively

estimated the state vector of the robots, and computed the torque required for tracking the

assigned leader. For the given values of control gains ko
p and observer gains lo

p where

o = (i, j), and p = (1,2, . . . ,5), the residual was found to converge asymptotically inn an

attack-free scenario provided ωr = 0. In the instances when the tracking error norm of an

assigned leader was non-zero, the tracking error norm of the follower was almost twice the

tracking error of the assigned leader indicating that perturbations increase from the leader

to all the followers at different levels whereas no such trend was seen for the residual signals.

The residual stayed at zero as expected for the healthy case without attacks due to known

dynamics but in the case of an actuator attack, the residual was shown to increase indicating

the presence of an attack. Once the attack was detected, a mitigation scheme was initiated

using an FLNN to learn the attack input online in order to reduce the effect of the attack

input by modifying the controller.
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Lyapunov stability analysis was used to prove that the overall closed-loop system has

amuch lower tracking and estimation error bound after themitigation scheme is applied. It is

important to obtain this tracking error bound as small as possible because the tracking errors

after mitigation will still propagate down the hierarchy from the leaders to the followers at

all levels. Simulation results show that the formation returns to close to normal conditions

in a short duration once the attack input has been learned and mitigated.

It is important to note that there are no attacks on the sensors, communication

network or the computation unit of the robots which may not be realistic. In addition, in

this paper, the formation dynamics are considered to be known which is stringent. Future

work will include relaxing the assumption that the sensors are attack-resilient.
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Bounds frequently used in the proofs are established here. The subscripts are

intentionally ignored to avoid repetition.

‖v‖ ≤ vmax ‖ω‖ ≤ ωmax ‖τ‖ ≤ τmax

‖ Ûv‖ ≤ amax ‖ Ûω‖ ≤ αmax

θ, θr, θπ jr, θrirε (−π, π]

ñv =
µ2
m
ṽ

ñω =
µ4
I
ω̃.‖M ‖F ≤ Mb (A-1)

Bounds for j th follower robot are given by

|ṽ
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2 |Ψ̃
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j
2 + α

j
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j
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j
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j
3, with α

j and α j
p, p = {1,2,3}, being

computable constants. The following functions are assumed to have Lipschitz bounds
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5 and κ
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j
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5, with η
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s for s = {1,2,3,4,5} being computable constants.

Bounds for ith leader robot are given by
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where αi = αi
1 + α

i
2 + α

i
3 and βi = βi
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i
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3, with α

i and αi
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i, ηi
p for p = {2,3,4,5} and κi

s for
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Proof for Lemma 1. Let the Lyapunov function for the leader robot be given by
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). (B-1)

Taking the derivative of (B-1) and substituting the position and orientation (11), and the

velocity tracking error dynamics (13) gives
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The cross-terms can be simplified as
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which when back-substituted in (B-2) gives
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Bounding 2vr ei
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By selecting the appropriate gains ki
1,k

i
2,k

i
3 and ki

4, positive Γ
i
p’s (p = 1,2, ...5), are obtained.

Thus the derivative of the positive-definite Lyapunov function candidate in equation (B-1)

is negative definite. Hence the tracking errors converge to zero asymptotically. �

Proof of Lemma 2. Let the Lyapunov function for the follower robot be given by
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Taking the derivative of (B-6) and substituting the position and orientation tracking error

dynamics (12), and the velocity error dynamics (13) gives
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The cross-terms are simplified in a similarmanner asLemma1. The term2vπe j
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By selecting the appropriate gains k j
1,k

j
2,k

j
3 and k j

4, positive Γ
j
p’s (p = 1,2, ...5), are obtained.

Thus the derivative of theLyapunov in equation (B-6) is negative definite. Hence the tracking

errors converge to zero asymptotically. �

Proof for Theorem 1. The Lyapunov candidate that shows the stability of the entire forma-

tion could be given by

V i j = Vxi +

N∑
j=1

Vx j . (B-9)

Taking the derivative of equation (B-9) gives

ÛV i j = ÛVxi +

N∑
j=1

ÛVx j . (B-10)

Lemma 1 and Lemma 2 shows that by the proper selection of gains ko
p (o = i, j = (1, . . . ,N)),

(p = 1,2, . . . ,5), the position, orientation, and velocity tracking errors for the ith leader and

the j followers converge to zero asymptotically. After substituting equations (B-4) and (B-8)

in equation (B-10), and stacking all the individual robot trajectory-tracking error vectors to

get the augmented trajectory-tracking-error vector, the Lyapunov derivative can be rewritten

as

ÛV i j ≤
∑

k

ekT
Γ

k ek ≤ ei jT
Γei j − λmin(Γ)‖ei j ‖2, (B-11)
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where Γ = diag
(
Γi,Γ1, ...,ΓN )

, and Γo = diag
(
Γo

1,Γ
o
2, ...,Γ

o
5

)
. Thus it can be seen that

the Lyapunov function (B-9) has a N.D. derivative. Thus the formation is shown to be

aymptotically stable when Lemmas 1 and 2 hold. This concludes the proof. �

Proof for Lemma 3. Let the Lyapunov candidate for showing the stability of the reference

cart-leader tracking error dynamics and leader state estimation error dynamics is

V i = Vxi + Vx̃i, (B-12)

whereVxi is itself a Lyapunov-like positive-definite function given by (B-1), and A positive-

definite Lyapunov function candidate was considered to show the stability of the estimation

error dynamics for the leader robot. It is given by

Vx̃i =
1
2

(
x̃ i2 + ỹi2 + θ̃i2 + ṽi2 + ω̃i2

)
. (B-13)

From Lemma 1, (34), (29), and bounds (A-1) and (A-5), the derivative of Vxi is given by

ÛVxi = − ki
1ei

1
2
− ki

2ei
2
2
− ki

3ei
3
2
− ki

4ei
4
2
− ki

4ei
5
2
+ ei

1ei
4 − ki

2ei
2ei

3

+ diei
2ei

5 + 2vr ei
2 sin(

ei
3
2
) cos(θr −

θi
r + θ

i

2
) + diei

3ei
5 − ei

1ṽ
i
c − diei

2w̃
i
c

− diei
3w̃

i
c + (k

i
4 −

µi
2

mi )e
i
4ṽ

i + (ki
4 −

µi
4

Ii )e
i
5ω̃

i . (B-14)

Some of the cross-terms can be simplified as per (B-3). Additional cross-terms can be

simplified as

(ki
4 −

µi
2

mi )e
i
4ṽ

i = −(ki
4 −

µi
2

mi )

(
ei

4
√

2
−

ṽi
√

2

)2

+ (ki
4 −

µi
2

mi )
ei

4
2

2
+ (ki

4 −
µi

2
mi )

ṽi2

2
,

(ki
4 −

µi
4

Ii )e
i
5ω̃

i = −(ki
4 −

µi
4

Ii )

(
ei

5
√

2
−

w̃i
√

2

)2

+ (ki
4 −

µi
4

Ii )
ei

5
2

2
+ (ki

4 −
µi

4
Ii )

w̃i2

2
. (B-15)
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Substituting these cross-terms in (B-14),

ÛVxi = − ki
1ei

1
2
+

ei
1
2

2
− ki

2ei
2
2
+ di ei

2
2

2
+ ki

2
ei

2
2

2
− ki

3ei
3
2
+ ki

2
ei

3
2

2
+ di ei

3
2

2
− ki

4ei
4
2

+
ei

4
2

2
+ (ki

4 −
µi

2
mi )

ei
4
2

2
− ki

4ei
5
2
+ di ei

5
2

2
+ di ei

5
2

2
+ (ki

4 −
µi

4
Ii )

ei
5
2

2

+ 2vr ei
2 sin(

ei
3
2
) cos(θr −

θi
r + θ

i

2
) −

(
ei

1
√

2
−

ei
4
√

2

)2

− di

(
ei

2
√

2
−

ei
5
√

2

)2

− ki
2

(
ei

2
√

2
+

ei
3
√

2

)2

− di

(
ei

3
√

2
−

ei
5
√

2

)2

− (ki
4 −

µi
2

mi )

(
ei

4
√

2
−

ṽi
√

2

)2

− (ki
4 −

µi
4

Ii )

(
ei

5
√

2
−

w̃i
√

2

)2

+ (ki
4 −

µi
2

mi )
ṽi2

2
+ (ki

4 −
µi

4
Ii )

w̃i2

2

− ei
1ṽ

i
c − diei

2w̃
i
c − diei

3w̃
i
c

= −

(
ki

1 −
1
2

)
ei

1
2
−

1
2

(
ki

2 − di
)

ei
2
2
−

(
ki

3 −
ki

2 + di

2

)
ei

3
2
−

1
2

(
ki

4 +
µi

2
mi − 1

)
ei

4
2

−
1
2

(
ki

4 +
µi

4
Ii − 2di

)
ei

5
2
+ 2vr ei

2 sin(
ei

3
2
) cos(θr −

θi
r + θ

i

2
)

−

(
ei

1
√

2
−

ei
4
√

2

)2

− di

(
ei

2
√

2
−

ei
5
√

2

)2

− ki
2

(
ei

2
√

2
+

ei
3
√

2

)2

− di

(
ei

3
√

2
−

ei
5
√

2

)2

−

(
ki

4 −
µi

2
mi

) (
ei

4
√

2
−

ṽi
√

2

)2

−

(
ki

4 −
µi

4
Ii

) (
ei

5
√

2
−

w̃i
√

2

)2

+ (ki
4 −

µi
2

mi )
ṽi2

2
+ (ki

4 −
µi

4
Ii )

w̃i2

2
− ei

1ṽ
i
c − diei

2w̃
i
c − diei

3w̃
i
c. (B-16)

Substituting the estimation dynamics from (35), the derivative of Vx̃i is given by

ÛVx̃i =x̃ i
(

f̃ i
1 − li

1x̃ i
)
+ ỹi

(
f̃ i
2 − li

2ỹi
)
+ θ̃i

(
f̃ i
3 − li

3θ̃
i
)
+ ṽi

(
−li

4ṽ
i − ñi

v

)
+ ω̃i

(
−li

4ω̃
i − ñi

ω

)
ÛVx̃i = − li

1x̃ i2 − li
2ỹi2 − li

3θ̃
i2 − li

4ṽ
i2 − li

5ω̃
i2 + x̃ i f̃ i

1 + ỹi f̃ i
2 + θ̃

iω̃i −
µi

2
mi ṽ

i2 −
µi

4
Ii ω̃

i2
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ÛVx̃i = − li
1x̃ i2 − li

2ỹi2 − li
3θ̃

i2 − (li
4 +

µi
2

mi )ṽ
i2 − (li

5 +
µi

4
Ii )ω̃

i2 + x̃ i f̃1 + ỹi f̃2

+ θ̃iω̃i . (B-17)

From (B-17) and (B-16), the derivative of (B-12) is

ÛV i = −

(
ki

1 −
1
2

)
ei

1
2
−

1
2

(
ki

2 − di
)

ei
2
2
−

(
ki

3 −
ki

2 + di

2

)
ei

3
2
−

1
2

(
ki

4 +
µi

2
mi − 1

)
ei

4
2

−
1
2

(
ki

4 +
µi

4
Ii − 2di

)
ei

5
2
− li

1x̃ i2 − li
2ỹi2 − li

3θ̃
i2 − (li

4 +
µi

2
mi )ṽ

i2 + (ki
4 −

µi
2

mi )
ṽi2

2

− (li
5 +

µi
4

Ii )ω̃
i2 + (ki

4 −
µi

4
Ii )

w̃i2

2
+ 2vr ei

2 sin(
ei

3
2
) cos(θr −

θi
r + θ

i

2
)

−

(
ei

1
√

2
−

ei
4
√

2

)2

− di

(
ei

2
√

2
−

ei
5
√

2

)2

− ki
2

(
ei

2
√

2
+

ei
3
√

2

)2

− di

(
ei

3
√

2
−

ei
5
√

2

)2

− (ki
4 −

µi
2

mi )

(
ei

4
√

2
−

ṽi
√

2

)2

− (ki
4 −

µi
4

Ii )

(
ei

5
√

2
−

w̃i
√

2

)2

− ei
1ṽ

i
c − diei

2w̃
i
c − diei

3w̃
i
c + x̃ i f̃1 + ỹi f̃2 + θ̃iω̃i

= −

(
ki

1 −
1
2

)
ei

1
2
−

1
2

(
ki

2 − di
)

ei
2
2
−

(
ki

3 −
ki

2 + di

2

)
ei

3
2
−

1
2

(
ki

4 +
µi

2
mi − 1

)
ei

4
2

−
1
2

(
ki

4 +
µi

4
Ii − 2di

)
ei

5
2
− li

1x̃ i2 − li
2ỹi2 − li

3θ̃
i2 −

(
li
4 +

3µi
2

2mi −
ki

4
2

)
ṽi2

−

(
li
5 +

3µi
4

2Ii −
ki

4
2

)
ω̃i2 + 2vr ei

2 sin(
ei

3
2
) cos(θr −

θi
r + θ

i

2
)

−

(
ei

1
√

2
−

ei
4
√

2

)2

− di

(
ei

2
√

2
−

ei
5
√

2

)2

− ki
2

(
ei

2
√

2
+

ei
3
√

2

)2

− di

(
ei

3
√

2
−

ei
5
√

2

)2

− (ki
4 −

µi
2

mi )

(
ei

4
√

2
−

ṽi
√

2

)2

− (ki
4 −

µi
4

Ii )

(
ei

5
√

2
−

w̃i
√

2

)2

− ei
1ṽ

i
c − diei

2w̃
i
c − diei

3w̃
i
c + x̃ i f̃1 + ỹi f̃2 + θ̃iω̃i
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≤ −

(
ki

1 −
1
2

)
ei

1
2
−

1
2

(
ki

2 − di
)

ei
2
2
−

(
ki

3 −
ki

2 + di

2

)
ei

3
2
−

1
2

(
ki

4 +
µi

2
mi − 1

)
ei

4
2

−
1
2

(
ki

4 +
µi

4
Ii − 2di

)
ei

5
2
− li

1x̃ i2 − li
2ỹi2 − li

3θ̃
i2 −

(
li
4 +

3µi
2

2mi −
ki

4
2

)
ṽi2

−

(
li
5 +

3µi
4

2Ii −
ki

4
2

)
ω̃i2 + |2vr ei

2 sin(
ei

3
2
) cos(θr −

θi
r + θ

i

2
)|

+ |ei
1 | |ṽ

i
c | + di |ei

2 | |w̃
i
c | + di |ei

3 | |w̃
i
c | + |x̃

i | | f̃1 | + |ỹi | | f̃2 | + |θ̃i | |ω̃i |. (B-18)

Using bounds (A-4) and (A-5), and applying Young’s inequality,

|ei
1 | |ṽ

i
c | + di |ei

2 | |w̃
i
c | + di |ei

3 | |w̃
i
c | + |x̃

i | | f̃1 | + |ỹi | | f̃2 | + |θ̃i | |ω̃i |

≤ |ei
1 |

{
αi

1 |x̃
i | + αi

2 |ỹ
i | + αi

3 |θ̃
i |
}
+ di |ei

2 | ×
1
di

{
βi

1 |x̃
i | + βi

2 |ỹ
i | + βi

3 |θ̃
i |
}

+ di |ei
3 | ×

1
di

{
βi

1 |x̃
i | + βi

2 |ỹ
i | + βi

3 |θ̃
i |
}
+ |x̃ i |

{
ηi

3 |θ̃
i | + ηi

4 |ṽ
i | + ηi

5 |ω̃
i |
}

+ |ỹi |
{
κi

3 |θ̃
i | + κi

4 |ṽ
i | + κi

5 |ω̃
i |
}
+ |θ̃i | |ω̃i |

≤
αi

2
ei

1
2
+
βi

2
ei

2
2
+
βi

2
ei

3
2
+

1
2

(
ηi + αi

1 + 2βi
1

)
x̃ i2 +

1
2

(
κi + αi

2 + 2βi
2

)
ỹi2

+
1
2

(
ηi

3 + κ
i
3 + α

i
3 + 2βi

3 + 1
)
θ̃i2 +

1
2

(
ηi

4 + κ
i
4

)
ṽi2 +

1
2

(
ηi

5 + κ
i
5 + 1

)
ω̃i2. (B-19)

It was seen in Lemma 1 that |2vr ei
2 sin( e

i
3
2 ) cos(θr −

θir+θ
i

2 )| ≤ vr
max |e

i
2 | |e

i
3 |. Substituting the

results from (B-19) in (B-18) gives

ÛV i ≤ −

(
ki

1 −
1
2
−
αi

2

)
ei

1
2
−

1
2

(
ki

2 − di − vr
max − β

i
)

ei
2
2
−

(
ki

3 −
ki

2 + di + vr
max + β

i

2

)
ei

3
2

−
1
2

(
ki

4 +
µi

2
mi − 1

)
ei

4
2
−

1
2

(
ki

4 +
µi

4
Ii − 2di

)
ei

5
2
−

(
li
1 −

1
2

(
ηi + κi

1 + α
i
1 + 2βi

1

))
x̃ i2

−

(
li
2 −

1
2

(
κi + αi

2 + 2βi
2

))
ỹi2 −

(
li
3 −

1
2

(
ηi

3 + κ
i
3 + α

i
3 + 2βi

3 + 1
))
θ̃i2

−

(
li
4 +

3µi
2

2mi −
1
2

(
ηi

4 + κ
i
4 + ki

4

))
ṽi2 −

(
li
5 +

3µi
4

2Ii −
1
2

(
ηi

5 + κ
i
5 + ki

4 + 1
))
ω̃i2
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ÛV i ≤ − Λi
1ei

1
2
− Λi

2ei
2
2
− Λi

3ei
3
2
− Λi

4ei
4
2
− Λi

5ei
5
2
−Ωi

1x̃ i2 −Ωi
2ỹi2

−Ωi
3θ̃

i2 −Ωi
4ṽ

i2 −Ωi
5ω̃

i2. (B-20)

Thus, ÛVi is negative definite (N.D.). Thus by proper selection of the observer and controller

gains the control velocity estimate makes the robot tracking error and the estimation error

converge to zero asymptotically. This concludes the proof. �

Proof for Lemma 4. Let the Lyapunov candidate chosen for showing the stability of the

leader-follower tracking error dynamics and estimation error dynamics be given as

V j = Vx j + Vx̃ j . (B-21)

Consider the positive-definite Lyapunov function candidate for the follower robot state

estimation error given by

Vx̃ j =
1
2

(
L̃π j2 + Ψ̃π j2 + θ̃ j2 + ṽ j2 + ω̃ j2

)
, (B-22)

and let the Lyapunov function for the follower be chosen as in (B-6). From Lemma 2, (34)

and (30)

ÛVx j = −

(
k j

1 −
1
2

)
e j

1
2
−

(
k j

2 −
k j

3 + d j

2

)
e j

2
2
−

1
2

(
k j

3 − d j

)
e j

3
2

−
1
2

(
k j

4 +
µ

j
2

m j − 1

)
e j

4
2
−

1
2

(
k j

4 +
µ

j
4

I j − 2d j

)
e j

5
2

+ 2vπe j
2 sin(

e j
3
2
) cos(θπ −

θ jr + θ j

2
) − e j

1ṽ
j
c − d je j

2ω̃
j
c − d je j

3ω̃
j
c . (B-23)

Substituting the estimation error dynamics from equation (35),

ÛVx̃ j =L̃π j
(

f̃ j1 − l j
1 L̃π j

)
+ Ψ̃π j

(
f̃ j2 − l j

2Ψ̃
π j

)
+ θ̃ j

(
f̃ j3 − l j

3 θ̃ j

)
+ ṽ j

(
−l j

4 ṽ j − ñv
)



56

+ ω̃ j
(
−l j

4ω̃ j − ñω
)

ÛVx̃j = − l j
1 L̃π j2 − l j

2Ψ̃
π j2 − l j

3 θ̃
j2 − l j

4 ṽ
j2 − l j

5ω̃
j2 + L̃π j f̃ j1 + Ψ̃

π j f̃ j2 + θ̃ jω̃
j −

µ
j
2

m
ṽ j2

−
µ

j
4

I
ω̃ j2

ÛVx̃j = − l j
1 L̃π j2 − l j

2Ψ̃
π j2 − l j

3 θ̃
j2 − (l j

4 +
µ

j
2

m
)ṽ j2 − (l j

4 +
µ

j
4

I
)ω̃ j2 + L̃π j f̃ j1 + Ψ̃

π j f̃ j2

+ θ̃ jω̃
j . (B-24)

From (B-24) and (B-23)

ÛVj = −

(
k j

1 −
1
2

)
e j

1
2
−

(
k j

2 −
k j

3 + d j

2

)
e j

2
2
−

1
2

(
k j

3 − d j

)
e j

3
2

−
1
2

(
k j

4 +
µ

j
2

m j − 1

)
e j

4
2
−

1
2

(
k j

4 +
µ

j
4

I j − 2d j

)
e j

5
2

+ 2vπe j
2 sin(

e j
3
2
) cos(θπ −

θ jr + θ j

2
) − e j

1ṽ
j
c − d je j

2ω̃
j
c − d je j

3ω̃
j
c

− l j
1 L̃π j2 − l j

2Ψ̃
π j2 − l j

3 θ̃
j2 − (l j

4 +
µ

j
2

m
)ṽ j2 − (l j

4 +
µ

j
4

I
)ω̃ j2 + L̃π j f̃ j1

+ Ψ̃π j f̃ j2 + θ̃ jω̃
j +

1
2
(k j

4 −
µ

j
2

m j )ṽ
j2 +

1
2
(k j

4 −
µ

j
4

I j )ω̃
j2. (B-25)

Substituting bounds (A-1)-(A-3), (A-5) and applying Young’s inequality,

ÛV j ≤ −

(
k j

1 −
1
2
−
α j

2

)
e j

1
2
−

(
k j

2 −
k j

3 + d j

2
−
β j

2

)
e j

2
2
−

1
2

(
k j

3 − d j −
β j

2

)
e j

3
2

−
1
2

(
k j

4 +
µ

j
2

m j − 1

)
e j

4
2
−

1
2

(
k j

4 +
µ

j
4

I j − 2d j−

)
e j

5
2

−

(
l j
1 −

1
2

(
η j + κ

j
1 + α

j
1 + 2β j

1

))
L̃π j2 −

(
l j
2 −

1
2

(
η

j
2 + κ

j
2 + κ

j + α
j
2 + 2β j

2

))
Ψ̃
π j2

−

(
l j
3 −

1
2

(
η

j
3 + κ

j
3 + α

j
3 + 2β j

3 + 1
))
θ̃ j2 −

(
l j
4 +

3µ j
2

2m j −
1
2

(
η

j
4 + κ

j
4 + k j

4

))
ṽ j2

−

(
l j
5 +

3µ j
4

2I j −
1
2

(
η

j
5 + κ

j
5 + k j

4 + 1
))
ω̃ j2
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ÛV j ≤ − Λ
j
1e j

1
2
− Λ

j
2e j

2
2
− Λ

j
3e j

3
2
− Λ

j
4e j

4
2
− Λ

j
5e j

5
2

−Ω
j
1 L̃π j2 −Ω

j
2Ψ̃

π j2 −Ω
j
3θ̃

j2 −Ω
j
4ṽ

j2 −Ω
j
5ω̃

j2. (B-26)

Thus, by proper selection of observer and controller gains the control velocity estimate

makes the robot tracking error and the estimation error go to zero asymptotically. This

concludes the proof. �

Proof for Theorem 2. The Lyapunov candidate that shows the stability of the entire forma-

tion could be taken as (B-9), The derivative is, ÛV i j = ÛV i +
∑N

j=1
ÛV j . Therefore,

ÛV i j ≤ − λmin(Λ
i)‖ei‖2 − λmin(Ω

i)‖ x̃i‖2 +

N∑
j=1

(
−λmin(Λ

j)‖e j ‖2 − λmin(Ω
j)‖ x̃ j ‖2

)
Let Λ = diag

(
Λi,Λ1, ...,ΛN )

, and Ω = diag(Ωi,Ω1, ...,ΩN ).

∴ ÛV i j ≤ − λmin(Λ)‖ei j ‖2 − λmin(Ω)‖ x̃i j ‖2

∴ ÛV i j ≤0

It has been shown that the healthy residual threshold for each robot in the formation is

zero. This is logical since the dynamics are known. Therefore, by the proper selection

of control gains kop, and observer gains lop, where (o = (i, j), j = (1, ...,N)), and (p =

1,2, ...,5), the augmented tracking errors and estimation errors for the formation goes to

zero asymptotically. Alternatively, the robot tracking and estimation errors can be said to

be bounded by ρi
b1 = 0. This concludes the proof. �



58

Proof for Lemma 5. In the presence of actuator attack on the leader, the derivative of the

Lyapunov candidate used to prove stability in Lemma 3 is modified as

ÛV i ≤ − Λi
1ei

1
2
− Λi

2ei
2
2
− Λi

3ei
3
2
− Λi

4ei
4
2
− Λi

5ei
5
2
−Ωi

1x̃ i2 −Ωi
2ỹi2 −Ωi

3θ̃
i2

−Ωi
4ṽ
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Using Young’s inequality on the cross-terms,

ÛV i ≤ − Λi
1ei

1
2
− Λi

2ei
2
2
− Λi

3ei
3
2
− Λi

4ei
4
2
− Λi

5ei
5
2
−Ωi

1x̃ i2 −Ωi
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Taking ρi
b2 =
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2

I i , ÛVi ≤ 0 if the following error bounds with an OR condition are

satisfied,
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where p = (1,2,3). Comparing these bounds with the bounds obtained previously (ρi
b1 = 0),

it can be shown that the bounded actuator attack signal wi increases the error bound but, the

system stays UUB. Alternately,

| |ei | | ≥

√√
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i
)
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√√
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i
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, (B-30)

where Λ
k
= diag

{
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1,Λ
k
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k
3,

(
Λk

4 −
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)
,
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, and

Ω
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)
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)}
. This concludes the proof. �

Proof for Lemma 6. In the presence of actuator attack on the follower, the derivative of the

Lyapunov candidate used to prove stability in Lemma 4 is modified as
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j2 − (Ω
j
5 −

1
2I j )ω̃

j2 +
w

j
vb

2

2m j +
w

j
ωb

2

2I j . (B-31)

Taking ρ j
b2 =

w
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|Ψ̃π j | ≥

√√√
ρ

j
b2

Ω
j
2

|θ̃ j | ≥

√√√
ρ

j
b2

Ω
j
3
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where p = (1,2,3)

Comparing these bounds with the bounds obtained previously (ρ j
b2) it can be shown that

the bounded actuator attack signal w j increases the error bound but, the system stays UUB.

Alternately,

| |e j | | ≥

√√√
ρ

j
b2

λmin(Λ
j
)

OR | | x̃ j | | ≥

√√√
ρ

j
b2

λmin(Ω
j
)

. (B-33)

This concludes the proof. �

Proof for Theorem 3. The Lyapunov candidate that shows the stability of the entire forma-

tion could be taken as (B-9), The derivative is, ÛV i j = ÛV i +
∑N

j=1
ÛV j . From Lemma 5 and

Lemma 6,

ÛV i j ≤ − λmin(Λ
i
)‖ei‖2 − λmin(Ω

i
)‖ x̃i‖2 + ρi

b2

+

N∑
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(
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)
.

Let ρb2 = ρi
b2 +

∑N
j=1 ρ

j
b2, Λ = diag

(
Λ

i
,Λ

1
, ...,Λ

N )
, and Ω = diag(Ω

i
,Ω

1
, ...,Ω

N
). The

derivative ÛV i j is given by

ÛV i j ≤ − λmin(Λ)‖ei j ‖2 − λmin(Ω)‖ x̃i j ‖2 + ρb2

ÛV i j ≤0,
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if and only if the following error bounds are met for the formation tracking error and

formation estimation error.

‖ei j ‖ ≥

√
ρb2

λmin(Λ)
OR ‖ x̃i j ‖ ≥

√
ρb2

λmin(Ω)
= γ1. (B-34)

Alternately, the residual threshold under attack for each robot in the formation with an OR

condition now becomes,

‖ x̃o‖ ≥

√
ρb2

λmin(Ω
o
)
. (B-35)

Therefore, comparing the estimation error bounds in Theorem 2 with the ones just obtained,

it is clearly evident that the error bound has increased (i.e. γ2 > γ1 = 0). This concludes

the proof. �

Proof for Lemma 7. The Lyapunov function is taken as in (B-1) with an additional term for

the stability of the NN. Another difference to be noted is that the terms in the Lyapunov are

redistributed to help with the proof:
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NN, (B-36)
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5ñi
ω − ṽ
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Selecting the tuning law in (49),
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(B-37)

The time derivative of the overall Lyapunov can now be written as,
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Taking ρi
b3 =
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where p = (1,2,3). It is apparent that if the gain κi is small, and if Li
mit is large enough

(ρi
b1 = 0) < ρi
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b2. Thus the error bounds obtained here are smaller compared to the
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Therefore it can be said that the actuator attack in the leader has been mitigated. This

concludes the proof. �

Proof for Lemma 8. The Lyapunov function is taken as in (B-6) with an additional term for

the stability of the NN. Another difference to be noted is that the terms in the Lyapunov are

redistributed to help with the proof:
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Selecting the tuning law in (49),
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The time derivative of the overall Lyapunov can now be written as
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where p = (1,2,3) are satisfied. It is apparent that if the gain κ j is not very large, and if the

NN reconstruction errors are negligible, (ρ jb1 = 0) < ρ
j
b3 < ρ

j
b2. Thus the error bounds

obtained here are smaller compared to (B-32) and the actuator attack has been mitigated.

This concludes the proof. �

Proof for Theorem 4.

Before proceeding with the proof the augmented vectors are ei j
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The augmented NN tuning law is now given by

Û̂W i j = −Fi jφi j
(
Ṽ

i j
+ ei j

c

)T

M
i j−1
− κFi jŴ i j (B-45)

The Lyapunov function candidate to prove the stability of the formation after applying the

attack mitigation scheme is given by
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V i j = Vxip + Vx̃ip +
©­«

N∑
j=1

Vx j
p
+ Vx̃ j

p

ª®¬ + V i j
NN,

V i j
NN =

1
2

tr
{
W̃ i jT Fi j−1

W̃ i j
}
, (B-46)

where the term V i j
NN is considered to show the stability of the augmented NN estimation

error W̃ i j . The derivative of the Lyapunov function can be simplified and obtained as

ÛV i j = −Ωp‖e
i j
p ‖

2 − (Ωc + Lmit −
1
2

M
i j−1
)‖ei j

c ‖
2 − Γp‖ x̃

i j
p ‖

2

− (Γc + Lmit −
1
2

M
i j−1
)‖Ṽ

i j
‖2 − κ

(
‖W̃ i j ‖ −

1
2

W i j
M

)2

+
1
2
‖εb‖

2‖M
i j−1
‖ +

1
4
κW i j

M
2
. (B-47)

Taking ρb3 =
1
2 ‖εb‖

2‖M
i j−1
‖ + 1

4 κW
i j
M

2
, the following error bounds are obtained

‖ei j ‖ ≥

√√ ρb3

λmin

(
Λ + BLmit

) OR ‖ x̃i j ‖ ≥

√√ ρb3

λmin

(
Ω + BLmit

) = γ3, (B-48)

and the NN weights are also bounded with an OR condition as

‖W̃ i j ‖ ≥
1
2

W i j
M +

1
κ

√
1
2
‖εb‖

2‖M
i j−1
‖ +

1
4
κW i j

M
2

(B-49)

The matrix Lmit can be used to decrease the error bounds. Also, the bound can be reduced

by decreasing κ. Thus by proper selection of Fi j , κ and Lmit , it can be ensured that

γ1 ≤ γ3 ≤ γ2. Thus the actuator attack on the formation has been mitigated. This

concludes the proof. �
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ABSTRACT

In this paper, the effects of smart attacks on a nonholonomic robot formation

is studied by using dynamic backstepping based tracking controllers for achieving their

formation objectives by relaxing the assumption that sensors are attack resilient. It is shown

that residual basedmethod is ineffective when a signal is injected in the sensors that modifies

the residual in the presence of an actuator attack. Next an auxiliary system consisting of an

observer for each robot, which is not known to the adversary, is introduced to detect covert

attacks. Simulation results verify theoretical results.

Keywords: Attack detection, attack estimation, Lyapunov stability, formation control,

distributed control, security, autonomous systems, nonholonomic system, nonlinear control

1. INTRODUCTION

The need for formation control arises from the necessity of controlling multiple

robots to accomplish objectives such as mining, space interferometry [29], patrolling,

search and rescue [21], mapping, environmental monitoring [24], and so on. It may be
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possible to employ a single robot to accomplish the task at hand, but a single robot will be

more bulky and expensive. Also, the single robot will have a higher mission time which will

translate to a higher mission cost [6]. Moreover, if the single robot fails the entire mission

fails. The single robot cannot make use of distributed data collection schemes to improve

system accuracy. It is hard to adapt this single robot for different applications/scenarios.

Therefore, a group of cheaper, agile robots is preferred over a single expensive and heavier

robot.

Examples of formation controllers in the literature include behavior-based methods

[1][2], virtual structure approach, consensus approach [28], neighbor and center reference,

and leader-follower strategy [31][9][4]. In behavior-based methods, each robot behaves

a certain way in response to its environment. The environment could be obstacles, goal

points, or other robots. In virtual structure approach, all robots maintain a formation by

positioning themselves at different points of a virtual structure. Consensus requires all

robots to exchange individual position information with their neighbors and come to an

agreement on the final position, which will be a weighted average of the initial position.

In the leader-follower strategy, a few of the robots take on the role of leader while the rest

take on the role of follower. The objective of the leaders is to follow a reference trajectory,

while the goal of the follower is to maintain a fixed distance from the leader while avoiding

obstacles. One of the strategies by which a follower tracks its leader is the separation-

bearing-based formation control [9]. The current work just like the previous paper will be

focusing on this formation strategy.

The literature on types of attacks on the formation and the necessity of security will

be reviewed first before introducing the literature for separation-bearing-based formation

control in which a dynamic robot model that captures the nonholonomy and nonlinear

properties of a car-like vehicle will be considered. Adversarial inputs can affect sensors,

actuators, or the communication links. The actuator/sensor attacks can be fault data injection

(FDI) [22], replay [23], and others. The attacks on the communication links include
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blackhole, packet loss, time delay, denial of service (DOS) and others. Past literature

presents designing a secure controller in the presence of the aforementioned attacks (e.g.,

[22][23][25][26][19][13]).

Next, the following threats on automated vehicles are reported. In [5], possible

attacks and attack surfaces are introduced. In [27], methods by which self-driving and

cooperative self-driving vehicles could be affected by cyberattacks is highlighted contrasting

the security and privacy measures for self-driving and cooperative self-driving vehicles. In

[16], it is shown how one attacked vehicle can effect the efficiency of the entire platoon

when employing cooperative adaptive cruise control (CACC). The paper [33] shows how

an adversary could manipulate the data being transmitted from an attacked vehicle to its

following vehicle and how this could lead to a crash. This effort also discusses possible

attack detection and attack mitigation strategies.

In [34], decision trees are used to detect attacks, and the authors in [12] use a

dynamic monitor to collect information at different time instants to detect attacks. The

effort in [3] uses trajectory planning to guarantee that the robots are resilient to attacks.

Before getting into the separation-bearing formation control literature, a brief review on the

controller development for an individual robot is presented next.

The papers [18] and [35] are concerned about trajectory-tracking controllers de-

signed for WMR considering the kinematic models and assuming perfect velocity tracking.

In [14], a dynamic backstepping-based position and velocity controller was developed by

including the robot dynamic model. Torque control was designed, removing the perfect

velocity tracking assumption. The authors of [15] took the idea further by considering

the robot dynamic model to be unknown. For the purpose of learning the robot dynam-

ics online, an artificial neural network was employed. The paper [7] came up with the

separation-bearing and separation-separation-bearing techniques considering the kinematic

WMR model.
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The separation-bearing technique is employed when every follower robot is localiz-

ing itself with respect to its leader robot while the separation-separation-bearing technique

is considered when a follower robot is localizing itself with respect to two leader robots. In

[9], the dynamic backstepping controller of [14] was extended to the leader-follower case

by employing the separation-bearing techniques developed in [7]. This framework was

extended to case when the dynamics of the leader and the follower were unknown [10] and

state vector of the leader-follower was not measurable [11].

A neural network (NN) based robust integral of the sign of the error (RISE) feedback

was developed in [10] for the purpose of learning the unmodeled dynamics while making

sure the formation errors go to zero asymptotically. In [11], two NNs are used where

one NN is used to estimate the robot’s angular and linear velocities while the other NN is

used to estimate the unknown robot dynamics online. The paper [8] discusses near-optimal

adaptive controllers for the leader-follower formation. Though dynamics of the robots are

considered in each robot, the formation is susceptible to attacks.

In paper 1, under the assumption that all the dynamics were known, communication

networks and the sensors were resilient to attacks, the attack detection andmitigation scheme

was proposed to protect the leader and follower robots from attacks on the actuator and/or

the signals sent from the CPU of the robot to the actuators. The latter could occur in the

case of a malware onboard the robot CPU [5]. This attack-resilient framework was built for

nonlinear, nonholonomic leader-follower formation on top of the system designed in [9].

In this work, the sensor resiliency assumption is relaxed and actuators and sensors

of the robot can be compromised at the same time. The special case when all the sensors

and actuators have been compromised by the attacker is considered. A smart adversary can

attack the actuators while simultaneously modifying the sensor data so as to stay undetected

[32]. In this paper, the authors are interested in designing a detection scheme if such a

covert attack were to occur. The literature provides various techniques where one could

detect a covert attack. One approach could be to add an authentication signal [23] to the
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system control torque. This authenticating signal could be a zero mean Gaussian random

signal generated using a random seed not known to the adversary. Another method is to

extend the system dynamics by a switched auxiliary system [30] and then detect the attack

using the residual generated by the switched auxiliary system. Here the switching sequence

is assumed to be unknown to the adversary. Yet another approach is moving target defense

(MTD) [17]. The MTD introduces statistical time-varying modifications to the system

dynamics, thus making it hard for the adversary to have perfect knowledge of the system

and to appropriate it. For more information refer to [17].

In Section 2, the residual-based attack detection and mitigation scheme for the

nonholonomic robot formation as discussed in paper 1 is briefly discussed. In Section 3 it

is shown that in presence of a covert attack the residual-based attack detection scheme can

no longer be used for detecting adversarial attacks. In Section 4 the robot dynamics are

extended by the use of an auxiliary system. Since the robot mechanics are affected by the

actuator attacks an auxiliary system that is similarly affected is designed. This work also

assumes that the adversary has no knowledge of the auxiliary system and so will not be

able to appropriate it. A covert attack detection scheme is designed based on the residual

generated by the auxiliary system. Section 5 provides simulation to verify the claims made

in this work and discusses the results. Section 6 gives the conclusion and a brief of the work

to be carried out in the future.

2. PROBLEM FORMULATION

The dynamics of the formation control and the assumptions made in the previous

paper hold. In addition, the following assumptions are needed in order to proceed.

Assumption 1. The communication links of the robots do not experience attacks. Attacks

only take place on the robot actuators, control signals received by the actuator, and sensors,

or on the measurement signals transmitted by the sensors.
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Assumption 2. The covert attack happens after the formation is converged.

The observer-based attack detection and mitigation scheme implemented in the

previous paper will be discussed to provide a continuity. The reader is advised to refer to

the previous paper to gain an insight into the robot dynamics and the trajectory-tracking-

based backstepping control scheme. With some abuse of notation the robot dynamics can

be written in a compact form as

Ûxi = f i(xi) + Bi τ̂i,

Ûx j = f j(y j, yπ) + B j τ̂ j,

yk =xk, (1)

where xk is the state vector of a robot, with k = i when the robot is a leader and k = j

when the robot is a follower. The vector xi =
[
x i yi θi vi ωi

]T , where x i is the position of

the leader robot in the X global coordinate, yi is the position of the leader robot in the Y

global coordinate, θi is the orientation of the leader robot with respect to the X axis, vi is

the linear velocity of the leader robot, and ωi is the angular velocity of the leader robot. The

vector x j =
[
Lπ j Ψπ j θ j v j w j

]T , where Lπ j is the separation between the jth robot and its

assigned leader π, Ψπ j is the bearing of the jth robot from its assigned leader π, and θ j , v j

and ω j are defined for the follower as θi, vi, and ωi was defined for the leader. The vector

V
k
=

[
vk ωk

]T is the robot velocity vector and V
k is the acceleration vector.

The robot output vector is given by yk , control matrix is given by Bk =


0

M
−1k

 , and
τ̂k is the torque designed by using the observer state vector and tasked with the objective

of making a robot track its assigned leader π (the virtual cart in case of the leader). The

functions f i(xi) and f j(y j, yπ) capture the kinematics and dynamics of the leader and

follower robot, respectively. Note that in the previous paper f j was a function of the robot
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state vector x j and the assigned leader state vector xπ (i.e. f j(x j, xπ)). As the separation-

bearing dynamics depends highly on the sensor information and since in this paper the

effect of attack on the sensors is investigated, function has been rewritten as f j(y j, yπ).

The observer dynamics are given by

Û̂xi = f i(x̂i) + Bi τ̂i − Li ỹi,

Û̂x j = f j(ŷ j, yπ) + B j τ̂ j − L j ỹ j,

ŷk =x̂k, (2)

where x̂k is the estimate of the state vector xk , ŷk is the estimated output vector,

Lk = diag{lk
1 , l

k
2 , l

k
3 , l

k
4 , l

k
5 } > 0, is a user defined gain matrix, and

ỹk = ŷk − yk, (3)

is the residual. In the previous paper, the residual was defined as x̃k as the state vector of

the robot was measured perfectly. Here it is assumed that the state vector measurement can

be corrupted by attacks and so for the purpose of analysis the residual is taken as ỹk . x̃ will

be referred to as the state estimation error to avoid confusion. In the presence of an actuator

attack, the robot dynamics change to

Ûxi = f i(xi) + Bi τ̂i + Biwi,

Ûx j = f j(y j, yπ) + B j τ̂ j + B jw j,

yk =xk, (4)

where wk is assumed to be a smooth and bounded attack signal (i.e., ‖wk ‖ ≤ wk
b).

The estimation error dynamics are given by

Û̃xk = Û̂xk − Ûxk, (5)
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which can be further simplified for the leader and follower robot as

Û̃xi = f̃ i(x̃i) − Li ỹi − Biwi,

Û̃x j = f̃ j(ỹ j, yπ) − L j ỹ j − B jw j . (6)

Here f̃ i(x̃i) = f i(x̂i) − f i(xi), and f̃ j(ỹ j, yπ) = f i(ŷ j, yπ) − f i(y j, yπ). Since there is no

sensor attack x̃k = ỹk . Therefore, equation (6) can also be given by

Û̃yi = f̃ i(ỹi) − Li ỹi − Biwi,

Û̃y j = f̃ j(ỹ j, yπ) − L j ỹ j − B jw j . (7)

In the previous paper it was proven that in the absence of an actuator attack the robot’s

residual and the trajectory-tracking errors converged to zero asymptotically. When there

was an attack on the actuators it was noticed that the trajectory-tracking errors and residual

though uniformly ultimately bounded (UUB) increased under the assumtion that the attack

was not intended to put the formation out of commission. This fact was used to detect an

attack by comparing the residual against a threshold. Upon detection, a mitigation scheme

was designed so as to use the residual and tracking error estimate to tune an NN. The NN

learned the actuator attack signal online and compensate it effectively. Due to the NN

reconstruction error, the residual was proven to be UUB. By selecting proper gains, the

trajectory-tracking error bounds and the residual bounds after the mitigation were proven to

be smaller than the case of an attack but higher than the healthy case.

The following section describes covert attacks and invalidates the attack detection

and mitigation scheme designed in Paper I for detecting such attacks. The robot dynamics

under the effect of a generic actuator and sensor attack are given by

Ûxi = f i(xi) + Bi τ̂i + Biwi,

Ûx j = f j(y j, yπ) + B j τ̂ j + B jw j,

yk =xk + vk
a , (8)
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where wk is assumed to be a bounded actuator attack signal. i.e.‖wk ‖ ≤ wk
b and vk is

a sensor attack signal designed by a smart attacker which is also assumed to be bounded

‖vk ‖ ≤ vk
b . The observer dynamics stay the same as it is not directly affected by the attack.

On the other hand, the residual changes as

ỹk = ŷk − yk = x̃k − vk
a , (9)

and the residual dynamics are now given as

Û̃yi = f̃ i(x̃i) − Li(ỹi) − Biwi − Ûvi
a

Û̃y j = f̃ j(ỹ j, yπ) − L j ỹ j − B jw j − Ûv
j
a. (10)

If the adversary injects attacks at random in the actuators and sensors, it can be shown

from the previous paper and by using equation (10) that the attacks can still be detected.

But since the sensor data is not reliable, the mitigation discussed in the previous paper is

not applicable. In this paper, a mitigation scheme for sensor and actuator attacks that were

injected at random on the robot formation is not discussed. Instead the focus will be towards

designing a covert attack detector.

3. COVERT ATTACK

In this section, a covert attack from the perspective of the adversary is designed.

Here the attack will be designed such that even though the robot is not following its assigned

leader, the residual will stay small thus avoiding being detected. The following assumption

is made with respect to the adversary.

Assumption 3. The adversary knows the robot system dynamics and the robot control

torque. Additionally, the adversary can modify all the sensor measurements, and inject

actuator attacks.
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Since the adversary knows the system dynamics, the adversary could construct false

data in a smart way and inject it in the sensors. One possible way is to construct a virtual

dynamical system [21] and replace the robot sensor readings with the output of this virtual

system. The virtual system could have the a model of the robot dynamics

Ûxi
virt = f i(xi

virt) + Bi τ̂i,

Ûx j
virt = f j(y

j
virt, y

π) + B j τ̂ j,

yk
virt =xk

virt, (11)

where xk
virt is the state of the virtual system and yk

virt is the output of the virtual system.

Based on (11), the sensor attack can be designed as

vk
a = xk

virt − xk . (12)

When this attack is injected at the output of the kth robot, it changes the robot output to

reflect the output of the virtual system as

yk = xk
virt . (13)

The residual of the robot is affected as well. In the presence of smart sensor attack, the

residual for the robot now becomes the residual of the virtual dynamical systemwith respect

to the observer (denoted by ỹk
virt). i.e.

ỹk = ỹk
virt . (14)

It has been shown in Paper I Theorem 2 that the residual of the robot in the attack-free

scenario approaches zero asymptotically. Since the virtual system itself doesn’t have an

attack, by Theorem 2 the residual generated by the attack appropriated observer will become
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zero and so it is not possible to detect the attack. The robot thus is unaware that it is under

any attack. As discussed in Section 1, a covert attack can be detected by adding an auxiliary

system to every robot in the formation thus extending the robot dynamics.

4. COVERT ATTACK DETECTION

Before proceeding, a couple of supporting assumptions are stated.

Assumption 4. The auxiliary system dynamics do not affect the robot dynamics.

Assumption 5. The auxiliary system dynamics and measurements are unknown to the

adversary.

4.1. AUXILIARY SYSTEM DESIGN

Since the attacks are aimed at misguiding the robot from its tracking objective, the

attack will introduce unwanted accelerations to the robot and possibly to the formation. If

the auxiliary system can capture these accelerations, it may be possible to detect an attack.

Each wheeled mobile robot (WMR) has a linear acceleration Ûv and an angular acceleration

Ûω (Note that the robot indices will not be mentioned throughout this section as the auxiliary

system design is exactly the same for the leader and the follower). A linear spring-mass-

damper (LSMD) can be placed on the robot chassis such that it oscillates in the direction of

the robots linear motion. This will ensure that whenever the robot accelerates linearly, the

LSMD’s oscillations are effected. Additionally, a torsional spring-mass-damper (TSMD)

can be placed on the robot’s axis of rotation. This TSMD’s oscillations will be affected by

the angular accelerations on the system in the same manner. Together, the LSMD and the

TSMD capture the effect of accelerations on the robot dynamics and can therefore be used

as an auxiliary system of the robot.
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The auxiliary system dynamics are now given by


MLSMD 0

0 JTSMD

 ÜzAux = −


bLSMD 0

0 bTSMD

 ÛzAux −


kLSMD 0

0 kTSMD

 zAux

+


MLSMD 0

0 JTSMD


ÛV, (15)

where MLSMD is the mass, bLSMD is the damping coefficient and kLSMD is the spring

constant of the LSMD, JTSMD is the moment of inertia about the axis of rotation, bTSMD

is the damping coefficient and kTSMD is the spring constant of the TSMD. The vector

zAux = [zLSMD zTSMD]
T , where zLSMD is the position of the LSMD with respect to a fixed

support and zTSMD is the orientation of the TSMD with respect to an initial orientation.

The robot acceleration vector ÛV was defined earlier in equation (1). Equation (15) can be

further simplified as

MAux Üz = −BAux Ûz − KAux z + MAux M
−1 (
−F(V) + τ̂ + w

)
, (16)

with MAux =


MLSMD 0

0 JTSMD

 , BAux =


bLSMD 0

0 bTSMD

 ,
KAux =


kLSMD 0

0 kTSMD

 . Taking zAux = z1Aux and ÜzAux = Ûz1Aux = z2Aux , equation (16)

gives the state-space model in the Brunovsky canonical form

Ûz1Aux =z2Aux

Ûz2Aux = − M−1
Aux BAux z2Aux − M−1

AuxKAux z1 + M
−1 (
−F(V) + τ̂ + w

)
. (17)
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Equation (17) is finally written in a compact form as

ÛZAux =HAux ZAux + GAux M
−1
(−F(V) + τ̂ + w),

YAux =ZAux, (18)

where ZAux = [z1Aux z2Aux]
T , is the state vector of the auxiliary system, YAux is the output

vector of the auxiliary system, HAux =


0 I

−M−1
AuxKAux −M−1

Aux BAux

 , is the state transition
matrix of the auxiliary system and GAux =


02×2

I2×2

 , is the input matrix of the auxiliary

system with respect to the acceleration of the robot. Equations (16)-(18) all show the effect

of the robot dynamics on the auxiliary system dynamics which also includes the affect of

the attack signal. If an observer is built for the auxiliary system then it could be possible to

detect the attack using the residual formed by comparing the output vector of the observer

and the output vector of the auxiliary system.

4.2. AUXILIARY SYSTEM TRACKING CONTROLLER DESIGN

The Auxiliary System is given a tracking objective just like the robot it is on. The

auxiliary system could also have a regulation objective but this will not be considered here.

The auxiliary systemwill be made to track an ideal oscillating spring-mass reference system

without any damping. The dynamics of the reference system are given by

ÛZr
Aux =Hr

Aux Zr
Aux,

Y r
Aux =Zr

Aux, (19)
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with Zr
Aux =

[
zr
1Aux zr

2Aux

]T being the state vector of the reference system,

Hr
Aux =


0 I

−Mr
Aux
−1Kr

Aux 0

 , is the state transition matrix with Mr
Aux and Kr

Aux defined just

like the auxiliary system. The auxiliary system with the tracking controller is given by

ÛZAux =HAux ZAux + GAux M
−1
(−F(V) + τ̂ + w) + GAuxUAux,

YAux =ZAux, (20)

where the tracking control UAux is given by

UAux = M−1
AuxKAux z1Aux + M−1

Aux BAux z2Aux + Ûzr
2Aux + ΛAux ÛeAux + KvAuxrAux . (21)

Here

eAux = zr
1Aux − z1Aux, (22)

where eAux is the position tracking error between the reference system and the auxiliary

system

ÛeAux = zr
2Aux − z2Aux, (23)

where ÛeAux is the velocity tracking error between the reference system and the auxiliary

system, and

rAux = ÛeAux + ΛAuxeAux, (24)

where rAux is the filtered tracking error [20], ΛAux and KvAux are user-defined positive-

definite gains. From equations (19)-(24), the derivative of ÛrAux can be given by

ÛrAux = −KvAuxrAux − M
−1 (
−F(V) + τ̂ + w

)
. (25)
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It can be proven that in the absence of attacks on the robot, the auxiliary system tracks its

reference robot. However, in the presence of an actuator attack on the robot, the auxiliary

system is not able to faithfully accomplish its tracking objective. The auxiliary system

tracking-control stability along with the auxiliary system estimation stability will be shown

in Theorem 1 in the next subsection.

4.3. AUXILIARY SYSTEM OBSERVER DESIGN

The observer designed for the auxiliary system estimates the state vector of the

auxiliary system in the absence of an attack on the robot i.e. the residual of the auxiliary

system will converge to zero asymptotically. But in the event of an attack on the robot, the

residual of the auxiliary system will be non-zero. Next, an observer will be designed and it

is shown that in the attack-free case the auxiliary system residual converges to zero. It will

also be shown in the coming theorem that this threshold can be used for detecting a covert

attack. The observer dynamics for the auxiliary system are given by

Û̂ZAux =HAux ẐAux + GAux M
−1
(−F(V̂) + τ̂) + GAuxUAux − LAux Z̃Aux,

ŶAux =ẐAux, (26)

where Z̃Aux = ẐAux − ZAux , LAux is the user designed positive-definite gain matrix. The

estimate of the friction vector is F(V̂) (see Paper I). The Z̃Aux dynamics are

Û̃ZAux = (HAux − LAux)Z̃Aux + GAux M
−1 (
−

(
F(V̂) − F(V)

)
− w

)
. (27)

By substituting M
−1
(F(V̂) − F(V)) = Ñ(Ṽ), (from Paper I) and HAux − LAux = HAux ,

equation (27) can be written as

Û̃ZAux = HAux Z̃Aux + GAux

(
−Ñ(Ṽ) − M

−1
w
)
. (28)
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Remark 1. The term Ñ(Ṽ) converges to zero in the attack-free scenario by Paper I Theorem

2.

By suitably choosing the gain LAux it can be shown that in the absence of any attack

the auxiliary residual converges to zero. This is not the case in the presence of an attack.

Remark 2. Since the attack takes place after the robot formation has achieved its desired

configuration (Assumption 2), when the desired formation is achieved, ÛV = −F(V)+ τ̂ = 0.

Theorem 1. The auxiliary system designed as per (20) placed onboard the nonholonomic

mobile robotwith dynamics given by (1), tracking a reference system (19) by using the control

law in (21), can be used to detect a covert attack taking place on the robot by designing

an observer for the auxiliary system and monitoring any deviations in the auxiliary system

residual.

Proof. Let the Lyapunov candidate function for finding out the detection threshold be given

by

Vaux = Z̃T
AuxPAux Z̃Aux +

1
2

rT
AuxrAux, (29)

where P is a positive definite symmetric matrix. It can be seen that this function is

monotonically increasing and is zero only at ZAux = 0 and rAux = 0. For finding the

detection threshold it can be assumed that the system is attack-free. Therefore equations

(25) and (28) simplify to obtain

ÛrAux = −KvAuxrAux, (30)

and
Û̃ZAux = HAux Z̃Aux, (31)

respectively (see Remarks 1 and 2). The derivative of equation (29) is given by

ÛVAux = Z̃T
Aux

(
HT

AuxPAux + PAuxH

)
Z̃Aux − rT

AuxKvAuxrAux . (32)
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Taking QAux > 0 such that

HT
AuxPAux + PAuxH = −QAux, (33)

the equation (32) can be simplified as

ÛVAux = −Z̃T
AuxQAux Z̃Aux − rT

AuxKvAuxrAux . (34)

From equation (34) it can be seen that the time derivative of the Lyapunov candidate in

(29) is negative definite. Therefore the auxiliary system filter tracking error converges to

zero, implying that the auxiliary system tracks the auxiliary reference system. Additionally

the auxiliary system residual converges to zero. Conversely, in the presence of attack the

derivative of the Lyapunov candidate after substituting the dynamics from equation (25),

(28) and using the result (33) is given by

ÛVAux = − Z̃T
AuxQAux Z̃Aux +

(
−Ñ(Ṽ) − M

−1
w
)T

GT
AuxPAux Z̃Aux

+ GAux

(
−Ñ(Ṽ) − M

−1
w
)
− rT

AuxKvAuxrAux − rT
Aux M

−1 (
−F(V) + τ̂ + w

)
≤ − λmin (QAux)



Z̃Aux


2
+ 2

(
µmax




Ṽ


 + 2µ3 + wb

) 


GM
−1




 λmax (PAux) ‖ZAux ‖

− KvAux ‖r ‖2 +
τb + wb

Mb
‖r ‖ . (35)

In the case of the covert attack, the Remark 2 no longer holds. Instead the robot dynamics

now have a new equilibrium given by ÛV = −F(V) + τ̂ + w = 0. Since the robot is unaware

of the attack, the torque before the attack and after the attack stays the same and is therefore

bounded. The friction term F(V) can be expected to vary slightly. But the overall term

−F(V) + τ̂ is assumed to be bounded by τb > 0. In the presence of an actuator attack the

robot estimation and tracking error are bounded (Paper I Theorem 3). The velocity tracking

error is bounded by
√

ρb2
λmin(Ω4,Ω5)−

1
Mb

= Ṽ b. After substituting the bounds (See Appendix)
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and completing the squares

ÛVAux ≤ − λmin (QAux)
©­­«


Z̃Aux



 − λmax(PAux)

(
µmaxṼ b + 2µ3 + wb

)
λmin(QAux)Mb

ª®®¬
2

− λmin (KvAux)

(
‖r ‖ −

τb + wb

2λmin (KvAux)Mb

)2

+
λ2

max(PAux)

(
µmaxṼ b + 2µ3 + wb

)2

λmin(QAux)M2
b

+
(τb + wb)

2

4λmin (KvAux)M2
b

(36)

∴ ÛVAux ≤ 0 =⇒ ‖r ‖ ≥

√√√√√
λ2

max(PAux)

(
µmaxṼ b + 2µ3 + wb

)2

λmin(QAux)λmin (KvAux)M2
b

+
(τb + wb)

2

4λ2
min (KvAux)M2

b

+
τb + wb

2λmin (KvAux)Mb

OR

‖z‖ ≥
λmax(PAux)

(
µmaxṼ b + 2µ3 + wb

)
λmin(QAux)Mb

+

√√√√√
λ2

max(PAux)

(
µmaxṼ b + 2µ3 + wb

)2

λ2
min(QAux)M2

b

+
(τb + wb)

2

4λmin (KvAux) λmin(QAux)M2
b

. (37)

Hence it can be seen that in the presence of attack the auxiliary system residual and auxiliary

system tracking error are bounded but converge to zero in the case of a covert attack. This

fact can be used to detect the covert attack. This concludes the proof. �
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5. RESULTS AND DISCUSSION

For the purpose of simulation, the right-wing formation considered in Paper I,

consisting of a leader robot i and two follower robots j = {1,2} is taken as per Figure

1. The robots parameters just like in Paper I are chosen as [9] with mass of the robot

m = 5 kg, moment of inertia of the robot I = 3 kgm2, perpendicular distance of the wheels

from the center of mass R = 0.175m, robot wheel radius r = 0.08m, distance from the

robot’s center of mass to the robot’s rear axle d = 0.4m, linear coefficient of static friction

µ1 = 0.2, linear coefficient of dynamic friction µ2 = 0.2, angular coefficient of static

friction µ3 = 0.2, angular coefficient of dynamic friction µ4 = 0.2, the transformed robot

mass matrix M =


m 0

0 I

 , the friction matrix F =


µ1 sign v + µ2v

µ3 signω + µ4ω

 . The control gains

are selected as k1 = 3, k2 = 2, k3 = 2 and k4 = 2. The observer gains are selected as l1 = 1,

l2 = 1, l3 = 1, l4 = 3 and l5 = 3. Note that the subscripts have been removed wherever the

values for the leader and follower robots are identical. The reference cart linear velocity is

given by vr = 0.8 and the angular velocity is given by ωr =


0.15 10 ≤ t ≤ 25

−0.15 40 ≤ t ≤ 55

0 otherwise

.

The mass, damping coefficient, and the spring constant of the LSMD is mLSMD =

0.2kg, bLSMD = 0.01kg, and kLSMD = 0.2, respectively. The moment of inertia, damping

coefficient, and the torsional spring constant of the TSMD is JTSMD = 0.2kgm2, bTSMD =

0.01, and kTSMD = 0.2, respectively. The reference auxiliary system has the same mass,

inertia, spring constant and torsional spring constant as the auxiliary system but it has a zero

damping coefficient. The actuator attacks performed by the attacker on the robot formation

are given by wi =


0.5

0.5

 90s ≤ t ≤ 92s, and w1 =


0.5

−0.5

 80s ≤ t ≤ 82s. The sensor

attack on the robot takes place on the leader i from t > 90s, while the sensor attack on the

follower 1 takes place from t > 80s
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Figure 1. Leader-follower formation under covert attack.

5.1. ATTACK-FREE SCENARIO

Figures 2, 3, and 4 are the figures of the same attack-free case as presented in Paper

I with Figures 5 and 6 additionally showing the auxiliary system tracking errors and the

auxiliary system residual, respectively. Figure 5 shows the response of the auxiliary system

when the robot it is on accelerates or decelerates. The spikes show how the accelerations

hinder the tracking objective of the auxiliary system. Since the auxiliary system observer

also has a similar response to accelerations, the auxiliary residual is unaffected and stays at

zero once it converges.
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Figure 2. Attack-free formation trajectories.
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Figure 3. Attack-free tracking errors.
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ỹ
i a
c
t
‖

0

0.5

1

1.5

Figure 4. Attack-free estimation errors.
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Figure 5. Attack-free auxiliary system tracking errors.
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Figure 6. Attack-free auxiliary system residual.

5.2. COVERT ATTACK CASE 1

Similar to Paper I, here at t = 90 an attack occurs on the leader robot i whereas

the attack magnitude is smaller compared to that in Paper I but the effect is significant.

In the case of an actuator attack, the robot backstepping control law keeps the robot from

deviating significantly from its trajectory. As seen in Figure 7, an actuator attack applied for

a duration of 2s can change the direction of the formation permanently. Figure 8 shows the

tracking error increasing in the leader as it no longer tracks the reference cart. The follower

1 is unaware of the attack on it’s leader so it tries to reduce the sudden increase in tracking

error. Figure 9 shows the actual robot residual keeps increasing but due to the covert attack,

the leader i only observes the attack residual shown in Figure 10. Figure 11 shows how

the auxiliary system residual can detect the covert attack while the observer-based residual

method designed in Paper I fails.
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Figure 7. Formation trajectories with leader under attack.
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Figure 8. Tracking error norm with leader under attack.
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Figure 9. Actual estimation error norm with leader under attack.
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Figure 10. Falsified estimation error norm with leader under attack.
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Figure 11. Leader attacked auxiliary system residual.

5.3. COVERT ATTACK CASE 2

An attack occurs on the Follower 1 at t = 80s. Similar to leader i, a 2s actuator

attack causes the follower robot 1 to deviate from its trajectory significantly as observed in

Figure 12. The follower 2 unaware that it’s follower 1 is changing trajectory because of an

attack follows suit. The deviation in trajectory causes the follower to be ahead of its desired

separation-bearing. This is noticeable in the follower 2 tracking error in Figure 13. Even

though the actual residual is increasing as per Figure 14, the follower 1 is only aware of

the residual in Figure 15. The auxiliary residual shows the presence of an attack as seen in

Figure 16.

6. CONCLUSION AND FUTURE WORK

In this paper, a covert attack detection scheme is presented. It was shown that when

there is no attack mitigation scheme, then a covert attack over finite time actuator attack can

change the formation trajectories permanently. Since the output residual fails to detect such
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Figure 12. Formation trajectories with follower 1 under attack.
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Figure 13. Tracking error norm with follower 1 under attack.
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Figure 14. Estimation errors with follower 1 under attack.
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Figure 15. Actual estimation error norm with follower 1 under attack.
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Figure 16. Follower 1 auxiliary system residual under attack.

attacks, an auxiliary system introduced detects the attack and its residual is modified in the

presence of the actuator attack. From Paper I Theorem 3, it is evident that in the presence

of an actuator attack the estimation and tracking errors increase. If the sensors on the robot

are reliable then the robot becomes aware of this attack and it can correct its course. Even

if there is no mitigation, the errors stay bounded because of the backstepping-based control

law. In Theorem 1, it was shown that in the case of a covert attack the robot never realises

it is under attack due to spurious sensor data and so it can not take any corrective measures.

Thus, the robot estimation error keeps increasing as the backstepping-based control

law no longer stabilizes the actual robot but the virtual robot. Future work will deal with

making the auxiliary system have statistical time varying properties so that even if the

attacker is able to gain access to the auxiliary system model, input, and measurements, they

can still be detected.
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APPENDIX

BOUNDS

To beginwith, some boundswhich are used in the proofs are established here. The subscripts

are intentionally ignored to avoid repetition.

‖v‖ ≤ vmax ‖ω‖ ≤ ωmax ‖τ‖ ≤ τmax

‖ Ûv‖ ≤ amax ‖ Ûω‖ ≤ αmax

θ, θr, θπ jr, θir
r ε (−π, π]

‖F̃(Ṽ)‖ ≤ µmax ‖Ṽ ‖ + 2µ3; µmax = λmax(µ2, µ4)

‖Ṽ ‖ ≤ Ṽ b

‖M ‖F ≤ Mb (A-1)
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SECTION

2. CONCLUSIONS AND FUTURE WORK

In this thesis, a suite of detection and mitigation schemes were developed for mobile

robot formation control in the presence of an adversary. In Paper I, an observer for the leader

and the follower robots was designed that effectively estimated the state vector of the robots,

and computed the torque required for tracking the assigned leader. By properly selecting

the control gains ko
p and observer gains lo

p where o = (i, j), and p = (1,2, . . . ,5), it was

demonstrated that in an attack-free scenario, the residual would converge asymptotically

provided the reference-cart angular velocity ωr = 0. During an actuator attack, it was

noticed that the residual was non-zero but bounded provided the attack magnitude is finite.

Boundedness of the residual in the presence of an attack is utilized for detection. Upon

detection, a mitigation scheme was initiated using an FLNN to learn the attack input online

in order to reduce its effect by modifying the controller.

On the other hand, in Paper II, a covert attack detection scheme was presented. The

goal of this scheme was to detect attack on sensors and actuators in a leader/follower robot

formation. It was shown that the residual-based attack detection-scheme designed in Paper

I was not able to detect these covert attacks. An auxiliary system unknown to the adversary

was affected by the attack on the robot. A residual-based detection scheme was then built

on this auxiliary system to successfully detect covert attacks.
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2.1. CONCLUSION

It was observed in Paper I that the tracking error norm of the follower was almost

twice the tracking error of its assigned leader indicating that a change in the leader’s

trajectory increase from the leader to its follower and to other levels. In other words,

the adversary could slightly destabilize a robot higher-up in the formation and cause high

instability to the followers at the end of the formation. The residual of a follower robot

however was unaffected by an actuator attack on its leader robot; and stayed at zero as

expected since the dynamics were known to the controller. The residual-based approach

was successfully able to detect actuator based attacks; the mitigation scheme reduced the

robot tracking error and residual to near healthy bounds on both the leader and the follower.

Simulation results demonstrated that the formation returned close to normal conditions in

a short duration once the attack input was learned and corrected for.

It was observed in Paper II that when the residual detection scheme fails, then a

covert attack consisting of a finite time actuator attack can change the formation trajectories

permanently. From Paper I Theorem 3, it is evident that in the presence of an actuator

attack, the estimation and tracking errors increase. If the sensors on the robot are reliable

then the robot can be aware of this attack and it can correct its course. Even if there is no

mitigation, the errors stay bounded because of the backstepping-based control law. In Paper

II Theorem 1, it was shown that in the case of a covert attack, the robot cannot take any

corrective measures as it is unaware of the attack. Thus, the robot estimation error keeps

increasing as the backstepping-based control law no longer stabilizes the formation. On the

other hand, defining an auxiliary system and making it sensitive can help detect the type of

attacks.
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2.2. FUTURE WORK

One aspect of future work is to design a mitigation scheme when a few of the sensors

of the formation robots are attacked by the adversary. In addition, the assumptions made that

the communication links are resilient and known dynamics can be relaxed in the presence of

adversary. Another aspect of future work can include making the auxiliary system resilient

even when the adversary gains access to it. This could be done using moving target defense

(MTD) techniques [17]. Additionally, the proposed methods have to be evaluated in an

obstacle ridden environment. Further, the follower robots of a covertly attacked robot no

longer participate in accomplishing the formation objective. Techniques would have to be

developed to make the follower realize whether it should trust its leader.
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