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ABSTRACT

This work presents two kinds of decoupled finite element methods for the steady

natural convection problem in two dimensions. Firstly, the standard Galerkin finite element

method is derived in detail stating algorithms needed for the realization in MATLAB. A

numerical example verifies the error convergence. Secondly, using iteration, the Boussinesq

equations are decoupled into the Navier-Stokes equations and a parabolic problem. The

resulting problems are solved either in parallel or sequentially. Finally, the same numerical

example as before is used to confirm the convergence and analyze the methods in terms of

iteration performance. In addition to a higher flexibility and the convenience of exploiting

existing solvers, the new decoupled finite element methods can be realizedwith less iteration

steps, and thus more efficiently, if the focus is only on some of the unknowns or more

information is provided.
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1. INTRODUCTION

A typical everyday example of convection are the mechanics of a hot air balloon.

A heater is used to heat the air inside the balloon, which causes the air to move upwards.

Since the hot air is trapped inside the envelope, the whole balloon moves upwards. Thus,

when the pilot wants to rise or descend, he heats the air more or releases some of the hot

air, respectively. In general, the movement of the fluid (the air) is caused by the temperature

difference. Since the pilot uses a heater to influence the air’s temperature, it is referred to as

forced convection. On the other hand, free or natural convection is when the fluid motion is

generated by a gravitational field (see [12], for instance). Gravitation itself is not sufficient

to set a fluid, either liquid or gas, in motion because fluid density change is required as

well. The most common cause for density variation in natural convection is a change

in temperature. As a different example, density variations occur also in the ocean when

salt and fresh water come together since salt water is heavier than fresh water. In nature,

free convection flows are observed in different situations, such as geophysics, weather, and

ocean movement. In engineering, free convection is exploited in numerous applications

including double-glazed windows, cooling in small electronic devices, building insulation

and environmental transport problems (see [6]).

Assuming the density of the fluid is constant and the gravitational force depends

on the temperature, natural convection can be modeled by the Boussinesq equations (see

Equations (2.1)). In this approximation, the fluid and temperature are coupled by two terms.

First, the buoyancy term is a source term that depends linearly on temperature and acts in the

direction opposite to gravity. This is added to the stationary incompressible Navier–Stokes

equations for the fluid variables. The second term is the convective term, which is based on

the velocity of the fluid in the convection-diffusion equation for the temperature variable.
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The modelling of natural convection is not the only purpose of solving the Boussi-

nesq equations. In applied analysis, the three-dimensional Navier-Stokes equations are

still not entirely explored as understanding the vortex stretching effect in three-dimensional

flows remains a difficulty. Since the two-dimensional Boussinesq equations are analogous

to the three-dimensional Navier–Stokes equations for axisymmetric swirling flow, their un-

derstanding contributes towards the extensive understanding of the vortex stretching effect

in three-dimensional flows (see [21]).

This work focuses on solving the two-dimensional stationary Boussinesq equations

using finite element methods. In Section 2, a literature review is performed to get the

introduced methods in line with already conducted research. In Section 3, the standard

Galerkin finite element method is recalled and derived at length. Then, algorithms for the

implementation of the method in MATLAB are introduced, and the method is verified by

a numerical example. In Section 4, the idea of decoupling the standard Galerkin finite

element method is realized in two different ways. Keeping the same structure as before, the

derivation is discussed first, followed by used algorithms, and the solution of a numerical

example. Finally, the derived finite element methods are evaluated in terms of number of

iterations.
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2. LITERATURE REVIEW

The Navier-Stokes equations form a well-known equation system, whose finite

element solution was already studied in the early 1970’s (see [17] and the references

therein). To the author’s knowledge, the study of numerical methods for approximating the

solution of Boussinesq approximations of the Navier-Stokes system began in 1980 [10] and

significantly increased in recent years [1, 4, 5, 6, 22]. The interested reader may find the

derivation of the Boussinesq equations in [7]. Recall the steady two dimensional natural

convection equations in their typical form



−%AΔu + (u · ∇)u + ∇? = %A'0\e2 + fu, in Ω,

∇ · u = 0, in Ω,

−:Δ\ + u · ∇\ = 5\ , in Ω,

(2.1)

from [20], Ω ⊂ R2 is a bounded domain with given Dirichlet boundary conditions on its

Lipschitz continuous boundary mΩ, u = (D1, D2)) is the fluid velocity, ? the pressure and

\ the temperature. Furthermore, fu and 5\ are given forcing functions, %A and '0 refer

to the Prandtl and Rayleigh numbers, respectively, and : > 0 is the thermal conductivity

parameter. The term \e2 represents the buoyancy force. Throughout this work, vector

valued functions are denoted by boldface. The symbols Δ , ∇ and ∇· stand for the Laplacian,

gradient and divergence operators, respectively.

In addition to the velocity and the pressure, the steady Boussinesq Equations (2.1)

include the temperature field, making it even harder to find the numerical solution. First

attempts to find efficient numerical schemes to solve (2.1) were coupled finite element

methods like the standard Galerkin finite element method [5], the least squared finite

element method [14], and the projection-based stabilized mixed finite element method [22].



4

That means, those methods generated large systems to solve for the velocity u, the pressure

? and the temperature \ simultaneously. Furthermore, the systems were not only large

but also nonlinear, thus additional iterations were needed, making it expensive to find the

numerical solution, in general.

Even though there were techniques to treat the nonlinear problem more efficiently

[8], the idea of the decoupled technique arose [16]. By decoupling, the considered problem

can be separated into a series of sub-problems, where each sub-problem includes less

numerical components. The decoupled algorithm exploits existing computing resources,

can be used in parallelism and is more flexible in terms of each variable. In general, there

are two types of the decoupled method. The first one is based on the multigrid method

[11, 20] and the second one on the numerical approximations of the previous time level

[19]. Multigrid methods use several different mesh sizes. To give an example, one small

nonlinear system on a coarse mesh and a few large linearized systems on a fine mesh are

solved in [11]. The second type is used for time-dependent natural convection equations.

As in [19], the decoupling can be based on the backward Euler scheme. The solutions of

the previous time step are used to solve a linear parabolic equation for the temperature and

linear Navier-Stokes equations for the velocity and the pressure in parallel.

While the progress in multigrid methods continues focussing on the time-dependent

problem [18] and new approaches especially for temperature-dependent parameters are

introduced [2, 3, 15], the purpose of this work is to diminish the gap between the two

general types of the decoupled method. We start by solving the coupled stationary natural

convection problem using the standard Galerkin finite element method with Taylor-Hood

finite elements for velocity u and pressure ? and quadratic finite elements for temperature

\. A study of the existence and uniqueness of a solution can be found in [5]. To linearize

the nonlinear terms of the Galerkin formulation, a Newton iteration is used. Based on the

first method, we derive a new numerical scheme, where the original problem is decoupled
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into the Navier-Stokes equations and a parabolic problem. We iterate over the two problems

and solve them either in parallel or sequentially using the numerical approximation of the

previous iteration step.



6

3. COUPLED FINITE ELEMENT METHOD

The goal of this section is to derive the formulations necessary for the coupled

Galerkin finite element method to approximate the solution of the Boussinesq equations as

a foundation for the decoupled method for the same equations. To realize this goal in a

comprehensible and straight forward way, we do not work with Equations (2.1) directly, but

consider the more general and non-dimensional equations

u · ∇u − ∇ · T(u, ?) − e221\ = fu, in Ω, (3.1)

∇ · u = 0, in Ω, (3.2)

u · ∇\ − ∇ · (22∇\) = 5\ , in Ω, (3.3)

with vector functions u(G, H) = (D1(G, H), D2(G, H))) and fu (G, H) = ( 51(G, H), 52(G, H)))

and vector e2 = (0, 1)) . Furthermore, the stress tensor T(u, ?) is defined as

T(u, ?) = 2aD(u) − ?I,

where a is the viscosity andD(u) = 1
2
(
∇u + (∇u))

)
the deformation tensor. The derivation

may be found in [13]. We consider the boundary condition

u = gu, on mΩ and

\ = 6\ , on mΩ

for given functions gu = (61, 62) : R2 → R2 and 6\ : R2 → R. As stated in [10], an

application of boundary conditions for the pressure ? is in general not consistent with

Equation (3.1). In this case, ? is defined up to an arbitrary additive constant. Thus, we will

fix ? at one point in the domain Ω.
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3.1. DERIVATION OF THE METHOD

This section consists of four parts that build on one another and eventually state the

desired linear algebraic system we aim to solve. The fifth part then presents algorithms

used for the realization in MATLAB.

3.1.1. Weak Formulation. To derive the weak formulation, we will deal with

Equations (3.1) to (3.3) separately and sequentially. As the first step, we take the inner

product with a vector function v(G, H) = (E1, E2)) on both sides of the Navier-Stokes

Equation (3.1):

(u · ∇)u − ∇ · T(u, ?) − e221\ = fu

⇒ (u · ∇)u · v − (∇ · T(u, ?)) · v − e221\ · v = fu · v

⇒
∫
Ω

(u · ∇)u · v3G3H −
∫
Ω

(∇ · T(u, ?)) · v3G3H −
∫
Ω

e221\ · v3G3H =
∫
Ω

fu · v3G3H.

Second, the divergence free Equation (3.2) is multiplied by a function @(G, H):

∇ · u = 0

⇒ (∇ · u)@ = 0

⇒
∫
Ω

(∇ · u)@3G3H = 0.

Third, we multiply the convection-diffusion Equation (3.3) for the temperature variable by

a function F(G, H):

u · ∇\ − ∇ · (22∇\) = 5\

⇒ (u · ∇\)F − ∇ · (22∇\)F = 5\F

⇒
∫
Ω

(u · ∇\)F3G3H −
∫
Ω

∇ · (22∇\)F3G3H =
∫
Ω

5\F3G3H.



8

Here, u(G, H), ?(G, H) and \ (G, H) are called trial functions and v(G, H), @(G, H) and F(G, H)

are called test functions. Using integration by parts in multi-dimensions yields

∫
Ω

(∇ · T) · v3G3H =
∫
mΩ

(Tn) · v3( −
∫
Ω

T : ∇v3G3H,

where n = (=1, =2)) is the unit outer normal vector of mΩ and the operator : denotes the

matrix inner product. Thus,

∫
Ω

(u · ∇)u · v3G3H +
∫
Ω

T(u, ?) : ∇v3G3H −
∫
mΩ

(T(u, ?)n) · v3( −
∫
Ω

e221 · v3G3H

=

∫
Ω

fu · v3G3H

is obtained. First, we observe that

T(u, ?) : ∇v = 2aD(u) : D(v) − ?(∇ · v).

Second, since the solution on mΩ is given by u = gu, we choose the test function v such

that v = 0 on mΩ. Hence, we obtain

∫
Ω

(u · ∇)u · v3G3H +
∫
Ω

2aD(u) : D(v)3G3H −
∫
Ω

?(∇ · v)3G3H −
∫
Ω

e221\ · v3G3H

=

∫
Ω

fu · v3G3H.

On the other hand, we use Green’s formula

∫
Ω

∇ · (22∇\)F3G3H =
∫
mΩ

(22∇\ · n)F3( −
∫
Ω

22∇\ · ∇F3G3H,

to acquire

∫
Ω

(u · ∇\)F3G3H +
∫
Ω

22∇\ · ∇F3G3H =
∫
mΩ

(22∇\ · n)F3( +
∫
Ω

5\F3G3H
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for the convection-diffusion equation. Since the solution on mΩ is given by \ = 6\ , we

choose the test function F such that F = 0 on mΩ:

∫
Ω

(u · ∇\)F3G3H +
∫
Ω

22∇\ · ∇F3G3H =
∫
Ω

5\F3G3H.

At this point, we introduce the frequently used (see for example [20]) Sobolev spaces

!2(Ω) =
{
E : Ω→ R :

∫
Ω

|E |2 < ∞
}
,

�1(Ω) =
{
E ∈ !2(Ω) :

mU1+U2E

mGU1mHU2
∈ !2(Ω) ∀U1 + U2 = 1

}
, and

�1
0 (Ω) =

{
E ∈ �1(Ω) : E |mΩ = 0

}
.

In conclusion, we derived the following weak formulation: Find u ∈
(
�1(Ω)

)2, ? ∈ !2(Ω)

and \ ∈ �1(Ω) such that

2(u, u, v) + 0(u, v) + 1(v, ?) − (e221\, v) = ( fu, v),

1(u, @) = 0,

2̃(u, \, F) + 0̃(\, F) = ( 5\ , F),

for any v ∈
(
�1

0 (Ω)
)2
, @ ∈ !2(Ω) and F ∈ �1

0 (Ω) with

2(w, u, v) =
∫
Ω

(w · ∇)u · v3G3H,

0(u, v) =
∫
Ω

2aD(u) : D(v)3G3H,

1(u, @) = −
∫
Ω

(∇ · u)@3G3H,

( f , v) =
∫
Ω

f · v3G3H or ( 5 , F) =
∫
Ω

5 F3G3H,

0̃(\, F) =
∫
Ω

22∇\ · ∇F3G3H, and

2̃(u, \, F) =
∫
Ω

(u · ∇\)F3G3H.
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To be more precise, the operators can be written in the following detailed way.

2(u, u, v) =
∫
Ω

(u · ∇)u · v3G3H

=

∫
Ω

D1
mD1

mG
E1 + D2

mD1

mH
E1 + D1

mD2

mH
E2 + D2

mD2

mG
E2 + D2

mD2

mH
E23G3H

0(u, v) =
∫
Ω

2aD(u) : D(v)3G3H

=

∫
Ω

a

(
2
mD1

mG

mE1

mG
+ 2

mD2

mH

mE2

mH
+ mD1

mD

mE1

mH
+ mD1

mH

mE2

mG
+ mD2

mG

mE1

mH
+ mD2

mG

mE2

mG

)
3G3H

1(v, ?) = −
∫
Ω

(∇ · u)@3G3H = −
∫
Ω

?
mE1

mG
+ ? mE2

mH
3G3H

(e221\, v) =
∫
Ω

21\E23G3H

( fu, v) =
∫
Ω

fu · v3G3H =
∫
Ω

51E1 + 52E23G3H

1(u, @) = −
∫
Ω

(∇ · u)@3G3H = −
∫
Ω

mD1

mG
@ + mD2

mH
@3G3H

2̃(u, \, F) =
∫
Ω

(u · ∇\)F3G3H =
∫
Ω

D1
m\

mG
F + D2

m\

mH
F3G3H

0̃(\, F) =
∫
Ω

22∇\ · ∇F3G3H =
∫
Ω

22

(
m\

mG

mF

mG
+ m\
mH

mF

mH

)
3G3H

( 5\ , F) =
∫
Ω

5\F3G3H

3.1.2. Galerkin Formulation. Based on the weak formulation, the Galerkin for-

mulation is obtained by defining finite element spaces. We consider a finite element space

*ℎ ⊂ �1(Ω) for the velocity functions D1 and D2, a finite element space %ℎ ⊂ !2(Ω) for

the pressure ? and a finite element space,ℎ ⊂ �1(Ω) for the temperature \. Since we will

deal with the Dirichlet boundary conditions later for an easier implementation, this leads to

the following Galerkin formulation: Find uh ∈ (*ℎ)2, ?ℎ ∈ %ℎ and \ℎ ∈ ,ℎ such that

2(uh, uh, vh) + 0(uh, vh) + 1(vh, ?ℎ) − (e221\ℎ, vh) = ( fu, vh), (3.4)

1(uh, @ℎ) = 0, (3.5)

2̃(uh, \ℎ, Fℎ) + 0̃(\ℎ, Fℎ) = ( 5\ , Fℎ), (3.6)
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for any vh ∈ (*ℎ)2, @ℎ ∈ %ℎ and Fℎ ∈ ,ℎ.

In our numerical example, *ℎ = B?0={i 9 }#1D9=1 , ,ℎ = B?0={k 9 }#1\9=1 and %ℎ =

B?0={Z 9 }
#1?

9=1 are chosen to be the finite element spaces with the quadratic global basis

functions {i 9 }#1D9=1 , {k 9 }
#1\
9=1 and linear global basis functions {Z 9 }

#1?

9=1 , which are defined in

the traditional way (see [9]).

3.1.3. Newton Iteration. Before we are able to obtain the linear system, we have

to linearize the nonlinear terms in Equations (3.4) and (3.6). Therefore, we introduce a

Newton iteration for the Galerkin formulation as follows. This common idea was already

applied in [9].

Initial guess: u(0) and \ (0)

For ; = 1, 2, ..., ! find u(l)
h
∈ (*ℎ)2 , ? (;)ℎ ∈ %ℎ and \

(;)
ℎ
∈ ,ℎ such that

2(u(l)
h
, u(l−1)

h
, vh) + 2(u(l−1)

h
, u(l)

h
, vh) + 0(u(l)h , vh) + 1(vh, ?

(;)
ℎ
) − (e221\

(;)
ℎ
, vh)

= ( fu, vh) + 2(u(l−1)
h

, u(l−1)
h

, vh),

1(uh
(;) , @ℎ) = 0,

2̃(u(l)
h
, \
(;−1)
ℎ

, Fℎ) + 2̃(u(l−1)
h

, \
(;)
ℎ
, Fℎ) + 0̃(\ (;)ℎ , Fℎ) = ( 5\ , Fℎ) + 2̃(u

(l−1)
h

, \
(;−1)
ℎ

, Fℎ),

for any vh ∈ (*ℎ)2 , @ℎ ∈ %ℎ and Fℎ ∈ ,ℎ.

3.1.4. Finite Element Discretization. ConsideringD(;)1ℎ , D
(;)
2ℎ ∈ *ℎ = B?0={i 9 }

#1D
9=1 ,

?
(;)
ℎ
∈ %ℎ = B?0={Z 9 }

#1?

9=1 and \ (;)
ℎ
∈ ,ℎ = B?0={k 9 }#1\9=1 , there exist coefficients D(;)1ℎ , D

(;)
2ℎ

( 9 = 1, ..., #1D), ? (;)ℎ ( 9 = 1, ..., #1?) and \ (;)ℎ ( 9 = 1, ..., #1\) such that

D
(;)
1ℎ =

#1D∑
9=1
D
(;)
1 9 i 9 , D

(;)
2ℎ =

#1D∑
9=1
D
(;)
2 9 i 9 , ?

(;)
ℎ
=

#1?∑
9=1

?
(;)
9
Z 9 , and \

(;)
ℎ
=

#1\∑
9=1
\
(;)
9
k 9 . (3.7)

Thus, to approximate the velocity u, the pressure ? and the temperature \, we derive a linear

algebraic system to obtain those coefficients. For the first Equation (3.4) of the Galerkin

formulation, we choose vh = (i8, 0)) (8 = 1, ..., #1D) and vh = (0, i8)) (8 = 1, ..., #1D),
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which are linear independent. In other words, we choose E1ℎ = i8 and E2ℎ = 0 in the first

set of test functions and E1ℎ = 0 and E2ℎ = i8 in the second set of test functions. For the

second Equation (3.5) of the Galerkin formulation, the test function @ℎ = Z8 (8 = 1, ..., #1?)

is chosen. Finally, we select Fℎ = k8 (8 = 1, ..., #1\) for the third Equation (3.6) of the

Galerkin formulation. Then, at the step ; (; = 1, 2, ..., !) of the Newton iteration, the

following four equations hold.

∫
Ω

mD
(;−1)
1ℎ
mG

©«
#1D∑
9=1
D
(;)
1 9 i 9

ª®¬ i83G3H +
∫
Ω

mD
(;−1)
1ℎ
mH

©«
#1D∑
9=1
D
(;)
2 9 i 9

ª®¬ i83G3H
+

∫
Ω

D
(;−1)
1ℎ

©«
#1D∑
9=1
D
(;)
1 9
mi 9

mG

ª®¬ i83G3H +
∫
Ω

D
(;−1)
2ℎ

©«
#1D∑
9=1
D
(;)
1 9
mi 9

mH

ª®¬ i83G3H
+ 2

∫
Ω

a
©«
#1D∑
9=1
D
(;)
1 9
mi 9

mG

ª®¬ mi8mG
3G3H +

∫
Ω

a
©«
#1D∑
9=1
D
(;)
1 9
mi 9

mH

ª®¬ mi8mH
3G3H

+
∫
Ω

a
©«
#1D∑
9=1
D
(;)
2 9
mi 9

mG

ª®¬ mi8mH
3G3H −

∫
Ω

a
©«
#1?∑
9=1

?
(;)
9
Z 9

ª®¬ mi8mG
3G3H

=

∫
Ω

51i 93G3H +
∫
Ω

D
(;−1)
1ℎ

mD
(;−1)
1ℎ
mG

i83G3H +
∫
Ω

D
(;−1)
2ℎ

mD
(;−1)
1ℎ
mH

i83G3H

∫
Ω

mD
(;−1)
2ℎ
mG

©«
#1D∑
9=1
D
(;)
1 9 i 9

ª®¬ i83G3H +
∫
Ω

mD
(;−1)
2ℎ
mH

©«
#1D∑
9=1
D
(;)
2 9 i 9

ª®¬ i83G3H
+

∫
Ω

D
(;−1)
1ℎ

©«
#1D∑
9=1
D
(;)
2 9
mi 9

mG

ª®¬ i83G3H +
∫
Ω

D
(;−1)
2ℎ

©«
#1D∑
9=1
D
(;)
2 9
mi 9

mH

ª®¬ i83G3H
+ 2

∫
Ω

a
©«
#1D∑
9=1
D
(;)
2 9
mi 9

mH

ª®¬ mi8mH
3G3H +

∫
Ω

a
©«
#1D∑
9=1
D
(;)
1 9
mi 9

mH

ª®¬ mi8mG
3G3H

+
∫
Ω

a
©«
#1D∑
9=1
D
(;)
2 9
mi 9

mG

ª®¬ mi8mG
3G3H −

∫
Ω

a
©«
#1?∑
9=1

?
(;)
9
Z 9

ª®¬ mi8mH
3G3H −

∫
Ω

21
©«
#1\∑
9=1
\
(;)
9
k 9

ª®¬k83G3H
=

∫
Ω

52i 93G3H +
∫
Ω

D
(;−1)
1ℎ

mD
(;−1)
2ℎ
mG

i83G3H +
∫
Ω

D
(;−1)
2ℎ

mD
(;−1)
2ℎ
mH

i83G3H
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−
∫
Ω

©«
#1D∑
9=1
D
(;)
1 9
mi 9

mG

ª®¬ Z83G3H −
∫
Ω

©«
#1D∑
9=1
D
(;)
2 9
mi 9

mH

ª®¬ Z83G3H = 0

∫
Ω

m\
(;−1)
ℎ

mG

©«
#1D∑
9=1
D
(;)
1 9 i 9

ª®¬k83G3H +
∫
Ω

m\
(;−1)
ℎ

mH

©«
#1D∑
9=1
D
(;)
2 9 i 9

ª®¬k83G3H
+

∫
Ω

D
(;−1)
1ℎ

©«
#1\∑
9=1
\
(;)
9

mk 9

mG

ª®¬k83G3H +
∫
Ω

D
(;−1)
2ℎ

©«
#1\∑
9=1
\
(;)
9

mk 9

mH

ª®¬k83G3H
+

∫
Ω

22
©«©«
#1\∑
9=1
\
(;)
9

mk 9

mG

ª®¬ mk8mG
+ ©«

#1\∑
9=1
\
(;)
9

mk 9

mH

ª®¬ mk8mH

ª®¬ 3G3H
=

∫
Ω

5\k 93G3H +
∫
Ω

D
(;−1)
1ℎ

m\
(;−1)
ℎ

mG
k83G3H +

∫
Ω

D
(;−1)
2ℎ

m\
(;−1)
ℎ

mH
k83G3H

In the ensuing step, those equations are presented in a simplified form.

#1D∑
9=1
D
(;)
1 9

(∫
Ω

mD
(;−1)
1ℎ
mG

i 9i83G3H +
∫
Ω

D
(;−1)
1ℎ

mi 9

mG
i83G3H +

∫
Ω

D
(;−1)
2ℎ

mi 9

mH
i83G3H

+2
∫
Ω

a
mi 9

mG

mi8

mG
3G3H +

∫
Ω

a
mi 9

mH

mi8

mH
3G3H

)
+
#1D∑
9=1
D
(;)
2 9

(∫
Ω

mD
(;−1)
1ℎ
mH

i 9i83G3H +
∫
Ω

a
mi 9

mG

mi8

mH
3G3H

)
+
#1?∑
9=1

?
(;)
9

(
−

∫
Ω

Z 9
mi8

mG
3G3H

)
=

∫
Ω

51i 93G3H +
∫
Ω

D
(;−1)
1ℎ

mD
(;−1)
1ℎ
mG

i83G3H +
∫
Ω

D
(;−1)
2ℎ

mD
(;−1)
1ℎ
mH

i83G3H

#1D∑
9=1
D
(;)
1 9

(∫
Ω

mD
(;−1)
2ℎ
mG

i 9i83G3H +
∫
Ω

a
mi 9

mH

mi8

mG
3G3H

)
+
#1D∑
9=1
D
(;)
2 9

(∫
Ω

mD
(;−1)
2ℎ
mH

i 9i83G3H +
∫
Ω

D
(;−1)
1ℎ

mi 9

mG
i83G3H +

∫
Ω

D
(;−1)
2ℎ

mi 9

mH
i83G3H
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+2
∫
Ω

a
mi 9

mH

mi8

mH
3G3H +

∫
Ω

a
mi 9

mG

mi8

mG
3G3H

)
+
#1?∑
9=1

?
(;)
9

(
−

∫
Ω

Z 9
mi8

mH
3G3H

)
+
#1\∑
9=1
\
(;)
9

(
−

∫
Ω

21k 9i83G3H

)
=

∫
Ω

52i 93G3H +
∫
Ω

D
(;−1)
1ℎ

mD
(;−1)
2ℎ
mG

i83G3H +
∫
Ω

D
(;−1)
2ℎ

mD
(;−1)
2ℎ
mH

i83G3H

#1D∑
9=1
D
(;)
1 9

(
−

∫
Ω

mi 9

mG
Z83G3H

)
+
#1D∑
9=1
D
(;)
2 9

(
−

∫
Ω

mi 9

mH
Z83G3H

)
= 0

#1D∑
9=1
D
(;)
1 9

(∫
Ω

m\
(;−1)
ℎ

mG
i 9k83G3H

)
+
#1D∑
9=1
D
(;)
2 9

(∫
Ω

m\
(;−1)
ℎ

mH
i 9k83G3H

)
+
#1\∑
9=1
\
(;)
9

(∫
Ω

D
(;−1)
1ℎ

mk 9

mG
k83G3H +

∫
Ω

D
(;−1)
2ℎ

mk 9

mH
k83G3H

+
∫
Ω

22
mk 9

mG

mk 9

mG
3G3H +

∫
Ω

22
mk 9

mH

mk 9

mH
3G3H

)
=

∫
Ω

5\k 93G3H +
∫
Ω

D
(;−1)
1ℎ

m\
(;−1)
ℎ

mG
k83G3H +

∫
Ω

D
(;−1)
2ℎ

m\
(;−1)
ℎ

mH
k83G3H

Finally, it is evident how to define the matrices and vectors to set up the necessary linear

algebraic system. We start with the definitions of

�1 =

[∫
Ω

a
mi 9

mG

mi8

mG
3G3H

]#1D
8, 9=1

, �2 =

[∫
Ω

a
mi 9

mH

mi8

mH
3G3H

]#1D
8, 9=1

,

�3 =

[∫
Ω

a
mi 9

mG

mi8

mH
3G3H

]#1D
8, 9=1

, �4 =

[∫
Ω

a
mi 9

mH

mi8

mG
3G3H

]#1D
8, 9=1

,

�5 =

[∫
Ω

−Z 9
mi8

mG
3G3H

]#1D ,#1?
8, 9=1

, �6 =

[∫
Ω

−Z 9
mi8

mH
3G3H

]#1D ,#1?
8, 9=1

,

�7 =

[∫
Ω

mi 9

mG
− Z83G3H

]#1? ,#1D
8, 9=1

, �8 =

[∫
Ω

mi 9

mH
− Z83G3H

]#1? ,#1D
8, 9=1

,

�9 =

[∫
Ω

−21k 9i83G3H

]#1D ,#1\
8, 9=1

, �10 =

[∫
Ω

22
mk 9

mG

mk8

mG
3G3H

]#1\
8, 9=1

,
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and �11 =

[∫
Ω

22
mk 9

mH

mk8

mH
3G3H

]#1\
8, 9=1

.

We realize that �4 = �)3 , �7 = �)5 and �8 = �)6 . Furthermore, we generate the zero

matrices O1 = [0]
#1?

8, 9=1, O2 = [0]
#1D ,#1?

8, 9=1 , O3 = [0]#1D ,#1\8, 9=1 and O4 = [0]
#1? ,#1\

8, 9=1 . Now,

� =

©«

2�1 + �2 �3 �5 O3

�4 2�2 + �1 �6 �9

�7 �8 O1 O4

O)3 O)3 O)4 �10 + �11

ª®®®®®®®®¬
. (3.8)

The next definitions are

b1 =

[∫
Ω

51i83G3H

]#1D
8=1

, b2 =

[∫
Ω

52i83G3H

]#1D
8=1

and b3 =

[∫
Ω

5\k83G3H

]#1\
8=1

to get

b =

©«

b1

b2

0

b3

ª®®®®®®®®¬
(3.9)

with the zero vector 0 = [0]#1?
8=1 . For the parts within the Newton iteration, we define

�#1 =

[∫
Ω

mD
(;−1)
1ℎ
mG

i 9i83G3H

]#1D
8, 9=1

, �#2 =

[∫
Ω

D
(;−1)
1ℎ

mi 9

mG
i83G3H

]#1D
8, 9=1

,

�#3 =

[∫
Ω

D
(;−1)
2ℎ

mi 9

mH
i83G3H

]#1D
8, 9=1

, �#4 =

[∫
Ω

mD
(;−1)
1ℎ
mH

i 9i83G3H

]#1D
8, 9=1

,

�#5 =

[∫
Ω

mD
(;−1)
2ℎ
mG

i 9i83G3H

]#1D
8, 9=1

, �#6 =

[∫
Ω

mD
(;−1)
2ℎ
mH

i 9i83G3H

]#1D
8, 9=1

,
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�#7 =

[∫
Ω

m\
(;−1)
ℎ

mG
i 9k83G3H

]#1\ ,#1D
8, 9=1

, �#8 =

[∫
Ω

m\
(;−1)
ℎ

mH
i 9k83G3H

]#1\ ,#1D
8, 9=1

,

�#9 =

[∫
Ω

D
(;−1)
1ℎ

mk 9

mG
k83G3H

]#1\
8, 9=1

, �#10 =

[∫
Ω

D
(;−1)
2ℎ

mk 9

mH
k83G3H

]#1\
8, 9=1

,

deriving

�# =

©«

�#1 + �#2 + �#3 �#4 O2 O3

�#5 �#6 + �#2 + �#3 O2 O3

O)2 O)2 O1 O4

�#7 �#8 O)4 �#9 + �#10

ª®®®®®®®®¬
. (3.10)

Furthermore,

bT1 =

[∫
Ω

D
(;−1)
1ℎ

mD
(;−1)
1ℎ
mG

i83G3H

]#1D
8=1

, bT2 =

[∫
Ω

D
(;−1)
2ℎ

mD
(;−1)
1ℎ
mH

i83G3H

]#1D
8=1

,

bT3 =

[∫
Ω

D
(;−1)
1ℎ

mD
(;−1)
2ℎ
mG

i83G3H

]#1D
8=1

, bT4 =

[∫
Ω

D
(;−1)
2ℎ

mD
(;−1)
2ℎ
mH

i83G3H

]#1D
8=1

,

bT5 =

[∫
Ω

D
(;−1)
1ℎ

m\
(;−1)
ℎ

mG
k83G3H

]#1\
8=1

, bT6 =

[∫
Ω

D
(;−1)
2ℎ

m\
(;−1)
ℎ

mH
k83G3H

]#1\
8=1

,

are defined to generate

bT =

©«

bT1 + bT2

bT3 + bT4

0

bT5 + bT6

ª®®®®®®®®¬
. (3.11)
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Therefore, for each step ; (; = 1, 2, ..., !) of the Newton iteration, we solve the linear

algebraic system

�(;)x(l) = b(l) ,

where �(;) = � + �# , x(l) = (D(;)1ℎ , D
(;)
2ℎ , ?

(;)
ℎ
, \
(;)
ℎ
)) and b(l) = b + bT.

3.1.5. Algorithms. In the following algorithms, #1 is the total number of finite

element basis functions or finite element nodes, #;1 is the number of local finite element

nodes and %1 and )1 are the finite element information matrices. More precisely, we use a

triangular mesh and either linear or quadratic finite elements, as stated before. The nodes

of each element are labeled as shown in Figure 3.1. Thus, there are either three or six local

finite element nodes and #1 is given by #1D, #1? or #1\ for the velocity functions D1 and D2,

the pressure ? or the temperature \, respectively. The matrix %1 consists of the coordinates

of all finite element nodes. That means %1 is a 2 × #1 matrix storing the x-coordinate

in the first row and the y-coordinate in the second row for each finite element node. On

the other hand, the matrix )1 consists of the indices of the finite element nodes of all the

mesh elements. Thus, )1 has #;1 rows and as many columns as mesh elements. While the

number of mesh elements, denoted by # , is the same for the velocity u, the pressure ?, and

the temperature \, the number of finite element nodes varies, such that different %1D, %1?,

%1\ and )1D, )1?, )1\ are generated.

(a) Mesh nodes (b) Linear FEM nodes (c) Quadratic FEM nodes

Figure 3.1. The nodes in one triangular element of the mesh and finite element spaces used
to realize the standard Galerkin FEM in MATLAB
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To realize the derived coupled finite element method, we structure our MATLAB code

in the following way.

(i) Generate matrix � as in (3.8) using Algorithm 1

(ii) Generate vector b as in (3.9) using Algorithm 2

(iii) FOR ; = 1, 2, ..., ! (begin Newton iteration for linearization)

(iv) Generate matrix �# as in (3.10) using Algorithm 3

(v) Generate vector bT as in (3.11) using Algorithm 4

(vi) Set �(;) = � + �# and b(l) = b + bT

(vii) Treat the Dirichlet boundary condition using Algorithm 5

(viii) Fix pressure ? (;)
ℎ

at one point in Ω

(ix) Solve �(;)x(l) = b(l) using the backslash operator

(x) END

Steps (i) and (ii) are independent of the Newton iteration because they do not contain D(;−1)
1ℎ ,

D
(;−1)
2ℎ or \ (;−1)

ℎ
. Thus, � and b will be generated once and not altered within the loop.

Contrariwise, steps (iv) and (v) depend on D(;−1)
1ℎ , D(;−1)

2ℎ , and \ (;−1)
ℎ

and we rerun those in

each iteration.

For the purpose of an easily adjustable implementation, Algorithm 1 and Algorithm

2 to generate � and b were derived. A Gauss quadrature with nine Gauss points is used to

approximate the integrals here and in all other cases. With the coefficient function 2 and

the derivative orders as main input, Algorithm 1 generates �1 to �11 to set up �. Similarly,

Algorithm 2 calculates b1 to b3 to set up b.

Due to the fact that the coefficient function of �# is not a constant or a function de-

pending on G and H anymore, but a finite element coefficient function, we modify Algorithm

1 slightly into Algorithm 3, where 2 is surrogated by a finite element coefficient function.
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Algorithm 1 Assemble the stiffness matrix A
1: function assemblematrix( 5 D=_2, ..., A, B, ?, @)
2: � = B?0AB4(#1, #1)
3: for = = 1, ..., # do
4: for U = 1, ..., #;1 do
5: for V = 1, ..., #;1 do
6: Compute A =

∫
�=
2
mA+Bk=U
mGA mHB

m ?+@k=V
mG?mH@

3G3H

7: Add A to �()1 (V, =), )1 (U, =))
8: end for
9: end for
10: end for
11: end function

Algorithm 2 Assemble the load vector b
1: function assemblevector( 5 D=_ 5 , ..., ?, @)
2: 1 = B?0AB4(#1, 1)
3: for = = 1, ..., # do
4: for V = 1, ..., #;1 do
5: Compute A =

∫
�=
5
m ?+@k=V
mG?mH@

3G3H

6: Add A to 1()1 (V, =), 1)
7: end for
8: end for
9: end function

Similarly, for bT, Algorithm 2 has to be modified into Algorithm 4 by replacing the coeffi-

cient function 2 by finite element coefficient functions 51ℎ and 52ℎ. Now, Algorithms 3 and

4 are used to generate �#1 to �#10 and bT1 to bT6, respectively, choosing D(;−1)
1ℎ , D(;−1)

2ℎ

or \ (;−1)
ℎ

from the previous iteration step or their derivatives as coefficients.

Ultimately, we have to deal with the Dirichlet boundary condition as stated in step

(vii). We impose the boundary condition by replacing the boundary nodes equations in the

linear system by

D
(;)
1< = 61(G<, H<), D

(;)
2< = 62(G<, H<), and \

(;)
< = 6\ (G<, H<)
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Algorithm 3 Assemble the linearized stiffness matrix AN
1: function assemblelinearizedmatrix( 5 D=_2, ..., A, B, ?, @, 3, 4)
2: � = B?0AB4(#1, #1)
3: for = = 1, ..., # do
4: for U = 1, ..., #;1 do
5: for V = 1, ..., #;1 do
6: Compute A =

∫
�=

m3+42ℎ
mG3mH4

mA+Bk=U
mGA mHB

m ?+@k=V
mG?mH@

3G3H

7: Add A to �()1 (V, =), )1 (U, =))
8: end for
9: end for
10: end for
11: end function

Algorithm 4 Assemble the linearized load vector bT
1: function assemblelinearizedvector( 5 D=_ 51ℎ, 5 D=_ 52ℎ, ..., ?, @, 3, 4, A, B)
2: 1 = B?0AB4(#1, 1)
3: for = = 1, ..., # do
4: for V = 1, ..., #;1 do
5: Compute A =

∫
�=

m3+4 51ℎ
mG3mH4

mA+B 52ℎ
mGA mHB

m ?+@k=V
mG?mH@

3G3H

6: Add A to 1()1 (V, =), 1)
7: end for
8: end for
9: end function

for all boundary nodes <. Since the boundary condition does not involve the pressure ?,

the third row of the blockmatrix �(;) and the third entry of b(l) should not be altered. The

modification is fulfilled by Algorithm 5. If the same finite element functions are used for

the velocity u and the temperature \, so i 9 = k 9 for 9 = 1, ..., #1D = #1\ , then they have

the same boundary nodes, and the two loops in Algorithm 5 can be merged together.
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Algorithm 5 Treat Dirichlet boundary condition

1: function boundarytreatment( 5 D=_61, 5 D=_62, 5 D=_6\ , ..., �(;) , b(l) , #1, #1?)
2: for = = 1, ..., =D<14A_> 5 _1>D=30AH=>34B_ 5 >A_u do
3: Set 8 = index of current boundary node and
4: �(;) (8, :) = 0
5: �(;) (#1 + 8, :) = 0
6: �(;) (8, 8) = 1
7: �(;) (#1 + 8, #1 + 8) = 1
8: b(l) (8) = 5 D=_61(%1 (:, 8))
9: b(l) (#1 + 8) = 5 D=_62(%1 (:, 8))
10: end for
11: for = = 1, ..., =D<14A_> 5 _1>D=30AH=>34B_ 5 >A_\ do
12: Set 8 = index of current boundary node and
13: �(;) (2 ∗ #1 + #1? + 8, :) = 0
14: �(;) (2 ∗ #1 + #1? + 8, 2 ∗ #1 + #1? + 8) = 1
15: b(l) (2 ∗ #1 + #1? + 8) = 5 D=_6\ (%1 (:, 8))
16: end for
17: end function

3.2. NUMERICAL EXAMPLE

The purpose of this section is to verify our previous derivation by a numerical

example. Therefore, we solve the given Boussinesq equations



u · ∇u − ∇ · T(u, ?) − e2\ = fu, in Ω,

∇ · u = 0, in Ω,

u · ∇\ − ∇ · (∇\) = 5\ , in Ω,

u = gu, on mΩ,

\ = 6\ , on mΩ,

(3.12)

on the domain Ω = [0, 1] × [−0.25, 0], where the viscosity a = 1 and the forcing functions

51 = − 2a
(
G2 + H2

)
− a4−H + c2 cos (cG) cos (2cH) + 2GH2

(
G2H2 + 4−H

)
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+
(
−2G

H3

3
+ 2 − c sin (cG)

) (
2G2H − 4−H

)
,

52 =4aGH − ac3 sin (cG) + 2c (2 − c sin (cG)) sin (2cH)

+
(
G2 + H2 + 4−H

) (
−2
H3

3
− c2 cos (cG)

)
+

(
−2G

H3

3
+ 2 − c sin (cG)

) (
−2GH2

)
− 4G+H,

5\ =

(
G2H2 + 4−H

)
4G+H +

(
−2

3
GH3 + 2 − c sin (cG)

)
4G+H − 24G+H.

Furthermore, the boundary functions are given by

D1 = 4
−H, D2 = 2, and \ = 4H on G = 0,

D1 = H
2 + 4−H, D2 = −

2
3
H3 + 2, and \ = 41+H on G = 1,

D1 =
1
16
G2 + 40.25, D2 =

1
96
G + 2 − c sin(cG), and \ = 4G−0.25 on H = −0.25,

D1 = 4
−H, D2 = 2 − c sin(cG), and \ = 4G on H = 0.

The forcing functions fu and 5\ are stated with nearly no simplifications such that the

analytical solutions

D1 = G
2H2 + 4−H,

D2 = −
2
3
GH3 + 2 − c sin(cG),

? = −(2 − c sin(cG)) cos(2cH), and

\ = 4G+H

are clearly evident. We solve Equation (3.12) using the derived finite element method for

six different meshes with edge sizes ℎ ∈
{ 1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128

}
. As shown in Figure 3.2, we

generate an equidistant triangular mesh and halve ℎ in every step.
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(a) Mesh of Ω with ℎ = 1
4 (b) Mesh of Ω with ℎ = 1

8

(c) Mesh of Ω with ℎ = 1
16 (d) Mesh of Ω with ℎ = 1

32

(e) Mesh of Ω with ℎ = 1
64 (f) Mesh of Ω with ℎ = 1

128

Figure 3.2. The mesh of the domain Ω = [0, 1] × [−0.25, 0] for different edge sizes ℎ used
in the standard Galerkin FEM

To analyze the finite element solution uh of the velocity u, we calculate not only the

maximum error MaxError = max|u−uh |, but also the !∞ norm error InfError, the !2 norm

error L2Error and the �1 semi-norm error H1Error, which are known to be as follows.

InfError = ‖u − uh‖∞ = sup
(G,H)∈Ω

|u(G, H) − uh (G, H) |

L2Error = ‖u − uh‖0 =

√∫
Ω

|u − uh |23G3H

H1Error = |u − uh |1 =

√∫
Ω

����m (u − uh)
mG

����2 3G3H + ∫
Ω

����m (u − uh)
mH

����2 3G3H
The same is done for the finite element solutions ?ℎ of the pressure ? and \ℎ of the

temperature \. The results are stated in Tables 3.1, 3.2, 3.3 and 3.4 for the four different error

types MaxError, InfError, L2Error and H1Error, respectively. Due to the high regularity of
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Table 3.1. The maximum errors and corresponding convergence rate of standard Galerkin
FEM for the steady Boussinesq Equations (3.12) with Taylor-Hood finite elements for
velocity u and pressure ? and quadratic finite elements for temperature \

1
ℎ

MaxError u Rate MaxError ? Rate MaxError \ Rate
4 1.4696 · 10−3 − 6.0149 · 10−1 − 2.6162 · 10−5 −
8 4.5401 · 10−4 1.6946 2.0711 · 10−1 1.5381 1.9435 · 10−6 3.7507
16 3.7082 · 10−5 3.6139 5.5743 · 10−2 1.8935 1.1358 · 10−7 4.0969
32 2.3809 · 10−6 3.9612 1.3928 · 10−2 2.0008 8.5492 · 10−9 3.7318
64 1.8440 · 10−7 3.6906 3.4684 · 10−3 2.0057 5.9340 · 10−10 3.8487
128 2.1410 · 10−8 3.1065 8.6461 · 10−4 2.0042 3.8963 · 10−11 3.9288

Table 3.2. The !∞ errors and corresponding convergence rate of standard Galerkin FEM
for the steady Boussinesq Equations (3.12) with Taylor-Hood finite elements for velocity u
and pressure ? and quadratic finite elements for temperature \

1
ℎ

InfError u Rate InfError ? Rate InfError \ Rate
4 1.1759 · 10−2 − 3.7781 · 10−1 − 3.0632 · 10−4 −
8 1.6853 · 10−3 2.8026 1.3616 · 10−1 1.4724 4.0349 · 10−5 2.9244
16 2.0224 · 10−4 3.0589 4.5862 · 10−2 1.5699 5.1810 · 10−6 2.9612
32 2.5167 · 10−5 3.0065 1.2533 · 10−2 1.8716 6.5635 · 10−7 2.9807
64 3.1048 · 10−6 3.0190 3.2510 · 10−3 1.9468 8.2594 · 10−8 2.9904
128 3.8464 · 10−7 3.0129 8.2650 · 10−4 1.9758 1.0359 · 10−8 2.9952

Table 3.3. The !2 errors and corresponding convergence rate of standard Galerkin FEM
for the steady Boussinesq Equations (3.12) with Taylor-Hood finite elements for velocity u
and pressure ? and quadratic finite elements for temperature \

1
ℎ

L2Error u Rate L2Error ? Rate L2Error \ Rate
4 2.7603 · 10−3 − 8.2694 · 10−2 − 6.9312 · 10−5 −
8 3.5640 · 10−4 2.9532 2.2577 · 10−2 1.8729 8.5992 · 10−6 3.0108
16 4.4016 · 10−5 3.0174 8.6669 · 10−3 1.3813 1.0718 · 10−6 3.0042
32 5.4798 · 10−6 3.0058 2.4764 · 10−3 1.8073 1.3389 · 10−7 3.0009
64 6.8421 · 10−7 3.0016 6.5584 · 10−4 1.9168 1.6733 · 10−8 3.0002
128 8.5497 · 10−8 3.0005 1.6841 · 10−4 1.9613 2.0916 · 10−9 3.0001
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Table 3.4. The �1 errors and corresponding convergence rate of standard Galerkin FEM
for the steady Boussinesq Equations (3.12) with Taylor-Hood finite elements for velocity u
and pressure ? and quadratic finite elements for temperature \

1
ℎ

H1Error u Rate H1Error ? Rate H1Error \ Rate
4 8.0560 · 10−2 − 2.3556 · 100 − 2.6175 · 10−3 −
8 2.0429 · 10−2 1.9795 1.2648 · 100 0.8972 6.5321 · 10−4 2.0025
16 5.0681 · 10−3 2.0111 6.3069 · 10−1 1.0039 1.6323 · 10−4 2.0006
32 1.2623 · 10−3 2.0054 3.1369 · 10−1 1.0076 4.0804 · 10−5 2.0001
64 3.1523 · 10−4 2.0016 1.5658 · 10−1 1.0024 1.0201 · 10−5 2.0000
128 7.8782 · 10−5 2.0004 7.8254 · 10−2 1.0007 2.5502 · 10−6 2.0000

the selected functions u, ?, and \ in Equation (3.12), the optimal convergence capability

expected from piecewise quadratic finite element functions is third order convergenceO(ℎ3)

in the !∞ and !2 norm, and second order convergence O(ℎ2) in the �1 semi-norm. The

columns called rate, where the convergence rate of the error after each bisection of ℎ

calculated by linear regression is stated, of Tables 3.2, 3.3, and 3.4 confirm that the optimal

convergence rate is reached for uh and \ℎ. For the MaxError, in Table 3.1 we even observe

fourth order convergence O(ℎ4). From piecewise linear finite element functions we expect

second order convergence O(ℎ2) in the !∞ and !2 norm, and first order convergence O(ℎ)

in the �1 semi-norm. As Tables 3.2, 3.3 and 3.4 show, this expectation is fulfilled for ?ℎ.

As anticipated and stated in Table 3.1, ?ℎ exhibits second order convergence O(ℎ2) using

the maximum error.
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4. DECOUPLED FINITE ELEMENT METHODS

In this section, we finally derive the new decoupled finite element methods using the

previous derived standard Galerkin finite element method as a foundation. The structure of

this section is the same as the structure of the preceding one such that the transformation is

easily comprehensible. Due to different decoupling techniques, we introduce a parallel and

a sequential approach in Sections 4.1 and 4.2, respectively.

4.1. DERIVATION OF THE PARALLEL APPROACH

4.1.1. Weak Formulation. By carrying out the first steps of Section 3.1 again, we

start with the coupled Boussinesq equations

u · ∇u − ∇ · T(u, ?) − e221\ = fu, in Ω,

∇ · u = 0, in Ω, and

u · ∇\ − ∇ · (22∇\) = 5\ , in Ω,

and treat them separately by introducing test functions v, @ and F, integrating in multi

dimensions and applying the boundary condition u = gu and \ = 6\ on mΩ until we get the

three equations

∫
Ω

(u · ∇)u · v3G3H +
∫
Ω

2aD(u) : D(v)3G3H −
∫
Ω

?(∇ · v)3G3H −
∫
Ω

e221\ · v3G3H

=

∫
Ω

fu · v3G3H,∫
Ω

(∇ · u)@3G3H = 0, and∫
Ω

(u · ∇\)F3G3H +
∫
Ω

22∇\ · ∇F3G3H =
∫
Ω

5\F3G3H.



27

To increase the clarity of further formulations, we take advantage of the already defined

operators

2(w, u, v) =
∫
Ω

(w · ∇)u · v3G3H,

0(u, v) =
∫
Ω

2aD(u) : D(v)3G3H,

1(u, @) = −
∫
Ω

(∇ · u)@3G3H,

( f , v) =
∫
Ω

f · v3G3H or ( 5 , F) =
∫
Ω

5 F3G3H,

0̃(\, F) =
∫
Ω

22∇\ · ∇F3G3H, and

2̃(u, \, F) =
∫
Ω

(u · ∇\)F3G3H.

Now, we decouple those equations into the Navier-Stokes equations and a parabolic equation

by introducing a new iteration. Therefore, we obtain the following weak formulation.

Initial guess: u(0) and \ (0)

FOR : = 1, 2, ...,  

Step 1:



Find u(k) ∈
(
�1(Ω)

)2 and ? (:) ∈ !2(Ω) such that

2(u(k) , u(k) , v) + 0(u(k) , v) + 1(v, ? (:)) − (e221\
(:−1) , v) = ( fu, v),

1(u(k) , @) = 0,

for any v ∈
(
�1

0 (Ω)
)2

and @ ∈ !2(Ω).

Step 2:



Find \ (:) ∈ �1(Ω) such that

2̃(u(k−1) , \ (:) , F) + 0̃(\ (:) , F) = ( 5\ , F),

for any F ∈ �1
0 (Ω).

END
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Here, step 1 solves the Navier-Stokes equations for the velocity u(k) and the pressure ? (:)

using the solution for the temperature \ (:−1) of the previous iteration step. On the other

hand, in step 2 the convection-diffusion equation is solved for the temperature \ (:) using

only the velocity approximation u(k−1) of the previous iteration step. Hence, step 1 and

step 2 are independent of each other and can be executed in parallel.

At this point, the flexibility of the new technique becomes apparent. Since the two

steps are independent of each other, different methods could be applied. For instance, the

finite volume method could be used for step 2 to conserve the properties of the temperature

\. Furthermore, we emphasize the convenience if there exist solvers for the Navier-Stokes

equations or the parabolic equation that can be exploited now.

4.1.2. Galerkin Formulation. We obtain the Galerkin formulation based on the

weak formulation by defining the same finite element spaces as before: *ℎ ⊂ �1(Ω) for

the velocity functions D1 and D2, %ℎ ⊂ !2(Ω) for the pressure ? and ,ℎ ⊂ �1(Ω) for the

temperature \. Since we will deal with the Dirichlet boundary conditions later for an easier

implementation, this leads to the following Galerkin formulation.

Initial guess: u(0)
h

and \ (0)
ℎ

FOR : = 1, 2, ...,  

Step 1:



Find u(k)
h
∈ (*ℎ)2 and ? (:)

ℎ
∈ %ℎ such that

2(u(k)
h
, u(k)

h
, vh) + 0(u(k)h

, vh) + 1(vh, ? (:)ℎ ) − (e221\
(:−1)
ℎ

, vh) = ( fu, vh),

1(u(k)
h
, @ℎ) = 0,

for any vh ∈ (*ℎ)2 and @ℎ ∈ %ℎ.
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Step 2:



Find \ (:)
ℎ
∈ ,ℎ such that

2̃(u(k−1)
h

, \
(:)
ℎ
, Fℎ) + 0̃(\ (:)ℎ , Fℎ) = ( 5\ , Fℎ),

for any Fℎ ∈ ,ℎ.

END

Again, we choose the traditional quadratic global basis functions {i 9 }#1D9=1 , {k 9 }
#1\
9=1

and linear global basis functions {Z 9 }
#1?

9=1 and set *ℎ = B?0={i 9 }#1D9=1 , ,ℎ = B?0={k 9 }#1\9=1

and %ℎ = B?0={Z 9 }
#1?

9=1 .

4.1.3. Newton Iteration. Due to the decoupling, the nonlinear term in the convection-

diffusion equation vanished. Nonetheless, there is still a nonlinear term in the Navier-Stokes

equations, which we linearize by the following Newton iteration.

Initial guess: u(0)
h

and \ (0)
ℎ

FOR : = 1, 2, ...,  

Step 1:



Initial guess: u(k,0)
h

FOR ; = 1, 2, ..., !

Find u(k,l)
h
∈ (*ℎ)2 and ? (:,;)

ℎ
∈ %ℎ such that

2(u(k,l)
h

, u(k,l−1)
h

, vh) + 2(u(k,l−1)
h

, u(k,l)
h

, vh) + 0(u(k,l)h
, vh)

+1(vh, ? (:,;)ℎ
) − (e221\

(:−1)
ℎ

, vh) = ( fu, vh) + 2(u(k,l−1)
h

, u(k,l−1)
h

, vh),

1(u(k,l)
h

, @ℎ) = 0,

for any vh ∈ (*ℎ)2 and @ℎ ∈ %ℎ.

END
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Step 2:



Find \ (:) ∈ ,ℎ such that

2̃(u(k−1)
h

, \
(:)
ℎ
, Fℎ) + 0̃(\ (:)ℎ , Fℎ) = ( 5\ , Fℎ),

for any Fℎ ∈ ,ℎ.

END

4.1.4. Finite Element Discretization. Now, the Equations in (3.7) still hold. This

being said, for D(;)1ℎ , D
(;)
2ℎ ∈ *ℎ, ?

(;)
ℎ
∈ %ℎ and \ (;)ℎ ∈ ,ℎ we want to obtain the coefficients

D
(;)
1ℎ , D

(;)
2ℎ ( 9 = 1, ..., #1D), ? (;)ℎ ( 9 = 1, ..., #1?) and \ (;)ℎ ( 9 = 1, ..., #1\) to approximate the

velocity u, the pressure ? and the temperature \ using a linear algebraic system.

For step 1, we choose vh = (i8, 0)) (8 = 1, ..., #1D) and vh = (0, i8)) (8 = 1, ..., #1D)

for the first equation and @ℎ = Z8 (8 = 1, ..., #1?) for the second equation for each iteration

step :, ; (: = 1, 2, ...,  ; ; = 1, 2, ..., !). As before, we simplify the equations to make the

matrix formulations more obvious.

#1D∑
9=1
D
(:,;)
1 9

(∫
Ω

mD
(:,;−1)
1ℎ
mG

i 9i83G3H +
∫
Ω

D
(:,;−1)
1ℎ

mi 9

mG
i83G3H +

∫
Ω

D
(:,;−1)
2ℎ

mi 9

mH
i83G3H

+2
∫
Ω

a
mi 9

mG

mi8

mG
3G3H +

∫
Ω

a
mi 9

mH

mi8

mH
3G3H

)
+
#1D∑
9=1
D
(:,;)
2 9

(∫
Ω

mD
(:,;−1)
1ℎ
mH

i 9i83G3H +
∫
Ω

a
mi 9

mG

mi8

mH
3G3H

)
+
#1?∑
9=1

?
(:,;)
9

(
−

∫
Ω

Z 9
mi8

mG
3G3H

)
=

∫
Ω

51i 93G3H +
∫
Ω

D
(:,;−1)
1ℎ

mD
(:,;−1)
1ℎ
mG

i83G3H +
∫
Ω

D
(:,;−1)
2ℎ

mD
(:,;−1)
1ℎ
mH

i83G3H

#1D∑
9=1
D
(:,;)
1 9

(∫
Ω

mD
(:,;−1)
2ℎ
mG

i 9i83G3H +
∫
Ω

a
mi 9

mH

mi8

mG
3G3H

)
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+
#1D∑
9=1
D
(:,;)
2 9

(∫
Ω

mD
(:,;−1)
2ℎ
mH

i 9i83G3H +
∫
Ω

D
(:,;−1)
1ℎ

mi 9

mG
i83G3H +

∫
Ω

D
(:,;−1)
2ℎ

mi 9

mH
i83G3H

+2
∫
Ω

a
mi 9

mH

mi8

mH
3G3H +

∫
Ω

a
mi 9

mG

mi8

mG
3G3H

)
+
#1?∑
9=1

?
(:,;)
9

(
−

∫
Ω

Z 9
mi8

mH
3G3H

)
=

∫
Ω

52i 93G3H +
∫
Ω

D
(:,;−1)
1ℎ

mD
(:,;−1)
2ℎ
mG

i83G3H +
∫
Ω

D
(:,;−1)
2ℎ

mD
(:,;−1)
2ℎ
mH

i83G3H

+
∫
Ω

21\
(:−1)
ℎ

i83G3H

#1D∑
9=1
D
(:,;)
1 9

(
−

∫
Ω

mi 9

mG
Z83G3H

)
+
#1D∑
9=1
D
(:,;)
2 9

(
−

∫
Ω

mi 9

mH
Z83G3H

)
= 0

To set up the linear system, retaining the definitions of �1 to �8, b1, b2 and the zero matrices

and vectors from the previous section, we get

�u,? =

©«
2�1 + �2 �3 �5

�4 2�2 + �1 �6

�7 �8 O1

ª®®®®®¬
and bu,? =

©«
b1

b2

0

ª®®®®®¬
. (4.1)

For the parts within the Newton iteration, we define

�#1 =

[∫
Ω

mD
(:,;−1)
1ℎ
mG

i 9i83G3H

]#1D
8, 9=1

, �#2 =

[∫
Ω

D
(:,;−1)
1ℎ

mi 9

mG
i83G3H

]#1D
8, 9=1

,

�#3 =

[∫
Ω

D
(:,;−1)
2ℎ

mi 9

mH
i83G3H

]#1D
8, 9=1

, �#4 =

[∫
Ω

mD
(:,;−1)
1ℎ
mH

i 9i83G3H

]#1D
8, 9=1

,

�#5 =

[∫
Ω

mD
(:,;−1)
2ℎ
mG

i 9i83G3H

]#1D
8, 9=1

, �#6 =

[∫
Ω

mD
(:,;−1)
2ℎ
mH

i 9i83G3H

]#1D
8, 9=1

,
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deriving

�#u,? =

©«
�#1 + �#2 + �#3 �#4 O2

�#5 �#6 + �#2 + �#3 O2

O)2 O)2 O1

ª®®®®®¬
. (4.2)

Furthermore, we define

bT1 =

[∫
Ω

D
(:,;−1)
1ℎ

mD
(:,;−1)
1ℎ
mG

i83G3H

]#1D
8=1

, bT2 =

[∫
Ω

D
(:,;−1)
2ℎ

mD
(:,;−1)
1ℎ
mH

i83G3H

]#1D
8=1

,

bT3 =

[∫
Ω

D
(:,;−1)
1ℎ

mD
(:,;−1)
2ℎ
mG

i83G3H

]#1D
8=1

, bT4 =

[∫
Ω

D
(:,;−1)
2ℎ

mD
(:,;−1)
2ℎ
mH

i83G3H

]#1D
8=1

,

and bT5 =

[∫
Ω

21\
(:−1)
ℎ

i83G3H

]#1D
8=1

,

to generate

bTu,? =

©«
bT1 + bT2

bT3 + bT4 + bT5

0

ª®®®®®¬
. (4.3)

Thus, for each step :, ; (: = 1, 2, ...,  ; ; = 1, 2, ..., !) of the iterations of step 1, we solve

the linear algebraic system

�
(:,;)
u,? x(k,l) = b(k,l)u,?,

where �(:,;)u,? = �u,? + �#u,?, x(k,l) = (D(:,;)1ℎ , D
(:,;)
2ℎ , ?

(:,;)
ℎ
)) and b(k,l)u,? = bu,? + bTu,?.
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Similarly for step 2, we choose the test function Fℎ = k8 (8 = 1, ..., #1\) in each

iteration : (: = 1, 2, ...,  ) and derive the simplified equation

#1\∑
9=1
\
(:)
9

(∫
Ω

D
(:−1)
1ℎ

mk 9

mG
k83G3H +

∫
Ω

D
(:−1)
2ℎ

mk 9

mH
k83G3H

+
∫
Ω

22
mk 9

mG

mk 9

mG
3G3H +

∫
Ω

22
mk 9

mH

mk 9

mH
3G3H

)
=

∫
Ω

5\k 93G3H.

Thus, exploiting the previous definitions, we get

�\ = �10 + �11 and b\ = b3. (4.4)

For the parts within the iteration, we define

�#9 =

[∫
Ω

D
(:−1)
1ℎ

mk 9

mG
k83G3H

]#1\
8, 9=1

and �#10 =

[∫
Ω

D
(:−1)
2ℎ

mk 9

mH
k83G3H

]#1\
8, 9=1

to generate

�#\ = �#9 + �#10. (4.5)

Hence, in step 2 for each iteration : (: = 1, 2, ...,  ), we solve the linear algebraic system

�
(:)
\
\
(:)
ℎ
= b\ ,

where �(:)
\
= �\ + �#\ .

4.1.5. Algorithms. Throughout the derivation of the decoupled finite element

method, we revealed the similarity of the coupled and decoupled scheme. Nonetheless,

we have to alter Algorithms 4 and 5. First of all, bT5 consists of a constant coefficient

function and a finite element coefficient function. Thus, we modify Algorithm 4 into Al-

gorithm 6. Next, the boundary condition for the velocity u in the Navier-Stokes equations
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Algorithm 6 Assemble the linearized load vector bT5

1: function assemblelinearizedvector( 5 D=_2, 5 D=_ 51ℎ, ..., ?, @, A, B)
2: 1 = B?0AB4(#1, 1)
3: for = = 1, ..., # do
4: for V = 1, ..., #;1 do
5: Compute A =

∫
�=
2
mA+B 51ℎ
mGA mHB

m ?+@k=V
mG?mH@

3G3H

6: Add A to 1()1 (V, =), 1)
7: end for
8: end for
9: end function

Algorithm 7 Treat Dirichlet boundary condition for the velocity u

1: function boundarytreatment( 5 D=_61, 5 D=_62, ..., �
(:,;) , b(k,l) , #1)

2: for = = 1, ..., =D<14A_> 5 _1>D=30AH=>34B_ 5 >A_u do
3: Set 8 = index of current boundary node and
4: �(:,;) (8, :) = 0
5: �(:,;) (#1 + 8, :) = 0
6: �(:,;) (8, 8) = 1
7: �(:,;) (#1 + 8, #1 + 8) = 1
8: b(k,l) (8) = 5 D=_61(%1 (:, 8))
9: b(k,l) (#1 + 8) = 5 D=_62(%1 (:, 8))
10: end for
11: end function

Algorithm 8 Treat Dirichlet boundary condition for the temperature \

1: function boundarytreatment( 5 D=_ℎ, ..., �(:) , b(k))
2: for = = 1, ..., =D<14A_> 5 _1>D=30AH=>34B_ 5 >A_\ do
3: Set 8 = index of current boundary node and
4: �(:) (8, :) = 0
5: �(:) (8, 8) = 1
6: b(k) (8) = 5 D=_ℎ(%1 (:, 8))
7: end for
8: end function
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and for the temperature \ in the convection-diffusion equation need to be treated separately.

To do this, we split Algorithm 5 into the two Algorithms 7 and 8 and apply them to �(:,;)u,? ,

b(k,l)u,? and �(:)\ , b(k)\ , respectively.

To realize the derived decoupled finite element method, we structure our MATLAB

code in the following way.

(i) Generate matrix �u,? and vector bu,? as in (4.1) using Algorithms 1 and 2

(ii) Generate matrix �\ and vector b\ as in (4.4) using Algorithms 1 and 2

(iii) FOR : = 1, 2, ...,  (begin iteration for decoupling)

(iv) FOR ; = 1, 2, ..., ! (begin Newton iteration for linearization)

(v) Generate matrix �#u,? as in (4.2) using Algorithm 3

(vi) Generate vector bTu,? as in (4.3) using Algorithms 4 and 6

(vii) Set �(:,;)u,? = �u,? + �#u,? and b(k,l) = bu,? + bTu,?

(viii) Deal with the Dirichlet boundary condition u = gu on mΩ using Algorithm 7

(ix) Fix pressure ? (:,;)
ℎ

at one point in Ω

(x) Solve �(:,;)u,? x(k,l) = b(k,l)u,? using the backslash operator

(xi) END

(xii) Generate matrix �#\ as in (4.5) using Algorithm 3

(xiii) Set �(:)
\
= �\ + �#\

(xiv) Deal with the Dirichlet boundary condition \ = 6\ on mΩ using Algorithm 8

(xv) Solve �(:)
\
\ (:) = b\ using the backslash operator

(xvi) END
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To clarify, step (i), (iv) - (xi) correspond to step 1 and step (ii), (xii) - (xv) to step 2. Thus,

their order could be switched or they could be executed in parallel if suitable software is

used. As we observed before, steps (i) and (ii) are independent of the iteration because they

do not contain D(:−1)
1ℎ , D(:−1)

2ℎ or \ (:−1)
ℎ

. Hence, �u,?, bu,?, �\ and b\ will be generated once

and not altered within the loop. Contrariwise, all the other steps have to be executed in each

loop.

4.2. DERIVATION OF THE SEQUENTIAL APPROACH

Another way of realizing the decoupled scheme is dealing with step 1 and step 2

sequentially, not in parallel. In other words, in the second step the solution of the first step

is used. To avoid unnecessary repetition, we use the same definitions as in the previous

section and just state the resulting formulations.

4.2.1. Weak Formulation. Depending on which variable our main focus is on, we

either solve for the velocity u and pressure ? first and then, based on that, for the temperature

\ or we solve for \ first and then for u and ?. The weak formulations of both ways are given

as follows.

Initial guess: \ (0)

FOR : = 1, 2, ...,  

Step 1:



Find u(k) ∈
(
�1(Ω)

)2 and ? (:) ∈ !2(Ω) such that

2(u(k) , u(k) , v) + 0(u(k) , v) + 1(v, ? (:)) − (e221\
(:−1) , v) = ( fu, v),

1(u(k) , @) = 0,

for any v ∈
(
�1

0 (Ω)
)2

and @ ∈ !2(Ω).
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Step 2:



Find \ (:) ∈ �1(Ω) such that

2̃(u(k) , \ (:) , F) + 0̃(\ (:) , F) = ( 5\ , F),

for any F ∈ �1
0 (Ω).

END

Initial guess: u(0)

FOR : = 1, 2, ...,  

Step 1:



Find \ (:) ∈ �1(Ω) such that

2̃(u(k−1) , \ (:) , F) + 0̃(\ (:) , F) = ( 5\ , F),

for any F ∈ �1
0 (Ω).

Step 2:



Find u(k) ∈
(
�1(Ω)

)2 and ? (:) ∈ !2(Ω) such that

2(u(k) , u(k) , v) + 0(u(k) , v) + 1(v, ? (:)) − (e221\
(:) , v) = ( fu, v),

1(u(k) , @) = 0,

for any v ∈
(
�1

0 (Ω)
)2

and @ ∈ !2(Ω).

END

In addition, for this technique we observe a different kind of flexibility. If an approximation

either of the velocity u and the pressure ? or of the temperature \ is already known or we

are only interested in one of the variables, the scheme can be easily adjusted and the running

time performance increased.

4.2.2. Galerkin Formulation and Newton Iteration. Using the same finite el-

ement spaces and global basis functions as before and nonlinearizing the Navier-Stokes

equations with the Newton iteration, the following Galerkin formulations are obtained.
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Solving for the velocity u and the pressure ? first yields

Initial guess: \ (0)
ℎ

FOR : = 1, 2, ...,  

Step 1:



Initial guess: u(k,0)
h

FOR ; = 1, 2, ..., !

Find u(k,l)
h
∈ (*ℎ)2 and ? (:,;)

ℎ
∈ %ℎ such that

2(u(k,l)
h

, u(k,l−1)
h

, vh) + 2(u(k,l−1)
h

, u(k,l)
h

, vh) + 0(u(k,l)h
, vh)

+1(vh, ? (:,;)ℎ
) − (e221\

(:−1)
ℎ

, vh) = ( fu, vh) + 2(u(k,l−1)
h

, u(k,l−1)
h

, vh),

1(u(k,l)
h

, @ℎ) = 0,

for any vh ∈ (*ℎ)2 and @ℎ ∈ %ℎ.

END

Step 2:



Find \ (:) ∈ ,ℎ such that

2̃(u(k)
h
, \
(:)
ℎ
, Fℎ) + 0̃(\ (:)ℎ , Fℎ) = ( 5\ , Fℎ),

for any Fℎ ∈ ,ℎ.

END,

and vice versa, solving for the temperature \ first provides

Initial guess: u(0)
h

FOR : = 1, 2, ...,  

Step 1:



Find \ (:) ∈ ,ℎ such that

2̃(u(k−1)
h

, \
(:)
ℎ
, Fℎ) + 0̃(\ (:)ℎ , Fℎ) = ( 5\ , Fℎ),

for any Fℎ ∈ ,ℎ.
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Step 2:



Initial guess: u(k,0)
h

FOR ; = 1, 2, ..., !

Find u(k,l)
h
∈ (*ℎ)2 and ? (:,;)

ℎ
∈ %ℎ such that

2(u(k,l)
h

, u(k,l−1)
h

, vh) + 2(u(k,l−1)
h

, u(k,l)
h

, vh) + 0(u(k,l)h
, vh)

+1(vh, ? (:,;)ℎ
) − (e221\

(:)
ℎ
, vh) = ( fu, vh) + 2(u(k,l−1)

h
, u(k,l−1)

h
, vh),

1(u(k,l)
h

, @ℎ) = 0,

for any vh ∈ (*ℎ)2 and @ℎ ∈ %ℎ.

END

END.

4.2.3. Finite Element Discretization. Either way, compared to the parallel ap-

proach, the modification of the equations of the linear algebraic system and, therefore, of

the matrix formulation is small. If we solve for the velocity u(k)
h

and the pressure ? (:)
ℎ

first,

we have to change �#9 and �#10 to

�#9 =

[∫
Ω

D
(:)
1ℎ
mk 9

mG
k83G3H

]#1\
8, 9=1

and �#10 =

[∫
Ω

D
(:)
2ℎ
mk 9

mH
k83G3H

]#1\
8, 9=1

.

On the other hand, if we solve for the temperature \ (:)
ℎ

first, we change bT5 to

bT5 =

[∫
Ω

21\
(:)
ℎ
i83G3H

]#1D
8=1

.

4.3. NUMERICAL EXAMPLE

The purpose of this section is to verify our derivation of the decoupled finite element

methods by a numerical example. To make the results comparable to the results of Section

3, we solve the same Boussinesq Equations (3.12). We recall that the analytical solutions
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were given by

D1 = G
2H2 + 4−H,

D2 = −
2
3
GH3 + 2 − c sin(cG),

? = −(2 − c sin(cG)) cos(2cH), and

\ = 4G+H.

Again, Equation (3.12) is solved on the domain Ω = [0, 1] × [−0.25, 0] for six different

meshes with edge sizes ℎ ∈
{ 1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128

}
, as shown in Figure 3.2. The gained

results are stated in Tables 4.1, 4.2, 4.3 and 4.4 for the maximum error, the !∞ norm error,

Table 4.1. The maximum errors and corresponding convergence rate of decoupled parallel
Galerkin FEM for the steady Boussinesq Equations (3.12) with Taylor-Hood finite elements
for velocity u and pressure ? and quadratic finite elements for temperature \

1
ℎ

MaxError u Rate MaxError ? Rate MaxError \ Rate
4 1.4696 · 10−3 − 6.0149 · 10−1 − 2.6162 · 10−5 −
8 4.5401 · 10−4 1.6946 2.0711 · 10−1 1.5381 1.9435 · 10−6 3.7507
16 3.7082 · 10−5 3.6139 5.5743 · 10−2 1.8935 1.1358 · 10−7 4.0969
32 2.3809 · 10−6 3.9612 1.3928 · 10−2 2.0008 8.5492 · 10−9 3.7318
64 1.8440 · 10−7 3.6906 3.4684 · 10−3 2.0057 5.9340 · 10−10 3.8487
128 2.1410 · 10−8 3.1065 8.6461 · 10−4 2.0042 3.8963 · 10−11 3.9288

Table 4.2. The !∞ errors and corresponding convergence rate of decoupled parallel Galerkin
FEM for the steady Boussinesq Equations (3.12) with Taylor-Hood finite elements for
velocity u and pressure ? and quadratic finite elements for temperature \

1
ℎ

InfError u Rate InfError ? Rate InfError \ Rate
4 1.1759 · 10−2 − 3.7781 · 10−1 − 3.0632 · 10−4 −
8 1.6853 · 10−3 2.8026 1.3616 · 10−1 1.4724 4.0349 · 10−5 2.9244
16 2.0224 · 10−4 3.0589 4.5862 · 10−2 1.5699 5.1810 · 10−6 2.9612
32 2.5167 · 10−5 3.0065 1.2533 · 10−2 1.8716 6.5635 · 10−7 2.9807
64 3.1048 · 10−6 3.0190 3.2510 · 10−3 1.9468 8.2594 · 10−8 2.9904
128 3.8464 · 10−7 3.0129 8.2650 · 10−4 1.9758 1.0359 · 10−8 2.9952
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Table 4.3. The !2 errors and corresponding convergence rate of decoupled parallel Galerkin
FEM for the steady Boussinesq Equations (3.12) with Taylor-Hood finite elements for
velocity u and pressure ? and quadratic finite elements for temperature \

1
ℎ

L2Error u Rate L2Error ? Rate L2Error \ Rate
4 2.7603 · 10−3 − 8.2694 · 10−2 − 6.9312 · 10−5 −
8 3.5640 · 10−4 2.9532 2.2577 · 10−2 1.8729 8.5992 · 10−6 3.0108
16 4.4016 · 10−5 3.0174 8.6669 · 10−3 1.3813 1.0718 · 10−6 3.0042
32 5.4798 · 10−6 3.0058 2.4764 · 10−3 1.8073 1.3389 · 10−7 3.0009
64 6.8421 · 10−7 3.0016 6.5584 · 10−4 1.9168 1.6733 · 10−8 3.0002
128 8.5497 · 10−8 3.0005 1.6841 · 10−4 1.9613 2.0916 · 10−9 3.0001

Table 4.4. The �1 errors and corresponding convergence rate of decoupled parallel FEM
for the steady Boussinesq Equations (3.12) with Taylor-Hood finite elements for velocity u
and pressure ? and quadratic finite elements for temperature \

1
ℎ

H1Error u Rate H1Error ? Rate H1Error \ Rate
4 8.0560 · 10−2 − 2.3556 · 100 − 2.6175 · 10−3 −
8 2.0429 · 10−2 1.9795 1.2648 · 100 0.8972 6.5321 · 10−4 2.0025
16 5.0681 · 10−3 2.0111 6.3069 · 10−1 1.0039 1.6323 · 10−4 2.0006
32 1.2623 · 10−3 2.0054 3.1369 · 10−1 1.0076 4.0804 · 10−5 2.0001
64 3.1523 · 10−4 2.0016 1.5658 · 10−1 1.0024 1.0201 · 10−5 2.0000
128 7.8782 · 10−5 2.0004 7.8254 · 10−2 1.0007 2.5502 · 10−6 2.0000

the !2 norm error and �1 semi-norm error, respectively. At first glance, we recognize that

those results coincide with the results of the previous section. Additionally, we get exactly

the same results if we use the sequential techniques. Therefore, no matter which scheme

we use, we solve the given Boussinesq equations with optimal convergence rates.

4.4. EVALUATION OF INTRODUCED METHODS

Finally, to summarize our findings, we contrast the derived methods. As we do

not use parallel coding in our MATLAB realization, the measurement of the CPU time

is unnecessary. Therefore, we analyze the decoupled schemes one by one in terms of

iteration performance. That means, we solve the example in Section 4.3 three times
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(a) Error of the velocity u (b) Error of the pressure ? (c) Error of the temperature \

Figure 4.1. The maximum error of the velocity u, the pressure ? and the temperature \ in
each iteration step : (: = 1, 2, ..., 5) of the decoupled parallel FEM with mesh edge size
ℎ = 1

32

using three different methods, and for each method we calculate after each iteration step :

(: = 1, 2, 3, 4, 5) the maximum errors max|u − uh |, max|? − ?ℎ | and max|\ − \ℎ |. The

resulting plots for the mesh edge size ℎ = 1
32 are shown in Figures 4.1, 4.2 and 4.3.

We start with the parallel decoupled scheme derived in Section 4.1. After the first

iteration, the maximum error of the velocity u amounts to 2.3208 · 10−4. While this error is

unacceptably high, a rapid drop can be observed after the second iteration to 8.6436 · 10−6

and then 2.3809 · 10−6 for : = 3, which is already the optimal error stated in Table 4.1.

The same pattern can be found for the pressure ?, where we start at 1.7287 · 10−1 after

the first iteration, drop to 1.4035 · 10−2 and reach the optimal error 1.3928 · 10−2 after the

third iteration. For the temperature \, we measure the steepest decline from the first to

the second iteration. The maximum errors are 2.1146 · 10−2, 9.7283 · 10−7, 3.5588 · 10−8

and 8.5492 · 10−9 for : = 1, 2, 3 and 4, respectively. Thus, we need one more iteration
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(a) Error of the velocity u (b) Error of the pressure ? (c) Error of the temperature \

Figure 4.2. The maximum error of the velocity u, the pressure ? and the temperature \ in
each iteration step : (: = 1, 2, ..., 5) of the decoupled sequential FEM with mesh edge size
ℎ = 1

32 , where we solve the Navier-Stokes equations first

(a) Error of the velocity u (b) Error of the pressure ? (c) Error of the temperature \

Figure 4.3. The maximum error of the velocity u, the pressure ? and the temperature \ in
each iteration step : (: = 1, 2, ..., 5) of the decoupled sequential FEM with mesh edge size
ℎ = 1

32 , where we solve the convection-diffusion equation first
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step to reach the optimal error, but we observe that the difference between the third and

the fourth iteration step is negligibly low. In conclusion, for the parallel decoupled finite

element method aiming for sufficiently accurate results, the maximum number of iterations

 should not be higher than 4, in terms of efficiency advisably set as 3.

In Section 4.2 two decoupled methods, distinguishable by the equation which is first

solved, were derived. Figure 4.2 shows the maximum error after each iteration step for the

sequential decoupled finite element method solving the Navier-Stokes equations first. After

the first iteration step, the velocity u and the pressure ? exhibit errors of 2.3208 · 10−4 and

1.7287 · 10−1, respectively, exactly as observed for the parallel approach. As expected, the

error for the temperature \ is with 9.7283 · 10−7 considerably smaller than the one for the

parallel approach. Furthermore, for all variables the optimal error as stated in Table 4.1 is

reached after the second iteration.

Contrariwise, using the sequential decoupled finite element method solving the

convection-diffusion equation first, for \ the same maximum error 2.1146 · 10−2 at : = 1

as in the parallel approach is observable (see Figure 4.3). For u and ? the reduced errors

amount to 8.6436 · 10−6 and 1.4035 · 10−2, respectively, and the optimal errors are reached

after the second iteration step, again. Similar to the parallel approach, \ needs one iteration

step more as it shows the errors 3.5588 · 10−8 and 8.5492 · 10−9 for : = 2 and 3. Therefore,

the maximum number of iterations  should not be higher than 3 and advisably set as 2 for

both sequential decoupled finite element methods.

Additionally, if the variables of interest are either only the velocity u and the

pressure ? or only the temperature \, it might be a preferable option to choose  = 1 and

the corresponding sequential approach as the loss in accuracy is low compared to the gain

in efficiency. On the other hand, if we care about both accuracy and efficiency we can

choose  = 2 and the corresponding sequential approach, but stop after step 1 in the second

iteration. This way, we solve one linear algebraic system less compared to the original

approach.
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5. CONCLUSIONS

In this work, we have designed two decoupled finite element methods for a general-

ized steady two-dimensional Boussinesq problem with Dirichlet boundary condition. We

considered the derivation of the standard Galerkin finite element method using Taylor-Hood

finite elements for the fluid variables and quadratic finite elements for the temperature vari-

able as a foundation for the new decoupling methods. This coupled method was applied to

a numerical example and the error convergence in different norms was measured.

The idea of decoupling the original problem into the Navier-Stokes equations and

a parabolic problem was realized by introducing a new iteration and solving the equations

either in parallel or sequentially while all other parameters remained the same. During the

derivation, the increased flexibility and convenience of the newmethods came to light. After

confirming the error convergence of the new methods in different norms by the numerical

example, the performance of the decoupled schemes was judged by the necessary number

of iterations. Three iteration steps for the parallel and two iteration steps for the sequential

approach turned out to be recommendable. Especially for the sequential decoupled finite

element method, the performance could be improved if we are mainly focused on one

specific variable.

Ensuing works could not only realize the derived parallel decoupled finite element

method using parallel coding and evaluating the CPU time, but also prove the existence

and uniqueness of the solution of the derived methods and analyze their stability and

convergence.
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