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ABSTRACT 

In disaster/battlefield applications, there may not be any centralized network that 

provides a mechanism for different nodes to connect with each other to share important 

data. In such cases, we can take advantage of an opportunistic network involving a 

substantial number of mobile devices that can communicate with each other using 

Bluetooth and Google Nearby Connections API(it uses Bluetooth, Bluetooth Low Energy 

(BLE), and Wi-Fi hotspots) when they are close to each other. These devices referred to as 

nodes form a Delay Tolerant Network (DTN), also known as an opportunistic network. As 

suggested by its name, DTN can tolerate delays and significant loss of data while 

forwarding a message from source to destination using store and forward paradigm. In 

DTN, it is of critical importance that the network is not completely flooded and also the 

message is not tampered or corrupted and readable only to the destined node.   

Three algorithms have been implemented in the Android platform. The first 

algorithm [1] focuses on intelligent data transfer based on each node’s interest and 

encourages each node to participate in data transfer by providing incentives and keeping 

track of the trustworthiness of each node. The second algorithm [2] focuses on the security 

of the transferred data by fragmenting both data- and key-shares with some redundancy 

and the destination node can resurrect the original data from the predefined minimum key- 

and data-shares. The third algorithm focusses on using object detection models and 

interest-based authorization using [3] to securely transfer and access data across DTN. The 

corrupted nodes are identified by using one-way keychain hashes created by source/relay 

nodes for a message which are validated at the destination node. 
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1. INTRODUCTION 

In recent years, there has been a tremendous increase in the number of mobile 

devices, and these devices have the capability to communicate with each other using peer-

to-peer technologies such as Bluetooth, BLE, and Wi-Fi hotspots. In disaster/battlefield 

scenarios there may not be any centralized network like LAN to facilitate connection 

among these devices. In such cases, it is necessary to pass on important information from 

the source device to the destination using wireless links. In such cases, the mobile devices 

can form their own wireless opportunistic network referred to as Delay Tolerant Networks 

(DTN). DTN is formed by a collection of nodes and each node interacts with other nodes 

only when they are within a short distance. Unlike traditional end-to-end connections, DTN 

has intermittent connections only when two nodes are nearby each other. Instead of seeing 

the intermittent connection as a disadvantage, DTN utilizes it for sharing relevant 

information between the nodes to forward the message to the destination node. Thus, 

message transfer from a source node to the destination may pass on through various 

intermediary nodes resulting in delay and significant data loss.  

In this thesis, we focus on the implementation details of three algorithms; two are 

based on [1] and [2] and the third one is newly proposed. Reputation and Incentive-based 

DTN [1] focuses on intelligent data transfer between nodes, based on the interests set by 

the node and interests accumulated as the result of interaction with other nodes. Incentives 

are provided to encourage nodes to participate in data transmission. Distributed Reputation 

Metric (DRM) is like a local database maintained by each node, which contains a value 

corresponding to the trustworthiness of each encountered node based on the message 
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received from it, the quality of the message, the message’s annotation relevance, etc. When 

the nodes connect, the DRM is shared between them. This scheme reduces flooding of the 

network, creates multiple copies of the original data based on the interests between two 

connected nodes, and ensures that all the nodes participate in the data transmission and also 

try to suppress corrupted nodes.  

The secure forwarding through fragmentation in DTN [2] overcomes delay, data 

loss, and insecure data transfer between nodes by fragmenting and creating redundant data- 

and key-shares. Thus, the destination node can resurrect the original data if it contains a 

minimum number of predefined key- and data-shares. 

Lastly, in the newly proposed DTN algorithm, we have used Attribute-Based 

Encryption(ABE) [3] to design interest-based authorization to securely transfer and access 

data across DTN. We also keep track of intermediate nodes in the message path to identify 

malicious nodes using µTESLA algorithm [4]. Furthermore, we have used deep learning 

object detection models on an Android device to reduce the message size by identifying 

objects of interest from the device’s camera.    

The thesis is organized in the following way. Section 2 provides an overview of 

related work in the field of data routing in DTN and implementation of  DTN and image 

object detection in the Android platform. Section 3 provides a brief introduction to various 

APIs and libraries that have been used in the implementation. Section 4 provides the 

background to understand the actual implementation, this involves explaining the 

algorithm and overall architecture of the system, as well as the implementation of DTN 

and object detection in the Android app with various modules, message formats, and 

screenshots. Section 5 provides a conclusion for the thesis.  
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2. LITERATURE REVIEW 

2.1. CHITCHAT 

Doug et al. [5] proposed a novel solution to achieve a high message delivery rate 

without flooding the DTNs. In this paper, each node has a set of interests called Direct 

Interests, which represents the interests of a node. Transient Interests of a node represents 

the set of interests that the node accumulated by meeting other nodes. When two nodes 

interact with each other, a decay function is applied to the interests. Next, they exchange 

the interests, and the growth function is applied to the modified new set of interests. Each 

created message is annotated with a set of keywords or interests. Once the growth function 

has been completed, the routing protocol is applied to decide whether a message with 

certain interests needs to be transferred to the connected node. This enables the message to 

have a high probability of reaching the set of users who are interested in that message. 

2.2. REPUTATION AND CREDIT-BASED INCENTIVE MECHANISM 

Himanshu et al. [1] proposed an incentive and reputation model on top of ChitChat 

algorithm [5]. In this scheme, the messages are annotated with keywords describing them 

and the relay nodes are encouraged to add more keywords so that the message contains real 

time information. This is especially useful in volatile situations like disaster/battlefield 

environment. The incentive model encourages users to participate in message transfer 

without turning into selfish nodes to preserve energy and storage capacity. The reputation 

model prevents the nodes from adding inappropriate keywords to the message.  
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2.3. MOBICENT 

Chen et al. [6] proposed an incentive mechanism on top of existing DTN routing 

protocols. By providing incentives, even selfish nodes are encouraged to participate in 

relaying the message to the destination. Mobicent assumes that the underlying system uses 

cryptographic techniques like Onion Routing to prevent free riding, any strategies by 

participants to override the system, and disputes among relays and clients. A Trusted Third 

Party (TTP) calculates the payment that will be charged to the client, and two algorithms 

are available to the client to choose from. One minimizes the message delay and the other 

minimizes the payment. One of the limitations of Mobicent is that it uses TTP for both key 

management and payment services to relays. 

2.4. RELICS 

Uddin et al. [7] proposed a novel scheme that considers the trade-off between 

energy consumption and the cooperation of nodes for data transmission in DTN. When a 

message is delivered to the destination node, the destination node assigns a rank or real 

value to a set of relay nodes for that message and it will be shared with other devices. This 

rank directly impacts the node in a way that relay nodes favor to forward message from a 

high-ranking node than the ones with a lower rank. This study [7] also provides an 

algorithm for intelligent transfer of a certain number of messages based on energy 

consumption. Since most of the nodes are either mobile or sensor devices it is really 

important to give utmost importance to the energy savings (as they have limited energy) 

rather than giving top priority to forwarding the messages in the network. 
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2.5. MOBIGAME  

Wei et al. [8] proposed a user-centric, reputation-based incentive protocol for DTN. 

This scheme uses game theory to decide whether a node should receive or forward a given 

message. Each message has a limited time to reach a destination, which is called Time To 

Live(TTL). If a message received by a relay node has expired it is called a bad bundle. Each 

relay node gets a reward only if it successfully forwards the message to the other relay 

nodes or destination and provides proof of that to its predecessor. Using game theoretical 

analysis, [8] proves that each node transfers only the good bundle to the relay nodes and 

avoids being a malicious node to receive rewards. 

2.6. MULTI-PARTY ENCRYPTION(MPE) 

R. Cabaniss et al. [9] proposed a novel scheme for security in DTN. In traditional 

end-to-end connection, public-key cryptography is easily achieved by using a trusted key 

repository to verify which node is associated with a particular public key. However, in 

DTN, a node may not have access to the public key of all nodes and there is no trusted key 

repository. Thus, [9] proposes two schemes to ensure security: i) Chaining and ii) 

Fragmentation. Chaining is similar to onion encryption, in which the source message is 

encrypted with multiple public keys of relay nodes, and when each relay node receives the 

message, it removes its layer of encryption and replaces it by encrypting using the public 

key of the destination node if it is available. The node otherwise replaces it by encrypting 

using the public key of any other relay node. This increases security but reduces delivery 

time. In fragmentation, multiple copies of the original data are created. Threshold 

encryption is used in which n keys are created and k keys are required to retrieve the 
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original message, where k<n. Each message copy is encrypted with a key-share and passed 

along the network. When the destination receives k key fragments, it can retrieve the 

original data.  

2.7. SECURE SECRET SHARING 

 Parakh et al. [10] proposed a secure secret sharing scheme on top of Shamir’s 

secret sharing algorithm. The proposed method can hold k-2 secrets of size b into n key-

shares. The destination requires at least k key-shares to retrieve the secrets, where k < n. 

This method is especially useful in the DTN environment as the data loss is high and the 

connection may be interrupted at any time. The secrets may store the private key to decrypt 

the original message or other vital information related to the message. 

2.8. INFRASTRUCTURE MODE BASED DTN ON ANDROID DEVICES 

Ippisch et al. [13] explored the use of Wi-Fi hotspots in Android devices to create 

a DTN network from a set of devices. Since the Android system requires user intervention 

to accept connections in Wi-Fi Direct and Bluetooth, this study uses Wi-Fi hotspots, which 

can connect and transfer data automatically without user intervention in the background. 

The Spray and Focus routing protocol are used with TTL for each message. The application 

also makes use of GPS services, which helps to formulate location-based rules to enable 

hotspots that in turn help to conserve battery. When two devices are connected they 

exchange meta-information that contains information about the network, and the meta-

information helps to make optimized message-forwarding decisions. Finally, the study [13] 
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focuses on analyzing energy consumption, transmission range and speed of Wi-Fi hotspots, 

and the encryption and decryption speed in the varying devices and data sizes.  

2.9. OPTIMIZING CAUCHY REED SOLOMON-CODES 

Cauchy Reed Solomon (CRS) codes were already introduced in the 1990s; 

Optimized CRS [11] tried to improve its performance drastically so that a small number of 

computations are needed to perform, which in turn saves energy. CRS codes are used to 

create n fragments of a message, and from that, we need at least k fragments to resurrect 

the original message, where k<n. This data fragmentation comes in handy especially in 

DTN, and this study helps to reduce the energy consumption in creating fragments and 

retrieving the original data as the mobile devices have limited battery power at any given 

time. 

2.10. SECURE FORWARDING THROUGH FRAGMENTATION IN DELAY-

TOLERANT NETWORKS 

Shudip et al. [2] proposed a scheme to forward messages in a secure way in DTN, 

especially in disaster/battlefield environment where multiple parties may work together. In 

such scenarios, it is difficult to use public-private cryptography as one group may not have 

access to the public key of other groups as there will be no central infrastructure. To 

overcome this limitation, the study proposed to encrypt the message and fragment both key 

and encrypted message with some redundancy before passing along the DTN. Since DTN 

has high data loss, this redundancy helps the destination node to retrieve the original 

message with fewer key and data fragments than created at the source.  
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2.11. DTN ON ANDROID PHONES 

Yanggratoke et al. [12] were one of the first to implement DTN in the Android 

platform. They assume a simple DTN routing protocol and explain the overall system 

architecture for Android implementation. The architecture includes a background service, 

a user interface to interact with the service, and an Android TCP/IP stack which interacts 

back and forth with the background service. The authors discuss the challenges of 

implementing DTN in the Android system. Performance in terms of bandwidth and battery 

power consumption is also analyzed. 

2.12. CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION 

The study [3] proposed a scheme in which messages are encrypted with policy and 

it can be decrypted if the attributes or condition specified in the policy are satisfied at the 

destination. Each user has a private key representing a set of attributes and the message is 

encrypted with a policy over these attributes.  The authors provide various optimization 

strategies to reduce decryption time. The authors guarantee that this scheme is resistant to 

collusion attacks. This scheme is closely similar to traditional access control protocol such 

as Role-Based Access Control(RBAC). 

2.13. AI BENCHMARK: DEEP NEURAL NETWORKS ON ANDROID 

The authors [14] explored various mobile hardware chipsets such as Qualcomm, 

HiSilicon Chipsets, and MediaTek Chipsets which provide dedicated APIs to run deep 

neural networks using hardware acceleration. Various neural network frameworks for 

mobile devices such as TensorFlow Lite, Theano, and Caffe2 are explored and their 
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advantages and disadvantages are described briefly. Android Neural Network 

API(NNAPI) provides a layer of abstraction, enabling developers to run neural network 

operations on different chipsets without having to write separate code for each chipset 

using its designated API. NNAPI provides a unified framework for working with hardware 

for neural network operations. Finally, various deep learning tests such as image 

recognition, face recognition, and segmentation are performed with different convolutional 

neural networks such as Inception-V3, and MobileNet on different mobile devices with 

varying RAM and hardware chipsets. A detailed comparison report is presented at the end. 
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3. API’S AND LIBRARIES  

Some of the important APIs and libraries that helped to fasten the implementation 

and improve the efficiency of the overall system and core components of the 

implementation are discussed here. 

3.1. GOOGLE NEARBY CONNECTIONS API 

Google Nearby Connections is an API developed by Google for making peer-to-

peer networking with Android devices simple and secure and performing data transfers at 

a high bandwidth. Traditionally, developers need to write separate code to make use of 

Bluetooth, BLE and Wi-Fi hotspots. It is a very tiresome task and end users’ intervention 

is needed to accept connections from a nearby device. To solve that problem, this API 

leverages the strength of Bluetooth, BLE and Wi-Fi hotspots while circumventing their 

respective weaknesses. It performs advertising, discovery, and connections with nearby 

devices in a fully offline peer-to-peer manner. Furthermore, based on a connection with a 

nearby device, it automatically decides whether to use Bluetooth or Wi-Fi Hotspots and 

end-user intervention is not needed to switch them on. Using this API, it is possible to send 

a large volume of data between two Android devices at a high speed. 

3.2. JPBC AND JAVA REED-SOLOMON LIBRARY  

Java Pairing-Based Cryptography(JPBC) [15] is an open source library and in our 

implementation, it is used to create public and private keys using Elliptical Cryptography 

and to perform proxy re-encryption which will be explained in section 4. Java Reed-



11 

 

Solomon Library helps to fragment a data into n blocks and at least k blocks are required 

at the destination to retrieve the original data, where k<n. 

3.3. TENSORFLOW OBJECT DETECTION API  

The Tensorflow Object Detection API [16] was built by Google to make the process 

of multiple object detection in a single image as easy as possible. It is built on top of the 

TensorFlow framework and simplifies the process of training and deploying object 

detection models. This API provides a wide range of configuration files that depict the 

layers of Convolutional Neural Networks(CNN) such as MobileNet and Inception models. 

The developer can modify these files to set the training and validation size, threshold value, 

batch size, etc. This API also provides an easy way to perform transfer learning which 

helps to reduce the training time. Once an object detection model is trained, it can be 

converted to the relevant format such as the .pb format or .tflite format. Tflite format stands 

for TensorFlow Lite, which is especially useful for deploying the models in mobile or 

embedded devices.  

3.4. TENSORFLOW LITE 

TensorFlow Lite is a framework which helps to run inference on TensorFlow 

models in mobile, IoT, or embedded devices. It is designed to be lightweight and optimized 

for small devices. The pre-trained models should be converted to TFLite format. TFLite 

format reduces the size of the model and helps to perform inference in limited memory 

constraints. TensorFlow Lite internally uses NNAPI, which in turn helps to optimize the 

process of solving computationally intensive tasks by distributing the workload across on-
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device processors, such as dedicated neural network hardware, graphical processing units 

(GPUs), and digital signal processors (DSPs). In case such dedicated hardware is not 

available in a mobile or embedded device, TensorFlow Lite then requests NNAPI to 

optimize the code to execute requests on the CPU. 

3.5. JAVA REALIZATION FOR CIPHERTEXT-POLICY ATTRIBUTE-BASED 

ENCRYPTION 

Java realization for ciphertext-policy attribute-based encryption [17] provides java 

implementation of [3] for generating public and master key from a set of attributes e.g. 

[‘soldier’, ‘army’, ‘disaster’, ‘flooding’]. The private key is generated from the subset of 

previously used attributes such as [‘army’, ‘soldier’]. The message is encrypted with a 

policy. The policy contains attributes and k out of n feature, where k<n  such as [‘army 

soldier 1of2’]. Thus, the encrypted message can be decrypted if the private key was 

generated with either ‘army’ or ‘soldier’ as one of its attributes. 
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4. DESIGN OVERVIEW & IMPLEMENTATION 

This section provides a design overview and implementation details of three studies 

of DTN algorithms that have been implemented in the Android platform.  

4.1. STUDY 1: REPUTATION AND CREDIT-BASED INCENTIVE MECHANISM 

FOR CONTENT ENRICHMENT IN DTN 

4.1.1. Background. Himanshu et al. [1] proposed an incentive scheme in DTN in 

order to encourage all the nodes to participate in relaying the information to the destination 

nodes. This is important because in real-time scenarios the nodes may turn selfish in order 

to conserve battery and memory, which are limited in mobile devices. Each message has a 

set of keywords or annotations describing it. The incentive provided for each received 

message is calculated based on various factors like the reputation of the source device, 

interest comparison between the message and the receiving device, and the quality of the 

message. Himanshu’s method [1] allows relay nodes to improve the message description 

by adding more content as needed. This is especially suitable in battlefield/disaster 

scenarios, e.g. in a disaster situation an image of a dangerously broken building may be 

sent to the fire department as the destination via relay nodes so that necessary actions can 

be taken by the fire department. As time evolves, relay nodes can add the relevant keywords 

while forwarding this message so that the destination can have appropriate knowledge 

about the current situation. 

 In order to prevent nodes from becoming malicious by adding inappropriate 

keywords for a message, [1] introduced the Distributed Reputation Model (DRM), in which 
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each relay or destination node can rate the source and other relay nodes based on the quality 

of the message, relevance of the keywords, etc.  

The incentive and reputation models are built on top of the DTN routing algorithm 

called ChitChat [5]. ChitChat has been designed for users with small devices like Android 

or iOS smartphones that have the capability to connect with nearby devices. Each user can 

list a set of preferences or interests that describes the user well by listing keywords such as 

“ice-cream”, “trekking”, etc. These interests are called the direct interests of the user. Each 

user also accumulates a set of interests called transient interest, which is the aggregation of 

interests obtained by meeting other nodes and learning their interests, too. This is really 

helpful to get an idea about what kind of users each user meets and this information is 

useful in making message-forwarding decisions. A device is a destination if the message 

keywords are in sync with the direct interests of the device (i.e. user). In ChitChat 

algorithms, two modules play an important role one is the Real-Time Transient Social 

Relationship (RTSR) module and the other is the ChitChat Routing module. Each interest 

is associated with weights, and direct interests always have a minimum weight of 0.5. All 

the interests cannot have a value greater than 1. When two devices with the ChitChat app 

gets connected, the RTSR module is first invoked. The RTSR module performs decay 

function on both direct and transient interests to better reflect their recent relationships with 

other nodes.  

4.1.1.1. Decay algorithm.  When two devices, U and V, are connected with each 

other, the RTSR module is invoked, which in turn executes the decay algorithm in the 

respective devices. Once the interests are updated, the latest interest and their weights are 

exchanged between the devices. The decay algorithm is shown in Figure 4.1. 
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Figure 4.1. Decay Algorithm.  

 

Wn – New weight, Wp – Previous weight, β – Decay constant, Tc – Current 

timestamp, Tl – previous timestamp at which device with interest I was connected.  

This decay function is formulated in such a way that interests with high weights 

reflect that the node frequently meets other nodes with that interest and low weights 

corresponds to the node rarely meeting other nodes of that interest. Once the interests are 

shared, the RTSR module then executes the growth function to update the weightage of its 

interests based on the shared interest obtained from the other device.  

4.1.1.2. Growth algorithm.  The growth algorithm takes 3 factors into account: 

one is the weightage of the interests in the device U at time Ts,  the time duration for which 

the 2 devices are connected Tc – Ts, and finally, a growth dampening factor ѱ  that is based 

on the relationship of interest I in devices U and V. Interest I may be a direct interest in 

both U and V or a direct interest in U and a transient interest in V, while ѱ can take a value 

between [1, 6] depending on various cases such as those mentioned above. Since the  
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Weights can only be between 0 and 1, the min function is used to prevent the interest 

weights from exceeding 1. The Growth algorithm is shown in Figure 4.2. 

Δ – Change in weight, Wv(I) – Weight of interest I in device V, Tv – Time at which 

V established the connection, Ts – Time at which device U and V are connected, ѱ – Growth 

dampening factor, Wn – New weight of interest I in node U, Wp – Previous weight of interest 

I in node U. 

 

 

Figure 4.2. Growth Algorithm.  

 

4.1.1.3. ChitChat routing module.  Once the RTSR module is done, the ChitChat 

routing module is executed to identify relevant messages to forward to the connected 

device. This prevents the device from forwarding messages that have a low probability of 

reaching the destination via the connected relay. It helps to conserve battery in both the 

devices. Each message is annotated with a set of keywords or interests. The sum of weights 

of those interests is calculated in device U and the interest obtained from device V during 

the decay phase. A message is forwarded only when device Sv > Su.. Sv refers to sum of 

interests for message M in device v and Su refers to sum of interests for message M in 

device u. 
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4.1.1.4. Incentive mechanism. The incentive mechanism is credit and reputation-

based. Both of these factors affect the incentives given to a device. This section explains 

the credit-based part. Each node is initialized with a value of incentive tokens that can be 

used for message dissemination and content enrichment. When a source or a relay node 

forwards a message to another relay node, it promises a certain number of incentive token 

from a destination node on the successful delivery of the message. A relay follows the same 

process that a source follows. If a relay A transfers message to relay B, A receives a fraction 

of incentive from B, if B has a high probability of delivering the message to the destination. 

The study [1] explains various factors involved in credit-based incentive calculation.  

4.1.1.1. Distributed Reputation Model (DRM).  The motivation for developing 

this model is to reduce the number of malicious users who might try to add irrelevant tags 

to the message in the pursuit of acquiring more incentive tokens. To overcome this 

problem, a recipient node (another relay node or destination node) can rate the source or 

other relay nodes of a message. The source is rated based on the message quality and added 

tags while the relay node is rated based on any of the tags added as part of content 

enrichment. Rating of a node is the average of ratings of messages received from that node. 

The device shares this rating with the next hop in the path of message traversal to the 

destination. The destination utilizes these ratings to decide the number of incentive tokens 

to be awarded to the delivering node. The study [1], explains in detail about the reputation 

part in incentive calculation.  

4.1.1.2. Data flow between connected devices.  Figure 4.3. displays the data flow 

 between two connected devices, Alice and Bob. Once connected, the RTSR Module is 

invoked, it executes the decay algorithm and shares the interests along with the reputation 
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of the other devices. Once the interests are shared, the growth algorithm is executed and 

relevant messages are transferred to Bob’s device by invoking the message router. These 

executions are performed in Bob’s device as well. Once the messages are received, the 

users can enrich the message by adding relevant tags and also provide ratings for source 

and relays nodes (DRM) with respect to the received message. 

 

 

 Figure 4.3. Flow of Information between the Connected Nodes [1]. 

 

4.1.2. Implementation Details.  The DTN application [1] is implemented using 

the Android operating system and makes use of Google Nearby Communications and 

Bluetooth to transfer message between devices. It works on devices running on Android's 

KitKat (API 19) to Oreo (API 26) version.  

Figure 4.4 displays the home screen of the app. The “Messages” icon allows the 

user to view the created messages and the messages received from other devices. The 
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“Interest” icon allows the user to list their set of interests and also view their transient 

interests. The “Send to IP” icon allows the user to send all the images and their metadata 

to the specified IP address. The “Device Ratings” icon lets the user view the DRM database 

and modify it. The two icons on the right end allow the user to switch the connection mode 

on and off. When the connection mode is switched on, the device is in a transfer-ready 

mode which allows messages to be transferred and received from nearby devices.  

 

 

Figure 4.4. Home Screen of the DTN App.  

 

Figure 4.5 displays the app’s setting screen. The users can set their preferences to 

only receive messages from a particular location, and set of tags using the “Pull” mode, 

and “Push” mode to receive all messages based on the ChitChat algorithm. The “edit” 

button on the bottom right corner of the screen in Figure 4.5 allows the user to set location, 
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a radius around a given location, and preferred interests for setting up the “Pull” mode. The 

user can choose the type of connection for peer-to-peer data transfer, either Google Nearby 

Connections API or the Bluetooth connection exclusively. Each user is given a credit of 

300 when the app is first installed, thus allowing them to participate in the DTN by 

spending some credits to receive the messages. The app can be reset to default by clicking 

on the “Reset All” button.  

 

 

Figure 4.5. Setting Screen.  

 

Figure 4.6 shows the message creation, where users can select an image from the 

gallery or capture an image through the device’s camera, and Google Cloud Vision API 

generates a list of tags describing the image. From these tags, the top two tags are set as 
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keywords. However, users can still edit or add more tags to the list. Each message is 

associated with a list of metadata such as GPS coordinates of where the image was taken; 

timestamp of the image; the incentive paid, received, and promised for that message; the 

unique ID of that message; and the filename of the image. 

 

 

Figure 4.6. Message Creation Screen.  

 

When two devices with our app are in communication range, they get connected, 

and the connected device's name is displayed to the user. The ChitChat and Incentive 

algorithm runs in the background to determine which messages and how many messages 

to send to the connected device. Once the transfer is complete, the devices get disconnected 

and search for other devices. The message format remains the same for each message 
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across the network as shown in Figure 4.7. The “Message” part contains the multimedia 

message along with its unique Msg ID, keywords describing it, and the format type of the 

message. “Meta-information” contains data such as latitude, longitude, and timestamp. 

Finally, the “Node information” stores the node ID that generated the message, and the 

Recipients ID stores the list of node IDs through which the message was passed on.  

 

 

Figure 4.7. Message Format for DTN.  

 

Figure 4.8 shows the “Interests” screen, where the user can view the created 

interests. Initially, the default value is 0.5 for each created interest and varies as the device 

participates in the message transfer. The user can also view the accumulated interests by 

toggling the spinner to select “Transient interest” at the top right end of the screen. The 
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user can delete any interest by just swiping them to the left, and add new interests by 

clicking on the “plus” button at the end of the screen as shown in Figure 4.8. 

 

 

Figure 4.8. Interests Screen.  

 

Figure 4.9 displays the list of received messages for a device. On clicking each 

image, a user can view the metadata associated with the message, including the amount of 

incentive paid for that message. The user can rate the intermediate nodes for that message, 

which will later be exchanged with other devices. This, in turn, affects the reputation and 

incentives given to the intermediary nodes. Thus, all the intermediary nodes are encouraged 

to enrich the content, and not to add irrelevant tags. Clicking the three dots at the right end 

of each message allows the user to rate the intermediary nodes, open Google Maps to view 

the location where the received image was taken, or delete the message. The two rounded 



24 

 

buttons at the bottom right end allow the user to create a message either by selecting an 

image from the gallery or opening the camera to capture a new image. 

 

 

Figure 4.9. Received Messages.  

 

Apart from these, there is also a feature to send all the messages along with their 

metadata and intermediary nodes information to the base station/server using an IP address 

with designated port. The left image in Figure 4.10 displays the screen where the user can 

enter the IP address and transfer all the data by clicking on the “Send To IP” button. For 

this feature to work, the device must be connected to the internet. The image on the right 

in Figure 4.10 displays the received messages stored in the server (basic java socket 

programming is used for the implementation). The received messages are stored in the file 

path in the pattern of /DTN/Device_ID/Month_Data/Unique_Message_ID. For each 
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message, two files are created on the server. One is the actual image and another one is a 

text file (.txt) that contains the metadata for that message. 

 

 

Figure 4.10. Send to IP Screen.  

 

4.2. STUDY 2: SECURE FORWARDING BY FRAGMENTATION IN DELAY-

TOLERANT NETWORKS 

4.2.1. Background.  Shudip et al. [2] proposed a scheme that can be used in volatile 

situations like disaster/battlefield zones where multiple groups under different authorities 

are operating and need to share information securely. There may not be any central network 

infrastructure in such volatile situations, and as an alternative, opportunistic networks like 

DTN can be used by making smartphones act as nodes. To avoid malicious intent, 

messages need to be secured within and across different groups. 

Traditional public-private key cryptography will not work in this situation due to 

the non-availability of the infrastructure. Encrypting data with a symmetric key and then 

fragmenting both the key and data before disseminating through the DTN helps to 

significantly reduce the probability of a message being compromised by some unauthorized 
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node. However, in this fragmentation process, few redundant fragments are created to 

increase the probability of a message being delivered to the destination node in such an 

environment. Thus, for each message, x number of key-shares are generated with hidden 

information related to the decryption of the original message. Out of x key-shares, we need 

at least y key-shares to obtain the hidden information where y <x. Similarly, the encrypted 

message is fragmented into n data-shares that contain some parity blocks to improve the 

delivery rate of the message. Out of n data-shares, at least k data-shares are needed to obtain 

the original message where k<n. In order to verify that each key- and data-share is not 

corrupted before decryption at the destination, an integrity check is also set up which helps 

in conserving the device’s battery. Each device also has a unique ID that it receives from 

the cloud server by connecting to the internet before it can perform any other operations. 

The four important modules are: 

• Key handler 

• Data handler 

• Key Integrity Checker 

• Data Integrity Checker 

An overview of all these modules is presented in the following sections: 

4.2.1.1. Key handler.  This module generates a public-private key using Elliptical 

Cryptography (EC) when the application is run for the first time on the device and it 

remains the same for consecutive runs. The public-private key is of size 1024 bits and 160 

bits respectively. Next, whenever a device creates a new message, it creates a random 

symmetric key of size 256 bits using Advanced Encryption Standard (AES) which will be 

used to encrypt the message. Using the Recursive Secret Sharing (RSS) [10] algorithm 
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over Shamir’s scheme we generate 8 key-shares with the AES key, the public key of the 

source node (SN), and any other information related to the message as secrets. At the 

destination node (DN), we need at least 4 key-shares to retrieve the secrets.  

The number of key-shares for each message is constant throughout the network and 

each key share is 32 bytes. The SN generates a number of proxy re-encryption keys using 

its own private key and the public key of the intermediary node. Each of the key-shares is 

encrypted with one of these proxy re-encryption keys. Thus, INs on receiving key-share 

proxy re-encrypted using its public key can act a source to that key-share. Instead of 

decrypting, the IN re-encrypts the key-share with proxy re-encryption keys generated using 

its own private key and the public key of the DN (if available) or another available IN. 

Only the DN decrypts the key-shares once it obtains a minimum of 4 key-shares and 

retrieves message-related secrets. An overview of the algorithm to send message from one 

device to another is shown in Figure 4.11. 

4.2.1.2. Data handler.  When a message is created, it is encrypted using a random 

symmetric key generated using AES by executing the key handler module. The message is  

split into n data-shares, and the data shares are encoded using Cauchy Reed Solomon 

Erasure Code (CRS) [11]. Out of n data-shares, we need at least k data-shares at DN to 

retrieve the original message where k<n. When an IN receives a data-share it just forwards 

it to the next IN or DN. When a DN receives a data fragment, it first checks whether it has 

obtained a minimum number of key-shares to retrieves the secrets. Then it checks whether 

it has received a minimum number of data fragments. If both requirements are satisfied, 

the AES symmetric key (secret) is obtained from the key-shares, and then CRS decoding  
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is performed on the data-shares. Using the AES symmetric key obtained from the key-

shares, the encrypted message is decrypted to obtain the original message. 

 

 

Figure 4.11. Algorithm to Send Data D.  

 

The number of fragments n for a message and a minimum number of fragments k 

to retrieve the original message can be varied based on different scenarios as follows: 
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• Static data fragmentation: In this mode, n and k are constant across the 

network. Thus for each message, the number of fragments remain the same. 

Sometimes it is not useful, as even for a small message more fragments will 

be created. 

• Dynamic data fragmentation: In this mode, the parameters n and k are 

decided based on the message size, where k<n. This is particularly helpful 

for small messages; however, it incurs extra computational overhead as the 

value of n and k needs to be sent as one of the secrets at the source. 

• Priority-based data fragmentation: Each message has a priority value 

associated with it. The higher the priority value, the higher the number of 

fragments that are created for that message. This increases the probability 

of that message reaching the destination in a short time. 

 

 

Figure 4.12. Algorithm to Receive Data D at Destination.  
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There are n data fragments for a message and DN needs at least k data fragments to 

retrieve the original message. The first k fragments are the original data fragments and n-k 

fragments are additional coded fragments. DN can wait to receive the first k fragments to 

avoid data decoding which takes quadratic time to execute. This helps to conserve the 

battery. The destination node can detect a faulty key-share or data-share only after 

performing decrypting or decoding respectively. In order to avoid wasting battery power, 

the destination node first performs key and data integrity checks to ensure that all the 

received fragments are not corrupted due to transmission errors or malicious nodes. An 

overview of the algorithm to receive data D at destination is shown in Figure 4.12. 

4.2.1.3. Key integrity check.  If a key-share is corrupted, the DN will only know 

when it tries to retrieve the secrets from the key-shares using RSS. In order to save the 

computation time and cost, the source creates a Merkle Hash Tree (MHT) using the hash 

values of each key-share. Then the source appends the relevant MHT node values to each 

key-share so that the MHT root can be generated from it. Thus, when a DN has a minimum  

number of key-shares and tries to retrieve the secrets, it first generates the MHT root for 

each share and selects those key-shares whose root values are common and rejects the odd 

ones.  

4.2.1.4. Data integrity check.  Similarly, if a data-share is corrupted, the DN will 

know about it only after performing CRS and decryption using the AES key. In order to 

avoid the computation cost and time, we sign each data-share at the source with the source’s 

private key. At DN, when it has a minimum number of data- and key-shares, before 

performing CRS, the signature of each data-share is verified using the public key of the 

source which is obtained as a secret from the key-shares. 
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Figure 4.13. Secure Data Flow between Connected Devices.  

 

4.2.1.5. Data flow between connected devices.  Whenever two devices connect to 

each other, each device’s unique ID and the public key are first exchanged. Message ID is 

a unique ID for each message, its format is DeviceID_ithmessage_generated. For example, 

if a device with ID 2 generates the 3rd message, its message ID will be 2_3. Each message’s 

data and key-share have a unique ID associated with them. The two devices exchange 3 

types of messages.  

• The direct message is sent only when the source creates a message and it 

meets the destination directly. In such a case, the original message prior to 

fragmentation is set as the direct message.  
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• From storage, the source device collects a key and data-share of all 

messages for which the connected device acts as an IN, i.e. for all the 

message for which the connected device is not the destination and no key- 

or data-share for that message has already been sent to this device 

previously. This collection is bundled together and set as an Intermediary 

message.  

• Destination message is a collection of data and key-shares of all messages 

for which the connected device is the destination.  

For each key-share, the user needs to create a proxy-key using the stored public key 

of any of the IN or DN. Only IN with which the proxy-key has been generated can perform 

proxy re-encryption and acts as a source for that key-share and only DN performs 

decryption of the key-shares and no IN needs to perform any decryption activity. The 

overall data flow between the two connected devices is shown in Figure 4.13. 

4.2.2. Implementation Details. Secure Forwarding through fragmentation in DTN 

is implemented over the Android operating system and it makes use of Google Nearby 

Connections API to communicate between devices. It works on the devices running on 

Android's KitKat (API 19) to Oreo (API 27) version. For each device, the user must first 

connect to the internet and obtain a one-time unique device ID from Google’s Firebase 

Realtime Database. The user can start using the app only after receiving the device ID. 

Using elliptical cryptography, the public-private key for the device is initialized and 

it remains the same for the lifetime of the app on that device. Figure 4.14 shows the home 

screen of the secure forwarding app. The user can create a new message by clicking on the 
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“Camera” button and capture an image through the device’s camera. Once the image is 

captured, the user can choose the preferred mode of data fragmentation as specified in [2].  

 

 

Figure 4.14. Home Screen for Device ID:5.  

 

Figure 4.15 shows message creation with different modes of data fragmentation 

that the user can choose from. The user can input the destination device ID in the 

“EditText” field, which is available above the “Create key + data shares” button. Upon 

clicking the “Create key + data shares” button, the image is encrypted with the random 

AES key.  They AES key along with necessary message-related information such as the n 

and k values of the data-shares (k<n) and the public key of the source node, is kept as the 

secret and 8 key-shares are created using RSS. Out of 8 key-shares, DN needs at least 4 

key-shares to retrieve the secret. After creating the key-shares, the Key Integrity Module 
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will be invoked, and that creates an MHT with these key-shares. The Key Integrity Module 

appends relevant node values (hash values) to each key-share so that the MHT root hash 

value can be recreated from it. Using the CRS algorithm, data fragmentation is done based 

on user preferences. 

 

 

Figure 4.15. Message Creation with DN 3. 

 

Figure 4.14 shows that when a user clicks on the “Own Message” button, the user 

can view the created messages and then clicking on a message, the user can view the data- 

and key-shares for that message as shown in Figure 4.16. For each key-share, the user needs 

to create a proxy-key using any of the available public keys of IN. It is to be noted that if 

the public key of DN is available, then all the key-shares are encrypted with the proxy-key 

that was created using the private key of SN and the public key of DN. Encryption of a 
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key-share using the proxy-key of any available IN is done by clicking a key-share and that 

allows the user to select any of the devices’ IDs from a drop-down list. Upon clicking on 

the “Generate Proxy key” button after selecting an IN’s device ID, a proxy-key is generated 

with that IN and they key-share is encrypted with that proxy-key. 

 

 

Figure 4.16. Data- and Key-shares of a Message.  

 

Each data- and key-share have certain attributes associated with them as shown in 

Table 4.1. Figure 4.17 shows the screen in which the user can select an IN to create a proxy-

key and encrypt the key-share. If the device does not have any public key of other devices, 

it just sends a key-share to an IN without encrypting it.  
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Figure 4.17. Proxy-key Generation and Encryption for a Key-share. 

 

Table 4.1. Data- and Key-share Attribute Description.  

Attribute Description Key-

share 

Data-

Share 

Msg ID Msg ID is of the form DeviceID_ithMessageGenerated. 

It denotes the message to which the corresponding 

fragment belongs to. 

✓ ✓ 

Type Denotes whether a fragment is a key-share or a data-

share. 

✓ ✓ 

Share ID Key-shares have an ID in the range [4, 11] and data-

shares have ID starting from 1. 

✓ ✓ 

Destination 

ID 

Denotes the DN’s ID for which the message was 

created. 

✓ ✓ 
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Table 4.1. Data- and Key-share Attribute Description (Cont.). 

Status Denotes whether the fragment has been transferred to 

any IN or not. 

✓ ✓ 

Sender Info It hold the ID of the device to which the fragment has 

been transferred, else it has the value of NA(Not 

Applicable) 

✓ ✓ 

Proxy-key Displays the device ID using which proxy-key was 

created to encrypt the key-share 

✓  

 

In Figure 4.14, upon clicking the “Enable” button, the application searches for 

nearby Android devices. Once they are connected, the public key and device ID are 

exchanged. Based on the connected device ID, the application checks whether the user has 

created any message for that device. If it finds such messages, it directly sends the original 

message to the connected device. For all data- and key-shares for which the connected 

device is not the DN, the application will first check each message whether any of the key- 

or data-share have already been previously shared with that device. If previously not shared 

with the connected device, it selects one of the key- and data-share of that message to send. 

Lastly, the device will send all the data- and key-shares of all messages for which the 

connected device is the DN.  

As shown in Figure 4.18, all these messages are bundled together and sent to the 

connected device in a single transmission. The device also receives messages from the 

connected device. The data- and key-shares are stored appropriately in the storage based 

on the role of the device for that fragment (i.e. either IN or DN). For each data-share 
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received for which the device acts as the DN, it checks whether 4 or more key-shares are 

present and whether the secret has been retrieved. If not, it waits for the minimum number 

of key-shares for that message before proceeding further. If 4 or more key-shares are 

received for a message, then the key-shares are decrypted. The integrity of each key-share 

is verified by generating the MHT root hash value. The common MHT root is taken as the 

valid root hash value and the remaining odd values are discarded as the corrupted ones. If 

4 or more key-shares are present even after discarding these values, then the device 

executes the RSS algorithm over the key-shares to obtain the secret. The secret mandatorily 

includes the AES key that is used to encrypt the image and the SN’s public key. This secret 

is stored in the internal memory of the DN until the original message is retrieved.  

 

 

Figure 4.18. Bundled Message Format.  
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Next, the device checks whether k (the minimum number of data-shares required at 

the DN to retrieve the original message) or more data-shares are obtained for that message. 

If the answer is yes, then the device checks the integrity of each data-share by verifying 

whether it was signed by the SN using the SN’s public key that was obtained as the secret. 

The corrupted data-shares are discarded. Even after discarding, if there are k or more data-

shares, CRS algorithm is executed to merge the data-shares into a single encrypted image. 

Now the image is decrypted using the AES key obtained as the secret. Once the final 

message is obtained, it is stored in the internal memory so that the user can view it later 

along with its associated data- and key-shares. 

 

 

Figure 4.19. Message 5_1 Retrieved at Device:3.  

 

Figure 4.19. shows the messages received by Device 3 for which it is the DN. In 

the same figure, message 5_1 can be seen, which was created by device 5 with device 3 as 
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the DN as shown in Figure 4.15. Figure 4.18 can be viewed by clicking on the “Destination 

Message” button present in Figure 4.14. 

The study [2] has been simulated using “The One” simulator in Java programming 

language. In the earlier simulation phases, the testing environment included multiple virtual 

nodes on a single Java program. An elliptic curve used to generate the public and private 

keys is randomly generated and one instance of an elliptic curve is shared across all the 

nodes. However, due to the lack of synchrony across multiple Android devices, the random 

instances of elliptic curves are no longer identical. Thus, the app is bootstrapped with a 

predefined elliptic curve using curve parameters and elements that are written into a file 

(bundled with the app) to generate public and private keys and perform cryptographic 

operations from the same elliptic curve.  

4.2.3. Performance Analysis.  The Android studio provides a tool called “Profiler” 

which helps to keep track of the performance of the app. Figure 4.20 shows the performs 

of the app when computationally intensive tasks like encryption/decryption are performed. 

The encryption and decryption process involves Key Handler/Key Integrity Checker 

module and Data Handler/Data Integrity Checker module. Other operations such as peer-

to-peer message transfer using Nearby Communications API are not tracked as the API 

takes care of the underlying connections and data management and hence cannot be 

modified. From this tool two major computationally intensive tasks encryption/decryption 

are analyzed for a single message. During such tasks, the app consumes almost 40% of the 

CPU utilization. The average memory used by the app is 60MB during such tasks. The tool 

describes energy consumption in three levels; light, medium and heavy. The energy 
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consumption of the app varies from light to medium utilization. The analysis has been done 

on Pixel 2 virtual device running on Android Pie 9.0 (API 28).  

 

 

Figure 4.20. Performance Analysis of Secure Forwarding DTN App. 

 

4.3. STUDY 3: INTEREST-BASED AUTHENTICATION USING CIPHERTEXT-

POLICY ATTRIBUTE-BASED ENCRYPTION IN DELAY-TOLERANT 

NETWORKS 

4.3.1. Background.  In a disaster/battlefield environment, different parties may 

come along and work together and it is necessary that each information is sent to the 
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concerned parties in a secure way. Each party is associated with a set of attributes or 

interests e.g. Airforce party may be described by [‘Fighter planes’, ‘Jet’]. In such a 

scenario, interest-based authentication becomes really useful to provide access to data in a 

way similar to traditional role-based access control. The messages are encrypted with 

policy and the destination node can decrypt only if the policy is satisfied. A policy contains 

a set of attributes (or interests) and a condition, stating the minimum number of attributes 

to be present in the private key (generated from a set of attributes) to decrypt the message. 

 It is also useful to send an image message rather than a text message. A single image 

helps to convey the situation more clearly than many text lines. For this reason, while 

implementing DTN on Android, images along with associated metadata are considered as 

a message. However, due to battery and memory constraints, it is important to keep the 

messages as short as possible in the DTN environment. For example, images of a broken 

building or enemy soldiers need to be sent to the relevant interested parties. In such a case, 

it is a waste of memory and energy consumption to send an image with background 

information. In addition, it is also invaluable to provide a short description of the interesting 

object to the user. Thus, deep learning models are used to detect interesting objects. In 

recent times, performing object detection with Android devices has improved a lot, which 

provides low latency, low memory constraints, low battery consumption, and improved 

accuracy. Some of the best object detection algorithms are Faster-R-CNN (Regional Neural 

Network), YOLO (You Look Only Once) and SSD (Single Shot Detector). Out of these, 

we have used SSDLite MobileNet V2 for object detection on Android devices. One of the 

primary reasons for using this model is that it has few parameters than other object 
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detection algorithms and the FPS (Frames per second processed) is relatively higher, which 

makes it suitable for real-time object detection [18].  

The overall architecture of the system is shown in Figure 4.21. The important 

components of  [3] in DTN are as follows: 

• Master key generator and Edge Servers 

• Delay-tolerant network nodes 

• Trusted path measurement 

• Object detection 

4.3.1.1. Master key generator and Edge servers.  At the start of the system, all 

the attributes that are associated with each edge server are collected. Using ABE, these 

attributes are used to generate public (7128 bits) and master (156 bits) key. The master key 

is used for the generation of the private (5464 bits) key. 

 

 

Figure 4.21. Architecture of ABE in DTN. 
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The edge servers are in the second layer of the architecture. When they are first 

initialized, they send a subset of attributes to the MKG and receive the private and public 

key from MKG. Edge servers distribute these keys to the DTN nodes when they are first 

initialized into the system.  

4.3.1.2. Delay-tolerant network nodes.  The DTN nodes are responsible for 

message encryption/decryption and message transmission from source to the destination. 

When a node is first initialized, it connects to the relevant edge server based on its interest 

and receives the public/private key. For example, an army edge server may have a private 

key generated from the attributes [‘army’, ‘soldier’]. A node connecting with this edge 

server will receive the private key from these attributes and will be able to decrypt 

messages encrypted with these attributes via a policy. A message may be encrypted with a 

policy such as [‘army fire 1of2’] which implies that the destination node should have a 

private key generated from a set of attributes containing either ‘army’ or ‘fire’ or both.  

4.3.1.3. Trusted path measurement.   In order to find the corrupted nodes in the path                          

of message traversal from source to destination, the keychain-based approach is used. A 

keychain is a one-way backward chain of the hash outputs of a predefined hash function 

(SHA-256) where the first key kn is created randomly. Then the next key kn-1 is created by 

the hashing of kn and we keep hashing until we get k0. The MKG creates a set of keychains 

for all the edge servers. When an edge server connects to the MKG, it receives keychains 

for its own and also receives the keychains of other edge servers. Instead of sending all the 

hash values, MKG sends only kn and k0 for each keychain. Similarly, when a node gets 

connected to the edge server it receives all the keychains from the edge server.   
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In Figure 4.22, the source node selects one of the keychains and obtains k4 (i.e. kn) 

from its storage before transferring a message created by it. Next, it creates a keyed hash 

using SHA-256 from k4 and the IDs of source S and intermediate node I1. It also sends k3 

and IDs of S and I1 to I1. When I1 meets another intermediate node I2, it creates a keyed 

hash from k3 and IDs of I1 and I2. This keyed hash along with previous keyed hash values 

generated for this message is sent to I2. k2 along with IDs of I1 and I2 is also sent to I2. The 

same process continues when I2 meets I3 and when I3 meets the destination node. When the 

destination node receives k0, it obtains k4 from its storage which was previously obtained 

from the edge server on initialization. From k4 and the pair of IDs associated with each 

hash, the destination node recalculates and validates all the hashes associated with the 

message. By validating, the destination node can identify the malicious nodes. Any node 

which might have contributed to altering any hash or path information will be kept out of 

consideration for further distribution of data. 

 

 

Figure 4.22. Hash Chain Created by Source/Relay Nodes for a Message. 

 



46 

 

4.3.1.4. Object detection.  SSDLite MobileNet V2 is an object detection model 

designed by Google to more efficiently run inference on this model on mobile and 

embedded devices. The base network of this model is MobileNet V2 which makes use of 

depthwise separable convolution and efficient handling of linear bottlenecks.  

 

 

Figure 4.23. Residual Blocks [18]. 

 

Depthwise separable convolution helps to minimize the computation by reducing 

the number of addition and multiplication operations. In depthwise separable convolution, 

the convolution operation is split into two smaller functions. The first operation is 

depthwise convolution and it performs convolution to a single input channel at a time. For 

example, there are 3 channels for an RGB image, and depthwise convolution performs 

convolution by applying a filter or kernel to a single channel at a time. Thus, the number 

of kernels should be the same as the number of input channels. Depthwise convolution is 

succeeded by pointwise convolution. Pointwise convolution performs a linear combination 

on the output from depthwise convolution. It is a 1x1 convolution operation with N filters. 

From [18] it is known that depthwise separable convolution has k2 reduced computation 
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than standard convolution operation, and k is the size of the kernel in the depthwise 

convolution. MobileNet has k=3, which in turn reduces the computation cost up to 8 to 9 

times compared to the standard convolution operation. 

As the number of layers increases, deep neural networks can act as universal 

approximators, especially in computer vision problems. However, there is an upper bound 

on the number of layers added which results in improvement of accuracy. The increased 

number of layers may result in problems such as vanishing gradients and curse of 

dimensionality. All these problems are overcome by using residual networks in which 

output from one layer is skipped a few training layers and connected with another layer as 

shown in Figure 4.23. 

 

 

Figure 4.24. Inverted Residual Blocks [18]. 

 

In this way, the deeper layers have access to earlier activations that were not 

modified by the in-between convolutional blocks. From the diagram, it can be seen that the 

residual blocks are in the pattern of wider-narrow-wider in regards to the number of 

channels. This is the traditional pattern when residual blocks are used. However, 
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MobileNet V2 uses inverted residual blocks as shown in Figure 4.24. Here the pattern 

follows a narrow-wider-narrow approach in regards to the number of channels in the input. 

The author specifies that, when both the patterns are implemented, it is observed that 

inverted residual blocks have fewer parameters than the traditional approach. 

It is important to have non-linear activations in neural networks; it helps to make 

 neural networks act as a good approximator. ReLU(Rectified Linear Unit) is one of the 

frequently used non-linear activation functions in deep neural networks which discard 

values smaller than 0. Thus, there is some kind of information loss that occurs in each layer. 

This is overcome by increasing the number of channels to increase the capacity of the 

network. However, in the inverted residual model, the layers are squeezed and skip 

connections are established. Thus the author proposed the idea of linear bottlenecks in 

which the last convolution of the residual block has a linear output before it is added to the 

initial activation from the skip connection. MobileNet V2 uses batch normalization after 

every convolutional block and it uses ReLU6 as the activation function.  

 

 

Figure. 4.25. MobileNet V2 Architecture [18].  
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SSDLite MobileNet V2 contains an SSDLite layer at the top for object detection. 

SSDLite is a trimmed-down version of SSD. The overall architecture of MobileNet V2 is 

shown in Figure. 4.25. The first layer of SSDLite is attached to layer 15, and the rest of the 

SSDLite layer is added on top of the last layer of MobileNet V2, shown in Figure 4.25. 

The symbol t represents the expansion rate of the channel, c represents the number of input 

channels, n represents how often the block is repeated and lastly s represents the stride 

used. 

 

 

Figure 4.26. Setup Screen of ABE DTN App. 

 

4.3.2. Implementation Details.  MKG server and edge servers are created using 

Java socket programming. The implementation details are explained based on the demo 

performed. For the demo, the system is bootstrapped with MKG server and two edge 
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servers. The MKG server runs on port number 5000 and creates a public/master key based 

on the following attributes [‘army’, ‘soldier’, ‘disaster’, ‘flooding’]. One of the edge 

servers is Battlefield edge server and it is associated with the attributes [‘army’, ‘soldier’] 

and it runs on port number 5001, while the other one is Disaster edge server, its attributes 

are [‘disaster’, ‘flooding’] and runs on port number 5002. All the ABE related operations 

are implemented using [17]. 

When the system is first initialized, MKG server is run first and it creates a 

public/master key. Based on the number of edge servers it creates a set of keychains using 

SHA-256 for each edge server. Next, the edge servers are initialized. During initialization, 

they request the MKG server by passing their associated attributes to receive public/private 

key and also the keychains. Once the edge servers are initialized, DTN nodes can be 

initialized.  

Figure 4.26 shows the setup screen for the Android app. The node can choose the 

edge servers it wants to connect to or choose an intermediate node option which restricts 

the node functionality to just receive and forward messages. In order to connect to the edge 

server, the node must be connected to the internet. On clicking the “Setup” button, the node 

receives the public/private key, unique device ID and keychain from the edge server which 

will be stored in the internal storage of the device. Figure 4.27 displays the “Homescreen” 

of the app. “Homescreen” displays the unique ID of the device and also the set of attributes 

from which its private key has been generated. Thus, a message encrypted with policy 

using these attributes can be decrypted by this node if it satisfies the policy conditions too. 

In Figure 4.27. on clicking “Soldier detection”, the app displays a single screen 

where it converts the live video feed from the device’s camera into frames of size 640x480 
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and feeds the cropped frame of size 300x300 to the object detection model at the rate of 

135FPS in Pixel 6 Android device (Virtual device). Once the objects are detected, the 

relative box coordinates are returned by the model that is used for drawing bounding boxes 

on the detected objects on the screen. The app also provides an option for the user to save 

detected objects in storage. 

 

 

Figure 4.27. Homescreen of DTN ABE App. 

 

On exploring various object detection models, SSDLite MobileNet V2 is the most 

effective in terms of accuracy, lesser parameters, and lesser computation (i.e. lesser 

addition/multiplication operations) [18].From Table 4.2. it is clear that another efficient 

mobile-friendly object detection algorithm YOLO v2, has 20 times more computation and 

10 times more parameters than SSDLite MobileNet V2 when trained on COCO dataset. 
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MobileNet models provide a good tradeoff between resource utilization and accuracy. 

They are often coined as “mobile-first” architectures. In SSDLite MobileNet V2, the base 

MobileNet model use depthwise separable convolutions and inverted residual blocks which 

makes them insanely fast, small, and remarkably accurate, and makes them easy to tune 

for resource vs. accuracy. 

In order to develop an object detection model, the first stage is obtaining the training 

and testing data. For this purpose, 650 images of soldiers were scraped off from the internet 

and 250 images of normal civilians are taken from INRIA Person Dataset [19]. The civilian 

images are added to prevent the model from detecting civilians as soldiers as both have 

almost the same features. The training data consists of 800 images and the evaluation data 

consists of 100 images out of the total of 900 images. For all the training/testing data, 

ground truth box for soldiers and civilians are created using LabelImg utility [20]. 

 

Table 4.2. Performance Comparison of SSDLite MobileNet V2 with Other Object 

Detectors on the COCO Dataset [18].  

Network mAP Params Madd CPU 

YOLO V2 21.6 50.7M 17.5B - 

MNet V1 + 

SSDLite 

22.2 5.1M 1.3B 270ms 

Mnet V2 + 

SSDLite 

22.1 4.3M 0.8B 200ms 

 

Using TensorFlow Object Detection API, SSDLite MobileNet V2 model was 

configured and transfer learning was done from training on COCO dataset. Thus, the model 
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already knows the features to detect humans in an image. This reduces training time and 

improves accuracy.  

 

Figure 4.28. Mean Average Precision(mAP) Graph.  

 

 

Figure 4.29. Total Loss Graph.  

 

The training was continued until the mean average precision (mAP) was steadily 

increased and the overall total loss was very much reduced. From the graphs in Figure 4.28. 

and 4.29 from TensorBoard, we identified any training beyond this worsened the accuracy 



54 

 

of the model as it was overfitting with the training data and performed poorly on the 

evaluation dataset. In Figure 4.28 the horizontal axis denotes the training steps and the 

vertical axis denotes the mAP values. Similarly, in Figure 4.29 the horizontal axis 

represents the training steps and the vertical axis denotes the total loss value. Once the 

model is trained, it is converted to a frozen graph in which information unnecessary for 

inference are removed, so that the size of the model is very much reduced. The frozen graph 

has .pb file format and the model’s size was about 18 MB.  

 

 

Figure 4.30. Soldier Detection in Android App. 

 

The .pb file format is converted to TFLite format so that the Android device can 

make use of NNAPI to improve the runtime of inference on this model. Converting models 

to TFLite format reduces the model size and provide optimizations without reducing the 
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accuracy drastically. An example of such optimizations is to convert the model to a 

quantized model which reduces the precision of values and operations within the model to 

reduce the time required for inference.  The model size was 17 MB after converting to 

TFLite format.  Figure 4.30 shows the screen where a soldier has been detected and 

displayed to the user. 

 

 

Figure 4.31. Messages Screen. 

 

In Figure 4.27, on clicking the “Gallery” button, the user can select images from 

the device’s gallery to create a message. All the images selected will be added to the 

database which can be viewed on clicking “Messages” button. On clicking the “Messages” 

button in Figure 4.27, the app displays the “Messages” screen as shown in Figure 4.31.  

The user can view the created messages by selecting “My msgs” spinner in the ActionBar. 
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The user can view the decrypted messages (i.e. it the destination node for those messages) 

by selecting “Received msgs”. For all those messages which cannot be decrypted by the 

device will be considered as an intermediate message and will be forwarded to other 

devices on contact. Intermediate messages can be viewed by selecting “Intermediate msgs” 

in Figure 4.31. The messages are displayed as a list containing filename and message status 

(i.e., encrypted or not). 

 

 

Figure 4.32. Message Details Screen. 

 

If the message was created by the device, the message will be displayed by selecting 

“My msgs” in Figure 4.31. On clicking on the message, the metadata associated with the 

message is displayed as shown in Figure 4.32. The user can enter the policy for the message 

to be encrypted in EditText. Policy disaster fire 1of2 implies that the destination node 
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should have a private key generated from disaster or fire or both. By clicking on “Encrypt” 

button the message will be encrypted and stored in the database. The metadata associated 

with each message is shown in Table 4.3. 

 

Table 4.3. Metadata Associated with ABE DTN App Message. 

Attribute Description 

Msg_ID Msg ID is of the form DeviceID_ithMessageGenerated. It 

denotes the message to which the corresponding fragment 

belongs to. 

Filename Contains the image filename 

Source_ID Contains the ID of the device which created the message 

Path Contains the path where the image is stored in the device 

Type Refers to the type of message for that device. Can be own, 

intermediate or received message for a device 

CipherPath Refers to the path where the encrypted message is stored in the 

device 

Policy Contains policy used for encryption of the message 

HashInfo Contains the hashes created by each device the message 

traveled through (for trusted path measurement) 

Num_nodes_travelled Number of intermediate nodes + destination node traveled by 

the message 

Connected_devices IDs of devices the message traveled through 
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Table 4.3. Metadata Associated with ABE DTN App Message (Cont.). 

Next_hash If a source/intermediate node created a hash using kn, it 

computes kn-1 and stores it in this attribute  

isVerified The destination node verifies the hash values created by source 

and various relay nodes of the message and assigns a boolean 

value to this attribute. 

 

 

 

Figure 4.33. Message Metadata. 

 

In Figure 4.27, upon clicking the “Enable” button, the application searches for 

nearby Android devices. Once they are connected, the device ID is exchanged. Based on 

the connected device ID, the application pulls all the encrypted messages from storage. 
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While forwarding each message it creates a hash using the keychain and the IDs of both 

the connected devices are computed and appended to “HashInfo” attribute. The 

“Next_hash” attribute is computed and stored. The connected device’s ID is appended to 

the “Connected_devices” attribute and “Num_nodes_travelled” attribute is increased by 

one. Once all these attributes are updated for a message, it is transferred to the other device 

including the encrypted message as a stream.  

 

 

Figure 4.34. Object Detection Performance Analysis. 

 

Similarly, the device also receives encrypted messages from the connected device. 

If the device is able to decrypt the encrypted message then it is the destination for that 

message and does not forward to any other device in the future. The retrieved image is 
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stored in the device’s storage and encrypted message stream is discarded. The decrypted 

message can be viewed by clicking on “Received msgs” from Spinner in ActionBar in 

Figure  4.31. On clicking a received message, the retrieved image and metadata are 

displayed as shown in Figure 4.33. The “Hash details” display “HashInfo” attribute of a 

message for the demo purposes. If the device is not able to decrypt an encrypted message 

received it stores them as an intermediate message and forwards it to other devices in the 

future. 

 

 

Figure 4.35. ABE Encryption/Decryption Analysis. 

 

4.3.3. Performance Analysis.  As mentioned in the implementation details of [2] 

the tool called “Profiler” in Android Studio IDE is used for performance analysis of the 

app. The app is analyzed for object detection module and encryption/decryption using [3] 
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for images. Figure 4.34 displays the analysis of the object detection module of the app. The 

object detection module heavily consumes the device battery. On average it consumes 63% 

of the CPU utilization. It uses an average of 110MB of memory when its performing object 

detection on a live feed from the device’s camera. Figure 4.35 displays the performance 

analysis of the encryption/decryption process using ABE.  

The analysis has been done for encryption/decryption of a single message. The app 

consumes almost 45% of the CPU utilization and uses an average of 60MB for internal 

memory. The energy consumption is of “medium” level while performing those operations. 

The analysis has been done on Pixel 2 virtual device running on Android Pie 9.0 (API 28). 
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5. CONCLUSION 

Three DTN protocols [1], [2] and [3] are implemented on the Android platform as 

an app. The apps use various available peer-to-peer networking technologies to 

communicate with nearby devices. The protocols [1], [2] and [3] in DTN are experimented 

in real-time scenarios by running tests with a number of Android devices with the 

respective apps and that shows the usability and effectiveness of these protocols in 

disaster/battlefield applications. These protocols provide better content management and 

cybersecurity in DTN environment. Furthermore, we have explored the models for object 

detection using deep learning and integrating them with the Android platform, and 

implemented one of the mobile-friendly object detection models SSDLite MobileNet V2 

for soldier detection. The object detection helps in routing the appropriate data satisfying 

the access control policies in DTN environment. The codes for all the 3 projects are 

available at [21]. 
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