
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2019

Design and implementation of applications over delay tolerant Design and implementation of applications over delay tolerant

networks for disaster and battlefield environment networks for disaster and battlefield environment

Karthikeyan Sachidanandam

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Sachidanandam, Karthikeyan, "Design and implementation of applications over delay tolerant networks
for disaster and battlefield environment" (2019). Masters Theses. 7921.
https://scholarsmine.mst.edu/masters_theses/7921

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7921&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7921?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7921&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

DESIGN AND IMPLEMENTATION OF APPLICATIONS OVER DELAY

TOLERANT NETWORKS FOR DISASTER AND BATTLEFIELD ENVIRONMENT

by

KARTHIKEYAN SACHIDANANDAM

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2019

Approved by:

Sanjay Kumar Madria, Advisor

A. Ricardo Morales Cabrera

Venkata Sriram Siddhardh Nadendla

© 2019

Karthikeyan Sachidanandam

All Rights Reserved

iii

ABSTRACT

In disaster/battlefield applications, there may not be any centralized network that

provides a mechanism for different nodes to connect with each other to share important

data. In such cases, we can take advantage of an opportunistic network involving a

substantial number of mobile devices that can communicate with each other using

Bluetooth and Google Nearby Connections API(it uses Bluetooth, Bluetooth Low Energy

(BLE), and Wi-Fi hotspots) when they are close to each other. These devices referred to as

nodes form a Delay Tolerant Network (DTN), also known as an opportunistic network. As

suggested by its name, DTN can tolerate delays and significant loss of data while

forwarding a message from source to destination using store and forward paradigm. In

DTN, it is of critical importance that the network is not completely flooded and also the

message is not tampered or corrupted and readable only to the destined node.

Three algorithms have been implemented in the Android platform. The first

algorithm [1] focuses on intelligent data transfer based on each node’s interest and

encourages each node to participate in data transfer by providing incentives and keeping

track of the trustworthiness of each node. The second algorithm [2] focuses on the security

of the transferred data by fragmenting both data- and key-shares with some redundancy

and the destination node can resurrect the original data from the predefined minimum key-

and data-shares. The third algorithm focusses on using object detection models and

interest-based authorization using [3] to securely transfer and access data across DTN. The

corrupted nodes are identified by using one-way keychain hashes created by source/relay

nodes for a message which are validated at the destination node.

iv

ACKNOWLEDGMENTS

I would like to deeply express my gratitude to my advisor Dr. Sanjay Madria for

pointing me in the right direction for my research and helping me throughout the master’s

program. He pushed me to learn new technologies and helped me to refine the

implementation of various projects. I would also like to thank Dr. Ricardo Morales and

Dr. Venkata Sriram Siddhardh Nadendla for being part of my thesis committee and taking

time to review my thesis and provide their valuable feedback.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES ...x

SECTION

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 3

2.1. CHITCHAT .. 3

2.2. REPUTATION AND CREDIT-BASED INCENTIVE MECHANISM 3

2.3. MOBICENT.. 4

2.4. RELICS ... 4

2.5. MOBIGAME .. 5

2.6. MULTI-PARTY ENCRYPTION(MPE) .. 5

2.7. SECURE SECRET SHARING .. 6

2.8. INFRASTRUCTURE MODE BASED DTN ON ANDROID DEVICES. 6

2.9. OPTIMIZING CAUCHY REED SOLOMON-CODES..................................... 7

2.10. SECURE FORWARDING THROUGH FRAGMENTATION IN DELAY-

 TOLERANT NETWORKS .. 7

2.11. DTN ON ANDROID PHONES ... 8

2.12. CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION 8

2.13. AI BENCHMARK: DEEP NEURAL NETWORKS ON ANDROID 8

vi

3. API’S AND LIBRARIES ... 10

3.1. GOOGLE NEARBY CONNECTIONS API .. 10

3.2. JPBC AND JAVA REED-SOLOMON LIBRARY ... 10

3.3. TENSORFLOW OBJECT DETECTION API ... 11

3.4. TENSORFLOW LITE .. 11

3.5. JAVA REALIZATION FOR CIPHERTEXT-POLICY ATTRIBUTE

 -BASED ENCRYPTION .. 12

4. DESIGN OVERVIEW & IMPLEMENTATION .. 13

4.1. STUDY 1: REPUTATION AND CREDIT-BASED INCENTIVE

MECHANISM FOR CONTENT ENRICHMENT IN DTN 13

4.1.1. Background. ... 13

4.1.1.1. Decay algorithm. ..14

4.1.1.2. Growth algorithm. ..15

4.1.1.3. ChitChat routing module. ..16

4.1.1.4. Incentive mechanism. ..17

4.1.1.1. Distributed Reputation Model (DRM).17

4.1.1.2. Data flow between connected devices.17

4.1.2. Implementation Details. ... 18

4.2. STUDY 2: SECURE FORWARDING BY FRAGMENTATION IN

 DELAY-TOLERANT NETWORKS ... 25

4.2.1. Background. ... 25

4.2.1.1. Key handler. ...26

4.2.1.2. Data handler. ..27

4.2.1.3. Key integrity check. ...30

4.2.1.4. Data integrity check. ..30

vii

4.2.1.5. Data flow between connected devices.31

4.2.2. Implementation Details. ... 32

4.2.3. Performance Analysis... 40

4.3. STUDY 3: INTEREST-BASED AUTHENTICATION USING

CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION IN

DELAY-TOLERANT NETWORKS ... 41

4.3.1. Background. ... 41

4.3.1.1. Master key generator and Edge servers.43

4.3.1.2. Delay-tolerant network nodes. ...44

4.3.1.3. Trusted path measurement. ..44

4.3.1.4. Object detection. ..46

4.3.2. Implementation Details. ... 49

4.3.3. Performance Analysis... 60

5. CONCLUSION .. 62

BIBLIOGRAPHY ..63

VITA ..65

viii

LIST OF ILLUSTRATIONS

 Page

Figure 4.1. Decay Algorithm. ... 15

Figure 4.2. Growth Algorithm. ... 16

Figure 4.3. Flow of Information between the Connected Nodes. 18

Figure 4.4. Home Screen of the DTN App. .. 19

Figure 4.5. Setting Screen. .. 20

Figure 4.6. Message Creation Screen. .. 21

Figure 4.7. Message Format for DTN. .. 22

Figure 4.8. Interests Screen. .. 23

Figure 4.9. Received Messages. .. 24

Figure 4.10. Send to IP Screen. ... 25

Figure 4.11. Algorithm to Send Data D. ... 28

Figure 4.12. Algorithm to Receive Data D at Destination. ... 29

Figure 4.13. Secure Data Flow between Connected Devices. .. 31

Figure 4.14. Home Screen for Device ID:5. ... 33

Figure 4.15. Message Creation with DN 3. .. 34

Figure 4.16. Data- and Key-shares of a Message. .. 35

Figure 4.17. Proxy-key Generation and Encryption for a Key-share. 36

Figure 4.18. Bundled Message Format. .. 38

Figure 4.19. Message 5_1 Retrieved at Device:3. .. 39

Figure 4.20. Performance Analysis of Secure Forwarding DTN App. 41

ix

Figure 4.21. Architecture of ABE in DTN. .. 43

Figure 4.22. Hash Chain Created by Source/Relay Nodes for a Message. 45

Figure 4.23. Residual Blocks. ... 46

Figure 4.24. Inverted Residual Blocks. ... 47

Figure. 4.25. MobileNet V2 Architecture. .. 48

Figure 4.26. Setup Screen of ABE DTN App. .. 49

Figure 4.27. Homescreen of DTN ABE App. ... 51

Figure 4.28. Mean Average Precision(mAP) Graph. .. 53

Figure 4.29. Total Loss Graph. ... 53

Figure 4.30. Soldier Detection in Android App. ... 54

Figure 4.31. Messages Screen. .. 55

Figure 4.32. Message Details Screen. ... 56

Figure 4.33. Message Metadata. ... 58

Figure 4.34. Object Detection Performance Analysis. ... 59

Figure 4.35. ABE Encryption/Decryption Analysis. .. 60

x

LIST OF TABLES

 Page

Table 4.1. Data- and Key-share Attribute Description. .. 36

Table 4.2. Performance Comparison of SSDLite MobileNet V2 with Other Object

 Detectors on the COCO Dataset. ... 52

Table 4.3. Metadata Associated with ABE DTN App Message. 57

1. INTRODUCTION

In recent years, there has been a tremendous increase in the number of mobile

devices, and these devices have the capability to communicate with each other using peer-

to-peer technologies such as Bluetooth, BLE, and Wi-Fi hotspots. In disaster/battlefield

scenarios there may not be any centralized network like LAN to facilitate connection

among these devices. In such cases, it is necessary to pass on important information from

the source device to the destination using wireless links. In such cases, the mobile devices

can form their own wireless opportunistic network referred to as Delay Tolerant Networks

(DTN). DTN is formed by a collection of nodes and each node interacts with other nodes

only when they are within a short distance. Unlike traditional end-to-end connections, DTN

has intermittent connections only when two nodes are nearby each other. Instead of seeing

the intermittent connection as a disadvantage, DTN utilizes it for sharing relevant

information between the nodes to forward the message to the destination node. Thus,

message transfer from a source node to the destination may pass on through various

intermediary nodes resulting in delay and significant data loss.

In this thesis, we focus on the implementation details of three algorithms; two are

based on [1] and [2] and the third one is newly proposed. Reputation and Incentive-based

DTN [1] focuses on intelligent data transfer between nodes, based on the interests set by

the node and interests accumulated as the result of interaction with other nodes. Incentives

are provided to encourage nodes to participate in data transmission. Distributed Reputation

Metric (DRM) is like a local database maintained by each node, which contains a value

corresponding to the trustworthiness of each encountered node based on the message

2

received from it, the quality of the message, the message’s annotation relevance, etc. When

the nodes connect, the DRM is shared between them. This scheme reduces flooding of the

network, creates multiple copies of the original data based on the interests between two

connected nodes, and ensures that all the nodes participate in the data transmission and also

try to suppress corrupted nodes.

The secure forwarding through fragmentation in DTN [2] overcomes delay, data

loss, and insecure data transfer between nodes by fragmenting and creating redundant data-

and key-shares. Thus, the destination node can resurrect the original data if it contains a

minimum number of predefined key- and data-shares.

Lastly, in the newly proposed DTN algorithm, we have used Attribute-Based

Encryption(ABE) [3] to design interest-based authorization to securely transfer and access

data across DTN. We also keep track of intermediate nodes in the message path to identify

malicious nodes using µTESLA algorithm [4]. Furthermore, we have used deep learning

object detection models on an Android device to reduce the message size by identifying

objects of interest from the device’s camera.

The thesis is organized in the following way. Section 2 provides an overview of

related work in the field of data routing in DTN and implementation of DTN and image

object detection in the Android platform. Section 3 provides a brief introduction to various

APIs and libraries that have been used in the implementation. Section 4 provides the

background to understand the actual implementation, this involves explaining the

algorithm and overall architecture of the system, as well as the implementation of DTN

and object detection in the Android app with various modules, message formats, and

screenshots. Section 5 provides a conclusion for the thesis.

3

2. LITERATURE REVIEW

2.1. CHITCHAT

Doug et al. [5] proposed a novel solution to achieve a high message delivery rate

without flooding the DTNs. In this paper, each node has a set of interests called Direct

Interests, which represents the interests of a node. Transient Interests of a node represents

the set of interests that the node accumulated by meeting other nodes. When two nodes

interact with each other, a decay function is applied to the interests. Next, they exchange

the interests, and the growth function is applied to the modified new set of interests. Each

created message is annotated with a set of keywords or interests. Once the growth function

has been completed, the routing protocol is applied to decide whether a message with

certain interests needs to be transferred to the connected node. This enables the message to

have a high probability of reaching the set of users who are interested in that message.

2.2. REPUTATION AND CREDIT-BASED INCENTIVE MECHANISM

Himanshu et al. [1] proposed an incentive and reputation model on top of ChitChat

algorithm [5]. In this scheme, the messages are annotated with keywords describing them

and the relay nodes are encouraged to add more keywords so that the message contains real

time information. This is especially useful in volatile situations like disaster/battlefield

environment. The incentive model encourages users to participate in message transfer

without turning into selfish nodes to preserve energy and storage capacity. The reputation

model prevents the nodes from adding inappropriate keywords to the message.

4

2.3. MOBICENT

Chen et al. [6] proposed an incentive mechanism on top of existing DTN routing

protocols. By providing incentives, even selfish nodes are encouraged to participate in

relaying the message to the destination. Mobicent assumes that the underlying system uses

cryptographic techniques like Onion Routing to prevent free riding, any strategies by

participants to override the system, and disputes among relays and clients. A Trusted Third

Party (TTP) calculates the payment that will be charged to the client, and two algorithms

are available to the client to choose from. One minimizes the message delay and the other

minimizes the payment. One of the limitations of Mobicent is that it uses TTP for both key

management and payment services to relays.

2.4. RELICS

Uddin et al. [7] proposed a novel scheme that considers the trade-off between

energy consumption and the cooperation of nodes for data transmission in DTN. When a

message is delivered to the destination node, the destination node assigns a rank or real

value to a set of relay nodes for that message and it will be shared with other devices. This

rank directly impacts the node in a way that relay nodes favor to forward message from a

high-ranking node than the ones with a lower rank. This study [7] also provides an

algorithm for intelligent transfer of a certain number of messages based on energy

consumption. Since most of the nodes are either mobile or sensor devices it is really

important to give utmost importance to the energy savings (as they have limited energy)

rather than giving top priority to forwarding the messages in the network.

5

2.5. MOBIGAME

Wei et al. [8] proposed a user-centric, reputation-based incentive protocol for DTN.

This scheme uses game theory to decide whether a node should receive or forward a given

message. Each message has a limited time to reach a destination, which is called Time To

Live(TTL). If a message received by a relay node has expired it is called a bad bundle. Each

relay node gets a reward only if it successfully forwards the message to the other relay

nodes or destination and provides proof of that to its predecessor. Using game theoretical

analysis, [8] proves that each node transfers only the good bundle to the relay nodes and

avoids being a malicious node to receive rewards.

2.6. MULTI-PARTY ENCRYPTION(MPE)

R. Cabaniss et al. [9] proposed a novel scheme for security in DTN. In traditional

end-to-end connection, public-key cryptography is easily achieved by using a trusted key

repository to verify which node is associated with a particular public key. However, in

DTN, a node may not have access to the public key of all nodes and there is no trusted key

repository. Thus, [9] proposes two schemes to ensure security: i) Chaining and ii)

Fragmentation. Chaining is similar to onion encryption, in which the source message is

encrypted with multiple public keys of relay nodes, and when each relay node receives the

message, it removes its layer of encryption and replaces it by encrypting using the public

key of the destination node if it is available. The node otherwise replaces it by encrypting

using the public key of any other relay node. This increases security but reduces delivery

time. In fragmentation, multiple copies of the original data are created. Threshold

encryption is used in which n keys are created and k keys are required to retrieve the

6

original message, where k<n. Each message copy is encrypted with a key-share and passed

along the network. When the destination receives k key fragments, it can retrieve the

original data.

2.7. SECURE SECRET SHARING

 Parakh et al. [10] proposed a secure secret sharing scheme on top of Shamir’s

secret sharing algorithm. The proposed method can hold k-2 secrets of size b into n key-

shares. The destination requires at least k key-shares to retrieve the secrets, where k < n.

This method is especially useful in the DTN environment as the data loss is high and the

connection may be interrupted at any time. The secrets may store the private key to decrypt

the original message or other vital information related to the message.

2.8. INFRASTRUCTURE MODE BASED DTN ON ANDROID DEVICES

Ippisch et al. [13] explored the use of Wi-Fi hotspots in Android devices to create

a DTN network from a set of devices. Since the Android system requires user intervention

to accept connections in Wi-Fi Direct and Bluetooth, this study uses Wi-Fi hotspots, which

can connect and transfer data automatically without user intervention in the background.

The Spray and Focus routing protocol are used with TTL for each message. The application

also makes use of GPS services, which helps to formulate location-based rules to enable

hotspots that in turn help to conserve battery. When two devices are connected they

exchange meta-information that contains information about the network, and the meta-

information helps to make optimized message-forwarding decisions. Finally, the study [13]

7

focuses on analyzing energy consumption, transmission range and speed of Wi-Fi hotspots,

and the encryption and decryption speed in the varying devices and data sizes.

2.9. OPTIMIZING CAUCHY REED SOLOMON-CODES

Cauchy Reed Solomon (CRS) codes were already introduced in the 1990s;

Optimized CRS [11] tried to improve its performance drastically so that a small number of

computations are needed to perform, which in turn saves energy. CRS codes are used to

create n fragments of a message, and from that, we need at least k fragments to resurrect

the original message, where k<n. This data fragmentation comes in handy especially in

DTN, and this study helps to reduce the energy consumption in creating fragments and

retrieving the original data as the mobile devices have limited battery power at any given

time.

2.10. SECURE FORWARDING THROUGH FRAGMENTATION IN DELAY-

TOLERANT NETWORKS

Shudip et al. [2] proposed a scheme to forward messages in a secure way in DTN,

especially in disaster/battlefield environment where multiple parties may work together. In

such scenarios, it is difficult to use public-private cryptography as one group may not have

access to the public key of other groups as there will be no central infrastructure. To

overcome this limitation, the study proposed to encrypt the message and fragment both key

and encrypted message with some redundancy before passing along the DTN. Since DTN

has high data loss, this redundancy helps the destination node to retrieve the original

message with fewer key and data fragments than created at the source.

8

2.11. DTN ON ANDROID PHONES

Yanggratoke et al. [12] were one of the first to implement DTN in the Android

platform. They assume a simple DTN routing protocol and explain the overall system

architecture for Android implementation. The architecture includes a background service,

a user interface to interact with the service, and an Android TCP/IP stack which interacts

back and forth with the background service. The authors discuss the challenges of

implementing DTN in the Android system. Performance in terms of bandwidth and battery

power consumption is also analyzed.

2.12. CIPHERTEXT-POLICY ATTRIBUTE-BASED ENCRYPTION

The study [3] proposed a scheme in which messages are encrypted with policy and

it can be decrypted if the attributes or condition specified in the policy are satisfied at the

destination. Each user has a private key representing a set of attributes and the message is

encrypted with a policy over these attributes. The authors provide various optimization

strategies to reduce decryption time. The authors guarantee that this scheme is resistant to

collusion attacks. This scheme is closely similar to traditional access control protocol such

as Role-Based Access Control(RBAC).

2.13. AI BENCHMARK: DEEP NEURAL NETWORKS ON ANDROID

The authors [14] explored various mobile hardware chipsets such as Qualcomm,

HiSilicon Chipsets, and MediaTek Chipsets which provide dedicated APIs to run deep

neural networks using hardware acceleration. Various neural network frameworks for

mobile devices such as TensorFlow Lite, Theano, and Caffe2 are explored and their

9

advantages and disadvantages are described briefly. Android Neural Network

API(NNAPI) provides a layer of abstraction, enabling developers to run neural network

operations on different chipsets without having to write separate code for each chipset

using its designated API. NNAPI provides a unified framework for working with hardware

for neural network operations. Finally, various deep learning tests such as image

recognition, face recognition, and segmentation are performed with different convolutional

neural networks such as Inception-V3, and MobileNet on different mobile devices with

varying RAM and hardware chipsets. A detailed comparison report is presented at the end.

10

3. API’S AND LIBRARIES

Some of the important APIs and libraries that helped to fasten the implementation

and improve the efficiency of the overall system and core components of the

implementation are discussed here.

3.1. GOOGLE NEARBY CONNECTIONS API

Google Nearby Connections is an API developed by Google for making peer-to-

peer networking with Android devices simple and secure and performing data transfers at

a high bandwidth. Traditionally, developers need to write separate code to make use of

Bluetooth, BLE and Wi-Fi hotspots. It is a very tiresome task and end users’ intervention

is needed to accept connections from a nearby device. To solve that problem, this API

leverages the strength of Bluetooth, BLE and Wi-Fi hotspots while circumventing their

respective weaknesses. It performs advertising, discovery, and connections with nearby

devices in a fully offline peer-to-peer manner. Furthermore, based on a connection with a

nearby device, it automatically decides whether to use Bluetooth or Wi-Fi Hotspots and

end-user intervention is not needed to switch them on. Using this API, it is possible to send

a large volume of data between two Android devices at a high speed.

3.2. JPBC AND JAVA REED-SOLOMON LIBRARY

Java Pairing-Based Cryptography(JPBC) [15] is an open source library and in our

implementation, it is used to create public and private keys using Elliptical Cryptography

and to perform proxy re-encryption which will be explained in section 4. Java Reed-

11

Solomon Library helps to fragment a data into n blocks and at least k blocks are required

at the destination to retrieve the original data, where k<n.

3.3. TENSORFLOW OBJECT DETECTION API

The Tensorflow Object Detection API [16] was built by Google to make the process

of multiple object detection in a single image as easy as possible. It is built on top of the

TensorFlow framework and simplifies the process of training and deploying object

detection models. This API provides a wide range of configuration files that depict the

layers of Convolutional Neural Networks(CNN) such as MobileNet and Inception models.

The developer can modify these files to set the training and validation size, threshold value,

batch size, etc. This API also provides an easy way to perform transfer learning which

helps to reduce the training time. Once an object detection model is trained, it can be

converted to the relevant format such as the .pb format or .tflite format. Tflite format stands

for TensorFlow Lite, which is especially useful for deploying the models in mobile or

embedded devices.

3.4. TENSORFLOW LITE

TensorFlow Lite is a framework which helps to run inference on TensorFlow

models in mobile, IoT, or embedded devices. It is designed to be lightweight and optimized

for small devices. The pre-trained models should be converted to TFLite format. TFLite

format reduces the size of the model and helps to perform inference in limited memory

constraints. TensorFlow Lite internally uses NNAPI, which in turn helps to optimize the

process of solving computationally intensive tasks by distributing the workload across on-

12

device processors, such as dedicated neural network hardware, graphical processing units

(GPUs), and digital signal processors (DSPs). In case such dedicated hardware is not

available in a mobile or embedded device, TensorFlow Lite then requests NNAPI to

optimize the code to execute requests on the CPU.

3.5. JAVA REALIZATION FOR CIPHERTEXT-POLICY ATTRIBUTE-BASED

ENCRYPTION

Java realization for ciphertext-policy attribute-based encryption [17] provides java

implementation of [3] for generating public and master key from a set of attributes e.g.

[‘soldier’, ‘army’, ‘disaster’, ‘flooding’]. The private key is generated from the subset of

previously used attributes such as [‘army’, ‘soldier’]. The message is encrypted with a

policy. The policy contains attributes and k out of n feature, where k<n such as [‘army

soldier 1of2’]. Thus, the encrypted message can be decrypted if the private key was

generated with either ‘army’ or ‘soldier’ as one of its attributes.

13

4. DESIGN OVERVIEW & IMPLEMENTATION

This section provides a design overview and implementation details of three studies

of DTN algorithms that have been implemented in the Android platform.

4.1. STUDY 1: REPUTATION AND CREDIT-BASED INCENTIVE MECHANISM

FOR CONTENT ENRICHMENT IN DTN

4.1.1. Background. Himanshu et al. [1] proposed an incentive scheme in DTN in

order to encourage all the nodes to participate in relaying the information to the destination

nodes. This is important because in real-time scenarios the nodes may turn selfish in order

to conserve battery and memory, which are limited in mobile devices. Each message has a

set of keywords or annotations describing it. The incentive provided for each received

message is calculated based on various factors like the reputation of the source device,

interest comparison between the message and the receiving device, and the quality of the

message. Himanshu’s method [1] allows relay nodes to improve the message description

by adding more content as needed. This is especially suitable in battlefield/disaster

scenarios, e.g. in a disaster situation an image of a dangerously broken building may be

sent to the fire department as the destination via relay nodes so that necessary actions can

be taken by the fire department. As time evolves, relay nodes can add the relevant keywords

while forwarding this message so that the destination can have appropriate knowledge

about the current situation.

 In order to prevent nodes from becoming malicious by adding inappropriate

keywords for a message, [1] introduced the Distributed Reputation Model (DRM), in which

14

each relay or destination node can rate the source and other relay nodes based on the quality

of the message, relevance of the keywords, etc.

The incentive and reputation models are built on top of the DTN routing algorithm

called ChitChat [5]. ChitChat has been designed for users with small devices like Android

or iOS smartphones that have the capability to connect with nearby devices. Each user can

list a set of preferences or interests that describes the user well by listing keywords such as

“ice-cream”, “trekking”, etc. These interests are called the direct interests of the user. Each

user also accumulates a set of interests called transient interest, which is the aggregation of

interests obtained by meeting other nodes and learning their interests, too. This is really

helpful to get an idea about what kind of users each user meets and this information is

useful in making message-forwarding decisions. A device is a destination if the message

keywords are in sync with the direct interests of the device (i.e. user). In ChitChat

algorithms, two modules play an important role one is the Real-Time Transient Social

Relationship (RTSR) module and the other is the ChitChat Routing module. Each interest

is associated with weights, and direct interests always have a minimum weight of 0.5. All

the interests cannot have a value greater than 1. When two devices with the ChitChat app

gets connected, the RTSR module is first invoked. The RTSR module performs decay

function on both direct and transient interests to better reflect their recent relationships with

other nodes.

4.1.1.1. Decay algorithm. When two devices, U and V, are connected with each

other, the RTSR module is invoked, which in turn executes the decay algorithm in the

respective devices. Once the interests are updated, the latest interest and their weights are

exchanged between the devices. The decay algorithm is shown in Figure 4.1.

15

Figure 4.1. Decay Algorithm.

Wn – New weight, Wp – Previous weight, β – Decay constant, Tc – Current

timestamp, Tl – previous timestamp at which device with interest I was connected.

This decay function is formulated in such a way that interests with high weights

reflect that the node frequently meets other nodes with that interest and low weights

corresponds to the node rarely meeting other nodes of that interest. Once the interests are

shared, the RTSR module then executes the growth function to update the weightage of its

interests based on the shared interest obtained from the other device.

4.1.1.2. Growth algorithm. The growth algorithm takes 3 factors into account:

one is the weightage of the interests in the device U at time Ts, the time duration for which

the 2 devices are connected Tc – Ts, and finally, a growth dampening factor ѱ that is based

on the relationship of interest I in devices U and V. Interest I may be a direct interest in

both U and V or a direct interest in U and a transient interest in V, while ѱ can take a value

between [1, 6] depending on various cases such as those mentioned above. Since the

16

Weights can only be between 0 and 1, the min function is used to prevent the interest

weights from exceeding 1. The Growth algorithm is shown in Figure 4.2.

Δ – Change in weight, Wv(I) – Weight of interest I in device V, Tv – Time at which

V established the connection, Ts – Time at which device U and V are connected, ѱ – Growth

dampening factor, Wn – New weight of interest I in node U, Wp – Previous weight of interest

I in node U.

Figure 4.2. Growth Algorithm.

4.1.1.3. ChitChat routing module. Once the RTSR module is done, the ChitChat

routing module is executed to identify relevant messages to forward to the connected

device. This prevents the device from forwarding messages that have a low probability of

reaching the destination via the connected relay. It helps to conserve battery in both the

devices. Each message is annotated with a set of keywords or interests. The sum of weights

of those interests is calculated in device U and the interest obtained from device V during

the decay phase. A message is forwarded only when device Sv > Su.. Sv refers to sum of

interests for message M in device v and Su refers to sum of interests for message M in

device u.

17

4.1.1.4. Incentive mechanism. The incentive mechanism is credit and reputation-

based. Both of these factors affect the incentives given to a device. This section explains

the credit-based part. Each node is initialized with a value of incentive tokens that can be

used for message dissemination and content enrichment. When a source or a relay node

forwards a message to another relay node, it promises a certain number of incentive token

from a destination node on the successful delivery of the message. A relay follows the same

process that a source follows. If a relay A transfers message to relay B, A receives a fraction

of incentive from B, if B has a high probability of delivering the message to the destination.

The study [1] explains various factors involved in credit-based incentive calculation.

4.1.1.1. Distributed Reputation Model (DRM). The motivation for developing

this model is to reduce the number of malicious users who might try to add irrelevant tags

to the message in the pursuit of acquiring more incentive tokens. To overcome this

problem, a recipient node (another relay node or destination node) can rate the source or

other relay nodes of a message. The source is rated based on the message quality and added

tags while the relay node is rated based on any of the tags added as part of content

enrichment. Rating of a node is the average of ratings of messages received from that node.

The device shares this rating with the next hop in the path of message traversal to the

destination. The destination utilizes these ratings to decide the number of incentive tokens

to be awarded to the delivering node. The study [1], explains in detail about the reputation

part in incentive calculation.

4.1.1.2. Data flow between connected devices. Figure 4.3. displays the data flow

 between two connected devices, Alice and Bob. Once connected, the RTSR Module is

invoked, it executes the decay algorithm and shares the interests along with the reputation

18

of the other devices. Once the interests are shared, the growth algorithm is executed and

relevant messages are transferred to Bob’s device by invoking the message router. These

executions are performed in Bob’s device as well. Once the messages are received, the

users can enrich the message by adding relevant tags and also provide ratings for source

and relays nodes (DRM) with respect to the received message.

 Figure 4.3. Flow of Information between the Connected Nodes [1].

4.1.2. Implementation Details. The DTN application [1] is implemented using

the Android operating system and makes use of Google Nearby Communications and

Bluetooth to transfer message between devices. It works on devices running on Android's

KitKat (API 19) to Oreo (API 26) version.

Figure 4.4 displays the home screen of the app. The “Messages” icon allows the

user to view the created messages and the messages received from other devices. The

19

“Interest” icon allows the user to list their set of interests and also view their transient

interests. The “Send to IP” icon allows the user to send all the images and their metadata

to the specified IP address. The “Device Ratings” icon lets the user view the DRM database

and modify it. The two icons on the right end allow the user to switch the connection mode

on and off. When the connection mode is switched on, the device is in a transfer-ready

mode which allows messages to be transferred and received from nearby devices.

Figure 4.4. Home Screen of the DTN App.

Figure 4.5 displays the app’s setting screen. The users can set their preferences to

only receive messages from a particular location, and set of tags using the “Pull” mode,

and “Push” mode to receive all messages based on the ChitChat algorithm. The “edit”

button on the bottom right corner of the screen in Figure 4.5 allows the user to set location,

20

a radius around a given location, and preferred interests for setting up the “Pull” mode. The

user can choose the type of connection for peer-to-peer data transfer, either Google Nearby

Connections API or the Bluetooth connection exclusively. Each user is given a credit of

300 when the app is first installed, thus allowing them to participate in the DTN by

spending some credits to receive the messages. The app can be reset to default by clicking

on the “Reset All” button.

Figure 4.5. Setting Screen.

Figure 4.6 shows the message creation, where users can select an image from the

gallery or capture an image through the device’s camera, and Google Cloud Vision API

generates a list of tags describing the image. From these tags, the top two tags are set as

21

keywords. However, users can still edit or add more tags to the list. Each message is

associated with a list of metadata such as GPS coordinates of where the image was taken;

timestamp of the image; the incentive paid, received, and promised for that message; the

unique ID of that message; and the filename of the image.

Figure 4.6. Message Creation Screen.

When two devices with our app are in communication range, they get connected,

and the connected device's name is displayed to the user. The ChitChat and Incentive

algorithm runs in the background to determine which messages and how many messages

to send to the connected device. Once the transfer is complete, the devices get disconnected

and search for other devices. The message format remains the same for each message

22

across the network as shown in Figure 4.7. The “Message” part contains the multimedia

message along with its unique Msg ID, keywords describing it, and the format type of the

message. “Meta-information” contains data such as latitude, longitude, and timestamp.

Finally, the “Node information” stores the node ID that generated the message, and the

Recipients ID stores the list of node IDs through which the message was passed on.

Figure 4.7. Message Format for DTN.

Figure 4.8 shows the “Interests” screen, where the user can view the created

interests. Initially, the default value is 0.5 for each created interest and varies as the device

participates in the message transfer. The user can also view the accumulated interests by

toggling the spinner to select “Transient interest” at the top right end of the screen. The

23

user can delete any interest by just swiping them to the left, and add new interests by

clicking on the “plus” button at the end of the screen as shown in Figure 4.8.

Figure 4.8. Interests Screen.

Figure 4.9 displays the list of received messages for a device. On clicking each

image, a user can view the metadata associated with the message, including the amount of

incentive paid for that message. The user can rate the intermediate nodes for that message,

which will later be exchanged with other devices. This, in turn, affects the reputation and

incentives given to the intermediary nodes. Thus, all the intermediary nodes are encouraged

to enrich the content, and not to add irrelevant tags. Clicking the three dots at the right end

of each message allows the user to rate the intermediary nodes, open Google Maps to view

the location where the received image was taken, or delete the message. The two rounded

24

buttons at the bottom right end allow the user to create a message either by selecting an

image from the gallery or opening the camera to capture a new image.

Figure 4.9. Received Messages.

Apart from these, there is also a feature to send all the messages along with their

metadata and intermediary nodes information to the base station/server using an IP address

with designated port. The left image in Figure 4.10 displays the screen where the user can

enter the IP address and transfer all the data by clicking on the “Send To IP” button. For

this feature to work, the device must be connected to the internet. The image on the right

in Figure 4.10 displays the received messages stored in the server (basic java socket

programming is used for the implementation). The received messages are stored in the file

path in the pattern of /DTN/Device_ID/Month_Data/Unique_Message_ID. For each

25

message, two files are created on the server. One is the actual image and another one is a

text file (.txt) that contains the metadata for that message.

Figure 4.10. Send to IP Screen.

4.2. STUDY 2: SECURE FORWARDING BY FRAGMENTATION IN DELAY-

TOLERANT NETWORKS

4.2.1. Background. Shudip et al. [2] proposed a scheme that can be used in volatile

situations like disaster/battlefield zones where multiple groups under different authorities

are operating and need to share information securely. There may not be any central network

infrastructure in such volatile situations, and as an alternative, opportunistic networks like

DTN can be used by making smartphones act as nodes. To avoid malicious intent,

messages need to be secured within and across different groups.

Traditional public-private key cryptography will not work in this situation due to

the non-availability of the infrastructure. Encrypting data with a symmetric key and then

fragmenting both the key and data before disseminating through the DTN helps to

significantly reduce the probability of a message being compromised by some unauthorized

26

node. However, in this fragmentation process, few redundant fragments are created to

increase the probability of a message being delivered to the destination node in such an

environment. Thus, for each message, x number of key-shares are generated with hidden

information related to the decryption of the original message. Out of x key-shares, we need

at least y key-shares to obtain the hidden information where y <x. Similarly, the encrypted

message is fragmented into n data-shares that contain some parity blocks to improve the

delivery rate of the message. Out of n data-shares, at least k data-shares are needed to obtain

the original message where k<n. In order to verify that each key- and data-share is not

corrupted before decryption at the destination, an integrity check is also set up which helps

in conserving the device’s battery. Each device also has a unique ID that it receives from

the cloud server by connecting to the internet before it can perform any other operations.

The four important modules are:

• Key handler

• Data handler

• Key Integrity Checker

• Data Integrity Checker

An overview of all these modules is presented in the following sections:

4.2.1.1. Key handler. This module generates a public-private key using Elliptical

Cryptography (EC) when the application is run for the first time on the device and it

remains the same for consecutive runs. The public-private key is of size 1024 bits and 160

bits respectively. Next, whenever a device creates a new message, it creates a random

symmetric key of size 256 bits using Advanced Encryption Standard (AES) which will be

used to encrypt the message. Using the Recursive Secret Sharing (RSS) [10] algorithm

27

over Shamir’s scheme we generate 8 key-shares with the AES key, the public key of the

source node (SN), and any other information related to the message as secrets. At the

destination node (DN), we need at least 4 key-shares to retrieve the secrets.

The number of key-shares for each message is constant throughout the network and

each key share is 32 bytes. The SN generates a number of proxy re-encryption keys using

its own private key and the public key of the intermediary node. Each of the key-shares is

encrypted with one of these proxy re-encryption keys. Thus, INs on receiving key-share

proxy re-encrypted using its public key can act a source to that key-share. Instead of

decrypting, the IN re-encrypts the key-share with proxy re-encryption keys generated using

its own private key and the public key of the DN (if available) or another available IN.

Only the DN decrypts the key-shares once it obtains a minimum of 4 key-shares and

retrieves message-related secrets. An overview of the algorithm to send message from one

device to another is shown in Figure 4.11.

4.2.1.2. Data handler. When a message is created, it is encrypted using a random

symmetric key generated using AES by executing the key handler module. The message is

split into n data-shares, and the data shares are encoded using Cauchy Reed Solomon

Erasure Code (CRS) [11]. Out of n data-shares, we need at least k data-shares at DN to

retrieve the original message where k<n. When an IN receives a data-share it just forwards

it to the next IN or DN. When a DN receives a data fragment, it first checks whether it has

obtained a minimum number of key-shares to retrieves the secrets. Then it checks whether

it has received a minimum number of data fragments. If both requirements are satisfied,

the AES symmetric key (secret) is obtained from the key-shares, and then CRS decoding

28

is performed on the data-shares. Using the AES symmetric key obtained from the key-

shares, the encrypted message is decrypted to obtain the original message.

Figure 4.11. Algorithm to Send Data D.

The number of fragments n for a message and a minimum number of fragments k

to retrieve the original message can be varied based on different scenarios as follows:

29

• Static data fragmentation: In this mode, n and k are constant across the

network. Thus for each message, the number of fragments remain the same.

Sometimes it is not useful, as even for a small message more fragments will

be created.

• Dynamic data fragmentation: In this mode, the parameters n and k are

decided based on the message size, where k<n. This is particularly helpful

for small messages; however, it incurs extra computational overhead as the

value of n and k needs to be sent as one of the secrets at the source.

• Priority-based data fragmentation: Each message has a priority value

associated with it. The higher the priority value, the higher the number of

fragments that are created for that message. This increases the probability

of that message reaching the destination in a short time.

Figure 4.12. Algorithm to Receive Data D at Destination.

30

There are n data fragments for a message and DN needs at least k data fragments to

retrieve the original message. The first k fragments are the original data fragments and n-k

fragments are additional coded fragments. DN can wait to receive the first k fragments to

avoid data decoding which takes quadratic time to execute. This helps to conserve the

battery. The destination node can detect a faulty key-share or data-share only after

performing decrypting or decoding respectively. In order to avoid wasting battery power,

the destination node first performs key and data integrity checks to ensure that all the

received fragments are not corrupted due to transmission errors or malicious nodes. An

overview of the algorithm to receive data D at destination is shown in Figure 4.12.

4.2.1.3. Key integrity check. If a key-share is corrupted, the DN will only know

when it tries to retrieve the secrets from the key-shares using RSS. In order to save the

computation time and cost, the source creates a Merkle Hash Tree (MHT) using the hash

values of each key-share. Then the source appends the relevant MHT node values to each

key-share so that the MHT root can be generated from it. Thus, when a DN has a minimum

number of key-shares and tries to retrieve the secrets, it first generates the MHT root for

each share and selects those key-shares whose root values are common and rejects the odd

ones.

4.2.1.4. Data integrity check. Similarly, if a data-share is corrupted, the DN will

know about it only after performing CRS and decryption using the AES key. In order to

avoid the computation cost and time, we sign each data-share at the source with the source’s

private key. At DN, when it has a minimum number of data- and key-shares, before

performing CRS, the signature of each data-share is verified using the public key of the

source which is obtained as a secret from the key-shares.

31

Figure 4.13. Secure Data Flow between Connected Devices.

4.2.1.5. Data flow between connected devices. Whenever two devices connect to

each other, each device’s unique ID and the public key are first exchanged. Message ID is

a unique ID for each message, its format is DeviceID_ithmessage_generated. For example,

if a device with ID 2 generates the 3rd message, its message ID will be 2_3. Each message’s

data and key-share have a unique ID associated with them. The two devices exchange 3

types of messages.

• The direct message is sent only when the source creates a message and it

meets the destination directly. In such a case, the original message prior to

fragmentation is set as the direct message.

32

• From storage, the source device collects a key and data-share of all

messages for which the connected device acts as an IN, i.e. for all the

message for which the connected device is not the destination and no key-

or data-share for that message has already been sent to this device

previously. This collection is bundled together and set as an Intermediary

message.

• Destination message is a collection of data and key-shares of all messages

for which the connected device is the destination.

For each key-share, the user needs to create a proxy-key using the stored public key

of any of the IN or DN. Only IN with which the proxy-key has been generated can perform

proxy re-encryption and acts as a source for that key-share and only DN performs

decryption of the key-shares and no IN needs to perform any decryption activity. The

overall data flow between the two connected devices is shown in Figure 4.13.

4.2.2. Implementation Details. Secure Forwarding through fragmentation in DTN

is implemented over the Android operating system and it makes use of Google Nearby

Connections API to communicate between devices. It works on the devices running on

Android's KitKat (API 19) to Oreo (API 27) version. For each device, the user must first

connect to the internet and obtain a one-time unique device ID from Google’s Firebase

Realtime Database. The user can start using the app only after receiving the device ID.

Using elliptical cryptography, the public-private key for the device is initialized and

it remains the same for the lifetime of the app on that device. Figure 4.14 shows the home

screen of the secure forwarding app. The user can create a new message by clicking on the

33

“Camera” button and capture an image through the device’s camera. Once the image is

captured, the user can choose the preferred mode of data fragmentation as specified in [2].

Figure 4.14. Home Screen for Device ID:5.

Figure 4.15 shows message creation with different modes of data fragmentation

that the user can choose from. The user can input the destination device ID in the

“EditText” field, which is available above the “Create key + data shares” button. Upon

clicking the “Create key + data shares” button, the image is encrypted with the random

AES key. They AES key along with necessary message-related information such as the n

and k values of the data-shares (k<n) and the public key of the source node, is kept as the

secret and 8 key-shares are created using RSS. Out of 8 key-shares, DN needs at least 4

key-shares to retrieve the secret. After creating the key-shares, the Key Integrity Module

34

will be invoked, and that creates an MHT with these key-shares. The Key Integrity Module

appends relevant node values (hash values) to each key-share so that the MHT root hash

value can be recreated from it. Using the CRS algorithm, data fragmentation is done based

on user preferences.

Figure 4.15. Message Creation with DN 3.

Figure 4.14 shows that when a user clicks on the “Own Message” button, the user

can view the created messages and then clicking on a message, the user can view the data-

and key-shares for that message as shown in Figure 4.16. For each key-share, the user needs

to create a proxy-key using any of the available public keys of IN. It is to be noted that if

the public key of DN is available, then all the key-shares are encrypted with the proxy-key

that was created using the private key of SN and the public key of DN. Encryption of a

35

key-share using the proxy-key of any available IN is done by clicking a key-share and that

allows the user to select any of the devices’ IDs from a drop-down list. Upon clicking on

the “Generate Proxy key” button after selecting an IN’s device ID, a proxy-key is generated

with that IN and they key-share is encrypted with that proxy-key.

Figure 4.16. Data- and Key-shares of a Message.

Each data- and key-share have certain attributes associated with them as shown in

Table 4.1. Figure 4.17 shows the screen in which the user can select an IN to create a proxy-

key and encrypt the key-share. If the device does not have any public key of other devices,

it just sends a key-share to an IN without encrypting it.

36

Figure 4.17. Proxy-key Generation and Encryption for a Key-share.

Table 4.1. Data- and Key-share Attribute Description.

Attribute Description Key-

share

Data-

Share

Msg ID Msg ID is of the form DeviceID_ithMessageGenerated.

It denotes the message to which the corresponding

fragment belongs to.

✓ ✓

Type Denotes whether a fragment is a key-share or a data-

share.

✓ ✓

Share ID Key-shares have an ID in the range [4, 11] and data-

shares have ID starting from 1.

✓ ✓

Destination

ID

Denotes the DN’s ID for which the message was

created.

✓ ✓

37

Table 4.1. Data- and Key-share Attribute Description (Cont.).

Status Denotes whether the fragment has been transferred to

any IN or not.

✓ ✓

Sender Info It hold the ID of the device to which the fragment has

been transferred, else it has the value of NA(Not

Applicable)

✓ ✓

Proxy-key Displays the device ID using which proxy-key was

created to encrypt the key-share

✓ 

In Figure 4.14, upon clicking the “Enable” button, the application searches for

nearby Android devices. Once they are connected, the public key and device ID are

exchanged. Based on the connected device ID, the application checks whether the user has

created any message for that device. If it finds such messages, it directly sends the original

message to the connected device. For all data- and key-shares for which the connected

device is not the DN, the application will first check each message whether any of the key-

or data-share have already been previously shared with that device. If previously not shared

with the connected device, it selects one of the key- and data-share of that message to send.

Lastly, the device will send all the data- and key-shares of all messages for which the

connected device is the DN.

As shown in Figure 4.18, all these messages are bundled together and sent to the

connected device in a single transmission. The device also receives messages from the

connected device. The data- and key-shares are stored appropriately in the storage based

on the role of the device for that fragment (i.e. either IN or DN). For each data-share

38

received for which the device acts as the DN, it checks whether 4 or more key-shares are

present and whether the secret has been retrieved. If not, it waits for the minimum number

of key-shares for that message before proceeding further. If 4 or more key-shares are

received for a message, then the key-shares are decrypted. The integrity of each key-share

is verified by generating the MHT root hash value. The common MHT root is taken as the

valid root hash value and the remaining odd values are discarded as the corrupted ones. If

4 or more key-shares are present even after discarding these values, then the device

executes the RSS algorithm over the key-shares to obtain the secret. The secret mandatorily

includes the AES key that is used to encrypt the image and the SN’s public key. This secret

is stored in the internal memory of the DN until the original message is retrieved.

Figure 4.18. Bundled Message Format.

39

Next, the device checks whether k (the minimum number of data-shares required at

the DN to retrieve the original message) or more data-shares are obtained for that message.

If the answer is yes, then the device checks the integrity of each data-share by verifying

whether it was signed by the SN using the SN’s public key that was obtained as the secret.

The corrupted data-shares are discarded. Even after discarding, if there are k or more data-

shares, CRS algorithm is executed to merge the data-shares into a single encrypted image.

Now the image is decrypted using the AES key obtained as the secret. Once the final

message is obtained, it is stored in the internal memory so that the user can view it later

along with its associated data- and key-shares.

Figure 4.19. Message 5_1 Retrieved at Device:3.

Figure 4.19. shows the messages received by Device 3 for which it is the DN. In

the same figure, message 5_1 can be seen, which was created by device 5 with device 3 as

40

the DN as shown in Figure 4.15. Figure 4.18 can be viewed by clicking on the “Destination

Message” button present in Figure 4.14.

The study [2] has been simulated using “The One” simulator in Java programming

language. In the earlier simulation phases, the testing environment included multiple virtual

nodes on a single Java program. An elliptic curve used to generate the public and private

keys is randomly generated and one instance of an elliptic curve is shared across all the

nodes. However, due to the lack of synchrony across multiple Android devices, the random

instances of elliptic curves are no longer identical. Thus, the app is bootstrapped with a

predefined elliptic curve using curve parameters and elements that are written into a file

(bundled with the app) to generate public and private keys and perform cryptographic

operations from the same elliptic curve.

4.2.3. Performance Analysis. The Android studio provides a tool called “Profiler”

which helps to keep track of the performance of the app. Figure 4.20 shows the performs

of the app when computationally intensive tasks like encryption/decryption are performed.

The encryption and decryption process involves Key Handler/Key Integrity Checker

module and Data Handler/Data Integrity Checker module. Other operations such as peer-

to-peer message transfer using Nearby Communications API are not tracked as the API

takes care of the underlying connections and data management and hence cannot be

modified. From this tool two major computationally intensive tasks encryption/decryption

are analyzed for a single message. During such tasks, the app consumes almost 40% of the

CPU utilization. The average memory used by the app is 60MB during such tasks. The tool

describes energy consumption in three levels; light, medium and heavy. The energy

41

consumption of the app varies from light to medium utilization. The analysis has been done

on Pixel 2 virtual device running on Android Pie 9.0 (API 28).

Figure 4.20. Performance Analysis of Secure Forwarding DTN App.

4.3. STUDY 3: INTEREST-BASED AUTHENTICATION USING CIPHERTEXT-

POLICY ATTRIBUTE-BASED ENCRYPTION IN DELAY-TOLERANT

NETWORKS

4.3.1. Background. In a disaster/battlefield environment, different parties may

come along and work together and it is necessary that each information is sent to the

42

concerned parties in a secure way. Each party is associated with a set of attributes or

interests e.g. Airforce party may be described by [‘Fighter planes’, ‘Jet’]. In such a

scenario, interest-based authentication becomes really useful to provide access to data in a

way similar to traditional role-based access control. The messages are encrypted with

policy and the destination node can decrypt only if the policy is satisfied. A policy contains

a set of attributes (or interests) and a condition, stating the minimum number of attributes

to be present in the private key (generated from a set of attributes) to decrypt the message.

 It is also useful to send an image message rather than a text message. A single image

helps to convey the situation more clearly than many text lines. For this reason, while

implementing DTN on Android, images along with associated metadata are considered as

a message. However, due to battery and memory constraints, it is important to keep the

messages as short as possible in the DTN environment. For example, images of a broken

building or enemy soldiers need to be sent to the relevant interested parties. In such a case,

it is a waste of memory and energy consumption to send an image with background

information. In addition, it is also invaluable to provide a short description of the interesting

object to the user. Thus, deep learning models are used to detect interesting objects. In

recent times, performing object detection with Android devices has improved a lot, which

provides low latency, low memory constraints, low battery consumption, and improved

accuracy. Some of the best object detection algorithms are Faster-R-CNN (Regional Neural

Network), YOLO (You Look Only Once) and SSD (Single Shot Detector). Out of these,

we have used SSDLite MobileNet V2 for object detection on Android devices. One of the

primary reasons for using this model is that it has few parameters than other object

43

detection algorithms and the FPS (Frames per second processed) is relatively higher, which

makes it suitable for real-time object detection [18].

The overall architecture of the system is shown in Figure 4.21. The important

components of [3] in DTN are as follows:

• Master key generator and Edge Servers

• Delay-tolerant network nodes

• Trusted path measurement

• Object detection

4.3.1.1. Master key generator and Edge servers. At the start of the system, all

the attributes that are associated with each edge server are collected. Using ABE, these

attributes are used to generate public (7128 bits) and master (156 bits) key. The master key

is used for the generation of the private (5464 bits) key.

Figure 4.21. Architecture of ABE in DTN.

44

The edge servers are in the second layer of the architecture. When they are first

initialized, they send a subset of attributes to the MKG and receive the private and public

key from MKG. Edge servers distribute these keys to the DTN nodes when they are first

initialized into the system.

4.3.1.2. Delay-tolerant network nodes. The DTN nodes are responsible for

message encryption/decryption and message transmission from source to the destination.

When a node is first initialized, it connects to the relevant edge server based on its interest

and receives the public/private key. For example, an army edge server may have a private

key generated from the attributes [‘army’, ‘soldier’]. A node connecting with this edge

server will receive the private key from these attributes and will be able to decrypt

messages encrypted with these attributes via a policy. A message may be encrypted with a

policy such as [‘army fire 1of2’] which implies that the destination node should have a

private key generated from a set of attributes containing either ‘army’ or ‘fire’ or both.

4.3.1.3. Trusted path measurement. In order to find the corrupted nodes in the path

of message traversal from source to destination, the keychain-based approach is used. A

keychain is a one-way backward chain of the hash outputs of a predefined hash function

(SHA-256) where the first key kn is created randomly. Then the next key kn-1 is created by

the hashing of kn and we keep hashing until we get k0. The MKG creates a set of keychains

for all the edge servers. When an edge server connects to the MKG, it receives keychains

for its own and also receives the keychains of other edge servers. Instead of sending all the

hash values, MKG sends only kn and k0 for each keychain. Similarly, when a node gets

connected to the edge server it receives all the keychains from the edge server.

45

In Figure 4.22, the source node selects one of the keychains and obtains k4 (i.e. kn)

from its storage before transferring a message created by it. Next, it creates a keyed hash

using SHA-256 from k4 and the IDs of source S and intermediate node I1. It also sends k3

and IDs of S and I1 to I1. When I1 meets another intermediate node I2, it creates a keyed

hash from k3 and IDs of I1 and I2. This keyed hash along with previous keyed hash values

generated for this message is sent to I2. k2 along with IDs of I1 and I2 is also sent to I2. The

same process continues when I2 meets I3 and when I3 meets the destination node. When the

destination node receives k0, it obtains k4 from its storage which was previously obtained

from the edge server on initialization. From k4 and the pair of IDs associated with each

hash, the destination node recalculates and validates all the hashes associated with the

message. By validating, the destination node can identify the malicious nodes. Any node

which might have contributed to altering any hash or path information will be kept out of

consideration for further distribution of data.

Figure 4.22. Hash Chain Created by Source/Relay Nodes for a Message.

46

4.3.1.4. Object detection. SSDLite MobileNet V2 is an object detection model

designed by Google to more efficiently run inference on this model on mobile and

embedded devices. The base network of this model is MobileNet V2 which makes use of

depthwise separable convolution and efficient handling of linear bottlenecks.

Figure 4.23. Residual Blocks [18].

Depthwise separable convolution helps to minimize the computation by reducing

the number of addition and multiplication operations. In depthwise separable convolution,

the convolution operation is split into two smaller functions. The first operation is

depthwise convolution and it performs convolution to a single input channel at a time. For

example, there are 3 channels for an RGB image, and depthwise convolution performs

convolution by applying a filter or kernel to a single channel at a time. Thus, the number

of kernels should be the same as the number of input channels. Depthwise convolution is

succeeded by pointwise convolution. Pointwise convolution performs a linear combination

on the output from depthwise convolution. It is a 1x1 convolution operation with N filters.

From [18] it is known that depthwise separable convolution has k2 reduced computation

47

than standard convolution operation, and k is the size of the kernel in the depthwise

convolution. MobileNet has k=3, which in turn reduces the computation cost up to 8 to 9

times compared to the standard convolution operation.

As the number of layers increases, deep neural networks can act as universal

approximators, especially in computer vision problems. However, there is an upper bound

on the number of layers added which results in improvement of accuracy. The increased

number of layers may result in problems such as vanishing gradients and curse of

dimensionality. All these problems are overcome by using residual networks in which

output from one layer is skipped a few training layers and connected with another layer as

shown in Figure 4.23.

Figure 4.24. Inverted Residual Blocks [18].

In this way, the deeper layers have access to earlier activations that were not

modified by the in-between convolutional blocks. From the diagram, it can be seen that the

residual blocks are in the pattern of wider-narrow-wider in regards to the number of

channels. This is the traditional pattern when residual blocks are used. However,

48

MobileNet V2 uses inverted residual blocks as shown in Figure 4.24. Here the pattern

follows a narrow-wider-narrow approach in regards to the number of channels in the input.

The author specifies that, when both the patterns are implemented, it is observed that

inverted residual blocks have fewer parameters than the traditional approach.

It is important to have non-linear activations in neural networks; it helps to make

 neural networks act as a good approximator. ReLU(Rectified Linear Unit) is one of the

frequently used non-linear activation functions in deep neural networks which discard

values smaller than 0. Thus, there is some kind of information loss that occurs in each layer.

This is overcome by increasing the number of channels to increase the capacity of the

network. However, in the inverted residual model, the layers are squeezed and skip

connections are established. Thus the author proposed the idea of linear bottlenecks in

which the last convolution of the residual block has a linear output before it is added to the

initial activation from the skip connection. MobileNet V2 uses batch normalization after

every convolutional block and it uses ReLU6 as the activation function.

Figure. 4.25. MobileNet V2 Architecture [18].

49

SSDLite MobileNet V2 contains an SSDLite layer at the top for object detection.

SSDLite is a trimmed-down version of SSD. The overall architecture of MobileNet V2 is

shown in Figure. 4.25. The first layer of SSDLite is attached to layer 15, and the rest of the

SSDLite layer is added on top of the last layer of MobileNet V2, shown in Figure 4.25.

The symbol t represents the expansion rate of the channel, c represents the number of input

channels, n represents how often the block is repeated and lastly s represents the stride

used.

Figure 4.26. Setup Screen of ABE DTN App.

4.3.2. Implementation Details. MKG server and edge servers are created using

Java socket programming. The implementation details are explained based on the demo

performed. For the demo, the system is bootstrapped with MKG server and two edge

50

servers. The MKG server runs on port number 5000 and creates a public/master key based

on the following attributes [‘army’, ‘soldier’, ‘disaster’, ‘flooding’]. One of the edge

servers is Battlefield edge server and it is associated with the attributes [‘army’, ‘soldier’]

and it runs on port number 5001, while the other one is Disaster edge server, its attributes

are [‘disaster’, ‘flooding’] and runs on port number 5002. All the ABE related operations

are implemented using [17].

When the system is first initialized, MKG server is run first and it creates a

public/master key. Based on the number of edge servers it creates a set of keychains using

SHA-256 for each edge server. Next, the edge servers are initialized. During initialization,

they request the MKG server by passing their associated attributes to receive public/private

key and also the keychains. Once the edge servers are initialized, DTN nodes can be

initialized.

Figure 4.26 shows the setup screen for the Android app. The node can choose the

edge servers it wants to connect to or choose an intermediate node option which restricts

the node functionality to just receive and forward messages. In order to connect to the edge

server, the node must be connected to the internet. On clicking the “Setup” button, the node

receives the public/private key, unique device ID and keychain from the edge server which

will be stored in the internal storage of the device. Figure 4.27 displays the “Homescreen”

of the app. “Homescreen” displays the unique ID of the device and also the set of attributes

from which its private key has been generated. Thus, a message encrypted with policy

using these attributes can be decrypted by this node if it satisfies the policy conditions too.

In Figure 4.27. on clicking “Soldier detection”, the app displays a single screen

where it converts the live video feed from the device’s camera into frames of size 640x480

51

and feeds the cropped frame of size 300x300 to the object detection model at the rate of

135FPS in Pixel 6 Android device (Virtual device). Once the objects are detected, the

relative box coordinates are returned by the model that is used for drawing bounding boxes

on the detected objects on the screen. The app also provides an option for the user to save

detected objects in storage.

Figure 4.27. Homescreen of DTN ABE App.

On exploring various object detection models, SSDLite MobileNet V2 is the most

effective in terms of accuracy, lesser parameters, and lesser computation (i.e. lesser

addition/multiplication operations) [18].From Table 4.2. it is clear that another efficient

mobile-friendly object detection algorithm YOLO v2, has 20 times more computation and

10 times more parameters than SSDLite MobileNet V2 when trained on COCO dataset.

52

MobileNet models provide a good tradeoff between resource utilization and accuracy.

They are often coined as “mobile-first” architectures. In SSDLite MobileNet V2, the base

MobileNet model use depthwise separable convolutions and inverted residual blocks which

makes them insanely fast, small, and remarkably accurate, and makes them easy to tune

for resource vs. accuracy.

In order to develop an object detection model, the first stage is obtaining the training

and testing data. For this purpose, 650 images of soldiers were scraped off from the internet

and 250 images of normal civilians are taken from INRIA Person Dataset [19]. The civilian

images are added to prevent the model from detecting civilians as soldiers as both have

almost the same features. The training data consists of 800 images and the evaluation data

consists of 100 images out of the total of 900 images. For all the training/testing data,

ground truth box for soldiers and civilians are created using LabelImg utility [20].

Table 4.2. Performance Comparison of SSDLite MobileNet V2 with Other Object

Detectors on the COCO Dataset [18].

Network mAP Params Madd CPU

YOLO V2 21.6 50.7M 17.5B -

MNet V1 +

SSDLite

22.2 5.1M 1.3B 270ms

Mnet V2 +

SSDLite

22.1 4.3M 0.8B 200ms

Using TensorFlow Object Detection API, SSDLite MobileNet V2 model was

configured and transfer learning was done from training on COCO dataset. Thus, the model

53

already knows the features to detect humans in an image. This reduces training time and

improves accuracy.

Figure 4.28. Mean Average Precision(mAP) Graph.

Figure 4.29. Total Loss Graph.

The training was continued until the mean average precision (mAP) was steadily

increased and the overall total loss was very much reduced. From the graphs in Figure 4.28.

and 4.29 from TensorBoard, we identified any training beyond this worsened the accuracy

54

of the model as it was overfitting with the training data and performed poorly on the

evaluation dataset. In Figure 4.28 the horizontal axis denotes the training steps and the

vertical axis denotes the mAP values. Similarly, in Figure 4.29 the horizontal axis

represents the training steps and the vertical axis denotes the total loss value. Once the

model is trained, it is converted to a frozen graph in which information unnecessary for

inference are removed, so that the size of the model is very much reduced. The frozen graph

has .pb file format and the model’s size was about 18 MB.

Figure 4.30. Soldier Detection in Android App.

The .pb file format is converted to TFLite format so that the Android device can

make use of NNAPI to improve the runtime of inference on this model. Converting models

to TFLite format reduces the model size and provide optimizations without reducing the

55

accuracy drastically. An example of such optimizations is to convert the model to a

quantized model which reduces the precision of values and operations within the model to

reduce the time required for inference. The model size was 17 MB after converting to

TFLite format. Figure 4.30 shows the screen where a soldier has been detected and

displayed to the user.

Figure 4.31. Messages Screen.

In Figure 4.27, on clicking the “Gallery” button, the user can select images from

the device’s gallery to create a message. All the images selected will be added to the

database which can be viewed on clicking “Messages” button. On clicking the “Messages”

button in Figure 4.27, the app displays the “Messages” screen as shown in Figure 4.31.

The user can view the created messages by selecting “My msgs” spinner in the ActionBar.

56

The user can view the decrypted messages (i.e. it the destination node for those messages)

by selecting “Received msgs”. For all those messages which cannot be decrypted by the

device will be considered as an intermediate message and will be forwarded to other

devices on contact. Intermediate messages can be viewed by selecting “Intermediate msgs”

in Figure 4.31. The messages are displayed as a list containing filename and message status

(i.e., encrypted or not).

Figure 4.32. Message Details Screen.

If the message was created by the device, the message will be displayed by selecting

“My msgs” in Figure 4.31. On clicking on the message, the metadata associated with the

message is displayed as shown in Figure 4.32. The user can enter the policy for the message

to be encrypted in EditText. Policy disaster fire 1of2 implies that the destination node

57

should have a private key generated from disaster or fire or both. By clicking on “Encrypt”

button the message will be encrypted and stored in the database. The metadata associated

with each message is shown in Table 4.3.

Table 4.3. Metadata Associated with ABE DTN App Message.

Attribute Description

Msg_ID Msg ID is of the form DeviceID_ithMessageGenerated. It

denotes the message to which the corresponding fragment

belongs to.

Filename Contains the image filename

Source_ID Contains the ID of the device which created the message

Path Contains the path where the image is stored in the device

Type Refers to the type of message for that device. Can be own,

intermediate or received message for a device

CipherPath Refers to the path where the encrypted message is stored in the

device

Policy Contains policy used for encryption of the message

HashInfo Contains the hashes created by each device the message

traveled through (for trusted path measurement)

Num_nodes_travelled Number of intermediate nodes + destination node traveled by

the message

Connected_devices IDs of devices the message traveled through

58

Table 4.3. Metadata Associated with ABE DTN App Message (Cont.).

Next_hash If a source/intermediate node created a hash using kn, it

computes kn-1 and stores it in this attribute

isVerified The destination node verifies the hash values created by source

and various relay nodes of the message and assigns a boolean

value to this attribute.

Figure 4.33. Message Metadata.

In Figure 4.27, upon clicking the “Enable” button, the application searches for

nearby Android devices. Once they are connected, the device ID is exchanged. Based on

the connected device ID, the application pulls all the encrypted messages from storage.

59

While forwarding each message it creates a hash using the keychain and the IDs of both

the connected devices are computed and appended to “HashInfo” attribute. The

“Next_hash” attribute is computed and stored. The connected device’s ID is appended to

the “Connected_devices” attribute and “Num_nodes_travelled” attribute is increased by

one. Once all these attributes are updated for a message, it is transferred to the other device

including the encrypted message as a stream.

Figure 4.34. Object Detection Performance Analysis.

Similarly, the device also receives encrypted messages from the connected device.

If the device is able to decrypt the encrypted message then it is the destination for that

message and does not forward to any other device in the future. The retrieved image is

60

stored in the device’s storage and encrypted message stream is discarded. The decrypted

message can be viewed by clicking on “Received msgs” from Spinner in ActionBar in

Figure 4.31. On clicking a received message, the retrieved image and metadata are

displayed as shown in Figure 4.33. The “Hash details” display “HashInfo” attribute of a

message for the demo purposes. If the device is not able to decrypt an encrypted message

received it stores them as an intermediate message and forwards it to other devices in the

future.

Figure 4.35. ABE Encryption/Decryption Analysis.

4.3.3. Performance Analysis. As mentioned in the implementation details of [2]

the tool called “Profiler” in Android Studio IDE is used for performance analysis of the

app. The app is analyzed for object detection module and encryption/decryption using [3]

61

for images. Figure 4.34 displays the analysis of the object detection module of the app. The

object detection module heavily consumes the device battery. On average it consumes 63%

of the CPU utilization. It uses an average of 110MB of memory when its performing object

detection on a live feed from the device’s camera. Figure 4.35 displays the performance

analysis of the encryption/decryption process using ABE.

The analysis has been done for encryption/decryption of a single message. The app

consumes almost 45% of the CPU utilization and uses an average of 60MB for internal

memory. The energy consumption is of “medium” level while performing those operations.

The analysis has been done on Pixel 2 virtual device running on Android Pie 9.0 (API 28).

62

5. CONCLUSION

Three DTN protocols [1], [2] and [3] are implemented on the Android platform as

an app. The apps use various available peer-to-peer networking technologies to

communicate with nearby devices. The protocols [1], [2] and [3] in DTN are experimented

in real-time scenarios by running tests with a number of Android devices with the

respective apps and that shows the usability and effectiveness of these protocols in

disaster/battlefield applications. These protocols provide better content management and

cybersecurity in DTN environment. Furthermore, we have explored the models for object

detection using deep learning and integrating them with the Android platform, and

implemented one of the mobile-friendly object detection models SSDLite MobileNet V2

for soldier detection. The object detection helps in routing the appropriate data satisfying

the access control policies in DTN environment. The codes for all the 3 projects are

available at [21].

63

BIBLIOGRAPHY

[1] H. Jethawa and S. Madria, “Reputation and credit based incentive mechanism for

data-centric message delivery in DTNs,” in Proceedings - IEEE International

Conference on Mobile Data Management, 2018.

[2] S. Datta, S. Madria, J. Milligan, and M. Linderman, “Secure information

forwarding through fragmentation in delay-tolerant networks,” in Proceedings of

the IEEE Symposium on Reliable Distributed Systems, 2019.

[3] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based

encryption,” in Proceedings - IEEE Symposium on Security and Privacy, 2007.

[4] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The TESLA Broadcast

Authentication Protocol,” RSA CryptoBytes Tech. Newsl., 2002.

[5] D. McGeehan, D. Lin, and S. Madria, “ChitChat: An Effective Message Delivery

Method in Sparse Pocket-Switched Networks,” in Proceedings - International

Conference on Distributed Computing Systems, 2016.

[6] B. Bin Chen and M. C. Chan, “MobiCent: A credit-based incentive system for

disruption tolerant network,” in Proceedings - IEEE INFOCOM, 2010.

[7] M. Y. S. Uddin, B. Godfrey, and T. Abdelzaher, “RELICS: In-network realization

of incentives to combat selfishness in DTNs,” Proc. - Int. Conf. Netw. Protoc.

ICNP, pp. 203–212, 2010.

[8] L. Wei, Z. Cao, and H. Zhu, “MobiGame: A user-centric reputation based

incentive protocol for delay/disruption tolerant networks,” in GLOBECOM - IEEE

Global Telecommunications Conference, 2011.

[9] R. Cabaniss, V. Kumar, and S. Madria, “Multi-party encryption (MPE): secure

communications in delay tolerant networks,” Wirel. Networks, 2015.

[10] A. Parakh and S. Kak, “Recursive secret sharing for distributed storage and

information hiding,” in 2009 IEEE 3rd International Symposium on Advanced

Networks and Telecommunication Systems, ANTS 2009, 2009.

[11] J. S. Plank and L. Xu, “Optimizing cauchy reed-solomon codes for fault-tolerant

network storage applications,” in Proceedings - Fifth IEEE International

Symposium on Network Computing and Applications, NCA 2006, 2006.

64

[12] R. Yanggratoke, A. Azfar, M. J. P. Marval, and S. Ahmed, “Delay tolerant

network on android phones: Implementation issues and performance

measurements,” J. Commun., 2011.

[13] A. Ippisch and K. Graffi, “Infrastructure mode based opportunistic networks on

android devices,” in Proceedings - International Conference on Advanced

Information Networking and Applications, AINA, 2017.

[14] A. Ignatov et al., “AI Benchmark: Running deep neural networks on android

smartphones,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 11133 LNCS, pp. 288–314, 2019.

[15] A. De Caro and V. Iovino, “jPBC: Java Pairing Based Cryptography,” in

Proceedings - IEEE Symposium on Computers and Communications, 2011.

[16] J. Huang et al., “Speed/accuracy trade-offs for modern convolutional object

detectors,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR

2017, vol. 2017-Janua, pp. 3296–3305, 2017.

[17] J. Wang, “Java Realization for Ciphertext-Policy Attribute-Based Encryption,”

2012.

[18] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2:

Inverted Residuals and Linear Bottlenecks,” in Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 2018.

[19] N. DALAL, “INRIA Person Dataset.” [Online]. Available:

http://pascal.inrialpes.fr/data/human/.

[20] Tzutalin, “LabelImg. Git code (2015),” 2015. [Online]. Available:

https://github.com/tzutalin/labelImg.If

[21] K. Sachidanandam, “DTN project code repository.” [Online]. Available:

https://github.com/karsac93.

65

VITA

Karthikeyan Sachidanandam was born in Chennai, India. He received his

Bachelor's degree in Information Technology from Anna University, India in 2014. After

working in an IT firm for almost 3 years, he became a graduate student in the Computer

Science Department at Missouri S&T. He did his thesis research under Dr. Sanjay Kumar

Madria from January 2018 to July 2019. He received his master’s in Computer Science

from Missouri S&T in December 2019.

	Design and implementation of applications over delay tolerant networks for disaster and battlefield environment
	Recommended Citation

	II

