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ABSTRACT 

 

Lake Chesterfield in Wildwood, Missouri, has been leaking since construction of 

the earth-fill dam was completed in 1986, despite numerous mitigation efforts. The 

mitigation efforts, including the injection of grouting and the emplacement of clay liners, 

has not solve the leakage problem. 

In the current study, geophysical (subsurface imaging) data was acquired across 

the drained and dry lake bed and along the base of the earth-fill dam to 1) map variable 

depth to top of bedrock, 2) determine the variable quality of the bedrock to depths on the 

order of 80 ft., 3) identify any significant karst features beneath the lake, and 4) identify 

any probable seepage pathways. These imaging data would assist geotechnical 

engineering firms in determining the most appropriate mitigation plan. 

During the geophysical survey, electrical resistivity tomography (ERT), multi-

channel analysis of surface waves (MASW), and spontaneous potential (SP) data were 

acquired across the drained and dry lake bed. 

Interpretation of the geophysical data indicates the average depth to bedrock 

beneath the lake bottom is generally between 5 and 10 ft. The quality of the shallow and 

predominantly limestone bedrock (depths less than 30 ft.) beneath the lake bed is highly 

variable. In some places it is highly weathered; elsewhere it is relatively intact. 

The acquired geophysical data indicate the earth-fill dam was constructed, in 

places, on highly weathered limestone. Three prominent low resistivity zones were 

mapped along the base of the earth-fill dam. It is likely that these three zones represent 

drainage pathways beneath the dam. 
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1. INTRODUCTION 

 

Lake Chesterfield, located in Wildwood, Saint Louis, Missouri, is a small 

homeowner’s association lake owned operated by the Lake Chesterfield Home Owners 

Association (LCHOA). Construction of the lake, including the dam, was completed in 

1987.  

Lake Chesterfield has been leaking, more-or-less continuously, since it was 

constructed. Numerous mitigation efforts throughout 1988, 1994, 1995, 2004, and 2005 

to mitigate the leaks, including the grouting the interpreted leakage zones and the 

emplacement of clay liners, have failed to stem the leakage for long. In 2017, LCHOA 

contacted Missouri S&T with the aim of finding a permanent solution to the leakage 

issues. 

In the late spring of 2018, Lake Chesterfield was drained in preparation for the 

Missouri S&T geophysical survey. Geophysical investigations are often cost-effective 

methods for investigating the shallow subsurface (i.e. depths <100 ft.). The geophysical 

tools selected for the Lake Chesterfield survey included 2-D electrical resistivity 

tomography (ERT), multi-channel analysis of surface waves (MASW), and spontaneous 

potential (SP).  These methods were used with the purpose to 1) map variable depth to 

top of bedrock, 2) determine the variable quality of the shallow bedrock, 3) identify any 

significant karst features beneath the lake, and 4) identify any probable seepage 

pathways.
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1.1. CONSTRUCTION OF LAKE CHESTERFIELD AND THE NORTH DAM 

Lake Chesterfield was constructed to provide storm water retention and recreation 

for the residents in the area. Situated at the headwaters of Caulk Creek, which drains 

north into the Missouri River, the lake spans 20 acres at maximum fill, is approximately 

2200 ft. long and 450 ft. wide at the widest point.  The lake is bordered by two dams – a 

North Dam and a South Dam (Figure 1.1). The North Dam is the area of primary concern 

and discussion of the South Dam is not relevant to this study.  

The North Dam is 32 ft. in height and 700 ft. long. A road, Pierside Lane, runs 

atop the crest of the dam (Figure 1.1). The base of the dam is at an elevation of 

approximately 640 ft. The dam was constructed with a clay core with the remaining earth 

fill consisting of silt, sand, gravel and clay (Eckelkamp, 1986).  

 Prior to construction, a 5 ft. deep cutoff trench (Figure 1.2) was extended into the 

native soil. The dam was constructed on what was identified, at the time and in auger 

borings, as bedrock.  Based on the interpretation of the geophysics data acquired during 

the current 2018 investigation, it is concluded that the upper 30 ft. of rock beneath the 

dam, in places, is highly weathered limestone.  

The lake bottom was covered with a clay blanket on the lake bed with the 

expectation the dam would not leak, and the lake would retain water. 
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Figure 1.1. Google Earth image of Lake Chesterfield and North Dam. 

 

 

 

 
Figure 1.2. North Dam cross-section (Eckelkamp, 1986). Elevations and distances are in 

feet. 
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1.2. PREVIOUS CONCERNS 

The following information was compiled from previous reports prepared by; 

Eckelkamp, (1986), Taylor, (2005), and Wieners, and Kremer (2005). 

The Eckelkamp (1986) geotechnical report recognized that the construction 

location for the lake and dam was in a karst area. 

Three sinkholes were discovered in 1986 on the northern section of the lake when 

the area was initially graded (Figure 1.3). Two of the sinkholes were on the western side 

of the lake near the tennis courts. One of the two sinkholes on the western edge was 

excavated down to a depth of 20 ft. where a karst trench trending NNE/SSW was 

discovered. This sinkhole was treated by placing serval feet of 2-3in rock in the 

passageway, capping with concrete and backfilling. The second sinkhole on the western 

edge was excavated down to a depth of 35 ft. As no cavity was present the excavated 

sinkhole was backfilled. The third sinkhole was discovered approximately 1000 ft. south 

of the North Dam on the eastern side of the lake near a knoll that extends from the eastern 

shore. This sinkhole was sealed using graded rock filler, whereby large rocks are placed 

in the throat of the sinkhole and progressively smaller rocks are placed on top before 

backfilling with native soil. 

A zone of leakage was identified on the lake in 1995 (Figure 1.3). This zone of 

leakage was believed to be parallel to the eastern shore. The geophysical company Strata 

Services, Inc. was hired to grout the seepage pathway. Nine grout holes were drilled and 

4144 cubic feet of neat cement/pozzolan slurry and 1620 cubic feet of sand-

cement/pozzolan slurry were injected. 
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In 1996, four additional grout holes were drilled to plug another identified 

seepage pathway in immediate proximity to the 1995 grout holes (Taylor, 2005). The 

Taylor report does not indicate the specific location of the four grout holes, so the 

locations cannot be superposed on the map of Figure 1.3.  At that time, water leakage 

from the lake was estimated to be in the range of 100-300 gallon per minute. 1036 cubic 

feet of neat cement/pozzolan slurry and 324 cubic feet of sand-cement/pozzolan slurry 

were injected into the four grout holes. Once grouting was completed, leakage rates 

decreased substantially (Taylor, 1996). 

In 2000, a subsidence feature with associated leakage developed in the NE section 

of the dam (Figure 1.3). A total of five grout holes were drilled. Grout was injected at an 

angle of 12 degrees oriented towards the lake to penetrate underneath the subsidence 

feature. 796 cubic feet of neat cement/pozzolan slurry and 486 cubic feet of sand-

cement/pozzolan slurry were injected. Strata Services, Inc. concluded that this grout 

curtain should seal any leakage associated with the subsidence. Leakage was temporarily 

reduced. 

In June 2004, a sinkhole formed at the north end of the lake (Figure 1.4). Leakage 

through this feature rapidly and fully drained the lake. A dye test found that the water that 

drained into the sinkhole emerged 3.5 miles north of the lake at Lewis Spring. This 

suggests to the author that the waters that drained into the sinkhole flowed to the north 

beneath the dam along the original Caulks Creek pathway. This should not be surprising 

as bedrock beneath Caulks Creek would have been extensively weathered, in places, and 

would be an ideal conduit for mostly horizontally flowing water. 
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Shannon and Wilson, Inc. drilled 5 core holes, SW1 - SW5 (Figure 1.3) on the 

earth filled dam to ensure the structural integrity on the dam hadn’t been compromised. 

The core holes indicated that the subsurface (to a depth of 48 feet in one corehole) was 

comprised of reddish-brown fat clay and silt with chert fragments. The underlying 

limestone was moderately to highly weathered limestone inbedded with shale and chert. 

Shannon and Wilson, Inc. concluded that the structural integrity of the North Dam had 

not been compromised.  

 

 
Figure 1.3. Locations of previous sinkholes, exploratory borings and grout injection 

points. 
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Figure 1.4. Photo A and B of 2004 sinkhole and remediation. A: Looking south along 

Lake Chesterfield, showing scale of the sinkhole and remediation. B: Sinkhole being 

filled with grout, in this photo you can clearly see the highly weathered limestone 

(Wieners, 2005). 
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1.3. CURRENT CONCERNS AND INVESTIGATION 

Despite the previously mentioned mitigation efforts in 2017 the LCHOA noted 

that the leaking in the lake had increased and that the lake level frequently fell multiple 

inches per day. The LCHOA wanted to find a permanent solution to the ongoing leaking 

issues the lake has faced since construction. LCHOA asked Missouri S&T to assist in 

determining the source of the ongoing problems through a geological survey of the site. 

In the summer of 2018 Missouri S&T acquired ERT, MASW, and SP data on the 

drained and dry lake bed (see Figure 3.4). Expectations were that the interpretation of the 

subsurface imaging data would enable help investigators to map the depth to top of 

bedrock, determine the variable condition of the bedrock based on variations in shear-

wave velocity and electrical resistivity, locate any karst features in the subsurface beneath 

the lake bed, and locate any potential seepage pathways. 

Based on these data, it was anticipated that a geotechnical company could develop 

a plan to minimize the seepage problem. 
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2. GEOLOGICAL SETTING OF STUDY AREA 

 

The city of Wildwood (Figure 2.1) is a suburb in St. Louis County, Missouri. The 

city is situated between the Missouri River to the north, Eureka City and the Meramec 

River to the south, and Franklin County to the west. 

 

 
Figure 2.1. Approximate location of Lake Chesterfield (yellow) within Wildwood (red) in 

St. Louis County. 

 

 

 

2.1. STRATIGRAPHY OF WILDWOOD STUDY AREA 

Bedrock in the study area is the St. Louis Limestone. Bedrock (to a depth of 120 

ft.) consists predominantly of limestone and dolomite imbedded with shale and chert 

(Figure 2.2).  
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Figure 2.2. Boring logs 024175 and 023103 near the approximate location of Lake 

Chesterfield. (Missouri Department of Natural Resources). 

 

 

 

2.2. OVERVIEW OF KARST TERRAIN AND SINKHOLE FORMATION 

Karst is traditionally thought of as regions of soluble bedrock.  Karst terrain 

typically manifests itself in one of three ways: (1) subsidence of the land (i.e. sinkholes); 
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(2) subsurface conduit systems, (i.e. fractures and solution-widened joints); or (3) 

discharge area (i.e. springs).  

Sinkholes can pose significant hazards to people and buildings if they are not 

dealt with, yet they can appear seemingly out of nowhere. Sinkholes in Missouri 

primarily develop in the carbonate bedrock, particularly in the areas with limestone and 

dolomite. When rain falls, it absorbs carbon dioxide creating carbonic acid. This carbonic 

acidic water seeps into the subsurface and dissolves rock which is then removed with the 

flow of the water. As time goes on, the continuous dissolution of the rock can either 

create a void in which the overlaying soil layer can collapse into or whereby the removed 

rock is replaced by the soil, both of which will lead to surface subsidence (sinkhole 

formation), as seen in Figure 2.3. 

 

 
Figure 2.3. Process of sinkhole formation, from left-right, where carbonate rocks are 

broken-down and removed whereby the overlaying soil collapses to cause a sinkhole. 

(Missouri Department of Natural Resources). 

 

 

 

It is estimated that 20% of the United States is prone to sinkhole formation, with 

Missouri and six other states being particularly susceptible to sinkhole formation. As of 
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2018, the Missouri Department of Natural Resources has verified upwards of 15,000 

sinkholes in Missouri alone (Figure 2.4).  

 

 
Figure 2.4. Location of all known sinkholes in Missouri, with St. Louis County in red; 

each yellow dot represents a sinkhole. (Missouri Department of Natural Resources). 
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3. GEOPHYSICAL STUDY 

 

For this study, three geophysical tools - electrical resistivity tomography (ERT), 

multi-channel analysis of surface waves (MASW) and spontaneous potential (SP)– were 

employed. The data were gathered, processed and interpreted as described in the 

following sections. 

 

3.1. 2-D ELECTRICAL RESISTIVITY TOMOGRAPHY (ERT) 

2-D Electrical resistivity tomography (herein referred to simply as ERT) is a non-

destructive imaging technique used to measure lateral and vertical variations the 

resistivity of the subsurface.  The resistivity of earth material can help qualify and 

quantify the nature of that material. Resistivity ranges of common soils, rocks, and 

minerals can be seen in Figure 3.1. In the study area moist clay soils and limestone are 

the predominant materials present as stated in the reports and borings logs of previous 

reports. 

3.1.1. Basic Principals and Philosophy of 2-D ERT. Employing ERT allows 

estimates of the true resistivity of the subsurface to be obtained. This is useful as the 

resistivity of the earth materials is related to the moisture content, clay content, lithology 

and rock quality.  

In terms of basic concepts, during an ERT survey, a known current (I) is input 

into the subsurface through two electrodes (C1 and C2; Figure 3.2) and the potential 

difference (V) is measured using another two electrodes (P1 and P2; Figure 3.2). 

Generally, all the electrodes are placed along linear or nearly linear traverse. 
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Figure 3.1. Resistivity ranges of commonly found soils, rocks and minerals (Loke, 2004). 

 

 

 

 
Figure 3.2. Basic ERT array with four electrodes to measure the subsurface resistivity. 

(Loke, 2004). 

 

 

 

From the known current input (I) and the measured potential difference (∆∅), the 

apparent resistivity (𝜌ₐ) can be calculated: 
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𝜌ₐ = 𝑘
∆∅

𝐼
 

 

where k is the geometric factor of the electrode spacing: 

 

𝑘 =
2𝜋

(
1

𝑟𝐶1𝑃1
−

1
𝑟𝐶2𝑃1

−
1

𝑟𝐶1𝑃2
+

1
𝑟𝐶2𝑃2

)
 

 

where 𝑟𝐶1𝑃1is the distance from the current electrode 1 (C1) to the potential electrode 1 

(P1), 𝑟𝐶2𝑃1is the distance between current electrode 2 (C2) and potential electrode 1 (P1), 

𝑟𝐶1𝑃2 is the distance between current electrode 1 (C1) and potential electrode 2 (P2), and 

𝑟𝐶2𝑃2 is the distance between current electrode 2 (C2) and potential electrode 2 (P2) 

(Loke, M.H, 2004). 

 The electrode geometry can be installed in any configuration desired. We 

acquired ERT data utilizing a dipole-dipole array (Figure 3.3). As this array type is the 

most sensitive to the horizontal changes in resistivity (Loke, 2004). 

 

 
Figure 3.3. Dipole-dipole electrode geometry. Where k is the geometric factor, a dipole 

length, and n the dipole separation factor, commonly an integer value. (Loke, 2004). 
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Finally, using tomographic algorithms, the entirety of the apparent resistivity is 

used to generate a 2-D model of the subsurface (Figure 3.5). 

3.1.2. Acquisition and Survey. The ERT survey was designed to efficiently image 

drained and dry northern section of Lake Chesterfield. ERT data were acquired and stored 

using an Advanced Geosciences, Inc. (AGI) Supersting, R8. Twelve ERT traverses (T1 – 

T12) were laid along the axis of the Lake Chesterfield (parallel to the old Caulks Creek 

bed) in an NNE-SSW direction. Five ERT traverses (T13 – T17) were laid across the width 

of the lake in a W-E direction (Figure 3.4). All the ERT data were acquired using uniform 

5 ft. electrode spacing. 

3.1.3. ERT Data Interpretation. The resistivity of earth materials in the study area 

is mostly a function of moisture content and clay content. Similarly, as clay content 

increases, resistivity decreases. 

The processed ERT data, Figure 3.5, can be subdivided into four sections on the 

basis of resistivity: (1) clay liner and native soil (<45 Ohm-m); (2) highly weathered 

limestone (<75 Ohm-m); (3) weathered limestone (75-250 Ohm-m); and (4) intact 

limestone (>250 Ohm-m). 

The clay liner and native soil is between 5 ft. and 10 ft. thick and covers the entire 

lake bed. As shown in Figure 3.5, the clay liner and native soil are underlain mostly by a 

5 to 15 ft. thick unit of mostly weathered limestone. The top of this weathered limestone 

unit was classified as the top-of-rock in the test pits that were dug when the dam was 

originally constructed. 
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Figure 3.4. ERT traverse locations from T1-T17 (red lines), MASW (1-11), and SP base 

electrode locations in Lake Chesterfield (Anderson, 2018).



 

 

1
8

 

Figure 3.5. Example of an ERT profile, traverse 3 (T3 Figure 3.4) shown here. Interpreted top-of-rock shown in the dashed line 

corresponds with 45 Ohm-m value. Various features can be identified: intact limestone (yellow-purple) values greater than 250 

Ohm-m, weathered limestone (green) values between 75-250 Ohm-m, highly weathered limestone (light blue) between 45-75 

Ohm-m, and clay liner (dark blue) less than 45 Ohm-m. (Anderson, 2018). 
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Figure 3.6. Variations in the elevation of top of rock as per the interpretations of the 

acquired ERT data. (Anderson, 2018). 

 

 

 

The upper zone of mostly weathered limestone, as shown in Figure 3.5, is 

typically underlain by about 20 ft. of weathered to highly weathered limestone. The 
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acquired MASW data (Section 3.2) indicate this weathered to highly weathered unit is 

characterized, in places, by shear-wave velocities comparable to those of soils rather than 

rock. It is anticipated that this zone consists of weathered to highly weathered limestone 

and piped clay. 

The zone of weathered to highly weathered limestone is underlain (mostly) by 

what is interpreted as relatively intact limestone.  

As noted in the discussion section of this thesis, it is believed that the zone of 

weathered to highly weathered limestone extends beneath the dam and serves as a 

conduit for waters seeping through the lake bottom and flowing northward beneath the 

dam along the old Caulks Creek waterway. 

A map depicting variations in depth to top-of-rock within the entire lake bed is 

presented as Figure 3.6. Figure 3.6 shows that the interpreted top-of-rock is relatively 

consistent except for the depression in the bedrock elevation in the northeast of the lake 

(Figure 3.6). This depression is the location of the 2004 sinkhole and subsequent 

remediation efforts (Figure 1.3, and 1.4).  

Interpreted solution-widened joints and probable flow paths have been superposed 

on the ERT data (Figures 3.7 and 3.8).  The solution-widened joints are vertical features 

and are believed to contain significant piped clay and are hence characterized by low 

resistivity values. The interpreted west-east trending solution-widened joints in ERT 

traverses 1-12 (Figure 3.7) are more or less perpendicular to Caulks Creek. It is 

anticipated that the solution-widened joints are clay filled and pinch out at depth and that 

significant volumes of water do not drain along these vertical joints. 



 

 

2
1

 

 
Figure 3.7. NNE-SSW orientated ERT traverses 1-12. Red lines are interpreted solution-widened joints linking the traverses. 

(Anderson, N.L, 2018). North end of traverses are to the left, elevations and distances are in feet. 
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Figure 3.8. Northern W-E orientated ERT traverses 13-15. Solid red lines between traverses 13-15 are interpreted flow paths 

linking the traverses. Dashed red circles are possible seepage pathways beneath the dam. Dashed black line shows the base 

elevation of the cutoff trench (Anderson, 2018). Elevations and distances are in feet. 
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The horizontal low resistivity zones in ERT traverses 13-15 (Figure 3.8), are more 

or less perpendicular to Caulks Creek, and interpreted as horizontal flow paths. These 

interpreted flow paths are believed to contain significant piped clay and are hence 

characterized by low resistivity values. It is believed that these interpreted flow paths 

continue beneath the dam. If this premise is correct, then the interpreted flow paths could 

serve as horizontal conduits for waters flowing to the north beneath the dam along the old 

Caulks Creek pathway.  The low resistivity values near the location of the outflow pipe 

could be the result of the electrical current flowing through the outflow pipe instead of 

the ground, this could be confirmed or not by drilling at this location. 

 

3.2. MULTI-CHANNEL ANALYSIS OF SURFACE WAVES (MASW) 

MASW is a non-destructive technique developed by the Kansas Geological 

Survey and is used to measure the average shear-wave velocity (Vs) of the subsurface. 

Using the National Earthquake Hazards Reduction Program (NEHRP) guidelines in 

tandem with the average Vs enables classification of the soil and rock of the subsurface 

by category (Table 3.1).  

3.2.1. Basic Principles and Philosophy of MASW.  The MASW method is 

designed to measure the phase velocities of Rayleigh (surface) waves.  Relative to body 

waves, Rayleigh waves are characterized by low-velocities, low-frequencies, and high-

amplitudes. Rayleigh waves are generated by striking the ground with a source, typically a 

20 lb. sledge hammer or weight drop. The seismic signal generated is recorded using low-

frequency vertically polarized geophones coupled to the ground. Each geophone produces 

a single trace signal, which is compiled within the computer software. A phase velocity 
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versus frequency profile (dispersion curve) is created from the information in the computer 

software.  After the dispersion curve is identified, a 1-D vertical shear wave velocity profile 

may be generated for that MASW data set (Figure 3.9). 

 

Table 3.1. NEHRP Site Classification Guidelines for soil and rock. 

 
 

 

 

Two basic types of energy are generated when an acoustic source strikes the 

surface of the ground: (1) body waves and (2) surface waves. 
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Body waves are non-dispersive; the velocity of propagation is a function of the 

engineering properties of the soil and rock through which the waves are traveling (Figure 

3.10). Body waves are comprised of compressional (P-waves or Vp) and shear-waves (S- 

 

 
Figure 3.9. Overview of MASW data processing.  

Images from left to right: (1) Extraction of a trace from the raw data; (2) Creation of a 

phase velocity vs frequency profile (dispersion curve); (3) Generation of a 1-D vertical 

shear wave velocity profile (depth vs. shear wave velocity). 

 

 

 

waves or Vs). P-waves are compressional strain waves wherein particle motion is parallel 

to the direction of wave travel.  S-waves, in contrast, propagate by a strain in the 

direction perpendicular to the wave direction of wave travel.  

Surface waves are comprised of Love and Rayleigh waves, both of which are 

dispersive. Rayleigh wave particle motion is retrograde elliptical and decreases 

exponentially with depth; hence they are referred to as surface waves (Anderson, 2004). 

Love wave particle motion is horizontal and perpendicular to the direction of wave 

propagation. 
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Figure 3.10. Particle motion of different waves. (A) Compressional (P) waves, (B) Shear 

(S) waves, (C) Love waves, and (D) Rayleigh waves (Anderson, 2004). 

 

 

 

For MASW surveys we are only interested in the Rayleigh wave data. As such we 

ignore recorded body wave energy.  

In a homogenous medium, phase velocity of the Rayleigh waves are consistent 

and can be determined using the following Equation 3.1: 

 

VR
6 - 8β2 VR 4 + (24 - 16β2 /α2) β4 VR 2 + 16(β2 /α2 – 1) β6 = 0  [3.1] 

 

where VR is the Rayleigh wave velocity within the uniform medium, β is the shear-wave 

velocity within the uniform medium, and α is the compressional wave velocity within the 

uniform medium.  

For the purpose of MASW, Equation 3.1 is reduced to VR=0.919 β [3.6] because 

VR is relatively insensitive to changes in α. To convert Equation 3.1 to the relation 

between VR and β, the relation between α and β needs to be determined. This 
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determination is made using the Scalar wave equation, which explains the relation 

between compressed wave, shear-wave, density, bulk modulus, and shear modulus.   

The Scalar wave equation is:  

 

𝛂 = √(𝛌 + 𝟐𝛍/𝛒) 

𝛃 = √(𝛍/𝛒) 

 

where α is the compressional wave velocity, 𝛃 is the shear-wave velocity, 𝛒 is the density 

of the material, 𝛌 is bulk modulus and 𝛍 is shear modulus.  

Hooke’s Law summarizes the relationship between bulk modulus, shear modulus 

and Poisson’s Ratio: 

 

𝛔 =  𝛌/𝟐(𝛌 + 𝛍) 

 

where 𝛔 is Poisson’s Ratio. 

By combining equations [3.2], [3.3] and [3.4] we can get the relation of α and β 

as: 

 

𝛃

𝛂
=  √(𝟎. 𝟓 − 𝛔)/(𝟏 − 𝛔) 

 

The values of Poisson’s Ratio for many materials are close to the initial 

recommendation of 0.25 by Poisson, and later analyzed to be closer to 0.33 by Guillame 
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Wertheim (Gercek, 2007), so Equation 3.5 should equal to 0.33. Using this relation of the 

shear-wave and compressional wave in Equation 3.1 will result in Equation 3.6: 

 

 𝐕𝐑 = 𝟎. 𝟗𝟏𝟗 𝛃      [3.6] 

 

Using this final Equation 3.6 we can now compare the given Rayleigh (VR) wave 

and calculate the shear-wave (β) to determine the classification of the given material (Li, 

2018). 

3.2.2. Acquisition and Survey. To collect the MASW data at Lake Chesterfield, 

an array of geophones were placed at uniform intervals (2.5 or 5 ft.) along linear traverses 

(Figure 3.11). MASW data were acquired at a total of 11 locations (Figure 3.4). Only 5 

MASW profiles (MASW locations: 2, 3, 8, 9 and 11) were made available to the author of 

this thesis. 

 

 
Figure 3.11. Typical geometry used for MASW data acquisition. 

 

 

 

A 20 lb. sledge hammer was used as the seismic source. Offsets (X1) were either 

25 ft. or 15 ft. Data were recorded using twenty-four 4.5Hz geophones spaced at an 

intervals (X2) of either 5 ft. or 2.5 ft. Changes to geophone spacing and offset will alter 
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the depth of investigation and quality of the data. Shorter geophone spacing and offset 

generally produces good quality data at shallower depths. Larger geophone spacings and 

offsets will generally increase the depth of investigation.  

Seismic data were compiled and analyzed using Surfseis 4, a software developed 

by the Kansas Geological Survey, to create a final 1-D shear wave velocity profile for 

each traverse and compared to the ERT data acquired. 

3.2.3. MASW Data Interpretation. A total of five MASW profiles were acquired, 

MASW profiles 2, 3, 8, 9, and 11. The 1-D shear-wave velocity profile (herein referred to 

as MASW profile 3) generated for MASW location 3 is shown in Figure 3.12. This 1-D 

shear-wave velocity profile ties the ERT profile shown in Figure 3.5 (at station 349 ft.). 

The interpreted top of rock at station 349 ft. on the ERT profile shown in Figure 

3.5 is at a depth of approximately 5 ft. The zone interpreted as highly weathered rock 

extends from a depth of approximately 10 ft. to a depth of approximately 20 ft. The top of 

soft rock (at best) on the corresponding MASW 1-D shear-wave velocity profile Figure 

3.12 is at a depth of approximately 1.5 ft. Based on shear-wave velocity only, the 

material at depths between 6 and 16.5 ft. would be classified as soil (according to 

NEHRP classification system (Table 3.1)). According to the NEHRP classification 

system, the earth material at depths greater than 38 feet would be classified as rock.  

It is interesting to note that the engineers who designed the dam identified the top 

of the soft rock (consistent with top-of-rock on the ERT data) as top-of-rock. In contrast, 

the company that did the grouting referred to the highly weathered rock (as per ERT 

interpretation) as residual soil.  
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Figure 3.12. 1-D 10-layer model of shear-wave velocity profile of MASW profile 3. 

 

 

 

When comparing the MASW and ERT data sets, the depths to weathered and 

intact rock are reasonably consistent with each other. This gives us confidence in our data 

and interpretation. It is not unreasonable to expect discrepancies (as shown in this 

example, Figure 3.5 and 3.12) between the MASW and ERT estimates of depth to top-of-

rock. Discrepancies between the MASW and ERT estimates can be attributed to a couple 
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of factors. First, the MASW top of weathered rock is picked based on acoustic velocity, 

whereas the ERT top of weathered rock is picked based on resistivity. Second, the 

vertical resolution on the ERT data is higher than on the MASW 1-D shear-wave velocity 

profiles. 

Interpretations of both the MASW and ERT data supports the interpretation that 

rock between elevations 620-640 ft. is highly weathered in places and that the dam was 

constructed, in places, on highly weathered rock. Further, the interpretation of the ERT 

and MASW data supports the thesis that clay liner breaches in places due to the weight of 

the water when the dam is filled and that waters that flow into the breaches ultimately 

flow to the north beneath the dam through weak rock. 

 

3.3. SPONTANEOUS POTENTIAL (SP) 

Spontaneous Potential (SP), also known as Self Potential, is a tool used to map the 

naturally occurring electrical potential, in millivolts (mV), of the earth between a fixed 

reference (base station) electrode and a lead electrode moved to different locations 

(roving station) in the survey area (Figure 3.13). Electrical potential is created within in 

the subsurface due to a few factors including the flow of water (electrokinetic potential), 

and diffusion potential. 

3.3.1. Basic Principles of SP.  The electrokinetic potential, as used in the present 

survey, is produced when water flows into, through or out of a medium. Water flowing into 

the subsurface (infiltration) is generally characterized by negative SP values (Figure 3.14). 

In contrast, water flowing out of the ground (e.g. spring) is generally characterized by 

positive SP values. 
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3.3.2. Acquisition and Survey. The electrodes used in the survey were non-

polarizing Cu/CuSO4 electrodes also known as porous pots. A fixed reference base 

electrode was placed on the western bank of the lake below the tennis court (Figure 3.4 and 

3.15). A second lead electrode was then placed at multiple locations along the existing ERT 

traverses and measurements were taken every 5-10 ft., and stored using the same AGI 

Supersting, R8 that was used for the ERT data collection. For quality control purposes, the 

SP measurements were taken up to 3 times at each station location. When the data error 

value varied less than 2%, the value was recorded. 

3.3.3. SP Data Interpretation.  The SP results, as seen in Figure 3.15, show two 

main areas of interest. The first is Location 1, which was located 180 ft. from the start on 

traverses 6-8. The second is Location 2, which was located along the northeast edge of the 

lake.   

These two areas are characterized (mostly) by negative (blue) SP values.  The 

areas of negative SP values correlate well with areas of low resistivity on the ERT 

profiles, suggesting that water is infiltrating the subsurface at these locations. As these 

negative zones are not located above the interpreted solution-widened joints on the ERT 

data. Expectations then, are that the seeping waters flow to the north through the zone of 

weathered rock and beneath the dam through the interpreted seepage pathways (Figure 

3.8), and not down through the solution-widened joints (Figure 3.7). 
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Figure 3.13. Schematic set-up and collection of SP data. (Corry, 1982). 

 

 

 

 
Figure 3.14. (a) Induced negative electrokinetic potential associated with the flow of 

water in the ground. (b) SP map in plane view (Revil, 2107). 
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Figure 3.15. Contoured SP data overlaid on Lake Chesterfield. Red lines indicate the 

location of the ERT traverses (T1-17) along which the SP data were acquired. Two 

prominent negative SP anomalies are highlighted (1 and 2). These anomalies are shown 

in blue/purple. Data couldn’t be acquired in grey shaded area due to the presence ponded 

water (Anderson, 2018). 
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4. CONCLUSIONS 

 

The purpose of the study was to 1) map variable depth to top of bedrock, 2) 

determine the variable quality of the shallow bedrock, 3) identify any significant karst 

features beneath the lake, and 4) identify any probable seepage pathways. 

 

4.1. DEPTH TO TOP OF BEDROCK 

The variable top of bedrock was estimated using the ERT and MASW datasets. 

Across the northern section of Lake Chesterfield there is a distinctive depression in the 

depth to top of bedrock (Figure 3.6) as evident from the ERT data. This depression is the 

location of the 2004 sinkhole and subsequent remediation efforts. 

The rest of the northern section of Lake Chesterfield, the top of bedrock is mostly 

consistent at depths ranging from 5-10 ft. beneath the lake bed. 

 

4.2. QUALITY OF BEDROCK 

The quality of the bedrock in the northern section of Lake Chesterfield varies 

significantly, and can be divided into three sections on the basis of resistivity and shear-

wave velocity: 1) Intact limestone is characterized by resistivities greater than 250 Ohm-

m, and shear-wave velocities greater than 2500 ft/sec. Based on the shear-wave velocities 

alone in accordance with the NEHRP classification system, the intact limestone would be 

classified as rock. The intact limestone can be seen typically at elevations lower than 620 

ft. 
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2) Weathered limestone, characterized by resistivities between 75 and 250 Ohm-

m, and shear-wave velocities between 1200 and 2500 ft/sec. Based on the shear-wave 

velocities alone in accordance with the NEHRP classification system, the weathered 

limestone would be classified as soft rock or dense soil. This weathered limestone can 

typically be seen between elevations 630-645 ft.  

3) Highly weathered limestone, characterized by resistivities lower than 75 Ohm-

m, and shear-wave velocities lower than 1200 ft/sec. Based on the shear-wave velocities 

alone in accordance with the NEHRP classification system, the highly weathered 

limestone would be classified as stiff soil. This highly weathered limestone can typically 

be seen between elevations 620-640 ft. 

 

4.3. KARST FEATURES 

Shallow rock in the study area is dissected by solution-widened joints and is 

extensively weathered. Some of the more prominent solution-widened joints appear to 

extend to depths below the maximum depth of coverage on the ERT profiles. It is 

possible that waters seep vertically into the subsurface along these joints. In the author’s 

opinion, it is more likely that the karst features pinch out at depth and do not serve as 

vertical conduits. If they did, the SP anomalies should be situated above these same 

solution-widened joints. 

 

4.4. SEEPAGE PATHWAYS 

Seepage from Lake Chesterfield could occur in three ways: 1) beneath the dam, 2) 

vertically, and 3) laterally. 
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4.4.1. Seepage Beneath the Dam. Three zones of low resistivity are identified on 

Figure 3.7. These zones are interpreted as probable seepage pathways beneath the dam. 

The idea that water is seeping to the north is backed-up by the emergence of the dye near 

Lewis Spring during the dye test in 2004, and not anywhere else. 

4.4.2. Seepage Vertically. Interpreted solution-widened joints can be seen 

extending vertically on several the ERT profiles. The most prominent on traverses 5 at 

station 320 ft., 6 at station 400 ft., 11 at station 400 ft. and 12 at station 440 ft (Figure 3.7 

and Appendix A). It is possible that waters seep vertically into the subsurface along these 

joints. In the author’s opinion, it is more likely that the karst features pinch out at depth 

and do not serve as vertical conduits. If they did, the SP anomalies should be situated above 

these same solution-widened joints. 

4.4.3. Seepage Laterally. In the author’s opinion, waters that seep into the 

subsurface flow northward through the variably weathered rock and beneath the dam. 
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5. RECOMMENDATIONS 

 

The current owners of Lake Chesterfield, LCHOA, stated they have spent close to 

a million dollars over the past 10 years trying to stop the leaking of the lake through the 

addition of clay liners. As the mitigation efforts performed up to this point have not yet 

solved the leaking issues, there are two options that could be potential solutions for the 

leak.  

The first is to grout the lake along interpreted flow paths. Grouting in the lake has 

already been utilized on numerous occasions, specifically when small sinkholes formed 

around the lake. Although the grouting has been effective in stopping the flow of water in 

the areas where the work has been performed, new flow paths have opened over time, as 

evident in the geophysical data of this current survey. The most effective location for 

potential grouting to stem the flow of water beneath the dam would need to be along the 

three prominent low resistivity zones identified on ERT traverse 13 at stations 120 ft., 

260 ft. and 340 ft. Targeted grouting along this traverse could help stem the flow of 

water.  

The second option for the LCHOA is to utilize reinforced rubber linings. The lake 

is currently lined by clay liners. These clay liners are being compromised by the 

hydrostatic pressures that flushes them (gradually to catastrophically) into the underlying 

variably weathered rock. Utilizing a reinforced polyethylene (RPE) liner, ethylene 

propylene diene monomer (EPDM) liner, or polyvinyl chloride (PVC) liner would be a 

better long-term solution.
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APPENDIX A. 

ERT PROFILES, NNE-SSW 1-12 AND W-E 13-15 WITH INTERPRETATIONS 
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APPENDIX B. 

 MASW PROFILES 2, 3 8, 9, AND 11 WITH INTERPRETATIONS
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Profile 2 
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Profile 3 
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Profile 8 
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Profile 9 
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 Profile 11 
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