
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2019

Advanced techniques for improving canonical genetic Advanced techniques for improving canonical genetic

programming programming

Adam Tyler Harter

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Harter, Adam Tyler, "Advanced techniques for improving canonical genetic programming" (2019). Masters
Theses. 7905.
https://scholarsmine.mst.edu/masters_theses/7905

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7905?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7905&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ADVANCED TECHNIQUES FOR IMPROVING CANONICAL GENETIC

PROGRAMMING

by

ADAM TYLER HARTER

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER SCIENCE

2019

Approved by:

Daniel Tauritz, Advisor
Steven Corns
Patrick Taylor

Copyright 2019

ADAM TYLER HARTER

All Rights Reserved

iii

PUBLICATION THESIS OPTION

This thesis consists of the following two papers, formatted in the style used by the

Missouri University of Science and Technology:

Paper I: Pages 4-15 have been published in the proceedings of the Parallel and

Distributed Evolutionary Inspired Methods workshop at the Genetic and Evolutionary

Computation Conference of 2017.

Paper II: Pages 16-35 have been accepted by the Evolutionary Computation for

the Automated Design of Algorithms workshop for publication in the proceedings of the

Genetic and Evolutionary Computation Conference of 2019.

iv

ABSTRACT

Genetic Programming (GP) is a type of Evolutionary Algorithm (EA) commonly

employed for automated program generation and model identification. Despite this, GP, as

most forms of EA’s, is plagued by long evaluation times, and is thus generally reserved for

highly complex problems. Two major impacting factors for the runtime are the heteroge-

neous evaluation time for the individuals and the choice of algorithmic primitives. The first

paper in this thesis utilizes Asynchronous Parallel Evolutionary Algorithms (APEA) for

reducing the runtime by eliminating the need to wait for an entire generation to be evaluated

before continuing the search. APEA is applied to Cartesian Genetic Programming and is

successful in reducing the runtime with sufficiently complex problems. The second paper

in this thesis introduces Primitive Granularity Control (PGC), a method for reducing the

impact and importance of the choice of primitives by allowing the primitive set to change

throughout the course of evolution. Evidence is presented that demonstrates the potential

for PGC to improve the quality of solutions, reduce the runtime of the algorithm, or both.

However, the evidence was obtained via an exhaustive search, and how to effectively utilize

PGC still requires research.

v

ACKNOWLEDGMENTS

Without the support of others, completing this degree would have been impossible,

and for this I am indebted to them. I would like to thank Dr. Daniel Tauritz for all of his

support, guidance, and teaching and for continuing to believe in my ability to finish this

degree when I had nearly given up. I would like to thank all of my co-authors, Dr. William

Siever, Aaron Pope, and Chris Rawlings, for pushing my publications beyond where I could

have brought them by myself. I would like to thank Dr. Steven Corns and Dr. Patrick

Taylor for being a part of my thesis committee. I would like to thank Los Alamos National

Laboratory for supplying funding for the second publication via the Cyber Security Sciences

Institute under subcontract 259565 and the Laboratory Directed Research and Development

program of Los Alamos National Laboratory under project number 20170683ER. I would

like to thank my sisters and my parents for all of the support they’ve given me throughout

both my undergraduate and my graduate years.

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION . iii

ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

SECTION

1. INTRODUCTION. 1

PAPER

I. ASYNCHRONOUS PARALLEL CARTESIAN GENETIC PROGRAMMING . . . 4

ABSTRACT . 4

1. INTRODUCTION . 5

2. RELATED WORK. 6

3. ASYNCHRONOUS PARALLEL CGP . 7

4. EXPERIMENTATION . 8

4.1. PROBLEM.. 8

4.2. EXPERIMENT DESIGN . 8

5. RESULTS . 10

6. CONCLUSION . 14

7. FUTURE WORK . 14

vii

REFERENCES . 15

II. EMPIRICALEVIDENCEOFTHEEFFECTIVENESSOFPRIMITIVEGRAN-
ULARITY CONTROL FOR HYPER-HEURISTICS . 16

ABSTRACT . 16

1. INTRODUCTION . 17

2. RELATED WORK. 18

3. PRIMITIVE GRANULARITY CONTROL . 19

4. TRAVELING THIEF PROBLEM.. 21

5. METHODOLOGY. 22

5.1. META-SEARCH . 23

5.2. TTP HEURISTIC EVOLUTION . 23

6. EXPERIMENTATION . 25

7. RESULTS . 28

8. CONCLUSION . 29

9. FUTURE WORK . 32

ACKNOWLEDGMENTS. 33

REFERENCES . 33

SECTION

2. SUMMARY AND CONCLUSIONS . 36

VITA . 38

viii

LIST OF ILLUSTRATIONS

Figure Page

SECTION

1.1. Canonical Evolutionary Algorithm Process . 2

PAPER I

1. Exploration of Search Space in Synchronous CGP. 9

2. Exploration of Search Space in Asynchronous Parallel CGP.. 9

3. Results for 3-parity with an Overhead of 200 . 10

4. Results for 3-parity with an Overhead of 150 . 11

5. Results for 3-parity with an Overhead of 100 . 11

6. Evaluations per Second of Synchronous Serial with a Variety of Overheads
for 2-bit Parity . 12

7. Evaluations per Second of Asynchronous Parallel and Synchronous Parallel
with a Variety of Overheads for 2-bit Parity . 13

PAPER II

1. Example TTP Heuristic at Three Primitive Coarseness Levels. 21

2. TTP Example Instance . 22

3. High Level Overview of Experiment . 29

4. Max Fitness Versus Runtime for Each Run of the Best Dynamic and Static
Plans for Maximum Fitness . 30

5. Comparison of Each Best Configuration . 31

ix

LIST OF TABLES

Table Page

PAPER I

1. Parameters Used for Experimentation. 9

2. Statistical Analysis of 3-parity Results with an Overhead of 200 10

3. Statistical Analysis of 3-parity Results with an Overhead of 150 11

4. Statistical Analysis of 3-parity Results with an Overhead of 100 12

5. Statistical Analysis of 2-parity Results with an Overhead of 400 13

6. Statistical Analysis of 2-parity Results with an Overhead of 175 14

PAPER II

1. Terminal Primitive Effective Coarseness . 24

2. Non-terminal Primitive Effective Coarseness . 24

3. List of Basic Primitives . 26

4. List of Macro Primitives . 27

5. TTP Solver Specific Parameters . 28

6. Comparison of Static and Dynamic Configurations . 31

SECTION

1. INTRODUCTION

Evolutionary Algorithms (EA’s) are a class of randomized population based black

box search algorithms inspired by biological evolution. The canonical form of EA is

shown in Figure 1.1, a description of each major component follows. Initialization is the

creation of the starting population; there are many methods for performing this, but random

initialization is common. Parent Selection & Child Generation is furthering the search by

using the members of the previous generation to generate new solutions. The individuals

selected as the basis for the new children are stochastically chosen based on how well they

solve the problem; the better the solution, the more likely they are to be chosen. Evaluation

is the determination of how well each individual solves the problem. Survival Selection is

the process of selecting which individuals will be kept for the next generation and which will

be discarded; the better the individual, the higher chance it will survive. The Termination

Check is simply the determination if the algorithm should continue or be stopped. Common

stopping criteria are stagnation of solution quality and reaching a pre-chosen limit on the

number of generations.

Evolutionary algorithms are generally utilized when more traditional search algo-

rithms are unsuitable, either due to problem complexity or non-traditional search spaces.

One such common case is automated program generation — the creation of programs with

minimal or no human intervention. For this, a type of EA known as Genetic Program-

ming (GP) is often used, in which the members of the population can represent executable

programs. While a powerful search method, GP is not without limitations. Search times

quickly grow prohibitively large and the performance of the search is heavily dependent on

the choice of primitives, the building blocks of code that an individual can utilize. While

2

Initialization

Parent Selection &
Child Generation

Evaluation Survival Selection

Termination Check

Each iteration of this cycle is
referred to as a generation.

Figure 1.1. Canonical Evolutionary Algorithm Process

parallelization helps to combat the long runtime, canonical GP algorithms fail to take full

advantage of resources due the heterogeneous evaluation times, caused by individuals in

GP taking greatly different amounts of time to be evaluated. This can create a bottleneck

where individuals that take a disproportionally long time to evaluate. To combat this, Asyn-

chronous Parallel Evolutionary Algorithms (APEA) changes the traditional generational

model to one that generates a new individual in response to the completion of the evaluation

of an individual. Such a change also requires changing how parent selection and survivor

selection function, as both methods traditionally operate on the entire population at the

same time. Applying APEA to Cartesian Genetic Programming (CGP) requires a change

in methodology due to CGP’s unique population size of one. The first paper presents a

method for combining CGP and APEA.

Primitive selection is one of the most vital components for the performance of a

GP, as it can radically change the search space. Primitives that are too low-level are likely

to be able to find an optimal solution, but the search space becomes so large that doing so

is improbable. High-level primitives will converge quickly, but are unlikely to be able to

find an optimal solution. By allowing the primitive set to change between different levels

3

of complexity during evolution, both high level and low level primitives can be used while

maximizing the benefits and minimizing the deficits of both. The second paper presents a

method, Primitive Granularity Control, to do this as well as evidence of its effectiveness.

4

PAPER

I. ASYNCHRONOUS PARALLEL CARTESIAN GENETIC PROGRAMMING

Adam Harter and Daniel R. Tauritz
Natural Computation Laboratory, Department of Computer Science, Missouri University

of Science and Technology, Rolla, MO, 65409

William M. Siever
Department of Computer Science and Engineering, Washington University, St. Louis,

MO, 63130

ABSTRACT

The run-time of evolutionary algorithms (EAs) is typically dominated by fitness

evaluation. This is particularly the case when the genotypes are complex, such as in genetic

programming (GP). Evaluating multiple offspring in parallel is appropriate in most types

of EAs and can reduce the time incurred by fitness evaluation proportional to the number of

parallel processing units. The most naive approach maintains the synchrony of evolution as

employed by the vast majority of EAs, requiring an entire generation to be evaluated before

progressing to the next generation. Heterogeneity in the evaluation times will degrade the

performance, as parallel processing unitswill idle until the longest evaluation has completed.

Asynchronous parallel evolution mitigates this bottleneck and techniques which experience

high heterogeneity in evaluation times, such as Cartesian GP (CGP), are prime candidates

for asynchrony. However, due to CGP’s small population size, asynchrony has a significant

impact on selection pressure and biases evolution towards genotypes with shorter execution

times, resulting in poorer results compared to their synchronous counterparts. This paper:

5

1) provides a quick introduction to CGP and asynchronous parallel evolution, 2) introduces

asynchronous parallel CGP, and 3) shows empirical results demonstrating the potential for

asynchronous parallel CGP to outperform synchronous parallel CGP.

Keywords: Genetic Programming, Asynchronous Parallel Evolution, Cartesian Genetic

Programming, Evolutionary Computing

1. INTRODUCTION

Cartesian Genetic Programming (CGP) arranges problem-specific operations as

function nodes on a two-dimensional grid. Unlike the genotypes in most forms of GP,

these grids remain a static size and may need to be quite large to encapsulate complex

solutions. Evaluating the fitness of this structure requires that input be passed to a set

of initial nodes that then produces output for other nodes. Inputs are propagated from

one function node to the next through the grid; however, not all nodes will necessarily be

evaluated. The number of evaluated nodes in the genotype heavily influences the fitness

evaluation time, therefore the variation in these times can become significant with large grid

sizes. Much like most traditional evolutionary algorithms (EAs), evaluations of individuals

are independent of each other in CGP and can be performed in parallel. Classic CGP

employs the synchronous model common to the vast majority of EAs, in which all offspring

in a generation are evaluated before survival selection is executed. Upon parallelization,

the variation of evaluation times can cause classic CGP to excessively idle while waiting

for individuals to be evaluated. To combat this problem, we are proposing an asynchronous

model, in which survival selection is performed for each offspring individually immediately

after evaluation is finished.

6

The contributions of this paper are as follows:

• Demonstrate statistical evidence that our proposed asynchronous parallel CGP

(APCGP) may converge faster than synchronous parallel CGP (SPCGP) in regards to

wall-time

• Provide analysis of scalability of APCGP with regards to problem complexity with

comparison to SPCGP

2. RELATEDWORK

Durillo et al. have shown empirical evidence supporting the significant improve-

ment in terms of various quality metrics when employing asynchronous parallel EA’s

(APEAs) rather than synchronous parallel EAs for NSGA-II. The APEA master process

creates and sends individuals to be evaluated as the slave processors become idle. In the

generational version, the population is replaced when enough offspring have been gener-

ated. With the steady-state alternative, the offspring are considered as each is received. The

researchers employed homogeneous populations as the test cases during experimentation.

Bertels and Tauritz performed similar experiments, evolving SAT solvers asynchronously

and synchronously, with the asynchronous models outperforming the synchronous ones.

APEAs with heterogeneous populations have been found to be biased toward indi-

viduals with shorter evaluation times. This is a result of the master process receiving those

individuals sooner and more often, flooding the population. This potentially reduces the

search space that can be reached within a given runtime. Yagoubi and Schoenauer attempt

to circumvent this with a duration-based selection on the received offspring. This supposed

defect can also be taken advantage of in various situations, one of which is evolving genetic

programs, which must use a mechanism such as parsimony pressure or must minimize a

size-related objective value to prevent any individual from becoming too large. The bias

7

provided by heterogeneous evaluation times can be used to produce an implicit time pres-

sure; however, in cases with flat fitness landscapes, individuals tend to converge to both

long and short evaluation times.

3. ASYNCHRONOUS PARALLEL CGP

Synchronous CGP, both serial and parallel, were implemented using the Standard

CGPmodel, as defined byMiller, the only difference is that SPCGP evaluates all individuals

of a generation simultaneously, while synchronous serial CGP evaluates only one individual

at a time. SPCGP and APCGP both have a master node that generates new individuals that

are later evaluated by slave nodes. SPCGP waits for all individuals in a generation to be

returned, while APCGP acts on each individual as it is returned. In the case of APCGP,

using the (1+ 4) survival strategy advocated by Miller, the returned individual is compared

to the existing best. If the new individual is better than or equal to the current best, it

becomes the current best. Following this, a new individual is generated from the current

best via mutation and the process continues until termination criteria are met. In this

particular implementation, the evolutionary cycle terminates when the best individual has

a fitness that exceeds a user-defined threshold. Although APCGP intuitively seems faster

than SPCGP, the method by which APCGP explores the search space may lead to more

evaluations until convergence. As seen in Figure 1, four individuals from the local search

space of the current best individual are evaluated at each generation in SPCGP. In contrast

to this, APCGP performs survival selection from only two individuals, and if a high-fitness

solution has a long evaluation time, sub-optimal individuals will produce offspring to

be evaluated while the high-fitness solution is being evaluated. An example of such an

exploration in illustrated by Figure 2.

8

4. EXPERIMENTATION

4.1. PROBLEM

The problem chosen was n-bit parity, a classical digital circuit problem that CGP

has been used to solve in the past. This was chosen as it has a known solution, allow-

ing termination once correct. Although more computationally complex problems would

benefit more from parallelization, CGP suffers from high variation, which becomes more

pronounced as the problem complexity increases. Thus, to simulate more computationally

complex problems and to reduce the effects of overhead due to parallelization, the fitness

evaluation is configured to repeat any number of times.

4.2. EXPERIMENT DESIGN

The experiment was run with the parameters shown in Table 1, as recommended by

Miller. ni, the number of inputs, was equivalent to n for the n-bit parity problem trying

to be solved (2 or 3). The function set was the bitwise functions {nand, and, nor, or}

and thus the maximum parity of the functions, a, was two. The overhead, or the number

of times the fitness evaluation was repeated, was varied between 1 and 400 to investigate

performance based on problem complexity. 2-bit and 3-bit parity problems were run using

a serial synchronous model, a parallel synchronous model, and an asynchronous parallel

model. Each of these experiments was run thirty times. The parallel synchronous and

parallel asynchronous models used a master/slave model, with one master thread and four

slave threads. The implementation was done in Python, while parallel code was achieved

using the multiprocess module.

9

0Generation 0

Generation 1 1

Generation 2

Figure 1. Exploration of Search Space in Synchronous CGP. The Best Individual of the
Parent and its Four Children is Used for Producing the Next Generation.

0

(a)

0 1

(b)

0 1

2

(c)

0 1

2

(d)

0 1

2 3

(e)

Figure 2. Exploration of Search Space in Asynchronous Parallel CGP. a) The initial state
– Node 0 produces four children. b) Node 1 returns and is better than or equal to Node 0,
Node 1 replaces Node 0 and produces a child. c) Node 2 returns and is better than or equal
to Node 1, Node 2 replaces Node 1 and produces a child. d) One of the children from Node
0 finishes evaluating. It is worse than Node 2, so it is discarded and Node 2 produces a
child. e) Node 3 returns and is better than or equal to Node 2. Node 3 replaces Node 2 and
Node 3 produces a child. Note that one of the children from Node 0 is still being evaluated.

Table 1. Parameters Used for Experimentation

Parameter Description Value

nc Number of columns 4000
nr Number of rows 1
n0 Number of outputs 1
l Look back level 4000
µ Population size 1
λ Offspring size 4
µr Mutation rate 0.01

10

Figure 3. Results for 3-parity with an Overhead of 200 (Lower is Better)

5. RESULTS

As can be seen in Figure 3, asynchronous parallel and synchronous parallel models

clearly have better run time averages than synchronous serial equivalent, while being close to

each other in performance. The figure also indicates that asynchronous parallel takes more

evaluations than synchronous parallel and synchronous serial, which are nearly identical in

the regard. The statistical analysis of the results is shown in Table 2, indicating that there is

statistical evidence that asynchronous parallel runs faster than synchronous parallel, while

there does not seem to be strong statistical evidence that the number of evaluations differ.

Table 2. Statistical Analysis of 3-parity Results with an Overhead of 200

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 1387 2272 1598 1197
Standard Deviation 1140 1551 1394 740

Equal Variance Assumed? No No

t Stat -2.5182 1.3915
Two-tailed p-value 0.0148 0.1711

11

Figure 4. Results for 3-parity with an Overhead of 150 (Lower is Better)

Table 3. Statistical Analysis of 3-parity Results with an Overhead of 150

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 1291 1843 1567 1107
Standard Deviation 1299 1404 1646 893

Equal Variance Assumed? No No

t Stat -1.5810 1.3445
Two-tailed p-value 0.1193 0.1856

Figure 5. Results for 3-parity with an Overhead of 100 (Lower is Better)

Using an overhead of 150, shown in Figure 4 with statistical analysis shown in

Table 3, there is not strong statistical evidence that the runtime or the number of evaluations

differ. When the overhead is lowered to 100, shown in Figure 5 with statistical analysis

12

Table 4. Statistical Analysis of 3-parity Results with an Overhead of 100

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 1180 1217 2493 1224
Standard Deviation 1060 899 4113 959

Equal Variance Assumed? No No

t Stat -0.1439 1.6453
Two-tailed p-value 0.8861 0.1097

shown in Table 4, there is no statistical evidence that there is a difference between the

convergence time of APCGP and SPCGP, while there is still not strong statistical evidence

that the number of evaluations differ.

(a) (b)

Figure 6. Evaluations per Second of Synchronous Serial with a Variety of Overheads for
2-bit Parity (Higher is Better). a) Overhead ranging from 1 to 400. b) Overhead ranging
from 75 to 400.

As demonstrated in Figure 6, the synchronous serial model begins with a high

evaluations/second rating, which quickly drops as the overhead increases. These results

can be compared to those in Figure 7, asynchronous parallel and synchronous parallel both

begin with lower evaluations/second, but the rate of decrease is substantially smaller in

asynchronous parallel and synchronous parallel than in synchronous serial. Furthermore,

13

Figure 7. Evaluations per Second of Asynchronous Parallel and Synchronous Parallel with
a Variety of Overheads for 2-bit Parity (Higher is Better)

Table 5. Statistical Analysis of 2-parity Results with an Overhead of 400

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 79 228 187 261
Standard Deviation 62 172 167 238

Equal Variance Assumed? No No

t Stat -4.4609 -1.4025
Two-tailed p-value 0.0001 0.1667

as demonstrated by the statistical analysis with an overhead of 175, shown in Table 6, there

is statistical evidence that APCGP is faster than SPCGP. This evidence is only strengthened

as the overhead increases, demonstrated by the statistical analysis with an overhead of 400,

showing strong statistic evidence that ASCGP is faster than SPCGP.

14

Table 6. Statistical Analysis of 2-parity Results with an Overhead of 175

Time (seconds) Evaluations
Async Parallel Sync Parallel Async Parallel Sync Parallel

Mean 57 156 241 393
Standard Deviation 46 176 193 440

Equal Variance Assumed? No No

t Stat -2.9725 -1.7320
Two-tailed p-value 0.0055 0.0910

6. CONCLUSION

This paper has presented statistical evidence showing that APCGP outperforms

SPCGP for computationally expensive tasks, while both outperform synchronous serial

CGP; we hypothesize that the former is caused by greater heterogeneity in evaluation times.

If the task is computationally inexpensive, then APCGP and SPCGP perform similarly, but

both are inferior to serial CGP. This provides evidence that parallelization should only be

performed if the task is computationally expensive, and when performed, an asynchronous

model should be preferred.

7. FUTUREWORK

More advanced versions of CGP exist which exhibit superior performance to stan-

dard CGP on various important problems; applying the asynchronous model to them may

further increase their performance. Although CGP showed improved performance, there

are many forms of GP; these forms may not show the same increase in performance when

using the asynchronous model. Additionally, the asynchronous model could be applied to

different types of EAs, such as co-evolutionary EAs or multi-objective EAs. Although this

study used CGP’s traditional (1 + 4) population model for parallel synchronous, changing

the number of offspring could potentially result in further improvements over synchronous

15

serial. In order to validate the hypothesis stated in the conclusion, that more computation-

ally expensive tasks cause greater heterogeneity in evaluation times, the range of evaluation

times should be diligently recorded and closely analyzed.

REFERENCES

Bertels, A. R. and Tauritz, D. R., ‘Why Asynchronous Parallel Evolution is the Future
of Hyper-heuristics: A CDCL SAT Solver Case Study,’ in ‘Proceedings of the
2016 on Genetic and Evolutionary Computation Conference Companion,’ GECCO
’16 Companion, ACM, New York, NY, USA, ISBN 978-1-4503-4323-7, 2016 pp.
1359–1365, doi:10.1145/2908961.2931729.

Churchill, A. W., Husbands, P., and Philippides, A., ‘Tool Sequence Optimization using
Synchronous and Asynchronous Parallel Multi-Objective Evolutionary Algorithms
with Heterogeneous Evaluations,’ in ‘2013 IEEE Congress on Evolutionary Com-
putation (CEC),’ IEEE, 2013 pp. 2924–2931.

Durillo, J. J., Nebro, A. J., Luna, F., and Alba, E., ‘A Study of Master-Slave Approaches to
Parallelize NSGA-II,’ in ‘IEEE International Symposium on Parallel andDistributed
Processing,’ IEEE, 2008 pp. 1–8.

Goldman, B. W. and Punch, W. F., ‘Analysis of Cartesian Genetic Programming’s Evo-
lutionary Mechanisms,’ IEEE Transactions on Evolutionary Computation, 2015,
19(3), pp. 359–373, ISSN 1089-778X, doi:10.1109/TEVC.2014.2324539.

Harding, S. L., Miller, J. F., and Banzhaf, W., ‘Self-modifying Cartesian Genetic Program-
ming,’ in ‘Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation,’ GECCO ’07, ACM, NewYork, NY, USA, ISBN 978-1-59593-697-4,
2007 pp. 1021–1028, doi:10.1145/1276958.1277161.

Martin, M. A., Bertels, A. R., and Tauritz, D. R., ‘Asynchronous Parallel Evolutionary
Algorithms: Leveraging Heterogeneous Fitness Evaluation Times for Scalability
and Elitist Parsimony Pressure,’ in ‘Proceedings of the Companion Publication of
the 2015 Annual Conference on Genetic and Evolutionary Computation,’ GECCO
Companion ’15, ACM, New York, NY, USA, ISBN 978-1-4503-3488-4, 2015 pp.
1429–1430, doi:10.1145/2739482.2764718.

Miller, J., Cartesian Genetic Programming, Natural Computing Series, Springer-Verlag,
Heidelberg, Berlin, 2000.

Scott, E. O. and De Jong, K. A., ‘Evaluation-Time Bias in Asynchronous Evolutionary
Algorithms,’ in ‘Proceedings of the Companion Publication of the 2015 on Genetic
and Evolutionary Computation Conference,’ ACM, New York, NY, USA, 2015 pp.
1209–1212.

16

Scott, E. O. and De Jong, K. A., ‘Evaluation-Time Bias in Quasi-Generational and Steady-
State Asynchronous Evolutionary Algorithms,’ in ‘Proceedings of the Genetic and
Evolutionary Computation Conference 2016,’ GECCO ’16, ACM, New York, NY,
USA, ISBN978-1-4503-4206-3, 2016 pp. 845–852, doi:10.1145/2908812.2908934.

Yagoubi, M. and Schoenauer, M., ‘AsynchronousMaster/SlaveMOEAs andHeterogeneous
Evaluation Costs,’ in ‘Proceedings of the Fourteenth International Conference on
Genetic and Evolutionary Computation Conference,’ ACM, 2012 pp. 1007–1014.

Yagoubi, M., Thobois, L., and Schoenauer, M., ‘Asynchronous Evolutionary Multi-
Objective Algorithms with Heterogeneous Evaluation Costs,’ in ‘2011 IEEE
Congress on Evolutionary Computation (CEC),’ IEEE, 2011 pp. 21–28.

17

II. EMPIRICAL EVIDENCE OF THE EFFECTIVENESS OF PRIMITIVE
GRANULARITY CONTROL FOR HYPER-HEURISTICS

Adam Harter and Daniel R. Tauritz
Natural Computation Laboratory, Department of Computer Science, Missouri University

of Science and Technology, Rolla, MO, 65409

Aaron Scott Pope
Natural Computation Laboratory, Department of Computer Science, Missouri University

of Science and Technology, Rolla, MO, 65409
Los Alamos National Laboratory, Los Alamos, NM, 87544

Chris Rawlings
Los Alamos National Laboratory, Los Alamos, NM, 87544

ABSTRACT

The set of primitive operations available to a generative hyper-heuristic can have

a dramatic impact on the overall performance of the heuristic search in terms of efficiency

and final solution quality. When constructing a primitive set, users are faced with a trade-

off between generality and time spent searching. A set consisting of low-level primitives

provides the flexibility to findmost or all potential solutions, but the resulting heuristic search

space might be too large to find adequate solutions in a reasonable time frame. Conversely,

a set of high-level primitives can enable faster discovery of mediocre solutions, but prevent

the fine-tuning necessary to find the optimal heuristics. By varying the set of primitives

throughout evolution, the heuristic search can utilize the advantages of both high-level and

low-level primitive sets. This permits the heuristic search to either quickly traverse parts of

the search space as needed or modify the minutiae of the search to find optimal solutions

in reasonable amounts of time not feasible with implicit levels of primitive granularity.

This paper demonstrates this potential by presenting empirical evidence of improvements to

18

solvers for the Traveling Thief Problem, a combination of the Traveling Salesman Problem

and the Knapsack Problem, a recent and difficult problem designed to more closely emulate

real world complexity.

Keywords: Genetic Programming, Hyper-heuristics, Evolutionary Computing

1. INTRODUCTION

Unlike a traditional search, which aims to find a high-quality solution for the par-

ticular instance of a problem, a hyper-heuristic search instead seeks to find an algorithm

that produces high-quality solutions to a specific problem class. This can be accomplished

through one of two means, heuristic selection or heuristic generation. Heuristic selection,

as its name implies, selects a solution heuristic from a pool of potential candidate solutions

that best fits the application. This approach can be powerful, but it relies on having a

high-quality set of available candidate heuristics a priori.

Generative hyper-heuristics instead aim to construct novel heuristics that are tai-

lored to the specific target application. Genetic programming (GP) is a common generative

hyper-heuristic technique that relies on an evolutionary search to generate and optimize

executable program solutions. The evolutionary search has more effective genes and opera-

tions propagate from generation to generation while less effective genes tend to be removed,

allowing quality heuristics to be generated over time. Conventionally, the fundamental set

of operations used to construct heuristic solutions is generated by extracting a set of basic

functions from existing techniques related to the application. For instance, in symbolic

regression applications, the primitive set typically consists of arithmetic operations (e.g.,

addition).

The proper construction of the set of primitive operations is critical to the success

of a hyper-heuristic application. If crucial operations are not present, the approach will not

be expressive enough to produce high-quality solutions. Alternatively, if the primitive set

19

is bloated with irrelevant operations, a substantial amount of search time will be wasted on

useless solutions.

Even if the crucial operational elements can be identified, the level of primitive

granularity can still have a dramatic effect on the search efficiency. A set of high-level

primitives may lead to faster convergence, but be incapable of the fine-tuning needed to

find optimal solutions. Conversely, a set of low-level primitives may be able to find optimal

solutions, but take an unacceptably long time to converge. Carefully selecting the proper

level of primitives requires a great deal of time, specific domain knowledge, and human

expertise. But even with those prerequisites met, the optimal set of primitives is likely to

change as the search advances, making human intervention infeasible and ineffective.

This work investigates the impact of dynamically changing the level of primitive

granularity during the hyper-heuristic search. A meta-level search is used to find schedules

for controlling the level of primitive granularity that improve over static configurations.

To demonstrate potential improvements, solvers for the Traveling Thief Problem (TTP)

were evolved using both static and dynamic primitive sets and the best configurations were

compared in runtime, average fitness, and maximum fitness.

2. RELATEDWORK

Hyper-heuristics and evolutionary algorithms have both been successfully applied

to the traveling salesman problem and the knapsack problem in the past. Additionally, most

methods for solvingTTP are partially or entirely based on evolutionarymethods . Previously,

a GP approach utilizing a higher level primitive set was used to create TTP solvers that

sometimes outperformed current state-of-the-art solvers. Martin and Tauritz and Pope et al.

previously demonstrated that adding lower level primitives to a primitive set can increase

the fitness at the cost of increasing the runtime. A similar approach was previously used

by Goldman and Tauritz to demonstrate the effectiveness of other dynamic parameters.

In that work, different parameters, such as the population size, number of children, etc.

20

were changed throughout evolution by using a vector of values for specific generations and

interpolating for values between the generations. The dynamic configurations found showed

improvements in fitness when given an equivalent amount of time to run.

This work can be viewed as somewhat oppositionary to previous methods of find-

ing reusable blocks of code as primitives during evolution, such as Evolutionary Module

Acquisition, Hierarchy Locally Defined Modules, and Adaptive Representation. Each of

these examines the population, searching for reoccurring blocks of code that can be used

as primitives while generating new individuals in later generations. A related, more recent

approach, Emergent Tangled Graph Representations, introduced by Kelly and Heywood,

approaches that problem differently. This method utilizes small programs grouped together

as teams and uses the output of these teams as a part of other teams. Evolution develops

not only the higher-level teams and the programs within them, but also the links between

different teams.

3. PRIMITIVE GRANULARITY CONTROL

In a conventional GP application, the set of primitive operations available to the

search is decided a priori and does not change over the course of evolution. The construction

of the primitive set has the potential to bias the search and have a significant impact

on the performance of the GP. Practitioners can include complex primitives that have

some key functionality that is targeted at the application in question. A set of such high-

level operations can allow a GP to quickly find complex solutions that perform well.

Unfortunately, these complex operations typically come in an “all or nothing” form. If an

optimal solution requires a small modification to the provided functionality, the high-level

primitive set might prevent the necessary fine-tuning.

Alternatively, a set of primitives with more basic functionality can result in a GP

with a far greater range of algorithmic expression. However, this improved flexibility can

come at the cost of a dramatically increased search complexity as the GP must “reinvent

21

the wheel” to achieve more complex functionality. Primitive granularity control (PGC), a

technique proposed in this work, aims to leverage the benefits of both the high-level and

low-level approaches.

A set of low-level primitives is extracted from previous methods that target the TTP.

More complex operations, referred to as macro primitives, are then constructed manually

from the basic primitives. This process can be repeated, incorporating macro primitives

within other macro primitives to achieve even more complex functionality. All operations

in the primitive set are assigned a numerical “coarseness level” that indicates their relative

complexity. Basic primitives are assigned a coarseness level of one, and macro primitives

are assigned a level of one greater than the highest operation they contain. For instance, a

macro primitive that contains only basic primitives will have a coarseness level of two; any

macro primitive that contains this level two primitive will have a coarseness level of at least

three.

To leverage these coarseness indicators, the GP is provided a schedule that controls

the level of coarseness available in the primitive set at any given point during evolution.

This schedule restricts the primitive set used during population initialization (i.e., parse

tree generation) and within the variation operators (i.e., mutation and recombination). If

the schedule lowers the coarseness level below that of any primitives present within the

solutions in a population, these macro operations are replaced with the lower-level subtrees

that provide the same functionality. See Section 3 for an example parse tree presented at

three coarseness levels.

The goal of this preliminary work is to investigate the potential for GP performance

improvements when a dynamic schedule is used to control the level of primitive coarseness.

A subset of all possible coarseness schedules was considered in an exhaustive meta-level

search. The best performing dynamic schedules (i.e., schedules with at least one change in

coarseness levels) were compared to the best static schedules found.

22

WhileValueImproves (1)

AddRandomItem (3)

(a)

WhileValueImproves (1)

AddItem (1)

CanonicalRandomFloat (2)

(b)

WhileValueImproves (1)

AddItem (1)

RandomFloat (1)

Float value of 0 (1) Float value of 1 (1)

(c)

Figure 1. Example TTP Heuristic at Three Primitive Coarseness Levels. The coarse-
ness of the primitives is indicated by the number in parentheses after the primitive name.
a) Coarseness level 3 b) Coarseness level 2 c) Coarseness level 1

4. TRAVELING THIEF PROBLEM

The Traveling Thief Problem (TTP) is a combination of two NP-hard problems, the

Traveling Salesman Problem and the Knapsack Problem, designed to more closely emulate

real-world problems by having the two sub-problems interact in complex and non-trivial

ways. A TPP instance consists of a list of cities and a list of items. Each item has a weight,

a value, and a location, while each pair of cities has a distance between them. A solution

consists of a path that visits each city exactly once, ending with returning to the starting city,

and a picking plan of which items to take. There is a maximum weight of items that can be

taken, and the time taken to travel between cities scales linearly with the ratio of the sum

of the weight of the items carried to the maximum weight. The solution value is the total

worth of the picking plan subtracted by the travel time multiplied by a constant specified by

the instance known as the renting ratio. An extremely simple example TTP instance can be

seen in Figure 2.

23

0 1

23

9

8

3 7

4

2

{5,8}

{3,6}{4,9}

The value pair at each city other than 0 is the item present at that city, denoted as {value, weight}.
The value for each edge is the distance between the cities. The tour must begin at city 0.

Figure 2. TTP Example Instance

TTP was chosen as a test ground for PGC as simpler problems, such as those

in the general program synthesis benchmark proposed by Helmuth and Lee, typically do

not require primitives that are complex enough to be implemented at multiple levels of

coarseness. TTP is a modern, difficult to solve problem, with even small instances not

having known optimal solutions. It has also enjoyed a great amount of attention from the

field of evolutionary computation in general. These approaches generally start by finding a

good starting TSP solution, usually using the Lin-Kernighan heuristic, and then modifying

either only the picking plan or both the picking plan and the path. To minimize the risk of

starting in local optima, the GP solvers in this work begin with random initial paths and an

empty picking plan.

5. METHODOLOGY

In PGC, the coarseness level is varied throughout evolution; these configurations

are referred to as dynamic plans. To test the effectiveness of different dynamic plans, an

24

exhaustive search was performed over a subset of all possible configurations. Each dynamic

plan was evaluated with a GP search for effective heuristics for a TTP instance. A high level

overview of the process can be seen in Figure 3.

5.1. META-SEARCH

Each dynamic and static configuration consisted of a tuple of a user-defined length

s, each value in the tuple representing an overall coarseness level. All experiments in this

paper use a tuple of length 5, chosen as a balance between limiting the search time while still

allowing room for improvement. The static configurations are represented as all members

of the tuple being the same value. Given N generations, the target coarseness would change

every bN/sc generations until the last segment was reached. Due to the strong typing of

the tree, primitives for the coarseness level were not always available; in this situation, the

coarseness level was temporarily and repeatedly lowered by one until a primitive matching

that coarseness level was available, this procedure is shown in Algorithm 1. In essence,

this means that for each type and coarseness level there is an effective coarseness level for

terminals and non-terminals, which are shown in Table 1 and Table 2, respectively. The

tables show a mapping from the overall coarseness level to a type specific coarseness level;

for example, when generating an int terminal, any overall coarseness level of two or higher

results in a primitive of coarseness two being generated. Each of these dynamic plans were

evaluated 30 times for statistical purposes.

5.2. TTP HEURISTIC EVOLUTION

The heuristics for the TTP problems were represented as strongly typed Koza-style

GP Trees. Population initialization was performed using a ramped half-and-half approach.

The list of basic primitives and macro primitives can be seen in Table 3 and Table 4,

25

Algorithm 1 Terminal and Non-terminal Filter Process
procedure FilterPrimitives(coarseness, target)

primitiveSet ← AddPrimitives(coarseness, target)
if primitiveSet is empty then

if target = Terminal then
primitiveSet ← AddPrimitives(coarseness,Non-terminal)

else
primitiveSet ← AddPrimitives(coarseness, Terminal)

return primitiveSet
procedure AddPrimitives(coarseness, target)

toAdd ← �
while toAdd is empty and coarseness > 0 do

Add primitives of type target with
coarseness level of coarseness to toAdd

coarseness← coarseness − 1
return toAdd

Table 1. Terminal Primitive Effective Coarseness

Coarseness
1 2 3 4 5

G
en
er
at
ed

Ty
pe int 1 2 2 2 2

float 1 2 2 2 2
worker 1 1 3 3 3
float_list - - - - -
bool 1 1 1 1 1

No terminal primitives are of type float_list.

Table 2. Non-terminal Primitive Effective Coarseness

Coarseness
1 2 3 4 5

G
en
er
at
ed

Ty
pe int 1 1 1 1 1

float 1 1 1 1 1
worker 1 2 3 4 5
float_list 1 1 1 1 1
bool 1 1 1 1 1

26

respectively. The solvers start with a random initial path and an empty picking plan, and

can manipulate both. The strongly-typed parse tree implementation requires all primitives

have an associated type; the list of available types is as follows:

float Floating point number

int Integer number

bool Boolean value

float_list Finite list of floating point numbers

worker Program control operators and operations that manipulate the path and picking

plan

Parse trees must have a worker type primitive as their root. Evaluation is performed against

a single TTP instance at a time, and the algorithm for evaluation of an individual can be

seen in Algorithm 2. Crossover was a standard sub-tree crossover, while mutation could

either replace a subtree with a randomly generated one or with one of its children. Survival

selection and parent selection were both k-tournament, with the fitness of the individuals

being penalized by the number of nodes in its representation to encourage efficient solutions.

Evolution was performed for a set number of generations with a set population size and

number of children generated. A set number of generations was utilized instead of running

to convergence to reduce the runtime of the system.

6. EXPERIMENTATION

Even the simplest instances in the current standard benchmark suite for TTP were

computationally infeasible due to the exhaustive nature of the search. Therefore, three new,

smaller, individual problems were created: a 10 city problem, a 12 city problem and a 26

city problem, these instances are available at https://github.com/dtauritz/NC-LAB-Public.

27

Table 3. List of Basic Primitives

Primitive Signature Description

CurrentSolutionValue float() The current solution’s value
ValueChange float() Change in value from the last path/item change
Negate int(int)

float(float)
Negates a value

Velocity float() Final velocity of the thief with the current picking plan
RandomBool bool(float) Random bool with specified probability of being true
RandomInt int(int, int) Random integer within the given range
RandomFloat float(float, float) Random float within the given range
LoopVariableInt int() Variable used for looping
MapValueIndex int(float_list) Index of maximum value of a list
MaxValue float(float_list) Maximum value of a list
MapNodes float_list(float) Evaluate a subtree for each node in the path with the loop

variable set to the index of the city
DoNothing worker() Does nothing
ChainWork worker(worker, worker)

worker(worker, worker, worker)
Chains work to be performed one after the other

IfStatement int(bool, int, int)
float(bool, float, float)
worker(bool, worker, worker)

Evaluates a boolean expression and evaluate and return the
first argument if true, or the second argument if false

LKGain float(int) Returns the gain of performing an LKSwap at the specified
location

LKTransform worker(int) Performs an LKSwap at the specified location
TwoOptTransform worker(int, int) Performs a two-opt transform at the specified location
SwapCities worker(int, int) Swaps two cities in the path
Distance float(int, int) Returns the distance between two cities
AddItem worker(int)

worker(float)
Sets the loop variable equal to each item outside the bag
that can fit in the bag and evaluates the child tree, placing
the item the produces the largest value in the bag

RemoveItem worker(int)
worker(float)

Similar to AddItem, but removes an item instead

ItemWeight int(int) Item weight at the specified index
ItemValue int(int) Item value at the specified index
ItemRatio float(int) Cost/weight ratio of the item at the specified index
ItemLocation int(int) City index where the specified item is found
EffectiveItemValue float(int) Solution’s value changed by adding the specified item
WhileValueImproves worker(worker) Evaluate the child tree until it does not improve the solu-

tion’s value
SavePath worker() Append the current path to the saved paths
SaveItems worker() Append the current picking plan to the saved picking plans
RestorePath worker() Restore the latest saved path
RestoreItems worker() Restore the latest saved picking plan
GetFirstImprovementForPath worker(worker) For each city in the path in order, evaluates the child tree,

setting the loop variable to the city, and exiting the loop
early if an improvement is made to the solution

IntToFloat float(int) Converts an integer to a float
FloatToInt int(float) Converts a float to an integer
+, −, ∗ int(int)

float(float)
Standard mathematical arithmetic.

SafeDivide int(int)
float(float)

If the divisor is zero, return zero, otherwise standard divi-
sion.

>, = bool(int, int)
bool(float, float)

Standard comparison operators.

And, Or bool(bool, bool) Standard boolean operators.
Not bool(bool) Standard boolean operator.

28

Table 4. List of Macro Primitives

Primitive Coarseness Signature Description

MaxLKGain 2 float() The max LKGain for the current path
MaxLKGainIndex 2 int() Index for an LKSwap for maximum LKGain
LinKernighan0 3 worker() Performs Lin-Kernighan with no look-back
LinKernighan1 4 worker() Performs Lin-Kernighan with one depth look-back
LinKernighan2 5 worker() Performs Lin-Kernighan with two depth look-back
SavePathAndItems 2 worker() Saves the current path and picking plan
RestorePathAndItems 2 worker() Restores the most recently saved path and picking plan
KeepIfImproves 3 worker(worker) Evaluates a child tree, discarding the changes it did not improve

the solution
GreedyKPSearch 2 worker() Adds items that increase the solution value the most until no

items fit or the value fails to improve
RemoveHeaviest 2 worker() Removes the heaviest item from the bag
CanonicalRandomFloat 2 float() Generates a float in the range [0, 1)
AddRandomItem 3 worker() Adds a random item to the bag
RemoveRandomItem 3 worker() Removes a random item from the bag

Algorithm 2 TTP Individual Evaluation
value← 0
outerStagnantCount ← 0
outerBestValue← −∞
bestPath← default path
bestPickingPlan← default picking plan
while time remains and

outerStagnantCount < Outer Stagnant Limit do
path← Random Initial Path
pickingPlan← Empty Plan
innerStagnantCount ← 0
innerBestValue← −∞
while innerStagnantCount < Inner Stagnant Limit do

if no time remains then
return outerBestValue, bestPath, bestPickingPlan

Evaluate individual, changing path and pickingPlan
value← TTP value using path and pickingPlan
if value > innerBestValue then

innerBestValue← value
innerStagnantCount ← 0
bestPath← path
bestPickingPlan← pickingPlan

else
innerStagnantCount ← innerStagnantCount + 1

if value > outerBestValue then
outerBestValue← value
outerStagnantCount ← 0

else
outerStagnantCount ← outerStagnantCount + 1

return outerBestValue, bestPath, bestPickingPlan

29

Table 5. TTP Solver Specific Parameters

Parameter Value
Population Size 24
Number of Children 48
Number of Generations 60
Survival Strategy (µ + λ)
Minimum Initial Depth 3
Maximum Depth 6
Mutation Minimum Depth 1
Mutation Maximum Depth 2
Inner Stagnant Limit 5
Outer Stagnant Limit 5
Evaluation Time Limit Varied with Problem
Tournament Size 3

Each of these problems has a single item at each location, excluding the starting

city. Parameters specific to the TTP solvers can be found in Table 5, which were manually

fine tuned. The evaluation time limit was set to 0.5ms for the 10 city problem, 1.5ms for

the 12 city problem, and 5ms for the 26 city problem; these time limits were hand tuned to

balance reducing the runtime of the meta-search and providing sufficient time for finding

quality TTP solutions.

7. RESULTS

All statistical data can be found in Table 6 and Figure 5. A graphical comparison

of the runtime versus the maximum fitness can be seen in Figure 4. For each problem

instance and each optimization target, PGC produced improved results when compared

against static primitive sets. For the 10 city problem, PGC completed in less time when

optimizing formean fitness and runtime, always improved on themean fitness, and improved

on maximum fitness when prioritizing runtime. For the 12 city problem, PGC produced

30

Meta-search

Hyper-heuristic search (GP)

TTP instance

For each static and
dynamic configura-
tion

Return average
runtime and fitness
information across
30 runs

For each individual
Return runtime and
solution value

Figure 3. High Level Overview of Experiment

worse mean fitnesses for the mean and maximum fitness configurations, but the maximum

fitness was unaffected, and PGC always produced shorter runtimes. For the 26 city problem,

PGC completed in less time when optimizing for fitness, and outperformed for mean and

maximum fitness when optimizing for time.

Even with a small number of coarseness levels and a small number of points where

the coarseness level was changed, PGC still demonstrated improvements. This is despite

the coarseness levels being heavily distributed towards worker primitives, as the majority

of macro primitives were worker primitives. However, this is likely not as big of a problem

as it initially seems. Primitives of type worker are the most important primitives as they

actually operate on the solution; all the other primitives types are simply inputs, parameters,

etc. The primary improvement demonstrated by PGC compared to static granularity is in

reaching the same fitness in less time or reaching greater fitness in the same amount of time.

8. CONCLUSION

This paper presented empirical evidence that dynamic primitive granularity (referred

to as coarseness levels in this work) has the potential to outperform static primitive gran-

ularity (standard GP). Using an exhaustive search, dynamic sets of primitives were found

31

2 4 6 8

−400

−200

0

200

400

Time (s)

Fi
tn
es
s

10 City Problem

Static
Dynamic

1 2 3 4 5
−800

−600

−400

−200

0

Time (s)

Fi
tn
es
s

12 City Problem

Static
Dynamic

2 4 6 8 10 12
−4,000

−3,000

−2,000

−1,000

0

Time (s)

Fi
tn
es
s

26 City Problem

Static
Dynamic

Figure 4. Max Fitness Versus Runtime for Each Run of the Best Dynamic and Static Plans
for Maximum Fitness

32

Table 6. Comparison of Static and Dynamic Configurations

Mean Value Across 30 Evaluations

Mean Fitness Max Fitness Runtime Coarseness Level
Static Dynamic Static Dynamic Static Dynamic Static Dynamic

Be
st
C
on

fig
ur

at
io
n
Fo

r

10 City Problem
Mean Fitness -502.369 -430.871 16.976 -10.537 2.081 1.646 1 [1, 3, 1, 1, 3]
Max Fitness -502.369 -432.732 16.976 26.578 2.081 2.019 2 [2, 1, 2, 5, 3]
Runtime -714.276 -556.406 -181.861 -67.854 1.762 1.440 5 [5, 5, 1, 2, 3]

12 City Problem
Mean Fitness -826.416 -877.186 -452.449 -503.021 2.146 1.793 2 [5, 2, 2, 2, 1]
Max Fitness -826.416 -987.628 -452.449 -481.590 2.146 1.759 2 [5, 1, 1, 5, 5]
Runtime -873.578 -912.443 -516.237 -522.040 2.042 1.588 1 [4, 1, 2, 1, 3]

26 City Problem
Mean Fitness -2660.408 -2679.844 -1946.679 -1885.881 3.701 2.538 2 [2, 4, 2, 1, 1]
Max Fitness -2660.408 -2679.844 -1946.679 -1885.881 3.701 2.538 2 [2, 4, 2, 1, 1]
Runtime -3497.207 -3098.771 -2808.712 -2351.676 2.516 2.240 5 [1, 1, 2, 3, 4]

Better values that are statistically significant using the Student’s T-test with α = 0.05 are in bold.

Mean Max Runtime

−1,000

−500

0

Best Configuration For

M
ea
n
Fi
tn
es
s

Mean Max Runtime

−500

0

500

Best Configuration For

M
ax

Fi
tn
es
s

10 City Problem

Static
Dynamic

Mean Max Runtime

2

4

6

8

Best Configuration For

R
un

tim
e
(s
)

Mean Max Runtime

−1,000

−500

Best Configuration For

M
ea
n
Fi
tn
es
s

Mean Max Runtime
−800

−600

−400

−200

0

Best Configuration For

M
ax

Fi
tn
es
s

12 City Problem

Mean Max Runtime

2

4

Best Configuration For

R
un

tim
e
(s
)

Mean Max Runtime

−4,000

−3,000

−2,000

−1,000

Best Configuration For

M
ea
n
Fi
tn
es
s

Mean Max Runtime

−4,000

−2,000

0

Best Configuration For

M
ax

Fi
tn
es
s

26 City Problem

Mean Max Runtime

5

10

Best Configuration For

R
un

tim
e
(s
)

Figure 5. Comparison of Each Best Configuration

33

that in the majority of cases exceeded or met the performance of static ones in measures of

runtime, average fitness, and maximum fitness. For easier problems, improvements were

mainly found in the fitness measures, while for more complex problems, improvements

were found in runtime. PGCmay be expected to have the capability to improve runtime and

solution quality in other complex problems as well. While the results presented here prove

our hypothesis of dynamic primitive granularity outperforming static primitive granularity,

the exhaustive search employed is not practical for real world use, thus motivating future

research to create an efficient control method for PGC.

9. FUTUREWORK

A method to create dynamic primitive granularity plans without significant runtime

overhead may be expected to result in GP having reduced runtime, improved solution

quality, or both. If a method is found, automated generation of higher level primitives

(composition) would further reduce the need for domain-specific expertise. The reverse,

automated decomposition of higher level primitives into simpler primitives, would also

be beneficial, because it would allow fine tuning of individuals without requiring a priori

human specification of coarseness levels. Closer examination of the convergence and other

factors of the dynamic and static configurations may also provide additional insight on PGC.

An extension to PGC could be changing the coarseness level to a range or set of

allowed coarseness levels, allowing more fine-tuned control. The use of primitives with

higher coarseness levels that can not be decomposed may also have use in PGC; such

primitives may exist due to infeasibility of representation with simpler primitives, but the

work performed is non-trivial. More sophisticated methods of assigning coarseness levels

may also be worth examining, such as changing the level based on stagnation, rate of fitness

change, or other population measures. Additionally, each individual generated type could

have its own coarseness level, which may result in further benefits. The fact that the small

34

number of effective coarseness levels for each primitive type already resulted in noticeable

improvements indicates the high likelihood that providing a richer set of macro primitives

would yield further improvements.

ACKNOWLEDGMENTS

This work was supported by Los Alamos National Laboratory via the Cyber Secu-

rity Sciences Institute under subcontract 259565 and the Laboratory Directed Research

and Development program of Los Alamos National Laboratory under project number

20170683ER.

REFERENCES

Angeline, P. J. and Pollack, J., ‘Evolutionary Module Acquisition,’ in ‘Proceedings of
the second annual conference on evolutionary programming,’ Citeseer, 1993 pp.
154–163.

Aziz, Z. A., ‘Ant Colony Hyper-heuristics for Travelling Salesman Problem,’ Procedia
Computer Science, 2015, 76, pp. 534–538.

Banzhaf, W., Banscherus, D., and Dittrich, P., Hierarchical Genetic Programming Using
Local Modules, Secretary of the SFB 531, 1999.

Blank, J., Deb, K., and Mostaghim, S., ‘Solving the Bi-objective Traveling Thief Problem
with Multi-objective Evolutionary Algorithms,’ in ‘International Conference on
Evolutionary Multi-Criterion Optimization,’ Springer, 2017 pp. 46–60.

Bonyadi, M. R., Michalewicz, Z., and Barone, L., ‘The Travelling Thief Problem: The
First Step in the Transition from Theoretical Problems to Realistic Problems,’ in
‘Evolutionary Computation (CEC), 2013 IEEE Congress on,’ IEEE, 2013 pp. 1037–
1044.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Qu, R.,
‘Hyper-heuristics: A survey of the state of the art,’ Journal of the Operational
Research Society, 2013, 64(12), pp. 1695–1724.

Burke, E. K., Hyde, M. R., Kendall, G., and Woodward, J., ‘Automating the Packing
Heuristic Design Process with Genetic Programming,’ Evolutionary computation,
2012, 20(1), pp. 63–89.

35

Drake, J. H., Hyde, M., Ibrahim, K., and Ozcan, E., ‘A Genetic Programming Hyper-
heuristic for the Multidimensional Knapsack Problem,’ Kybernetes, 2014, 43(9/10),
pp. 1500–1511.

El Yafrani, M. and Ahiod, B., ‘Population-based vs. Single-solution Heuristics for the Trav-
elling Thief Problem,’ in ‘Proceedings of theGenetic and Evolutionary Computation
Conference 2016,’ ACM, 2016 pp. 317–324.

El Yafrani, M., Martins, M., Wagner, M., Ahiod, B., Delgado, M., and Lüders, R., ‘A
Hyperheuristic Approach Based on Low-level Heuristics for the Travelling Thief
Problem,’ Genetic Programming and Evolvable Machines, 2018, 19(1-2), pp. 121–
150.

Fogel, D. B., ‘Applying Evolutionary Programming to Selected Traveling Salesman Prob-
lems,’ Cybernetics and systems, 1993, 24(1), pp. 27–36.

Goldman, B. W. and Tauritz, D. R., ‘Meta-evolved Empirical Evidence of the Effectiveness
of Dynamic Parameters,’ in ‘Proceedings of the 13th annual conference companion
on Genetic and evolutionary computation,’ ACM, 2011 pp. 155–156.

Helmuth, T. and Spector, L., ‘Detailed ProblemDescriptions for General Program Synthesis
Benchmark Suite,’ Technical report, Technical Report UM-CS-2015-006, School of
Computer Science, University of Massachusetts Amherst, 2015.

Hough, P. D. and Williams, P. J., ‘Modern Machine Learning for Automatic Optimization
Algorithm Selection,’ in ‘Proceedings of the INFORMS Artificial Intelligence and
Data Mining Workshop,’ 2006 pp. 1–6.

Kelly, S. and Heywood, M. I., ‘Emergent Tangled Graph Representations for Atari Game
Playing Agents,’ in ‘European Conference on Genetic Programming,’ Springer,
2017 pp. 64–79.

Kendall, G. and Li, J., ‘Competitive Travelling Salesmen Problem: A Hyper-heuristic
Approach,’ Journal of the Operational Research Society, 2013, 64(2), pp. 208–216.

Koza, J. R.,Genetic Programming: On the Programming of Computers byMeans of Natural
Selection, MIT Press, Cambridge, MA, USA, 1992, ISBN 0-262-11170-5.

Kumar, R., Joshi, A. H., Banka, K. K., and Rockett, P. I., ‘Evolution of Hyperheuristics for
the Biobjective 0/1 Knapsack Problem by Multiobjective Genetic Programming,’ in
‘Proceedings of the 10th annual conference on Genetic and evolutionary computa-
tion,’ ACM, 2008 pp. 1227–1234.

Lin, S. and Kernighan, B.W., ‘An Effective Heuristic Algorithm for the Traveling-salesman
Problem,’ Operations research, 1973, 21(2), pp. 498–516.

Martin,M.A. andTauritz, D. R., ‘Hyper-heuristics: AStudy on Increasing Primitive-space,’
in ‘Proceedings of the Companion Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation,’ ACM, 2015 pp. 1051–1058.

36

Mei, Y., Li, X., Salim, F., and Yao, X., ‘Heuristic Evolution with Genetic Programming
for Traveling Thief Problem,’ in ‘Evolutionary Computation (CEC), 2015 IEEE
Congress on,’ IEEE, 2015 pp. 2753–2760.

Parada, L., Herrera, C., Sepúlveda, M., and Parada, V., ‘Evolution of New Algorithms for
the Binary Knapsack Problem,’ Natural Computing, 2016, 15(1), pp. 181–193.

Polyakovskiy, S., Bonyadi, M. R., Wagner, M., Michalewicz, Z., and Neumann, F., ‘A
Comprehensive Benchmark Set and Heuristics for the Traveling Thief Problem,’ in
‘Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Compu-
tation,’ ACM, 2014 pp. 477–484.

Pope, A. S., Tauritz, D. R., and Kent, A. D., ‘Evolving Random Graph Generators:
A Case for Increased Algorithmic Primitive Granularity,’ in ‘2016 IEEE Sym-
posium Series on Computational Intelligence (SSCI),’ IEEE, 2016 pp. 1–8, doi:
10.1109/SSCI.2016.7849929.

Rosca, J. P. and Ballard, D. H., ‘Hierarchical Self-organization in Genetic Programming,’
in ‘Machine Learning Proceedings 1994,’ pp. 251–258, Elsevier, 1994.

Ryser-Welch, P., Miller, J. F., and Asta, S., ‘Generating Human-readable Algorithms for
the Travelling Salesman Problem using Hyper-heuristics,’ in ‘Proceedings of the
Companion Publication of the 2015Annual Conference onGenetic andEvolutionary
Computation,’ ACM, 2015 pp. 1067–1074.

Wu, J., Polyakovskiy, S., Wagner, M., and Neumann, F., ‘Evolutionary Computation
plus Dynamic Programming for the Bi-Objective Travelling Thief Problem,’ arXiv
preprint arXiv:1802.02434, 2018.

37

SECTION

2. SUMMARY AND CONCLUSIONS

This thesis presented two papers introducing distinct methods for improving the

canonical genetic programming algorithm. The first paper introduces Asynchronous Par-

allel Evolutionary Algorithms (APEA) for Cartesian Genetic Programming (CGP), which

reduces runtime by eliminating the bottleneck caused by individuals with exceptionally

long evaluation times. This allows more effective use of compute resources, at the cost

of increasing the complexity of implementation. The benefits of APEA for CGP were

increasing the number of evaluations per second and as a result completing the search more

quickly. The decreased runtime was, however, limited to more computationally complex

problems; for computationally cheap problems, the overhead of parallelization was too great

to overcome. CGP also has more advanced variations than the basic one used that could

reap even better benefits from APEA.

The second paper introduces Primitive Granularity Control (PGC) which allows

dynamically changing the primitive set during evolution, which can increase solution quality,

decrease runtime, or both. PGC, however, does require primitives that can be used to build

more complex primitives, making it unsuitable for many simpler problems. The process of

building up these primitives is also non-trivial and requires a significant amount of domain-

specific expertise. An exhaustive search was performed over a small subset of possible

dynamic plans for heuristics for the Traveling Thief Problem. Dynamic plans were found

that, compared to static plans, either found solutions of similar quality in less time, or found

better solutions in the same amount of time. Areas of expansion would include a way

to automatically generate the higher-level primitives, a method for efficiently determining

effective plans, and closer examination of the population under PGC.

38

A combination of these methods would be possible, but presents new technical

challenges to overcome. The first of these is that PGC relies on generations as a measure to

dynamically change the primitive set. This could be addressed by using different metrics,

such as time or number of evaluations. The next problem is specific to CGP and is much

more fundamental. PGC relies on being able to build smaller primitives into larger more

complex primitives, which clashes with CGP’s representation. All individuals in CGP are

the same size, making transforming between basic andmacro primitives difficult. While this

could be easily addressed by allowing individuals to change size, further alterations would

almost certainly be required to combat new complications. One such issue is that CGP has

no means of combatting bloat aside from the set individual size, so allowing individuals to

grow is likely to result in extremely large individuals. Other, more subtle, problems likely

exist in combining APCGP and PGC, but successfully utilizing both methods is expected

to produce even greater returns than either one individually.

39

VITA

Adam Tyler Harter was raised in Plainfield, Illinois, graduating from Plainfield

North High School in May 2012. From Fall 2012 to Spring 2017, Adam attended Missouri

University of Science and Technology, earning a Bachelor of Science in Computer Science

and Computer Engineering in May 2017. In the Summer of 2016, Adam worked at Sandia

National Laboratories at the Albuquerque, New Mexico location, and then in the Summer

of 2018 at Los Alamos National Laboratory. Adam earned a Master of Science degree in

Computer Science from Missouri University of Science and Technology in July 2019.

	Advanced techniques for improving canonical genetic programming
	Recommended Citation

	tmp.1568643845.pdf.aZmbg

