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ABSTRACT

Autism spectrum disorder (ASD) refers to a set of developmental disorders with

varied attributes. Due to its substantial heterogeneity in terms of behavioral and clinical

phenotypes, it is challenging to discern the genetic biomarkers behind ASD, even though the

disease is known to be genetic in nature. This serves as a motivation to detect relationships

between single nucleotide polymorphisms (SNPs) and a causal autism disease suscepti-

bility locus (DSL) within more homogeneous subgroups. Recently, clinically meaningful

subclassifications of ASD have been discovered utilizing facial features of prepubescent

boys. Therefore, through the employment of data from 44 prepubertal Caucasian boys with

ASD belonging to one of the three facial-feature clusters and their immediate family, we

attempt to identify possible genetic markers corresponding to the varying phenotypes of

ASD. We utilize tools from family-based association studies for their ability to detect both

linkage and association while being most powerful for rare diseases. The transmission dis-

equilibrium test (TDT) and the family-based association test (FBAT) are implemented for

the combined ASD and cluster-membership phenotypes; these tests use affected offspring

and all offspring, respectively. We also carry out a screening method involving conditional

power estimation and a rank-weighting step addressing the multiple testing problem. In

each of the analyses conducted, there is not sufficient evidence to conclude that any of the

2828 SNPs included in the study are linked and associated with a DSL corresponding to the

phenotype being tested. In order to increase the low statistical power due to small sample

sizes, we recommend to recruit additional boys with ASD, determine the facial-feature

cluster to which they belong, and genotype the boy and both his parents. There is no need to

genotype any unaffected offspring, because their contributions to the test statistic are minor.
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1. MOTIVATION

Autism spectrum disorder (ASD) refers to a set of developmental disorders with

heterogeneous attributes, and it may be somewhat impairing to severely disabling. Common

characteristics of those with ASD include: repetitive behaviors, social problems such as

struggling to interact and communicate with others, and limited activities or interests.

About one in 68 children are diagnosed with ASD with diagnosis being more likely among

boys than girls. An additional risk factor is having parents with advanced age (“a mother

who was 35 or older, and/or a father who was 40 or older when the baby was born”) [1].

In fact, ASD is fundamentally a genetic disorder, because of a multitude of evidence of

genetic factors and almost none of environmental factors [2, p. 379]. We are interested in

identifying genetic biomarkers leading to this complex disease.

Humans share around 99.5% of their genetic information, so only a small fraction

of our genetic material accounts for the tremendous variability between individuals [3].

One must search these differences, which commonly occur in the form of single nucleotide

polymorphisms (SNPs), to identify genetic variants to which a disease may be attributed.

The idea is that if individuals afflicted by a particular disease all possess a specific genetic

sequence and those without the trait do not, then there is a relation between that genetic

information and the disease. Statistically, the goal is to demonstrate an association between

a genetic marker and a disease trait. This association may result from a genotyped SNP

that is directly associated with the trait or one that is indirectly associated with the trait via

association with an unknown disease susceptibility locus (DSL). Studies that investigate

these connections are referred to as genetic association studies [4].
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Due to the fact that there is substantial heterogeneity in terms of behavioral and

clinical phenotypes of thosewithASD, it has been challenging to discern the geneticmarkers

behind and etiology of the disease [5, p. 2]. This serves as a motivation to detect linkage

and association between SNPs and an autism DSL within more homogeneous subgroups as

opposed to ASD as a whole. Utilization of the facial morphology to identify genetic markers

is natural for ASD. The shape of one’s face is associated with brain growth and development,

and there are “anatomic abonormalit[ies] in the autistic brain” [6, 7]. Some suggest that the

spectrum of ASD phenotypes correspond to changes in embryonic developmental patterns.

These changes in brain development could therefore manifest itself in a person’s facial

structure. Thus, the same genes controlling the neurological characteristic of ASD may

also be involved in facial morphology [6]. For instance, it has been hypothesized that

“common autism-causing genes affect early brain development and simultaneously the

facial phenotypes” [5, p. 2]. Furthermore, there has been progress in the identifying

clinically meaningful subgroups of ASD using facial features, where the subgroups possess

statistically significant differences in behavioral and clinical characteristics.

Aldridge et al. were the first to use facial morphology to determine clinical sub-

groups of autism. They utilized Caucasian males aged eight to twelve years old with ASD

and employed a Euclidean distance matrix and principal components analysis to determine

two groupings based on the subjects’ facial features. One of these facially-determined

groups exhibited a more severe form of ASD, e.g. increased language regression, lower

IQs, and higher autism severity scores [5]. More recently, Obafemi-Ajayi et al. considered

an overlapping sample of Caucasian boys; 52 from the Aldridge et al. study plus ten new

boys were studied [5, 8]. Via geodesic facial distances and cluster analysis, they discovered

three subgroupings; see Figure 1.1 for an example of the distances utilized. Importantly,

there was a subgroup common to both investigations “characterized by lower IQs and
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Vineland Adaptive behavior scores, severe autism symptoms measured by gold standard

autism diagnostic measures (ADI-R and ADOS), and more than twice likelihood of early

language regression” [8, p. 15]. Additionally, the authors postulated that yet another reason

for a possible (epi)genetic underpinning for this subgroup is that relatively more severe

measurements of subclincial autistic traits in the mothers were present [8, p. 10].

Figure 1.1. Example Facial Features. Obafemi-Ajayi et al. considered three-dimensional
facial surface distances to determine facial-feature clusters [8].

Hence, through the established facially-delineated clusters, we hope to determine

possible genetic markers corresponding to their varied ASD phenotypes. In order to

accomplish this objective, we plan to use tools from genetic association studies, in particular

those from family-based association analyses which will utilize the information from the

nuclear families, on genetic data from some of the subjects in the studies discussed above.
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2. BACKGROUND

In this chapter, we will discuss the biological, data, and statistical background

relevant to the investigation of ASD and facial-feature cluster membership via genetic

association studies.

2.1. BIOLOGICAL BACKGROUND

In this section, we introduce key biological concepts that are needed to study genetic

association. First, a location on a chromosome that can have two or more possible variants

is referred to as a polymorphic genetic locus, or more simply a polymorphism. Alleles

are those disparate variants at the locus. A gene or specific locus on a gene that possesses

variants associated with a disease is named a disease susceptibility locus (DSL); this is

what researchers are interested in finding [9]. Typically, the relationship is assumed to be

causal [9, p. 20].

It is necessary to distinguish genetic data between individuals; loci that enable

this are called genetic markers. A single nucleotide polymorphism (SNP) is the most

fundamental type of genetic marker and involves a variation in only a single base pair. The

difference between an allele and a SNP merits additional discussion. An allele refers to a

particular variant of a gene segment, whereas a SNP refers to the change in a single base

pair. Therefore, an allele is determined by the SNP(s) in that section of the gene [9]. Refer

to Figure 2.1. Usually, the allele is referred to by its characteristic base pair. From here on

out, the term marker and SNP will be used interchangeably, because that is the only type of

genetic marker we consider.
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A C TGACT

A C TGAC

Allele A

Allele a

Gene Segment

G

Single Nucleotide

Polymorphism (SNP)

Figure 2.1. Single Nucleotide Polymorphism (SNP) and Alleles. A single nucleotide
polymorphism (SNP) at the third base pair on a pair autosomal chromosomes is shown. It is
a SNP, because there is variation in the nucleotide present at that location. The two variants
of the gene segment are different alleles, denoted with A and a.
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Various methods exist to identify genetic markers. In particular, this paper will

focus on genotyping SNPs, which is addressed in Section 2.2. Note that there is a difference

between genotyping and sequencing. Genotyping solely involves identifying the genetic

variants that a particular person has; it only examines SNPs that are spread out over a gene

or genome. Contrastingly, sequencing is concerned with ascertaining the exact base pairs

in a region or over the entire genome. SNPs can be pinpointed from sequencing as well, but

information on all base pairs, including those in regions that are common to all individuals,

is also obtained [10].

One genetic principle, the Hardy-Weinberg equilibrium (HWE), is utilized regularly

in statistical applications, because it can considerably simplify the theory and methods

needed. It states that the allele frequency defines the distribution of genotypes, and the dis-

tribution does not change from generation to generation. There are numerous assumptions

required for HWE to hold, but the principle approximates the genotype’s distribution well

even if some do not hold exactly. Formally, HWE exists when the population satisfies

P(AA genotype) = p2

P(Aa genotype) = 2p(1 − p)

P(aa genotype) = (1 − p)2

where p is the frequency of allele A [9, p. 36]. We will take advantage of the theoretical

simplification that accompanies this principle in Chapter 5.

2.1.1. Introduction toGenetic Association Studies. The two overarching types of

association studies are dictated by the subjects utilized. These types are often referred to as

designs. The first, andmore prevalent, design uses unrelated individuals and is referred to as

a population or case-control design; some subjects have the disease of interest (cases) while
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others do not (controls). Alternatively, instead of using unrelated individuals, family-based

designs make use of families of diseased subjects. Population designs are more popular,

because they typically require fewer resources to recruit and genotype the subjects. Despite

this popularity disparity, family-based designs possess numerous advantages and are the

focus of this work [11].

In regards to the biology, family-based designs are not affected by population sub-

structure [11]. One type of population substructure, population admixture, involves indi-

viduals who “have a mixture of different genetic ancestries,” which is quite realistic. This

results in the likelihood of an individual possessing a particular allele to depend on their

ancestral mixture when allele frequencies differ in the ancestral populations [9, p. 34].

When this fact is unaccounted for, association tests may result in a higher than expected

number of false positives at a given significance level [9, p. 126]. In family-based studies,

information about the genotypes of the parents and/or siblings, and the genetic background

will not differ within the families. Therefore, they are robust to population substructure.

Also, in family-based designs, any declaration of significance indicates that both as-

sociation and linkage are present, which avoids manymisleading associations [11]. Linkage

and association will be discussed in Section 2.1.2. Furthermore, these studies afford resolu-

tions to the multiple-testing problem via some screening procedures [11]. The price paid for

these advantages and robustnessmanifests itself in the reduced power of the test, in particular

for common diseases; the case-control study has higher power in this setting. Nonetheless,

the tests for family-based designs involving trios, the affected offspring (proband) and both

parents, have power closest to that of population designs for common diseases among two

other subtypes of family-based designs. In fact, trio designs are more powerful than case-

control studies for rare diseases. Another disadvantage is that it is typically more difficult

to recruit participates for family-based designs. For instance, for late-onset diseases like
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Alzheimer’s disease, the parents’ genotypes may be unretrievable [9]. However, this is not

the case for childhood diseases or developmental disorders, like ASD, where the parents

are typically directly involved in the child’s health care. Nonetheless, in general, it is more

challenging to obtain large sample sizes with family-based designs [9].

Apart from the test statistics needed to establish association, genotyping quality

control and the multiple-testing problem are two other statistical concerns. There exist

assorted filtering methods to ensure the genotype data is of desirable quality; if these are not

completed, the bias and power of the statistical test may be affected. The multiple-testing

problem refers to the fact that conducting hypothesis tests of association for thousands of

genetic markers (SNPs) will result in a higher experiment-wise Type I error rate than stated

if additional controls are not implemented. Both of these concerns will be examined in

more detail later.

2.1.2. Linkage versus Association. In order to find the location of disease genes

in the genome, techniques of gene mapping are employed. The goal of gene mapping

is to identify disease susceptibility loci (DSL) that are near genetic markers, which are

simply sequences of DNA whose physical chromosomal location is known, chosen for the

analysis. There two types of analyses that are of utmost importance for these types of

studies: linkage analysis and association mapping. Linkage analysis is based on the study

of relatives where “the genetic signal is detectable with markers even relatively far away

from the disease gene.” Its advantage is that it is more likely to require only a small number

of genetic marker loci to cover the entire area under consideration; however, this large

distance between markers and a DSL results in an imprecise estimate of the location of the

DSL. On the other hand, association mapping is based on unrelated subjects and “genetic

signal can be observed with marker data only in very close proximity to the disease gene.”

Even though this fact will necessitate the use of a larger quantity of genetic markers within
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an equivalent genomic region of interest, this approach will yield a “more precise estimate

of the genetic location of the DSL” [9].

Recombination events are the reason for the disparity in the detection range between

linkage and association analyses [9]. Recombination is defined as any “production of

new allele combinations,” and is due to one of two processes: independent assortment or

crossing-over [12, p. 121]. When alleles reside on different chromosomes, recombinants,

the product of recombination, are due to independent assortment under Mendel’s Second

Law (the principle of independent assortment). Alleles present on the same chromosome,

especially when they are located near each other, will tend to be inherited together whichwill

not result in recombinants. The second process is crossing-over, which iswhere homologous

chromosome pairs exchange parts during meiosis. When this occurs, the alleles will not be

inherited together which allows recombination to take place [12].

The recombination fraction, or recombination frequency, (θ) ranges from 0 to 0.5

and represents the probability the recombination occurs between the two loci under consid-

eration. One way to see the upper bound for this value is through Mather’s Law. If P0 is the

probability of no crossovers occurring between two loci, then according to Mather’s Law

θ =
1 − P0

2
.

Note that the farther two loci are from each other, the more likely a crossover may occur

between them, which results in θ near 0.5. We may expect this upper bound to be attained

when the two loci are on different chromosomes, because they would be governed by the

principle of independent assortment [9].

Linkage between two loci is present when the recombination frequency is less than

one-half, θ < 0.5. This corresponds to a violation of Mendel’s Second Law and implies that
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recombination is due to crossing-over. Therefore, hypothesis testing for linkage involves a

null hypothesis of no linkage and an alternative of the presence of linkage, i.e.

H0 : θ =
1
2
(recombination fraction is 0.5; no linkage)

HA : θ <
1
2
(recombination fraction is less than 0.5; linkage present).

Detecting linkage can be somewhat easy; e.g. it is possible to do so within a single family.

However, the detection does not readily translate into precise knowledge concerning the

DSL location [9]. Essentially, linkage tells us that the SNP and DSL are close enough that

recombination occurs due to crossing-over and not independent assortment.

Before discussing association mapping in more detail, we introduce the fundamental

underlying concept of linkage (dis)equilibrium. Consider the alleles A, a and B, b at two

markers, and denote the relative frequency of the alleles at each marker to be PA, Pa, PB,

and Pb. A haplotype is a “set of alleles at different loci that are present together on the

same chromosome” and tend to be inherited together [11, p. 389]. In this setup, there are

four haplotype combinations, each with relative frequencies PAB, PAb, PaB, and Pab. For

example, PaB can be viewed as the probability that a haplotype randomly taken from the

population at the loci will have alleles a and B. Under linkage equilibrium, an absence of

association between alleles at the two loci, the relative frequencies behave like probabilities

of independent events, e.g. PaB = PaPB. In words, the haplotype relative frequency is

simply the product of the individual allele frequencies at the loci. When the frequencies

are displayed in a 2 × 2 table this coincides with independence as tested with a chi-square

statistic from Section 2.3.1 [9].

When linkage equilibrium does not hold, we have linkage disequilibrium (LD). In

this case, for example, PaB , PaPB, and the amount by which these differ is of interest. The
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LD coefficient does just that and is defined using the uppercase alleles,

δ = PAB − PAPB. (2.1)

The 2 × 2 table of relative frequencies can seen in Table 2.1 When δ = 0, the table

represents the population allele frequencies under linkage equilibrium. One detail that

cannot be overlooked is that PAB must be nonnegative, which leads to defining bounds on

δ. Another feature to recognize is the fact that the LD coefficient, δ, depends highly on the

allele relative frequencies. Hence, there are issues concluding independence from δ = 0,

because extremely small values for the allele relative frequencies can result in values of δ

that are nearly zero even when linkage disequilibrium is present. Due to this undesirable

quality, alternative methods of quantifying LD exist [9].

Table 2.1. Haplotype frequencies under linkage disequilibrium (LD).

B Locus

A Locus B b Row Total

A pAB = pApB + δ pAb = pApb − δ pA
a paB = papB − δ pab = papb + δ pa

Column Total pB pb

With this information we can discuss association mapping. Despite the seemingly

contradictory naming, linkage disequilibrium is at the heart of association mapping, not

linkage analysis. When LD is present between a DSL and themarker, a relationship between

the disease and the marker is anticipated. On the other hand, when LD is absent, we have

independence of the loci, and therefore, we expect no association between the disease and

the marker [9].
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Onewould like the detection of association to imply that the SNPunder consideration

is actually associated with the disease. However, this is only the case when association

is due to both LD and linkage. Note that one cannot use population association of a

marker and DSL to infer linkage, because association may occur even when linkage is not

present. In fact, association could be due to one of four different characteristics: population

stratification, admixture, “confounding by extraneous variables,” or linkage and LD (“lack

of recombination between the two loci”) [9, 11, 13]. Therefore, there are three ways

association could occur in the absence of linkage; in each case, the discovered association

would not actually imply association between the SNP and disease via the DSL. In other

words, association without linkage is misleading.

2.1.3. Modes of Inheritance and Genotype Coding. Association studies aim to

determine the presence of a relationship between a genetic sequence and a disease/trait.

Nonetheless, the relationship itself will not be deterministic. Therefore, specification of

a genetic model, which describes the probabilistic relationship between a genotype and

phenotype, is necessary. Typically, the trait under consideration is dichotomous and can be

coded as

Y =


1 if the individual has the disease (affected)

0 if the individual does not have the disease (unaffected).

The genotypes are intrinsically categorical in nature and are prescribed by the allele com-

bination at the particular locus; we will use G to represent the genotype. Note that with

Mendel’s notation, alleles “A” and “a” denote the dominant and recessive alleles, respec-

tively. However, we are yet to designate a relationship between alleles, and in practice

this is unknown for most loci included in association studies. With this in mind, we will

introduce a different representation; “A” and “a” will refer to the less frequent (minor) allele



13

and more frequent (normal) allele, respectively. Recall that the unknown DSL is assumed

to have “a direct effect on the phenotype through some biological mechanism” [9, p. 20].

In other words, one assumes that the DSL has a causal relationship with the phenotype

under consideration. In order to distinguish between the causal DSL and other loci, we will

denote the alleles of the DSL with “D” and “d.”

The locus of interest has some probabilistic effect on the phenotype Y which is

conditional on the genotype G. The penetrance function describes this effect; for discrete

phenotypes, it is a set of conditional probabilities that model the phenotypic distribution.

For example, suppose the phenotype is not affected by a locus. In this case, the penetrance

probabilities are identical; symbolically, P(Y |G = DD) = P(Y |G = Dd) = P(Y |G = dd).

In general, if the phenotype is dichotomous as above, then for each genotype G, P(Y =

1|G) + P(Y = 0|G) = 1 [9].

The dependency mechanism between the quantity of disease alleles and the distri-

bution of Y is described by the mode of inheritance. There are four frequently employed

modes of inheritance [9]:

1. Codominant: P(Y = 1|G = DD) , P(Y = 1|G = Dd) , P(Y = 1|G = dd); there is

no assumed relationship between these probabilities beyond inequality.

2. Dominant: P(Y = 1|G = DD) = P(Y = 1|G = Dd); the presence of single allele, D,

is enough to affect the disease.

3. Recessive: Two copies of the disease allele, D, are needed to affect disease risk.

4. Additive: The increase in disease risk is the same for each additional disease allele,

D, present; this can be measured on two scales.

(a) Linear scale: P(Y = 1|G = Dd) = 0.5[P(Y = 1|G = DD) + P(Y = 1|G = dd)]

(b) Log (multiplicative) scale:

P(Y = 1|G = Dd) =
√

P(Y = 1|G = DD)P(Y = 1|G = dd)



14

For each of these modes of inheritance, there is a distinct test for association; see

Sections 7.1-7.2 of [9] for more details. Since the true genetic model is typically unknown,

selecting which mode of inheritance to use can be troublesome. Tests for the codominant

and additive model are the most popular among practitioners, because no matter the true

underlying model, they are correlated and perform nearly as well as that for the appropriate

model. However, it is necessary to use the recessive or codominant test if the recessive

model is of interest [9]. From the perspective of statistical power, the additive model is

decent no matter the true genetic mode of inheritance [14, p. 4]. With this as a motivation,

we will utilized the additive model in this work.

Despite puissant advances in the field of genetic association studies over the past

decades, there are still numerous challenges that remain to be addressed. One major issue

is that the entire genetic variation in the human genome cannot solely be described by SNPs

whose allele frequencies are larger than 5%. Rare variants are needed to attain the complete

picture of heritability, but the common SNPs utilized in association studies are inadequate

placeholders for these. The inability to incorporate all but basic covariates in the models for

a particular phenotype is another limitation of the current methods; there are many complex

factors that cannot be included. More work must be done to account for these deficiencies

along with other issues not mentioned here [9].

2.2. DATA

First, we discuss the collection and format of the genetic data for association studies.

Then the procedures for quality control are motivated. Finally, we introduce the ASD

genetic data to used for the analyses in this work.

2.2.1. Genetic Data for Association Studies. The data needed for genetic asso-

ciation studies involves genotyped SNPs. The specific type of association study being
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performed dictates the selection method and quantity of SNPs to be used; this an essential

step to setup the study for success. For instance, if certain genes are known to have functions

that could be related to the biology of the disease being considered, then the markers (SNPs)

would be selected throughout that particular region. Another possible context is a follow

up to a previous study that suggested genetic linkage between certain SNPs and the DSL;

in that case, the previously identified SNPs are utilized. The final common circumstance is

a genome-wide association study (GWAS). This involves genotyping and testing hundreds

of thousands of SNPs across the entire genome for association with the disease of interest.

For GWAS, one must select SNPs such that they are “sufficiently correlated, i.e. in strong

linkage disequilibrium, with SNPs that will not be genotyped in the same region.” The

HapMap project is dedicated to cataloging linkage disequilibrium of the human genome in

order to aid the selection of appropriate SNPs; this has played a prominent role in reducing

the cost and time of genotyping SNPs [9].

Once the particular SNPs have been selected, the genotyping is carried out using

SNP-chips. These chips are capable of genotyping hundreds of thousands of SNPs across

the genome at the same time [9]. First, a DNA sample is extracted from the subject and

divided into many unique strands. Each strand will contain a SNP of interest, and the SNP-

chip array will contain probes, which are possible nucleotides of the SNP (C/G and A/T),

that can match to the sample strands [15]. The extracted DNA segment is considerably

amplified so that the automated genotyping process can identify each SNP from the intensity

of its two alleles. From there, the observed data points are divided into three clusters, one

for each possible allele combination (e.g. AA, Aa, aa). Those that are homozygous should

have an intensity reading near zero for the allele they do not possess [9].

The genotyped SNP data is stored in a PED(igree) file where each row corresponds

to a different individual; see Table 2.2 for an example of this format. The first six columns



16

contain the following ordered identifying information: family/pedigree ID (pID), individual

ID (iID), father ID (fID), mother ID (mID), sex, and affection/phenotype status (aff). Note

that an additional phenotype file is needed when working with disease traits that are not

dichotomous, i.e. when one is interested in something other than affection status. When

the affection status is of interest, the phenotype is coded 2, 1, and 0 for affected, unaffected,

and unknown, respectively. Sex is coded 0, 1, and 2 for unknown, male, and female,

respectively. If an individual has parents included in the study, then the cells in the father

ID and mother ID columns for that row will contain the identifier corresponding to those

individuals within the family ID [14].

Table 2.2. Example PED File Layout. This portion of a PED file shows the data format
for two families and two bi-allelic markers (SNPs) called rs1 and rs2; their two alleles are
denoted with A1 and A2. The genotype coding here uses the nucleotide characters.

pID iID fID mID sex aff rs1_A1 rs1_A2 rs2_A1 rs2_A2

11067 1 2 3 1 2 A A A G
11067 2 0 0 1 1 A A A G
11067 3 0 0 2 1 A C A A
11465 1 2 3 1 2 A C A A
11465 2 0 0 1 1 A C A A
11465 3 0 0 2 1 C C A A

All columns beyond the sixth one correspond to alleles of certain markers. Some

software, such as PLINK, only allow these markers to be bi-allelic [16]. In this case,

two adjacent columns will represent the two alleles of a given marker. The coding of the

genotypes may be the nucleotide character or a numeric value, i.e A, C, G, T or 1, 2, 3,

4. Missing genotypes are coded as 0, and it should not be the case that only one allele is

missing for a given individual [14, 16].
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Table 2.3. Example MAP File Layout. This portion of a MAP file shows the marker name,
the chromosome in which it is located, and its genetic position. These three columns must
also be present MAP file, but others may be included.

Chromsome Marker Position

4 rs10003143 114272159
4 rs10007543 114196280
4 rs10013743 114498871
4 rs10015472 114180410

AMAPfilemay be used in addition to the PEDfile; refer to Table 2.3 for an example.

The purpose of the MAP file is to relate the markers to a specific location on the genome;

these are especially helpful when considering SNPs across the entire genome. Each row

corresponds to a single SNP and the number of columns vary based on the software being

utilized. At a minimum, columns for the marker name, the chromosome on which it is

found, and the genetic/base-pair position (in bp units) are included. It is common, but not

required, for the files to also contain the genetic position (in morgans). One must ensure

that the number and names of markers in the PED file match those contained in the MAP

file [14, 16]

2.2.2. Quality Control of SNP Data. As with any process, every step is prone

to error. For instance, the DNA quality control and handling methods can affect the

quality of the data. Additionally, some errors only pose problems in certain types of

studies. For example, random genotyping error for each genotype occurs when the errors

are independent of the genotype and phenotype of the subject, but the effect of this error

has disparate consequences depending on the study design. The significance level used in

testing for association in population-based studies is not affected by this random error. On
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the other hand, it will elevate the significance level, leading to a greater number of false-

positives, in family-based studies. Therefore, these errors must be handled appropriately.

Furthermore, GWAS’s contain more errors than smaller scale studies due to the sheer

number of SNPs utilized, even if the error rate is small. Including SNPs and/or subjects

with many genotyping errors may introduce systematic bias or reduce statistical power. For

these and other reasons, it is vital to perform quality filtering of the data before analysis [9].

Various genotype quality control filters can be employed for this type of genetic data.

Some are design-specific and others are ubiquitous. The first filter involves removing any

subjects for which 2% or more of the SNP genotypes are missing; this would be indicative

of a systematic genotyping error for that individual. Due to the fact that genotype clusters

are determined by allele intensities, errors become more common when the minor allele,

A, frequency is small. Therefore, the scarce homozygous genotype , AA, is troublesome

to identify. This leads to the second filter, which states that any SNP with a minor allele

frequency smaller than 5% should be excluded from the analysis. The third filter eliminates

SNPs that violate the Hardy-Weinberg equilibrium with p-values less than 10−5 for the

appropriate statistical test; this is only necessary for GWAS [9]. Also, there may be an

issue with a particular SNP if many individuals are missing genotype data for that marker.

If this missing rate is too high, e.g. larger than 3%, the SNP should be excluded from the

analysis [17].

The next filter is specific to family-based designs. It may be the case, that an

impossible Mendelian transmission appears in the data (e.g. parents Aa and AA have a

child with aa). These types of errors are tallied for each SNP and family. A cutoff value

is determined, which can depend on the sample and differ between studies; a conventional

threshold is five errors. The SNPs and families that exceed the selected value are removed

from the analysis [9, p. 180]. However, even if a SNP or individual does not exceed the
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Mendelian error threshold, the offspring genotype is impossible given the parental genotype

information. Therefore, the genotypes where Mendelian errors have occurred should be set

to missing if the individual or SNP is still included in the analysis.

After filtering has been completed, the overall genotyping quality can be evaluated

through various methods. One common method depends on the fact that all but a few SNPs

will have no genetic association. Thus, the distribution of p-values should essentially follow

that expected under the null hypothesis.

2.2.3. Autism Spectrum Disorder (ASD) Data and Quality Control. The data

utilized in this thesis was obtained from the Thompson Center for Autism and Neurode-

velopmental Disorders at the University of Missouri in Columbia, MO. It includes SNP

genomic data for 44 male Caucasian boys, aged 8 to 12 years old, with ASD, both of their

unaffected parents, and any siblings, which happened to all be unaffected. There are a total

of 172 individuals for which both alleles of bi-allelic markers were genotyped. The 44

families being considered were grouped into three different clinical meaningful subgroups

based on their facial features; they are the subgroup of the 52 considered by Obafemi et al.

that had clean genetic data [8]. From here on out, these subgroups will be referred to as

clusters. See Table 2.4 for how the 172 individuals are divided among the three clusters.

Table 2.4. ClusterMembership Count Summary. For each cluster, the counts for the number
of families whose probands belong to the cluster, the number of siblings without ASD in
those families, and the total number of offspring among all such families are displayed. Note
that the number of families is equal to the number of probands because of the ascertainment
condition.

Cluster Families Unaffected Siblings Total Offspring

1 10 9 19
2 13 14 27
3 21 17 38

Overall 44 40 84
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Based on past association studies, the Simons FoundationAutismResearch Initiative

(SFARI), a research program focused on all aspects of ASD, has identified various genes

that seem to be associated with ASD. The two classifications with the most evidence of

association are referred to as high confidence (category 1) and strong candidate (category

2). SFARI “considered a rigorous statistical comparison between cases and controls, yield-

ing genome-wide statistical significance, with independent replication to be the strongest

possible evidence for a gene. These criteria were relaxed slightly for category 2” [18].

This analysis will consider markers from genes with these classifications, so the focus is

much narrower than a genome-wide scale. We aim to establish both association and linkage

between markers, if any, and ASD. The markers cover 16 high-confidence genes and 35

strong-candidate genes. The unfiltered data includes 3335 markers where 544 belong to

high-confidence genes and 2791 belong to strong-candidate genes as determined by the

SFARI as of October 21, 2016 [18].

Quality control is implemented using the software PLINK, which is a “free, open-

source whole genome association analysis toolset, designed to perform a range of basic,

large-scale analyses in a computationally efficient manner” [16]. It has options available

to specify inclusion thresholds for the data. The thresholds and utilized values are shown

in Table 2.5; the command to specify the corresponding PLINK option for each threshold

is mentioned. Motivation for each filter was provided in Section 2.2.2. We included

the Hardy-Weinberg equilibrium threshold in this analysis because of an assumption in a

screening method discussed in Chapter 5.

The following order for considered the filters, which follows that of PLINK, was

utilized: --mind N , --hwe N , --geno N ,--maf N , and --me N M . Note that PLINK

formulates Mendelian-error threshold in terms of percentages (--me N M) where it ex-

cludes families with more than N% of the SNPs possessing Mendelian errors and excludes
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SNPs with more than M% of trios possessing Mendelian errors [16]. Therefore, those

percentages were specified after performing the anterior filters so that the count did not

exceed five for a given family or marker. This was also confirmed by outputting a summary

of the Mendelian errors.

Table 2.5. Summary of PLINK Commands for Quality Control.

Threshold PLINK Command Utilized Value

Missingness per individual --mind N 0.02
Missingness per marker --geno N 0.03
Minor allele frequency --maf N 0.05
Hardy-Weinberg equilibrium --hwe N 0.00001
Mendel error rate --me N M 0.001767 0.113637

The filtering results for the autism data set under consideration are shown in Ta-

ble 2.6. No marker or family exceeded five Mendelian errors, but the genotypes involved in

the erroneous transmissions, both for the parents and offspring, were set to missing. There-

fore, we reconsidered the missingness rates in the context of the original number of SNPs

and individuals. However, still no individuals needed to be removed. On the other hand,

19 markers were eliminated. Of those, 17 exceeded the threshold before setting Mendelian

errors to missing, while the other two markers did so afterwards. As for low MAF, 491

markers were excluded before handling Mendelian errors, and no additional ones violated

the filtering criterion after the fact. Note that three of the eliminated SNPs violated the

thresholds for both missingness and minor allele frequency. Hence, we can use all 172

individuals to test 2828 markers.
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Table 2.6. Summary of Quality Control Results on the 3335 Original Markers for 172
Individuals.

Threshold SNPs Removed Individuals Removed

Missingness per individual N/A 0
Missingness per marker 19 N/A
Minor allele frequency 491 N/A
Hardy-Weinberg equilibrium 0 N/A
Mendel error rate 0 0

2.3. STATISTICAL BACKGROUND

Now, we introduce some statistical concepts that provide the foundation for family-

based association studies. First, contingency tables and the chi-square test of independence

are explained. Then, we consider a specific contingency table setting that necessitates

McNemar’s test. Lastly, we discuss the multiple testing problem and its relevance to genetic

studies.

2.3.1. Chi-Square Test of Independence. Categorical variables appear frequently

in biostatistics, and in many cases, these can be viewed as criteria for classification. Other

names for a categorical variable are nominal and polychotomous. When only two categories

are possible, it is known as a binary or dichotomous variable. With a simple random sample,

one can evaluate the dependence of the criteria on each other, especially when there are only

two variables. Thus, it is possible to see if proportions of one variable differ for various

levels of the remaining variable [19]. Put more succinctly, one can test if the classification

criteria are independent [20]. In a statistical framework, the null hypothesis would be

that the two nominal variables are independent. We will discuss a common test for this

hypothesis: the Pearson’s chi-square test of independence.
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In order to do so, we first introduce contingency tables, which are common tabular

displays for classification of this type. These tables have r rows and c columns where r

and c are the number of levels of the first and second polychotomous variables; note that

the order here is arbitrary. Marginal totals and a grand total are also included. A general

contingency table is shown in Table 2.7.

Table 2.7. A General Contingency Table.

Classification Classification Criterion 1

Criterion 2 1 2 3 · · · c Total

1 n11 n12 n13 · · · n1c n1·
2 n21 n22 n23 · · · n2c n2·
3 n31 n32 n33 · · · n3c n3·
...

...
...

...
. . .

...
...

r nr1 nr2 nr3 · · · nrc nr ·

Total n·1 n·2 n·3 · · · n·c n

Events are independent if the probability of their intersection is the product of their

individual probabilities. Therefore, assuming independence of classification criteria, one

can find the probability that an observation will be classified into a particular cell of the

contingency table. From that, the expected number, i.e. frequency, of observations to be

classified into a cell can be computed for a given sample size (n). For j = 1, . . . , r and

k = 1, . . . c, define event Rj and Ck to be the events that an observation is counted in j th

level of classification for the row criterion and that an observation is counted in k th level of

classification for the column criterion, respectively. Then, under independence, we have

�P(Rj ∩ Ck) = �P(Rj)�P(Ck) =
(n j .

n

) (n.k
n

)
,



24

where the hat ( ˆ ) signifies that it is an estimator for the true value. With a sample size of

n, we expect there to be

n
(n j .

n

) (n.k
n

)
=

n j .n.k
n

(2.2)

observations classified into cell j, k. In words, the expected frequency of cell is the product

of the corresponding row and column total frequencies divided by the total sample size.

Now, we want to compare the observed and expected frequencies for each of the

r · c cells. If the values are quite similar for all cells, then the assumption of criteria

independence is plausible. On the other hand, if the difference between the observed and

expected frequencies is sufficiently large we would want to reject the null hypothesis and

conclude that the variables are not independent. The method to measure this discrepancy

involves scaling the square difference of the observed and expected frequencies by the

expected frequency and then taking the sum of those values for all cells. In order to use the

notation most commonly seen for the test statistic, we will consider cell 1,1 to be the first

cell and cell r, c as the mth cell; ordering will go across an entire row and then move to the

next row.

Thus the statistic of interest, called Pearson’s chi-square statistic, is given by

χ2
P =

m∑
i=1

(Oi − Ei)2
Ei

(2.3)

where Oi is the observed frequency of the ith cell and Ei is the expected frequency in the

ith cell under the null hypothesis; Ei is equal to the expression in (2.2). Note that when

the classification criteria are in fact independent, χ2
P is approximately distributed as a χ2

random variable with (r − 1)(c − 1) degrees of freedom [20]. For a proof of this fact, refer

to Panchenko [21]. As intended, we reject the null hypothesis when the total of all scaled
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deviations of the expected and observed frequencies is sufficiently large, i.e. when the

p-value of χ2
P is below the chosen significance level.

Here are some rules of thumb on when the use of the approximate distribution for

χ2
P is inappropriate [20, 22]:

• n < 20

• n = 20, . . . , 40 and Ei < 5 for at least one i

• Ei < 1 for at least one i

• For more than 20% of the cells, Ei < 5

Fisher’s Exact Test is a better option if any of the above are true, because the test statistic is

highly sensitive to small expected frequencies. Others have even more strict criterion; e.g.

McDonald recommends to use the exact test if n < 1000 [19].

A commonly seen case for the r × c contingency table is where r = c = 2; both

classification criteria have only two levels. Other ways to analyze the information contained

in this type of table will be considered in Section 2.3.2. For a general table of this form

with simplified notation, see Table 2.8. A shortcut to calculating χ2
P in this case is given by

the following formula [20]

χ2
P =

n(ad − bc)2
(a + c)(b + d)(a + d)(c + d) . (2.4)

This shortcut is utilized by many, including Spielman et al., whose test we consider in

Section 3.2 [13]. Note that χ2
P in (2.4) has only one degree of freedom.

2.3.2. McNemar’s Test. In certain contexts for the 2 × 2 contingency table, Mc-

Nemar’s test should be employed in place of the chi-square test of independence. These

circumstances involve matched pairs of observations/subjects. The pairs are created by

matching according to characteristics that are associated with the response being stud-
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Table 2.8. The 2 × 2 Contingency Table.

Classification

Classification Criterion 1

Criterion 2 1 2 Total

1 a b a + b
2 c d c + d

Total a + c b + d n

ied [23]. For example, matched pairs occur in case-control studies, comparing new and old

treatments, opinions of two experts, and before-and-after data [23, 24, 25]. The same table

that is shown in Table 2.8 can be used to organize the data when a dichotomous measure-

ment/outcome is considered. However, the frequencies represent numbers of pairs; hence,

n is the total number of pairs considered [23]. Note that in the case of before-and-after

data, a “pair” refers to the pair of measurements on a single individual at two different time

points [26]. It each of these scenarios, we do not have independence of classification crite-

ria. For example, repeated classification on the same observation/individual would not be

independent [25]. We will reason towards McNemar’s test in the context of a case-control

study.

Consider the row criterion to be the presence (present or not) of a factor among the

cases and the column criterion to be the presence of the same factor among the controls.

The factor being present will correspond to the first level of classification in Table 2.8. Then

the estimated proportion of the controls where the factor is present is

p̂1 =
a + c

n
,
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and the estimated proportion of the cases with the presence of the factor is

p̂2 =
a + b

n
.

We are interested in the difference of these proportions, i.e

p̂2 − p̂1 =
b − c

n
.

The null hypothesis of the true proportion having the factor among the cases being the same

as that among the controls can be stated in a variety of equivalent ways [23]. One that is

commonly used is

H0 : p1 − p2 = 0.

It can be shown that the standard error of the estimated proportion difference is
√

b+c
n under

the null hypothesis that the true proportions are equal. Taking the ratio of the estimated

difference and its standard error and then squaring it yields the test statistic:

χ2
M =
(b − c)2

b + c
(2.5)

which approximately follows a chi-square distribution with one degree of freedom under the

null for sufficiently large samples [23]. Note that only pairs with different classifications,

called the discordant pairs, are used in the calculation of this statistic.

This test can be derived using other perspectives as well. Keeping in mind that only

b and c contribute to the test statistic, let n∗ = b+ c, which is the total number of discordant

pairs. Under the null hypothesis, b, and thus c as well, follows a binomial distribution with
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p∗ = 1
2 . So we compare bwith BIN(n∗, p∗). Recall that the mean and variance of a binomial

random variable are n∗p∗ = b+c
2 and n∗p∗(1 − p∗) = b+c

4 . For sufficiently large n∗, greater

than 20 is widely agreed upon, b
approx.∼ N( b+c

2 ,
b+c
4 ). Hence,

b − (b + c)/2√
(b + c)/4

approx.∼ N(0, 1) ⇒
(

b − (b + c)/2√
(b + c)/4

)2

=
(b − c)2

b + c
approx.∼ χ2

1 .

The right-most expression is exactly the test statistic above, χ2
M . If n∗ ≤ 20, one needs to

use the binomial test (or sign test) [22]. Others say that the chi-square approximate test

statistic can be used as long as n∗ > 10 provided that the significance level is not much less

than 0.05 [9].

We remark that other more standard tests for difference in proportions, e.g. the

z-test, cannot be used in this situation, because matched pairs are employed which results

in the populations being related/connected.

2.3.3. The Multiple-Testing Problem. In statistical hypothesis testing, an accept-

able maximum probability of rejecting a true null hypothesis is specified; i.e. the maximum

probability of Type I error is fixed. This selected probability is called the significance level

and is typically denoted with α. Then, one wishes to choose a test statistic that maximizes

the power (the probability of rejecting a false null hypothesis), or equivalently, that min-

imizes the probability of Type II error (failing to reject a false null hypothesis). When a

Type I or Type II error is committed, the incorrect decision is referred to as a false positive

or false negative, respectively. Testing more than a single hypothesis at a given time is

referred to as multiple testing. In this setting, the probability that more than one Type I

error occurs increases with the number of hypotheses, and this increase is often sharp [27,

p. 562]. Therefore, the maximum probability of Type I error will not be maintained across

the numerous tests when each is conducted at the stated significance level. One wants to
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control the false positives while still preserving decent power, so the significance level must

be corrected. Themultiple-testing problem occurs in genetic association studies that involve

statistical hypothesis tests at numerous genotyped SNPs and is most extreme in the context

of candidate gene studies and genome-wide association studies (GWAS). One approach to

account for this issue involves adjusting the significance level, or equivalently the p-value,

of each hypothesis test.

Consider a general multiple-testing scenario where m hypotheses are being tested.

In the context of family-based association studies, we can think of this as testing for linkage

and association between a marker and the DSL for m different markers; see Section 3.1

for more on the hypotheses in this setting. Therefore, the m hypotheses and corresponding

decisions can be broken down using the following terms

m0 = number of true null hypotheses

m − m0 = number of false null hypotheses

R = number of rejected null hypotheses

m − R = number of null hypotheses that we failed to reject

V = number of rejected true null hypotheses (Type I errors)

S = number of rejected false null hypotheses

T = number of false null hypothesis that we failed to reject (Type II errors)

U = number of true null hypotheses that we failed to reject.

These classifications are summarized in Table 2.9. Note that m0 is considered to be fixed

but unknown while R, and therefore V , S, T , and U, are regarded as random.

There are a variety of ways to measure Type I errors in this setting; we will discuss

two of the most fundamental approaches. The family-wise error rate (FWER) is defined
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Table 2.9. Outcomes of Testing m Hypotheses.

Fail to reject H0 Reject H0 Total

True H0 U V m0
False H0 T S m − m0

Total m − R R m

to be the probability that at least one Type I error occurs, i.e. FWER = P(V ≥ 1) [28,

p. 349]. Essentially, the FWER considers the error rate given that all the null hypotheses

are true, which is clearly not always the case in practice [9, p. 163]. Thus, a measure that

evaluates the error rate regardless of the number of true null hypotheses is desirable. The

false discovery rate (FDR) is defined to be the expected proportion of rejections that are

incorrect, i.e. FDR = E[V/R] [27, p. 567]. Note that when R = 0, V/R is defined to be

0. The FDR can never be larger than the FWER (FDR ≤ FWER). [28, p. 349-350]. An

alternative motivation for the FDR is a common misconception. The overall significance

level, α, is not the proportion of rejected hypotheses that are actually true; for example, if all

m null hypotheses are true then the all rejected hypotheses are errors. The FDR addresses

the expected proportion [27, p. 567]. In other words, FWER is concerned with the number

of Type I errors, whereas FDR is concerned with the balance between Type I and Type II

errors [28, p. 382].

In general, multiple-testing procedures involving adjusted significance levels can be

categorized in three ways: one-step, step-up, and step-down. The overall significance level,

α, is the upper bound for the Type I error rate under consideration. One-step procedures

compare all p-values to a predetermined cutoff that is typically a function of only α and m.

In step-up procedures, p-values are first ranked from largest to smallest and then, starting
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with the highest, compared to a cutoff dependent upon its rank. If it is larger than the cutoff,

the subsequent ranked p-value is considered. This continues until a significant p-value is

reached and the null hypotheses corresponding to that p-value and all those with smaller

p-values are rejected. Note that “step-up” is referring to the movement toward p-values that

are more likely to be significant; this is upward when one thinks of the smallest p-values as

being higher. Conversely, step-down procedures move from the smallest to largest ranked

p-values and stop once a p-value larger than the cutoff is reached; the corresponding null

hypothesis and all those for the larger p-values are not rejected [28, p. 353]. Thus, both

step-up and step-down procedures utilize cutoffs dependent on the data while one-step

procedure cutoffs are independent of the data.

The unweighted Bonferroni method (also called correction) is a one-step procedure

where the cutoff is α/m [28, p. 360]. It can be generalized so that the ith cutoff is αi; the

sum of all αi’s must equal α. This method is based on the first-order Bonferroni inequality

which states that the probability of the union of m events is less than or equal to the sum

of their individual probabilities. The Bonferroni correction ensures the FWER is no larger

than α [27, p. 569]. Additionally, there is no assumption regarding the independence of

the hypothesis tests [9, p. 162]. On the other hand, provided the tests are independent, the

Benjamini-Hochberg approach is a step-up procedure that controls the FDR at α with a

cutoff for the ith ranked p-value being αi =
i
mα [28, p. 362]. Controlling the FDR is more

powerful than the Bonferroni correction, especially for large m [27, p. 572].

Even though FDR approaches are more powerful, the Bonferroni correction for

FWER is implemented the most frequently in association studies because of theses studies’

nature and history. In these investigations, false positives have been commonplace, and

hence one wishes to avoid them. Thus, typically investigators forgo maximizing statistical

power via FDR control that aims to reduce the number of false negatives. Other approaches
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to manage the multiple-testing problem, which will not be discussed in detail here, in-

clude permutation/re-sampling techniques, using haplotypes, and using simultaneous test

strategies; the last two are only implemented for a small number of SNPs in a defined

region [9].
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3. HYPOTHESIS TESING IN FAMILY-BASED DESIGNS

In this chapter, we examine the common statistical hypothesis testing framework for

family-based designs. We present the corresponding hypotheses and two statistical tests,

the transmission disequilibrium test (TDT) and the family-based association test (FBAT).

We conclude by discussing the conditional power of these tests.

3.1. HYPOTHESES FOR FAMILY-BASED DESIGNS

As mentioned in Section 2.1.2, association mapping is able to utilize data from

unrelated individuals. When the null hypothesis is rejected, evidence suggests that the

marker andDSL are associated. However, when testing for association using families, which

is done in family-based designs, the complexity of the hypotheses changes by incorporating

linkage. First, we will discuss the motivation for including linkage. Then, the specific

hypotheses that result will be examined.

Recall that association and linkage cannot be inferred from each other. In family-

based designs, we are concerned with association and linkage between a marker and a DSL

being passed from the parental generation to the offspring. We will illustrate the necessity

for both linkage and association by considering two cases. First, suppose association is

present between a DSL and the marker in the parental population but that linkage is absent.

Since there is no linkage, θ = 0.5; i.e. recombination will occur between the DSL and

marker with a probability of 0.5. Hence, the association will not be consistently passed

from the parental generation to the offspring. Second, suppose linkage is present between

a DSL and the marker in the parental population but that association is absent (no LD).

“Then any observed pattern of association between the marker and the DSL will differ in
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every family and their offspring” [9]. In other words, “the marker and the DSL will tend

to be transmitted together, but different marker alleles will be transmitted with the DSL in

different families” [11]. Thus, no systematic association will be present collectively among

the offspring [9].

These two cases indicate that family-based designs “have no power to detect associ-

ation unless linkage is present” [29]. Therefore, there is only a single alternative hypothesis:

HA : presence of both association and linkage between a DSL and the marker.

The null hypotheses involve the other combinations of the presence of association

and linkage. The possible null hypotheses, in words, are

1. H0 : presence of association without linkage between a DSL and the marker

2. H0 : presence of linkage without association between a DSL and the marker

3. H0 : absence of both linkage and association between a DSL and the marker

The types of studies that correspond to the various null hypotheses are, respectively, [9]

1. follow up of case-control association studies that showed association

2. “follow up of linkage signals”

3. genome-wide association studies or “candidate gene studies without prior linkage”

For all the above null hypotheses, the allele transmission to the offspring from the parents

is governed by Mendel’s laws. Similarly, it does not matter which null is used in trio

designs, which consider only the proband and his/her parents. In that case, the test statistic,

which is discussed in Section 3.2.1, has the same distribution under all the null hypotheses.

However, for family-based designs that involve siblings, the presence of linkage changes

the distribution of the test statistic. Hence, when incorporating siblings, the first and
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third null hypotheses will result in the same distribution, but it will differ for the second

hypothesis [29].

Therefore, one must be explicit about which null hypothesis is assumed. Even

though we are using markers from high confidence and strong candidate genes that already

exhibited association, the individual SNPs that are being tested have not necessarily been

shown to be associated with the DSL. Therefore, we assume the third null from above: no

association nor linkage.

One issue with GWAS in population-based designs is that it is relatively easy to

establish significant associations between many markers and a DSL. However, the presence

of association between a marker and the disease via the DSL without linkage is actually

misleading. The association could be due to other reasons previously discussed in Sec-

tion 2.1.2. The advantage of family-based designs is that these misleading conclusions are

avoided because rejection of the null hypothesis requires both association and linkage [11].

3.2. THE TRANSMISSION DISEQUILIBRIUM TEST (TDT)

In this section, we introduce the pioneering statistical test, the transmission dise-

quilibrium test (TDT), for association and linkage in family-based designs. The theory of

the test statistic is presented first. Then, we illustrate the differences resulting from two

distributions that can be used to compute the p-values and interpret the hypothesis testing

results utilizing the ASD genetic data.

3.2.1. Theory of the TDT. When trios involving the proband and both parents

are utilized in a family-based design for genetic linkage and association studies, allele

transmission can be regarded as a case-control study where the untransmitted alleles from

parents are deemed the controls. This can be displayed in a 2×2 contingency table, Table 3.1,

and McNemar’s test in this framework is referred to as the transmission disequilibrium test
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(TDT) [25, 30]. The test statistic is then

χ2
T DT =

(b − c)2
b + c

, (3.1)

which approximately follows a chi-square distribution with one degree of freedom under

the null hypothesis for sufficiently large sample sizes [23]. Note that half the classifications,

those corresponding to a and d, are not utilized.

A single count in a cell of the contingency table represents the pair of alleles from

a single parent. Therefore, the classification criteria are not independent, because a parent

must transmit exactly one allele and not transmit exactly one allele. In other words, if one

is transmitted, the other must be untransmitted. This is why Pearson’s chi-square test of

independence is not appropriate here.

There are numerous assumptions behind the use of the TDT. The disease under

consideration is assumed to be recessive, but this does not imply the recessive genetic model

is assumed [13]. In reality, since each parental allele transmission is considered separately,

an additive genetic model is assumed; see Section 2.1.3. Moreover, only bi-allelic markers

are considered, because the standard McNemar’s test involves 2×2 tables [9]. Finally, there

is an implicit assumption that segregation distortion is absent at the allele locus [13].

Given that McNemar’s test only depends on information from pairs with different

classification, i.e. b and c in Table 2.8, one would want most, if not all, of the observations

to fall in these categorizations. By example, we will demonstrate that no information

is lost if only heterozygous parents are considered. In order to maintain the notation

in Table 2.8, we will denote the minor and normal alleles as “F” and “f,” respectively.

Moreover, we restate the contingency table in terms of cases and controls for the transmitted

and untransmitted alleles, respectively, in Table 3.1. We consider four families, three
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with a single offspring and one with three offspring. The genotypes of the parents and

each child are displayed in Table 3.2; note that the coded genotypes assume an additive

mode of inheritance. Table 3.3 presents the allele transmission from each parent for all

offspring considered; it also classifies the transmission-untransmission pair to a quadrant

of the contingency table. One can clearly see that heterozygous parents only contribute to

b or c. It is impossible for him/her to contribute to a or d. Since each count represents a

pair of alleles and each pair corresponds to a single parent, n∗ = b + c is the number allele

transmissions from heterozygous parents [30]. In the case where only one affected offspring

is under consideration, n∗ will also be the number heterozygous parents. We can also think

of n∗ as the number of heterozygous parent-child pairs. Note that this is different than n in

the contingency table, which denotes the total number of allele transmission considered. In

our example where all parental and offspring genotypes were known, n = 12 is also double

the number of offspring included in the study; see Table 3.4.

Table 3.1. The General Contingency Table for the TDT. The minor and normal alleles are
“F” and “f,” respectively.

Controls

Cases (Untransmitted Alleles)

(Transmitted Alleles) F f Total

F a b a + b
f c d c + d

Total a + c b + d n

The test statistic was created to test for linkage when association is present, which

corresponds to the first null hypothesis in Section 3.1. Nonetheless, the usage of the TDT

has changed since its inception. Currently, it is often utilized to test association. Recall

that the TDT test statistic is for a family-based design, so in reality it is testing for both
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Table 3.2. Example Set of Families for the TDT. The minor and normal alleles are “F” and
“f,” respectively, and the additive mode of inheritance is used for coding the genotypes.

Parental Offspring Offspring
Family Genotypes Genotype Coded Genotype

1 FF, FF FF X11 = 2

2 FF, Ff Ff X21 = 1

3 ff, Ff Ff X31 = 1

4 Ff, Ff FF X41 = 2
Ff, Ff Ff X42 = 1
Ff, Ff ff X43 = 0

Table 3.3. Classifying Parental Contributions for the Contingency Table for the TDT. The
minor and normal alleles are “F” and “f,” respectively, and the additivemode of inheritance is
used for coding the genotypes. Additionally, the parents are classified as being homozygous
(Hom) or heterozygous (Het).

Coded Parent Hom or Transmitted Untransmitted Contributes
Genotype Genotype Het Allele Allele to Quadrant

X11 = 2 FF Hom F F a
FF Hom F F a

X21 = 1 FF Hom F F a
Ff Het f F c

X31 = 1 ff Hom f f d
Ff Het F f b

X41 = 2 Ff Het F f b
Ff Het F f b

X42 = 1 Ff Het F f b
Ff Het f F c

X43 = 0 Ff Het f F c
Ff Het f F c
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Table 3.4. The Contingency Table for the TDT Example. Classifications of all allele
transmissions that occurred for the example families are shown. The minor and normal
alleles are “F” and “f,” respectively.

Controls

Cases F f Total

F 3 4 7
f 4 1 5

Total 7 5 12

linkage and association. Moreover, it is currently used for rare diseases, because in this

case, using only affected offspring information is usually sufficient; refer to Section 3.3.3

for more details [9]. Most importantly, the TDT has motivated the development of other

family-based tests.

Because χ2
T DT approximately follows a chi-square distribution with one degree of

freedom for large n∗, it should not be used when the number of heterozygous parents is too

small. There are various recommendations on what constitutes too small. One of the more

conservative criteria states that if n∗ ≤ 20, one needs to use an exact test, which in this case

is the binomial test [22].

The exact test statistic for the TDT is

BT DT = b, (3.2)

which, under the null hypothesis (H0 : p = 0.5), follows a binomial distribution with a

probability of success of p = 0.5 and the total number of trials is n∗ = b + c [22]. Note
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that the choice of b instead of c as the test statistic was arbitrary, because the distribution is

symmetric under the two-sided null. Moreover, this is a specific case of the binomial test.

3.2.2. Comparing the Use of the Exact and Approximate Distributions of the

TDT. For our data set, we are dealing with small sample sizes, especially when considering

a single cluster at a time. Recall from Section 2.2.3, there are 10, 13, and 21 families in

Cluster 1, 2, and 3, respectively. Therefore, we are concerned with the appropriateness of

using the approximate distribution of the test statistic for the TDT.With this as a motivation,

we wish to better understand the effect of small sample sizes and the distribution utilized

on the results of the hypothesis tests.

Two analyses are carried out to examine differences in the test statistics χ2
T DT and

BT DT for large and small n∗. In reality, only a single family-based test for genetic association

and linkage is performed; the difference is just in the calculation of the test statistic and

its associated p-value. We will utilize the ASD genetic data introduced in Section 2.2.3.

To illustrate differences between the exact and approximate distributions of the TDT test

statistic, we are not yet attempting to answer the research question concerning the facial

features of the boys with ASD. After quality control, we are able to conduct tests for 2828

of the 3335 markers; no individuals were removed.

The TDT test using the approximate chi-square test statistic was carried out in

PLINK; we will refer to the p-values of this test as the approximate p-values. The output

of this procedure also reports the number of transmitted and untransmitted alleles used to

calculate the test statistic, i.e. b and c. We utilized this information to conduct the exact

binomial test using R, and its p-values will be reported as the exact p-values [31].

In this analysis, the families are not divided based on the facial-feature cluster to

which the affected offspring belongs but instead are grouped together; the plots denote this

with “Cluster All.” This corresponds to testing for linkage and association with an autism
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DSL in the entire dataset. First, we will consider the appropriateness of the approximate test

for this data. Recall that there are 44 families and the TDT only utilizes trio information.

Thus, we use 132 individuals of which 88 are parents. The criterion for determining the

validity of the approximate test depends on the number of heterozygous parents for the

marker (SNP) under consideration; the exact test is recommended when this is 20 or less,

i.e. n∗ ≤ 20. We found that 622 of the 2828 markers, which is approximately 22%, require

the exact binomial test. Hence, the approximate p-values for those markers should not be

interpreted. Also, no single SNP had more than 58 heterozygous parents out of maximum

of 88. See Figure 3.1 for a breakdown of the number of heterozygous parents.

Figure 3.1. Histogram of the Number of Heterozygous Parents. The exact binomial test
is required when the number of heterozygous parents is 20 or less (n∗ ≤ 20) for a given
marker.

The exact binomial p-values were calculated for all markers even if the number

of heterozygous parents utilized exceeded 20. These exact p-values were never less than

the approximate ones, so the TDT using the approximate chi-square test statistic never

overestimated the p-value for a marker being linked and associated with an autism DSL;
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refer to Figure 3.2. In other words, any SNP that is declared to be linked and associated

with a DSL using the exact distribution must also be significant when using the approximate

distribution, but the converse is not necessarily true. In fact, the approximate and exact

p-values were only equal when they both were one, which occurs when the number of

transmitted and untransmitted alleles are identical, i.e. b = c. There were some markers

whose approximate p-value was less than one but exact p-value equaled one. This was

due to the number of transmitted and untransmitted alleles differing by only one. In this

instance, the continuous chi-square statistic resulted in a relatively high p-value, but the

discrete binomial test statistic was able to correctly assign a p-value of one by taking the

discrete nature of the numbers into account. This can be seen in Figure 3.2 as the line of

dots occurring where the exact p-value is one.

Figure 3.2. Exact vs. Approximate p-Values. The exact p-values are never less than
the approximate p-values. The difference between the two is generally larger when the
approximate p-value is larger. The colors indicate that there is greater agreement between
the p-values when the approximation is typically deemed acceptable (n∗ > 20).

In the same vein, the difference between the exact and approximate p-values for

markers with larger approximate p-values tended to be higher even when n∗ > 20, because
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the closer the values are for the number of transmitted and untransmitted alleles, the greater

the impact of a single discrete transmission. Hence, the employment of the discrete binomial

test statisticwill change the p-value to a greater extent in this case. However, within this trend

the approximate p-values were closer to the exact p-values for n∗ > 20. This is represented

in Figure 3.2 by the fact that the points corresponding to markers where the approximation

is considered appropriate fall closer to the 45 degree line. Figure 3.3 illustrates this point

in another way; the difference in the p-values is more exaggerated when the number of

heterozygous parents is smaller, especially for n∗ ≤ 20, and when the approximate p-value

is larger.

Figure 3.3. Change in p-Value vs. the Number of Heterozygous Parents. The difference
in the p-values is more exaggerated when the number of heterozygous parents is smaller,
especially for n∗ ≤ 20, and when the approximate p-value is larger.

As one would expect, the distribution of p-values differs based on which test statistic

is used. Figure 3.4 compares these distributions. The histogram of the approximate p-values

appears to be somewhat uniform with a slight dip near one. At a significance level of 0.05,

144 of themarkers would be declared significant without any adjustment formultiple testing.
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Contrastingly, we see a large peak at one for the histogram of the exact p-values. This is

expected since any p-value that is one using the chi-square test statistic will remain one, and

for any marker where the number of transmitted and untransmitted alleles differs by only

one, the exact p-value will be one as well. Also, matching the fact that the exact p-values

are never less than the approximate ones, fewer markers are declared significant; 105 SNPs

are significant at the 0.05 significance level without any adjustment for multiple testing.

At the end of Section 2.2.2, it was mentioned that a method of assessing the overall

genotyping quality utilizes the distribution of the p-values. For the chi-square version of

the TDT, the distribution under the null is uniform; the corresponding histogram, which

is Figure 3.4a, suggests that this is approximately the case. On the other hand, uniformity

of the p-values is not expected under the null for the discrete test statistic using the exact

binomial distribution [32]. Therefore, the peak near one is not a cause for concern. In fact,

using simulation, it can be shown that the distribution under the null for 2828 binomial

tests has the same general shape as that shown in Figure 3.4b. As should be the case, the

distribution of p-values for both versions of the test demonstrate the same assessment of the

overall genotyping quality: there are no issues, because the observed distribution matches

that expected under the null.

In summary, there can be substantial differences between the p-values for the TDT

computed using the approximate chi-square distribution and those using the exact binomial

distribution. These differences are more exaggerated for smaller sample sizes and larger

p-values. There is little disparity between the p-values when there is much evidence against

the null hypothesis, i.e. when the p-values are small. We mainly care about the markers for

which that is the case, so utilizing the approximate distribution will give similar declarations

of significance. However, it is possible for a marker’s approximate p-value to fall below

the significance level while its exact p-value does not, which is undesirable. Hence, to
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(a) Histogram of approximate p-values for the TDT. (b) Histogram of exact p-values for the TDT.

Figure 3.4. Histograms of Approximate and Exact p-Values for the TDT. Figure 3.4a is for
the p-values computed using the approximate distribution, while those in Figure 3.4b were
computed using the exact distribution. We see a large peak at one for the histogram of the
exact p-values. This is due to the facts that any p-value that is one using the chi-square
test statistic will remain one, and for any marker where the number of transmitted and
untransmitted alleles differs by only one, the exact p-values will be one as well.
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be prudent, one should work with the exact binomial distribution in the computation of

p-values for the TDT.

3.2.3. Interpreting the Results of the TDT for the ASD Data. Next, we will

properly interpret the results of these tests for illustrative purposes. Recall from Sec-

tion 2.3.3, that in order to address the multiple-testing problem the per-test significance

level, or equivalently the p-values, must be adjusted. For the autism data, using the Bon-

ferroni correction to control the FWER at 0.05 results in a corrected significance level of

0.05/2828 = 1.768 × 10−5. Therefore, zero markers were found to be significantly linked

and associated with an autism DSL when using both the approximate and exact TDT. Refer

to Table 3.5 for the SNPs closest to attaining family-wise significance for the exact TDT.

We do not consider controlling the FDR, because the hypothesis tests considered are pre-

sumably not independent. Moreover, association studies have historically tried to minimize

the number of Type I errors by utilizing the Bonferroni correction. Additionally, because

approximate p-values are unnecessary when exact p-values are available, only the exact

ones are reported here.

3.3. THE FAMILY-BASED ASSOCIATION TEST (FBAT)

Here, we discuss the generalization of the TDT, the family-based association test

(FBAT). We introduce its theory, demonstrate its relationship to the TDT, and consider its

extensions to some additional settings.

3.3.1. FBAT Theory. Family-based designs include a wide variety of setups of

which the TDT’s setting is just one. The TDT dealt with known parental genotypes and

only affected offspring under the assumptions of no linkage, bi-allelic markers, and an

underlying additive model. Therefore, there is a need for a more general test statistic that

may be extended and modified to apply to diverse scenarios.
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Table 3.5. SNPs Closest to Significance via Exact TDT without Considering Facial-Feature
Clusters. An arbitrary level of 0.005 was used to filter the markers whose p-values are
smallest when using the exact TDT. For each, information on the SNP’s location, minor
allele, minor allele frequency (MAF), and the number of heterozygous parents (NHZP,
i.e. n∗) is displayed. None fall below the family-wise significance level of 1.768 × 10−5.
∗High-confidence ASD gene

Chr. Gene Marker Allele MAF NHZP p-Value

3 CACNA2D3 rs10510773 A 0.3636 34 0.000195
21 DSCAM rs6517607 G 0.1932 24 0.001544
3 CACNA2D3 rs3906509 A 0.3466 29 0.002316
3 CACNA2D3 rs13068008 A 0.3506 29 0.002316
3 CNTN4 rs925820 A 0.392 45 0.002459
12 GRIN2B∗ rs12829455 G 0.4886 42 0.002887
2 NRXN1 rs11125326 C 0.2356 34 0.002935
5 CTNND2 rs10474912 G 0.2898 31 0.003327
21 DSCAM rs8132311 G 0.2784 31 0.003327
3 CNTN4 rs7637377 A 0.08523 13 0.003418
2 NRXN1 rs10490175 A 0.2045 36 0.003933
12 GRIN2B∗ rs12821108 A 0.3977 36 0.003933

It is important to retain the desirable characteristics of the TDT when generalizing.

The robustness to population substructure is the chief advantage attained by using families,

so its preservation is crucial. In order to accomplish that, three principles related to the null

distribution need to be maintained through the generalization. First, one must condition

on the parental genotypes when computing the null distribution to ensure the robustness to

population substructure. Second, while generalizing to arbitrary phenotypes, the offspring

genotype under the null needs to be conditioned on the offspring’s trait. Third, in order to

guarantee the validity of the test, the null distribution must be the “distribution of offspring

genotypes, conditional on parental genotypes and offspring traits.” Note that some of the

specific implementations of these principles may need to be handled differently in certain

contexts, e.g. including multiple offspring in the presence of linkage [9].
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The test statistic for the general family-based association test (FBAT) can based on a

score statistic. First, we will introduce the notation needed and then provide the expression

for the test and score statistic.

n = number of families

ni = number of offspring in family i

i = 1, . . . , n (family index)

j = 1, . . . , ni (offspring index)

Xi j = coded genotype of j th offspring in ith family

Ti j = coded trait of j th offspring in ith family

Pi = parental genotypes for the ith family

The coding of the genotype (Xi j) depends on the genetic model assumed; see

Table 3.6. It has been shown that even when the actual genetic model is not additive, using

the additive model assumption to code Xi j has good power. Hence, the FBAT software’s

default is the additive model [14]. In this case, Xi j is the number of A alleles possessed by

the j th offspring in ith family [29].

When a marker is sex-linked, i.e. it is on the X sex chromosome, the coding may

differ slightly from that in Table 3.6 depending on the genetic model and the gender of

the individual. For the additive model, the coding of sex-linked markers for females is

identical to that for autosomal markers, but that for males is modified. Since males only

possess a single X chromosome, it is impossible for them to have two alleles of a sex-linked

marker. Therefore, Xi j is 0 if the A allele is absent or 1 if the A allele is present [14, p. 10].

The contributions to the test statistic for this modified genetic coding is the same as if the
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Table 3.6. Coding the Genotype based on the Mode of Inheritance. One typically uses a
coded genotype, X , to represent the actual genotype, G, where “A” and “a” are the minor
and normal alleles, respectively, of the marker considered. This table specifies the codings
for each mode of inheritance; note that a coded genotype vector is used in the codominant
case.

Recessive Dominant Additive Codominant

X G X G X G X1 X2 G

1 AA 1 AA or Aa 2 AA 1 0 AA
1 Aa 0 1 Aa
0 aa 0 0 aa

standard additive coding is utilized while forcing males to be homozygous for the allele

they possess for sex-linked markers.

Normally, the coded trait is taken to be the phenotypic residual, which is defined as

Ti j = Yi j − µ, where

Yi j = coded phenotype of j th offspring in ith family

µ = offset parameter (chosen by investigator)

The optimal choice of µ is approximately the prevalence of the disease, i.e. µ ≈ E[Y ] [9].

Choosing the value of the offset will be discussed in more detail in Section 3.3.3.
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This information can be combined into vectors, which gives

X = [X11, X12, . . . , Xn ni ]′ (3.3)

T = [T11,T12, . . . ,Tn ni ]′ (3.4)

Y = [Y11,Y12, . . . ,Yn ni ]′ (3.5)

µ = µj′N (3.6)

P = [P1, P2, . . . , Pn]′. (3.7)

These represent the vector of coded offspring genotypes (X), coded offspring traits (T),

coded offspring phenotype (Y), the offset parameter (µ), and the parental genotypes (P).

The vectors in (3.3)-(3.6) are of length N =
∑n

i=1 ni, which is the total number of offspring

considered, but P in (3.7) is of length n. Also, the phenotypic residual can be represented

as T = Y − µ.

Note that the only variable that will be considered random is X. The traits, and

consequently the phenotypes and offset, along with the parental genotypes are regarded as

observed. Thus, the FBAT can be considered a conditional test where one conditions on

the parental genotypes and the traits [33]. With this in mind, we denote the conditional

expectation and variance under the null hypothesis as E0[X|P] and Var0(X|P), respectively.

Those under the alternative hypothesis will be referred to as EA[X|P] and VarA(X|P) and

will be utilized for conditional power calculations in Section 3.4.
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The FBAT test statistic is

χ2
FBAT =

[(Y − µ)′(X − E0[X|P])]2
(Y − µ)′Var0(X|P)(Y − µ)

=
[T′(X − E0[X|P])]2

T′Var0(X|P)T
(3.8)

= (X − E0[X|P])′
TT′

T′Var0(X|P)T
(X − E0[X|P])

= (X − E0[X|P])′A(P,T)(X − E0[X|P]).

The matrix of this quadratic form, A, is “a N ×N symmetric weight matrix whose elements

depend on the parental genotypic information [(P)] and on the trait [(T)]” [33, p. 167]. The

test statistic only corresponds to testing a single marker but does so using all families.

We can break down the test statistic into a score statistic and its associated variance

to gain further insight into its structure and motivate its distribution. The expression for

the FBAT score statistic, which can be viewed of as the covariance between the trait and

genotype [29, p. 230], is

U = T′(X − E0[X|P]) (3.9)

=

n∑
i=1

ni∑
j=1

Ti j
(
Xi j − E0[Xi j |Pi]

)
(3.10)

=

n∑
i=1

ni∑
j=1
(Yi j − µ)

(
Xi j − E0[Xi j |Pi]

)
. (3.11)

The FBAT software computes this for each allele of each SNP, but in the bi-allelic setting,

the two p-values for a marker will be identical. The conditional expectation, E[Xi j |Pi], is

what maintains the robustness to population substructure. In fact, under the null hypothesis,

it can be calculated using Mendel’s first law. Hence, the score statistic, U, has an expected

value of zero under any of the three null hypotheses mentioned in Section 3.1 [9].
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The variance of the score statistic is

Var0(U) = T′Var0(X|P)T (3.12)

=
∑

i

∑
j, j ′

Ti jTi j ′Cov0(Xi j, Xi j ′ |Pi).

If no linkage is assumed to be present, i.e. the first and third null hypotheses fromSection 3.1,

or only a single sibling is used, ni = 1 for i = 1, . . . , n, then

Var0(U) =
n∑

i=1

ni∑
j=1

T2
i jVar0(Xi j |Pi). (3.13)

However, if linkage is present, i.e. the second null hypothesis is assumed, and more than

a single offspring in a family is included, then within a family, allele transmissions are

correlated. In this case, an approximate empirical variance is utilized for the score statistic

and is given by

Var0(U) ≈
n∑

i=1


ni∑

j=1
Ti j(Xi j − E0[Xi j |Pi])


2

. (3.14)

Note that this approximation only holds under the null hypothesis [9].

StandardizingU leads us to the distribution of the test statistic previously introduced.

Two equivalent expressions for the test statistic are

ZFBAT =
U√

Var0(U)
(3.15)

χ2
FBAT = (ZFBAT )2 =

U2

Var0(U)
. (3.16)
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For large samples and under the null hypothesis, ZFBAT approximately follows the standard

normal distribution, N(0, 1), and thus, χ2
FBAT approximately follows a central chi-square

distribution with one degree of freedom [29].

Technically, for this hypothesis test, the size of the sample is determined by the

number of informative families (NIF). This is related to but different from the measure of

sample size used with the TDT, i.e. the number of transmissions from heterozygous parents.

An informative family is one whose contribution to the score statistic is nonzero. In other

words, a family is non-informative if there is no randomness in regards to the offsprings

genotype. More formally, the ith family is informative if

Var0
©­«

ni∑
j=1

Ti j(Xi j − E0[Xi j |Pi])
ª®¬ > 0.

Thus, informativeness depends on the coding of the trait (Ti j), the parental genotypes (Pi),

the genetic model (i.e. the coding of the genotypes), and the family configuration [9,

p.150-151]. For the additive mode of inheritance, informative families have at least one

heterozygous parent or “sibships with at least two distinct genotypes” [11, p. 389]. In the

trio setting, clearly, the NIF will never be larger than the number of heterozygous parents.

It is recommended to use these approximate distributions only when there are at least ten

informative families [14].

3.3.2. Obtaining the TDT from the FBAT. Recall that in the TDT setting, we

assume all offspring are affected (Ti j = 1 for all i, j combinations), there is no segregation

distortion, and the additive mode of inheritance is utilized. In its original derivation, the

null hypothesis assumes no linkage [13, p. 510]. The FBAT test statistic, χ2
FBAT , under

these conditions will reduce to the test statistic for the TDT, χ2
T DT [9, 29]. We will now

demonstrate this.
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First, consider the values of the terms in the FBAT test statistic under the additive

genetic model; they are summarized in Table 3.7. Note that these results are only specific

to the additive mode of inheritance and not the TDT setting, and we will return to referring

to the minor and normal alleles as “A” and “a,” respectively. It is important to observe that

families with only homozygous parents do not contribute to the test statistic, which was

also the case for the TDT. In general, the expected value of the coded genotype is half of

the combined number of A alleles possessed by the parents. Additionally, the variance is

the number of heterozygous parents divided by four.

Table 3.7. Contributions to FBAT Test Statistic with Additive Mode of Inheritance. The
number of heterozygous parents present in the family is referred to as NHZP.

Pi NHZP E[Xi j |Pi] Var(Xi j |Pi) Xi j − E[Xi j |Pi]
aa, aa 0 0 0 0 − 0 = 0
AA, aa 0 1 0 1 − 1 = 0
AA, AA 0 2 0 2 − 2 = 0

Aa, aa 1 0.5 0.25

{
1 − 0.5 = 0.5 A transmitted
0 − 0.5 = −0.5 A untransmitted

Aa, AA 1 1.5 0.25

{
2 − 1.5 = 0.5 A transmitted
1 − 1.5 = −0.5 A untransmitted

Aa, Aa 2 1 0.5


2 − 1 = 1 2 A’s transmitted
1 − 1 = 0 1 A transmitted

0 − 1 = −1 0 A’s transmitted

Now, we find the value of the score statistic U in the TDT setting. Without loss

of generality, we will assume that there is only one offspring per family, i.e. ni = 1 for
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i = 1, . . . , n. Then, we have

U =
n∑

i=1

ni∑
j=1

Ti j
(
Xi j − E0[Xi j |Pi]

)
=

n∑
i=1

1∑
j=1
(1)

(
Xi j − E0[Xi j |Pi]

)
=

(
n∑

i=1
Xi j

)
−

(
n∑

i=1
E0[Xi j |Pi]

)
.

Since only families with at least one heterozygous parent contribute to U, we only need to

consider the following, where the subscript indicates the genotype of the parent beyond the

initial heterozygous parent,

naa = number of families where parent genotypes are Aa, aa

nAA = number of families where parent genotypes are Aa, AA

nAa = number of families where parent genotypes are Aa, Aa.

Wewill also use the notation introduced in Section 3.2.1 for the TDT. Thus, b is the number

of heterozygous parents that transmitted A, c is the number of heterozygous parents that

transmitted a, and n∗ = b+c is the total number of transmissions from heterozygous parents.

Note that n∗ is also the number of heterozygous parents when there is only one offspring

per family, i.e. n∗ = naa + nAA + 2nAa. Additionally,
∑n

i=1 Xi j = b + nAA for three reasons:

only families with at least one heterozygous parent are considered, we have assumed only

one offspring per family, and the parent with genotype aa cannot transmit an A allele. The
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second part of U becomes

n∑
i=1

E0[Xi j |Pi] = (0.5)naa + (1.5)nAA + (1)nAa

= 0.5(naa + nAA + 2nAa) + nAA

= 0.5n∗ + nAA,

which is the sum of the expected number of A transmissions from heterozygous parents

and that of the single homozygous parent considered. Hence, the score statistic is U =

b− 0.5n∗ = b− 0.5(b+ c) = 0.5(b− c), which holds for any number of affected offspring in

a given family. This implies that only heterozygous parents contribute to the score statistic,

one of the properties of the TDT.

In the absence of segregation distortion, the probability that theAallele is transmitted

by a heterozygous parent is 0.5. We can think of this as a single Bernoulli trial whose

corresponding random variable has a variance of (0.5)(1 − 0.5) = 0.25. The transmissions

from the heterozygous parents are independent between families in general. When no

linkage is assumed, as in the TDT, transmissions between parents within the same family

are also independent. Therefore, Var0(U) = (0.25)n∗ = (0.5)2(b + c) and

χ2
FBAT =

U2

Var0(U)
=
[0.5(b − c)]2
(0.5)2(b + c)

=
(b − c)2

b + c
= χ2

T DT .

In words, the FBAT simplifies to the TDT in this setting, or alternatively, the FBAT is a

generalization of the TDT.

3.3.3. Extensions of the FBAT. The FBAT was constructed generally so that ad-

ditional modifications and extensions could arise naturally. There are countless possible

scenarios to which the FBAT could be applied, but we will examine three for brevity. The
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first two extensions involve moving from a univariate to a multivariate test statistic. The

final extension incorporates unaffected offspring information, which necessitates the precise

choice of the null hypothesis.

For multi-allelic markers (or a codominant genetic model), the coded genotype,

Xi j , will be a vector where each of its elements is a coding for a specific allele. Another

modification concerns simultaneously testing for association between a marker and multiple

traits. This results in the coded trait term, Ti j , being a vector. For both of these expansions,

the score statistic, U, will also be a vector and the variance, Var0(U|P), is a variance-

covariance matrix. Note that P is the collection of all parental genotypes. Thus, the

test statistic becomes the quadratic form U′Var0(U|P)U which approximately follows a

chi-square distribution with rank[Var0(U|P)] degrees of freedom [9]. Although, generally

useful, for this work, these particular extensions do not address our data type or do not lead

to desirable interpretations of the results for the research question, respectively.

The remaining application incorporates information fromunaffected offspring; these

individuals can be siblings of affected offspring or be amember of a family of only unaffected

offspring. This is especially advantageous for common diseases, because it increases the

power of the test when compared with using only affected offspring. Including families with

only unaffected offspring does not result in substantial power increases for rare diseases,

because the allele distribution among the unaffected, their parents, and the overall population

will be analogous (unlikely to possess disease alleles) [9]. However, inclusion of any

unaffected offspring is better than using the TDT [33, p. 580]. But it may be the case that

the extra resources, both time and money, required to genotype unaffected offspring may

not be worth the minor gain in power for rare diseases.
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Incorporation of these individuals in the test statistic requires an appropriate formu-

lation of the coded trait, Ti j , via the phenotype, Yi j . For dichotomous traits, let

Yi j =


1 if the j th offspring in ith family has the disease (affected)

0 if the j th offspring in ith family does not have the disease (unaffected)

which implies that

Ti j =


1 − µ if the j th offspring in ith family has the disease (affected)

−µ if the j th offspring in ith family does not have the disease (unaffected)

where the offset parameter, µ, is chosen by the investigator. Hence, the score statistic, U,

can be viewed as a contrast between affected and unaffected offspring with weights (1 − µ)

and µ, respectively. This contrast is needed, because over/undertransmission of an allele

to the affected offspring should coincide with under/overtransmission to the unaffected.

Finally, recall that the inclusion of siblings will necessitate the use of the approximate

variance, Equation (3.14), in the calculation of the test statistic when linkage is assumed to

be present [29].

Typically, µ is chosen to be the prevalence of the disease in the overall population.

Nevertheless, themisspecification of the offset does not affect the validity of the test statistic,

because it does not depend on the genotype X [34, p. 613]. This fact has motivated the

development of approaches that optimally choose the value of the offset. For instance, the

variance of the score statisticU is minimized by selecting µ = na/(na+nu). where na and nu

are the total number of transmissions to affected and unaffected offspring, respectively. In

essence, this choice is the “sample estimate of the prevalence, where offspring are weighted

by the number of heterozygous parents” [34, p. 609]. Often it is similar to the sample
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prevalence [29, p. 231]. This optimal offset can be computed using the “-o” option in the

FBAT software [14, p. 10]. Note that a different variance-minimizing offset is chosen for

each hypothesis, i.e. for each marker that is tested.

However, the truly optimal offset choice should take the power of the test into

account. Note that minimizing variance does not necessarily maximize the power of a

test [29, p. 231]. The power is maximized when µ is approximately the disease preva-

lence [29, p. 226]. In fact, a value slightly larger than the prevalence generally results in the

highest power [9, p. 153], but the power is relatively unaffected by different offset choices

within a reasonable range around the disease prevalence [33, p. 580]. Yet an offset substan-

tially larger than the disease prevalence will yield a power smaller than that attained by using

affected offspring only, i.e. the TDT [29, p. 231]. In that case, one assigns too much weight

to the unaffected offspring [29, p. 226]. To combat this issue, some suggest to limit the

variance-minimizing offset to a maximum of 0.5, but this is not guaranteed to preserve high

power [29, p. 231]. Therefore, it is not desirable to use the variance-minimizing offset if the

sample prevalence and population prevalence differ drastically. Instead choosing the largest

reasonable estimate of the population prevalence should be optimal in terms of power.

3.4. CONDITIONAL POWER FOR FAMILY-BASED ASSOCIATION TESTS

The conditional power of the FBAT test statistic can be computed, and these power

calculations are the foundation for a modified testing method called screening. The goal

of the modified screening method is to increase the power when testing many markers

through the utilization of estimates of the conditional power for each marker considered.

The motivation for its use and the specifics of the method are covered in Chapter 5.

In order to obtain the conditional power formula, we need to consider the distribution

of the test statistic whose two common forms are (3.8) and (3.16). Under the alternative
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hypothesis, the expected value of the score statistic is

µHA
= EA[U]

= EA[T′(X − E0[X|P])|P]

= T′(EA[X|P] − E0[X|P]),

and its variance is

σ2
HA
= VarA(U)

= T′VarA(X|P)T.

Now, we can rewrite the test statistic as follows

χ2
FBAT =

[T′(X − E0[X|P])]2
T′Var0(X|P)T

=
T′VarA(X|P)T
T′Var0(X|P)T

(
T′(X − E0[X|P])√

T′VarA(X|P)T

)2

= aW2.

Hence, from above, W will asymptotically follow a normal distribution with unit variance

and mean µHA/σHA, i.e. W ∼ N(µHA/σHA, 1). If follows that W2 will be asymptoti-

cally distributed as a noncentral chi-square distribution with one degree of freedom with

noncentrality parameter γ = (µHA/σHA)2, i.e. W2 ∼ χ2
1 (γ) [33].
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At a significance level of α, the conditional power is

CP = P(reject H0 | HA is true)

= P{χ2
FBAT ≥ χ2

1, 1−α(0)}

= P{aW2 ≥ χ2
1, 1−α(0)}

= P{W2 ≥ (1/a)χ2
1, 1−α(0)}

= P{χ2
1 (γ) ≥ ωχ

2
1, 1−α(0)} (3.17)

where

ω =
1
a
=

T′Var0(X|P)T
T′VarA(X|P)T

, (3.18)

γ =
µ2

HA

σ2
HA

=
{T′(EA[X|P] − E0[X|P])}2

T′VarA(X|P)T
, (3.19)

and χ2
1, 1−α(0) denotes the 1 − α percentile of a central chi-square distribution with one

degree of freedom [35, p. 171].

In order to compute the first and second moments of the coded genotype under the

alternative hypothesis, that is EA[X|P] and VarA(X|P), one needs the conditional marker

distribution under HA. Under the assumption of the additive model, these can be computed

with [35]

PHA [Xi = xi | (Pi,Ti)] =
f (Ti |xi) · P(Xi = xi |Pi)∑2
Xi=0 f (Ti |Xi) · P(Xi |Pi)

. (3.20)

We will discuss the computation in more detail in Section 5.1.2, where we outline how one

can estimate this quantity from sample information.
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4. FAMILY-BASED ASSOCIATION STUDIES FOR FACIAL-FEATURE
CLUSTERS AND ASD

In this chapter, we perform two sets of family-based association studies for the facial-

feature clusters detected in boys with ASD. Before discussing the tests and their results, we

describe how the facial-feature clusters are incorporated into the phenotype.

4.1. THE CLUSTER MEMBERSHIP PHENOTYPES

When considering the autism spectrum disorder (ASD), the standard phenotype

would be whether or not an individual has been diagnosed with ASD. That is, the phenotype

is the affection status of ASD where 1 is assigned to individuals with ASD and 0 to those

who do not have it; we will refer to this as the ASD Phenotype (ASDP). This phenotype

was utilized in Sections 3.2.2 and 3.2.3.

However, including the clinically meaningful facial morphology information is

what differentiates this study from previous genetic association studies involving ASD. To

accomplish this incorporation, we will consider the facial-feature clusters as three different

phenotypes; one for each cluster from Obafemi-Ajayi et al [8]. As a whole, we will call

them the Cluster Membership Phenotypes (CMPs). The phenotype for the first cluster

will be called the Cluster 1 Membership Phenotype (C1MP) Similarly for the second and

third clusters, we will have C2MP and C3MP, respectively. Each of the phenotypes will be

affection statuses for the corresponding facial-feature cluster. A summary of the phenotypes,

their abbreviations, and their interpretations are displayed in Table 4.1.

These four binary phenotypes can be combined in a variety ofways. Wewill consider

the product of ASDP and a particular CMP, that is the phenotype where the individual has
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Table 4.1. Summary of Phenotypes. We consider one phenotype for autism spectrum
disorder (ASD) and three phenotypes for facial-feature cluster membership. All four phe-
notypes are binary, i.e. affection statuses, where 1 is assigned to affected individuals and 0
is assigned to the unaffected.

Phenotype Abbreviation Affected (1) Unaffected (0)

ASD ASDP Diagnosed with ASD Not diagnosed with ASD

Cluster 1 C1MP Facial featuresmatch
those of Cluster 1.

Facial features do not
match those of Cluster 1.

Cluster 2 C2MP Facial featuresmatch
those of Cluster 2.

Facial features do not
match those of Cluster 2.

Cluster 3 C3MP Facial featuresmatch
those of Cluster 3.

Facial features do not
match those of Cluster 3.

ASD and whose facial features align with those of the given cluster. Note that the product

of binary variables is interpreted as “and.” For example, all probands who belong to the

second facial-feature cluster would be assigned a 1 for C2MP but would be assigned a 0 for

the C1MP and C3MP. By definition, all probands are affected with ASD, i.e. are assigned

a 1 for ASDP. For example, the phenotype of being affected with ASD and Cluster 2 is the

product of the ASDP and C2MP affection statuses, ASDP∗C2MP. When this is considered

for all individuals, only probands that belong to the second cluster are affected with this

combined phenotype, while all unaffected siblings and parents are unaffected. Hence, only

the probands of Cluster 2 would contribute to the test statistic for the TDT, where only

affected offspring are utilized.

Note that the facial features of the unaffected siblings and parents have not formally

been clustered, so in reality their CMPs are missing. Thus, any combined phenotype for

them will be missing as well. This is not an issue for the parents’ information, because
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only their genotypes are utilized in the test statistics we have introduced. On the other

hand, the sibling information would not contribute to the test statistic due to their missing

phenotype. Provided an extension of the FBAT that incorporates siblings is not being

implemented, this is of no concern, because sibling information is not used with the TDT.

In Section 4.2, we are only concernedwith the TDT, so the above distinction is not necessary.

However, in Section 4.3, we will incorporate sibling information for combined phenotypes;

its motivation and implementation will appear there.

4.2. WITHIN-CLUSTER ANALYSIS VIA THE EXACT TDT

The incorporation of the CMPs involves taking the product of each individual

cluster phenotype with the ASD phenotype. In terms of the phenotypic variables, that is

ASDP∗CxMP for x = 1, 2, 3. Due to the small sample sizes within a given cluster, we

use the exact TDT to avoid eliminating SNPs due to the approximate distributions of the

TDT and FBAT not being applicable. Recall that the exact TDT utilizes information from

probands only and not unaffected individuals for the phenotype under consideration. In

this setting, conducting the exact TDT for the ASDP∗CxMP for x = 1, 2, 3 is identical to

using solely the ASD phenotype within each cluster separately. We will refer to this as

the “within-cluster TDT analysis” instead of the less intuitive language associated with the

phenotypic products.

We performed the exact TDT within each of the three clusters, using the filtered

data described in Section 2.2.3. In Section 3.2.3, the exact TDT was performed with the

ASD phenotype without considering facial-feature cluster information, i.e. for ASDP alone.

The adjusted significance level was 1.768 × 10−5, while the smallest p-value in the overall

analysis was 1.951 × 10−4 for the marker rs10510773. The number of SNPs tested does

not change when considering the combined phenotype ASDP∗CxMP for x = 1, 2, 3, so the
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adjusted significance level remains the same. For each within-cluster analysis, the lowest

p-value is 1.953×10−3, 1.953×10−3, and 4.883×10−4 for Clusters 1, 2, and 3, respectively;

they correspond to markers rs10263964, rs10490175, and rs1025768, respectively. Hence,

we do not have sufficient evidence to conclude that any markers are linked and associated

with an ASDP∗CxMP DSL. An ASDP∗CxMP DSL is one that causes both ASD and facial

features that align with those characteristic of Cluster x, for x = 1, 2, 3. In other words,

there is not enough evidence to conclude that any markers are linked and associated with

an autism DSL within a given cluster. See Table 4.2 for more SNPs that were closest to

obtaining significance.

Table 4.2. SNPs Closest to Significance via Exact TDT within Facial-Feature Clusters. An
arbitrary level of 0.005 was used to filter the SNPs whose p-values are smallest when using
the exact TDT for ASDP∗CxMP for x = 1, 2, 3. For each marker, information on the SNP’s
location, minor allele, minor allele frequency (MAF), and the number of heterozygous
parents (NHZP, i.e. n∗) is displayed. None fall below the family-wise significance level of
1.768 × 10−5.

Cluster Chr. Gene Marker Allele MAF NHZP p-Value

1 7 CNTNAP2 rs10263964 A 0.3750 10 0.001953
2 NRXN1 rs17480512 G 0.3125 9 0.003906
3 CNTN4 rs11718833 A 0.3678 9 0.003906
7 CNTNAP2 rs10230132 G 0.2784 9 0.003906
7 CNTNAP2 rs1997530 A 0.3977 9 0.003906

2 2 NRXN1 rs10490175 A 0.2045 10 0.001953

3 15 CHD2 rs1025768 G 0.1875 12 0.000488
15 CHD2 rs4777755 A 0.1839 11 0.000977
3 CACNA2D3 rs2048809 A 0.3506 18 0.001312
15 CHD2 rs2272458 G 0.2765 14 0.001831
3 CACNA2D3 rs10510773 A 0.3636 20 0.002577
3 CACNA2D3 rs551114 A 0.1534 13 0.003418
15 CHD2 rs1371390 G 0.1932 13 0.003418

The extremely small sample size utilized translates into a proportionally low power

to detect markers that are linked and associated with ASD. This occurred even when cluster
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information was ignored and all 44 families were utilized in the testing, which was done

in Section 3.2.2. The low power is more severe when the 44 families are broken down

into smaller subsets in order to incorporate the facial-feature cluster membership into the

phenotype. In order to further analyze these data, we need a modified approach in order to

increase the statistical power.

4.3. INCORPORATION OF UNAFFECTED OFFSPRINGWITH THE C2MP

In this section, we restrict the focus to Cluster 2. We start by motivating this

restriction and then present the testing procedure and results.

4.3.1. Motivation for Focusing on the C2MP. Recall from Chapter 1, that both

Aldridge et al. and Obafemi et al., using different methods, identified a single common

subgroup of boys with ASD based on their facial features. It is unique in terms of the

facial features and its characteristic clinical phenotype [5, 8]. This subgroup corresponds

to Cluster 2 in the data utilized in this report. With respect to the cluster’s facial features,

Cluster 2 is both compact and distinct from the other subjects with ASD. In particular,

it is defined by “the most exaggerated facial features” [8, p. 7-8]. Moreover, the facial

features of the control group of typically developing boys are disparate from Cluster 2’s

features. The control group’s facial features, however, did overlap with those of Clusters

1 and 3 [8, p. 7]. From a clinical perspective, Cluster 2 possesses the most consistent

clinical phenotype [8, p. 13] which corresponds to a more severe form of ASD [5, p. 10].

Later, it was also described to be “reflective of the more classic [ASD] diagnosis” [6,

p. 16]. Additionally, the fact that the mothers of Cluster 2 individuals possessed more

severe measurements of subclinical ASD traits is further motivation for investigating the

genetic underpinnings associated with this phenotype [8, p. 10]. In summary, focusing on

the Cluster 2 Membership Phenotype (C2MP) is a natural choice, because it is unique to
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boys with ASD, represents a coherent sub-phenotype, and may be associated with maternal

characteristics.

Using the FBAT to incorporate unaffected offspring will likely enable a larger

number of families to contribute to the test statistic for a given marker. We hope this

results in increased statistical power compared to the exact TDT test that only incorporated

the affected offspring. However, it will most likely be minor, because the ASDP∗C2MP

is not a common disease. Nonetheless, recall that Lange et al. claim that including

unaffected offspring is always better than not doing so [33, p. 580]. Here we will discuss

the assumptions, test statistic considerations, and results of the corresponding analysis.

4.3.2. Phenotypic Assumptions. Our focus on Cluster 2 here differs from its

within-cluster analysis carried out in Section 4.2. There, we conducted the exact TDT

for the ASDP∗C2MP, which involves only probands who belong to Cluster 2. Technically,

this combined phenotype for subjects who were not clustered based on their facial features,

i.e. parents and unaffected siblings, was considered missing due to the unknown C2MP

affection status. Eliminating missing ASDP∗C2MP affection statuses will enable more

information to contribute to the test statistic via the extension of the FBAT that incorporates

unaffected offspring; see Section 3.3.3.

Now, given the fact that the defining facial features of Cluster 2 are not present in

prepubescent boyswithoutASD,wewill safely assume that all unaffected prepubescentmale

siblings are not members of Cluster 2, that is, for them, C2MP = 0. We do not need to make

any assumptions concerning the phenotypes of parents, because only parental genotypes, not

phenotypes, contribute to the test statistic. That leaves all unaffected female, postpubescent

male, and adult male siblings with missing C2MP affection statuses. However, because

none of them haveASD (ASDP= 0), the choice of the affection status for C2MP is irrelevant

when the phenotype of interest is ASDP∗C2MP. No matter their facial features, the siblings
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without ASD will have ASDP∗C2MP = 0. Therefore, deeming C2MP as non-missing for

unaffected female, postpubescent male, and adult male siblings allows their ASDP∗C2MP

to be zero without assuming anything about the applicability of the clustering results beyond

prepubescent males. Therefore, all unaffected siblings of probands that belong to Cluster 2

and all offspring of families whose proband belongs to Cluster 1 or 3 may contribute to the

FBAT test statistic.

4.3.3. Test-Statistic Considerations. Two additional considerations accompany

the use of the modified test statistic. First, the FBAT, unlike the exact TDT, uses the

approximate distribution of the test statistic. Recall, it is recommended to have at least 10

informative families in order for the approximation to be appropriate. This may result in

a fewer number of SNPs that can be tested when compared to the exact TDT. Second, the

investigator must specify the value of the offset, µ, utilized in the contrast between affected

and unaffected offspring. Note that the ascertainment condition of the proband being a

prepubescent male with ASD will inflate the sample prevalence of the ASDP greatly above

that of the entire population. Following the reasoning at the end of Section 3.3.3, we want

to select the largest reasonable estimate of the population prevalence as the value of the

offset.

To determine our choice for µ, we need to estimate the population prevalence

of ASDP∗C2MP. Given the information available to us, the most accurate method to

accomplish this involves taking the product of the prevalence of ASDwith the prevalence of

Cluster 2 membership among those with ASD. Since the clusters based on facial features are

unique to the utilized data set, the sample prevalence of the C2MP among those with ASD,

13/44 = 0.2954, must suffice. For ASD, the CDC reports official prevalence values that are

updated on a periodic basis, but other large-scale studies have estimated this value as well.

Recently, the National Health Statistics Reports published ASD prevalence values based on
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43,283 interviews from aNational Health Interview Survey (NHIS) [36, p. 2]. They reported

that the estimated prevalence of ASD is 0.0224 (2.24%) in the overall population [36, p. 4].

We focus on this estimate, because it is larger than the CDC’s official prevalence estimate

while remaining reasonable. Moreover, we will utilize the 95% upper confidence limit of

the true ASD prevalence as the largest reasonable estimate, i.e. as the value contributing

to the offset µ. Using the reported standard errors, the approximate 95% upper confidence

limit is 0.0273 (2.73%) [36, p. 8]. Therefore, the prevalence estimate, and thus the value of

the offset µ, for ASDP∗C2MP will be 0.0273 × 13/44 = 0.008066 (0.8066%).

4.3.4. Results from Incorporating Unaffected Offspring. In this setting, a SNP

whose p-value falls below the significance level after controlling the family-wise error

(FWER) rate would be considered linked and associated with an ASDP∗C2MP disease

susceptibility locus (DSL). An ASDP∗C2MP DSL, by definition, is a genetic locus that has

a causal relationship with the phenotype of having both ASD and facial features aligning

with those of Cluster 2. When restricting this conclusion to prepubescent boys, one may

say that the DSL causes a “subtype” of ASD characterized by the facial features of Cluster

2, because those facial features are not present in normally developing boys. Without the

restriction, we would have to assume that the aspects of the facial feature clustering results

extend to other populations, i.e. females andmales of all ages, in order tomake the “subtype”

statement. Without the assumption concerning facial features in the overall population, one

arrives back to the generally worded interpretation involving an ASDP∗C2MP DSL.

Due to only testing markers with at least 10 informative families, there was a total

2730 SNPs tested instead of the 2828 when performing the exact TDT in Section 3.2.2

and Section 4.2. Therefore, when controlling the FWER with the Bonferroni method, the

per-test significance level is 0.05/2730 = 1.832 × 10−5. With this, no markers could be

declared significantly linked and associated with the ASDP∗C2MP DSL with the amount
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of evidence available. Table 4.3 shows the SNPs that were closest to obtaining family-wise

significance; there are now five markers below the 0.005 cutoff as opposed to only one

when using the exact TDT. This difference is likely due to the slightly increased power that

accompanies the inclusion of unaffected offspring. Notice that the number of informative

families, a measure of the sample size, for each marker is substantially larger than that

seen in the previous within-Cluster-2 analysis. For marker rs10490175, the only one that

also appears in Table 4.2, the p-value (0.001569) using FBAT to incorporate unaffected

offspring is slightly smaller than the p-value (0.001953) from the exact TDT. In summary,

the marginal power improvement from including unaffected offspring did not change the

overall conclusion: there is insufficient evidence to conclude that any marker is linked and

associated with an ASDP∗C2MP DSL.

Table 4.3. SNPs Closest to Significance via FBAT with Unaffected Offspring for
ASDP∗C2MP. An arbitrary level of 0.005 was used to filter the SNPs whose p-values
are smallest when using the FBAT for the ASDP∗C2MP; the offset µ was taken to be
0.008066. For each marker, information on the SNP’s location, minor allele, minor allele
frequency (MAF), and the number of informative families (NIF) is displayed. None fall
below the family-wise significance level of 1.832 × 10−5.

Chr. Gene Marker Allele MAF NIF p-Value

2 NRXN1 rs10490175 A 0.205 30 0.001569
3 CNTN4 rs13093332 A 0.335 35 0.003871
5 CTNND2 rs441973 A 0.318 25 0.004045
12 GRIP1 rs11176241 A 0.148 16 0.004558
5 CTNND2 rs1638362 A 0.415 38 0.004729
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5. SCREENING FOR FAMILY-BASED DESIGNS

When controlling the family-wise error rate (FWER) via the uncorrected Bonferroni

method, we were unable to detect statistically significant association and linkage between

any SNP and a DSL corresponding to the phenotype tested. The small sample size, both

within clusters and overall, results in low statistical power for the tests. However, the primary

ways for experimenters to increase power, reducing variability or increasing sample size, are

not currently options. Therefore, for this analysis, increasing power amounts to addressing

the multiple comparison problem. Essentially, we need to increase the significance level for

the hypothesis test for a given SNP while maintaining the overall significance level of 0.05.

This can be accomplished through reducing the number of tests performed or systematically

assigning unequal portions of the significance level instead of allotting an equal fraction to

each test. After reviewing the literature, we consider the latter, because many of the options

corresponding to the former are not applicable to family-based designs with dichotomous

traits.

In this chapter, we will delve into the theory behind a screening method developed

by Murphy et al. to increase power and then apply the method to the ASD data [37].

The strategy was developed for screening in family-based studies where all the probands are

affected, but has been extended tomore general settings for categorical phenotypes. At a high

level, the method uses information about the offspring phenotype and parental genotypes

to estimate the conditional power of the TDT/FBAT for each SNP. Then, the weight for

assigning a significance level to a given SNP depends on the rank of its conditional power

estimate. The information used in the power assessment is independent of the test statistic,

so the overall significance level will not be biased [37]. This results in performing the
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same number of tests, but a larger proportion of the overall significance level is used with

SNPs for which the power to detect association and linkage is high. Once the individual

significance levels have been determined, we compare them to the p-values obtained in

Sections 4.2 and 4.3. Note that the test itself is not changed for this new method; only the

allotment of the significance level is different.

5.1. CONDITIONAL POWER ESTIMATIONWHERE ALL PROBANDS ARE AF-
FECTED

Here we will outline the theory behind the screening approach; we followMurphy et

al. while providing additional details and explanation [37]. We are interested in computing

the power of detecting association and linkage, i.e. rejecting the null when it is false,

conditional on information we have about the sample. The key is to use only sample

information that is independent of the test statistic (TDT/FBAT). We will state the test

statistic for this setting and then discuss the method of estimating the conditional marker

density to be used in the conditional power computation.

5.1.1. Setting-Specific Test Statistic. First, we will be explicit in stating the test

statistic in the setting where all probands are affected with a disease. The same notation

used for the FBAT’s general setup in Section 3.3.1 will be utilized here as well. Recall that

the FBAT, in its univariate form using summations, is

χ2
FBAT =


n∑

i=1

ni∑
j=1

Ti j
(
Xi j − E0[Xi j |Pi]

)
2

n∑
i=1

ni∑
j=1

T2
i jVar0(Xi j |Pi)

.
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There are a certain set of characteristics to consider for the specific setting of only

utilizing data from trios, i.e. from the proband and both parents. First, ni = 1 for i = 1, . . . , n,

because no siblings are included. Therefore, the j subscript can be dropped. Second, the

trait describes affection status, so

Ti j = Yi j =


1, if the j th offspring in ith family has the disease (affected)

0, if the j th offspring in ith family does not have the disease (unaffected).

However, because all probands are affected, Ti = 1 for all i = 1, . . . , n. Lastly, we assume

an additive genetic model, so the coded genotype is

Xi j =



0, if the proband of the ith family has 0 minor alleles

1, if the proband of the ith family has 1 minor allele

2, if the proband of the ith family has 2 minor alleles.

Taking into account these specifics, the test statistic becomes

χ2
FBAT =

[
n∑

i=1
(Xi − E0[Xi |Pi])

]2

n∑
i=1

Var0(Xi |Pi)
. (5.1)

In fact, this is equivalent to the approximate test statistic for the TDT given by (3.1). Note

that Pi contains information about the genotypes of both parents (P1i and P2i). We will

continue to use the concise notation, because we will never consider an individual parent’s

genotype on its own.
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5.1.2. Estimating the Conditional Marker Density for the Conditional Power.

In this section, we will consider the conditional marker density under the alternative hy-

pothesis, which will be used for conditional power calculations; the conditional power was

introduced in Section 3.4. The conditional marker density is the probability of a particular

coded genotype occurring given the parental genotypes and affection status provided that

the marker under consideration is linked and associated with a DSL. Notationally, we have

PHA [Xi = xi | (Pi,Ti = 1)], which is a specific case of (3.20). Before we derive the expres-

sion for this, we need to introduce additional terminology and its corresponding notation.

The penetrance probability for each genotype is

fXi=xi = P(Ti = 1|Xi = xi) for xi = 0, 1, 2.

From this, we can construct the genotype relative risk

ΨXi=xi =
fXi=xi

f0
=

P(Ti = 1|Xi = xi)
P(Ti = 1|Xi = 0) .

Therefore, by definition, Ψ0 is 1. Additionally, let’s note that P[Ti = 1|(Xi = xi, Pi)] =

P(Ti = 1|Xi = xi), because affection (Ti = 1) is independent of parenteral genotypes (Pi)

when the proband’s genotype (Xi) is known (xi) Finally, the events Xi = 0, Xi = 1, and

Xi = 2 are mutually exclusive and exhaustive, so

P(Pi,Ti = 1) =
2∑

Xi=0
P(Xi, Pi,Ti = 1)



75

by the law of total probability. Therefore, the conditional marker density under the alterna-

tive hypothesis is

PHA [Xi = xi | (Pi,Ti = 1)] = P(Xi = xi, Pi,Ti = 1)
P(Pi,Ti = 1)

=
P(Xi = xi, Pi,Ti = 1)∑2

xi=0 P(Xi = xi, Pi,Ti = 1)

=
P[Ti = 1|(Xi = xi, Pi)] · P(Xi = xi |Pi) · P(Pi)∑2

Xi=0 P[Ti = 1|(Xi, Pi)] · P(Xi |Pi) · P(Pi)

=
P(Ti = 1|Xi = xi) · P(Xi = xi |Pi)∑2

Xi=0 P(Ti = 1|Xi) · P(Xi |Pi)

=
fXi=xi · P(Xi = xi |Pi)∑2

Xi=0 fXi · P(Xi |Pi)

=
ΨXi=xi · P(Xi = xi |Pi)∑2

Xi=0ΨXi · P(Xi |Pi)
. (5.2)

Note that P(Xi |Pi) is determined by Mendel’s Laws. However, the penetrance probabilities

( fxi ), and thus the relative risk probabilities (Ψxi ), must be estimated using information that

is statistically independent of the testing step [37].

In order to determinewhat choicewill not bias the statistical test, wemust breakdown

the information used in family-based designs. One can think of family-based association

tests, e.g. the TDT and FBAT, as conditional tests. In them, we condition upon the parental

genotypes Pi and the offspring phenotype Ti while the offspring genotype, Xi, is considered

random. Then, “the evidence for SNP-trait association is evaluated by comparing the

observed offspring genotype with the expected offspring genotype, which are computed by

conditioning upon the parental genotypes, assuming Mendelian transmissions.” The joint

density function for all the information can be decomposed as

f (Xi,Ti, Pi) = f [Xi |(Ti, Pi)] · f (Ti, Pi), (5.3)
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where the two components are statistically independent. The first component, f [Xi |(Ti, Pi)],

and second component, f (Ti, Pi), correspond to the testing step and the conditional power

estimation, respectively. Notice that the nonrandom components of the test, i.e. the parental

genotypes and offspring phenotypes, may be utilized for the conditional power computation.

In the current setting, there is no variability in the offspring phenotypes, because all probands

are affected. In terms of the density function, we have f (Ti = 1, Pi). Hence, we can only

use information about the parental genotypes to estimate the relative risk probabilities [37,

p. 1].

With three coded genotype possibilities and two parents, there are a total of nine

possible parental mating types. However, it does not matter if the genotypes of the parents

are swapped, so we are only interested in the distinct mating types. There are six distinct

mating types

{Pi} = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}

where a given value is the number of minor alleles that a parent possesses. We are

interested in the frequency of each of these parental mating types in our sample where

Ti = 1. Symbolically, we want

pkl = P(Pi = (k, l)|Ti = 1) = P(Pi = (k, l),Ti = 1)
P(Ti = 1) .

Now, we will denote the minor allele frequency (MAF) for the marker in the general

population with p. When Hardy-Weinberg equilibrium holds, the coded offspring geno-

type follows a binomial distribution with two trials and a probability of success of p, i.e
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Xi ∼ BIN(2, p). Therefore, by the law of total probability and HWE,

P(Ti = 1) =
2∑

Xi=0
P(Ti = 1, Xi)

=

2∑
Xi=0

P(Xi) · P(Ti = 1|Xi)

= (1 − p)2P(Ti = 1|Xi = 0) + 2p(1 − p)P(Ti = 1|Xi = 1) + p2P(Ti = 1|Xi = 2)

= (1 − p)2 f0 + 2p(1 − p) f1 + p2 f2 (5.4)

Combining this with some of the steps taken to obtain (5.2), we get

pkl =

2∑
Xi=0

fXi · P[Xi |Pi = (k, l)] · P[Pi = (k, l)]

(1 − p)2 f0 + 2p(1 − p) f1 + p2 f2

=

P[Pi = (k, l)]
2∑

Xi=0
ΨXi · P[Xi |Pi = (k, l)]

(1 − p)2 + 2p(1 − p)Ψ1 + p2Ψ2
. (5.5)

Here, P[Pi = (k, l)] is determined by the minor allele frequency, p, and the actual mating

type “[u]nder the assumption of random mating and Hardy-Weinberg equilibrium at the

marker locus in the general population” [37, p. 3].

In this setting, the likelihood of observing the parental mating types is given by

`(Ψ1,Ψ2, p) =
n∏

i=1
p(kl),i

= pn00
00 pn01

01 pn02
02 pn11

11 pn12
12 pn22

22 , (5.6)
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where nkl is the observed number of mating types of Pi = (k, l) and

n = n00 + n01 + n02 + n11 + n12 + n22

= total number of observed mating types

= number of trios.

This is because of an independently and identically distributed (i.i.d.) assumption; in other

words we have a random sample of size n parental genotypes from the population. That is,

the families are independent. This function would need to be maximized overΨ1,Ψ2, p in

order to find the maximum likelihood function of the genotype relative risks. Unfortunately,

this is impossible to do directly, because the “Fisher information matrix is ill conditioned”

and estimating the minor allele frequency (p) is “problematic in the presence of population

admixture” [37, p. 3].

The next step involves deriving estimators for the genotype relative risks,Ψ1 andΨ2.

We want these estimators to be independent of the minor allele frequency, p, so it does not

depend on an additional estimated value. Therefore, we need ratios of the frequency of the

parental mating types that do not depend on the minor allele frequency. When we assume

that Hardy-Weinberg equilibrium (HWE) holds in the general population, only four ratios

will satisfy this requirement [37, p. 4]. They are

R1 =
p22 · p00

p2
02

(5.7)

R2 =
p01 · p11
p00 · p12

(5.8)

R3 =
p00 · p12
p02 · p01

(5.9)

R4 =
p12 · p01
p02 · p11

. (5.10)
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We will show this is the case for each of the four ratios but will not demonstrate that they

are the only ratios where this occurs.

Recall that P(Xi |Pi) is determined by Mendel’s Laws. Table 5.1 displays this

probability for each possible parental mating type when the additive mode of inheritance is

assumed, i.e. Xi is the number of minor alleles. Additionally, when we assume that mating

occurs randomly on top of the assumption that HWE holds in the general population, we can

specify P[Pi = (k, l)] in terms of the minor allele frequency. As an example, the probability

that one parent possesses one minor allele while the other possesses none is

P[Pi = (0, 1)] = P[(0, 1) or (1, 0)]

= P[(0, 1)] + P[(1, 0)]

= [2p(1 − p)] · [(1 − p)2] + [(1 − p)2] · [2p(1 − p)]

= 4p(1 − p)3.

This and the probabilities for all other parental mating types are displayed in Table 5.2.

Table 5.1. Genetic Probabilities for Parental Mating Types Under the Additive Mode of
Inheritance.

Pi = (k, l) P[Xi = 0|Pi = (k, l)] P[Xi = 1|Pi = (k, l)] P[Xi = 2|Pi = (k, l)]
(0,0) 1 0 0
(0,1) 1/2 1/2 0
(0,2) 0 1 0
(1,1) 1/4 1/2 1/4
(1,2) 0 1/2 1/2
(2,2) 0 0 1

Now that we have information about P[Xi |Pi = (k, l)] and P[Pi = (k, l)], we can

find the expressions for the ratios in (5.7)-(5.10). Notice that the denominator of pkl cancels
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Table 5.2. Probabilities of Parental Mating Types Under Random Mating and HWE.

Pi = (k, l) P[Pi = (k, l)]
(0,0) (1 − p)4
(0,1) 4p(1 − p)3
(0,2) 2p2(1 − p)2
(1,1) 4p2(1 − p)2
(1,2) 4p3(1 − p)
(2,2) p4

out in all the ratios and thatΨ0 = 1. Starting with R1, we have

R1 =
p22 · p00

p2
02

=
{P[Pi = (2, 2)] · [1(0) +Ψ1(0) +Ψ2(1)]} · {P[Pi = (0, 0)] · [1(1) +Ψ1(0) +Ψ2(0)]}

{P[Pi = (0, 2)] · [1(0) +Ψ1(1) +Ψ2(0)]}2

=
p4(1 − p)4Ψ2

[2p2(1 − p)2Ψ1]2

=
Ψ2

4Ψ 2
1
. (5.11)
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Similarly,

R2 =
p01 · p11
p00 · p12

=
{4p(1 − p)3[1(1/2) +Ψ1(1/2) +Ψ2(0)]} · {4p2(1 − p)2[1(1/4) +Ψ1(1/2) +Ψ2(1/4)]}

{(1 − p)4[1(1) +Ψ1(0) +Ψ2(0)]} · {4p3(1 − p)[1(0) +Ψ1(1/2) +Ψ2(1/2)]}

=
(1 +Ψ1)(1 + 2Ψ1 +Ψ2)

Ψ1 +Ψ2
, (5.12)

R3 =
p00 · p12
p02 · p01

=
{(1 − p)4[1(1) +Ψ1(0) +Ψ2(0)]} · {4p3(1 − p)[1(0) +Ψ1(1/2) +Ψ2(1/2)]}
{2p2(1 − p)2[1(0) +Ψ1(1) +Ψ2(0)]} · {4p(1 − p)3[1(1/2) +Ψ1(1/2) +Ψ2(0)]}

=
Ψ1 +Ψ2

2Ψ1(1 +Ψ1)
, (5.13)

R4 =
p12 · p01
p02 · p11

=
{4p3(1 − p)[1(0) +Ψ1(1/2) +Ψ2(1/2)]} · {4p(1 − p)3[1(1/2) +Ψ1(1/2) +Ψ2(0)]}
{2p2(1 − p)2[1(0) +Ψ1(1) +Ψ2(0)]} · {4p2(1 − p)2[1(1/4) +Ψ1(1/2) +Ψ2(1/4)]}

=
2(Ψ1 +Ψ2)(1 +Ψ1)
Ψ1(1 + 2Ψ1 +Ψ2)

. (5.14)

As previously stated, these ratios, (5.11)-(5.14), do not depend on theminor allele frequency,

p, which is unknown. Therefore, they can be estimated based on the observed frequency of

mating types in the sample [37, p. 4]. For example,

R̂1 =
p̂22 · p̂00

p̂2
02

=

( n22
n

) ( n00
n

)( n02
n

)2 =
n22n00

n2
02

.
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From the definition of the additive mode of inheritance on the linear scale from

Section 2.1.3, we have the following equivalent equations

P(Ti = 1|Xi = 1) = 1
2
[P(Ti = 1|Xi = 2) + P(Ti = 1|Xi = 0)]

f1 =
1
2
( f2 + f0)

Ψ1 =
1
2
(Ψ2 + 1).

Hence, we can express each ratio in terms of a single genotype relative risk, which enables

us to construct four different estimators of the genotype relative risk. For instance, R1 =

(2Ψ1 − 1)/(4Ψ 2
1 ) implies Ψ̂1 =

(
−1 ±

√
1 − 4R̂1

)
/4R̂1, which is one estimator forΨ1. One

could also take the average of the four estimators to estimate the overall effect size [37, p. 4].

However, simulation shows that R4 is the best ratio to use for the estimators [37, p. 5].

The estimator for the genotype relative risk may not be unique. In fact, it is only

unique when HWE holds exactly in the sample. If its solutions are not unique but real,

the two solutions will likely be similar due to the fact that HWE is assumed in the overall

population. In a communication with the corresponding author, Lange, we were informed

that “it was sufficient to select the solution that was range consistent” but were not provided

any additional details. We acknowledge that non-uniqueness is not theoretically satisfying,

but it appears that, computationally, it does not affect the validity of the method.

The estimators for genetic relative risk (Ψ̂1 and Ψ̂2) can then be used to estimate

the conditional marker density in (5.2) for Xi = 0, 1, 2. Those three estimated probabilities

are utilized in computing the conditional power of the a family-based association test,

(3.17) from Section 3.4 for a given marker. It is important to note that the estimators only

depend parental genotypes which corresponds to the f (Ti = 1, Pi) term in (5.3). Thus, the
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significance level of the the hypothesis test will not be biased. It is possible to determine

analogous ratios and estimators for other nuclear family structures as well [37, p. 4].

HWE need not be present in the ascertained sample, because it is only assumed to

hold for the given marker in the overall population. However, being out of HWE can impact

the power. When SNPs not associated with affection status are out of HWE, the power

of this screening strategy may be reduced. On the other hand, the power may increase or

decrease when the DSL violates HWE. In other words, departures from HWE may impact

the conditional power estimation but they will not affect the testing step. Hence, the validity

of the overall strategy is robust to violations of HWE [37, p. 4].

5.2. WEIGHTING THE SIGNIFICANCE LEVEL

Next, we need to utilize the calculated conditional power estimates to allot fractions

of the overall significance level, α, to the various markers. Low conditional power for

a given SNP implies a low minor allele frequency and/or small genetic effect size may

be present. Because the power to detect whether the marker is significantly linked and

associated with a DSL is limited, it is reasonable that its corresponding hypothesis test

would deserve a smaller fraction of the overall significance level [38, p. 608]. Murphy et

al. accomplishes this through a weighting method introduced by Ionita et al. [37, 38]. We

will call this the rank-weighting step. It is important to note that this approach may be

employed in any setting where conditional power estimates are available; it is not specific

to family-based designs.
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In order to discuss the method, we first must introduce new notation. Consider

m = total number of markers considered

i = index for the power rankings of the markers (i = 1, . . . ,m)

wi = weight for marker of rank i (wi ≥ 0)

αi = wiα = significance level allotted to the marker of rank i.

Note that the sum of the weights must be one, i.e.
∑m

i=1 wi = 1, in order to maintain the

stated control over the the overall Type I error rate. Also, different weighting choices will

result in different power.

Other common multiple-testing corrections can be viewed in this weighting frame-

work. The Bonferroni correction equally weights all markers; for all i = 1, . . . ,m, wi = 1/m.

A common screening method for family-based association studies involving quantitative

traits, sometimes called the top-R method, considers a power assessment and weighting.

After power estimates are calculated, only the markers with the top R conditional power

values are then tested. A Bonferroni correction is made on these R hypothesis tests instead

of those for all the markers considered in the power estimation step [39]. Therefore, for

the top-R approach, one chooses w1 = · · · = wR = 1/R and wR+1 = · · · = wm = 0. The

advantage to using the Bonferroni and top-R approaches are that all markers are tested and

conditional power information is incorporated, respectively. The method we will introduce

combines both of these advantages [38, p. 68].

Most markers considered in genetic association studies will not be linked or associ-

ated with the DSL, so only a small fraction of the markers should receive a large proportion

of the significance level. Therefore, in order to maintain robustness on this front, we

will partition the markers into groups of similar estimated conditional power values; these
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groups will be referred to as partitions. All markers belonging to the same partition will

be assigned the same weight, and hence the same portion of α. Moreover, this approach is

robust to small alterations in the ranking value for a marker. Note that only the ranking, i,

is used for partitioning and not the actual value of the conditional power estimate [38].

The following notation will be used for the partitions:

K = number of partitions

j = the contitional power rank for the partitions ( j = 1, . . . ,K)

k j = number of markers in the partition with the j th highest power

w j = weight for all SNPs in the partition with the j th highest power.

For example, the first partition will contain the k1 markers with the highest conditional

power estimates while the K th partition contains the kK markers with the lowest conditional

power estimates. We must have
∑K

j=1 w
j k j ≤ 1 in order to control Type I error at the

specified level; although,
∑K

j=1 w
j k j = 1 is preferred. Also, we must account for all the

markers under consideration
∑K

j=1 k j ≥ m. The Bonferroni method can then be described

as choosing K = 1, k1 = m, and w1 = 1/m. On the other hand, the top-R approach utilizes

K = 2, k1 = R, k2 = m − R, w1 = 1/R, and w2 = 0 [38].

All that remains is to specify a strategy for assigning partition sizes and weights.

Intuitively, the partitions containing the markers with the highest conditional power should

be the smallest and received the largest weight, because they involve the most promising

SNPs. In terms of our notation, as j increases, k j should increase while w j decreases.

There are many different weighting functions that will satisfy this requirement; both Ionita

et al. and Murphy et al. employed an exponential weighting scheme [37, 38].
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In general, one needs to specify two parameters for the exponential weighting: the

size of the first partition, k1, and the base, r . Then, the number of markers in a partition is

defined recursively as

k j = r j−1k1. (5.15)

The weights are chosen in a similar fashion,

w j =
r − 1

r2 j−1k1
. (5.16)

Therefore, the significance level assigned to the j th partition is α j = w jα. Note that

K∑
j=1

k jw
j =

K∑
j=1
(r − 1)

(
1
r

) j

= 1 −
(
1
r

)K

≈ 1

approximately satisfies the requirement that the sum of all the weights equals 1 [37]. The

fact that it will never exceed one is important; that means we will always control the Type I

error rate to be at most the specified level, α.

According to simulation studies involving 500,000 markers, the k1 = 7 and r = 2

are the optimal choices of the parameters in terms of power. However, k1 = 5, . . . , 10 and

r = 2, 3 resulted in similarly high power levels; only k1 = 3, . . . , 10 and r = 2, 3, 4, 5 were

considered [37, p. 7]. When examining 100,000 markers, k1 = 5 and r = 2 were found to be

the best selections. Moreover, for 100,000 markers, simulations indicate that this weighting

scheme is more powerful than both the Bonferroni and top-R approaches and even attains

power near that of population-based designs [38, p. 609].

Clearly, provided the number of markers are divided evenly with the partitioning

method, there is 1/rK of the significance level that goes unused. There will be an additional
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portion of the significance level that is not utilized if the number of markers is not divided

evenly with the partitioning method, which will almost always be the case. For instance,

when considering 100,000 markers with k1 = 5 and r = 2, the number of SNPs allotted to

the last partition needed (the fifteenth, i.e. K = 15) would be 81,920. However, only 18,085

SNPs remain unpartitioned after creating the fourteenth grouping. Thus, the true value of

k15 will be much smaller than that prescribed by the exponential weighting method. When

the number of markers considered is relatively high, the combined unused significance

level from these two sources is negligible. Including it in the approach would only make

a difference if a p-value for a given SNP were extremely close to the allotted significance

level.

5.3. SCREENING FOR THE WITHIN-CLUSTER ANALYSES VIA THE EXACT
TDT

The screening method discussed involves two parts: the conditional power estima-

tion and the rank-weighting step. The conditional power calculations were carried out using

PBAT v3.61, and we implemented the rank-weighting step ourselves in R v3.2.3 [31, 40]. In

this work, we consider 2828 markers, which is lower than those considered in the simulation

studies that established optimal choices of the weighting parameters. We specified the size

of the group of most promising SNPs to be 5, i.e. k1 = 5, because that was the optimal

choice for the simulation involving fewer markers. Since the base of r = 2 was superior

in both simulations, we will also set it to two. More details about each of the partitions

with these weighting parameters is displayed in Table 5.3. Notice that the significance level

assigned to the partition with the most power happens to coincide with the arbitrary cutoff

we previously utilized to see which markers were closest to significance. Recall that the

adjusted significance level using the Bonferroni correction is 1.768×10−5. Thus, partitions
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six through ten are actually assigned a more stringent significance level than without the

screening method.

Table 5.3. Partition Details for Exponential Weighting with k1 = 5, r = 2, and α = 0.05.
For the first ten partitions, we display the size of the partition (k j), the last rank value that
would be a member of the partition, and the significance level assigned to all SNPs in the
partition (α j). Ten partitions are needed for the 2828 markers considered, but the tenth
partition will contain 273 markers in this setting instead of the 2560 prescribed in general.

Partition Partition
Num ( j) Size (k j) Last Rank α j = w jα

1 5 5 5.00×10−3

2 10 15 1.25×10−3

3 20 35 3.13×10−4

4 40 75 7.81×10−5

5 80 155 1.95×10−5

6 160 315 4.88×10−6

7 320 635 1.22×10−6

8 640 1275 3.05×10−7

9 1280 2555 7.63×10−8

10 2560 5115 1.91×10−8

None of the markers considered attained statistical significance using the screening

approach. Due to the fact that the largest significance level from the exponential weighting

is 0.005, the only markers that had a chance of being significantly linked and associated with

an ASDP∗CxMPDSL, for x = 1, 2, 3, were those closest to significance shown in Table 4.2.

Hence, we only discuss those samemarkers in the screening setting; refer to Table 5.4. Most

of those markers did not have high ranking conditional power estimates. The exception is

rs2272458 for the Cluster 3 analysis that was grouped into the third partition with a rank of

19. Nonetheless, its p-value was an order of magnitude larger than the assigned significance

level.

The amount of the overall significance level, α = 0.05, that goes unused due to

1/rK and kK , where K = 10, not being the size prescribed is 9.77 × 10−4 and 4.37 × 10−5,
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Table 5.4. Screening Results for Within-Cluster Analyses via the Exact TDT. The SNPs
whose p-value from the exact TDT was less than 0.005 are shown; they also appeared in
Table 4.2. For each, we display the conditional power estimate, the rank of the conditional
power among all markers in the study, and the significance level (α j) assigned to the SNP
based on the partition towhich its rank belongs. Nomarker is below its assigned significance
level. (The p-value is shown in scientific notation this time to make the comparison to α j
more conducive.)

Cluster Marker p-Value Power Rank α j

1 rs10263964 1.953×10−3 0.1726 1013 3.05×10−7

rs17480512 3.906×10−3 0.4958 117 1.95×10−5

rs11718833 3.906×10−3 0.3298 342 1.22×10−6

rs1997530 3.906×10−3 0.2524 602 1.22×10−6

rs10230132 3.906×10−3 0.1087 1515 7.63×10−8

2 rs10490175 1.953×10−3 0.0696 1917 7.63×10−8

3 rs1025768 4.883×10−4 0.1645 1627 7.63×10−8

rs4777755 9.766×10−4 0.3007 1031 3.05×10−7

rs2048809 1.312×10−3 0.2384 1287 7.63×10−8

rs2272458 1.831×10−3 0.9739 19 3.13×10−4

rs10510773 2.577×10−3 0.3819 776 3.05×10−7

rs551114 3.418×10−3 0.2798 1113 3.05×10−7

rs1371390 3.418×10−3 0.0530 2500 7.63×10−8
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respectively. Thus, the overall unused portion of α is 0.00102. This is substantially higher

than the example considered in Section 5.2 for two reasons. First, there are considerably

fewer SNPs in this study, and second, the final partition only uses about 10%of the combined

significance level assigned to it. However, one cannot simply assign this extra portion of

the significance level to a marker of one’s choosing. For example, we should not add this to

α j for rs1025768 for the Cluster 3 analysis in order to make the new assigned significance

level 0.00102, which results in the SNP being significantly linked and associated with an

ASDP∗C3MP DSL. Doing so would be a form of data snooping, which would not control

the Type I error at the specified level. In other words, we cannot assign significance levels

after seeing the results of hypothesis testing. Therefore, if the unused portion of α is to be

reassigned, it must be done so in a meaningful fashion that is planned before any hypothesis

testing is carried out.

Overall, we cannot say that any of the 2828 markers considered are linked and

associatedwith anASDP∗CxMPDSL, for x = 1, 2, 3, using the exact TDT,while controlling

the FWER at 0.05. That does not mean that none of the markers in our study truly exhibit

that relationship. It does mean that, given the amount of evidence present in the data set

utilized, we cannot conclude any linkage and association with a DSL with sufficiently high

confidence. Hence, it may be the case that some of those markers are linked and associated

with a DSL, or it could be that none are. Additionally it is possible, that some markers are

linked and associated with the DSL but were not included in the markers utilized here. As

was the case without the screening method, the inability to detect statistically significant

linkage and association is most likely due to the small sample size, i.e. the small number of

families contributing to the test statistic has resulted in low statistical power.
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5.4. SCREENING FOR THE C2MP FOCUS VIA THE FBAT

The screening method developed in Sections 5.1 and 5.2 applies to affection status

phenotypes where all offspring are affected. In this section, we consider the FBAT for the

ASDP∗C2MP that includes unaffected offspring. However, PBAT v3.61 has implemented

a generalized version of the approach in Murphy et al. that works for any categorical

phenotype [37, 39]. Therefore, we employ this feature to compute the conditional power

estimates when the unaffected offspring information is included. We will use the same

parameter values (k1 = 5 and r = 2) for the rank-weighting step as those utilized in

Section 5.3. Thus, Table 5.3 is applicable here as well.

As before, the largest significance level from the exponential weighting approach is

0.005, so we restrict the discussion to those markers whose p-value is smaller than that,

i.e. those previously shown in Table 4.3. The results of the screening method for those

SNPs are displayed in Table 5.5. All the p-values are at least two orders of magnitude

larger than the corresponding assigned portion of the significance level. Therefore, we

have insufficient evidence to conclude that any marker is linked and associated with an

ASDP∗C2MP DSL. When restricting this conclusion to prepubescent boys, the DSL that

causes a “subtype” of ASD characterized by the facial features of Cluster 2. As mentioned

at the end of Section 5.3, this solely means that the data we have does not contain enough

evidence to conclude that any of the markers are linked and associated with sufficiently high

confidence. We have not proven that every marker considered is not related to the DSL.

5.5. EXAMINING THE CONDITIONAL POWER ESTIMATES

Neither including unaffected offspring information to increase the effective sample

size for a given marker nor allotting greater portions of the significance level to the most
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Table 5.5. Screening Results for the C2MP Focus. The SNPs whose p-value from the
FBAT was less than 0.005 are shown; they appeared in Table 4.3 too. For each, we display
the conditional power estimate, the rank of the conditional power among all markers in the
study, and the significance level (α j) assigned to the SNP based on the partition to which
its rank belongs. No marker is below its assigned significance level. (The p-value is shown
in scientific notation this time to make the comparison to α j more conducive.)

Marker p-Value Power Rank α j

rs10490175 1.569×10−3 0.0635 2000 7.63×10−8

rs13093332 3.871×10−3 0.1916 1050 3.05×10−7

rs441973 4.045×10−3 0.5334 156 4.88×10−6

rs11176241 4.558×10−3 0.4632 230 4.88×10−6

rs1638362 4.729×10−3 0.6305 75 7.81×10−5

promising SNPs resulted in detecting anymarkers that are significantly linked and associated

with a DSL. Theoretically, those adjustments should lead to a larger statistical power; albeit,

in the first case the increase is marginal due to the infrequency of the phenotype in the

overall population. Therefore, either the increase in power was not sufficient to detect

markers in the study that are truly linked and associated with the DSL given the data set,

or there are no markers in the 2828 considered that are truly linked and associated with the

DSL. We cannot say which is the case, because we assume from the beginning that linkage

and association are absent. However, an examination of the conditional power estimates

will provide some insight into the status of the power for the analyses conducted.

The conditional power estimates for each of the analyses are graphically summarized

via histograms in Figure 5.1. In every case, at least half of the markers have conditional

power estimates less than 0.2051; this can be seen quickly, because themedian is represented

by the blue dashed vertical line. We utilize the median as the measure of center, because the

estimates are highly skewed to the right. At the best, the sample median is about a fourth

of the popular value of the minimum power recommended, which is 0.8 [41]. There is an
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important distinction that must be made here. The recommended power of 0.8 is the true

statistical power of the test, so it involves the true effect size, which is unknown in practice.

The conditional power estimates are not the true power of the tests. The estimate is an

attempt to approximate the true value conditioning on, i.e. using, the parental genotypes

and the offspring phenotypes.

For the analyses that do not utilize unaffected offspring, shown in Figures 5.1a - 5.1c,

the conditional power estimate are generally larger as the cluster number increases. This

corresponds to an increasing number of affected offspring for the ASDP∗CxMP; recall from

Table 2.4, Clusters 1, 2, and 3 have 10, 13, and 21 probands, respectively. As expected, the

marginal difference in the number of affected offspring between Clusters 1 and 2 resulted

in negligible changes in the distribution of the conditional power estimates. Whereas,

doubling, or nearly so, the number of probands when going from Cluster 1 or 2 to Cluster

3 causes the distribution and sample median to change more dramatically. The sample

median conditional power estimate for Clusters 1, 2, and 3 are 0.1164, 0.1411, and 0.2051,

respectively. Nonetheless, the values of the conditional power estimates are quite low for

many markers, so it will be difficult to detect a true linkage and association with a DSL.

Now for the incorporation of unaffected offspring within the restriction to the C2MP,

we can compare Figure 5.1b and Figure 5.1d. The distributions appear nearly identical

and their sample medians are approximately the same as well. Hence, incorporating the

unaffected offspring had little impact on the distribution of the conditional power estimates.

This is not completely unexpected, because the offset chosen, µ = 0.008066, is quite

small, which results in the unaffected offspring’s contribution to be nonzero but still minor.

Recall, including families with only unaffected offspring does not result in substantial

power increases for rare diseases, because the allele distribution among the unaffected, their

parents, and the overall populationwill be analogous (unlikely to possess disease alleles) [9].
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(a) Histogram of conditional power estimates for
the ASDP∗C1MP via the exact TDT.

(b) Histogram of conditional power estimates for
the ASDP∗C2MP via the exact TDT.

(c) Histogram of conditional power estimates for
the ASDP∗C3MP via the exact TDT.

(d) Histogram of conditional power estimates for
the ASDP∗C2MP via the FBAT.

Figure 5.1. Histograms of Conditional Power Estimates. The conditional power estimates
were computed using PBAT and the method introduced by Murphy et al. [37, 39]. The
sample median conditional power is denoted with the blue dashed vertical line.
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One may notice that the inclusion of unaffected offspring actually decreased the sample

median of conditional power estimates from 0.1411 to 0.1383. This is not a cause for

concern, because the change is minimal. The apparent invariance of the conditional power

distribution to the incorporation of unaffected offspring does not imply that the modification

was not helpful. In general, one always increases power by including information from

unaffected offspring. In this case, the increase was marginal due to the low prevalence of

the disease considered, and this change was imperceptible in the distribution.

When considering the distribution of the conditional power estimates, it appears that

increasing the number of probands is a far more efficient way to improve the conditional

power for rare diseases like ASD, and through that the facial-feature clusters. The change in

the distribution when moving from 10 or 13 probands to 21 is prominent, while the change

due to including 71 unaffected offspring is negligible. This can also be seen in Figure 5.2,

where the conditional power estimate is plotted against the number of informative families

for each marker. Incorporating unaffected offspring when focusing on the ASDP∗C2MP

resulted in a median increase of 19 informative families which corresponds to a median

percent increase of 233%. One can notice the density of markers whose conditional power

estimate is larger than 0.7 is greater for the ASDP∗C3MP than the others. Thus, solely from

the perspective of enhancing statistical power through enlarging the sample size, clustering

the facial features of and genotyping additional affected offspring will be most effective.

Note that the meaning of affected offspring depends on which phenotype, ASDP∗CxMP

for x = 1, 2, 3, is being considered.
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(a) Conditional Power Estimate vs. the NIF for
the ASDP∗C1MP via the exact TDT.

(b) Conditional Power Estimate vs. the NIF for
the ASDP∗C2MP via the exact TDT.

(c) Conditional Power Estimate vs. the NIF for
the ASDP∗C3MP via the exact TDT.

(d) Conditional Power Estimate vs. the NIF for
the ASDP∗C2MP via the FBAT.

Figure 5.2. Conditional Power Estimate vs. Number of Informative Families (NIF). The
conditional power estimates were computed using PBAT and the method introduced by
Murphy et al. [37, 39]. The sample median conditional power estimate is denoted with the
blue dashed horizontal line.
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6. DISCUSSION AND CONCLUSIONS

We conclude by summarizing our findings and then outlining our recommendations

for future work.

6.1. SUMMARY

Because of the heterogeneous nature of phenotypes for individuals with autism

spectrum disorder (ASD), researchers have attempted to identify homogenous subgroups

with statistically different behavioral and clinical phenotypes between groups. One method

to identify subgroups has been to cluster individuals based on their facial features, noting

that facial and brain development are intertwined. This, combined with the fact that ASD

is inherently a genetic disease, provides motivation to identify the genetic underpinnings

specific to the facial-feature clusters of boys with ASD.

We attempted to identify genetic markers, in particular SNPs, that align with the

combined ASD and Cluster Membership Phenotypes (CMPs) using the family-based asso-

ciation test (FBAT). In a specific setting that we consider, the FBAT is often referred to as

the transmission disequilibrium test (TDT). The FBAT is an advantageous option: it avoids

misleading associations by requiring the presence of both association and linkage, and it

is more powerful than its population-based counterpart, especially in the trio setting, for

relatively uncommon diseases like ASD [9, p. 7]. We conducted “within-cluster” analyses

that utilized affected offspring and parents for each of the three facial-feature clusters iden-

tified by Obafemi et al. [8] using 2828 SNPs from high-confidence and strong-candidate

ASD genes. Then, we argued that focusing on Cluster 2 alone is natural and carried out

its analysis using a modified test statistic that incorporated information from unaffected
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offspring. In all four analyses, there was not enough evidence to conclude that any marker

was linked and associated with a causal DSL of the corresponding phenotype.

The data available included information on only 44 prepubescent boys with ASD

and their immediate family, which was reduced when incorporating CMPs. Therefore,

we implemented a screening method in order to address the low power resulting from this

small sample size. Screening first involved estimating the conditional power of being able to

detect linkage and association with a DSL when it is truly present. Then we systematically

allotted larger portions of the overall significance level to themarkerswith higher conditional

power estimates. This method has been shown to increase the power of the overall testing

procedure. However, for our data, the overall conclusion remained unchanged compared to

implementing the standard multiple-testing correction for these studies. Hence, we were

unable to say any of the 2828 SNPs considered are linked and associated with a DSL

involving ASD and the CMPs. Next, we discuss possible future work taking into account

these results.

6.2. FUTUREWORK

The drawback specific to this study is low power due to small sample sizes, but

let’s consider what is the best measure of sample size for this research setting. We have

mentioned two different ways that sample size can be measured in family-based association

studies. For the TDT, which includes only affected offspring, it is taken to be the number of

transmissions from heterozygous parents; this becomes the number of heterozygous parents

when trios are considered. For the more general FBAT, the sample size was recorded as

the number of informative families (NIF). When parental genotypes are known, the NIF

is the number of families that have at least one heterozygous parent. However, as seen in

Section 5.5, increasing the NIF for rare diseases essentially does not increase power when
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many of the families consist of only unaffected offspring. Hence, we argue that the best

measure of sample size for the ASD facial-feature cluster setting is actually that under the

TDT setting: the number of transmissions from heterozygous parents to affected offspring.

With this precise choice for the meaning of sample size, we can say that increasing

the sample size should result in more substantial gains in power. Therefore, in order to have

more acceptable power levels, one should recruit more probands (prepubescent boys with

ASD), determine the facial-feature cluster to which they belong, and genotype the proband

and both his parents. We do not feel that genotyping unaffected offspring is worth the extra

cost and time given that their contribution does not substantially impact the power of the

FBAT in this setting. If one is interested in restricting the focus to Cluster 2 as we did, then

“affected” means that the boy must have autism and facial features that align with those

characteristic of Cluster 2. Note, we are not implying that increasing the sample size, and

through that the power, will guarantee that a marker considered would will be declared

significantly linked and associated with a DSL while controlling the FWER at 0.05; it will

only raise the probability of detecting this when it is actually the case.

Given that the TDT is more appropriate for the ASD-facial-cluster setting, we can

refer to the literature on sample size calculations for the TDT, which is nonexistent for

the more general FBAT. These calculations depend on the characteristics of the disease

and marker, the desired power (typically 0.8), and significance level, which changes with

the number of markers considered. Some examples of disease and marker characteristics

include the true risk ratio, minor allele frequency, and mode of inheritance. In the best case

scenario, there is a large risk ratio, a MAF near 0.5, and an additive mode of inheritance.

For this, with a power of 0.8 and a significance level typical of GWAS, the number of trios

required is on the scale of hundreds [42]. But for realistic risk ratio values, more than

a thousand trios are needed [43]. However, in order to obtain a more specific estimate
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of the required number of trios, one would need to consult with medical practitioners for

reasonable estimates of values related to the disease andmarker. Note that these ranges were

computed assuming a GWAS, which includes many more markers than the 2828 considered

here. Nonetheless, realistically, we would still need hundreds of trios. When focusing on

the C2MP, we only had thirteen families, so we would need to increase the number of trios

by at least an order of magnitude.

One potential alternative to the TDT for the current data set is a sequential probability

ratio test (SPRT). There are three possible conclusions for a sequential test: acceptH0, accept

HA, or continue sampling. The third conclusion means that there is not enough evidence to

accept one of the hypotheses given the sample size, which is treated as a random variable.

Its form analogous to the TDT requires fewer trios than the TDT; e.g. a minimum of 70

are required to obtain a power of at least 0.8 for “highly associated SNPs” [44, p. 918].

However, the investigator must choose a specific value for the alternative hypothesis and the

desired levels of Type I and II error control. Therefore, the conclusions only apply to those

choices, which is quite limiting. Additionally, the alternative hypothesis for SPRT differs

from that of the TDT, and the TDT is more powerful if the linkage and association between

the marker and a DSL is moderate. Moreover, there is no software implementation of this

method [44]. For the ASD-facial-cluster setting, the SPRT could help with power, but the

current sample sizes may still be deemed insufficient even if the implementation difficulty

and excessive specificity of the test are overcome.

The most promising future research path that moves away from the TDT involves

testing for association at a higher level. There exist population-based tests that utilize

the gene as the “primary unit of analysis” instead of a single marker. This higher-level

approach is typically more powerful, because it combines possibly weak associations from

multiple markers within a gene. These gene-based tests are particularly useful for complex
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diseases [45, p. 343]. However, in the published literature, we could not find a test for family-

based association studies that utilizes gene-level information. Thus, the development of such

an approach would be valuable for the complex disease involving ASD and facial-feature

cluster membership.
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