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ABSTRACT 

In the current petroleum fracturing industry, it is necessary to understand the 

downhole migration and settling velocity of the proppant. If we can master this information 

well, it will be a great help to obtain effective propped fracture conductivity. In order to 

study the transport of proppants in the well, we used laboratory experiments and computer 

numerical simulations to compare the results to get a meaningful conclusion. We spent a 

lot of time building models on a powerful computer and comparing the experimental 

conclusions. We finally decided to use computational fluid dynamics (CFD) as the 

simulation platform, discrete phase method (DPM) as the base model, and compare the 

simulation data with settling velocity experiment data to draw conclusions. Three cases 

were run and tested including fracture fluid type, proppant size, and fracture orientations. 

Results show a good integration between experimental results and simulation outputs. This 

work will help to provide a full understanding of the distinct changes of the mechanical 

characterization on the High Viscosity Friction Reducers (HVFRs). The findings provide 

an in-depth understanding of the behavior of HVFRs under confined effect, which could 

be used as guidance for fracture engineers to design and select better HVFR design. 
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NOMENCLATURE 

Symbol Description  

 g  Gravitational Constant, 980 cm/s2 

Pf  Fluid Density, gm/cm3 

dp Particle Diameter, cm 

µ  Fluid Viscosity, poise 

u   The Velocity Vector 

  The Density of Fluid 

P   The Static Pressure 

F              The General Body Force 

a   
Density of Air 

w  
Density of Water 

a  
Viscosity of Air 

w  Viscosity of Water 

a  The Volume Fraction of Air 

pu
 

The Velocity of Particle 

u  The Velocity of Fluid Phase 

p  
The Density of Particle 

aF  Additional Force 

Vs Terminal Settling Velocity, cm/sec 



 

 

xii 

Vi Velocity of Particle i, m/s 

Xi Location of Particle i, m 

 Y  Young's Modulus, Pa 

δn Overlap Distance on Normal 

δt Tangential Direction 

τ Shear Stress, Pa 

γ  Shear Rate, sec-1 

Rei Reynolds Number 

Εf Volume Fraction of The Fluid 

Uf Fluid Velocity in m/s. 

Up Cell Averaged Particle Velocity in m/s 

Mi Mass of Particle i, kg 

CFD Computational Fluid Dynamics 

TFM  Two-Fluidmodel 

VOF           Volume of Fluid 

DPM Discrete Phase Method 

DDPM Dense Discrete Particle Model 

DEM Discrete Element Method 

DNS Direct Numerical Simulation 

LMC Low Mach Code 

FEM Finite Element Method 



 

 

1. INTRODUCTION 

1.1. STATEMENT AND SIGNIFICANCE OF THE PROBLEM 

Nowadays, understanding settling velocity and proppant transport in complex 

fracture system plays an essential role in determining propped fracture area, fracture 

conductivity, and their impact on well productivity and economics. Both experimental and 

numerical modeling are required to investigate proppant transport efficiency. Proppant 

transport is governed by several factors such as varying of settling velocity, fluid rheology 

characterization, fracture geometry, proppant size, and proppant concentration. In this 

study, computational fluid dynamics is carried out and used to model proppant transport 

through different complex fractures with various proppant size. The impact of the 

interaction between particle to particle and particle to fluid was captured using the domain 

fictitious method. To test and calibrate our simulation model, the study performed a 

validation simulation process against experimental observation of proppant transport.  

In recent years, the oil industry has adopted the use of high viscosity friction 

reducers (HVFR’s) in fracturing fluids due to several operational and economic reasons 

(Hu, et al. 2018; Van Domelen et al. 2017; Motiee et al. 2016; Ba Geri et al. 2019). HVFR 

fluids can replace slickwater by minimizing proppant pack damage and carry same amount 

of proppant as linear gel or better with less formation damage. (Ba Geri et al 2019b, 

Kunshin et al 2018). Hu et al. 2018 solved some problems which related to proppant 

transport capability using HVFRs and linear gel. In order to compare HVFRs with linear 

gel, viscosity and elasticity measurements were needed to investigate. Dahlgren et al. 2018 

identified three field case studies in which STACK play replaced traditional fracturing fluid 
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with HVFR. Viscosity-shear measurements were made at 2, 3, and 4 gpt HVFRs 

concentration with and without a breaker. They noticed that the breaker had the negative 

influence for the viscosity profile. Ba Geri et al. 2019 conducted an experimental work to 

investigate the rheology and settling velocity in HVFR and linear gel under different 

conditions. They observed that HVFR had better proppant settling velocity performance 

compared to linear gel. Most of the work performed so far were either experimental work 

or field trail tests and not much work used numerical simulator to mimic the proppant 

settling performance in HVFR. Thus, this work was to build a numerical model using 

computational fluid dynamics (CFD) that can predict and provide better understanding of 

proppant transport in complex fracture systems using HVFR fracture fluids.    

1.2. SCOPE OF THIS STUDY 

Here is the scope of my work( Figure 2.1）including experimental work and 

simulation work. Each part will be illustrated.  

 

 

Figure 1.1. Scope of my work. 
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2. LITERATURE REVIEW 

2.1. FRACTURE FLUIDS  

Conventional fracturing fluids include water based and polymer containing fluids, 

hydrocarbon-based fluids, energized fluids and foam whereas unconventional fracturing 

fluids are categorized as viscoelastic surfactant fluids, methanol containing fluids, and 

liquefied petroleum gas-based fluids. In conventional fracturing fluids, slick water, linear 

gel and HVFR are discussed in detail with their composition, rheological properties, 

advantages, disadvantages and applicability.  

2.1.1. Slick Water. Slick water is a method or system of hydro-fracturing which 

involves adding chemicals to water to increase the fluid flow. Fluid can be pumped down 

the well-bore as fast as 100 bbl/min. to fracture the shale. Without using slickwater the top 

speed of pumping is around 60 bbl/min (Wikimarcellus). Therefore, slickwater is a water-

based fluid and proppant combination that has low-viscosity and it has been most widely 

used fracturing fluid especially in unconventional reservoirs.  

The foremost components of this fracturing fluid are sand and water. Then other 

additives are mixed to solve different purposes like reducing the friction, corrosion, 

bacterial growth etc. Unlike the polymer solutions, viscosity of the slick water is very low 

because the only chemical which can substantially increase the viscosity is used in very 

low amount to reduce the friction while injecting the fluid downhole. Hence the amount of 

proppant which can be injected using slick water is very low (maximum 2.5 ppg) (Palisch 

et al., 2010) because of the less proppant carrying capacity and the fracture width created 

will be narrow as well from which very less amount of proppant can go inside the fracture.  

http://waytogoto.com/wiki/index.php/Hydro-fracturing
http://waytogoto.com/wiki/index.php/Proppants
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Slick water has obvious advantages and disadvantages. The major benefits of using 

slick water as a fracturing fluid are reduced gel damage as very less concentration of 

polymer is used as a friction reducer, less cost, high stimulated reservoir volume and better 

fracture containment (Mohanty et al., 2012). The fracture length will be very long and 

reservoir-wellbore connectivity will be better because of the complex fracture network 

created by slick water (Gandossi, 2013). The lack of viscosity will also bring problems. 

Firstly, it needs high volume of water to inject sufficient. In addition, high pump rate is 

also required to overcome the friction losses and to ensure that sufficient amount of 

proppant reach to the tip of the fracture. 

 Linear Gel.  Guar gum is often crosslinked with boron or chromium ions to 

make it more stable and heat-resistant. The crosslinking of guar with metal ions results in 

a gel that does not block the formation and helps efficiently in formation cleaning process. 

During a long period, guar is one of the most widely used polymer in the fracturing fluid 

which contains a long chain of polysaccharide with side chains of galactose and has high 

molecular weight (Jennings, A.R. 1996). Weaver and Schmelzl (2002) reported the average 

molecular weight of guar as 2-4 million Dalton approximately. It is usually used in the 

form of dry powder that swells when mixed with an aqueous solution and form a viscous 

gel (Gandossi, 2013). The viscosity attained using these linear polymers is around 35-50 

cp (Al-Muntasheri, 2014). This viscosity is sufficient enough to carry at least much more 

amount of proppant than any usual slick water will carry.  

The oil company developed derivatives of guar such as hydroxypropyl guar (HPG) 

and carboxymethylhrdroxypropyl guar (CMHPG) whereas the other forms of cellulose 

based polymers are carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC) and 



 

 

5 

carboxymethylhydroxyethyl cellulose (CMHEC). Among them HPG and CMHPG are the 

most common gelling agents used for fracturing. 

The linear gels with that high viscous prevent fluid loss by creating a filter cake on 

face of the low permeability formation but damages the formation conductivity by leaving 

the polymer residue at the same time. In high permeability formation the behaviour of 

linear gel be completely opposite and the amount of fluid loss will be high as there would 

not be any mud cake created on the face of the formation (Gondassi, 2013). Guar 

concentration to prepare linear gel on the field is reported to be 0.12-0.96 w/w for 

operations (Robert and Pin, 1993). As long as clean up property of guar is concern, the 

expected residue is approximately 6-10% by weight and is less for HPG which is around 

2-4% by weight. (Economide et al., 2000) 

2.1.3. High Viscosity Friction Reducers (HVFRs).  As we discussed before, 

friction reducers (FRs) are used to decrease the amount of power required to move a 

hydraulic fracturing fluid through a formation at a fixed flow rate. Though FR viscosity is 

not a crucial consideration in proppant transport when used before the perforations in slick 

water applications, FR viscosity becomes a greater consideration in proppant transport 

from the perforations into the formation and an important qualifying criterion with the 

advent of High Viscosity Friction Reducer (HVFR) systems that require higher loadings 

than traditional FRs. Consistent viscosity measurement can vary greatly depending upon a 

number of factors, for example temperature, hydration approach, polymer concentration, 

brine composition, and additive interaction. A study was developed and implemented to 

determine the influence of HVFR by concentrated particulate and bead settling. Y. Thomas 

Hu (2018) compared the proppant transport capability of apolyacrylamide-based HVFR 
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with that of linear guar at cost-parity concentrations and the results indicate that the 

proppant transport performance of fracturing fluids correlates better with their elasticity 

and low shear viscosity than the high shear viscosity. Kyle Dahlgren and Brett Green (2018) 

indicated three case studies of high viscosity friction reducers HVFR in the STACK Play 

and they finally found that high viscosity friction reducers as a successful fracturing fluid 

in the STACK play and require further testing and development in the field.  

Matt Johnson (2018) used HVFR in marcellus shale stimulation and the benefit of 

HVFRs is founded. Many HVFRs are available as a single fluid system that can be adjusted 

to provide a range of viscosities, which makes the operation at the wellsite much simpler 

to execute. Not only does it lower the number of chemicals required onsite, it also reduces 

tank requirements and the number of trucks in the field. In addition, its and handling 

equipment are not required due to the relatively rapid hydration rate for HVFR polymers 

(Van Domelen et al. 2017). The friction reducing properties of the HVFR fluid allow it to 

be pumped downhole at lower hydraulic horsepower requirements. What’s more, the 

ability of HVFRs to increase fluid viscosity at relatively low concentrations means that 

more proppant can be transported with less water in the formulation, which is a significant 

cost reduction benefit for operators who are constantly looking for ways to lower their 

operating expenses. 

2.2.  RHEOLOGY OF THE HVFR AND THE LINEAR GEL 

High viscosity friction reducers (HVFRs) plays an important role in reducing the 

cost and improving retained conductivity. It means, comparing to the traditional linear gel, 

HVFRs is more popular and more competitive (Y. Thomas Hu, David Fisher, 2017). But 
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HVFRs has its own shortcomings. HVFRs may not be as good at transporting proppant as 

traditional linear gel, but this assumption also requires further scientific experiments to 

confirm. HVFRs can replace the mixed fracturing fluid in unconventional reservoir 

completions, and it is one of the important components of viscous slick water. We need to 

better understand the nature of HVFRs so that we can make better use of it. Therefore, the 

rheological properties of HVFRs are very important, especially viscosity. 

There are many hydraulic fracturing treatments use gelled fluids because of their 

high viscosity which can create wide enough fractures that can take sufficient amount of 

proppant inside it. The fracture will start closing when the pumping process is stopped and 

conductive channels will be created due to improper closure of the fractures caused by the 

proppants settled in between those fractures. Harris and Morgan, 2005 found that the 

rheological properties of the fluid such as apparent viscosity, yield stress, viscoelasticity, 

dynamic viscosity, etc, directly affect the properties of the fracturing fluid, thereby 

affecting the load carrying capacity of the proppant. Sharma, 2012 and Gomma et al., 2015 

found that consideration of viscosity alone could not accurately assess proppant transport 

and hence effects of elasticity on the proppant transport need to be investigated.  

2.2.1. Viscosity of the HVFR. Viscosity is the material property which relates the 

viscous stresses in a material to the rate of change of a deformation. On the other words, 

viscosity is a measure of the fluid’s resistance to flow. In general way, steady shear sweep 

test is performed to identify the fluid’s viscous characteristics in which shear stress is 

measured for each shear rate implemented. 

The standard measure of fluid flow resistance is viscosity. In the field of human 

research, Newtonian fluids and non-Newtonian fluids represent essentially all fluids. 
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Another important physical parameter is the shear rate. The viscosity of most fluids, 

represented by HVFR, depends on the rate of shear rate, but the viscosity of Newtonian 

fluids is always constant. Shen (2018) use advanced rotational rheometer to do this 

experiment. Both high shear and low shear viscosity was measured at HVFR 

concentrations of 2, 4, 6 and 8 gpt (gallons per thousand gallons).  

Carl Aften, Solvay S. A（2018） illustrates a characteristic rheological curve 

shown in Figure 2.2 for a shear thinning water-soluble polymer, with Stokes’ law of settling 

principle accepted, and a high viscosity Newtonian plateau present at low shear rates. The 

majority of the fluid’s s shear profile resides at the higher shear rate end of the rheogram 

demonstrating the actual flow from the pumps to the perforations and represented by a 

presumed low viscosity Newtonian plateau.  

 

 

Figure 2.2. Ideal rheological profile of a water-soluble polymer (Escudier, 2001). 
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Three scientifically researched and documented principles of proppant transport 

that characterize the balance and effects of velocity and viscosity interrelation, listed in 

order of decreasing velocity and increasing viscosity influence are Newton's, Allen’ s, and 

Stokes’ laws.  

Thomas Hu, etc. (2018) showed field data where HVFRs were used in the place of 

linear gels to deliver proppants and they generate "plug-and play" HVFR formulations that 

can directly substitute linear guar at a given concentration. The rheological test results 

show as the Figure 2.3 below, at each comparative concentration (i.e. 2.25 gpt HVFR 

versus 15#guar; 3 gpt HVFR versus 20# guar; 4.5 gpt HVFR versus 30# guar), the HVFR 

had a lower viscosity at intermediate to high shear rates but higher viscosity at low shear 

rates. The shear rate at which the HVFR and guar had the same viscosity was 16 for 2.25 

gpt HVFR and 15# guar, and decreased to single digits for the other two pairs of fluids. In 

addition, the slot flow clearly shows that the HVFR had better sand carrying capability than 

guar. One reason for the improved proppant transport could be the larger viscosity of the 

HVFR at low shear rates. Even though the average shear rate in the slot is about 80, the 

shear rate is much lower in the vicinity of the slot center due to the non-uniform nature of 

the Poiseulle flow. Therefore, in this region particles will be suspended in the HVFR for a 

longer time than in guar and travel much longer before they settle to the bottom. Three 

cases shown in Kyle Dahlgren and Brett Green’s (2018) research. The first includes two 

nearly identical offset horizontal wells in terms of landing target, location, and completion 

designs. The lone differing variable between the two wells was a substitution of HVFR for 

gel, both linear and crosslink, in the pump design. The second case describes an application 

in an extended-reach lateral within thinning pay to optimize economics in stressed areas. 
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The last case includes a horizontal lateral in the geologic heart of the play with consistent 

well results in surrounding sections. 

 

 

Figure 2.3. Viscosity as a function of shear rate for the HVFR- and guar-viscosified fluids 

(Thomas Hu, etc. 2018). 

 

The fluid rheology testing showed that the breaker provides a distinct reduction in 

the viscosity of the HVFR as compared to the fluid system without the breaker and friction 

reduction has been evaluated with the HVFR in a laboratory flow loop and consistently 

provides friction reduction values of around 70%, regardless of variations in the mix water 

composition.  

StimLube HBVB which indicated by Matt Johnson (2018) was thoroughly 

evaluated in laboratory studies designed to measure the product's ability to build viscosity 

under a wide range of treatment dosages and water hardness levels. StimLube HBVB was 

evaluated in these viscosity tests at the common loading rates ranging from 1to 5 gpt.  
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2.2.2. Viscosity of the Linear Gel.  Two major types of fluids have been discussed 

previously: Newtonian fluids and non-Newtonian fluids. However, in the case where the 

subject is a non-Newtonian fluid, the viscosity is in fact constantly changing according to 

different shear rates, and there is no constant value. Non-Newtonian fluids are further 

divided in sub-classes such as shear thinning or pseudoplastic fluids, shear thickening, 

viscoelastic etc. Chhabra (2007) illustrated the detailed description of all the different 

classes of non-Newtonian fluids. Most linear gels or uncrosslinked gels are considered to 

be non-Newtonian shear thinning because their viscosity decreases as the shear rate 

increases. In reality, however, most polymer fluids exhibit shear thinning behavior. Under 

long-term research observations, it was concluded that the rate of decrease in viscosity with 

shear rate depends on factors such as the type and concentration of the polymer used, the 

molecular weight of the polymer, the type of solvent, and the temperature. As linear gel is 

shear thinning non-Newtonian fluid, value of effective viscosity is used for calculations 

which is taken at values of apparent shear rate (particle shear rate caused by the movement 

of the sphere falling in a quiescent fluid) between Vs/dp and 3Vs/dp (Roodhart, 1985). 

From the Table 2.1 below, it contains the information regarding the different linear gels 

used by previous researchers according to the concentration of the polymers used to prepare 

the linear gel (‘n’ determines the degree of shear thinning).  

 

Table 2.1. Viscous characteristic of various fracturing fluids. 

Author Fluids Density 

(gm/cc)  

n Range of  

shear rate 

(sec-1) 

Clark et al.  

1981 

HPG NA 0.829- 

0.293 

0-150  
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Table 2.1. Viscous characteristic of various fracturing fluids (cont.). 

Roodhart  

1985 

Guar gum / 

HEC 

NA 0.33-8.5 / 1.4-

40 

0.1-1000 

Kirkby and  

Rockefeller 

1985 

HPG NA NA 0.01-1000 

McMechan  

and Shah  

1991 

HPG /  

HEC 

NA NA NA 

Machac  

and Lecjaks 

1995 

Tylose / 

Natrosol / 

Kerafloc 

1.00 0.898 / 0.741 / 

0.356 

1.5-16.2  

Asadi et al.  

1999 

Guar gel / 

HPG 

NA NA 600 

Goel et al.  

2002 

Guar gel NA NA 0.1-1000 

Kelessidis  

and  

Mpandelis  

2004 

CMC 1.00 

(20 ℃) 

0.7449- 

0.9099 

5-1000 

Liu and  

Sharma  

2005 

Guar gel NA 0.59 5-1022 

Hu et al.  

2015 

CMHPG NA 0.62 10-100 

Shahi and  

Kuru 

2016 

CMC NA 0.8 0.1-1000 

Arniaplly  

and Kuru 

2017 

HPAM NA 0.35 1-200 

 

 

2.3. MEASUREMENT OF SETTLING VELOCITY IN CONFINED FLUID 

In recent decades, researchers have used different methods to study the settlement 

problems in closed fluids. Lecjaks (1995) used six different sizes of spheres and glycerol 

of different densities as Newtonian fluids, Tylose, Natrosol and Kerafloc as non-Newtonian 

viscoelastic fluids, using rectangular columns of 80 cm height, 8 cm longer width and 1.2 
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cm shower width. Based on its experimental results, it has a wide range of applicability 

and is equally applicable to square pipes. Sharma (2005) used 40 pptg linear guar, water 

and a mixture of water and glycerol in the experiment to study the effect of fracture wall 

on the settling velocity of proppants under static conditions. By analyzing the results 

obtained from the parallel plate model using proppants of different sizes and specific 

gravities, they found that as the viscosity of the fluid increases, the fracture wall effect 

becomes more pronounced and the settling velocity is gradually decreasing. This effect 

represents a change in the rate of settling. As the ratio of particle size to fracture width 

increases, the settling velocity of both Newtonian and non-Newtonian fluids decreases. 

They observed that increasing the shear thinning of the fluid reduced the wall delay effect. 

What’s more, Malhotra （ 2012 ） got something new. It is observed in his 

experimental results that increasing the shear thinning behavior of the fluid reduces the 

wall delay effect. Even the elasticity of the fluid delays the influence of the wall, and as 

the ratio of the particle size to the fracture width increases, this delay becomes more 

significant. 

Previous authors also doing research about the effect of size of the proppant and 

viscosity of the fluid on the settling velocity of the single proppant with confining fracture 

walls. Liu and Sharma (2005) found that with increasing viscosity of the fluid, effect of 

fracture walls increase in their experiment using ceramic proppants. After their data 

analysis, the decrement in the settling velocity inside water is 24% when the fracture width 

narrows down from 5.5 cm to 0.27 cm whereas in the case of 10 pptg gel the reduction 

increases to 31% and for 20 pptg the reduction increases more to 45%. Therefore, from the 

values of decrement percentage, it can be concluded that increasing viscosity of the fluid 
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increases the hydrodynamic interaction between proppant and fracture walls due to which 

the reduction in the settling velocity increases. This phenomenon was not observed in all 

the cases may be due to usage of actual proppants in which the size and the specific gravity 

of the proppant can never be exactly same for every single particle used during experiments.  

2.4. STATIC SETTLING VELOCITY SIMULATION 

Literature review of static settling velocity simulation is required before starting a 

new research about simulation. Different simulation model brings different numerical 

methods to solve the problem. Table 2.2 includes name, year, experiment, simulation 

approach, proppant size and fluid type of previous authors. Learning about what others do 

helps me choose my own model to setup the simulation work. 

 

Table 2.2. Different simulation model used by several authors and the details. 

Author Year Experiment Simulation 

Approach 

Proppant 

Size 

Fluid Type 

Phani B. 

Gadde, 

Yajun Liu 

et.al 

2004 NA UTFRAC-

3D 

NA Slick Water 

G.Pianet, 

E.Arquis 

2007 Yes DNS DP=6.25 Water 

Jan Erik 

OLSEN and 

Schalk 

CLOETE 

2009 NA VOF/DPM NA Gas 

Jenny 

Suckale 

2012 NA CFD NA Water 
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Table 2.2. Different simulation model used by several authors and the details (cont.). 

Christoph 

Kloss and 

Christoph 

Goniva 

2012 NA CFD-DEM 5mm Water 

Xizhong 

Chen and 

Junwu 

Wang and 

James 

McAndrew 

2014 NA CFD-

DEM/CFM/DDPM 

0.65mm Water 

Pratanu 

Roy. 

Wyatt 

L .Du 

Frane et.al 

2016 Yes LLNL SAMRAI D=500 Water/Oil 

Rongqian 

Chen, Yi 

Liu et al. 

2017 NA LB-DF/FD 

DNS 

NA Non-

Newtonian 

fluid 

Songyang 

Tong, 

Robin 

Singh and 

Kishore K 

2017 Yes CFD 20/40 ceramic 

proppant 

Water 

Xianhui 

Kong and 

James 

McAndrew 

2017 NA CFD-Euler-Euler 

multiphase 

200um/400um/600um

/800um 

Water 

R.Kou, G. 

J.Moridis 

et.al 

2018 Yes CFD-DEM 50/70 Water/ Oil 

 

 

Particle sedimentation is one of the most common phenomena in nature and 

industrial production, such as fluidized bed, gas filtration technology and sand deposition, 

which always presents classic problems in the field of fluid dynamics. The application in 

petroleum engineering is also very extensive. For example, we have studied the 
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sedimentation of particles in different viscosity fluids to provide a more comprehensive 

understanding of the proppant migration in the downhole fracture. The difficulty in 

studying the sinking of particles in still water is the interaction between the particles and 

the possible wall-effect of the particles and the wellbore. 

Jan Erik OLSEN and Schalk CLOETE (2009) talks about the volume of fluid (VOF) 

model and the discrete phase method (DPM) in their article, which is highly used in my 

research later on. They focus on the coupled DPM and VOF model which is applied to gas 

stirred ladles with bottom injection and validated against experiments. It is shown that the 

assumption of a flat surface is acceptable if the purpose is to obtain velocity profiles at 

different elevations in the ladle. If mixing time is the purpose of the investigation, the flat 

surface assumptions is not valid. The model is also applied to prove that the lift force is not 

significant at higher gas rates.  

They choose to study the hydrodynamics of a ladle, which means the liquid is in 

the ladle and the gas above the liquid and the bubbles in the liquid. In some case, the ladle 

may contain secondary liquid phases or the top gas may be ignored and cause a boundary 

condition problem. Sometimes the boundary condition problem is the hardest to deal with. 

The coupled Volume of Fluid (VOF) and Discrete Phase Model (DPM) applies the VOF 

model to describe the fluid behaviour of the liquid in a ladle, the continuous gas phase 

above the liquid and the interface between them. Since the VOF model cannot resolve the 

bubbles with an affordable grid resolution, a Lagrangian method, DPM, is used to track the 

bubbles, which is the biggest advantages of Discrete Phase Model. 

Actually, they do not have the experiment result to compare with. So, they use their 

modeling results compared to experimental results (Engebretsen et.al., 1997) to validate 
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the model. A series of experiments were conducted in a rectangular basin with a depth of 

6.9 m and a surface area of 6 x 9 m. The basin was filled with water and air was released 

at the bottom at gas rates of 83, 170 and 750 Nl/s (equivalent to 50, 100 and 450 l/s referred 

to the state at the inlet). The inlet was comprised of a release valve with a rapidly acting 

piston injecting gas vertically with arrangements in front of it to reduce the vertical 

momentum. Because of this momentum breaker, the fluctuations in the gas flow and the 

length of the inlet jet were minimized. They also see from Table 2.3 that the time it takes 

for the first bubbles to reach the surface is well predicted by the model which is the most 

important in the modeling. 

 

 

Table 2.3. Experimental and theoretical bubble rise times (Jan Erik OLSEN 2009). 

Gas Rate 83 Nl/s 170 Nl/s 750 Nl/s 

Experimental 6.0 s 4.8 s 3.1 s 

Modelled 6.6 s 5.2 s 3.1 s 

 

 

 

In their research, the method is a coupled VOF and DPM model which is 

numerically robust and efficient. By applying the method to gas stirred ladles with bottom 

injection, it has been shown that the lift force has no influence on the hydrodynamics for 

higher gas rates. Besides, it has also been shown that the assumption of a flat surface is 

acceptable if the purpose is to obtain velocity profiles at different elevations in the ladle.  

Xizhong Chen and Junwu Wang（2014）mentioned the Eulerian-Eulerian two-

fluid model (TFM) and the discrete element method (DEM) in their article. The Eulerian-

Eulerian two-fluid model (TFM) treats both gas and solid phase as interpenetrating 
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continua, the conservation equations of mass, momentum and energy are obtained through 

an appropriate averaging process and the constitutive relations for solid phase are usually 

closed using kinetic theory of granular flow (J. Ding. 1990). The TFM method normally 

requires much less computational resources compared to Eulerian-Lagrangian approaches. 

Therefore, it can be used to model and study pilot scale and industrial scale reactors (X.-Z. 

Chen. 2011). Despite the advantages, the discrete character of the solid phase is lost in the 

TFM method owing to the continuum description of the dispersed phase. This limitation 

can be overcome by discrete approaches such as discrete element method (DEM) (Y. 

Tsuji.1993), in which solid particles are tracked individually according to Newton's laws 

of motion with detailed particle-particle and particle-wall collisions. One of the main 

drawbacks of DEM method is the high computational demands (M. Xu. 2012), which 

restricts its applications to small scale, fundamental investigations.  

In the TFM, the particle-particle and particle-wall friction is not considered; 

therefore, in the CFD-DEM simulation, only the normal particle-particle and the normal 

particle-wall collisions were included to maintain consistency with KTGF. About the DEM 

method, the advantage of the DEM approach over the other two models lies in its explicit 

treatment of the particle-particle collisions. The interactions between two particles are 

represented as spring and dashpot in DEM method, where the spring causes the rebound 

off the particles and the dashpot mimics the dissipation of the kinetic energy due to inelastic 

effect.  

The TFM method and DPM method have more potential for industrial applications 

since they are less computational demanding. However, the limitations of these methods 

should be known. TFM method always predicted a converging flow and failed to predict 
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the particle trajectory crossing effect in dilute system, while the DPM method failed to 

predict the cases where the two particle jets are emerging. At the same time, both TFM and 

DPM successfully reproduced the main features of impinging flow at some cases. 

Pratanu Roy (2016) and his research team get a incredible research on numerical 

and experimental studying of particle settling in real fracture geometries. When I read 

Roy's paper, I was deeply shocked by the ability of their team to analysis data with such 

high quality.  

Based on their real fracture experiment result, the perspective of modeling proppant 

transport has a pretty big challenge because the experiment combines multi-component 

fluid behavior with thin-film or lubrication flow. The thin-film always cause the wall-effect 

and the lubrication flow will increase the pressure of calculating the modeling result in the 

last simulation part. They investigate the transport properties of particles in fractures 

through a series of high-fidelity numerical simulations and sub-fracture-scale experiments. 

After the experiment work, they got the proppant movement in clear-plastic three-

dimensional reproductions of the shale surfaces recreated using three-dimensional printing. 

In addition, they use tailored flow cells to combine with microcapsules for improved 

particle tracking in dense particle packs. About the real fracture environment, the flow cell 

consists of two pieces: the “roof” and the “floor” shown on Figure 2.4. The “roof” of the 

cell containing one half of the fracture surface and the “floor” containing the opposite 

surface along with the entry and exit part.  
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Figure 2.4. Marcellus shale sample a top view of core, the original sealed fracture and 

induced fracture path are evident running across the center of the core; b fracture surfaces 

(Roy. 2016). 

 

Later on, they made a synthetic proppant analogue consisted of a mixture of 

transparent microcapsules shown on Figure 2.5 to improve particle tracking during the 

experiment. The last part in his research is building the numerical model, then compare the 

simulation result with the experiment result. The simulation uses the LMC-SAMRAI code 

which based on a distributed Lagrange multiplier technique in which both the interstitial 

fluid and particles are fully resolved and coupled (Patankar et al. 2000; Glowinski et al. 

1999), for direct numerical simulation of particulate flow (Kanarska et al.2011). 

 

 

Figure 2.5 . Examples of hydro-dynamically identical transparent-bulk and Opaque-tracer 

particles created using micro-encapsulation (Roy. 2016). 
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They got the net result which was the rapid formation of regions of high particle 

concentrations interspersed with clear regions virtually devoid of proppant particles in 

Figure 2.6. Figure 2.6(b) give the evidence of the upwelling fluid which is sufficiently 

strong that particles become entrained in this upward fluid flow. This figure illustrates the 

probability density distribution of the settling speeds of the individual particles. While the 

net motion for the bulk of the particles is downward, a small percentage of the particles 

have a positive vertical velocity. In Figure 2.6 (a) we can see some particle paths with 

vertical velocity components which reveals that the upward components are generally 

aligned with the regions of the fracture with relatively low particle concentrations. 

 

 

 

Figure 2.6. Particle paths during settling in the fractured sample and between two parallel 

plates. The red lines indicate the paths of some particles that reverse in direction with 

markers (not to scale) indicating the particle locations at the final timestep. Axes given in 

meters (color figure online) (Roy. 2016). 
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They finally found that new experimental and numerical methods capable of 

resolving sub-fracture scale behavior are needed to better understand the behavior of 

proppant in fractures and improve these empirical models because these models may 

underestimate the effect of the fracture geometry on the proppant behavior. I found this 

problem in my case, too. I finally realize that I need to combine the air effect and the wall 

effect in my CFD-FLUENT model. 

Rongqian Chen (2017) found that a direct numerical simulation (DNS) is usually 

adopted to study the mechanism of particle sedimentation. In a DNS method, the fluid flow 

and particle motion are coupled to study the dynamics of individual particles suspended in 

fluids, which is the highest resolution numerical method without any empirical model. In 

addition, his work focuses on the boundary condition and the curve boundary of particles. 

Dealing with the curve boundary of particles in the simulation via the DNS method is pretty 

important. In the past research, there are two kinds of schemes which are usually adopted 

to simulate the particulate flows: the immersed boundary method (C. S. Peskin. 1977) and 

the fictitious domain method (R. Glowinski. 1999). Chen’s group want to know under what 

circumstances the particles are falling together in the channel. Therefore, they use lattice 

Boltzmann direct-forcing/fictitious domain (LB-DF/FD) method to simulate the 

sedimentation of three circular particles in a vertical channel. Figure 2.7 shows the 

schematic of the problem. 

After doing the experiment, they analysis the experiment data and made a validation. 

The sedimentation of a circular particle in a narrow channel is adopted to validate the 

present computation method. 
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Figure 2.7. Schematic of the problem (Rongqian Chen. 2017). 

 

It can be inferred that the particle moves away from the wall and undergoes a 

damping oscillation about the centerline of the channel until it reaches a steady state. They 

finally completed the LB-DF / FD method to simulate the settlement of three particles in a 

narrow channel. The effects of wall and Reynolds number on particle trajectories are also 

studied. Results have shown that at certain Reynolds numbers (Re= 10 or 40 < Re ≤ 100) 

the left particle always sediments at 0.175 of the channel widths irrespective of its initial 

position or the channel width. In addition, results have also shown that the lateral particles 

lead at small Reynolds numbers, while the central particle leads at large Reynolds numbers. 

Therefore, doing research about Reynolds numbers is necessary. 

R. Kou and G. J. Moridis (2018), they focus on providing a better understanding of 

proppant transport behavior in inclined planar fractures by means of numerical simulation. 

They found a significant difference from prior (laboratory) experiments is the capability of 
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their model to simulate proppant transport at field-scale flowrates. Such capability is 

critical in understanding proppant transport and appropriately designing it by ensuring that 

the correct Reynolds number and flow regime are used in the design calculations.    

Although I am studying the settling velocity in the static water, but I can also learn 

a lot from the dynamic proppant transport, which is popular in recent petroleum industry. 

Because the understanding of proppant transport in fractures plays a critical role in 

estimating propped fracture dimensions and performance. Modeling of such processes is 

challenging because of the complex interactions between fluid, proppant particles and 

fracture geometry. So, Kou and G. J. Moridis found that existing models generally assume 

vertical planar fracture geometry, whereas the reality in the subsurface maybe much more 

complex. Therefore, they use discrete element method and computational fluid dynamics 

simulations in this study which I mentioned before to demonstrate that interactions between 

proppant particles and fracture side walls play an important role in proppant transport 

efficiency. 

They use two validation ways that they thought would be better to describe particle 

settling tests and laboratory proppant transport experiments. They use two hydraulic 

fracture simulation at the beginning, one with a vertical planar fracture (as a base case), 

and the other with an inclined planar hydraulic fracture. They conducted proppant transport 

simulations using our benchmarked models in both domains and compared the proppant 

distribution results. Different from Jan Erik OLSEN and Schalk CLOETE (2009) who use 

the volume of fluid (VOF) model and the discrete phase method (DPM) for simulation, 

Moridis’s group choose DEM simulation using LIGGGHTS (Kloss et al. 2012), which is 

an open source C++ simulator built on the LAMMPS (Plimpton,1995) platform and 
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parallelized with MPI and CUDA. Actually, using DEM is much more complex than using 

CFD-FLUENT because it needs reliable computer code to work with. 

In the next part, Moridis's verification method has benefited me a lot. And I 

innovatively used a graph of time related to particle drop distance to validate my model. In 

their part, they conducted a simulation that described a laboratory test of a settling proppant 

particle and the simulation study involved tracking a spherical particle with a diameter of 

0.512 mm (representing 50/70 mesh sand) that is dropped in a water container. The 

evolution of the velocity of the descending (settling) particle is shown in Figure 2.8. The 

particle initially accelerated under the influence of the gravity force, and eventually it 

reached terminal velocity. Because of the limitation of Stokes equation, they conducted 

laboratory settling tests using 3 different-sized particles (20/30 mesh, 30/40 mesh and 

50/70 mesh) and two types of fluids (water and oil) to calibrate their model over the full 

range of Reynolds Number which can match the simulation result much easier. 

The results show that the terminal velocity estimated from the coupled CFD-DEM 

simulation matches well the experimental data, but the agreement with the analytical 

solution deteriorates as the particle size increases. For slick water hydraulic fracturing 

operations, they indicate that near wellbore proppants consist of both early- and late-stage 

injected proppants, besides that, their model tend to indicate that proppants near the 

wellbore are those last injected which is different from the previous models which other 

people does. After learning his research, we finally give up using CFD-DEM as our basic 

model. The reason is simple. CFD-FLUENT can get better result for complex boundary 

condition situation and is much easier to use. 
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Figure 2.8. 50-70 mesh sand settling velocity in water (Moridis. 2018). 
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3. PROPPANT SETTLING EXPERIMENTAL DESCRIPTION 

3.1.  EXPERIMENT MATERIALS 

Three fracturing fluids were tested including slickwater, HVFR, and linear gel. 

HVFR and linear gel samples were obtained from BJ Services. HVFR was prepared 

according to the standard industry practice of using HVFR, where 2 gpt concentration of 

HVFR were mixed with deionized (DI) water. Different sizes (2 mm, 4 mm, and 6 mm) 

(Figure 3.1) of glass beads proppant were used to measure proppant terminal settling 

velocity. High accuracy advanced rheometer with a parallel-plate system was used to 

measure fracture fluid viscosity-shear profile at lab temperature conditions. The particles 

were painted shown in the Figure 3.2 so they can be more visible in the vague fracture fluid. 

 

 

Figure 3.1. Different sizes (2 mm, 4 mm, and 6 mm) of glass beads proppant.  
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Figure 3.2. Painting particles. 

 

3.2.  CONFINED FRACTURE WALL EXPERIMENT SETUP 

Figure 3.3 shows the schematic of the experimental fracture cells setup. The 

fracture cell model dimensions were 50 cm height and 7 cm length and kept the same for 

all the experiments. Fracture cells were constructed of two Plexiglas plates that were 

perfectly fit parallel and smoothly. Gasket rubber was placed between the parallel plates 

which mimics the fracture width. Two different fracture widths were studied: 3 mm and 9 

mm. At this point, the cell was filled by either slick water or HVFR fluid and positioned 

the cell vertically. High-resolution video camera used to record the proppant settling 

process. Proppant sizes of 2 mm, 4 mm, and 6 mm were used to conduct experiments. 

Figure 3.4 shows the experiment picture in laboratory. 
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Figure 3.3. Schematic of fracture setup for confined fluids. 

 

 

 

Figure 3.4. Realistic model in lab. 
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In complex fracture system includes numerous of natural fracture which inclined 

from the main fracture by variety of angles. Understanding proppant settling behavior in 

inclined fracture is an essential for proppant transport in fracture treatment. Three different 

angles 45⁰, 60⁰, 90⁰ have been investigated to mimic inclination fractures. The 

configuration of this experiment for modeling the particle-wall friction occurred due to the 

interaction between particles and inclined walls effect. Confined fracture wall setup was 

positioned as illustrated in Figure 3.5 to observe the fracture inclination effect. Spherical 

proppant shapes used with diameter ranges of 2 mm, 4 mm, and 6 mm. The motion of 

proppant rolling down in the inclined cells acting under four forces friction force Ff, 

gravitational force, FG, buoyancy force FB, drag force, FD, and Fr, friction force. 

                                                       𝐹𝑓 = 𝑚𝑔 sin 𝜃                                          (1) 

 

 

 

 

Figure 3.5. Schematic of the experimental fracture cell for measuring inclination angle 

effect. 
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Figure 3.6. Angle effect experiment process record in lab. 
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4. COMPUTATIONAL FLUID DYNAMICS (CFD) BASICS INTRODUCTION 

4.1. WHAT IS CFD? 

ANSYS, Inc. is an engineering simulation software (computer-aided engineering, 

or CAE) developer headquartered south of Pittsburgh in the South pointe business park in 

Cecil Township, Pennsylvania, United States. One of its most significant products is 

ANSYS CFD, a proprietary computational fluid dynamics (CFD) program (Wikipedia). 

Computational Fluid Dynamics (CFD) is a set of numerical methods applied to 

obtain approximate solutions of problems of fluid dynamics and heat transfer. Therefore, 

CFD is not a science by itself, it is a way to apply the methods of one discipline (numerical 

analysis) to another (fluid flow/mass transfer and heat transfer).  

4.2.  WHY CFD? 

CFD is used because there are many engineering problems that can’t be solved by 

analytical or Experimental approach, or it is difficult to use analytical or experimental 

approach. The reason is the analytical solutions are only possible for a limited number of 

problems, usually formulated in an artificial, idealized way and the experimental 

approaches are more suitable reliable real-world situations but sometimes the disadvantage 

is very obvious that the real-world situation is too expansive, besides, too many technical 

difficulties. In conclusion, CFD gives an insight to the pattern of the fluid flow that is 

difficult to predict with regular experiments, expensive to conduct and sometimes 

impossible to study by the regular experiments.  
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4.3.  HOW DOES CFD MAKE PREDICTIONS? 

The CFD software use mathematical tools to solve the problem which is a pre-set 

of equations. The main factor of CFD is: 

 The researcher who feeds the problem into the computer. 

 Scientific knowledge that is expressed mathematically.  

 The computer code that consists of the algorithms that embodies the knowledge. 

 Hardware of the computer that performs the calculations. 

 The researcher who simulates and interprets the data. 

CFD is a highly disciplinary subject that indulges into the research area and lies at 

the interface of physics, applied math and computer science.  

4.4.  APPLICATION OF CFD 

CFD is a very powerful technique and spans a wide a wide range of industrial and 

non-industrial applications. Some examples are as follows: 

 Aerodynamics of aircrafts and vehicles: Drag & Lift. 

 Power plant: Combustion in internal combustion engines & Gas turbines. 

 Hydrodynamics of ships. 

 Biomedical engineering: Blood flow through arteries and veins. 

 Environmental engineering: distribution of pollutants. 
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4.5.  CODING IN CFD 

CFD is solving basic equations of fluid flow and heat transfer by applying 

Numerical techniques. I wrote my own C language to solve my case which is static settling 

velocity simulation. My code in C language is:   

#include "udf.h" 
#include "dpm.h" 

  
/*update the user scalar variables*/ 

  
DEFINE_DPM_SCALAR_UPDATE(track_particle,cell,thread,initialize,p) 
{ 
        float time = RP_Get_Real("flow-time"); 
        float x = p->state.pos[0]; 
        float y = p->state.pos[1]; 
        float u = p->state.V[0]; 
        float v = p->state.V[1]; 
        float z = p->state.pos[2]; 
        float w = p->state.V[2]; 

         
        FILE *fd; 

         
        fd = fopen("oneparticle.out","a"); 

         
        fprintf(fd, "%8.6e %8.6e %8.6e\n",time, x, y);  
        fprintf(fd, "%8.6e %8.6e %8.6e\n",z, u, v); 
        fprintf(fd, "%8.6e\n",w); 

         
        fclose(fd); 

} 

 

4.6.  ANSY FLUENT  

ANSYS FLUENT is one of the most popular commercial CFD software packages. 

ANSYS FLUENT CFD Solver is based on the Finite Volume method that the domain is 

discretized into a finite number of control volumes in Figure 4.1 and general conservation 

equations for mass, momentum, energy, species are solved on this set of control volumes. 

I use ANSYS FLUENT in my case to make simulation of static settling velocity simulation 

with 2 mm (diameter) particle. 
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Figure 4.1. Fluid region of pipe flow discretized into finite set of control volumes (mesh) 

(Google). 

 

4.7.  SIMULATION HARDWARE REQUIREMENTS 

Considering that simulation computing is a test of the CPU processing power of a 

computer, we modify the DELL PRECISION TOWER 7910 (Figure 4.2) to deal with this 

case. The original configuration of this computer including 4 Ghz Fourteen Core E5-

2660V4 CPUs; 256GB of ECC DDR4 RAM; 2TB 6Gb/s SATA Solid State Drive; Nvidia 

Quadro K6000 12GB GDDR5 Graphic Card and Windows 10 Professional 64-Bit Pre-

Installed.  

The modified one which we use, installed three NVIDIA TITAN RTX graphics 

cards (Figure 4.3) in parallel to enhance data writing capability. In addition, it replaced E5-

2660V4 CPUs to AMD Ryzen Threadripper 2990X 32-Core (Figure 4.4) which is one of 

the fastest CUP in the market now. What’s more, this computer add five Samsung 860 

https://www.amazon.com/NVIDIA-Titan-RTX-Graphics-Card/dp/B07L8YGDL5/ref=sr_1_1?keywords=Nvidia+TITAN&qid=1552852524&s=gateway&sr=8-1
https://www.amazon.com/NVIDIA-Titan-RTX-Graphics-Card/dp/B07L8YGDL5/ref=sr_1_1?keywords=Nvidia+TITAN&qid=1552852524&s=gateway&sr=8-1
https://www.amazon.com/Samsung-860-Inch-SATA-Internal/dp/B07L3CLM2B/ref=sr_1_7?crid=31P2KN7ZZ1WIU&keywords=samsung+ssd&qid=1552853636&s=gateway&sprefix=samsung+ssd,aps,191&sr=8-7
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QVO 4TB 2.5 Inch SATA III internal SSD to speed up the reading and writing speed of 

ANSYS software. 

 

 

 

Figure 4.2. DELL PRECISION TOWER 7910 (Google). 

 

 

Figure 4.3. NVIDIA TITAN RTX graphics card (Google). 

 

 

https://www.amazon.com/Samsung-860-Inch-SATA-Internal/dp/B07L3CLM2B/ref=sr_1_7?crid=31P2KN7ZZ1WIU&keywords=samsung+ssd&qid=1552853636&s=gateway&sprefix=samsung+ssd,aps,191&sr=8-7
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Even working with this kind of powerful system, it still cost me 20 hours to run the 

result of each case. 

 

 

Figure 4.4. AMD Ryzen Threadripper 2990X 32-Core (Google). 

 

Even working with this kind of powerful system, it still cost me 20 hours to run the 

result of each case. 

 

 



 

 

38 

5. SIMULATION MODEL BUILD PROCEDURE 

5.1.  PRE-ANALYSIS 

Static settling velocity simulation is a real-world engineering problem numerically 

using ANSYS FLUENT. I need to remember the size of the experimental model clearly, as 

well as the initial position where the particles fall, the time which particles fall into the water, 

and even the initial velocity of the particles entering the water from the air. In this way, I can 

get more accurate simulation data to compare with the experimental data. Every erroneous data 

would cause big troubles for simulation calculations. I spend so much time in this step to figure 

out what kind of experiment data I need in my simulation. The second biggest problem is to 

find out which boundary condition to use because it will infect my simulation result directly. 

After doing so many literature reviews and trying so many times, I finally decided to use 

pressure-far-field as the inlet boundary condition and the pressure out as the outlet boundary 

condition. This step, called pre-analysis which is indispensable. 

5.2.  CREATING A FLUENT FLUID FLOW ANALYSIS SYSTEM IN ANSYS 

WORKBENCH 

 

From the very beginning, I need to start ANSYS Workbench, create a new Fluent 

fluid flow analysis system, then review the list of files generated by ANSYS Workbench. 

Workbench can greatly improve my work efficiency in CFD. Later in Workbench, the 

second create the geometry and later create a mesh and set up a fluid flow analysis for the 

geometry. Creating a Fluent fluid flow analysis system in ANSYS Workbench shown in 

Figure 5.1. 
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Figure 5.1. Fluent fluid flow analysis system. 

 

5.3.  CREATING THE GEOMETRY 

In this step, the ANSYS design modeler software can be used. It can also use some 

other CAD Software such as AutoCAD, Solid works, CATIA, Autocad Inventor etc. I 

designed my own geometry because there is no suitable geometry file that can be use 

directly. From the Figure 5.2 shown below, I create a cuboid with a vertical channel inside. 

The particle will go through the channel to touch the bottom. Then the top of this geometry 

named as “inlet” and the bottom of the geometry named as “outlet”. Or we can do this step-

in meshing since the meshing application provides more comprehensive and extensive 

named selection functionality.   
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Figure 5.2. Static settling velocity geometry in CFD. 

 

5.4. MESHING THE GEOMETRY IN THE ANSYS MESHING APPLICATION 

After creating the geometry, I need to generate a computational mesh throughout 

the flow volume. Meshing is one of the most important steps for the simulation. Simulation 

results depend on mesh quality and low-quality mesh can produce poor simulation result, 

even divergence. Meshing is pre-possessing so I tried so many times to get a perfect 

meshing plan for my case. For this section, I have to use the ANSYS Meshing application 

to create a mesh for my CFD analysis, then review the list of files generated by ANSYS 

Workbench to ensure every step goes well. In order to simplify my work later on in ANSYS 

Fluent, I label each boundary in the geometry by creating named selections for the cuboid 

inlets, the outlet, and the symmetry surface. The meshing step shown in the Figure 5.3. 
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Figure 5.3. Meshing the geometry in CFD. 

 

5.5. PHYSICAL STEP AND NUMERICAL SOLUTION 

The finite-volume method is used to directly simulate the motion of the sand 

particle by the CFD software FLUENT. The fall of sand particle into the water is a 

complicated process from the aspect of CFD. The existence of water, air and trajectory of 

sand particle are simulated by volume of fluid (VOF) and discrete phase model (DPM) in 

FLUENT (Jan Erik OLSEN and Schalk CLOETE, 2009). For the VOF method, the brief 

theoretical introduction is described as follows. The two-phase fluid behavior can be 

described by the incompressible Navier-Stokes equation: 

                               ( ) ( )Tu
uu P u u F

t
  


+  = − +   + +
                         

(2) 

 where u  is the velocity vector;   is the density of fluid;   is the viscosity of fluid; P  is 

the static pressure; F  is the general body force, is zero in this study. Only single equation 
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is solved to obtain the velocity field. In equation (2), the density   and viscosity   are 

volume-fraction averaged for water and air in each computational cell in this study.  

( )1a a a w    = + −                                          (3)                                        

                                                 ( )1a a a w    = + −                                              (4)       

where a  and w  are density of air and water, respectively; a  and w  are viscosity of 

air and water, respectively. a  is the volume fraction of air in each cell in this study. In 

VOF method, only the volumetric fraction of secondary phase is calculated. In this study, 

the air occupies smaller space, therefore it is set as secondary phase in VOF. 

The momentum equation (2) is based on Euler frame of reference. For the motion 

of sand particle in this study, the discrete phase trajectory is calculated based on Lagrangian 

reference frame. The particle inertia, hydrodynamic drag, and the force of gravity can all 

be considered in this model. The trajectory calculation in DPM is based on particle force 

balance equation: 

( )
( )pp

D p a

p

gdu
F u u F

dt

 



−
= − + +                                (5) 

where pu  and u  are the velocity of particle and fluid phase, respectively; p  and   are 

the density of particle and fluid phase, respectively; ( )D pF u u−  is the drag force per unit 

particle mass; aF  signifies additional force in the particle force balance. For the millimeter 

scale of sand in this study, aF  is set to zero. 
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The model geometry is presented in Figure 5.4. The initial contour of volume 

fraction is presented by colors. As consistent with experimental condition, the height of 

water level is 45 cm and the length of air regime along z direction is 4 cm. The mesh of 

geometry is shown in Figure 5.4. Because the sand will drop at the top of container and 

falls vertically to the bottom of wall. The center region uses finer mesh than other regions. 

The total mesh in this model is about 670, 000.  

 

 

Figure 5.4. The initial contour of volume fraction and the mesh distribution in the 

geometry. 

 

The sand particle is in the scale of millimeter and has negligible perturbation on the 

two-fluid system. Therefore, the close boundary condition setting is used in this model. All 
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boundaries are set as wall in the model. For the DPM boundary, the bottom wall is set as 

trapped wall boundary and all other wall set as reflected wall boundary. Another 

consideration for this small particle injection is uncoupled setting of VOF and DPM. It 

means, the fluid can impose hydrodynamic force on the motion of sand particle, but the 

motion of particle has no effect on the fluid behavior. This is a reasonable approximation 

used to reduce the computational burden. More precise tracking of particle force balance 

and trajectory refers to fictitious domain method [Suckale et al. 2012] and CFD-DEM 

method [Zhou et al. 2017; Kloss et al. 2012; Moridis et al. 2018]. The transient tracking 

method and explicit VOF method are used to advance the time steps. The injection point 

of sand particle is at the center of top boundary, x=4.25 cm, y = 0.45 cm and z = 49 cm. 

Three types of sand are analyzed with separate diameters of 2 mm, 4 mm and 6 mm. The 

density of spherical sand used is 2650 kg/m3. 
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6.  RESULTS AND ANALYSIS 

6.1. CFD SIMULATION MODEL VALIDATION 

The CFD model is used to simulate the settling process of sand particle in good 

details. Before that, the model entails validation with experimental data to provide reliable 

results. As a simple validation, the trajectory of sand particle with diameter 2 mm in water 

is obtained experimentally. After a good comparison of CFD model and experiments, three 

cases to analyze effects of fluid types, particle diameters and fracture orientations are 

accounted for. 

6.2.  PROPPANT SETTLING VELOCITY VALIDATION 

The experimental result is compared with CFD simulation to provide more 

variability to analyze the settling of sand in fluid. The vertical motion of sand particle is 

tracked in CFD and experiments. The results are presented in Figure 6.1 as follows. The 

complete motion of sand particle is shown in Figure 6.1(a). The drop height to the bottom 

of container is 49 cm. It takes 1.72 seconds and 1.74 seconds for sand particle to settle on 

the bottom in experiment and CFD respectively. The data has a good agreement on the 

trajectory and settling time. Because the fluid will pass through the water surface at height 

of 45 cm, the motion above the water table and below the water table has different drag 

forces from air and water. The enlargement of motion near the water table is also presented 

in the Figure 6.1(b). It shows that experimental data is little smaller than that from CFD. 

This small difference is possibly attributed to the measurement error in the experiment. 

The time step recording the sand drop is 0.02 s, while the time step set in the FLUENT is 
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0.005 s. This can also be confirmed by the data number above the water level. The zigzag 

curve for CFD is due to the time step size. By interpolation of the experimental data, it 

takes 0.093 s for sand particle to impact the water surface. While it takes 0.095 s in CFD 

simulation. For the ideal scenario, it would take 0.0904 s for motion of 4 cm in free fall. It 

infers the small drag in the air domain.  

 

 

Figure 6.1. The vertical height of sand particle and the enlargement of trajectory near the 

water table. 

 

The variation of velocity in process of settling from CFD is shown in Figure 6.2. 

Before 0.095 s, the velocity is linear with respect to time and reaches 88.29 cm/s at water 

surface. After it drops into the water, the hydraulic drag appreciably increases and leads to 

decrease of velocity. At 0.345 s, it drops in steady state with velocity of 28.62 cm/s. The 

steady state velocity in experimental result was 28.7 cm/s. It’s noted that CFD result is 

( )a ( )b
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based on the empirical drag law and rotational law in DPM setting, while the real case is 

that the drag and rotation of sand would be different from those empirical laws. 

 

 

Figure 6.2. The transient velocity of sand particle in settling from CFD simulation. 

Marker denotes the onset of steady state. 

 

This is one possible reason to cause the simulation error. More accurate 

characterization of drag and rotation of sand particle is necessary to capture the motion of 

sand. In addition, the uncoupling setting of DPM and VOF would also cause some error in 

the simulation. 
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6.3.  FRACTURE FLUID RHEOLOGY VALIDATION 

Water is the default faucet water with standard properties. HVFR, a fluid widely 

used to deliver proppant in fracture. Linear gel has the same capability to deliver proppant 

in fracture. Water, as a Newton fluid, has constant viscosity of 0.001 Pa‧s. HVFR, as a non-

Newton fluid, has varying viscosity at different shear rate. The rheological properties of 

HVFR was measured in atmosphere condition using advanced rheometer. The variation of 

viscosity with shear rate is presented in Figure 6.3. This experimental curve is fitted by 

non-Newton power law. The power law used in the simulation for HVFR is: 

                                                        
0.66330.51062  −=                                             (6)      

The power law for linear gel is: 

0.41210.18802  −=
                                 (7) 

where   is the apparent or effective viscosity;   is the shear rate. The flow consistency 

index and flow behavior index can be set by these fitting equations in simulation. The error 

induced by fitting will inevitably be introduced into the final settling parameters. This 

effect on the final results will be analyzed later. 
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Figure 6.3.Variation of viscosity    with shear rate   and fitting by non-Newton power 

law for (a) HVFR and (b) linear gel. The fitting equation for HVFR is 
0.66330.51062  −=

and 
0.41210.18802  −=  for linear gel. 
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7. SENSITIVITY ANALYSE 

 

After validation of CFD model by dropping of sand particle in water, it’s reliable 

to extend this analysis for fracture fluid and other pumping conditions. In fracture, the 

proppant transport is affected by the fluid type, proppant size, fracture orientation, etc. In 

this study, the effect of fluid type, proppant size and fracture orientation on the settling of 

proppant is analyzed in this section. The complete analysis is summarized in the Table 7.1. 

 

 

Table 7.1. The summary of analysis in this study. 

Case number Fluid type 
Proppant 

diameter 
Fracture orientation 

I 

Water 

2 mm        90° HVFR 

Linear gel 

II HVFR 

2 mm 

90° 4 mm 

6 mm 

III HVFR 2 mm 

90° 

60° 

45° 

 

 

 

When the dip angle of fracture orientation is large, the sand would reflect on the 

boundary wall and then slide along the wall to the bottom. The interaction of proppant with 

the fracture surface is of essential interest to understand the settling and finally spatial 
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distribution of proppant. Three orientations with dig angles of 90°, 60° and 45° are 

considered. The sketch for these fracture orientations is shown in Figure 7.1. 

 

 

Figure 7.1. Side views of fracture orientations at (a) 90°, (b) 60° and (c) 45°. The 3D 

coordinate view corresponds to geometry display in Figure 5.4. 

7.1. CASE I: EFFECT OF FLUID TYPES 

The effect of water, HVFR and linear gel on the settling of proppant is analyzed as 

case I study. The proppant used is in a diameter of 2 mm and the fracture is vertical oriented. 

The vertical distance to bottom of container is tracked in Figure 7.2. It takes 1.74 s, 13.38 

s and 333.78 s for same sand particle to deposit on the bottom when using water, linear gel, 

and HVFR, respectively. It indicates higher resistive capability of HVFR to oppose the 

drop of sand particle. This can also be confirmed from the rheology property presented in 

Figure 6.3. The transient velocity of proppant is shown in Figure 7.3. Before falling into 

the water region, the velocity is linear function of time. At the moment that proppant enters 

into the water region, it takes less time for HVFR to decelerate to steady state. It also vilifies 

the high resistive capability of HVFR to other two types of fluid. 
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Figure 7.2. The height of sand particle of 2 mm in three types of fluid. 

 

 

Figure 7.3. The transient velocity of proppant with 2 mm in three types of fluid. Only 

small-time range are presented for better illustration. Three red markers denote the onset 

of steady states. 
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The steady-state falling velocity of proppant in water, linear gel and HVFR are 

28.62 cm/s, 3.4 cm/s and 0.13 cm/s, respectively. 

7.2. CASE II: THE EFFECT OF PROPPANT SIZE 

In the process of falling, single proppant is mainly subjected to drag force and 

gravitational force as shown in equation (5). As the larger size of proppant, the gravitational 

force and drag force increase concurrently. Due to the opposite force direction, the net 

force on the settling proppant is of key interest to analyze. In addition, different sizes of 

proppant are used in the petroleum industry. The effect of proppant size on the finally 

spatial distribution in hydraulic fracture is of significant application. Therefore, different 

proppant sizes are used in this section to investigate their significance to settling velocity. 

The vertical distance to bottom is tracked in the settling process as shown in Figure 

7.4. It takes 333.78 s, 83.50 s and 37.09 s to deposit on the bottom for proppant with 

diameter 2 mm, 4 mm and 6 mm, respectively. It shows that larger proppant takes less time 

to settle down. It alludes that the gravitational force overrides the drag force from aspect 

of proppant size. 

The transient velocity of proppant is plotted in Figure 7.5. Only small range of time 

is presented for better illustration. It’s noted that the zigzag curve is attributed to the time 

steps setting in the simulation. The time step size is 0.005 s. After incorporating this 

difference by time step size, the velocities for three different diameters are almost the same 

before the abrupt jumping of velocity around 0.1 s. The steady state time for proppant with 

D=4 mm and 6 mm are almost the same after considering the error from time step size. 
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Figure 7.4. The height of proppant of three diameters (D=2 mm, 4 mm and 6 mm) in HVFR. 

 

 

 

 

Figure 7.5. The transient velocity of proppant with diameters 2 mm, 4 mm and 6 mm in 

HVFR. Only small-time range are presented for better illustration. Three red markers 

denote the onset of steady states: red box corresponds to point (0.125, 0.13) for D=2 mm; 

red circle corresponds to point (0.105, 0.54) for D=4 mm; red upper triangle corresponds 

to point (0.108, 1.23) for D=6 mm. 
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Whereas, it takes longer for proppant with D=2 mm to become steady, about 0.125 

s. But this value is still very close to those of D=4 mm and 6 mm. It infers the small 

influence of proppant size on time to reach steady state for proppant. However, the steady-

state velocities have more difference. They are 0.13 cm/s, 0.54 cm/s and 1.23 cm/s for 

proppants with D=2 mm, 4 mm and 6 mm, respectively. 

7.3. CASE III: THE EFFECT OF FRACTURE ORIENTATION 

For the vertical fracture in preceding sections, the drag force is from fluid. When 

the fracture is orientated at certain angle, the proppant would fall on the boundary wall and 

then slide to the bottom. The collision and sliding on the wall provide much larger drags 

for proppant falling. The fracture orientation is hence analyzed in this section to understand 

the motion of proppant. Three dip angles are considered: 45°, 60° and 90° as shown in 

sketches in Figure 7.2. The container keeps the same but when orientated, the falling height 

of proppant with respect to origin changed. For 45°, 60° and 90°, the initial falling heights 

are 34.95 cm, 42.66 cm and 49 cm, respectively. The distances of proppant falling in air 

are also different for these angles. The heights of proppant are shown in Figure 7.6. For 

orientation of 45°, proppant stops on the tilted wall at 31 cm. For orientations of 60° and 

90°, proppant falls into water at 39 cm and 45 cm, respectively. Then, it slides along the 

wall at different magnitudes of velocity for orientation of 60° and 90°. Figure 7.7 shows 

the transient velocity of proppant in fracture with different orientations angles. The steady-

state velocities are 0 cm/s, 0.11 cm/s and 0.13 cm/s for orientations of 45°, 60° and 90°, 

respectively.  



 

 

56 

The boundary wall is slippery boundary without roughness. However, the real 

fracture surface is rough and wavy [Chao and Deng, 2018; Chao et al. 2018]. When the 

proppant is pumped into the open tilted fracture, the friction of proppant with rough fracture 

is much larger than that in this study. The proppant is likely to be trapped at the rough 

fracture surface. To incorporate this effect, the roughness of fracture will be considered on 

the motion of proppant in our next work.  

 

 

Figure 7.6. The transient height of proppant of diameter 2 mm in HVFR with different 

fracture orientations (45° and 60° and 90°). The short line for 45° orientation denotes the 

proppant stopping on the tilted wall. 

 



 

 

57 

 

Figure 7.7. The transient velocity of proppant of diameter 2 mm in HVFR with different 

fracture orientations (45° and 60° and 90°). The red markers denote the instants that 

proppant strikes boundary wall. 
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8. CONCLUSION 

 

Integrated work between experimental results and simulation output were 

investigated to predict the proppant settling velocity in HVFRs. Proppant settling velocity 

behavior was also studies at different fracturing fluids, proppant sizes, and fracture 

orientation. Both studies reveal reduction motion during particle settling. This reduction 

depends on fluid rheology and fracture orientation degree. In case I, the steady-state falling 

velocity of proppant in water, linear gel and HVFR are 28.62 cm/s, 3.4 cm/s and 0.13 cm/s, 

respectively. In case II, the steady state time for proppant with D=4 mm and 6 mm are 

almost the same after considering the error from time step size. Whereas, it takes longer 

for proppant with D=2 mm to become steady. In case III, the results show that the collision 

and sliding on the wall provide much larger drags for proppant falling. 
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9. FUTURE WORK AND RECOMMENDATIONS 

 

In this study, the effect of fluid type, proppant size and fracture orientation on the 

settling of proppant is analyzed for three cases. Actually, it can be analyzed to 27 different 

results. This work can be down in the future to make the results more comprehensive. In 

addition, settling velocity experiment result using HVFR can be analyzed and compared 

with simulation result to make the validation part perfectly.  

The recommended study for static settling velocity experiment is to use the real 

proppant instead of the particles in this study, if it possible. What’s more, the real-world 

experiment fracture is also expected. 
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