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ABSTRACT 

With the rapid development of robotics technology, robots are increasingly used 

to conduct various tasks by utility companies. An unmanned aerial vehicle (UAV) is an 

efficient robot that can be used to inspect high-voltage transmission lines. UAVs need to 

stay within a data transmission range from the ground station and periodically land to 

replace the battery in order to ensure that the power system can support its operation. A 

routing algorithm must be used in order to guide the motion and deployment of the 

ground station while using UAV in transmission line inspection. Most existing routing 

algorithms are dedicated to pathfinding for a single object that needs to travel from a 

given start point to end point and cannot be directly used for guiding the ground station 

deployment and motion since multiple objects (i.e., the UAV and the ground team) whose 

motions and locations need to be coordinated are involved. In this thesis, we intend to 

explore the routing algorithm that can be used by utility companies to effectively utilize 

UAVs in transmission line inspection. Both heuristic and analytical algorithms are 

proposed to guide the deployment of the ground station and the landing point for UAV 

power system change. A case study was conducted to validate the effectiveness of the 

proposed routing algorithm and examine the performance and cost-effectiveness. 
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1. INTRODUCTION 

1.1. BACKGROUND 

High-voltage transmission line systems play a critical role in building a reliable 

energy supply infrastructure in the country. In particular, with the fast growth of the 

penetration of renewable sources in electricity grid in recent years (Bastian and Trainor, 

2010; Wang et al., 2010; Yaqub et al., 2012), the transmission line system becomes even 

more critical to deliver the energy with low environmental burden to end-use customers. 

Transmission lines in the power system are subject to usage deterioration and 

environmental corrosion. To ensure a highly reliable energy supply system, the reliability 

of the transmission line system itself needs to be intensively monitored and carefully 

maintained so that the health of the system can be determined and possible issues such as 

material degradation, environmental corrosions, etc., can be timely detected. A great deal 

of research focusing on reliability modeling and maintenance strategy for the 

transmission system as well as other critical infrastructures has been reported (Ge, 2010; 

Mahmoudi et al., 2014; Wilmeth and Usrey, 2000).  

Traditionally, regular inspection of transmission line is conducted with the aid of 

helicopters by linemen using hot sticks (Whitworth et al., 2001; Yan et al., 2007; Earp et 

al., 2011) at heights of several hundred feet (Roncolatto et al., 2010). Sometimes, if 

required, linemen need to walk on the transmission line to implement inspection tasks. 

Such a “manual” inspection mode is highly sensitive to undesirable weather conditions 

(Roncolatto et al., 2010). The inspection progress is severely limited by the workload 

limit of human beings, and thus the inspection is typically very time-consuming. In 
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addition, worker safety, which is considered one of the most fundamental indicators of a 

company’s social sustainability (Pagell et al., 2014), is one of the primary concern of this 

job; therefore, the linemen need to be intensively trained so that they can be safe in such a 

dangerous working environment both physically and psychologically. Moreover, the cost 

and energy consumption involved when employing a helicopter is fairly high, which 

further exacerbates the sustainability concerns of practitioners, communities, government 

agencies, and society as a whole. 

To address such sustainability concerns, many utility companies have begun to 

seek out emerging smart technologies that can be used to replace linemen in transmission 

line inspection. One promising technology that has drawn wide interest from utility 

companies is robot technology.  

Robot technology is not novel in practice. For example, many studies focusing on 

the utilization of robotic technology in manufacturing have been reported. The attitudes 

toward the introduction of robots in a unionized automobile environment were studied in 

1995 by Herold et al.. A survey was conducted to evaluate the role and future of robot 

technology in Australian manufacturing, which included general manufacturing, 

automotive, plastics molding, and electronics industries (Orr, 1996). The flexibility of a 

vision-based robot used in a manufacturing environment was enhanced using an artificial 

neural network approach (Sim and Teo, 1997). A benefit of industrial robotics into a lean 

manufacturing system was investigated (Hedelind and Jackson, 2011). Furthermore, 

robot technology has been effectively applied in the inspection of various complex 

systems, such as underwater system (Asakawa et al., 2012) and tunnel system (Yao et al., 

2003).  
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Since the last decade, literature regarding the application of robots in transmission 

line inspection has been reported (Montambault and Pouliot, 2003; Montambault and 

Pouliot, 2004; Laugier and Siegwart, 2008). Generally, three major types of robots, i.e., 

land-based (Quanta Technology, 2015), suspended-based, and aerial-based (ULC 

Robotics, 2018) robots as shown in Figure 1-1, have been designed and developed for 

applications in the power transmission sector (Elizondo et al., 2010). The land-based 

robot is usually placed on by boom trucks on the ground and remotely controlled by the 

radio (Elizondo et al., 2010). They used for replacing insulators and conducting other 

heavy-duty tasks such as providing temporary support to conductors in the absence of a 

steel structure as shown in Figure 1-1a (Elizondo et al., 2010). The suspended-based 

robot is suspended from the conductor lines via wheels that facilitate the movement of the 

robot and is used for inspecting conductor lines and performing minor (Elizondo et al., 

2010). The aerial-based robot is typically an unmanned aerial vehicle (UAV) as shown in 

Figure 1-1b and is used for inspecting the state of the conductor (Elizondo et al., 2010). It 

is controlled by radios with a geographical position system. 

 

 

Figure 1-1. Robot for Transmission Line Inspection 
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In general, the land-based robot technology is the most mature, and thus it has 

been widely used in the power industry. Both the suspended-based robot and unmanned 

aerial vehicle (UAV) have passed onsite testing with a full load and have been 

commercialized for a few years.  

1.2. MOTIVATION 

Today, the study of adopting robots for use in transmission line inspection is 

mainly focused on technical issues including data transmission, video and image analysis, 

etc. (Zhang, Yuan, Li et al., 2017; Zhang, Yuan, Fang et al., 2017; Jiang et al., 2017), 

while routing algorithm analysis is mostly ignored. Most existing routing algorithms are 

dedicated to pathfinding for a single object that needs to travel from a given start point to 

an end point. However, they cannot be directly used to guide multiple objects (i.e., the 

ground support team and the UAV in this thesis). The motions and locations of these 

objects need to be carefully coordinated under various constraints. Specifically, two 

coordination issues in this problem need to be addressed. They are 1) the trade-off 

between over-deployment of the ground team and non-data transmission of UAV, and 2) 

the trade-off between the number of ground stations and the capacity of the power 

system. By addressing these two issues, the proposed algorithm can be applied to handle 

a more complex routing problem with multiple objects. It can offer a paradigm to 

coordinate the motion of two different parties (e.g., the UAV and the ground team) under 

the required constraints.  

There exists an algorithm for transmission line inspection using a suspended robot 

that considers the motion coordination between the suspended robot and the ground team 
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(Nagarajan et al., 2017). There are some similarities between the suspended-based robot 

and the UAV in transmission line inspection. For instance, a range limitation of live data 

transmission requires the ground team to dynamically change their location to keep 

themselves within the required range (Montambault and Pouliot, 2012) and ensure that 

live signals can be received and processed, robot motion can be controlled, and the health 

condition of the line can be captured. However the ground team must navigate the UAV 

back to the ground station for battery replacement, while the suspended robot could stay 

on the power line and wait for the battery replacement.  

In this thesis, we focus on the routing algorithm for inspecting transmission 

systems using UAVs to enhance the cost-effectiveness in critical infrastructure 

maintenance. A cost model for the transmission line inspection with UAVs is proposed. 

Both lithium batteries and hydrogen fuel cell are considered for the power system of the 

UAVs in this analysis. The remaining part of this thesis is organized as follows. In 

Section 2, related works are briefly reviewed. In Section s 3 and 4, a heuristic routing 

algorithm and an analytical routing algorithm are proposed, respectively. Finally, 

conclusions are drawn, and future work is discussed in Section 5.   
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2. LITERATURE REVIEW 

 

In this section, we briefly review literature in the relevant areas including UAV 

technology, routing algorithm, robot path planning, and Particle Swarm Optimization 

(PSO).   

2.1. UAV TECHNOLOGY APPLICATION 

UAVs, which are aircraft without a human pilot aboard, have been widely 

adopted in many fields such as pollution monitoring, filmmaking, and reconnaissance. 

For example, Alvear et al. (2017) proposed a solution to allow UAVs to autonomously 

trace pollutant sources and monitor air quality in the surrounding area. However, they 

found that the proposed solution was excessively time-consuming. Therefore, they 

improved the solution by adopting a space discretization technique (Alvear et al., 2018).  

UAVs have also been used as a possible approach for transmission line 

inspection. Wang et al. (2009) presented an applied inspection robotic system based on 

an unmanned autonomous helicopter for power line corridor inspection. Later, they 

presented an applied inspection robot called SmartCopter, which was based on an 

unmanned autonomous helicopter, for the inspection of transmission lines (Wang et al., 

2010). Yang et al. (2012) studied overhead power line detection from UAV video 

images. Li et al. (2016) proposed a transmission line intelligent inspection central control 

and mass data processing system and application based on UAV.  

The prevalent electric power storage technology used by UAVs is the lithium 

battery. Many other power systems or recharging methods for supporting UAVs have 

https://scholar.google.com/citations?user=UdgvlnYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=UdgvlnYAAAAJ&hl=en&oi=sra
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been studied in recent years. They include a solar power system (Shiau et al., 2009) and 

wireless charging (Xu et al., 2018). However, most of them are not commercialized.  One 

of the novel power systems that has been commercialized is the fuel cell power system 

used by UAV. The typical fuel energy system is a hydrogen fuel cell system, which was 

studied by Veziroğlu and Şahin in 2008. The usage for UAV has been designed and 

investigated by Gadalla and Zafar in 2012, and Kim and Kwon in 2012. 

2.2. ROUTING ALGORITHMS 

In engineering studies, the routing algorithm determines the best route from a start 

point to an end point. Many studies in this area have been reported.  For example, the 

routing problem of a bridge inspection team departing from the depot, visiting bridges, 

finding lodging accommodations, and returning to the depot was optimized by ant colony 

optimization (Huang et. al., 2018). The freeway service patrol problem involving patrol 

routing design and fleet allocation on freeways was investigated using a genetic 

algorithm incorporated with a niche strategy (Sun et al., 2018). The routing issue of large 

size traveling salesman problems with 500-100,000 cities was studied using an algorithm 

based on the concept of Tabu search (Fiechter, 1994). A heuristic algorithm named 

Harmony Search, which mimicked the improvisation of music players was used to 

investigate the routing planning in a traveling salesman problem (Geem et al., 2001). A 

branch-and-bound algorithm for the double traveling salesman problem was studied by 

Carrabs et al. in 2013. A systematic comparison in terms of computational cost between 

various heuristic algorithm and the traditional algorithm was also conducted (Sharma et 

al., 2012).  

file:///C:/Users/YU%20LI/AppData/Local/youdao/dict/Application/7.5.0.0/resultui/dict/
file:///C:/Users/YU%20LI/AppData/Local/youdao/dict/Application/7.5.0.0/resultui/dict/
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2.3. ROBOT PATH PLANNING 

In the area of robot path planning, various routing algorithms using classic 

approaches such as cell decomposition, potential field, sampling-based method, and sub-

goal network have been proposed. For example, the applications of robot path planning 

based on cell decomposition can be found in the literature (Rosell, 2005; Šeda, 2007). A 

potential field method, inspired by the concept of electrical charges, was used to guide 

the robot to move toward the target while pushing away from the obstacles by assigning 

repulsive and attractive forces to the obstacles and the goal, respectively (Cosio and 

Castaneda, 2004). Sampling-based motion planning (SBP) algorithms create the paths by 

randomly adding points instead of evaluating all possible solutions. Two possible SBPs, 

probabilistic road-map and rapidly exploring random trees have been investigated (Lee et 

al., 2014). The sub-goal network utilizes a list of reachable configurations from the 

starting point to a goal point while avoiding all obstacles to identify the path for robot 

motion. This method has been used in a motion planner for humanoid robots (Candido et 

al., 2008) and for deploying the vision system and IR sensors (Singh et al., 2011; Liu et 

al., 2010).  

In addition to these classic approaches, heuristic-based algorithms such as neural 

networks, fuzzy logic, and nature-inspired methods have recently been proposed. A 

neural network was used to determine the free space and a safe direction for the next 

robot section of the path in the workspace (Janglova, 2004). A four-layer neural network 

dealing with the tasks of learning, adaptation, generalization, and optimization has been 

used to solve the path and time optimization for the robot (Parh and Singh, 2009). A 

fuzzy logic controller is used to control the robot's motion along the predefined path (Peri 
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and Simon, 2005).  Motion control for autonomous robot navigation using fuzzy logic 

and the stereo vision-based path-planning module was investigated (Foudil et al., 2014). 

Nature-inspired methods such as genetic algorithms, particle swarm optimization, and ant 

colony optimization have also been successfully applied in robot path planning (Mac et 

al., 2016).  

2.4. PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization (PSO) is a nature-inspired method initially proposed 

by Kennedy and Eberhart (1995). The particles in a given swarm are used to form a 

population of candidate solutions. The location of each particle is updated iteratively 

according to its distance to the particle with the best location in the entire swarm as well 

as the best location that has been visited by itself. The quality of the location is evaluated 

by a fitness function. The algorithm stops when the given iteration number is achieved 

and a near optimal solution can be identified.  

PSO has been widely used to solve high dimensional optimization problems to 

obtain a near optimal solution in many areas such as financial forecasting, motion 

tracking, path planning, scheduling in manufacturing, etc.  

For forecasting in finance, a great deal of research has been reported. For 

example, a predicting model for forecasting stock market behavior with the aid of locality 

preserving projection, particle swarm optimization, and a support vector machine was 

constructed by Guo et al. in 2013. A method to forecast market trends to emulate the way 

real traders make predictions based on an adaptive network-based fuzzy inference system 

was proposed by Bagheri et al. in 2014. Quantum-behaved PSO was used in Bagheri’s 
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model for tuning the adaptive network-based fuzzy inference system membership 

functions. Accurate forecasting of volatility from a financial time series was studied 

based on a PSO trained quantile regression neural network in (Pradeepkumar and Ravi, 

2017). 

For motion tracking, the studies are briefly reviewed as follows. A simplified-

belief hybrid PSO method propagating the weights of limb observations to the 

corresponding particles along the edges of the body model is proposed for tracking mark 

less human poses in monocular videos of human motion in (Jun, 2014). A method for 

high-dimensional search space involved in the marker-less full-body articulated human 

motion tracking problem based on hierarchical multi-swarm cooperative particle swarm 

optimization was developed in (Saini et al., 2015) to overcome the limitation of 

premature convergence. 

In the area of path planning for the robot, Han et al. (2016) used PSO to identify 

the path for multi-robot systems to reach the targets without collision not only between 

the robots but also between the robots and the environment. Robot path planning for 

rescuing multiple survivors in a limited time frame was proposed and solved using PSO 

in (Geng et al., 2014).  

The PSO has also been used to identify the optimal scheduling for a 

manufacturing system. For example, PSO was used to solve a mathematical model for 

identifying an optimal participation strategy in a demand response program designed for 

mitigating electricity over-generation due to the high usage of renewable sources in 

electricity grid in (Islam et al., 2018). A combined production scheduling model that 

simultaneously considers energy control and maintenance implementation to address the 
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concerns of energy consumption, intelligent maintenance, and throughput improvement 

was proposed and solved using PSO in (Sun et al., 2018). An integrated electricity 

demand response model for combined manufacturing, heating, venting, and air-

conditioning systems is proposed and solved in (Sun et al., 2016). 

Apart from the aforementioned areas, PSO has been involved in many other 

unique problems. For example, another application of PSO is to find the optimal location 

of flexible AC transmission system devices with a minimum cost of installation to 

improve system load ability, which was presented in (Saravanan et al., 2007). An 

optimal power management approach for plug-in hybrid electric vehicles in uncertain 

driving conditions was proposed and solved by PSO to optimize the threshold parameters 

of the rule-based power management strategy under a certain driving cycle (Chen et al., 

2016). Onwunalu and Durlofsky (2010) used a PSO algorithm for determining the 

optimum type and location of new wells, which is an essential component in the efficient 

development of oil and gas fields. 
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3. HEURISTIC MODEL 

 

In this section, we first propose a heuristic routing algorithm for using UAVs in 

transmission line inspection. Then, cost models are presented for the lithium battery 

power system and hydrogen fuel cell power system. A numerical case is used to illustrate 

the performance with respect to the cost-effectiveness for these two power systems using 

the proposed routing algorithm. In addition, the comparison of total cost between the 

suspended robot and the UAV is shown at the end of the section. 

3.1. HEURISTIC ROUTING ALGORITHM 

The general routing algorithm for guiding the ground support team in the 

inspection is shown in Figure 3-1. The ground team needs to prepare the 

apparatus of the inspection when the ground team reaches the ground station. The 

UAV will first take off at the station and fly back r distance to the start point of 

the inspection of this round with the maximum flying velocity v2 (step 1 in Figure 

3-1). Then, UAV starts to inspect 2r distance over the inspection line with the 

inspection velocity v1 (step 2 in Figure 3-1).  Note that since UAV needs to take 

photos in inspection, v1 is less than v2. Here, we define r as the feasible flight 

radius, which is determined by the capacity of the power system or the 

communication and control distance of the UAV. Let rcontrol be the maximum 

feasible flight radius within the communication and control distance of UAV; 

rcapacity be the maximum feasible flight radius that one battery can cover. r can be 

formulated as: 

file:///C:/Users/YU%20LI/AppData/Local/youdao/dict/Application/7.5.0.0/resultui/dict/
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min( , )control capacityr r r=                                                      (1) 

Let dmax be the maximum feasible inspection distance that one battery or fuel tank 

can support, i.e., dmax =2r. After the 2r distance is covered, the UAV flies back and lands 

at the ground station with a velocity of v2 (step 3 in Figure 3-1). Such a procedure is 

defined as an inspection round in this thesis. It is reasonable to assume that v1 is the same, 

while v2 is different for the UAVs with different power systems. Let 
2

bv  and 
2

cv  be the 

maximum flying velocities of the UAVs using lithium battery and hydrogen fuel cell, 

respectively. Finally, the ground team needs to pack the apparatus and replace the battery 

or fuel tank if needed (step 4 in Figure 3-1) and relocate the ground team to the next 

station with the average motion velocity of the vehicle v3 (step 5 in Figure 3-1).  

 For the UAV Powered by the Lithium Battery. Generally, the UAV 

powered by the lithium battery cannot support the flying distance as far as its 

communication and control distance. Thus, the UAV powered by the lithium battery 

needs to land for replacing the battery. The feasible flight radius for the UAV powered by 

lithium battery rc is its maximum feasible flight radius that one battery can cover, i.e., 

b

capacityr . The lithium battery is replaced by the ground team at each ground station as 

shown in step 4 of Figure 3-1. After the replacement, the replaced battery starts to be 

recharged by the charging equipment inside the ground vehicle and the ground vehicle 

moves forward to the next station for the relocation. Thus, the maximum feasible 

inspection distance 
max

bd  of the UAV when the lithium battery is used is 2 b

capacityr . 
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Figure 3-1. The General Method of the Inspection 

 

Typically, the parameter of 
b

capacityr  is not given directly by the UAV 

manufacturers, instead, the maximum flight time 
b

flighttimet  that a lithium battery can 

support is usually given as a critical parameter to demonstrate the power endurance, 

which can be presented as: 
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2 1 2

2b b b

capacity capacity capacity b

flighttimeb b

r r r
t

v v v
+ + =

                                (2) 

Therefore, 
br  can be calculated by: 

1 2

1 2

=
2 ( )

b b

flighttimeb

b capacity b

t v v
r r

v v

 
=

 +
                                (3) 

3.1.2. For the UAV Powered by Hydrogen Fuel Cell. Generally, for the UAV 

powered by a hydrogen fuel cell, the capacity of the fuel cell can support a much longer 

flying distance than the lithium battery does. The feasible flight radius based on the 

capacity of one fuel tank is typically longer than its communication and control distance. 

Therefore, the feasible flight radius for the UAV powered by a hydrogen fuel cell rc is 

c

controlr . 

Since that, after completing one round inspection, the remaining capacity of the 

fuel tank can support the UAV to inspect additional transmission lines. The ground team 

doesn’t need to replace the fuel tank at the ground station if the remaining capacity of the 

fuel tank can support the next round or the remaining distance of the trip. Let 
max

cd  be the 

maximum feasible inspection distance that one fuel tank can support. We can assume that 

max

cd  is between n and n+1 times of rc (typically, n ≥ 2). Let rr be the remaining distance 

that can be covered by the remaining capacity of the fuel cell after the UAV covers the 

distance of nrc. Thus, n and 
max

cd  can be calculated by: 

  max

c

cd n r rr=  +                                   (4) 
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Let 
c

flighttimet   be the maximum flight time of an inspection round for the UAV 

powered by the fuel cell, which can be calculated by: 

1 2 1 2

( ) cc c
flighttimec c

r r rr rr
n t

v v v v
 + + + =                                                  (5) 

c

flighttimet  can thus be formulated by: 

1 2

cc c
flighttimec

n r rr n r rr
t

v v

 +  +
+ =                                                (6) 

Substitute the numerators on the left-hand sides of (6) using (4), 
max

cd can be 

obtained by: 

1 2

max

1 2

c c

flighttimec

c

t v v
d

v v

 
=

+
                                            (7) 

The above discussion is based on the scenario that the total inspection distance D 

is larger than the distance of one inspection round. 
2

D  can be used as the flight radius if 

D is less than 2rc or 2rb. 

3.2. COST MODEL 

The formulations of each cost component for both lithium battery and hydrogen 

fuel cell powered UAVs are shown in Table 3-1.  

In Table 3-1, Sdr and Ste are the salary rates for the driver and the technician in the 

ground team. b

TotalT  and c

TotalT  are the total times for the inspection using UAV with lithium 

battery and hydrogen fuel cell, respectively. b

uT  and c

uT ,  are the working times of the 

UAV powered by lithium battery and hydrogen fuel cell, respectively. Tg is the total   
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Table 3-1. Cost Component and Formulation 

 

travel time of the ground team. b

sT  and c

sT  are the total setup time of the ground team for 

relocation when using lithium battery and hydrogen fuel cell, respectively. Tc is the final 

close time of the ground team. Csi is the cost of the initial setup to start the inspection 

task. Csb and Csc are the total setup costs of battery replacement and fuel tank 

replacement, respectively. b

sgC and c

sgC  are the total setup costs of the ground team 

relocation when using UAV with lithium battery and hydrogen fuel cell, respectively. csb 

and csc are the cost required for one setup of battery and fuel tank replacement, 

respectively. b

rN  and c

rN  are the times of replacement of the lithium battery and hydrogen 

fuel tank, respectively. csg is the cost required for one setup of the ground team 

relocation. b

gN  and c

gN  are the relocation times of the ground station for UAV powered by 

lithium battery and hydrogen fuel cell, respectively. Gs is the cost of charging equipment 

 Cost component/notation Lithium Battery Hydrogen Fuel Cell 

1 Salary stC  
( 2 )

( 2 ) ( )

b b
st dr te Total

b b
dr te u g s c

C S S T

S S T T T T

= + 

= +  + + +
 

( 2 )

( 2 ) ( )

c c
st dr te Total

c c
dr te u g s c

C S S T

S S T T T T

= + 

= +  + + +
 

2 Setup sC  
=

b b
s si sb sg

b b
si sb r sg g

C C C C

C c N c N

= + +

+  + 
 

=

c c
s si sc sg

c c
si sc r sg g

C C C C

C c N c N

= + +

+  + 
 

3 Battery/Cell bdC /
cdC  

1

Mb m
u b

bd s b
s bm

T t
C G G

L L
=

=  +   
1

Q q c
t u

cd h t c
t cq

t T
C G Q G G

L L
=

=  +  +   

4 
Data 

Transmission ddC  
b b

u s
dd d

d

T T
C G

L

+
=   

c c
u s

dd d
d

T T
C G

L

+
=   

5 
Auxiliary 

Equipment aeC  
b b

u s
ae a

a

T T
C G

L

+
=   

c c
u s

ae a
a

T T
C G

L

+
=   

6 UAV udC  
b

u
ud u

u

T
C G

L
=   

c
u

ud u
u

T
C G

L
=   

7 Ground Travel gtC  
gt gtC c D=   
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and Ls is the expected lifetime of charging equipment. Gb is the cost of one lithium 

battery. Lb is the expected lifetime of one lithium battery. M is the number of lithium 

batteries that the inspection trip needs. m

bt  is the total operating time for the mth lithium 

battery during the trip. Gh is the cost of the refueling for each hydrogen fuel tank. Q is the 

number of fuel tanks that the inspection trip needs. Gt and Gc are the costs of hydrogen 

tank and hydrogen fuel cell, respectively. q

tt  is the total operating time of the qth fuel tank. 

Lt and Lc are the expected lifetimes of tank and cell, respectively. Gd is the cost of the 

data transmission system. Ld is the expected lifetime of the data transmission system. Ga 

is the cost of the auxiliary equipment. La is the expected lifetime of the auxiliary 

equipment. D is the inspection distance. cgt is the ground travel cost per unit distance. Gu 

is the cost of the UAV. Lu is the expected lifetime of the UAV.  

The rest of this section illustrates the details of the different elements in Table 3-1 

including the total travel time of the ground team Tg, the working time b

uT  and c

uT , the 

total setup time b

sT  and c

sT , and the battery depreciation cost Cbd and the cell depreciation 

cost Ccd. 

 Total Travel Time of the Ground Team. It can be formulated as: 

3

g

D
T

v
=                                                          (8) 

3.2.2. Working Time. Based on equation (2)-(7), the working time b

uT  and c

uT  

can be inferred by 

1 2

b

u b

D D
T

v v
= +                                                           (9) 
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1 2

c

u c

D D
T

v v
= +                                                          (10) 

3.2.3. Total Setup Time. For the lithium battery, the total setup time can be 

formulated as: 

=b b b

s sr sgT T T+                                                            (11) 

where b

srT  is the total lithium battery replacement time, 
b
sgT  is the total preparation and 

packing time of ground team relocation. The total battery replacement time can be 

calculated by the unit time per battery replacement b

srt  and the times of battery 

replacement b

rN . The preparation and packing time depends on unit time per preparation 

and packing b

srt  and the times of the ground team station relocation b

gN , i.e., 

=b b b b b

s sr r sg gT t N t N +                                                   (12) 

The times of the lithium battery replacement  b

rN  and the relocation times of the 

ground stations b

gN  can be calculated by the inspection distance D and the feasible radius 

of flight rb as follows: 

=
2

b b

r g

b

D
N N

r

 
=  
 

                                                 (13) 

where      is ceiling function.   

For the hydrogen fuel cell, similarly, the total setup time can be formulated as: 

=c c c

s sr sgT T T+                                                         (14) 

where c

srT   is the total hydrogen fuel tank replacement time, 
c

sgT   is the total preparation 

and packing time of ground team relocation for UAV with a hydrogen fuel cell. The 
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preparation and packing time depends on unit time per preparation and packing 
c

sgt  and 

the number of the ground team station c

gN . The total hydrogen fuel tank replacement time 

can be calculated by the unit time per hydrogen fuel cell replacement c

srt  and the number 

of tank replacement c

rN . Therefore, the total setup time can be formulated as: 

=c c c c c

s sr r sg gT t N t N +                                                   (15) 

From Figure 3-1, because 2rc is the distance of one inspection round, 
c

gN  can be 

formulated as: 

2

c

g

c

D
N

r

 
=  
 

                                                            (16) 

In this thesis, we stipulate that the UAV replaces the fuel tank after n×rc 

inspection distance and uses a new tank for next n×rc inspection distance. As shown in 

Figure 3-2, the Dleft is the remaining distance after k×n×rc inspection distance is covered. 

If Dleft is larger than rr, the (k+1)th fuel tank is used to continue the remaining trip. While 

the kth fuel tank is used to finish this trip if Dleft is not larger than rr. Thus, c

rN  can be 

calculated as: 

               
,

1,

leftc

r

k if D rr
N

k else

 
= 

+

                                                      (17) 

c

D
k

n r

 
=  

 

                                                             (18) 
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Figure 3-2. Fuel Tank Replacement 

 

3.2.4. Battery Depreciation Cost. In Table 3-1, the total operating time of each 

lithium battery m

bt  is required for calculating the battery depreciation cost.  The lithium 

battery can be recharged using the charging equipment during the inspection. The 

recharging time trecharge varies regarding the capacity of the battery and the electric 

current. The lithium battery power system is illustrated in Figure 3-3. 

 

 

Figure 3-3. Lithium Battery Power System and Cost Components 

 

The overall inspection trip can consist of several inspection rounds. For each 

inspection round, the UAV is operated to finish the inspection round with a fully 
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recharged battery, which will be replaced and recharged after this inspection round. After 

packing, the UAV is moved forward to the next station and the same task using the other 

fully recharged battery is conducted. For the specific inspection trip, it consists of i×M 

rounds along with residual distance L as shown in Figure 3-4  where i is the number of 

cycles where all batteries are used and recharged. M is the number of batteries necessary 

for covering the whole inspection.  

 

 

Figure 3-4. Lithium Battery Recharging Illustration 

 

M can be calculated based on the recharging time trecharge and the total flight time 

M

flightt  of the M batteries. The total flight time 
M

flightt  is the sum of the working time of the 

UAV, the travel time of the ground team, the total replacement time and the preparation 

and packing time of ground team relocation of these M batteries. Based on (8), (9) and 

(12), 
M

flightt  can be formulated as: 
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3 1 2

2 2 2
= +( )+( )M b bb b b

flight sr sgb

r M r M r M
t t M t M

v v v

  
+  +                          (19) 

Since trecharge is within range of 
1( , ]M M

flight flightt t−
, M can be formulated as: 

arg

3 1 2

=
2 2 2

+( )+( )

rech e

b bb b b
sr sgb

t
M

r r r
t t

v v v

 
 
 
 + +
  

                                           (20) 

 

After the UAV completes its inspection round with the thM  battery, the 1st battery 

can be fully recharged. This is called as a cycle based on battery usage. It can be 

calculated by: 

2 b

D
i

M r

 
=  

 

                                                      (21) 

For the mth battery, the operation time m

bit  of the 2 bi M r   inspection distance 

can be calculated by: 

m b

b flighttimeit i t=                                                    (22) 

For the thm  battery, the operation time m

bLt  of the operation time of the L distance 

can be calculated by: 

1 2

1 1
max(min( ( 1) 2 ,2 ),0) ( )m

b b b b
Lt L m r r

v v
= − −   +                 (23) 

The total operation time m

bt  for thm  battery can be calculated by the sum of the 

operation time of the i×M×2rb inspection distance m

bit  and the operation time of the L 

distance m

bLt : 

m m m

b b bt it Lt= +                                                        (24) 
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3.2.5. Cell Depreciation Cost.  As shown in Table 3-1, the hydrogen fuel cell 

depreciation cost can be calculated using the cost of refueling each hydrogen fuel tank 

Gh, the cost of each hydrogen tank Gt, the number of fuel tank that the inspection trip 

needs Q, the total operating time q

tt  for the qth tank, the expected lifetime of each tank  

Lt, the cost of one hydrogen fuel cell Gc, the working time of UAV c

uT , and the expected 

lifetime of the hydrogen fuel cell Lc. The hydrogen fuel cell power is illustrated in Figure 

3-5. 

 

 

Figure 3-5. Hydrogen Fuel Cell Power System and Cost Components 

 

Here, the cost of the hydrogen fuel cell denotes the cost of the whole hydrogen 

fuel cell system except hydrogen tank, including the fuel reactor, control system, lithium 

battery, etc. The expected lifetime of one cell is Lc. 

For the hydrogen fuel cell, it’s unrealistic to refuel the cells during the trip, even 

though it’s an extreme short time for refueling comparing with the recharging time of 
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lithium battery (Yang, 2009). The current U.S. Department of Energy (DOE) technical 

target of refueling time for 2020 of an onboard hydrogen tank is 3 min for 5 kg of 

hydrogen (DOE, 2017). In the next content of this section, this thesis will discuss how to 

calculate the total operating time q

tt  for the qth tank. 

Based on Figure 3-4, the number of tanks prepared, Q, is equal to the number of 

cells replacement 
c

rN . When Dleft is less than or equal to rr, the last tank can support the 

last nrc plus the remaining rr distance, while the other tanks are used to support the 

earlier nrc distances. When Dleft is large than 𝑟𝑟, the last tank supports Dleft distance, the 

other tanks support the earlier nrc distances. Therefore, the total operating time q

tt  for the 

qth tank can be calculated as follows: 

1 2 1 2

1 2 1 2

( ) ( ),

=

( 1) ( ) ( ),

left leftc c
leftc c

q

t

left leftc c

c c

D Dnr nr q
if D rr

v v Q v v
t

D Dnr nrq q
else

Q v v Q v v

  
+ +  +   

 

   

−  + +  +   
   

                                 (25) 

3.3. CASE STUDY 

In this section, we calculate and analyze the total costs of using UAVs powered 

by a lithium battery and hydrogen fuel cell for inspecting the transmission lines with four 

different distances (10 km, 30 km, 38 km, 45 km) using the proposed cost model. The 

assumptions for the parameters used in this case study are as follows. 

 

• The inspection velocity v1 and the moving velocity v3 

 Refer to (Wang et al. 2010), the UAV’s flying speed can be15 km/h (i.e., 4.17 m/s), so 
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here the average velocity of the UAV during inspection v1 was assumed as 4 m/s. The 

average moving velocity of the ground team vehicle v3 was assumed as 13m/s.  

 

• The maximum flight time 
b

flighttimet  

For the UAV powered by lithium battery, based on some UAVs in the market (DJI 

MATRICE 210, Aeryon SkyRanger, ING Responder and Microdrones MD MAPPER 

1000), the maximum flight time is between 38 min and 50 min with no payload. Based on 

(DJI website, 2017), the flight time 
b

flighttimet  was assumed to be 25 min.  

 

• The average flying velocity 
2

bv   

 The maximum speed of some UAVs powered by lithium battery is around 17m/s, 

considering the wind and uncertainties, the average velocity 
2

bv  was assumed as 15m/s.  

 

• The feasible flight radius rb 

For the most existing UAVs in the market, the control distance varies from 5 km to 10 

km. However, the capability of a lithium battery of the UAV cannot cover such a long 

distance. Using assumptions about the velocity and the flight time rb could be obtained 

with the value of 2.3 km.  

 

• The maximum flight time 
c

flighttimet  

For the UAV powered by a hydrogen fuel cell, the flight time depends on the capacity of 

the fuel cell, the wind, the payload, etc. There are not too many hydrogen powered UAVs 
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in the market, so referring to the MMC HyDrone 1550 UAV and H1-Fuel Cell (MMC 

website, 2017). The endurance is about 150 min with a nine-liter tank. Considering the 

effective availability in the actual operation, here, the maximum flight time 
c

flighttimet  for 

one hydrogen fuel cell was assumed as 120 min.  

 

• The average flying velocity 
2

cv  

In the experiment of (Gadalla & Zafar. 2012) and (Kim & Kwon. 2012), the speeds of the 

cruise phase were 17 m/s and 8.33-13.89 m/s, respectively. The maximum speed of 

MMC HyDrone 1550 is 10m/s. It is a safe assumption to choose the average velocity 
2

cv  

to be 8 m/s.  

 

• The feasible flight radius rc 

The maximum control distance of MMC HyDrone 1550 is 10 km which is much shorter 

than the feasible flight radius that the capacity of one fuel tank can support, so let rc be 8 

km be a safe assumption.   

 

• Others 

Assume the unit time per battery or tank replacement 
b

srt  and 
c

srt  both to be 10 min. 

Assume unit time per preparation and packing g

b

st  and g

c

st both to be 20 min. Assume the 

cost required for each setup of the ground station and battery or cell replacement csg, csb 

and csc all to be $17. They are assumed based on the estimation from our industrial 

collaborator according to some other similar existing tasks that have been widely 
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conducted. For example, the station setup time was estimated based on the setup time of 

the ground team when using a robotic arm for maintaining the transmission line. The 

battery change time was estimated based on the recorded data of other equipment where 

battery change is required.  

 

• The salary rates are estimated by referring to the existing pay rates of similar positions 

in the U.S. as well as the feedback from an industrial collaborator. For example, the 

average hourly wage for a truck driver - heavy in the United States is $21 (Truck Driver - 

Heavy in the United States). Thus, we assumed the hourly salary rate of the driver is 

$25/h. The range of the average hourly pay for a Hardware Engineer III in the United 

States is between $43 and $53 (Hardware Engineer III in the United States). Thus, we 

assumed the technician staff salary cost is $45/hour. 

The results of total time for the inspection and the salary cost are presented in 

Table 3-2. Comparing the total time for the inspection to the results from (Nagarajan et al., 

2017) where suspended robot is used in transmission line inspection, when UAV is used 

instead of suspended robot, operation time can be significantly saved due to the faster 

velocity and the avoidable time for crossing the possible obstacles. Considering an 8-hour 

working day, only about 10 km could be inspected for if the suspended robot is used, but 

more than 30 km could be done in one day if UAV is used.  
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Table 3-2. The Result of Total Time for the Inspection and the Salary Cost 

 Lithium battery Fuel cell 

 10km 30km 38km 45km 10km 30km 38km 45km 

𝑇𝑢 (hours) 0.88 2.64 3.34 3.96 1.04 3.13 3.96 4.69 

𝑇𝑔 (hours) 0.21 0.64 0.81 0.96 0.21 0.64 0.81 0.96 

𝑇𝑠 (hours) 1.50 3.50 4.00 5.00 0.50 1.00 1.50 1.50 

𝑇𝑐 (hours) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Total time (hours) 3.59 7.78 9.15 10.92 2.76 5.77 7.27 8.15 

Salary Cost ($) 377.30 816.89 961.23 1,146.58 289.32 605.43 763.38 855.65 

 

Assume the recharging time of the lithium battery is 90 min, then, in this case, M 

is 2. The purchase costs and expected lifetime/working times of the UAV, data 

transmission system, lithium battery, fuel cell, and auxiliary equipment are listed in Table 

3-3. 

 

Table 3-3. Parameters for Equipment Involved in Operation 

 Purchase cost ($) Expected lifetime/working time (hours) 

UAV 20,000 5,000 

Lithium Battery 1,000 1,000 

Charging Equipment 1,500 5,000 

Fuel Cell 1,000 5,000 

Fuel Tank 300 5,000 

Tank Refueling 10 - 

Data Transmission System 1,200 4,000 

Auxiliary Equipment 4,200 5,000 
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Using UAV for the transmission line inspection is still an emerging area, thus, 

some critical technical parameters for the equipment itself is not allowed to be exposed 

without the permission from the manufacturers due to the concerns of commercial 

confidentiality. The empirical data relevant to the use of the equipment in real operation 

are not completed since there is still not a wide adoption yet. In this thesis, such data are 

estimated referring to some publicly available data belong to some similar equipment or 

similar operations. The costs are estimated using the data available to the similar 

equipment used in similar areas. The lifetimes are estimated using the warranty period 

offered by similar products. It is suggested by our industrial collaborator that it is 

appropriate to be conservative for an emerging technology. All these assumptions have 

been verified by our industrial collaborator with an internal project report. The details of 

the estimations in Table 3-3 are provided as follows. 

In Table 3-3, the UAV purchase cost is estimated as follows. The right drone at 

the right price point depends entirely on the area of expertise.  Even within the same area 

applications, there is significant variation depending upon where it is operated. The price 

ranges from $1,500 to well over $25,000. Here, we assumed the purchase cost of a UAV 

is $20,000. We prefer to estimate the lifetime based on the warranty period of a similar 

product to obtain a conservative estimation. Referring to the warranty period (12 months) 

of a product (After-sales service policies, 2018), we assume the lifetime to be 5,000 

hours. It is around twice the usage of the warranty period if we assume 10 hours per 

working day, 22 working days per month. 

The battery cost is estimated based on the information of the same type of 

lithium-ion battery. One kind of lithium-ion battery used for UAV cost $370 (Matrice 200 
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series, 2017; TB55, 2018) and one of the UAV products needs to be supported by two 

lithium batteries (Matrice 200 series, 2017). Thus, the battery cost is estimated to be 

around $1,000, considering some other fees such as tax.  

The lifetime of the battery is estimated similarly based on the warranty period of 

the battery used by UAV for the utility system. The typical warranty period reported is 

200 charging cycles (After-sales service policies, 2018). The literature also shows that 

lithium-ion batteries typically have the lifespan of between 300 and 500 cycles (Tips for 

battery, 2018). In this thesis, to be conservative, we estimate the lifetime to be 1,000 

hours using 200 cycles.  

The purchase cost of the charging equipment is assumed as $1,500 based on the 

one of DJI charging equipment (Battery station, 2018). Referring to the warranty period 

(12 months) of this battery station (After-sales service policies, 2018), we assume the 

lifetime to be 5,000 hours. 

The data transmission system parameters are estimated by referring to the data 

link systems used by UAV when implementing infrastructure inspection. The prices of 

two data link are $700 (Bluetooth Datalink, 2018) and $1,700 (Wireless UAV Data Link, 

2018), so we assumed the price of the data transmission system as $1,200.  The lifetime 

is estimated according to the warranty period of 12 months of the system (After-sales 

service policies, 2018). 

The auxiliary equipment typically consists of the industrial grade joystick, 

military grade monitor, CPU, video recorder and generator. The purchase costs of these 

equipment are estimated at $300 for Industrial grade joystick products (Industrial grade 

joystick, 2018), $800 for Military grade monitor products (Military grade monitor, 2018), 
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$1,500 for CPU products (CPU, 2018), $600 for Video recorder (Video recorder, 2018), 

and $1,000 for Video generator products (Video generator, 2018), respectively. The 

warranty period of most of the equipment is around 12 months, which can be transferred 

to 5,000 hours in the utility industry. 

The results of total cost comparison between two different power sources for the 

four scenarios are illustrated in Table 3-4. Compared to the lithium battery, the fuel cell 

can lead to a much higher cell depreciation cost as well as a much lower salary and setup 

cost. Except for the cell purchasing cost, the total cost of a fuel cell includes the fuel tank 

depreciation cost and refueling cost, which leads to a higher depreciation cost than a 

lithium battery. On the other side, due to a much lower total inspection time, the costs of 

salary, setup, data transmission system and auxiliary instruments depreciation are lower. 

Also, UAV powered by fuel cell has a lower maximum flying velocity, which is 

positively related to the total working time. It results in a little higher depreciation cost 

for the UAVs powered by a fuel cell. Since the contribution of battery or cell depreciation 

is much lower than that of the salary and setup cost, the total cost of UAV powered by 

the fuel cell is about 20% lower than by lithium battery.  

In addition, in Table 3-5 and Figure 3-6, we compare the total cost of using a 

suspended robot in a 6-mile inspection distance with the total cost of UAV in 10 km 

(approximately 6 miles) inspection distance. It can be seen that the total cost can be 

reduced about 40%~50% by using UAV compared to the scenario of using a suspended 

robot (Nagarajan et al., 2017). Apparently, the salary cost decrement results in the major 

decrement of the total cost. 
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Table 3-4. Total Cost of UAV for inspection 

 Lithium battery Fuel cell 

Cost items 10km 30km 38km 45km 10km 30km 38km 45km 

Salary 377.30 816.89 961.23 1,146.60 289.31 605.43 763.38 855.65 

Setup 122.00 258.00 292.00 360.00 54.00 88.00 122.00 122.00 

Battery/Cell 

depreciation 
3.14 3.67 3.88 4.10 10.43 21.30 31.65 31.95 

Data Transmission 

system depreciation 
0.71 1.84 2.20 2.70 0.46 1.24 1.64 1.86 

Auxiliary Equipment 

depreciation 
2.00 5.16 6.17 7.50 1.30 3.47 4.59 5.20 

Ground Travel 70.00 210.00 266.00 315.00 70.00 210.00 266.00 315.00 

UAV depreciation 3.52 10.56 13.37 15.80 4.17 12.50 15.83 18.75 

Total Cost ($) 578.67 1,306.12 1,544.85 1,851.70 429.67 941.94 1,205.08 1,350.40 

 

 

Table 3-5. Cost Decrement Table of the Suspended Robot and UAV 

  
Suspended 

Robot 

UAV powered 

by a lithium 

battery Decrement 

(%) 

Suspended 

Robot 

UAV powered 

by a hydrogen 

fuel cell Decrement 

(%) 

Cost items 
6mile 

(9.66km) 
10km 

6mile 

(9.66km) 
10km 

Salary cost ($) 779.72 377.30 -52% 779.72 289.31 -63% 

Other Cost ($) 193.46 201.38 4% 193.46 140.36 -27% 

Total Cost ($) 973.18 578.67 -41% 973.18 429.67 -56% 
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Figure 3-6. Cost Decrement Chart of the Suspended Robot and UAV 

 

3.4. CONCLUSION 

In this section, we investigate the routing algorithm and proposed the cost model 

for applications of UAVs in transmission line inspection considering both the lithium 

battery and the hydrogen fuel tank. The results of the case study show that when using 

UAVs for transmission line inspection, a significant decrease in the total cost can be 

achieved by reduction of the total inspection time, compared to suspended robots. 

Compared to the lithium battery system, hydrogen fuel cells can reduce the setup time, 

cost, and related salary expense, and thus achieve a better performance with respect to 

cost effectiveness. 
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4. ANALYTICAL MODEL 

 

When we examined the results of the case study in Section 3, for the lithium 

battery-powered UAV, the number of battery replacement is the minimum since one 

battery cannot support the UAV as far as its communication distance. However, for the 

hydrogen fuel cell powered UAV, one fuel tank can support inspection distances that are 

longer than the communication distances. However, the ground team still needs to replace 

the fuel tank at every ground station when the remaining energy cannot support next 

inspection round. In this case, we intend to explore a better routing algorithm with a 

lower total cost. There is concern that some of the fuel tank replacements might be 

unnecessary if the flight radius is set to be variable value instead of a fixed value as 

proposed in Section 3. In other words, there is a minimum number of fuel tank 

replacements during the inspection trip, which is dependent on the inspection distance 

and the maximum feasible inspection distance. This number may be less than the total 

number of ground station deployment. An optimal combination of ground station 

deployments and fuel tank replacement when using UAV in transmission line inspection 

can be identified.  

In this section, an analytical routing algorithm is first proposed to find the 

locations for the ground team deployment and fuel tank replacement that can minimize 

the total inspection cost. PSO is used to solve the proposed model for a near optimal 

solution. A numerical case study is conducted to compare the result of this analytical 

routing algorithm and the heuristic algorithm proposed in Section 3. 
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4.1. ANALYTICAL ALGORITHM AND COST MODEL 

The inspection flight of the UAV needs to be controlled by a control 

station when the UAV motion signals are transmitted, and the live stream of 

inspection results are received. Let D be the total distance of the inspection trip of 

a transmission line. Such a distance is discretized into m segmentations with equal 

length of μ. Let i, i=0, 1, …, m, be the indexes of the start points of these m 

segmentations. Let dmax be the maximum distance inspected by a UAV using one 

hydrogen fuel cell tank, and md be the number of such segmentations contained in 

dmax. Let rmax be the maximum flying distance within which the control signals 

can be transmitted between the ground station and the UAV, and mr be the 

number of such segmentations contained in rmax. 

As shown in Figure 4-1, the ground team needs to set up the apparatus of the 

inspection at the point where the ground station is deployed. The UAV will first take off 

from the deployed station and fly back covering the distance of l

if  with the maximum 

flying velocity v2 (step 1 in Figure 4-1) to reach the left ending point of the inspection trip 

controlled by the deployed station. Then, UAV will fly forward to conduct the inspection 

covering the distance of l r

i if f+  with the inspection velocity v1 (step 2 in Figure 4-1) to 

reach the right ending point of the inspection trip controlled by the deployed station.  

Similarly, v1 is less than v2. After the distance of l r

i if f+  is inspected, the UAV flies back 

and lands at the ground station with a velocity of v2 (step 3 in Figure 4-1). Such a 

procedure is defined as an inspection round controlled by a given ground station. Once 

the inspection round by the current ground station is completed, the ground team will 

pack the apparatus and relocate the ground team to the next station with the average 

file:///C:/Users/YU%20LI/AppData/Local/youdao/dict/Application/7.5.0.0/resultui/dict/
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motion velocity v3 (step 5 in Figure 4-1).  Here, the inspection distance is the length of 

the transmission line that is inspected. Based on the process specified by Figure 4-1, the 

actual flying distance is twice of the inspection distance. The main difference between 

this analytical algorithm and the heuristic algorithm proposed in Section 3 is that in this 

algorithm the flight radius, 
l

if and 
r

if  are variable instead of the fixed value r in (1) in 

the heuristic algorithm. 

 

 

Figure 4-1. The Analytical General Method of the Inspection 

 

Let xi be the binary decision variable denoting if a ground station needs to be 

deployed at point i or not. Let yi be the binary decision variable denoting if the fuel tank 

needs to be replaced or not at point i.  
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In the heuristic algorithm, we ignored the taking off and landing time of UAV. In 

order to solve the problem more accurately, the number of times for taking off and 

landing will be considered a new variable in this analytical algorithm. Let zi be the 

decision variable denoting two different tank replacement strategies. It takes the value of 

two when the fuel tank is replaced after the left side inspection is covered. In this case, 

the UAV needs to take off and land for the left side, then, the UAV takes off and lands 

one more time for the right side. Otherwise, it takes the value of one if xi=1, which can 

represent the cases 1) the fuel tank is replaced before the left side inspection, and 2) the 

fuel tank is not replaced (the landing and ground station deployment is only for the 

concern of data transmission range). When xi is zero, then zi is zero. Three different 

scenarios for the ground station power handling strategies while

{ 1, 0, 1},{ 1, 1, 1}i i i i i ix y z x y z= = = = = =   and { 1, 1, 2}i i ix y z= = =  are illustrated in Figure 

4-2, Figure 4-3, and Figure 4-4, respectively.  

 

 

Figure 4-2. Ground Station Deployment & Relocation Scenario 1 
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Figure 4-3. Ground Station Deployment & Relocation Scenario 2 

 

 

Figure 4-4. Ground Station Deployment & Relocation Scenario 3 
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The objective is to identify an optimal strategy in terms of the ground station 

deployment (i.e., xi), fuel tank replacement (i.e., yi , zi), as well as the flying distances of 

the left and right sides of the inspection round controlled by each deployed ground station 

(i.e.,
l

if  and 
r

if )  to minimize the total inspection cost, which can be formulated by 

, , , , , , , ,
min min ( + + + + + )

l r l r
i i i i i i i i i i

st s cd dd ud ae gt
x y z f f x y z f f

TC C C C C C C C= +  (26) 

where Cst, Cs, Ccd, Cdd, Cud, and Cgt, denotes the salary cost for the inspection team, setup 

cost, depreciation cost of the fuel cell, depreciation cost of data transmission equipment, 

depreciation cost of UAV, depreciation cost of the auxiliary equipment, and the ground 

travel cost, respectively.  

Salary cost Cst is formulated by: 

( 2 )st dr te TotalC S S T= +      (27) 

where Sdr and Ste are the salary rates for the driver and the technicians in the ground team. 

A typical inspection team consists of one driver and two technicians. TTotal is the total 

time for completing the inspection using UAV, which can be calculated by  

=Total c u g sT T T T T+ + +     (28) 

Tc is the final close time of the ground team when the inspection task is 

completed. Tu is the working time of the UAV, which can be calculated by 

11 2

+( ) z
m

u to la i

i

D D
T t t

v v =

= + +                                           (29) 

 

where tto is the time required for one taking off of UAV. tla is the time required for one 

landing of UAV. Note that zi=2 will lead to one more additional landing and taking-off at 

point i where ground station is deployed, and the fuel tank is replaced. 
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Tg is the total travel time of the ground team, which can be calculated by 

3

g

D
T

v
=                 (30) 

Ts is the total setup time of the ground team for relocation, which can be 

calculated by 

0 0

m m

s sg i sr i

i i

T t x t y
= =

= +           (31) 

where tsg is the time required for a ground station setup after relocation. tsr is the time 

required for a fuel tank replacement. Here we assume the station setup and the fuel tank 

replacement cannot be implemented simultaneously.  

The setup cost, Cs, can be calculated by  

0 0

m m

s si sg i sc i

i i

C C c x c y
= =

= + +            (32) 

where Csi is the cost of the initial setup to start the inspection task. csc is the cost required 

for one setup of fuel tank replacement. csg is the cost required for one setup of the ground 

team relocation.  

The depreciation cost of the fuel cell, Ccd, can be calculated by 

0

m
u u

cd h i t c

i t c

T T
C G y G G

L L=

= + +    (33) 

where Gh is the cost of the refueling for each hydrogen fuel tank. Gt and Gc are the costs 

of hydrogen tank and hydrogen fuel cell, respectively. Lt and Lc are the expected lifetimes 

of tank and cell, respectively. 
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The depreciation cost of the data transmission system, Cdd, can be calculated by 

u s
dd d

d

T T
C G

L

+
=      (34) 

where Gd is the purchase cost of the data transmission system. Ld is the expected lifetime 

of the data transmission system.  

The depreciation cost of auxiliary equipment, cae, can be calculated by 

u s
ae a

a

T T
C G

L

+
=      (35) 

where Ga is the cost of the auxiliary equipment. La is the expected lifetime of the 

auxiliary equipment.  

 

The depreciation cost of UAV, Cud, can be calculated by 

u
ud u

u

T
C G

L
=                   (36) 

where Gu is the cost of the UAV. Lu is the expected lifetime of the UAV.  

 

The cost incurred by ground travel, cgt, can be formulated by 

gt gtC c D=                   (37) 

where cgt is the ground travel cost per unit distance. 

 

The constraints are formulated as follows. Since rmax is the maximum flying 

distance to guarantee the data transmission between UAV and ground station, there needs 

at least one ground station deployed in the distance of 2rmax, to ensure the ground team 

can receive the signals transmitted by UAV, which can be formulated by 

2 1

1,  (- , - ]
rk m

i r r

i k

x k m m m
+ −

=

   =       (38) 
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Note that in (38), mr virtual points are added before point x0 and after point xm, 

respectively, as shown in Figure 4-5 to make sure there should be at least one ground 

station deployed in the first and the last rmax distance.  

 

 

Figure 4-5. Virtual Points 

  

The auxiliary points will not be considered for ground station deployment, which 

can be represented by 

0, { , ... , 0, ... , , 1,..., }i r rx i m m m m m=   − + +   (39) 

The fuel tank cannot be replaced at point i at which the ground station is not 

deployed, which can be formulated by 

0 [0, ]i iy x i m−              (40) 

The zi can only take the value of zero when xi is zero, which can be formulated by 

0, 0 [0, ]i iz if x i m= =       (41) 

The zi cannot take the value of two when yi is zero, which can be formulated by 

2, 0 [0, ]i iz if y i m =              (42) 

 There should be at least one replacement of fuel tank for every dmax inspection 

distance, which can be formulated by  
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min( 1, )

1, [1,max(1, )]
dk m m

i d

i k

y k m m
+ −

=

   −        (43) 

It should be noted that the first ground station needs to be deployed within the 

first rmax distance. (i.e., it implies that a new fuel tank is mounted at the first ground 

station when inspection starts), which can be formulated by 

0

1
rm

i

i

y
=

       (44) 

In addition, the total number of fuel tank replacement should be larger or equal to 

the number of minimum replacements which depends on the total inspection distance D 

and the maximal feasible inspection distance dmax. It can be formulated by  

0 max

m

i

i

D
y

d=

 
  
 

       (45) 

The total number of the ground station deployment should be no less than the 

minimum required number, which can be formulated by 

0 max2

m

i

i

D
x

r=

 
  
 

      (46) 

l

if  and 
r

if  are meaningless when there is no ground station deployed at point i, 

which can be formulated by 

0, 0l

i if if x= =     (47) 

0, 0r

i if if x= =     (48) 

The sum of 
l

if  and 
r

if should be the total inspection distance, which can be 

formulated by   
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0 0

m m
l r

i i

i i

f f m
= =

+ =       (49) 

Since rmax is the maximum flying distance to guarantee the data transmission 

between the UAV and the ground station, 
l

jf  and 
r

jf  are limited to the mr, which can be 

formulated by  

r

i rf m       (50) 

l

i rf m       (51) 

The inspection distance should be constrained by the fuel tank capacity, which 

can be formulated by  

l

i i dx d m       (52) 

r

i i dx d m       (53) 

where 
l

id  and 
r

id are the accumulated inspection distances covered by the current fuel 

tank upon the completion of the left and right sides inspection trips controlled by the 

ground station i. 
l

id  and 
r

id can be calculated by 

1

1

1

, 1, 1, 1

, 1, 0

, 1, 1, 2

, 0

l

i i i i

r l

i i i il

i r l

i i i i i

r

i i

f if x y z

d f if x y
d

d f if x y z

d if x

−

−

−

 = = =


+ = =
= 

+ = = =
 =    

(54)

 

1

, 1, 1, 1

, 1, 0

, 1, 1, 2

, 0

l r

i i i i i

r l

i i i ir

i r

i i i i

r

i i

f f if x y z

f d if x y
d

f if x y z

d if x−

 + = = =


+ = =
= 

= = =
 =

                      (55) 
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Initially, 0

ld  and 0

rd are equal to 0. 

When the ground team replaces a new fuel tank before the UAV takes off for its 

left side inspection trip ( 1, 1, 1i i ix y z= = = ), 
l

id  is equal to the left side flying distance 

controlled by the ground station i, while 
r

id  is the sum of the left and right sides flying 

distance controlled by the ground station i.  

When the ground team replaces the fuel tank after the left side inspection of the 

ground station deployed at the point i is completed, i.e., uses the last fuel tank for the left 

radius and replaces a new tank for the right radius of the ground station at point i (

1, 1, 2i i ix y z= = = ), 
l

id  is the sum of 1

r

id − and the left radius 
l

if of the point i, while 
r

id  is 

equal to 
r

if .  

When the fuel tank is not replaced at the station deployed at point i ( 1, 0i ix y= = ), 

l

id  is the sum of 1

r

id − and the left radius 
l

if of the point i, while 
r

id  is the sum of 
l

id  and

r

if . 

4.2. SOLUTION STRATEGY BASED ON PSO 

In PSO, the particle is encoded as follows  

 0 0 0 0 0[ ,... , ,... , ,... , ,... , ,... ]l l r r

m m m m mp x x y y z z f f f f=     (56) 

The fitness function of each particle can be formulated by (57) where the 

constraints (38)-(53) are integrated as penalty terms.  
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2 1
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2
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[min( , 0)] [min( , 0)] [min( , 0)]
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m m
l r l r
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r
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,

, [1,max(1, )]
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r

r

r dm m m m m

m m

   − −   −

+

      (57) 

where A is a large real number.  

 It can be seen from (56), the dimension of p is 5(m+1). As mentioned earlier, the 

total inspection distance D is discretized into m segmentations with equal length of μ. To 

facilitate a high resolution of the model, μ can take very small values, and thus, m and the 

dimension of each particle could be very high. PSO may be awkward when handling the 

high dimension particles. 

 To reduce the dimension of the particle in PSO, we consider the strategy of the 

minimal ground station deployment. Since the largest distance between two ground 

stations is 2rmax, also recall that the flying radius by one fuel tank is larger than the flying 

radius determined by the data transmission, the minimal number of the ground stations 

can be calculated as follows: 

 
x

2 r

m
N

m

 
=  
 

        (58) 

Let j, j=1, 2, …, Nx, be the index of locations where the ground team can be 

deployed according to the minimal deployment specified by (58). In this case, xj, yj, zj, 

l

jf , and 
r

jf  need to be identified. Thus, the dimension of each particle can be reduced 
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from 5(m+1) to 4Nx. For example, if m=150, mr=40, then Nx=2, the dimension of the 

particle will be reduced from 755 to 8 as illustrated in Figure 4-6. 

 

 

Figure 4-6. Particle Dimension Reduction Example 

 

The constraints of (38) - (41), (43) and (46) - (48) could be ignored in PSO. We 

set y1=1 instead of (44) to ensure that a new fuel tank is mounted at the first ground 

station. For each ground station, the UAV needs to take off and land at least once, it can 

be presented as: 

{1,2}, [1, ]j xz j N            (59) 

Here, we stipulate that UAV uses the new fuel tank to complete the inspection of 

the left and right side of the first ground station. Thus, z1=1. 
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 (54) and (55) can be revised accordingly as follows: 

1

1

1 1

, 1 and 1

, 0

, 1and 2

l

j j j

r l

j j jl

j r l

j j j j

l l

f if y z

d f if y
d

d f if y z

d f

−

−

 = =


+ =
= 

+ = =


=

   (60) 

, 1 and 1

, 0

, 1 and 2

l r

j j j j

r r l

j j j j

r

j j j

f f if y z

d f d if y

f if y z

 + = =


= + =


= =

                      (61) 

The minimal number of fuel tank replacements is Min_Ny. Since each fuel tank 

can support dmax inspection at most, Min_Ny can be calculated as follows: 

max

_ y

D
Min N

d

 
=  
 

        (62) 

If Ny is equal to Min_Ny, we do not need to use PSO to explore a better solution 

since the number of fuel tank replacement achieves the minimum value. 

If Ny is larger than Min_Ny, we need to explore a better solution with respect to 

the number of fuel tank replacement from Min_Ny to Ny. Let check_NY be the variable to 

denote each possible number of fuel tank replacement within this range. It can be 

formulated as  

_ [ _ , ]y ycheck NY Min N N     (63)  

Thus, constraint (45) can be modified to 

_j y

j

y check N=     (64) 
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We examine different values of check_NY from Min_Ny. The algorithm will be 

terminated if a feasible solution with the current check_NY can be obtained. Otherwise, 

the check_NY will be updated by adding one until it equals to Ny.  

The fitness function of individual particle can be revised as shown in (65) where 

the constraints (42), (44), (49)-(53), (59) and (64) are integrated as penalty terms: 

2 2 2

1 1

2 2 2

1 1

2 2 2

1

[min(1 , 0)] [min( 1, 0)] [min( 1, 0)]

[ ] [min( , 0)] [min( , 0)]

[ _ ] [min( , 0)] [min( , 0)]

x x

x

j j

N N
l r l r

j j r j r j

j j

N
l r

j max j max j

TC A z y A y A z

A f f m A m f A m f

A check NY y A d d A d d

= =

+  − + +  − +  −

+  + − +  − +  −

+  − +  − +  −

 



      (65) 

In PSO, the particles fly in the search space based on the updated velocity towards 

the best location of both itself and entire swarm over time. After each iteration, the 

velocity of each particle is updated according to (66). 

1 1 2 2( 1)  ( )   ( -  ( ))  ( -  ( ))best bestv q v q w c p p q c g p q + =  +   +           (66) 

where w is inertia weight, c1 and c2 are acceleration coefficients, α1 and α2 are random 

real numbers between zero and one, respectively. In addition, v(q) and p(q) are the 

matrices of the velocity and location of individual particle at iteration q. pbest is the 

particle's best location that has been identified up to the qth iteration and gbest is the global 

best location of the entire swarm. The location of each particle is updated according to 

(67). 

( 1)  ( )  ( 1)p q p q v q+ = + +           (67) 

The procedure of the algorithm has been illustrated in a flowchart as shown in 

Figure 4-7 and briefly described as follows. 
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1. Calculate Nx and Ny, i.e., the number of ground station deployments and the number 

of cell tank replacements based on the heuristic algorithm.  

2. Calculate Min_ Ny using (62).  

3. Terminate the algorithm if Ny is equal to Min_ Ny.  

4. Otherwise, let Min_ Ny be check_NY and using PSO algorithm to search a better 

solution. 

4.1.Randomly initialize the parameters and form a swarm.  

4.2.Calculate the fitness for each particle using (65).  

4.3.Start the PSO algorithm. 

4.3a. Update the velocity for each particle using (66). 

4.3b. Update the location for each particle using (67).  

4.3c. Update the particle best and global best if necessary. 

4.3d. If the iteration is maximum: 

4.3d.1. Terminate the algorithm. 

4.3d.2. Terminate the algorithm and adopt the global best result as the 

optimal deployment, if the best result of the PSO is feasible. 

4.3d.3. Terminate the algorithm and adopt the deployment based on the 

heuristic algorithm, if the best result of the PSO is infeasible and 

check_NY is equal to Ny. 

4.3d.4. Let check_NY = check_NY +1 and repeat step 4.1, if the best result of 

the PSO is infeasible and check_NY is not equal to Ny.  



 

 

 

Figure 4-7. Flowchart of the Analytical Algorithm 

5
2
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4.3. CASE STUDY 

In this section, we calculate the number of the ground station deployments and the 

fuel tank replacements based on the heuristic and analytical methods.  The total costs 

based on two different methods for inspecting five different distances (10 km, 30 km, 38 

km, 45 km, 50 km) are obtained and analyzed.  

The times required for taking off tto and landing tla are the new parameters in the 

analytical method. Assumed tto and tla are both equal to 2 min. Other parameters are the 

same as the ones used in Section 3.3.  

Matlab is used to run the proposed PSO algorithm for solving the problem. The 

parameters used in the PSO algorithm are listed in Figure 4-8. 

 

 
Figure 4-8. Parameters of PSO Algorithm 

 

The results are compared in Table 4-1.  Note that, in order to make the 

comparison based on a same baseline, the taking off and landing times are added to the 

heuristic algorithm in calculation. It can be seen that for the cases of 10km, 30km and 

45km, due to the fuel tank replacement calculated by the heuristic algorithm is the 

minimal number of fuel tank replacement, there is no reduction for total time and cost 

when using the analytical algorithm. However, for 38km and 50km, the fuel tank 
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replacement calculated by the heuristic algorithm is not the minimal value. In this case, 

the better solution is identified by using the analytical model. 

 

Table 4-1. Comparison Result of Two Method 

  
Ground stations 

(Unit: No.) 

Fuel tank 

replacement 

(Unit: No.) 

Total time 

(Unit: hr) 

Total cost 

(Unit: $) 

10 

km 

Method 1 1 1 2.8220 437.29 

Method 2 1 1 2.8220 437.29 

30 

km 

Method 1 2 2 5.8994 956.17 
Method 2 2 2 5.8994 956.17 

38 

km 

Method 1 3 3 7.4703 1,226.13 
Method 2 3 2 7.3703 1,188.94 

45 

km 

Method 1 3 3 8.3490 1,371.33  
Method 2 3 3 8.3490 1,371.33 

50 

km 

Method 1 4 4 9.5434 1,579.06 
Method 2 4 3 9.4434  1,541.87 

*Method 1: Heuristic method; Method 2: Analytical method;  

 

The comparison of the ground station deployment and power system replacement 

is illustrated in Figure 4-9 and Figure 4-10. 

 

 

Figure 4-9. Deployment and Replacement Comparison of 38km 
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Figure 4-10. Deployment and Replacement Comparison of 50km 

 

We also compare the transmission line inspection cost and time per kilometer in 

Figure 4-11 - Figure 4-15. The unit performance of the analytical algorithm and heuristic 

algorithm for the fuel cell system is based on the result of the 38km inspection distance of 

the case study in this section. The unit performance of the heuristic algorithm for the 

lithium battery system is based on the result of the 38km inspection distance of the case 

study in Section 3. The unit performance of the suspended robot is based on the cost of 

low frequency obstacle of 30mile, which is approximately equal to 50km in (Nagarajan et 

al., 2017). 

Figure 4-11 and Figure 4-12 show the comparisons of unit time and unit cost. 

Obviously, both unit time and cost of using a suspended robot are much higher than 

UAV. It’s mainly because of the low velocity of the suspended robot and the long time 

spent in clearing obstacles. 
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Figure 4-11. Comparison of Unit Time 

 

 

Figure 4-12. Comparison of Unit Cost 

 

Figure 4-13 shows the comparison of unit salary cost. The salary cost is the main 

component of the total cost. Similarly, the unit salary cost of a suspended robot is higher 

than UAV. 

 



 

 

57 

 

Figure 4-13. Comparison of Unit Salary Cost 

 

Figure 4-14 shows the comparison of unit setup cost. Unlike the unit time, unit 

cost, and unit salary cost, the unit setup cost of using UAV with a lithium battery system 

is the highest among all the options. This is because the capacity of lithium battery is 

limited and unable to support UAV for a long flying distance. Thus, the battery needs to 

be replaced frequently so that the inspection can be completed, which leads to a high 

setup cost.  

Figure 4-15 shows the comparison of unit battery or cell depreciation cost. Due to 

the high cost of the fuel cell system, the unit cell depreciation cost is higher than the 

suspended robot and the UAV with the lithium battery system. However, it needs to be 

noted that the depreciation cost accounts for a small part of the total cost when using 

either a fuel cell or a lithium battery.  
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Figure 4-14. Comparison of Unit Setup Cost 

 

 

Figure 4-15. Comparison of Unit Battery/Cell Depreciation Cost 

 

4.4. CONCLUSION 

In this section, the heuristic routing model was advanced to an analytical one to 

further improve the cost-effectiveness of the transmission line inspection using a UAV. A 
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PSO-based optimization algorithm was proposed to solve the analytical model for 

identifying a better strategy for ground station deployment and power system 

replacement. We compared the unit cost of the transmission line inspection when using 

suspended robot, UAV with lithium battery power system based on the heuristic model, 

and UAV with fuel cell power system based on both heuristic and analytical models. 

Based on unit inspection distance, when measured with the analytical model, the 

performance of UAV with a fuel cell power system is superior to the other options.  
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5. CONCLUSIONS 

 

In this thesis, we investigated the routing algorithm and implemented cost-

effectiveness analysis for the applications of the UAVs in transmission line inspection. 

Both heuristic and analytical models were proposed for the routing algorithm to identify 

the locations for the ground station deployment and power system replacement. The 

results of the case study based on both algorithms show that using UAVs for transmission 

line inspection will lead to a significant decrease of the total cost compared when 

suspended robots are used.  

Although the applicability looks very specific based on the case study illustrated 

in this thesis, the contribution in terms of applications is not trivial. First, the method can 

be used in many other applications with similar concerns after necessary and limited 

revisions. For example, with the rapid development of UAV technology, UAVs have 

been used for many areas, such as agriculture, filmmaking, etc. Almost all tasks 

conducted by UAVs need to consider the tradeoff between the number of ground station 

deployment sites and the capacity of the power system.   

For future work, the sensitivity of the cost with respect to other factors will be 

analyzed. For instance, the potential risk cost for the flammability of hydrogen, the cost 

of usage deterioration of the lithium battery, and the decreased cost of reusing the 

hydrogen tank after activating treatment rather than using a new one could be 

investigated. 
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