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ABSTRACT

Accurate representation of the 3D shapes of natural folds is essential to characteri-

zation of the dynamic models for fold formation. Geometrical analysis of folds commonly

relies upon analyzing patterns defined by the variation in the orientation of poles to planar

surfaces deformed by a shortening event when plotted using graphical calculators (e.g.,

stereogram, polar tangent diagrams) to interpret the shape of folds. Stereograms for which

orientation data define small circles are classified as non-cylindrical regular folds and are

interpreted as “conical folds,” where the shape of the fold is represented by a cone that

terminates at a point. Utilizing similar two-dimensional geometrical analysis of orien-

tation data extracted from various transects across virtual pericline folds produces high

spatial resolution synthetic stereograms with patterns that reproduce those of cylindrical

and non-cylindrical conical folds as well as “fish-hook” patterns. Stereograms from nat-

ural periclines near Licking, Missouri mimic those of the synthetic stereogram patterns.

Reverse engineering to produce three-dimensional shapes from the synthetic stereogram

defines cones as this is a permissible solution to this stereogram pattern; however, the shape

and orientation of these cones are shown to be poor representations of the shape of the per-

icline. Additionally, SCAT and differential geometry analyses are used to mathematically

demonstrate the difference between periclines and conical folds. In comparison to conical

folds, natural pericline folds are common, and their formation is readily reproduced by dy-

namic modelling without requiring highly non-uniform stress-fields or special mechanical

behavior. We suggest that continuing to model the geometrical shape of many natural folds

as conical, based upon stereogram patterns that define small circles, is pointless as natural

folded rocks are more likely to have the form of periclines.
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1. INTRODUCTION

1.1. OVERVIEW ANDMOTIVATION

Understanding fold formation, where rock layers buckle or bend without necessarily

breaking, continues to attract the attention of many geologists. Dynamic models of folding

(e.g., Biot et al. (1961); Ramberg (1963); Hudleston and Lan (1993); Hudleston and

Lan (1994); Schmalholz and Podladchikov (2001); Liu et al. (2016)) receive favorable

consideration based upon how faithfully they reproduce the geometric form of folded rock

surfaces. Consequently, geometric analysis of fold shapes must faithfully represent the true

geometry of folded surfaces, which can be challenging, especially at the terminus of folds.

1.1.1. Fold Classification. Geologists typically characterize fold shapes through

measurement of geometric elements of folds such as the axial surface, hinge-line, crest-

line, inter-limb angle, amplitude, width, and wavelength (e.g., Dahlstrom (1954); Wilson

(1967); Ramsay (1967); Hudleston and Treagus (2010)). For well-exposed folds, several

geometric elements can be measured in the field. More commonly, large portions of

folds, including fold terminuses, are poorly exposed and geologists use orientation data

from available exposures and graphical calculators (e.g., stereonets, tangent diagrams) to

characterize fold geometries (e.g., Davis et al. (2011)). Using stereonets, fold shapes are

classified as cylindrical, near-cylindrical, or non-cylindrical based upon a statistical fit of

poles to the folded surface(s) to a great circle – the π-circle. Treating folds as cylindrical or

near-cylindrical, where the fold shape remains constant along the entirety of the hinge line,

allows for quantitative description of geometric elements of folded surfaces and further

classification of the fold (e.g., Fleuty (1964); Ramsay (1967); Hudleston (1973)). This
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information is of considerable use in the construction of geologic maps, cross-sections,

as well as exploration of natural resources such as subsurface petroleum reservoirs (e.g.,

Groshong, Jr. (2006)).

1.1.2. Fold Terminations. The ability to use graphical calculators for constraining

structural elements, even with sparse data sets, is a rite of passage for many if not all geology

students, and many folds or portions of folds are tacitly treated as being cylindrical or near-

cylindrical. However,Wilson (1967) warns, “No fold, cylindrical or otherwise, can continue

indefinitely – somewhere or other it will die out.” Thus, even cylindrical folds eventually

transition to non-cylindrical folds towards the fold terminus. Accurately characterizing

the changes in fold geometry towards the fold terminus is important to understanding fold

forming processes. Two types of fold terminations are considered here; “Periclines” (Price

and Cosgrove (1990)) and conical folds (Dahlstrom (1954); Evans (1963); Stauffer (1964);

Wilson (1967)).

1.1.3. PericlinesContendingwithConical Folds. Periclines are elongate, doubly-

plunging, domes (anticlines) or basins (synclines) that terminate at both ends of the fold. The

term “conical folds” has its origin in π-diagrams of non-cylindrical folds being described by

small circles, which traditionally are interpreted to correspond to portions of geometrical

cones leading to the term “conical fold.”

Conical folds, as a description for the shape of non-cylindrical folds, especially the

terminus of folds, has gained wide acceptance as a special class of folds (Appendix A),

such that periclinal folds have also been classified as conical (e.g., Evans (1963); Kelker

and Langenberg (1982)).

1.2. RESEARCH OBJECTIVES

The concept of conical folds, while having limited practical usefulness (e.g., see

Groshong, Jr., 2006), is a misleading visual representation of the actual shape of fold

terminuses. To investigate shape changes near the terminus of folds, dynamic numerical
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simulations (based on Liu et al. (2016)) and computer aided design (CAD) are utilized to

create virtual periclines of varying aspect ratios. From these periclines synthetic stere-

ograms, tangent-, SCAT-, and curvature plots are generated. Comparison of synthetic plots

with plots from natural buckle folds in Missouri as well as examining geometric attributes

of these folds suggests the a priori interpretation of π-diagrams with small circles as conical

folds likely diminished the recognition of many natural folds terminate with a form compati-

ble with periclines. Accurate geometric characterization of how folds end has consequences

for dynamic modelling of how folds form; it is pointless to continue the misconception of

conical folds if we are to advance in understanding fold forming processes.
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2. METHODOLOGY

2.1. GENERAL PROCEDURE

Periclines are well known from field exposures (e.g., Dubey and Cobbold (1977);

Nickelsen (1979); Nickelsen and Cotter (1983); Price and Cosgrove (1990); Sattarzadeh

et al. (1999)) are readily produced in dynamic modelling (Fernandez and Kaus (2014);

Liu et al. (2016)). For this study, virtual pericline surfaces, with aspect ratios of 1:10 and

1:3 (half wavelength to hinge length), extracted from numerical models of a single-layer

3D buckle fold (Liu et al. (2016)), are re-discretized using Altair HyperMesh™ to a high

resolution (i.e., 1600 rectangular planar elements). This allows creation of high spatial

resolution data sets of surface attitudes (strike and dip) along any orientation (profiles A, B,

C, and D; Figures 2.1 and 2.2) to simulate data collected from natural folds along transects

such as road-cuts, railroad-cuts, river-cuts, by geologists.

2.2. MATLAB™ SCRIPTS

A MATLAB™ script processes the point cloud and determines the attitude (strike

and dip) of individual elements along the transect (Hasbargen (2012)). To utilize this script,

the required input is a Microsoft Excel™ spreadsheet with the coordinates (x, y, z) in

easting, northing, and elevation. Each “plane” will consist of one row in the spreadsheet

and requires three coordinate points. This script will append separate arrays of strike, dip,

and dip direction (right-hand rule) to a new worksheet in the spreadsheet and will create

a .txt file with the information. A second MATLAB™ script accepts a Microsoft Excel™

spreadsheet as an input, with the first column being the dip, and the second the dip direction

(right-hand rule). It will output a figure with a tangent diagram (Bengtson (1980)). The

MATLAB™ scripts are available in supplementary material.
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Figure 2.1. A single pericline with a 1:10 aspect ratio extracted for detailed structural
analysis from a field of identical periclines generated by numerical modelling of buckle
folding (Liu et al. (2016)). Orientation data from transects (red boxes) perpendicular (A,
B, and C) and at 45° (D) to the longitudinal fold axis and corresponding stereographs and
tangent diagrams with best fit great circle (blue), small circle (dotted), or ellipse (red) are
shown. Green cylindrical and conical surfaces, reversed engineered from the corresponding
stereogram patterns are shown slightly tilted for improved visibility.

π-diagrams, including optimal great-, and small-circle fits (Allmendinger et al.

(2012); Cardozo and Allmendinger (2013)), and tangent diagrams (Bengtson (1980);

Groshong, Jr. (2006)) are constructed for each transect. In addition, SCAT (Bengtson

(1981); Groshong, Jr. (2006); see Appendix C) and 3D curvature analysis (Lisle (1994);

Bergbauer and Pollard (2003), Mynatt et al. (2007); see Appendix C) of the entire pericline

is also completed.
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Figure 2.2. A single pericline with a 1:3 aspect ratio extracted for detailed structural analysis
from a field of identical periclines generated by numerical modelling of buckle folding (Liu
et al. (2016)). Orientation data from transects (red boxes) perpendicular (A, B, and C) and at
45° (D) to the longitudinal fold axis and corresponding stereographs and tangent diagrams
with best fit great circle (blue), small circle (dotted), or ellipse (red) are shown. Green
cylindrical and conical surfaces, reversed engineered from the corresponding stereogram
patterns are shown slightly tilted for improved visibility.
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3. RESULTS

3.1. VIRTUAL NON-CYLINDRICAL FOLDS

3.1.1. Perpendicular Cross-sections (Transects A, B, and C). Geometric anal-

ysis of the virtual periclines, using high spatial resolution strike and dip data extracted

along several profile transects from the middle to the terminus of the folds, are shown as

stereograms and tangent diagrams (Figure 2.1 and 2.2). The corresponding geometric cone

shapes (shown in green), reverse engineered from either the π-diagrams or the tangent dia-

grams, have been inclined slightly from their steeply plunging cone axis (and vertical for the

elliptical cones) for better perspective (Figures 2.1 and 2.2). Transect A across the center

of the 1:10 and 1:3 periclines have a π-diagram described by great circles, representing the

central cylindrical portion of the fold. The orientation of the axial surface is 000, 90° and

the plunge and trend of the hinge line is 0°, 000 for periclines of both aspect ratios. Tangent

diagrams confirm these are cylindrical folds as dip-vector orientation data define straight

lines for cylindrical folds and hyperbola for conical folds (Bengtson (1980)). Transect B

of the 10:1 pericline has an ambiguous π-diagram (e.g., see Bengtson (1980)) described by

either a great circle or by an ellipse. If treated as a near-cylindrical fold the orientation of

the axial surface is 000, 90° and plunge and trend of the hinge line is 5°, 180; an acceptable

result for constraining the direction of closure. However, the tangent diagram for transect

B unequivocally confirms this is a non-cylindrical fold (see Bengtson (1980); Groshong,

Jr. (2006)). Conical folds do not have axial surfaces; the plunge and trend of the crest-

(or trough) line of the fold is used to determine the orientation of the vertex of the cone

(Groshong, Jr. (2006)). Transect C of the 1:10 pericline, close to the nose of the fold, has

a π-diagram best described by either an ellipse or a small circle; a great circle, with an

~10° plunge to the north, is also shown. Small circles and ellipses are better developed for
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transects B and C for periclines with the 1:3 aspect ratio (Figure 2.2). Folds with π-diagrams

described by small circles traditionally are classified as conical folds (e.g., Bucher (1944);

Dahlstrom (1954); Bengtson (1980); Twiss and Moores (1992); Lisle and Leyshon (2004);

Groshong, Jr. (2006); Davis et al. (2011) see Appendix B).

3.1.2. 45° Cross-sections (Transect D) and the “Fish-hook” Pattern. Profile

sections are used for characterizing the true shape of folds (e.g., Ramsay (1967)). However,

for many folds, orientation data collected over a broader area is plotted on a π-diagram

to characterize the shape of the fold. Transect D of the 1:10 and 1:3 periclines, which

traverses the folds at 45° to the fold axis near the terminus of the folds, yields a “fish-hook”

stereogram and tangent diagram best fit by an ellipse rather than a great- or small-circle

(Figures 2.1D and 2.2D).

A less robust, poorly exposed, data set from this same area of a natural, but similar

to the 1:10 pericline might allow for a π-circle fit with an orientation of 088, 90° with a

hinge line oriented 8°, 178. If either one side or the other of the “fish-hook” pattern was

present, two very different π-circles are possible. The first π-circle defines an axial plane

with an orientation of 262.5, 78.6° and a hinge line of 11.4°, 172.5 and the second defines

an axial plane with an orientation of 034, 82.6° and a hinge line of 7.4°, 304. In a poorly

exposed field of folds, the possibility of disparate π-circles suggest irregular folding even

though the actual folds are highly regular (Figure 2.1).

3.2. NATURAL NON-CYLINDRICAL FOLDS

Natural folds with ambiguous to complex π-diagrams, similar to the synthetic pat-

terns for the virtual periclines (Figures 2.1 and 2.2), are present in the Ozark Plateau of

south-central Missouri (Figure 3.1) (Liu (2016)). Here, a series of buckle folds in sand-

stones of the lower Ordovician Roubidoux Formation are discontinuously exposed for over

seven kilometers in road cuts along US Highway 63, near Licking, Missouri. Highway

63 defines a ~30° oblique transect across the longitudinal fold axes of these folds (Figure
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Figure 3.1. Periclinal buckle folds in Missouri (Liu (2016)). Great circle interpretation (left
stereonet) and conical interpretations (right stereonet) of fold attitude data plotted below
each pictured field site.

3.1). π-diagrams of bedding orientation data from multiple folds exposed along the high-

way define rare great circles, small circles, and ellipses with “fish-hook” patterns (Figure

3.1). These anticlinal and synclinal fold axes exhibit common orientations commonly and

opposing plunge directions over short distances (Figure 3.1). Folds with axial surfaces

discordant to the general trend are rare.
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4. DISCUSSION

4.1. VISUALIZATION OF FOLD SHAPE INTERPRETATIONS

The following “traditional” interpretations for the folds exposed along Highway 63

could be made:

1. π-diagrams fit by great circles are “cylindrical” to near-cylindrical folds.

2. π-diagrams that define small circles are “conical” folds of different sizes with near

vertical cone axes.

3. Folds that exhibit “fish-hook” patterns are enigmatic as elliptical circles are cur-

rently unavailable as a possible fit using software for stereographic analysis (e.g., see

Stereonet 10).

It is likely that such fish-hook patterns would be interpreted as either near- or a

non-cylindrical “elliptical” conical folds based upon the extent to which the poles to the

planes scatter around a great circle or a small circle “fit”. Utilizing π-diagrams, geometric

analysis of folded Roubidoux formation sandstone would indicate they are complex shapes

consisting of multiple non-cylindrical “conical” folds and rare cylindrical to near cylindrical

folds. These anticlinal and synclinal folds change plunge commonly exhibit opposing plunge

directions over short distances (Figure 3.1) and create the impression of a basin and dome

fold interference pattern (see Ramsay and Huber (1987)).

While conical surfaces are a permissible mathematical solution to patterns displayed

in stereograms or tangent diagrams, the strong similarity of the synthetic diagrams obtained

from the virtual pericline (a non-conical fold shape) compared to the reverse engineered

cones (Figure 2.1) indicates that π- and tangent diagrams simultaneously allow for two

possible fold geometry solutions. One is more realistic (pericline) and the other more
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imaginary (conical). The failings of cones to accurately represent the true geometrical shape

of folds, especially fold terminuses, can be demonstrated through comparative visualization

of the pericline and conical surfaces and quantification of changes in fold shape along the

hinge \crestal line in the fold plunge direction.

The virtual 1:10 pericline and the elliptical cone reverse engineered from the small-

circle solution to the π-diagram for transect C (Figure 2.1), are shown together for compar-

ison (Figure 4.1). The elliptical cone, with its vertical cone axis, exhibits limited surface

overlap (<10%) over a spatially restricted portion near the terminus of the pericline (Figure

4.1). A domain approach (see Nicol (1993)) utilizing manymultiple cones, of varying sizes,

in similar upright orientations, spatially spread along the hinge\crestal line is still unlikely

to fully describe the pericline surface.

Non-cylindrical folds with π-diagrams that define small circles, that are interpreted

as conical folds with near vertical cone axes and downward opening cones, are common

(e.g., see Webb and Lawrence (1986); Becker (1995); Mandujano V and Keppie M (2006);

Pastor-Galán et al. (2012)). However, this orientation for cones may seem counter-intuitive

as the type diagram for conical folds (e.g., Bengtson (1980)) shows the cone vertexes to

be gently to moderately plunging (<30°). The crestal line of the conical fold plunging

~15°either away from the cone vertex (Type I) or towards the cone vertex (type II). These

cones are a permissible solution to the folds shown in Bengtson (1980) which have steeply

dipping to vertical limbs. For comparative purposes, we show recumbent cones and elliptical

cones with profile sections that match profile sections of the pericline (Fig. 3). The vertices

of each cone is constrained to coincide with the pericline terminus. It is important to

note that the recumbent cones are not a rigorous permissible solution to the π- or tangent-

diagrams generated for the pericline. The orientation (plunge and trend) of the crest-line for

the recumbent cones is concordant to the pericline. However, the shape of the recumbent

cones are a poor description of the folded surface of the pericline. Again, it is unlikely

that multiple recumbent conical- to elliptical folds would can fully describe the pericline.
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Similarly, Bengtson (1980) highlights only a small portion of the presumably topographic

surface of the fold that coincides with the cone; the shape of the terminus of the fold(s) as

the vertex of the cone(s) is approached is not shown.

Figure 4.1. Engineering cones to approximate a “fit” to the virtual pericline. The reverse
engineered cones fit the pericline surface at the cone base only to the south of the diagram.
The vertical axis cone “fits” the tip of pericline at the northern edge.

4.2. QUANTITATIVEDISTINCTIONSOFCONICALFROMPERICLINALFOLD
SHAPES

Visual comparison of cones reverse engineered from the synthetic π- and tangent

diagrams and that of actual pericline surface qualitatively illustrate the shape of the termi-

nus of conical folds and periclines are fundamentally different (Figure 4.1). For extremely

well exposed natural folds, folded surfaces can be captured as point clouds (e.g. Sheep

Mountain anticline, see Mynatt et al. (2007)) and analyzed using curvature analysis (e.g.,

Midland Valley’s Move™ 2017.2 software for SCAT, 3D curvature, and differential geom-

etry analysis) to classify the fold (Bergbauer and Pollard (2003); Lisle and Toimil (2007);

Mynatt et al. (2007)). The 3D curvature analysis of the virtual pericline (see Appendix C)
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confirms a periclinal geometry and does not indicate a Gaussian curvature of 0 (indicative

of a cone) consistently across the structure. More commonly, natural folds are incompletely

exposed precluding application of these comprehensive surface analysis techniques. In such

cases, distinguishing conical folds from periclines can be quantitatively demonstrated by

comparison of the change in the ratio of the fold amplitude (A) to the fold width (W) or

half-wavelength (λ\2) along the hinge\crestal line in the direction of the plunge of the fold

(Figure 4.2).

Figure 4.2. Plot of amplitude over half wavelength of virtual folds and various common
shapes.
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For a circular conical fold A\W = 1\2 and remains constant along the length of the

crestal-line to the termination of the conical fold at the origin (Figure 4.2). For elliptic

cones A\W is also a constant reflecting both the orientation and ratio of the major and minor

axes of the ellipse (Figure 4.2). Profile sections of cylindrical to near-cylindrical folds of

different sizes by definition also plot along these trend lines (e.g., see Fig. 15.27 of Ramsay

and Huber (1987)). However, profile sections along the crestal line of the same fold, from

the center to the terminus, will follow these trend lines to the origin if the fold is conical. In

contrast, the A\W ratio of profile sections of periclines varies along the crestal line in the

direction of the plunge of the fold. Near the center of the pericline, the shape of the folded

surface is cylindrical and can be locally, partially approximated by elliptical cones of vary

aspect ratios, at different locations along the crestal line (Figures Figure 2.1 and Figure 4.1).

Thus, the trend line defined by the sequence of profile sections along the pericline crestal

line cuts sharply across the linear trend lines of the circular to elliptical cones and does not

terminate at the origin (Figure 4.2). The location of the starting point of the trend line is

dictated by the size of the pericline. Similarly, distinguishing conical folds from periclines

can be determined from the variation in the dip (plunge) along the trend of the crestal-line

from the center to the terminus of the fold (Figure 4.3).

Conical folds will maintain a constant dip (plunge) along the length of the crestal line

that reflects a combination of the orientation of the vertex and the aspect ratio of elliptical

cones. In contrast, the variation in the dip (plunge) along the trend of the crestal-line from

the center to the terminus of the periclines varies (Figure 4.3). The shape of the trend line

reflects the profile and aspect ratio of the pericline.

4.3. REALISTICRHEOLOGICALMODELSREQUIREACCURATEFOLDSHAPES

Although numerous formation mechanisms have been proposed for conical folds

(e.g., Ross (1962); Rickard (1963); Stauffer (1964); Becker (1995); Harris et al. (2002);

Pastor-Galán et al. (2012)), all of them require specialized conditions of a locally non-
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uniform horizontal strain field. True conical folds where the apex of the fold terminates

at a singularity are difficult to reproduce using dynamic analysis. In contrast, periclines

form within a locally uniform horizontal strain field in a simple deformation event (e.g.,

Fernandez and Kaus (2014); Liu et al. (2016)). The field of periclines, produced by finite-

element models, utilizing realistic relationships among force, stress, mechanical strength

properties, and strain (e.g., Figure 2.1), mimic closely natural buckle fold interference

manifestations and fold terminations (e.g., Figure 3.1). While schematic representations of

conical folds are common (e.g. Wilson (1967); Systra and Skornyakova (1980); Webb and

Lawrence (1986); Nicol (1993); Becker (1995); Keppie et al. (2001); Pueyo et al. (2003);

C. et al. (2005); Mandujano V and Keppie M (2006); Pastor-Galán et al. (2012)) the validity

of natural folds terminating at a point can be readily evaluated from trend lines defined by

readily measurable fold characteristics along the crest-line of the fold in the direction of the

plunge (Figure 4.3).

4.4. THE POPULARITY OF PERICLINES

Periclines and conical folds have intrinsically distinct geometries while exhibiting

similar patterns on π-diagrams. Why then has “conical fold” achieved elevated status as a

special class of folds whereas periclines are rarely mentioned (see Appendix A)? Geometric

analysis of the virtual pericline indicates a high probability for π-diagrams exhibiting

equivocal patterns, ones that can be fitted by either great-circles or small-circles, as well

as those fitted by small circles or ellipses (Figure 2.1). In contrast to great-circles, fitting

small-circles to bedding orientation data with analog stereonets requires considerably more

steps (e.g., see Billings (1972); Lisle and Leyshon (2004)); a task now readily completed

using sophisticated software packages for stereographic analysis (e.g., Stereonet 10). This,

and the a priori interpretation that the shape of folds that have π-diagrams described by small

circles must be cones and therefore are conical folds, suggests a likelihood that π-diagrams
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of natural periclines (see Figures 2.1 & 3.1) have been misclassified as conical folds.

For example, based upon the π-diagrams alone, the folded sandstones in the Roubidoux

Formation previously would be interpreted as conical folds rather than as periclines.
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Figure 4.3. Plot of crestal line dip along normalized distance from the assumed cylindrical
section (middle of fold) to the tip (Banerjee and Mitra (2004); Khodabakhshnezhad et al.
(2015)).
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5. CONCLUSIONS

While a conical surface is a mathematically permissible solution, as well as the

traditional interpretation, for small-circles on π-diagrams, heed caution as cones are an

inadequate and misleading representation of the true geometrical form of natural fold

shapes – especially periclines. Conical folds, if they exist, must terminate at a point; this

requires the A/W of the fold and the plunge to remain constant along the entire length of

the crestal-line to the terminus of the fold. In contrast, periclines terminate by gradual

dissipation of the fold, as shown by the decrease in A/W the plunge along the crestal-line

of the fold. Pericline fold shapes are readily reproduced by dynamic modelling using

realistic relationships among force, stress, strain, and the mechanical strength properties of

rocks in a single uniform deformation event. Natural examples of periclines are common

throughout the world including the Zagros Mountains in Iran (Price and Cosgrove (1990);

Sattarzadeh et al. (1999)), the “Whaleback” pericline in Bude, North Cornwall, England

(Dubey and Cobbold (1977)), and the “Whaleback” pericline in the Bear Valley Strip Mine

in Shamokin, Pennsylvania, United States (Nickelsen (1979); Nickelsen and Cotter (1983)).

The presented results suggest reliance on π-diagrams and tangent diagrams alone has led

to misclassification of periclines and overrepresentation of conical folds. Consequently,

conical folds may have not gained elevated status if visual comparisons between natural fold

surfaces and corresponding conical-fold shapes compatible with π-diagrams were available

(i.e., Figures 2.1 & 4.1). The ability to utilize virtual fold surfaces to create and analyze

synthetic orientation data sets (e.g., π-diagrams) allows geologists to better visualize and

interpret the results of natural data sets. It is confirmed that, if available, 3D curvature

data is necessary to describe the true 3D geometry of a fold (see Appendix C). Similarly,

evaluation of variation in A\W and plunge along the trend of folds readily distinguishes

between conical and periclinal folds. In order to advance our geometric, kinematic, and
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dynamic understanding of fold formation, cones are pointless as descriptors of natural fold

and the attention of the current and future geologists studying folds needs to be redirected

towards characterizing and understanding more realistic fold shapes such as periclines.



APPENDIX A.

INTRODUCTION TO PERICLINES AND CONES



21

1. PERICLINAL FOLDS

Periclines are anticlines or synclines that form domes and basins, incorporating

a doubly-plunging hinge line (Figure 1) (Price and Cosgrove (1990)). Periclinal folds

are commonly characterized by using their aspect ratio: half wavelength to hinge length,

illustrated in Figure 1 (Cosgrove and Ameen (1999)). These folds form as a result of fold

interference patterns of buckling (Price and Cosgrove (1990)), and can be caused by a

uniform horizontal strain field (e.g. Fernandez and Kaus (2014); Liu et al. (2016)). Some

examples of natural periclines are the Zagros Mountains, Iran (Price and Cosgrove (1990),

Sattarzadeh et al. (1999)), the “Whaleback” pericline in Bude, North Cornwall, England

(Dubey and Cobbold (1977)), and the “Whaleback” pericline in the Bear Valley Strip Mine,

in Shamokin, Pennsylvania, United States (Nickelsen (1979); Nickelsen and Cotter (1983)).

Figure 1. Virtual Periclinal fold generated by numerical simulation (Liu et al. (2016)). A
illustrates the curved hinge line and B shows the cylindrical section (middle) fold profile.

2. CONICAL FOLDS

2.1. CONICAL FOLDS IN LITERATURE

Even though Ramsay (1967) (p. 349) and Ramsay and Huber (1987) (p. 311) state

that "structures of this type are very rare" and "generally, layer morphology is more complex

than that of a truly mathematical conical shape," a survey of the relevant literature shows
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that conical folds seem to be frequently observed and documented in a variety of structural

settings globally (Stauffer (1964); Wilson (1967); Stockmal and Spang (1982); Webb and

Lawrence (1986); Kelker and Langenberg (1987); Kelker and Langenberg (1988); Nicol

(1993); Becker (1995); Keppie et al. (2001); C. et al. (2005); Braid and Murphy (2005);

Mandujano V and Keppie M (2006); Pastor-Galán et al. (2012); Mulchrone et al. (2013)).

There are many formation mechanisms proposed for conical folds (see Discussion section).

Conical folds have been used to describe three-dimensional fold terminations of

cylindrical folds as "vertical" cones with the apex adjacent to the fold hinge line (Webb

and Lawrence (1986)), as "horizontal" cones with the apex along the axial trace (Keppie

et al. (2001)), and further as "elliptical" cones versus "circular" cones (Haman (1961)). In

addition, Nicol (1993) describes conical folds as part of dome and basin fold interference

patterns.

2.2. GEOMETRY

A geologic fold termed a conical fold implies that the fold shape is at least part of a

geometric cone and that the fold terminates. The surface is defined by a generatrix, which

is a line that traces over the surface while being fixed at the vertex of the cone, shown in

figure 2 (Groshong, Jr. (2006)).

A defining characteristic of a conical fold is the half-apical angle, which is the angle

between the cone center-line axis through the center of the cone and the generatrix (Twiss

and Moores (1992); Davis et al. (2011)). One way to describe the orientation of a cone is

by the trend and plunge of the fold’s center-line axis (Davis et al. (2011)). Conical folds can

be identified on a stereonet by examining the π-diagram of the fold. If the π- diagram lies

on a small circle, the fold is said to be conical (Twiss and Moores (1992)). The center of

the small circle corresponds to the center-line axis of the conical fold, and the radius of the

circle is 90° minus the half-apical angle of the cone (Twiss and Moores (1992)). Bengtson
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Figure 2. Geometry of a cone with geometric descriptors labelled.

(1980) describes the orientation of cones by the plunge of the crestal line, organizing cones

into type I cones, where the vertex lies up-plunge, and type II cones, where the vertex lies

down-plunge.



APPENDIX B.

GRAPHICAL CALCULATOR ANALYSIS
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1. STEREONETS

Stereographic projection in the field of structural geology is, without a doubt, one

of the most important tools. The adoption of stereographic projection arose as a need for

thinking in three-dimensions and understanding spatial relationships. Bucher (1944) details

the many different problems that can be approached by stereographic projection and helped

show that stereonets are well-suited and practical tools. Soon after, Phillips (1960) presents

a comprehensive resource on the strategies and application of stereonets, which highlights

the growth of popularity and usefulness of the stereonet.

1.1. APPLICABILITY OF STEREONETS

Davis et al. (2011) crafts a practical guide to stereonet use in the field, describing

how to perform various useful field calculations including (but not limited to):

1. Finding the orientation of lines and planes

2. Calculating the angle between lines or planes

3. Calculating the intersection orientation between two planes

4. Finding true dip from two apparent dips

5. Finding the angle between cleavage and bedding

6. Identifying and evaluating preferred orientations

Further information about defining the orientations of lines and planes and obtaining poles

to planes can be found in Groshong, Jr. (2006), Davis et al. (2011), and many other major

structural geology textbooks.
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1.2. EQUAL-AREA AND EQUAL-ANGLE STEREONETS

The Schmidt net (equal-area net) is recognized as the preferred stereonet to use in

structural geology over the Wulff net (equal-angle net) as an equal-area net is necessary

for finding preferred orientations and contouring density distributions (Davis et al. (2011)).

However, the Wulff net has the advantage of retaining angular relationships, which is

advantageous for analysis of small circles (Lisle and Leyshon, 2004; Groshong, Jr. (2006)).

1.3. IDENTIFYING CONES WITH STEREONETS

1.3.1. π-diagrams. A convenient way to find the orientation of the fold axis using

attitude data and a stereonet is the π-diagram. When poles to planes of a fold are plotted

on a stereonet, the best fit great circle between them describes the orientation of a plane

normal to the fold axis (Ramsay (1967)). The pole to the π-circle describes the orientation

of the fold axis.

1.3.2. Disseminating Conical Fold Information from a Stereonet. A fold with a

π-diagram with points that lie on a small circle on a stereonet is said to be a circular conical

fold (see purple dashed circle in Figure 2.1) (Twiss andMoores (1992); Davis et al. (2011)).

An elliptical conical fold can be identified as a fold with a π-diagram that lies in an ellipse

(see Figures 2.1 and 2.2) and will have distinct short and long axes (Haman (1961)). The

center of the small circle is the center-line axis of the conical fold; the radius of the small

circle is equal to 90° minus the half-apical angle of the cone (Twiss and Moores (1992)).

The values of half-apical angle and plunge and trend of the center-line axis are integral in

constructing a synthetic cone. A small circle fit can be generated in programs similar to

Stereonet 10 (Allmendinger et al. (2012); Cardozo and Allmendinger (2013)), or can be

drawn by hand using an equal angle net that preserves the shape of a circle on the projection.
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2. TANGENT DIAGRAMS

Another field plotting tool at the disposal of a structural geologist is a tangent plot,

a way to represent field attitude data as vectors. They are also recognized as a convenient

approach in determining whether a fold is cylindrical or slightly conical, amongst other

applications (Bengtson (1980), Groshong, Jr. (2006)).

2.1. ANATOMY OF A TANGENT DIAGRAM

Tangent diagrams are circular diagrams with dip direction measured around the

circumference and the angle of dip read from the concentric circles, which are calculated

as the tangent of the dip angle (see in Figure 2.1). For this reason, tangent diagrams are

generally used in low dip settings, as the dip scale becomes enormous above 80° (Bengtson

(1980)).

2.2. IDENTIFYING CONES WITH TANGENT DIAGRAMS

Bengtson (1980) defines two types of cones based upon the location of plunge of the

cone’s vertex. A type I cone has the vertex up-plunge and will open up and flatten down-

plunge, whereas a type II cone has the vertex down-plunge where the fold is converging

(Groshong, Jr. (2006)). While a cylindrical fold plots on a tangent diagram as a straight

line, an ideal type I or type II cone is represented by a hyperbola on the tangent diagram,

and the curve is concave towards the vertex of the cone (Groshong, Jr. (2006)). This makes

it especially simple and quick to determine if a dataset is cylindrical or non-cylindrical.

One way to distinguish between type I and type II cones is the direction of concavity of the

curve: type I cones will have a hyperbola concave towards the center, and type II cones will

have a hyperbola concave away from the center (Bengtson (1980)).
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Finding the orientation of a cone with a tangent diagram gives a different measure-

ment than that of a stereonet. A vector drawn from the origin to the closest part of the curve

will reveal the orientation of the crest or trough (Bengtson (1980)).



APPENDIX C.

SCAT AND CURVATURE ANALYSES
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1. STATISTICAL CURVATURE ANALYSIS TECHNIQUES (SCAT)

Bengtson (1981) presents SCAT as a way to determine the bulk curvature of a

structure using dipmeter data. One of this technique’s main strengths is the ability to extract

meaningful structural data from noise (Groshong, Jr. (2006)). Using the patterns found in

dip-azimuth scatter plots, folds can be classified into 7 different models of bulk surface

curvature (Bengtson (1981)). Using the dip-azimuth plots, the mutually perpendicular

transverse (line of greatest structural change) and longitudinal (line of least structural

change) axes can be determined (denoted T- and L- directions) (Bengtson (1981)). The

L-axis is parallel to the crest or trough line of a structure and is perpendicular to the T-axis.

Descriptions of the dip-azimuth patterns and the geologic bulk curvature they define can be

found in Bengtson (1981) and Groshong, Jr. (2006). For this study, of note are the plunging

fold and doubly-plunging fold bulk curvature patterns.

1.1. SCAT AND CONICAL FOLDS

SCAT can be easily performed inMidland Valley’sMove™ 2017.2 software. Figure

1A shows a standing cone, with a half-apical angle of 28° (cone center-line axis vertical)

and the corresponding dip-azimuth plot generated. The dip-azimuth plot reveals a constant

dip at all azimuths, consistent with a geometric circular cone’s constant dip, but does not

accurately describe the T- or L- axes, as a standing circular cone does not have a defined

crestal or trough line, and is reflected in the tangent diagram for the standing circular cone.

1.1.1. Circular Cone Example. When the circular cone’s center-line axis plunge

and trend is changed to 0°, 000 (Figure 1B), the type II cone shows a dip-azimuth plot

consistent with the plot for a plunging fold (Figure 1d) (Bengtson (1981)). The T- and L-

axes can be derived from this plot, consistent with a tangent diagram analysis.
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Figure 1. Comparison of results of application of SCAT to the (A) standing circular, (B)
horizontal (type II), and (C) elliptical virtual cones.

1.1.2. Elliptical Cone Example. To demonstrate the difference between circular

and elliptical cones with vertical center line-axes, an elliptical cone with a North-South

half-apical angle of 62°and an East-West half-apical angle of 43° is created and analyzed

with SCAT (Figure 1C). In this case, the dip-azimuth plot is similar in pattern to a doubly-

plunging fold (e.g. Bengtson (1981)). There are definable T- and L- axes, as there is a

discernible difference in the rate in structural change in perpendicular directions.

1.2. SCAT AND PERICLINES

Applying SCAT to the 1:10 and 1:3 periclinemodels produces similar results (Figure

2). Both periclines produce a dip-azimuth plot that matches the pattern of doubly-plunging

folds (Bengtson (1981)). The peaks of the dip-azimuth plot of the 1:10 pericline have a

“sharper” shape than the 1:3 pericline. The patterns of the dip-azimuth plots of periclines

and cones are different as their surface curvature is different.



32

Figure 2. Comparison of results of application of SCAT to the (A) 1:10 and (B) 1:3 virtual
periclines.

2. 3D CURVATURE ANALYSIS

2.1. 3D CURVATURE OVERVIEW

Differential geometry is used to characterize geological surfaces through calculating

and observing the Gaussian and mean curvatures (Lisle and Toimil (2007); see Figure 2

in Mynatt et al. (2007); Zulauf et al. (2017)). Bergbauer and Pollard (2003) and Mynatt

et al. (2007) provide derivations and further definitions of curvature, and a summary of the

values of principal, mean, and Gaussian curvature are provided here. The values of mean

and Gaussian curvature are found through calculating the principal curvatures of a surface,

which represent the two orthogonal values of extreme normal curvature. Mean curvature is

the arithmetic average of the two values of principal curvature and represents the orientation

of a point of a surface (e.g. positive mean curvatures are antiformal structures or domes,

negative mean curvatures signify synforms or basins, and zeromean curvatures are planar or

can correspond to a perfect saddle, provided the Gaussian curvature is negative). Gaussian

curvature is calculated in two ways: the product of the values of principal curvature or

by angular deficit (Lisle (1994)). If the Gaussian curvature is zero, this signifies that one
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principal curvature value must be zero and locally is cylindrically shaped. A positive

Gaussian curvature corresponds to a dome or basin, whereas a negative value corresponds

to a saddle.

2.2. DIFFERENTIAL GEOMETRY IN MIDLAND VALLEY’S MOVE™ 2017.2

Three-dimensional curvature analysis requires adequate exposure for the technique

to be completely viable. Midland Valley’s Move™ 2017.2 software can calculate the dif-

ferent values of curvature needed for differential geometry analysis. Mynatt et al. (2007)

classification chart is used in the calculation of “geologic curvature” within Move™, ex-

tracting these values from a surface built in the software from a point cloud exported from

computer-aided design software.

2.2.1. Differential Geometry Analysis of Circular and Elliptical Conical Folds.

Themean, Gaussian, and “geological” curvature colormaps of a vertically oriented elliptical

cone (North-South half-apical angle of 62°, East-West half-apical angle of 43°) and a

standing circular cone (half-apical angle of 28°) can be categorized within the Mynatt et al.

(2007) table classification. The mean curvatures of the cones are positive values, while the

Gaussian curvature is zero for both cones. The combination of these values results in a

“geological” curvature of -2.5, which corresponds to a dome in Move™ 2017.2.

2.2.2. Differential Geometry Analysis of Periclines. Figure 3 contains the “geo-

logical” curvature color maps of the 1:3 and the 1:10 virtual periclines. The values of the

mean and Gaussian curvatures are more complex in these structures. The “geologic” curva-

tures in these structures are very similar and cross through several different classifications

possible in Move™ 2017.2. The surface curvatures of periclines and cones are distinctly

different. Periclines are complex structures with varying surface curvature, changing the

attributes of the surface. A conical fold, however, must retain one principal curvature value

of zero, an inherent property of the surface, rendering the Gaussian curvature of a conical

surface zero. Periclines and conical folds do not share the same surface geometry.
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Figure 3. Geological curvature of the 1:3 (top) and 1:10 (bottom) virtual periclines calcu-
lated in Move™ 2017.2. Color scheme and categories from Mynatt et al. (2007).
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