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ABSTRACT 
      
 
 

In this research, brain activity of user states was analyzed using machine learning 

algorithms. When a user interacts with a computer-based system including playing 

computer games like Tetris, he or she may experience user states such as boredom, flow, 

and anxiety. The purpose of this research is to apply machine learning models to 

Electroencephalogram (EEG) signals of three user states – boredom, flow and anxiety – 

to identify and classify the EEG correlates for these user states. We focus on three 

research questions: (i) How well do machine learning models like support vector 

machine, random forests, multinomial logistic regression, and k-nearest neighbor classify 

the three user states – Boredom, Flow, and Anxiety? (ii) Can we distinguish the flow 

state from other user states using machine learning models? (iii) What are the essential 

components of EEG signals for classifying the three user states? To extract the critical 

components of EEG signals, a feature selection method known as minimum redundancy 

and maximum relevance method was implemented. An average accuracy of 85 % is 

achieved for classifying the three user states by using the support vector machine 

classifier.  

Keywords: Neural Correlates, Flow, Electroencephalogram, Machine Learning, Support 

Vector Machine, Random Forests, Multinomial Logistic Regression, k-Nearest 

Neighbor, Minimum Redundancy and Maximum Relevance  
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1. INTRODUCTION 

 
 

User experience (UX) is a research area in Human-Computer Interaction (HCI) 

that provides a comprehensive view of a user’s interaction with an application, product 

or system (Tondello, 2016). Today, games are a focal point of user experience research 

in human-computer interaction (Nacke, 2017). Gaming is an engaging and accessible 

form of entertainment activities (Hartmann and Klimmt, 2006). The evaluation of user 

experience in gaming includes a variety of states such as flow, engagement, 

involvement, fun, immersion, and presence. When there is a balance between a user’s 

skill and the difficulty level of a game, an optimal experience known as the flow state 

arises (Csikszentmihalyi, 1990). In contrast, too much challenge can lead to anxiety, 

and too low a challenge can result in boredom (Chanel et al., 2008). This research 

focuses on three user states – Flow, Boredom, and Anxiety – by examining their neural 

correlates using electroencephalogram (EEG). EEG refers to electrical activity in the 

brain that arises from electrical impulses that facilitate communication between the 

brain cells (Muller et al., 2015). 

The primary objective of this research is to classify EEG signals into flow, 

boredom, and anxiety states by applying machine learning. Machine learning, a subset of 

artificial intelligence, is the implementation of quantitative techniques to learn from 

existing data to make predictions (Naqa and Murphy, 2015). It involves a process of 

creating, testing, and validating models to obtain reliable outcomes and trends in the data.  

Among the various kinds of machine learning models available, we are interested 

in four supervised machine learning models – support vector machine (SVM), random
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forests (RF), multinomial logistic regression (mlogit), and k-nearest neighbor (k-NN). 

The following are the statistics used to evaluate the machine learning models and 

compare their results – accuracy, kappa, and area under the receiver operating 

characteristic curve (AUC). Further, we identified the essential components of EEG 

signals for the user state classification task with the help of a feature selection method 

called minimum redundancy and maximum relevance (MRMR). The aim of this research 

is to identify machine learning models that perform well in classifying user states into 

flow, boredom, and anxiety. 

Given the importance of applying machine learning techniques to determine user 

states (i.e., flow, boredom, and anxiety) in the HCI context, we put forth our research 

questions as follows: 

Research Question 1: How well do machine learning models like SVM, RF, 

mlogit, and k-NN classify the three user states – Boredom, Flow, and Anxiety?  

Research Question 2: Can we distinguish the flow state from other user states 

using machine learning models?  

Research Question 3: What are the essential components of EEG signals for 

classifying the three user states? 

This thesis is organized as follows. Section 2 provides a review of the literature. 

Section 3 covers the research methodology. Section 4 details the process of data 

analysis and the results obtained. Section 5 discusses the results. Section 6 highlights 

the limitations and future research, and Section 7 concludes the thesis. 
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2. LITERATURE REVIEW 

 

 

 2.1. USER STATES  
 

The study of interaction between human and computer has gained attention, 

particularly in the field of gaming. Traditionally, modeling of players’ engagement in 

gaming was qualitative and mostly based on psychology (Plotnikov et al., 2012). 

Among these traditional ways, two major lines were identified: 1) Malone and Lepper 

(1987) determined players’ engagement based on three intrinsic qualitative factors: 

challenge, fantasy and curiosity, and 2) Csikszentmihalyi (1990) assessed players’ 

enjoyment in gaming by incorporating flow in computer games. Three key user states 

were identified by Csikszentmihalyi, and they are boredom, flow, and anxiety 

(Yelamanchili et al., 2017). Among the above-mentioned user states, flow is the focal 

point in human-computer interaction research that provides an optimal experience 

where an individual is totally absorbed in a task and is unaware of his/her surroundings 

or passing of time (Csikszentmihalyi, 1990; Yelamanchili et al., 2017).  

In Csikszentmihalyi’s ‘Flow theory’, the flow state is conceptualized into nine 

components: challenging activity that require skills, merging of action and awareness, 

well-defined goals, direct and instantaneous feedback, focus on the task at hand, loss of 

self-consciousness, sense of control, distorted sense of time, and intrinsic interest 

(Csikszentmihalyi, 1990). Flow state emerges when there is a balance between the skill 

of an individual and the challenge posed by the task (Csikszentmihalyi 1990; Lee et al., 

2015; Nah et al., 2010). Boredom is a user state that arises when the skill level of a user 

is higher than the challenge level of the given task (Csikszentmihalyi, 1975, 1990). 
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Anxiety occurs when the skill level of a user is much lower than the challenge level of 

the task. This research focuses on classifying these three user states in gaming. 

 

2.2. ELECTROENCEPHALOGRAM (EEG) 

To measure user states, a range of technologies have been developed that record 

brain activity. Some of the tools are functional magnetic resonance imaging (fMRI), 

electroencephalography (EEG), magnetoencephalography (MEG), near infrared 

spectroscopy (NIRS), and electrocorticography (ECoG) (Brunner et al., 2011). Among 

the above-mentioned BCI technologies, we used EEG in our research to record the brain 

activity of users. The reason for selecting EEG is due to its high temporal resolution and 

non-invasive nature of the technology (Berta et al., 2013). The EEG recordings consist 

of delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-32 

Hz) spectral band frequencies. Each spectral band represents a set of cognitive activity 

occurring in the brain while performing a task. For example, alpha and theta bands are 

helpful to study users’ attention and sense of immersion. Since the beta band is large, it 

can be further divided into three sub-bands, namely, low-beta (12-15 Hz), mid-beta (15-

20 Hz), and high-beta (20-30 Hz). The beta band represents self-awareness, mental 

activity and reasoning (Berta et al., 2013). The neural correlates of different user states 

can be observed based on the density variations of the spectral bands discussed above 

(Li et al., 2014). In our research work, theta, alpha, beta and sub-bands of beta were 

considered to classify the user states while gaming.  
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2.3. RELATED WORK 

 Previous studies have assessed user states, especially the flow state, using data 

from different physiological and psychological technologies like galvanic skin response 

(GSR), electroencephalography (EEG), electrocardiogram (ECG), electromyography 

(EMG), and electrodermal activity (EDA) (Berta et al, 2013; Rissler et al, 2018). There 

are other approaches such as self-reported questionnaires and interviewsthat are based 

on the users’ recall of the experience (Bhattacherjee, 2012). Recent developments in 

information systems (IS) have offered more ways to analyze user states. They include 

more objective measures that combine EEG signals and machine learning techniques to 

classify the user states.  

 Machine learning techniques provide a systematic approach for classifying 

multi-channel EEG signals (Garrett et al, 2003). Recent studies have used machine  

leaning to optimize players’ gaming experience (Hair, 2007), where players are 

segregated based on their experience in gaming and their momentary scores. Analyzing 

variables such as scores and responses to situational changes in the computer-based 

gaming environment helps designers and developers understand both their target 

population and design dynamics to optimize gaming experience (Hair, 2007). The SVM 

model is considered as a state-of-the-art machine learning technique for classifying 

brain activity obtained from EEG (Berta et al., 2013).  

Berta et al (2013) focused on building a machine learning classifier that can 

distinguish three user states, namely, boredom, frustration/anxiety, and flow. They 

trained the SVM model with radial basis function kernel (RBF) in two different 

conditions:1) user-dependent with a classification accuracy of 50.1%, and 2) user-

independent with an accuracy of classification of 66.4%. Berta et al (2013) also 
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implemented a feature selection method to extract important EEG components and then 

analyzed these components using SVM for reduced computational times and better 

classification accuracies. After comparing the models with and without feature selection 

variables, they found that the model with all the components from the data collected 

have higher performance than any other models. Another study by Chatterjee et al. 

(2016) also applied machine learning models to identify cognitive flow. They 

implemented the Bayesian network to detect cognitive flow during gaming and derived 

an accuracy of 62.2 % based on data from the EEG and GSR technologies. Another 

research has used the SVM model to classify emotions into boredom, engagement, and 

anxiety while playing the Tetris game and obtained an accuracy of 53.33 % (Chanel et 

al., 2008). Chanel et al. used EEG and GSR data to classify the above-mentioned 

emotions using the SVM (Radial Basis Function kernel) model.  

Plotnikov et al. (2012) used a gaussian kernel SVM model to assess flow in 

games based on EEG data and obtained an average accuracy of 57%. A study by Rissler 

et al. (2018) implemented SVM and random forests models to classify low flow and 

high flow in gaming using physiological data that include electrocardiography (ECG), 

blood volume pressure (BVP), and electrodermal activity (EDA). The result shows that 

cardiac features play an important role in categorizing the flow state, with random 

forests being a more accurate model (72.3%) than SVM (Rissler et al., 2018).   

Lin et al. (2008) implemented the SVM – RBF model to classify 32 channel 

EEG data into four states – joy, arousal, sadness, and pleasure – based on emotions 

triggered by music. To classify emotions, the EEG data was divided into the following 

frequency bands: delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and 

gamma (31-50 Hz). The study resulted in successful classifications of the emotions with 
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a maximum accuracy of 92.73% that used all the frequency bands combinations. 

Another study with the same context of listening to music utilized the multilayer 

perceptron classifier to classify the EEG data into joy, angry, sadness, and pleasure and 

obtained an accuracy of 69.69 % using a sample size of five (Lin et al., 2007).  

Similarly, another study by Wang et al. (2011) used machine learning algorithms 

to classify user states in the context of movie elicitation. The time domain features and 

frequency domain features of EEG data were compared to assess which features classify 

emotions more correctly. They used the SVM-RBF model, k-NN model, and multilayer 

perceptron model to classify user states into joy, sad, relax, and fear. The SVM-RBF 

model achieved higher accuracy (66.51%) than other models with frequency domain 

EEG features as input. A similar study was conducted by Wang et al (2014) that 

compared three different EEG features, specifically power spectrum, wavelet, and 

nonlinear dynamical analysis, to understand the relationship between emotion and EEG 

data in the context of movie elicitation. The emotional state classification was done 

using the different kernels (RBF, polynomial, linear) of the SVM model across all the 

combinations of frequency bands (delta, beta, alpha, theta, and gamma). The results 

indicate that the power spectrum plays an important role in classifying the emotions 

with the linear kernel SVM (87.53%) model achieving the highest classification 

accuracy using a combination of all bands (Wang et al., 2014).  

Several studies in the medical field studied the classification of EEG signals 

based on machine learning techniques, where the SVM model was frequently used. 

Lotte et al. (2007) reviewed the performance of all machine learning algorithms 

available for the purpose of classification from EEG to BCI systems. The SVM model is 

the most efficient for synchronous BCI due to its regularization property, simplicity, 
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and robustness. Vladimir et al. (2015) investigated the performance of the SVM model 

for seizure prediction using EEG signals. The SVM – RBF kernel model was used in 

the classification of EEG signals into seizure and non-seizure signals with an accuracy 

of 95.33 % (Joshi et al., 2014). Another study classified EEG signals into epileptic 

seizure or not using the SVM model with an accuracy of 98.75 %, where principal 

component analysis (PCA), linear discriminant analysis (LDA), and independent 

component analysis (ICA) were used for the feature reduction process (Subasi et al., 

2010). 

Liang et al. (2006) evaluated the performance of backward propagation neural 

networks and SVM models for mental task classification based on EEG signals. Other 

models like k-NN and decision trees were used to classify the sleep stages, with k-NN 

achieving higher classification accuracy than decision tree (Güneş, Polat, & Yosunkaya., 

2010). Alkan et al (2005) proposed an automatic seizure detection model using EEG, 

logistic regression, and neural networks models, with neural networks achieving higher 

accuracy (92%).  

From the previous studies in the literature, we see that the SVM model has been 

implemented to categorize user states based on EEG data. There are only a few studies 

on classification of user states based on frequency bands, especially for the flow state. 

Hence, in this study, we explore different machine learning models to classify the user 

states into boredom, flow, and anxiety with different combinations of the frequency 

bands. Also, we are interested to identify the best performing machine learning model to 

distinguish the flow state from all the other states. Table 2.1 provides a brief overview 
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of previous studies that have applied various machine learning models in classifications 

of user states. 

 

Table 2.1. Research on Application of Machine Learning to Classify EEG Signals 

 

Reference 

 

Research Setting 

 

Summary of findings 

  Alkan et al. 

  (2005)     

  Automatic seizure   

  detection using    

  EEG and machine 

  leaning algorithms  

  Developed Machine learning classifiers to    

  identify epileptic seizure and normal EEG  

  signals. Logistic Regression (90%), Neural  

  Networks (92%) 

 

  Berta et al.   

  (2013) 

  Used 4-channel    

  EEG to analyze the  

  flow state in games 

  Most important bands are low beta for   

  discriminating among conditions during 

  gaming. Classified three user experience 

  states; flow, boredom and frustration.  

  SVM (66.4%) 

 

  Chanel et al. 

  (2008) 

  Emotion assessment 

  from physiological  

  & EEG data using  

  machine learning  

  models in gaming    

  Classified boredom, engagement and anxiety  

  emotions while playing Tetris game at  

  different levels based on self-reports and  

  physiological analysis. Classified boredom  

  and anxiety states correctly. SVM-RBF    

  kernel (53.33%) 

 

  Chatterjee et  

  al. (2016)   

  Identified and 

  analyzed cognitive  

  flow in gaming 

  Concluded that EEG and GSR data can be  

  used to distinguish the performance of users  

  in the game. Implemented a Bayesian  

  network model to detect cognitive flow with  

  an accuracy of 62.2% 

 

  Garrett et  

  al. (2003) 

 

  EEG signal  

  classification using  

  linear, nonlinear   

  and feature  

  selection methods 

  Nonlinear methods performed better than  

  the Linear Discriminant Analysis (LDA)  

  method. Detection of resting  

  and rotation tasks EEG signals are more  

  difficult than other tasks. LDA (66%), Neural 

  Networks (69%), and SVM (72%) 

 

  Güne et al.  

  (2010). 

  Automatic scoring   

  of sleep stages  

  based on k-NN 

   

  Proposed a hybrid system to automatically  

  score sleep stages using k-means. Obtained    

  k-NN model as the best model (82.2%)  
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Table 2.1. Research on Application of Machine Learning to Classify EEG Signals 

(cont.) 

 

  Joshi et al.  

  (2013) 

  Classification of    

  EEG signals based on  

  fractional linear  

  prediction (FLP)  

  FLP is an effective method for modelling EEG  

  signals. Classified EEG data using signal  

  energy and error energy as parameters to the  

  SVM model. SVM-RBF kernel (95.33%) 

 

  Liang et al.  

  (2006) 

  Mental task  

  classification based  

  on EEG signals using  

  machine learning  

  algorithms 

  Evaluated performance of Backward  

  Propagation Neural Networks (BPNN),  

  SVM, and ELM classifiers using EEG  

  signals. Obtained similar classification  

  accuracies for all the three models and model 

  accuracy can be improved by smoothing raw 

  outputs.   

   

  Lin et al.   

  (2007) 

  EEG signal-based   

  emotion  

  classification  

  using music  

  elicitation and neural  

  networks 

 

  Developed an offline emotion classification  

  algorithm based on EEG signals that are  

  relevant to music and multilayer perceptron  

  neural networks to classify joy, angry,  

  sadness and pleasure. 

 

  Lin et al.  

  (2008) 

  Recognize emotional  

  responses during  

  multimedia 

  presentation using  

  EEG signals 

  Developed a framework to uncover the   

  relation between EEG signal and music  

  induced emotion. Most important bands were  

  delta, theta and alpha related to emotion  

  responses. SVM- RBF (92.73%) 

 

  Lotte et al.  

  (2007) 

  Review of   

  classification 

  algorithms based on 

  EEG signals 

  SVM models are productive for synchronous  

  BCI due to the property of regularization and  

  immunity to the curse of dimensionality.  

  Combination of classifiers and dynamic  

  classifiers are also very productive.  

 

  Plotnikov et 

  al. (2012)  

  Used 4 channel EEG  

  headset to distinguish  

  flow from boredom  

  condition in Tetris  

 

  Statistically distinguished various levels of  

  boredom and flow in game players with an  

  accuracy of 73%.  

  Rissler et  

  al. (2018) 

  Used machine  

  learning to categorize 

  the intensity of flow  

  (low and high) 

  ML techniques can build flow classifiers 

  that are dependent on peripheral nervous 

  system features alone. Random forest is 

  the best model (72.3%). SVM (57.4%) 
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Table 2.1. Research on Application of Machine Learning to Classify EEG Signals 

(cont.) 

 

  Subasi et al.   

  (2010) 

  Epileptic EEG signal  

  classification using  

  PCA, ICA, LDA and  

  SVM 

  Implemented dimension reduction by  

  principal component analysis (PCA),  

  independent component analysis (ICA), 

  and LDA  

   

 

  Vladimir et al. 

  (2015)  

  Seizure prediction 

  from EEG data   

  Successful seizure prediction based on EEG  

  signals using the SVM model. 

 

   

Wang et al.  

  (2011) 

   

  Emotion recognition  

  system based on EEG  

  signals using movie  

  elicitation and 

  machine learning.  

   

  Classified EEG based emotion recognition 

  when watching movies into joy, relax, fear and  

  sad. Showed that frontal and parietal EEG  

  signals were even more informative based  

  on Minimum Redundancy Maximum  

  Relevance feature selection method. 

  SVM-RBF (66.51%), Multi-layer  

  perceptron (63.07%), k-NN (59.84%) 

 

  Wang et al.  

  (2013) 

  Emotion state  

  classification based  

  on EEG signals 

  during movie 

  induction experiment  

  using machine 

  learning approach 

  Power spectrum of all frequency bands is an  

  effective robust feature for classification.  

  High frequency bands play an  

  important role in emotion activities than  

  low frequency bands. Compared three  

  different kernels of the SVM model. Best  

  model is kernel-RBF. 
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3. RESEARCH METHODOLOGY 
 
 
 

3.1. EXPERIMENTAL DESIGN 

 

A within-subject experimental design was used in this research, where the same 

individuals experienced more than one conditions (i.e., resting, boredom, flow, and 

anxiety). Since the main purpose of our research is to assess the flow state against 

boredom, anxiety and resting states, a within-subject experimental design is appropriate, 

in which the subjects serve as their own control. This laboratory experiment was 

designed to capture EEG recordings for the resting, boredom, flow, and anxiety states 

using a 64-channel EEG technology called Cognionics. The design was adopted from 

Berta et al. (2013) who used a plane battle game and 4-channel EEG technology.  In our 

study, the animated game, Tetris, was used to induce boredom, anxiety, and flow states. 

The experiment consisted of four parts – each part is used to induce a specific user state, 

i.e., resting, boredom, flow, and anxiety. 

 

3.2. RESEARCH PROCEDURE 

The following steps provide a detailed explanation of the laboratory experiment 

where the four user states were induced through the Tetris game. 

Step 1: In order to capture the subject's orientation towards gaming, a 

questionnaire that was prepared based on previous studies was administered to the 

subject to fill out before the experiment started. 
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Step 2: The resting state was invoked by having the subject stare at a small cross 

on a dark background screen of the same color as the background color of the game in 

the experiment. 

Step 3: The boredom state was induced using the lowest level (i.e., level 1) of the 

game. In addition, the subject was provided with a mouse that has been click-disabled, 

such that the subject could not shorten the wait time for the block to fall but had to wait 

for each block to fall to the base.  

Step 4: The flow state was induced by setting the game at level 5 and having the 

subject play until all the blocks piled up to the top. During the gameplay, the game level 

automatically increased as the subject cleared each level of difficulty.  

Step 5: The anxiety state was induced by setting the challenge of the game at a 

very high level (i.e., level 15 and above) such that it way surpassed the skill level of the 

subject. Here the subjects were required to play the Tetris game two times at level 15 

followed by two times at level 20. At the end of each of step 3 to step 5, the subject was 

asked to fill out a questionnaire that served as a validation check for the manipulations.  

Step 6: A retrospective process tracing was carried out for each of the induced 

states, where each participant was asked to verbalize his or her experience while 

watching a video playback of their gameplay recording. Based on the subject’s 

verbalization of the experience, we determined a 30-second interval that best represents 

each of the three induced user states for data analysis.  
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3.3. MEASUREMENT 

To measure the neurophysiological data while playing the Tetris game, a 

Cognionics dry EEG headset with 64 channels was placed on the subjects’ head (see 

Figure 3.1). The EEG headset contains 64 Ag-AgCl pin-type active electrodes mounted 

in a Bio Semi stretch-lycra head cap.  

 

 Table 3.1. List of Electrodes in EEG Headset and Positions in the Human Scalp  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The commonly used 10-20 EEG electrode placement was implemented to record 

electrical activity of the subjects’ brain. Table 3.1 provides the list of electrodes in the 64-

channel EEG headset used in this research and their respective positions on the scalp. 

Position Name Channel Name 

Anterior – Frontal AFp3h, AFpz, AFp4h, AF5h, AFF5, AFF5h, 

AFF3, AFF1, AFFz, AFF2, AFF4, AFF6h, 

AFF6, AF6h 

 

Frontal  FFC5h, FFC3, FFC3h, FFC1h, FFCz, FFC2h, 

FFC4h, FFC4, FFC6h  

 

Fronto – Central  FCC5h, FCC3, FCC1, FCC1h, FCCz, FCC2h, 

FCC2, FCC4, FCC6h 

 

Central CCP5h, CCP3, CCP1, CCP1h, CCPz, CCP2h, 

CCP2, CCP4, CCP6h 

 

Central – Parietal CPP5h, CPP3, CPP3h, CPP1h, CPPz, CPP2h, 

CPP4h, CPP4, CPP6h 

 

Parietal-Occipital POO7, PO7, PO5, PO3, PO1, POz, PO2, PO4, 

PO6, PO8, POO8 

Occipital O1h, Oz, O2h 
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Figure 3.1. 64-Channel Cognionics EEG Headset 

 

Figure 3.1 shows the electrode positions of 64-channel Cognionics EEG headset 

on the human scalp. 

 

 

3.4. CLASSIFICATION USING MACHINE LEARNING 

Machine learning is a subset of artificial intelligence that focuses on finding 

patterns based on the training data for making future predictions. It can also be 

considered as real-time analytics using algorithms to analyze the rules of a game and in 

response to players’ actions to improve their performance (Ramirez, 2014). It is a 

combination of several other concepts like data mining, predictive modeling, clustering, 

mathematical modeling, and statistics. In this research, we focused on supervised 
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machine learning models – SVM, RF, k-NN, and mlogit to classify the user states. The 

following sub-sections briefly explain the above-mentioned machine learning models.  

3.4.1. Support Vector Machine. SVM is considered as the state-of-the-art 

kernel-based supervised machine learning algorithm implemented for classification (Lin 

et al., 2008). The algorithm is built on nonlinear kernel function that converts the given 

input data into high dimensional space. The algorithm learns from the given data 

iteratively and generates optimal hyperplanes with maximal margins for every class in 

the high dimensional space (Subasi et al., 2010; Lin et al., 2008). These maximal 

margin hyperplanes result in decision boundaries that help in classifying different 

classes. SVM models have the capacity to deal with large sets of data with high 

classification accuracies (Chang & Lin, 2011). This research implements radial basis 

function kernel (RBF) of the SVM model which is a nonlinear kernel that maps the 

given data into a high dimensional space.  

3.4.2. Random Forests. RF supervised machine learning model was proposed 

by Breiman (2001), where classification is performed by constructing each tree based 

on bootstrap samples of the given data. In comparison to standard trees where each node 

is split using best split among all input variables, random forests split each node based 

on a subset of predictors randomly selected at that specific node. This strategy gives 

random forests better performance and immunity against overfitting problems, when 

compared to other models such as linear discriminant analysis, support vector machine, 

and neural networks (Liaw and Wiener, 2002). 

3.4.3. k-Nearest Neighbors. The k-NN model is the simplest classification 

model that searches the entire training data set to classify a single test point based on 

tuning process using cross validation. As the size of the training dataset increases, the 
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quality of classification also increases. This feature makes k-NN a model with good 

classification accuracy, but it suffers from overfitting issues (Goldberger, 2005). 

3.4.4. Statistics for Evaluating Models. Machine learning models have various 

statistical metrics like F1-score, accuracy, kappa statistic, precision, recall, lift, and 

AUC (Caruana, 2006). The classification accuracy statistic assesses the ratio of correct 

predictions to the total number of cases evaluated. It ranges from 0 to 1 and is 

dependent on input data. AUC is used to evaluate the machine learning classifier 

model’s performance based on the area that is under the curve and is independent of the 

data (Bradley, 1997).  The kappa statistic is used to evaluate the overall performance of 

the machine learning classifier, especially in a multi-class classification problem. It 

compares a correctly classified model’s performance with the performance of a 

classifier that randomly classifies data based on their frequency of occurrence (Landis 

and Koch, 1977). The kappa statistic not only evaluates a single classifier, but also 

evaluates various classifiers by comparing among them. In this research, we use the 

kappa statistic, accuracy, and AUC to evaluate the machine learning models’ 

performance as most of the previous studies also implemented these statistics for model 

comparisons.  
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4. DATA ANALYSIS AND RESULTS 

 

The sample size for this research is 44. The subjects are all male who are graduate 

and undergraduate students from Missouri University of Science and Technology. The 

duration of the experiment was approximately 90 minutes. In order to control for gender, 

the experiment was limited to male subjects only and their age is between 18 and 30 

years. To perform data pre-processing steps and analysis of the obtained EEG data, Brain 

Vision Analyzer (version 2.1) and RStudio were used. Figure 4.1 provides an overview of 

the data analysis process involved in this research. 

 

 

Figure 4.1. Overview of Data Analysis Process 
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4.1. DATA PRE-PROCESSING   

The collected EEG data contains noises and several artifacts which need to be 

removed. The artifacts can result from the subjects’ movements like eye blinks, muscle 

activities, and eye movements, whereas noises result from poor subject grounding, 

external electric noise, poor electrode contacts, and electric lights (Harmon-Jones and 

Peterson, 2009; Pizzagalli, 2007). In order to remove these artifacts, the data is pre-

processed in Brain Vision Analyzer, as explained in the following steps: 

Step 1: Changing the Sampling Rate - The sampling rate of the EEG signals was 

down sampled (the number of samples per second has been decreased) to 256 Hz by 

applying spline interpolation to obtain fine-grained resolution. In order to obtain an even 

frequency resolution, the EEG signals need to have a sampling frequency of power of 2 

such as 256 or 512 Hz, instead of 500 Hz, which was the initial sampling frequency that 

was set while collecting data using Cognionics software (Lin et al., 2007). (For further 

information, please refer to Yelamanchili, 2018). 

Step 2: EEG Channel Selection Optimization - To obtain the best signal 

processing and classification accuracy, the EEG channels which do not contribute to 

neural activity need to be discarded. Here, the five channels, ACC0, ACC1, ACC2, 

Packet, and Trigger were eliminated because they serve as the reference channels to 

record the signals and hence do not contribute to the neural activity of the brain (For 

further information, please refer to Yelamanchili, 2018). 

Step 3: Raw Data Inspection and Artifact Rejection - An automatic raw data 

inspection was performed using the built-in algorithm of Brain Vision Analyzer at each 

individual channel. This step helps in identifying artifacts like eye movements, body 
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movements, eye blinks, and external noise. Once the artifacts were identified, they were 

removed by ocular correction Independent Component Analysis based on the rejection 

criteria (Plank, 2013). (For further information, please refer to Yelamanchili, 2018). 

Step 4: Filtering - To remove the effect of external noise on the EEG signals, 

Infinite Impulse Response (IIR) filters were applied. The recorded EEG signals were 

analog bandpass filters between 0.1 Hz (Low Pass Filter) and 100 Hz (High Pass Filter). 

Additionally, notch filter was applied at 60 Hz to remove external noise. (For further 

information, please refer to Yelamanchili, 2018). 

Step 5: Segmentation - The filtered signals obtained from the above step was 

divided into interval-based approach for further analysis. Based on retrospective process 

tracing results from the experiment, the filtered data was segmented into four divisions 

named resting, boredom, flow, and anxiety. This segmentation was performed based on 

the start and end timestamps of the best 30-second intervals of user states. Each 30-

second segment was further divided into 10 segments, with 3-second length and 1-second 

overlap, which provides a large set of data points for the data analysis process.  

Step 6: Spectral Band Division - To analyze the processed time-domain EEG 

signals using machine learning methods, we must transform them into the frequency 

domain (Berta et al, 2013). By using a built-in algorithm in Brain Vision Analyzer, Fast 

Fourier Transform (FFT) has been applied to transform the time-domain EEG epochs into 

equivalent frequency-domain epochs. The FFT values of theta, alpha, beta, low beta, 

mid-beta, and high beta were extracted using the FFT band export option provided by 

Brain Vision Analyzer. Finally, the mean values of EEG power in different frequency 

bands (theta, alpha, beta, low beta, mid-beta, and high beta) and at different brain regions 



21 
 

(frontal, temporal, parietal, and occipital) were exported in the form of text files. These 

text files were converted as Common Separated Value (CSV) files, to make them easily 

readable by R-Studio.  

 

4.2. DATA ANALYSIS 

The data analysis was performed in RStudio, where different machine learning 

models were applied to the processed EEG data. Table 4.1 provides the brainwave bands  

with their respective wavelengths used in this research.  

 

Table 4.1. Brainwaves with Wavelengths (Berta et al., 2013) 

 

 

 

 

 

 

The following are the band combinations used to implement machine learning 

models that classify EEG data into resting, boredom, flow, and anxiety states.  

1. Theta                          5. Low Beta 

2. Alpha     6. Mid Beta 

3. Beta      7. High Beta  

4. Theta + Alpha + Beta                                 8. Low Beta + Mid Beta + High Beta  

Brainwave Wavelengths 

Theta 4-8 Hz 

Alpha 8-12 Hz 

Beta 12-30 Hz 

Low Beta 12-15 Hz 

Mid Beta 15-20 Hz 

High Beta 20-30 Hz 
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In order to perform a reliable classification process, each band combination 

dataset mentioned above was divided into training and testing sets by a 70/30 split. Using 

the training and testing datasets, four machine learning classifiers, i.e., SVM-RBF, RF, 

mlogit, and k-NN, were used for the training and evaluated. To select common 

parameters and pick best parameters for each classifier, the 10-fold cross-validation 

method was opted for the training sets. We implemented the hyperparameter tuning 

method to search for the optimal number of neighbors k in the k-NN classifier, number of 

trees (mtry) in the RF classifier, and cost C and gamma value for the SVM classifier. The 

models were compared based on average classification accuracy, kappa, and AUC for 

each band combination and analyzed.   

We also tried to identify significant EEG components for each band combination 

to improve the model performance with only key components. In order to perform the 

feature selection process, we adopted the MRMR method as mentioned earlier. The 

MRMR method is based on information theory for sorting each EEG component in 

descending order resulting in discrimination between various EEG patterns (Wang et al., 

2011). The results of this method were extracted in the form of sets, i.e., top 10, top 20, 

top 30 till top 180 (total number of EEG channels were 192). All the combinations were 

fed to the machine learning classifier individually and were compared based on the 

accuracy metric of the model to evaluate the classification performance for each set of 

EEG components. 
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4.3. RESULTS 

 Table 4.2 shows the performance metrics of each machine learning model in 

classifying the user states into resting, boredom, flow, and anxiety respectively.  

The models were evaluated based on accuracy, kappa statistic, and the area under the 

receiver operating characteristic curve. The model with the best performance is 

highlighted in bold for each band combination in Table 4.2. By observing Table 4.2, we 

see that the SVM model classifies best for theta, alpha, and the combination of theta + 

alpha + beta, whereas RF performs best for the beta band and all beta sub-band 

combinations. The combination of theta + alpha + beta has the highest classification 

accuracy, kappa and AUC when compared to the other band combinations.  

 In Table 4.2, we compared the machine learning models based on accuracy, 

kappa, and AUC. Foe theta, alpha and theta + alpha + beta, the SVM model performs 

better than other models. For the band combinations of beta, low beta, mid beta, and high 

beta, the RF model performs better than other models. Table 4.3 provides the statistical 

difference between the best performing model and other models for each band 

combination. The number mentioned in Table 4.3, represents the difference between the 

models based on the accuracy, kappa, and AUC values. We compared the model 

differences based on statistical significance (p-value) for every band combination 

represented by the asterisk symbol in Table 4.3 to indicate the model efficiency for 

comparisons and their significance levels. In Table 4.3, three asterisks mean p <0.001, 

indicating that the efficiency of the best model as compared to the current model to 

classify user states is very highly statistically significant. Two asterisks mean p < 0.01, 

indicating that the efficiency of the best model as compared to the current model to 
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classify user states is highly statistically significant. One asterisk refers to p < 0.05, 

indicating that the efficiency of the best model as compared to the current model to 

classify user states is statistically significant. If p > 0.05, it means that the efficiency of 

the best model as compared to the current model is not statistically significant. 

 

Table 4.2. Model Performance for Every Band Combination  

 

  

Based on the above analysis, as presented in Table 4.3, we can see that for the 

theta band, the SVM is the best model as the statistical significance when compared to 

other models is very high (p < 0.001). For the alpha band, SVM performs better than 

mlogit, k-NN, and RF as all comparisons with these models are statistically significant. 

 

Metric Theta Alpha Beta 

Theta+

Alpha+

Beta 

Low 

Beta 

Mid 

Beta 

High 

Beta 

Low+

Mid+

High 

Beta 

SVM 

Accuracy 0.75 0.75 0.78 0.85 0.68 0.73 0.79 0.79 

Kappa 0.67 0.67 0.71 0.8 0.58 0.64 0.73 0.72 

AUC 0.73 0.82 0.83 0.99 0.72 0.73 0.88 0.82 

RF 

Accuracy 0.68 0.68 0.81 0.79 0.71 0.74 0.82 0.8 

Kappa 0.57 0.57 0.75 0.73 0.61 0.66 0.79 0.72 

AUC 0.78 0.74 0.85 0.92 0.78 0.75 0.89 0.86 

Mlogi

t 

Accuracy 0.36 0.41 0.42 0.46 0.37 0.41 0.41 0.38 

Kappa 0.14 0.22 0.22 0.28 0.16 0.22 0.22 0.17 

AUC 0.57 0.68 0.56 0.66 0.56 0.54 0.6 0.66 

k-NN 

Accuracy 0.67 0.69 0.69 0.72 0.62 0.62 0.72 0.7 

Kappa 0.57 0.59 0.59 0.63 0.5 0.49 0.63 0.63 

AUC 0.68 0.8 0.82 0.93 0.78 0.77 0.83 0.81 

Model 
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For the beta band, RF performs better than mlogit, k-NN, and SVM as all comparisons 

with these models are statistically significant. For the theta + alpha + beta combination, 

SVM is the best performing model when compared to mlogit and k-NN, and there is no 

statistical difference between the performance of SVM and RF models. 

 

Table 4.3. Comparison of Models 

Band 
Model 

Difference 
Accuracy Kappa AUC 

Theta 

SVM vs RF 0.7*** 0.1*** -0.5** 

SVM vs mlogit 0.39*** 0.53*** 0.16*** 

SVM vs k-NN 0.8*** 0.1*** 0.5*** 

Alpha 

SVM vs RF 0.7 ** 0.1** 0.8** 

SVM vs mlogit 0.34*** 0.45*** 0.15*** 

SVM vs k-NN 0.6*** 0.8*** 0.02*** 

Beta 

RF Vs SVM 0.3** 0.4** 0.2** 

RF Vs mlogit 0.39*** 0.53*** 0.29*** 

RF vs k-NN 0.12*** 0.16*** 0.03*** 

 

Theta+Alpha

+Beta 

SVM vs RF 0.6 (>0.05) 0.7 (> 0.05) 0.07 (>0.05) 

SVM vs mlogit 0.39*** 0.52*** 0.33*** 

SVM vs k-NN 0.13*** 0.17*** 0.06** 

Low Beta 

RF Vs SVM 0.3 (>0.05) 0.3 (>0.05) 0.6 (> 0.05) 

RF Vs mlogit 0.34*** 0.45*** 0.22*** 

RF vs k-NN 0.9** 0.11** 0** 

Mid Beta 

RF Vs SVM 0.01 (>0.05) 0.02 (>0.05) 0.02 (>0.05) 

RF Vs mlogit 0.33*** 0.44*** 0.21*** 

RF vs k-NN 0.12*** 0.17*** -0.02*** 

High Beta 

RF Vs SVM 0.3 (>0.05) 0.06 (>0.05) 0.01 (>0.05) 

RF Vs mlogit 0.41*** 0.57*** 0.29*** 

RF vs k-NN 0.1*** 0.16*** 0.6** 

Low+Mid+

High Beta 

RF Vs SVM 0.01 (>0.05) 0 (>0.05) 0.04 (>0.05) 

RF Vs mlogit 0.42*** 0.55*** 0.2*** 

RF vs k-NN 0.1** 0.9** 0.05** 

    Note: One asterisk means p <0.05, two asterisks means p <0.01, three asterisks  

means p <0.001, >0.05 means p-value is not significant 
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For low beta, mid beta, and high beta, RF performs better than mlogit and k-NN 

models, but there is no statistical difference between the performance of RF and SVM 

models (p > 0.05). Similarly, for the band combination of low + mid + high beta, RF 

performs better than mlogit and k-NN models, and there is no statistical difference 

between the performance of SVM and RF models (p > 0.05). 

From the above analysis, we can observe that both SVM and RF models perform 

better in classifying the user states into resting, boredom, flow, and anxiety. However, 

higher classification accuracy, kappa value and AUC were achieved by the SVM model 

for theta + alpha + beta band combination, making it the best model for classifying the 

user states. When we take the best performing model, SVM, and the theta + alpha + 

beta band combination to see if it can distinguish the flow state from the non-flow states 

i.e., resting, boredom, and anxiety, we obtain the resulting confusion matrix shown in 

Table 4.4.           

 

Table 4.4. Confusion Matrix for Flow vs Non-Flow 

 

 

As we can see from the confusion matrix in Table 4.4, 82 cases were correctly 

classified into the flow state, whereas the remaining 29 flow state cases were identified 
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as non-flow. The accuracy for this model is 0.85, with kappa value of 0.58, and AUC of 

0.85. Though the accuracy seems good, the kappa value is low, and the output class 

ofthe model was identified as a non-flow state. This discrepancy in the classification 

could be caused by the imbalanced dataset with large number of non-flow states (75% 

of data), and small number of flow states (25% of data).  

Next, we performed a feature selection method to identify the best EEG 

components for better classification accuracies. We performed the MRMR method. The 

results obtained were differentiated based on top 10, top 20, top 30, top 40, till top 180 

(the total number of components is 192). Once the list of top components were collected 

from the MRMR method, we performed SVM modeling for each combination, to see 

which combination generated better classification accuracy. Figure 4.2 shows the model 

accuracy for each set of the important EEG components. 

 

 

Figure 4.2. Model Accuracies for Important EEG Components using MRMR-Method 
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Figure 4.2 indicates that including all the EEG components generates higher 

classification accuracy when compared to any other combinations of EEG components.  

 

Table 4.5. Top 30 EEG Channels using MRMR (Ranked by Variable Importance) 

Rank  Variable Band  Brain Region 

1 B_Oz Beta Occipital 

2 A_PO8 Alpha Parietal – Occipital 

3 A_Oz Alpha Occipital 

4 B_POO8 Beta Parietal – Occipital 

5 B_CCP1 Beta Central – Parietal 

6 B_O2h Beta Occipital 

7 A_O2h Alpha Occipital 

8 B_PO3 Beta Parietal – Occipital 

9 A_POO8 Alpha Parietal – Occipital 

10 B_PO7 Beta Parietal – Occipital 

11 B_PO6 Beta Parietal – Occipital 

12 A_PO6 Alpha Parietal – Occipital 

13 B_POO7 Beta Parietal – Occipital 

14 T_PO8 Theta Parietal – Occipital 

15 B_FFC4 Beta Fronto – Central 

16 B_CPP4h Beta Central – Parietal 

17 B_PO1 Beta Parietal – Occipital 

18 B_FFC6h Beta Fronto – Central 

19 A_PO1 Alpha Parietal – Occipital 

20 B_CPP6h Beta Central – Parietal 

21 B_FCC5h Beta Fronto – Central 

22 B_CPP3 Beta Central – Parietal 

23 B_CPP3h Beta Central - Parietal 

24 B_CPP5h Beta Central - Parietal 

25 B_PO5 Beta Parietal - Occipital 

26 A_CPP3 Alpha Central - Parietal 

27 B_O1h Beta Occipital 

28 B_CCP5h Beta Central - Parietal 

29 B_CPP4 Beta Central - Parietal 

30 B_CCP4 Beta Central - Parietal 
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 Table 4.5 shows the list of TOP 30 EEG components extracted using the MRMR 

feature selection method. To understand the most important regions and bands, we 

examined the TOP 30 EEG components obtained from the MRMR method. These EEG 

components and their respective bands and brain regions are explained in Table 4.5. 

From Table 4.5, we can see that the most informative bands are beta and alpha 

while the most important brain regions are occipital, parietal – occipital, central – 

parietal, fronto-central.  The important channels with their rankings are marked according 

to the electrode positions in the 64-channel Cognionics EEG headset presented in Figure 

4.3. In Figure 4.3, the most important channels (first 10) are indicated with dark color 

(black color), the next ten channels are indicated with medium color (grey color), and the 

next ten channels are shown with light color (light grey color) to show the level of 

importance of the variables.  

   

 

Figure 4.3. TOP 30 EEG Channels using MRMR-Method 
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5. DISCUSSION OF RESULTS 

Our research results indicate that machine learning can be applied to classify EEG 

signals of user states with accuracy of 85%. Among the four machine learning models 

used in this research, SVM-RBF kernel and RF are the two better performing models 

when compared to k-NN and mlogit models. As we can see from the literature review, 

most of the studies implemented SVM to classify EEG signals of user states. Berta et al. 

(2013) implemented the SVM model to classify user states into frustration, boredom and 

flow in gaming. In this research, SVM and RF are the better models that classify user 

states into resting, boredom, flow, and anxiety, with higher performance metrics than k-

NN and mlogit.  

Wang et al (2011) and several other studies examined the performance of 

important components of EEG and found that the machine learning with all EEG 

components performed well. Similarly, we implemented the MRMR method to extract all 

sets of important components of EEG and compared the model accuracies accordingly. 

As shown in Figure 4.2 earlier, the model with all EEG components and frequency bands 

has the highest classification accuracy when compared to other combinations. We took a 

step forward and analyzed the top 30 variables shown in Table 4.5 to understand the most 

informative EEG channels and their locations on the human brain. Our results suggest 

that the most important regions that contribute to better classification of user states are 

Occipital, Parietal – Occipital, Central – Parietal, and Fronto – Central (mentioned 

according to the number of occurrences in Table 4.5) with beta and alpha bands being the 

most informative bands. These regions are indicated in Figure 5.1 which displays the 

brain regions that are sensitive to capturing user states during gaming. 
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Figure 5.1. Most Important Brain Regions from MRMR-Method 

 

The Occipital and Parietal – Occipital regions of the brain are responsible for 

visual and spatial perception, an essential cognitive task demanded by our experimental 

condition which is gaming (Knyazev, 2007). According to Goldman et al. (2002), when a 

given task involves the user to implement strategies visually, the occipital part of the 

brain records higher activity of visual processing. The corresponding increased visual 

activity results in alpha and band activity which represents the process related to visual 

attention occurring in the occipital regions of the human brain (Teplan, 2002). The 

Parietal - Occipital region of the brain is associated with the perception of movement, and 

visuospatial processing activities (Sauseng et al., 2004). The task in our research is 

playing the Tetris game which requires the user to spatially arrange the falling blocks 

with the help of visual strategies. The Occipital and Parietal - Occipital regions are 
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responsible for the visual and spatial attention demanded by the task in our research. The 

alpha band is responsible for visual activity, which is one of the cognitive activities 

demanded by the task in this research. Hence the Occipital and Parietal - Occipital 

regions were observed as the most important brain regions and the alpha band being the 

most informative band. In Figure 5.1, the occipital region is highlighted with horizontal 

black lines indicating more activity followed by the parietal-occipital region that is 

indicated by grey horizontal lines suggesting the next active area according to the results 

in Table 4.5.    

In this research, playing a game is a cognitive task that involves learning, 

feedback processing, and increased cognitive load accordingly as the levels of the game 

increase. Previous studies indicate that the Central – Parietal and Fronto - Central parts of 

the brain are responsible for cognitive tasks like learning and feedback processing 

(Sauseng et al., 2005). The Central – Parietal and Fronto – Central regions are highlighted 

with light grey horizontal lines with less intensity indicating the reduced activity in the brain 

according to the MRMR results in Table 4.5. 

From previous research, it can be observed that the beta band activity occurs more 

in the frontal and central regions of the brain representing focused attention and self-

awareness (Berta et al., 2013; Taywade and Raut, 2014). Beta waves are responsible for 

attention and alertness (Tinguely et al., 2006). The task in our experiment demands attention, 

self-awareness, and learning with feedback from the user, so that they would not lose the 

game, which explains the reason underlying the beta and the Central – Parietal, and Fronto – 

Central brain regions being highly activated areas of the brain after the Occipital and Parietal 

– Occipital regions and the alpha band. 
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6. LIMITATIONS AND FUTURE RESEARCH 

 

This research was conducted to understand the application of machine learning on 

EEG data to classify user states into flow, boredom, and anxiety. One of the limitations of 

our study is the sample size of 44 and the use of only male participants. Also, we used 

EEG data only as the physiological data in this research. In future research, other forms 

of physiological data such as Galvanic Skin Response can be added to the machine 

learning models to get a better understanding of the classification results for the flow 

state.  

We focused on a set of four models, specifically SVM, RF, k-NN and mlogit. 

Future work can focus on improving the performance metrics of the current models to get 

better classifications of the user states. Future research can focus on testing other models 

like neural networks, linear regression, Bayesian network to find the best model for user 

states classification. Since the nature of the data collected is balanced, the results could be 

over-inflated. As such, the components of EEG obtained in our research may vary with 

respect to a users’ behavior. To avoid such variability, one needs to understand the 

relation between the EEG signals and user state at a deeper level and in other contexts 

like music, reading a book, etc.  
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7. CONCLUSION 

 

   

The goal of our research is to investigate the application of machine learning on 

EEG data and obtain the best model that classifies the user states into resting, boredom, 

flow, and anxiety. Our findings suggest that SVM and RF are the models with better 

classification accuracies when compared to other machine learning models that we have 

implemented, specifically k-NN and mlogit. We implemented the best model to 

distinguish between flow and non-flow states with an accuracy of 85%, which can be 

further improved in future research. Also, we tried to extract the important EEG 

components that can contribute to better classification accuracies based on feature 

selection methods. Models that include all the EEG components with the theta + alpha + 

beta band combination generate higher classification rates when compared to other 

models.  

Berta et al. (2013) implemented the SVM model to classify the user states. In this 

research, we compared four machine learning models to classify the user states. The most 

informative band, according to Berta el al. (2013), was low beta, whereas in this research 

alpha and beta bands are the most informative bands. The important brain regions and 

frequency bands were extracted with the help of feature selection method in this research. 

Previous studies used various kinds of machine learning techniques to classify user states 

in different contexts like game, music, and movie. Most of the studies implemented the 

SVM model for the classification of user states. Also, the literature indicates that few 

studies implemented the classification including frequency bands. This study compares 

four different machine learning models with different band combinations to obtain the 

best classification of user states. This research serves as a starting point for the analysis of 
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user states using machine learning techniques in the gaming context. To be able to 

classify user states using advanced techniques, which enables us to understand the 

relation between the physiological data and the user responses, can bring big changes to 

the human–computer interaction field. The implementation of a real-time flow 

monitoring system with a standard hardware and software system to collect physiological 

data can become the next generation of analysis of user states and can help the gaming 

industry immensely.   
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