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ABSTRACT 

Non-metallic inclusions can have a tremendous impact on the machinability of 

steel. Some oxide inclusions such as alumina, spinel, and other refractory abrasive oxide 

inclusions can have a detrimental effect on machinability. Modification of oxide 

inclusions by calcium treatment can promote the formation of low melting point oxides 

such as anorthite and gehlenite inclusions that can assist in chip formation and form a 

lubricating layer on the rake surface of the machine tool. MnS is known to be beneficial 

to improving the machinability of steel. They assist in chip formation by being heavily 

deformed in the primary shear zone. Sulfide inclusions can also be extruded onto the rake 

surface of the machine tool to form a lubricating layer to resist crater wear.  

 Machinability tests were conducted on three grades of industrially produced 

steels, and on a grade produced from a laboratory heat to investigate the effect of non-

metallic inclusions on the machinability of different steels. 

From the results it is shown that encapsulating oxide inclusions by a sulfide shell 

can reduce the tool wear during machining and can assist in chip formation. The number 

of inclusions per unit area have a direct effect on the flank wear during machining of 

clean steel. Having an optimal amount of inclusions present in the steel can lead to lower 

flank wear. Calcium treatment can modify the oxide inclusions to be deformable during 

machining to assist chip formation, and stabilize the lubricating layer on the rake surface 

of the machine tool. The effect of grain refinement can lead to a slight improvement in 

the machinability of a super austenitic stainless steel with an increased amount of TiN 

and spinel inclusions.   
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1. INTRODUCTION 

1.1. DEFINITION OF MACHINABILITY  

The definition of machinability is the ease with which a material can be machined 

while maintaining a satisfactory surface finish. This can be evaluated by several 

parameters: tool life, tool forces, surface roughness of the workpiece, and chip formation 

[1]. In a recent review of machinability it was found that 85% of authors measure flank 

wear, while only 35% of authors measured cutting forces in their investigations [2].  

The machinability of steel has been improved over the decades by modifying the non-

metallic inclusions found in steel. One author summarized the improvements that have 

been made to improve machinability while trying to maintain good mechanical properties 

[3]. In the first generation of machining steels sulfur levels were elevated to increase 

machinability. There was limited control of MnS morphology, and oxide inclusions were 

controlled by removing large inclusions. In the second generation of machinable steels 

sulfur levels were limited to 0.1 wt%, and oxide inclusions were controlled by reducing 

the amount of inclusions in the steel. Third generation steels saw an increase in 

mechanical properties while maintaining superior machinability by modifying oxide 

inclusions at a regulated sulfur content. The other type of third generation steel has an 

elevated content of sulfur, but modification of both sulfide and oxide inclusions were 

achieved. Modification of these inclusions could be done by Ca-treatment to globularize 

the sulfide inclusions, and to modify the oxide inclusions to be malleable at machining 

temperatures.  
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1.2. MACHINABILITY TESTING 

As stated before, machinability has many different factors associated with it. One 

of these aspects is tool life. Tool life is the measurement of machining time for a critical 

amount of tool wear. Machining tests in the early 1900s were completed by Taylor who 

constructed the Taylor equation of tool life according to Equation 1 [4].  

 

𝑉𝑐 ∗ 𝑇
𝑛 = 𝐶                                                             (1) 

 

where: Vc is cutting velocity (m/min), T is tool life (mins), coefficient n = -1/k (k is slope 

of line on Taylor’s tool life curve, and C = constant 

ISO 3685 is a machinability standard for measuring tool-life with single-point 

turning tools. This standard uses the Taylor tool-life equation to quantify machinability. 

This standard outlines many different aspects to minimize the error associated with 

machinability testing. It covers high-speed steel tooling, cemented carbide, and ceramic 

machine tools. It outlines conditions for the cutting tool, cutting fluid, and workpieces 

used during testing. It also outlines cutting parameters that should be used to minimize 

effects of the tool used. It recommends a minimum depth of cut that is twice of the tool 

nose radius to result in a flank wear region that can be easily resolved for measuring flank 

wear. It also specifies a maximum depth of cut of ten times the feed rate. The maximum 

feed rate is 0.8 times the tool nose radius. This standard calls for at least four machining 

speeds during testing, except when using ceramic tools and three speeds can be used. The 

testing is carried out by measuring the progressive tool wear during machining. The two 

major types of tool wear measured are flank wear and crater wear. The critical tool wear 
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values for flank wear are an average flank wear of 0.3 mm or a maximum flank wear of 

0.6 mm when the flank wear region is worn irregularly. The criterion for crater wear is a 

function of feed rate expressed in Equation 2 [4]. 

 

𝐾𝑇 = 0.06 + 0.3𝑓     (2) 

 

where: KT is crater depth (mm) and f is the feed rate (mm/rev)  

 Figure 1.1 shows the progressive flank wear curves for an example tool-life test. 

The red dots indicate the tool life for each of the cutting speeds chosen during the tests 

for a given critical tool wear value. Figure 1.2 shows the example tool-life values at the 

chosen cutting speeds. The secondary curve is for crater wear, which predominates at 

higher cutting speeds. 

 

 

 

 

Figure 1.1: Example tool-life curves depicting the tool-life criterion [1]. 

 

 

 



 

 

4 

 

Figure 1.2: Overall tool-life curve with flank wear and crater wear criterion [1]. 

 

 
  

While the machinability standard uses the Taylor tool-life curve to quantify 

machinability, other authors have used an extended version of the Taylor tool-life 

equation. Chinchanikar et al. [5] studied the machinability of 4340 steel with varying 

levels of hardness, and reported their results with the extended tool-life equation with 

workpiece hardness shown in Equation 3 [5]. The extended tool-life equation is more 

complicated than the traditional tool-life equation that requires a testing matrix of 

machining tests to obtain tool-life data for each condition. The authors reported different 

tool-life equations for each material with different hardness values. It was also found that 

by using regression analysis that workpiece hardness has a significant impact on tool-life, 

and they amended the existing extended tool-life equation that accounts for feed rate and 

depth of cut.  

 

       𝑉 ∗ 𝑇𝑘𝑡 ∗ 𝑓𝑘𝑓 ∗ 𝑑𝑘𝑑 ∗ 𝐻𝑘ℎ = 𝐶                                         (3) 
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where: V is machining speed (m/min), T is machining time (mins), f is feed rate 

(mm/rev), d is depth of cut (mm), H is workpiece hardness (HRC) kt , kf , kh, and kd are 

exponents associated with their corresponding terms.  

Kuljanic et al. [6] studied difficult to machine materials, and reported his own tool 

life equation. His tool-life equation is much more complicated consisting of nine terms 

for face milling stainless steel. This equation has terms for the existing cutting 

parameters, stiffness of the machine system, number of inserts in the cutting tool, and 

interactions between various parameters. This is one example of how complicated tool-

life equations can become, but as mentioned above machinability testing is a relative 

measurement. For instance, Bletton et al. [7] machined stainless steels with enhanced 

machinability by targeting anorthite oxide inclusions while using high speed steel and 

carbide tooling. High speed steel tools are limited to low cutting speeds, while carbide 

tooling can be used at high cutting speeds. The anorthite inclusions had 50% less tool 

wear while turning with carbide tools, but machined very similarly to the base steel when 

machined with high speed steel tools. This is due to the fact that anorthite inclusions can 

be heavily deformed and form a lubricating layer at temperatures around 800-1000°C, but 

this temperature is only reached when machining at higher speeds with carbide tooling. 

1.3. CUTTING TEMPERATURE 

It is well known that the majority of energy that goes into metal cutting is 

transformed into heat for a robust machine setup. The sources of the heat are generated 

by friction, heat generated by the chip forming process, and deformation in the shear 

zones [8]. It can be advantageous to measure cutting temperatures during machining to 

model conditions at the elevated temperatures at the chip/tool interface. Figure 1.3 shows 
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cutting temperatures collected by Desaigues et al. [9] while machining a high strength 

free-cutting steel. They observed an increase in cutting temperature as cutting speed 

increases. There is also a decrease in the cutting force as cutting speed increases. 

Chinchanikar et al. [5] reported a similar decrease in cutting forces with increasing cutting 

speed due to thermal softening of the workpiece. As shown in Figure 1.3 this decrease in 

cutting force is accompanied by an increase in cutting temperature. The heat that is 

generated is carried away in the chips, and can account for more than 78% of the heat 

removal [8].  

 

 

 

 

Figure 1.3: Graph showing the dependence of cutting temperature and cutting force on 

cutting speed [5].  

 

 

 

Cutting temperature is also important for determining the role of inclusions during 

machining. MnS inclusions are known to improve machinability, but can be limited to 

moderate machining speeds. Oxide inclusions can be beneficial for machinability 

depending of the temperature encountered at the chip and tool interface. Bletton et al [7] 
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studied malleable oxides in machining of 316L stainless steel. They found that anorthite, 

a low melting point oxide phase, could be greatly deformed in the primary shear zone 

during machining. This was due to the cutting temperature (800-1000°C), and the oxides 

being deformable at this temperature. Fang and Zhang [10] machined a Ca-S treated 

stainless steel and a conventional stainless steel and found the Ca-S steel had a superior 

machinability. They concluded the improvement of machinability was due to the 

anorthite and MnS inclusions that adhered to the rake surface of the machine tool. They 

found that the anorthite oxide inclusions were closer to the cutting edge of the tool, and 

the MnS layer was further away from the cutting edge. This could be due to the improved 

stability of the oxide lubricating layer at higher temperatures. Desaigues et al. [9] 

measured temperatures across the width of the machine tool and found temperature 

decreases as a function of distance from the cutting edge. One study reported a cutting 

temperature of 1150°C while machining a Ca-S stainless steel and the ability of gehlenite 

oxide inclusions to adhere to the rake surface of the tool reducing both flank wear and 

crater wear [11]. 

1.4. CHIP FORMATION 

Chip formation is a fundamental part of the metalcutting process. When the 

machine tool comes into contact with the workpiece a large amount of energy is 

introduced to the workpiece to form a chip. This energy involves shearing of the 

workpiece material, and the newly formed chip undergoes large amounts of plastic 

deformation as it passes over the machine tool [12]. Machine chips can take many forms: 

continuous, segmented, and discontinuous chips just to name a few types. Ductile 

materials will usually have a continuous chip which occurs due to the chips not fracturing 
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in the shear plane [12]. Mastsumoto et al. [13] reported that chip segmentation occurs during 

instability of the cutting process. This is the result of periods of the chip undergoing large 

amounts of strain and momentarily adhering to the rake surface of the tool.  

The machine chip can be described in having multiple regions that can be seen in 

Figure 1.4. This is an optical micrograph of a chip root obtained during a quick stop 

experiment [14]. The quick stop experiment is extremely useful in capturing the moment 

of chip formation. This is accomplished by rigging the machine tool to separate from the 

workpiece at a high rate of speed in the same direction of the rotating workpiece. This 

will successfully have the machine chip still adhered to the workpiece, which will then be 

mounted and polished to examine chip formation. In Figure 1.4 there are two important 

regions of the machine chip. The primary shear zone and the secondary shear zone or 

flow zone. Shelbourn et al. [14] machined a medium carbon steel and characterized the 

shear zones in the machine chips. The primary shear zone is outline by the red dashed 

lines. The flow zone of the machine chip is located at the rake surface/chip interface. The 

flow zone undergoes tremendous amounts of plastic deformation. They reported that the 

pearlite structure was similar to those found in wire drawing operations. On the other 

hand, in the flow zone there was equiaxed cells of ferrite. Wright and Robinson [15] 

studied the flow zone when machining copper and found that this region experienced 

higher strain rates and temperatures compared to the primary shear zone. It can be seen in 

Figure 1.4 that the microstructure cannot be resolved optically because of the large 

amounts of plastic deformation. The influence of non-metallic inclusions in the primary 

shear zone and flow zone will be discussed later.  
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Figure 1.4: Machine chip collected during a quick-stop experiment showing the different 

deformation zones [15].  

 

 

 

1.5. TOOL WEAR 

There are many different types of tool wear that can occur during machining. 

Measuring tool wear is an essential part of tool-life testing. The most common forms of 

tool wear to be measured during testing are flank wear and crater wear [16]. Examples of 

flank wear and crater wear (rake face) can be seen in Figure 1.5. Flank wear occurs on 

the major cutting edge of machine tool, and it commonly measured for tool-life criterion. 

The length of the flank wear is associated with the depth of cut used during the 

machining process. Crater wear occurs on the rake surface of the machine tool. The rake 
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surface is the surface that the machine chip passes over during machining and crater wear 

will occur in this region.  

 

Figure 1.5: Schematic showing examples of flank wear (1) and crater wear (2) [16]. 

 

 

 

Sources of tool wear include adhesion, abrasion, and diffusion wear. Adhesive 

wear occurs at low cutting speeds due to the adhesion of workpiece material to the 

machine tool. The formation of built-up edge is associated with adhesive wear [12]. 

Abrasive wear occurs over a broad range of cutting speeds and is associated with abrasive 

particles that occur in the steel [1]. These can be in forms of oxide, nitride, and carbide 

inclusions and precipitates. Diffusion wear occurs at higher cutting speeds due to the 

higher cutting temperature. The diffusion wear occurs on the rake surface of the machine 

tool. During machining of steel iron can diffuse into the cobalt matrix of the cemented 

carbide tool, and cobalt can diffuse into the machine chip. There will also be some 

dissolution of the tungsten carbides to form mixed carbides with the diffused iron in the 

machine tool [1]. These mixed carbides have lower hardness compared to the pure 

tungsten carbide phase. These mixed carbides can then be worn away causing abrasive 

wear on the rake face known as crater wear.  
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1.6. INFLUENCE OF NON-METALLIC INCLUSIONS ON THE 

MACHINABILITY OF STEEL 

 

Non-metallic inclusions commonly found in steel can be classified as sulfides and 

oxides. Non-metallic inclusions can have multiple influences on machinability. Oxide 

inclusions have been linked to cause abrasive wear during machining [17]. Ca-treatment is 

commonly employed to modify oxide inclusions for better castability during casting to 

avoid nozzle clogging. This also can affect the machinability of the steel. Diggs et al. [18] 

reported enhanced machinability of stainless steel by Ca-treatment of oxide inclusions 

targeting anorthite and gehlenite regions of the CaO-SiO2-Al2O3 ternary phase diagram. 

There are multiple factors that sulfide and oxide inclusions have on the machinability of 

steel: effect on general steel machinability, behavior during machining, and the 

possibility to form a lubricating layer are discussed. 

1.6.1. General Effect of Inclusions on Steel Machinability. It is well known 

that oxide inclusions such as alumina or spinel type inclusions contribute to abrasive 

wear of the cutting tool during machining. Hard inclusions that do not deform at 

machining temperatures have a detrimental effect on machinability [9]. These inclusions 

come into contact with the machine tool and cause abrasion wear. Faulring et al. [17] 

evaluated the machinability of air-melted and vacuum melted steels to investigate the 

effect of different oxide inclusions on machinability. They found that the high 

temperature oxides such as mullite or alumina lead to higher flank wear rates. This is due 

to the high temperature hardness of these phases. They also reported that a steel with 

glassy inclusions had a much lower flank wear than a steel with mullite inclusions 

present, even though both types of inclusions were similar in size and shape. Unmodified 
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oxide inclusions and other abrasive inclusions with a high hardness can be detrimental to 

tool life by causing abrasive wear.  

Modified oxide inclusions can actually be beneficial for the machinability of steel. 

Modification is commonly done in the form of Ca-treatment. Hamann et al. [19] found that 

Ca-treatment can reduce the cutting forces measured during machining of a treated steel 

compared to a conventional steel, which also had a better machinability. Fang and Zhang 

[10] reported a lower tool wear when machining a Ca-S treated steel resulting from the 

lower abrasive nature of the Ca-containing oxide inclusions compared to the Al2O3 

inclusions in the conventional steel. Complex Ca-containing oxide inclusions were also 

reported to be softer than SiO2 type oxides [20]. Modified oxide inclusions that are 

beneficial for machinability for Si and Al-killed heats are anorthite and gehlenite, and for 

Si and Mn-killed heats the spessartite oxide inclusions are targeted for enhanced 

machinability [3]. Another method to decrease the abrasiveness of oxide inclusions is by 

enveloping them with a sulfide shell. Previous researchers [3,21] reported better 

machinability for steels that had Ca-Al oxide inclusions with sulfide shells.  

Sulfur is added to steel to combine with manganese to form MnS inclusions 

which can improve machinability. Jiang et al. [22] investigated the effects of composition, 

morphology, and area fraction of sulfide inclusions on the machinability of a resulfurized 

steel. They measured cutting forces for different cutting conditions and found that the 

cutting force decreases when machining elongated sulfide inclusions. They also noted an 

increase in cutting force when machining a steel with a larger interspacing between 

sulfide inclusions. One of the steels tested was Ca-treated, and the globularization of the 

sulfide inclusions led to a decrease in flank wear. Yaguchi [23] studied the effect of MnS 
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inclusions on the formation of built-up edge. The phenomenon of built-up edge occurs 

when workpiece material adheres to the machine tool causing increased tool wear and 

can impair the surface quality of the machined surface. His results show that sulfur 

additions shift built-up edge to higher cutting speeds. Built-up edge can also be reduced 

by a larger MnS inclusion size. 

Behavior of Inclusions During Machining. Some non-metallic inclusions can be 

considered non-deformable inclusions. When hard inclusions are present in the primary 

shear zone they will fracture instead of undergoing deformation. This leads to 

microcracks that are initiated by internal particle failure [24]. Alumina inclusions will 

initiate cavities at the matrix interface and remain undeformed [25]. Zanatta et al. [26] 

machined VP100 mold steel with different amounts of Ti(C,N) inclusions present in the 

steel. They reported lower cutting forces with a steel with large Ti(C,N) inclusions which 

could be due to the fracturing of these inclusions during machining. However, the 

elevated Ti content in the steels resulted in a lower volume of material removed 

compared to the base steel for an equivalent tool life. These hard inclusions are less 

effective in chip breaking compared to deformable inclusions. 

Another type of inclusion has the ability to be deformable during machining. Ca-

treatment of oxide inclusions modifies the composition of harmful oxides into low 

melting point oxide inclusions that can be deformable at machining temperatures. 

Kiessling [25] notes that the complex Ca-Al-silicates can be heavily deformed during 

machining. Bletton [7] studied different oxide inclusions in machining of stainless steel 

also reported the ability to heavily deform anorthite oxide inclusions. This is due to them 

being malleable at temperatures encountered at the tool-chip interface allowing them to 



 

 

14 

deform into fine elongated inclusions in the primary and secondary shear zone. These 

inclusions act as an internal lubricant to allow for easier chip formation and breakage 

during machining. The Ca-Al oxides enveloped by sulfide inclusions also have the ability 

to be deformed during machining.  

MnS are very beneficial to chip formation due to being easily deformed in the 

primary and secondary shear zone. Deformable inclusions like MnS and the oxides 

mentioned above act as stress raisers in the shear zones and help facilitate chip formation. 

When plastic deformation occurs in the shear zones, voids form at the inclusion/matrix 

interface as more deformation occurs the inclusions elongate in the direction of shear 

providing easier propagation of cracks to assist chip breaking [9,24,25,27]. Liu and Chen [28] 

studied the effect of MnS morphology on chip formation. They reported that globular 

MnS inclusions are more beneficial for chip formation because voids formed around the 

inclusions cannot be rewelded during deformation. This may occur if the MnS inclusions 

are heavily deformed and form thin elongated inclusions during machining, the voids 

would be thinner and could close under the high compressive stresses in the primary 

shear zone. The inclusions that have the ability to deform during machining are more 

effective for chip formation. 

1.6.2. Lubricating Layer Formation. Many studies report that the formation of a 

lubricating layer on the rake surface of the machine tool has a huge impact on obtaining 

longer tool lives at higher machining speeds. This is due to the fact that the formation of a 

lubricating layer can minimize crater wear, because the lubricating layer can inhibit 

diffusion of workpiece material into the machine tool. The formation of the lubricating 
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layer is a complex process that requires certain conditions on the machine tool in order 

for a stable layer to exist.  

Helle [29] thermodynamically simulated and experimentally verified the conditions 

that are necessary to form a lubricating layer on a cemented carbide tool. In the beginning 

of his experiments it was unknown why lubricating layers could not form on an uncoated 

carbide tool. It was found that oxidation of the tool surface or presence of suitable oxide 

inclusions present in the steel are essential for layer formation. Even the formation of a 

stable sulfide layer requires the presence of oxide inclusions. The oxidation of the TiC on 

the surface of the cutting tool is the first step to produce the foundation of the lubricating 

layer. A thin layer of titanium oxide can form from the TiC coating by being oxidized by 

less stable oxide inclusions like: MnO or a reaction involving MnS and CaO, that other 

oxide inclusions can adhere to if the oxide inclusions are capable of bonding to this layer. 

Once the tool surface is oxidized inclusions present in the steel are extruded onto the rake 

surface of the tool. This continuous build-up of inclusions forms the lubricating layer on 

the cutting tool. Inclusions with good deformability is not necessary for layer formation. 

When inclusions become too elongated they lose their ability to form a stable lubricating 

layer. He also found that machining speed, thus cutting temperature, is important for a 

stable lubricating layer. As cutting speed increases MnS inclusions become less stable 

because of their increased plasticity at the higher cutting temperatures and the layer will 

gradually disappear. Therefore, oxide lubricating layers are more stable at higher cutting 

speeds. However, the oxide layers also have cutting speed limitations due to the 

possibility of increased plasticity. Qi et al. [11] reported a similar hypothesis on lubricating 

layer formation. The inclusions are plastically deformed during machining and are 
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extruded onto the rake surface of the tool. The inclusions will then adhere to the surface 

of the tool if there is a strong affinity to bond to the TiC coating. Next, the tool 

temperature decreases due to the presence of the lubricating layer separating the tool 

from the heat of friction, this allows the lubricating layer to harden and stabilize. Lastly, 

more inclusions are extruded onto the existing layer and a stable layer is formed.  

The lubricating layer has multiple impacts on improving the machinability of 

steel. Akasawa et al. [30] conducted machinability studies on free-machining stainless 

steels and found evidence of S, Bi, Ca, and Cu on the cutting tool surface which could be 

linked to the formation of a lubricating layer. Bittes et al. [31] reported that an increased 

Ca content in (Ca,Mn)S could improve the stability of the lubricating layer, but 

mentioned that pure CaS inclusions have a higher hardness that can led to an undesirable 

impact on machinability. The formation of a lubricating layer while machining a Ca-

treated steel led to a decrease in adhered workpiece material during machining [32]. 

Tönshoff et al. [33] reported a decrease in flank wear and crater wear due to a lubricating 

layer formation. They also observed that at higher cutting speeds the lubricating layer has 

enhanced plasticity and disappeared after machining for a short time. Matsui et al. [34] 

investigated the behavior of the lubricating layer while sequential machining of a Ca-

treated steel and a Ca/Mg-added steel. First, they machined the Ca/Mg treated steel that 

resulted in some crater wear, then machined the Ca-treated steel and saw the formation of 

the lubricating layer. In the other experiment, they machined the Ca-treated steel, formed 

a lubricating layer, then machined the Ca/Mg treated steel and reported an increase in 

crater wear. The results of these experiments are shown in Figure 1.6. It is interesting to 

notice that in the first experiment the rapid progression of tool wear, and it plateaus while 
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machining the Ca-treated steel since the formation of the lubricating layer resisted the 

progression of crater wear. On the other hand, when the Ca-treated steel was machined 

first, the lubricating layer quickly disappeared when machining the Ca/Mg treated steel 

due to the abrasive oxides present in steel. 

 

 

 

 

Figure 1.6: Evidence of the ability of a lubricating layer to resist crater (rake) wear [34].  

 

 

 

1.7. CLEAN STEEL MACHINABILITY 

Steel cleanliness is a measure of the low content of impurities present in the steel. 

This can also be a measure of a low non-metallic inclusion content within the steel. Clean 

steels are associated with great mechanical properties, but this cleanliness has a 

detrimental effect on machinability [35]. Ånmark et al. [36] reported a decrease in 

machinability for a clean steel compared to a reference steel with a higher sulfur level. He 

concluded when machining these steels a lack of lubricating layer could persist. This 

would lead to a rapid increase in crater wear and workpiece adhesion onto the machine 
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tool. Since a stable lubricating layer requires a steady extrusion of inclusions to be 

deposited onto the tool the lack of these inclusions in the clean steel could result in no 

lubricating layer forming. In another study Ånmark et al. [37] suggested that without a 

lubricating layer the friction between the workpiece and cutting tool would increase 

resulting in a higher cutting temperature and higher tool wear. Liu and Chen [28] studied 

the effect of total oxygen on the machinability of a free cutting steel. They measured the 

total oxygen of multiple samples, and found that the lowest flank wear resulted at an 

intermediate total oxygen level. The lowest total oxygen had a higher flank wear, and 

when the total oxygen was increased from 0.0105 to 0.0150 a rapid increase in tool wear 

was observed. At the intermdiate oxygen content, the improved machinability was due to 

a globurization of the MnS inclusions. The poor machinability at the higher oxygen 

contents was due to abrasive oxide and oxy-sulfide inclusions present in the steel.  

1.8. EFFECT OF GRAIN SIZE ON MACHINABILITY 

The effect of grain size on machinability is not a topic that is covered extensively. 

Jiang et al. [38] investigated the effect of austenite grain size on tool life while machining 

304L stainless steel. Samples were hot worked to reduce the austenite grain size, then 

heat treated at different holding temperatures to influence growth of the austenite grains, 

and then water quenched. Metallography showed an increase in grain size as the holding 

temperature increased. Machining tests were done on each of the samples and the results 

can be seen in Figure 1.7. From these results it is evident that as grain size increases 

machinability decreases. Jiang concluded that the lower tool life of the hot-forged sample 

was due to an inhomogeneous distribution of grain size, and the machine tool failed due 

to chip breakage instead of the normal flank wear criterion of the other specimens. 
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Hoseiny et al. [39] reported similar results in milling P20 mold steel. That experiment 

measured the martensite packet size, and found that as prior austenite grain size increases 

the martensite packet size increases as well. They reported an increase in tool life for 

specimens with a smaller martensite packet size. Komatsu et al. [40] studied the effect of 

crystal size during mircomilling of stainless steel. He reported a reduction in the tendency 

for burr formation while machining the finer grain stainless steel. This resulted in an 

increase in surface finish that is necessary during the micromilling process.   

 

 

 

 

Figure 1.7: Tool-life results of hot forged bars held at different holding temperatures [38]. 

 

 

 

1.9. STATEMENT OF PURPOSE 

The goal of this research was to investigate the effects of non-metallic inclusions 

and steel microstructure on steel machinability. This research is divided into four parts. 

Part one investigates different fine grain practices of AISI 4140 steel, and how it affects 

the inclusion populations and how it is related to machinability. The ability to modify 

oxide inclusions to attain longer tool life is discussed. Part two outlines the effect of steel 
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cleanliness on machinability of AR450 abrasion resistant steel. The influence of 

inclusions for improved machinability are also discussed. Part three deals with the effect 

of Ca-treatment on the machinability of 303 stainless steel. The multiple influences of 

Ca-treatment for improved tool life is reported. Part 4 investigates the effect of grain size 

on the machinability of super austenitic stainless steel. The material studied in these 

investigations were produced in industrial facilities, and the machinability tests were 

conducted in the laboratory.  
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2. METHODOLOGY 

2.1. MATERIAL CHARACTERIZATION  

The following sections detail the methods used for analyzing the materials 

studied. 

2.1.1. Metallography and Non-metallic Inclusion Analysis. Samples for 

metallography and non-metallic inclusion analysis were taken in the transverse (T) and 

longitudinal (L) directions from the material used for the machining tests. Multiple 

samples were taken in both directions to characterize the microstructure and non-metallic 

inclusions present in the machining volume of the specimens. Samples were mounted in 

bakelite, and polished to 0.1 μm finish for scanning electron microscope (SEM) analysis 

equipped with energy dispersive spectroscopy (EDX) to characterize the non-metallic 

inclusions in the steel.  

Non-metallic inclusions were analyzed using an ASPEX 1020 SEM/EDX. An 

automated feature analysis (AFA) was used to count 2000 inclusions in an area of 4-25 

mm2. An additional analysis was run to classify oxide inclusions in the steel by analyzing 

a large area of 25-30 mm2 which are less numerous than the sulfide inclusions in the 

studied steels. The data collected from the analysis was analyzed using methods 

previously detailed by Harris et al. [41].  

2.1.2. Hardness Measurements. Hardness profiles were taken of the cross 

section of the machining specimens to verify consistency of the steel structure throughout 

the machining volume. Hardness measurements were taken every 0.125” and Rockwell 

Hardness C-scale (HRC) was used during testing. 
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2.1.3. Machine Chips Analysis. Machine chips were collected at each of the 

cutting speeds to observe the behavior of inclusions during machining. The machine 

chips were mounted, polished, and examined used a SEM/EDX to look at the cross-

section to observe the behavior of inclusions in the primary shear zone and flow zone of 

the machine chips. The thickness of the machine chips was measured to calculate the 

shear angle using Equation 3 [39]: 

tan𝜑 =
𝑡

𝑇
cos 𝛼 ÷ (1 −

𝑡

𝑇
sin 𝛼)          (2) 

where: φ is shear angle, t is uncut chip thickness (feed rate), T is measured chip 

thickness, and α is rake angle of cutting tool. A Dorian tool holder MSRNL 12-4B with a 

rake angle of -7° determined the rake angle for the machining tests. 

2.1.4. Post-Machining Tool Analysis. The rake surface of the machine tool was 

analyzed in a SEM/EDX to observe the formation of a lubricating layer formed during 

machining. The flank wear surface of the machine tool was analyzed to verify the final 

flank wear of each test.  

2.2. MACHINABILITY TESTING METHOD  

The following sections detail the methods using for machinability testing.  

2.2.1. General Method. The turning tests were carried out on a HAAS TL-1 

CNC lathe.  The machinability of the studied materials was quantified by measuring the 

progressive flank wear during machining. Flank wear was measured with a DinoLite AM 

4815ZTL digital microscope. Tool-life is the amount of machining time for a critical 

value of flank wear. The critical value of tool wear is dependent on the material being 

machined. The surface layer of the workpiece was removed prior to starting the 



 

 

23 

machining tests, and a new machine tool was put in the tool holder for the machinability 

tests.  

2.2.2. Tool-life Testing of 4140 Steel (Part I). The machinability of AISI 4140 

steel was quantified by measuring the progressive flank wear during machining until the 

tool-life criterion was satisfied. The machining parameters for this study are as follows: 

460, 655, and 850 SFM (ft/min) to obtain tool life curves with constant 0.005” ipr 

(inch/rev) feed rate, 0.062” depth of cut, and dry cutting condition. Experimental Taylor 

tool-life curves were calculated from the tool life data. A flank wear value of 0.15 mm 

was used as the tool-life criterion for this study. The workpiece has a diameter of 3.5 

inches, and a machining length of 8.75 inches. A Sandvik Coromant SNMG 432-PM 

4325, a Ti(C,N)+ Al2O3 and TiN coated cemented carbide tool was used for the 

machining tests. 

2.2.3. Fixed Volume Machining Test for AR450 Steel (Part II). The 

machinability of AR450 abrasion resistant steel was measured by single point turning of 

a fixed volume of material for each test. Twenty machining passes were completed 

during each test. The cutting parameters were: 0.012” ipr (in/rev) feed rate, 0.03” depth 

of cut, 270 SFM (ft/min) cutting speed, and coolant were used for the machining tests. 

Duplicate tests were performed for each specimen to assess the repeatability of the 

results. A cemented coated carbide cutting tool SNMG 431-QM 4325 manufactured by 

Sandvik Coromant was used. 

2.2.4. Tool-life Testing of 303 Stainless Steel (Part III). Tool-life testing was 

conducted to quantify the machinability of resulfurized 303 stainless steel (SS). 

Progressive flank wear was measured during the machining tests, and a flank wear value 
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of 0.07 mm was used as the tool life criterion. The cutting parameters used were: 655 

SFM (ft/min) machining speed, 0.062” depth of cut, 0.008 ipr (inch/rev) feed rate, and 

dry cutting condition. A Sandvik Coromant SNMG 432-MM 1125 coated cemented 

carbide insert was used. 

2.2.5. Fixed Volume Machining Test of Super Austenitic SS (Part IV). Fixed 

volume machining tests were carried out to measure the progressive flank wear during 

machining. The cutting parameters chosen for this study: 175 SFM (ft/min) machining 

speed, 0.032” depth of cut, 0.005 ipr (in/rev) feed rate, and dry cutting condition. Two 

fixed volume machining tests were completed for each condition to test the repeatability 

of the machining conditions. The test was completed after machining 19 in3 of material. 

A Sandvik Coromant SNMG 431 QM-235 coated cemented carbide tool was used for 

this study. 
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3. SUMMARY OF PAPERS 

Paper I: Effect of Aluminum and Vanadium Fine Grain Practice on the 

Machinability of 4140 Steel 

Paper 1 investigated the effect of different fine grain practices on the inclusion 

population and machinability of two different steels. A vanadium fine grain practice steel 

(G1) was compared to an aluminum fine practice steel (G2). Experimental Taylor curves 

were constructed from tool-life data collected from machining tests. It was found that 

specimen G2 had a better machinability at all the tested cutting speeds.  

The main impact of the better machining properties of G2 was related to the non-

metallic inclusions. Al-rich oxide cores were enveloped in MnS inclusions, and a sulfide 

shell was observed surrounding the Ca-Al oxide inclusions. The abrasive nature of the 

oxide inclusions could have been reduced by being surrounded by a sulfide shell. This 

could be linked to the longer tool life observed for G2. The enveloped oxide inclusions 

were able to be deformed during machining which could have assisted chip formation. 

Paper II: An Investigation of the Machinability of Abrasion Resistant AR450 

Steel 

 Paper 2 studied the effects of steel cleanliness on the machinability of AR450 

steel produced under different conditions. One of the steels was produced under steady 

state casting condition (S2), while another was cast under non-steady state (S3). One of 

the steels was cast under similar conditions (S4) of specimen S2 to compare the 

repeatability of the experimental results. Specimen S5 was produced using the BOF 

steelmaking process, whereas all the other steels were produced with the EAF 

steelmaking process. Non-metallic inclusions were classified with a SEM/EDX. The 
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machinability of the four industrially produced steels was compared by conducting fixed 

volume machining tests.  

 The results show that the tool wear is dependent on the inclusion content of the 

steel. At a low value of inclusions per unit area, or clean steel, flank wear was increased 

due to poor chip breakability due to lack of inclusions. At high values of inclusions per 

unit area the flank wear rapidly increased due to a large volume fraction of abrasive 

inclusions. However, at intermediate values of inclusions per unit area the flank wear was 

minimized. This shows that an optimal amount of inclusions per unit area may be 

necessary for chip formation and result in less flank wear.  

Paper III: Modification of Inclusions to Enhance the Machinability of 

Resulfurized 303 Stainless Steel 

Paper 3 deals with the effect of Ca-treatment on the machinability of resulfurized 

austenitic stainless steel. Three grades of industrially produced 303 stainless steel, one 

base (N1) and two Ca-treated grades (N2, N3) were studied to compare the machinability 

of these steels. Non-metallic inclusions were characterized using a SEM/EDX. 

Progressive flank wear was measured during testing. An increase of five times in tool life 

can be achieved by Ca-treating 303 stainless steel. 

 It was shown that many factors are the cause for the improvement in tool life 

through Ca-treatment. The MnS inclusions were more globular in one of the Ca-treated 

stainless steels which could be more beneficial in chip formation. Ca-modified oxide 

inclusions were malleable at the tested machining conditions which assisted chip 

formation, and did not seem to have an adverse effect on tool wear. A lubricating layer 

was found on the rake surface of the machine tool which consisted of MnS in the case of 
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the base steel. In the Ca-treated steels, an additional oxide lubricating layer was observed 

with contents of Ca, Si, and possibly Al measured by EDX. The overall thickness of the 

lubricating layer of the Ca-treated steels were 8 μm, whereas the base steel had a 

thickness of 3 μm. This suggests that the oxide layer could be beneficial for the stability 

of the lubricating layer during machining. These factors are linked to the improved 

machinability of the Ca-treated 303 stainless steels.  

Paper IV: Effect of Grain Refining on Properties of Superaustenitic Stainless 

Steel 

 Paper 4 deals with identifying the effect of grain refinement of properties such as: 

segregation of alloying elements, mechanical properties, machinability, and corrosion 

resistance. The effect of grain refinement on machinability will be discussed in this 

thesis. The other material properties can be seen in the full article, or in the Master’s 

thesis of Dustin Arvola. A base steel was compared to a grain refined steel inoculated 

with Ti, Al, and Mg additions to coprecipitate TiN inclusions on Al2MgO4 spinel 

inclusions. The synergistic effects of grain refinement and addition of abrasive inclusions 

on the machinability of super austenitic stainless steel was investigated.  

 The fixed volume machining tests revealed that the refined stainless steel had a 

decrease of 13% in final flank wear compared to the base steel while machining an 

equivalent volume of material. The results of the inclusion analysis showed that the 

refined steel had close to 200 inclusions per unit area, the majority of them being abrasive 

TiN or spinel inclusions. On the other hand, the base steel had 57 inclusions per unit area. 

The grain size of the refined steel in the top section of the casting was 2.9 mm compared 

to 8 mm for the base steel. From the machine chip analysis, the hard TiN and Al2MgO4 
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inclusions fracturing during machining would could contribute to easier chip formation. It 

seems that the benefit of the finer grain size of the refined steel offset the detrimental 

effect of increased content of abrasive inclusions.  
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ABSTRACT 

The effect of grain refining practice on the machinability of 4140 steel was 

investigated using processed bar stock from two industrially produced heats. The first 

heat employed a vanadium micro-alloy fine grain practice and the second heat employed 

an aluminum fine grain practice. Progressive flank wear on the machining tool was 

measured during machining tests to obtain tool life curves for each trial condition. The 

tool wear was evaluated at three different cutting speeds to produce a Taylor’s curve to 

fully characterize the relative machinability of the two steels.  Metallography was 

performed to document the microstructure and automated SEM/EDX analysis was used 
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to characterize the non-metallic inclusions in the two steels. The microstructure of the 

machining chips and the surface condition of the tools after machining were also 

documented. While both steels possessed a bainitic microstructure, the aluminum treated 

steel exhibited better machinability than the vanadium treated steel.   

1. INTRODUCTION 

The definition of machinability is the ease with which a material can be machined 

while maintaining a satisfactory surface finish. This can be evaluated by several 

parameters: tool life, tool forces, surface roughness of the workpiece, and chip formation 

[1]. The tool life criterion is one of the more common practices of defining the 

machinability of a material [2]. Das et al. [3] studied the machinability of 4140 by 

measuring tool life as well as surface roughness using different machining parameters to 

optimize the machining process. Other studies [4-8] investigated the machinability of 

4140 and 4142 type steels comparing the effect of Ca-treatment on machinability of the 

steel. Their findings agree that Ca-treatment improves machinability in multiple ways. A 

lubricating layer can form during machining of Ca-treated steels on Ti-bearing coated 

machine tools. The lubricating layer was not found when machining untreated steels, or 

when machining with uncoated tools [6-7]. Ca-treatment can also form calcium 

aluminates that tend to be less abrasive than alumina present in Al-killed steels. Calcium 

aluminate inclusions may also be enveloped by (Ca,Mn)S which can further enhance 

machinability [7]. These complex oxy-sulfide inclusions were present in steels that 

exhibited better machinability that the other steels present in the studies [6-8].  

Different grain refining practices are used in industry to improve properties of 4140 steel, 

while the effect of these practices on steel machinability was not verified. In this study, 
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the effects of different non-metallic inclusion populations due to different grain refining 

practices on 4140 steel machinability was investigated.  

2. EXPERIMENTAL MATERIALS AND PROCEDURE 

Two industrially produced Ca-treated grades of AISI 4140 steel were used in this 

study. The steel G1 was produced using a vanadium fine grain practice. G2 was produced 

using an aluminum fine grain practice. These refining practices made a slight difference 

in the chemistries because vanadium or aluminum were added. The steel bars were 

supplied in the as-rolled condition having a diameter of 3.5 inches. Hardness 

measurements were taken every 0.125 inch through the cross-section of the steel bars. 

Steels G1 and G2 had consistent hardness values through the cross-section of 28 and 29 

HRC respectively. To characterize the microstructure and non-metallic inclusions, 

samples were then cut in the transverse, labeled T, and longitudinal directions, labeled L. 

Metallography was done using optical microscopy. The non-metallic inclusion families 

were characterized using an ASPEX 1020 SEM/EDX with an automated feature analysis 

to count 2000 inclusions from 4-15 mm2 area of the sample. An additional inclusion 

analysis was run targeting only the oxide inclusions, presented in the steel by scanning a 

large between 25-30 mm2 of the sample. Data was analyzed using the methods described 

in work of Harris et al. [9].  

The machinability of the steels was quantified by measuring the progressive flank 

wear at three machining speeds: 460, 655, and 850 SFM (ft/min) to obtain tool life curves 

with constant 0.005” ipr (inch/rev) feed rate, 0.062” depth of cut, and dry cutting 

condition. A steel with a better machinability will exhibit lower tool wear and a longer 

corresponding tool life. The machining tests were completed on a HAAS TL-1 CNC 
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lathe. The workpiece has a diameter of 3.5 inches, and a machining length of 8.75 inches. 

A Sandvik Coromant SNMG 432-PM 4325, a Ti(C,N)+ Al2O3 and TiN coated cemented 

carbide tool was used for the machining tests. The oxide surface was removed prior to 

machining. The progressive flank wear was measured every 3-4 passes using a DinoLite 

AM 4815ZTL digital microscope. The criterion of tool life was the machining time for a 

critical tool wear value of 0.15 mm. The machining results were analyzed using Taylor’s 

tool life curve [10]: 

𝑉𝑐 ∗ 𝑇
𝑛 = 𝐶                                                             (1) 

where: Vc is cutting velocity (m/min), T is tool life (mins), coefficient n = -1/k (k is slope 

of line on Taylor’s tool life curve, and C = constant 

Machining chips were collected during the machining tests and were sectioned, 

polished and examined using SEM/EDX analysis to observe the deformation behavior of 

inclusions during machining and their influence on chip formation. The flank and rake 

surfaces of the worn machine tools were also analyzed for evidence of a lubricating layer 

and to verify the final flank wear of each test.  Shear angle was calculated from measured 

chips thickness using Eq. 2 [11]: 

tan𝜑 =
𝑡

𝑇
cos 𝛼 ÷ (1 −

𝑡

𝑇
sin 𝛼)          (2) 

where: φ is shear angle, t is uncut chip thickness (feed rate), T is measured chip 

thickness, and α is rake angle of cutting tool. A Dorian tool holder MSRNL 12-4B with a 

rake angle of -7° determined the rake angle for the machining tests.  
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3. RESULTS AND DISCUSSION 

3.1. MATERIAL CHARATERIZATION 

Optical metallography revealed a bainitic structure in of both G1 and G2 steels is 

the as-rolled condition.  

The total concentration of elements of the inclusions present in the steels are 

listed in Table I. From these results, most of the inclusions are MnS in both steels. Steel 

G2 has an additional inclusion population that is rich in aluminum due to the aluminum 

fine grain practice. These inclusions are MnS with Al-rich oxide cores. Both steels have 

similar area occupied by inclusions. Steel G2 has slightly more inclusions per unit area 

due to the inclusions being slightly smaller in size. 

 

 

 

Table 1: Total Concentration of elements in inclusions, ppm. 

 

 

 

From the general analysis of inclusion family, it was shown that the MnS 

inclusions make up most of the inclusions present. However, it is still necessary to 

consider the oxide inclusions present in the steel so an additional analysis targeting the 

oxide inclusions by scanning a large area was performed. Since some of the oxide 

inclusions are associated with the sulfide inclusions, a 10 wt.% S threshold was applied to 

the data after the analysis to separate free oxide inclusions from oxides associated with 

sulfide inclusions. Figure 1 shows the total concentration of elements in the oxide 

Steel Mg Al Si S Ca Mn 
Number per 

mm2 

Area, 

ppm 

Average 

Diameter, 

µm 

G1 4 2 2 100 5 259 354 755 1.53 

G2 1 17  99 9 239 409 759 1.4 
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inclusions. Example oxide inclusions in the steel are shown in Figure 2. The oxide 

inclusions present in steel G1 are rich in Ca-Si-Al and tend to be free oxides. The oxides 

in steel G2 are Ca-Al oxides enveloped by (Mn,Ca)S inclusions, or present as oxide cores 

of sulfide inclusions. The total concentration of oxide inclusions in steel G1 is higher 

than steel G2 due to the oxides in the former steel being associated with the sulfide 

inclusions. 

 

 

 

 

Figure 1: Total area occupied by oxide inclusions in the studied steels. 

 

 

 

  

Figure 2: SEM/EDX analysis of oxide inclusions presented in G1 steel (left) and steel G2 

(right).  
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The total concentration of elements in the sulfur bearing inclusions obtained from 

the additional analysis can be seen in Figure 3. Steel G2 has a noticeable content of 

aluminum within the sulfide inclusions compared to steel G1. The aluminum is in form of 

Al-rich oxide cores within the MnS inclusion or deformed Ca-Al oxide inclusions 

enveloped by (Mn,Ca)S inclusions, as stated above. An Al-rich oxide core within an MnS 

inclusion can be seen in Figure 4 in steel G2. Some of the inclusions in steel G1 are 

(Mn,Ca)S inclusions that tend to be smaller and much less deformable than pure MnS.  

 

 

 

 

Figure 3: Total concentration of elements in inclusions with greater than 10 wt.% sulfur. 

 

 

     

Figure 4: Example sulfide inclusions found in longitude sections of steel G1 (left) and 

steel G2 (right).  
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3.2. MACHINING TEST, TOOL AND MACHINE CHIP ANALYSIS 

The tests were carried out at 460, 655, and 850 SFM cutting speeds. Flank wear 

was used as the criterion for quantifying machinability. Some crater wear was observed 

during machining during all the machining tests; however it was difficult to measure due 

to the chip breaker geometry of the machine tools. The tool life for each condition was 

met when the flank wear reached a value of 0.15 mm. For the 655 SFM cutting speed, 

steel G1 had a 48 minutes tool life of, whereas steel G2 had a significantly longer tool life 

(76 minutes).  

The results of all the machining tests for both steels can be seen in Figure 5. Tool 

life decreases as machining speed increases for both steels. Steel G2 exhibits better 

machinability at all studied cutting speeds. The largest difference in tool life is observed 

at 655 SFM where steel G2 has a 58% increase in tool life compared to steel G1. The tool 

life of the two steels seem to converge at the higher cutting speed.  Experimental 

coefficients of the Taylor’s curves (Eq. 1) shown in Figure 5 were calculated for steels 

G1 and G2 from the tool life data collected from this study.  

    

Figure 5: Comparison of tool life at different machining speeds for steel G1 and G2 (left) 

and Taylor’s tool life curves for both steels (right). 
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Collected at three cutting speeds chips were mounted and polished to analyze the 

cross-section. Chip thickness and shear angle were calculated according to Eq. 2 can be 

seen in Figure 6.  It can be observed that as cutting speed increases chip thickness 

decreases and thus shear angle increases due to the increased strain rates encountered at 

higher cutting speeds. The shear angle for steel G2 is three degrees higher when 

compared to steel G1at the 460 and 655 SFM cutting speeds. At the cutting speed of 850 

SFM, the shear angles of the two steels only differ by 1 degree. This correlates with the 

large difference in tool life observed at the lower cutting speeds, and the similarity in 

machinability at the highest cutting speed. Kim and Park [11] also reported a smaller chip 

thickness and larger shear angle for a stainless steel that had better machinability. A 

similar trend was indicated by Singh et al. [12] which observed a greater chip thickness 

for a steel with abrasive oxide inclusions compared to an untreated steel under identical 

machining conditions.   

 

 

 

 

Figure 6: Shear angle and machine chip thickness for steels G1 and G2. 
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The chemical analysis of the non-metallic inclusions observed in polished cross 

sections of the collected machining chips is shown in Figure 7. Inclusions observed in the 

machine chips can be classified into two categories: non-deformable and deformable 

inclusions. The free oxides present in steel G1 are mostly non-deformable inclusions. An 

example of such Ca-Si-Al oxide inclusion is shown in Figure 7a. During machining, 

voids formed around the inclusions. The deformable inclusions found in both steels are 

the MnS inclusions. The complex MnS inclusions with the Al-bearing oxide cores of in 

steel G2 (Figure 7b) are still deformable during machining. Also, the complex Ca-Al 

oxide core enveloped by (Mn,Ca)S  inclusions are slightly deformable during machining 

(Figure 7c). It seems that when the oxide inclusions are enveloped by sulfide inclusions 

the inclusions appear to behave similarly to the sulfide shells. A possible explanation of 

the better machinability of steel G2 could be due to the oxides being enveloped sulfide 

inclusions, and thus their abrasive properties are minimized. Enhanced machinability of 

steels studied the other authors [8,13] was directly linked to calcium aluminates being 

surrounded by (Ca,Mn)S inclusions. The steels with longer steel life studied in [6-7] 

contained the similar oxide inclusions enveloped by complex sulfides.    

 

 

   

Figure 7: Oxide and sulfide inclusions found in machine chips steel G1 (a) and steel G2 

(b, c). 
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The rake and flank surface of the machine tools were analyzed in an SEM 

equipped with EDX to investigate lubricating layer formation during machining. Areas 

near the cutting edge were characterized using EDX. Evidence of Mn, S, Ca, and Si is 

present near the cutting edge of the machine tool in both samples. This deposit is the 

result of non-metallic inclusions being deposited onto the machine tool from the steel 

being machined. This deposition can act as a lubricating layer during machining [4-8]. 

Machine tools from all three machining speeds for both G1 and G2 steels show evidence 

of this lubricating layer. Some crater wear is also present on the machine tools, 

suggesting that the lubricating layer might be more beneficial in reducing flank wear than 

crater wear. This lubricating layer appears to have a positive impact on the machinability 

of both steels. 

4. CONCLUSIONS 

Machinability of two industrially produced Ca-treated 4140grade steel with 

different fine grain refining practices was characterized by measuring tool life. Steel G1 

is a vanadium fine grain practice, whereas steel G2 is an aluminum fine grain practice. 

These different fine grain practices affected the inclusion populations present in the steel. 

The machinability of steel G2 is significantly better than steel G1 at the 460 and 655 

SFM cutting speeds when the tool life was increased 58%. Both steels had similar tool 

lives at the 850 SFM cutting speed. Both steels have evidence of a lubricating layer on 

the machining tool at all three cutting speeds. The main difference between the steels is 

that steel G1 has more free oxides than steel G2. When the calcium aluminate inclusions 

are enveloped by (Ca,Mn)S, the abrasive nature of the oxides during machining tends to 

be reduced. This may also be true for the Al-rich oxide cores within the sulfide inclusions 
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present in steel G2. Both conditions allow the inclusions to assist in chip formation and 

reduce the abrasive wear during machining.  
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ABSTRACT 

The machinability of abrasion resistant AR450 steel was examined using 

industrial steel samples obtained for different process routings including: EAF vs. BOF 

steelmaking and steady state vs. non-steady state casting conditions. Samples for 

machinability testing were cut from fully processed AR450 plate samples and a fixed 

volume machining test was conducted to measure the progressive flank wear of the 

machining tool during machining evaluations.  Machining chip analysis, tool wear 

measurements, tool surface analysis and microstructural characterization of the steel were 

performed to investigate factors affecting the machinability of each steel sample. 

Metallography and cross section hardness testing confirmed the presence of a martensitic 

microstructure for all samples tested. Automated SEM/EDX analysis was employed to 
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characterize the non-metallic inclusions present in the steel. Non-metallic inclusions were 

observed to have a significant influence on the machinability of AR450 steel. 

1. INTRODUCTION 

The definition of machinability is the ease of a material to be machined. This can 

be evaluated by several parameters: tool life, tool forces, surface roughness of the 

workpiece, and chip formation [1]. The tool life criterion is one of the more common 

practices of defining the machinability of a material [2]. AR450 steel is used in 

applications that have enhanced requirements for abrasion resistance. One example of the 

use of this steel is for mining applications. The abrasion resistance is derived from its 

high hardness of 450HBW Brinell hardness. However, such a high level of hardness has 

negative effects on machinability. Chinchanikar et al.[3] machined AISI 4340 steel at 35 

and 45 HRC (327-421 HBW) hardness levels and reported that the tool life can be 

doubled by machining the lower hardness workpiece under similar machining conditions. 

Some studies have looked at steels with abrasive type of precipitates while others look at 

the effect of steel cleanliness. Faulring et al.[4] reported higher tool wear rates while 

machining steels with oxide inclusions rich in aluminum compared to steels with glassy 

inclusions which was due to the retained high hardness of the oxides at higher 

temperatures. On the other hand, improving steel cleanliness increases mechanical 

properties while making it difficult to machine. Ånmark et al.[5] investigated the effect of 

steel cleanliness on steel machinability. They compared three steels of varying 

cleanliness, and found that the steel with the highest values of oxygen and sulfur had the 

best machinability due to MnS inclusions acting as stress raisers in the primary shear 



 

 

44 

zone. This study focused on the influence of cleanliness of industrially produced abrasive 

resistant AR450 steel on machinability.  

2. EXPERIMENTAL MATERIALS AND PROCEDURE 

The specimens for this study were taken from three industrial heats. All studied 

materials are grades of abrasion resistant AR450 steel. This material is known for its high 

that makes it exceptional for abrasive environments. All tested steels were heat treated in 

industrial conditions, including reaustenitizing and water quenching of 2” thickness 

plates from both surfaces. The studied steels are listed in Table I.  The plates were 

produced by different steelmaking process routes and different casting conditions to 

investigate the effects of varying levels of steel cleanliness. Specimens S2, S3, and S4 

were taken from plates produced using the EAF steelmaking process. Specimens S3 and 

S4 were taken from the same heat, but specimen S3 was taken from plate produced 

during the caster startup during non-steady state casting conditions. Reoxidation and 

entrainment of slag or other undesirable structural features could be expected in this 

production period. Such material is usually not used for marketable product but was 

chosen for this study as an extreme case. Specimen S4 was taken from plate made during 

steady state casting process under normal conditions that is representative of marketable 

product. Specimens S2 and S4 were taken from similarly produced plates but at different 

time periods and were chosen to evaluate variations in steel cleanliness during industrial 

production. Specimen S5 was taken from plate produced using the BOF steelmaking 

process.  This difference in melt practice influences the non-metallic inclusion population 

present in the plate steel. To summarize, the set of specimens collected for the study 

machinability reflected different process conditions which could affect steel cleanliness.   
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Table 1: Industrial Conditions for Collected Specimens 

Specimen Casting Condition Steelmaking Process 

S2 Steady State EAF 

S3 Non-Steady State EAF 

S4 Steady State EAF 

S5 Steady State BOF 

 

 

 

The actual specimens used in the machining studies were 8” diameter disks that 

were water jet cut from 2” thick hot rolled and heat treated plates. Hardness profile 

measurements were performed through the thickness of all specimens. These 

measurements revealed consistent hardness values throughout the machining volume, 

which extended from each surface to 0.6” below the surface. Samples for metallography 

and non-metallic inclusion analysis were taken in the transverse (T) and longitudinal (L) 

directions to characterize the microstructure and inclusions. The non-metallic inclusions 

were analyzed using an automated ASPEX 1020 SEM/EDX by detecting and 

characterizing 2000 inclusions in an area of 16-30 mm2. The collected data was processed 

using methods described by Harris et al. [6].  

The machinability of each of the AR450 steels was investigated using a single 

point turning method and a fixed volume machining test.  Twenty machining passes were 

performed during each test.  The progressive flank wear was measured during face 

machining using an optical microscope. The cutting parameters were: 0.012” ipr (in/rev) 

feed rate, 0.03” depth of cut, 270 SFM (ft/min) cutting speed, and coolant were used for 

the machining tests. Duplicate tests were performed for each specimen to assess the 

repeatability of the results. The machinability criterion used to assess machinability was 

final flank wear where lower final flank wear indicates better machinability. The 
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machining was completed on a HAAS TL-1 CNC lathe. A cemented coated carbide 

cutting tool SNMG 431-QM 4325 manufactured by Sandvik Coromant was used. The 

flank wear was measured using a DinoLite AM 4815ZTL digital microscope. Machine 

chip metallography and post-machining tool analysis were also performed to investigate 

the influence of inclusions on machining.  

3. RESULTS AND DISCUSSION 

3.1. MATERIAL CHARACTERIZATION  

Optical microscopy revealed that all samples had a martensitic microstructure in 

the machining volume that was tested.  

The total concentration of the elements associated with the inclusion population 

per unit area (1 mm2) for specimens S2-S5 is shown in Figure 1. The inclusion 

morphology statistics are listed in Table II. Specimens S2 and S4 have similar inclusion 

populations and inclusion statistics. The inclusions in these specimens consisted of Ca-Al 

oxides and CaS inclusions. Specimen S3 has twice the amount of aluminum in the 

inclusions compared to specimen S4 due to the non-steady state casting conditions. An 

increased amount of magnesium and lower content of calcium is also observed in the 

inclusions found in the non-steady state condition samples. The inclusions in this 

specimen were Al2MgO4 spinel and Al-rich oxide inclusions. The specimen S3 also has a 

higher number of inclusions per unit area, and lower nearest neighboring distance (NND) 

which means inclusions were found closer together compared to specimen S4, which 

could be due to reoxidation. Specimen S5 has an overall lower total ppm content of 

inclusions compared to the other specimens. The common inclusion in this specimen are 

spinel, Ca-Al, Mg-rich oxide, and CaS inclusions. This specimen when compared to 
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specimen S2 has almost half the number of inclusions per unit area, and an increase of 

NND of 20 µm. Specimen S5 from BOF route was cleaner when compared to specimens 

S2-S4 collected from the EAF produced steel. The small amount of Nb and Ti found in all 

specimens was generally present as nitride inclusions. 

 

 

 

 

Figure 1: Total concentration of active elements of non-metallic inclusions in specimens 

S2-S5. 

 

 

 

Table 2: Non-metallic Inclusion Statistics 

Specimen 
Avg. Diameter 

(µm) 
Avg. NND (µm) 

Inclusion number, 

1/mm² 

S2 1.58 66.32 58 

S3 1.46 60.97 67 

S4 1.41 67.25 54 

S5 1.97 86.09 31 

 

 

 

3.2. MACHINING TEST RESULTS 

  The results of the machining tests for specimens S3 and S4 are shown in Figure 2. 

Specimen S3 was taken from the plate cast under non-steady state conditions which lead 

to a higher content of abrasive Al-rich inclusions compared to specimen S4. Test 1 for 
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specimen S3 exhibited a slightly higher flank wear rate, and the final flank wear was 

comparable to specimen S4. However, large visible defects, possibly linked to entrained 

slag or refractory that was as large as 0.5” in diameter were revealed on the machined 

surface during the second test of specimen S3. Such defects lead to aggressive tool wear. 

These defects disappeared after the 9th machining pass, and the resulting tool wear rate 

reverted back to the wear rate observed in the first test for specimen S3. The increased 

number of abrasive inclusions and possibly entrained slag had a detrimental effect on 

machinability. As was mentioned above, the material from non-steady state conditions 

was taken for this study as extreme case and this condition is not normally found in 

marketable product.  

 

 

 

 

Figure 2: Progressive flank wear results for specimens S3 and S4 steels. 

 

 

 

The machinability of the EAF produced steels used for specimens S2 and S4 and 

the BOF produced specimen S5 are shown in Figure 3. Specimens S2 and S4 had similar 

final flank wear values as well as the rates of flank wear. Specimen S5 on the other hand 
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has a more aggressive flank wear rate, which resulted in a much higher flank wear value 

of 0.16 mm compared to 0.1 mm for the other specimens. This is an increase in flank 

wear of 60% when comparing specimen S5 to the other studied cases.  

 

 

 

 

Figure 3: Progressive flank wear results for specimens S2, S4, and S5. 

 

 

 

4. DISCUSSION 

The role of non-metallic inclusions on machinability of all specimens collected 

from wear-resistant type AR450 steel produced by different industrial process routes and 

casting conditions are shown in Figure 4. This plot shows the final flank wear and flank 

wear rate vs the number of non-metallic inclusions per unit area. It reveals that some 

amount of non-metallic inclusions can be beneficial for machinability of hard wear-

resistant steel. Specimens S2 and S4 have similar machinability which is linked to their 

similar inclusion populations as well as their similar inclusion density. Specimen S2 

exhibited the lowest tool wear for machining an equivalent volume of material.  
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However, larger than optimal inclusion and other hard features content leads to 

dramatical decrease tool life. The specimen S3 taken during non-steady state condition of 

casting had twice the amount of aluminum in the inclusions in the form of abrasive 

Al2MgO4 spinel inclusions, and had the most inclusions per unit area. This led to an 

increase in tool wear rate and final flank wear for specimen S3.  Zanatta et al. [7] 

compared the machinability of steels with different volume fraction of inclusions, and 

reported that the steels with an increased volume fraction of abrasive inclusions, in their 

case Ti(C,N), had a negative effect on machinability. Their results agree that an increased 

volume of abrasive inclusions can have a negative influence on machinability.  

The other extreme case of interest is the machinability of steels with high levels of 

cleanliness. Specimen S5 has the largest flank wear rate and resulting final flank wear. 

When comparing the inclusions per unit area, specimen S5 has half as many inclusions 

per unit area compared the other steels. This made chip formation difficult, and led to an 

increase in flank wear rate. Specimen S5 also has the highest inclusion NND of 86 µm 

compared to specimens S2 and S4 which have NND of about 66 µm, which is another 

indication of steel cleanliness.  Holappa and Helle [8] reported that cleaner steels have 

poor machinability. While clean steel is beneficial for improved mechanical properties, it 

can also lead to a decrease in machinability.  
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Figure 4: Graph illustrating the effect of inclusions per unit area on tool wear rate. 

 

 

 

Machine chips were collected during the machining tests, mounted and polished 

to look at the cross section of the chips. SEM images of example machine chips of 

specimens S3, S4, and S5 are represented in Figure 5. The role of inclusion density on 

machinability is also evident in the machine chips. Specimen S3 has many inclusions 

visible in the polished cross section of the machine chips. This increased number of 

abrasive inclusions may have led to the slightly increased final flank wear during 

machining. Specimen S4 has an intermediate number of inclusions per unit area and this 

helped facilitate chip formation without comprising an increased flank wear rate. 

Specimen S5 shows the lowest number of inclusions per unit area which made chip 

formation difficult which resulted in a poor machinability. The average inclusion 

diameter in specimen S5 was the largest compared to the other steels which could 

contribute to the tool wear observed during machining.  
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Figure 5: SEM images of machine chips collected during machining test of specimens S3 

(a), S4 (b), and S5 (c) cont.  

 

 

 

The flank and rake surfaces of the machine tools used during machining were 

analyzed in an SEM equipped with EDX to characterize the worn surfaces of the tool. 

Similar wear patterns were found on the all used tools. Calcium-containing deposits were 

found on the rake surfaces of all cutting tools which has been shown to act as a possible 

lubricating layer that can form from Ca bearing non-metallic inclusions [9-11]. The use 

of coolant has been shown to increase tool life up to 200% in some cases [12], but this 

can also lead to difficulties in tool analysis due to the complex interactions between the 
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tool and coolant [13]. Cutting fluid was used in this study was to improve tool life, but it 

also made the post machining tool analysis more difficult to interpret.   

5. CONCLUSIONS 

The machinability of AR450 has been investigated by measuring the progressive 

flank during fixed volume machining tests. Specimens taken from steel produced during 

the non-steady state casting conditions had higher final flank wear due to an increased 

number of abrasive inclusions present in the steel. Two specimens from two EAF 

produced steels had similar inclusion populations and exhibited similar machining 

behavior. Specimen taken from the BOF steelmaking route has fewer inclusions per unit 

area and a larger inclusion NND when compared to all other studied specimens taken 

from EAF steel and this difference resulted to a 60% increase in flank wear in the cleaner 

steel. 
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ABSTRACT 

To achieve superior machinability of austenitic stainless steel, the effect of 

modification of non-metallic inclusions in resulfurized 303 stainless steel was investigated. 

Inclusion modification was performed by varying Ca-additions in two industrially 

produced trial heats. Comparative machining tests were performed on hot rolled bar stock 

and tool life testing was evaluated by measuring the progressive flank wear of the cutting 

tool during machining. The machinability of the Ca-treated steels was compared to the 

machinability of an industrially produced baseline 303 steel heat without Ca-modification. 

An automated SEM/EDX analysis was used to analyze and classify the non-metallic 

inclusions in the steel. Machining chips and deposits on the worn tools were also 

investigated. The results show that machinability of resulfurized stainless steel can be 

significantly improved by non-metallic inclusion modification with calcium. The 

mechanisms that lead to the improvements in machinability are discussed. 

1. INTRODUCTION 

The definition of machinability is the ease with which material can be removed 

from a part while maintaining an acceptable surface finish.  Machinability can be evaluated 

by several parameters: tool life, tool forces, surface roughness of the workpiece, and chip 

formation.[1] The tool life criterion is one of the more common methods of defining the 
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machinability of a material.[2] Austenitic stainless steel is known for its superior corrosion 

resistance and mechanical properties. It is also known to be one of the most difficult 

materials to machine due to its high work hardening, high toughness, and gumminess 

during machining.[3] It is well established that sulfur can be added to steel to improve 

machinability. Sulfur combines with Mn to form MnS inclusions that act as stress risers in 

the primary shear zone of the cut, promoting chip formation and increasing tool life.[4] This 

is the reason that 303 resulfurized stainless steel is used in applications that require 

significant amounts of machining.  

Li and Wu[5] compared the machinability of a conventional austenitic stainless steel 

with a stainless steel modified by free-cutting additives such as of S, Bi, and Cu and 

reported that the free-machining steel had lower flank wear on the machining tool. This 

improved machinability was linked to the lubricating layer observed on the rake surface of 

the cutting tool. Tool surface lubrication provided a longer tool life and lower cutting forces 

when machining the free-cutting steel. Akasawa et al.[6] studied free cutting additions of S, 

Cu, Ca, and Bi to 303, 304, and 316 stainless steels. They studied the surface roughness of 

the machined surface, tool wear, and cutting forces as measures of machinability. They 

found that sulfur and copper additions resulted in lower cutting forces. They also reported 

that calcium treated steels with Anorthite oxide inclusions had better surface finished and 

lower cutting forces compared to conventional austenitic stainless steel. An additional 

study by Bletton et al.[7] investigated the effect of Ca-treatment on oxide inclusions 

targeting Anorthite inclusions in 316L stainless steel. They found that Anorthite inclusions 

were more deformable during machining, and formed a lubricating layer to promote better 

machinability. Fang and Zhang[8] also reported improved tool life, chip breakability, and 
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lower cutting forces while machining a Ca-S free-machining stainless steel compared to a 

conventional stainless steel. However, many aspects of the mechanisms behind 

improvement of machinability of Ca-treated resulfurized austenitic stainless steel are still 

not clear. The present study investigates the effects of Ca-treating on the machinability of 

303 resulfurized stainless steel through modification of the non-metallic inclusion 

population.  

2. EXPERIMENTAL MATERIALS 

2.1. MATERIAL CHARATERIZATION 

AISI 303 stainless steel is used in applications requiring large amounts of 

machining due to its high machinability compared to conventional stainless steels. Three 

industrially produced grades of AISI 303 resulfurized stainless steel were used in this 

study. The chemistries are shown in Table 1. The base steel in this study is denoted by 

N1. Two grades of Ca-treated 303 stainless steel with different resulting non-metallic 

inclusion populations are denoted as N2 and N3. The material tested in this study was 

hot-rolled bar stock that was peeled to a 108 mm diameter bar. The bars were then 

sectioned to lengths of about 240 mm long for the machinability tests. Cross-sections of 

this material were used to obtain samples for non-metallic inclusion analysis in the 

transverse (T) and longitudinal directions (L). 
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Table 1: Chemistry of studied steels, wt. %. 

Specimen C Mn Si Cr Ni Mo Cu N P S Ca Fe 

N1 0.05 1.86 0.54 17.10 8.55 0.26 0.31 0.040 0.028 0.32 - Bal. 

N2 0.06 1.88 0.55 17.13 8.55 0.33 0.31 0.026 0.029 0.33 0.002 Bal. 

N3 0.04 1.80 0.61 17.08 8.46 0.27 0.32 0.035 0.029 0.32 0.003 Bal. 

 

 

Samples for the non-metallic inclusion analysis was analyzed on an ASPEX 1020 

SEM/EDX system with automated feature analysis to characterize 2000 inclusions from 

an area of 0.5-3 mm2 from each specimen. This scanned area is low due to the large 

number of MnS inclusions present from the steelmaking resulfurization treatment. An 

additional analysis was run to target only the oxide inclusions in the samples by scanning 

a larger area of 20-30 mm2. An adjusted contrast was used to exclude the lower contrast 

MnS inclusions in the back scattered electron detector image. Data was analyzed using 

the methods described by Harris et al.[9] To observe the 3D non-metallic inclusion 

morphology, electrolytic dissolution was performed on steel samples to extract the 

inclusions and collect them on polycarbonate filter paper,  similar to methods outlined by 

Adaba et al.[10] The electrolytic solution consisted of 2 vol.% triethanolamine, 1 vol.% 

tetramethyl ammonium chloride in a methanol solution. The extracted inclusions were 

then analyzed using SEM/EDX analysis.  

2.2. MACHINABILITY TESTING, TOOL AND MACHINE CHIP ANALYSIS 

The tool-life tests were completed on a HAAS TL-1 CNC lathe. A Sandvik 

Coromant SNMG 432-MM 1125 coated cemented carbide insert was used. The 

machinability of the steels was quantified by measuring the progressive flank wear during 
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the tool-life machining test. The machining specimen is shown in Figure 1. The outer 

surface of the workpiece was removed prior to testing. The parameters for the tool-life 

tests were kept constant and are as follows: 200 m min-1 machining speed, 1.57 mm depth 

of cut, 0.2 mm rev-1, and dry cutting condition. The progressive flank wear was measured 

every few passes with a DinoLite AM 4815ZTL digital microscope. A critical flank wear 

value of 0.07 mm was used as the tool-life criterion. A steel with  better machinability 

has a longer tool life.  

 

 

 

 

Figure 1: Specimen for machining tests. 

 

 

 

An additional short machining test was performed for each steel to investigate the 

initial formation of the lubricating layer that was observed on the cutting tool. This 

additional test used the same procedure employed previously, but the objective was to 

observe the initial formation of the lubricating layer during the first 10 minutes of 

machining. During these tests, the cutting tool was analyzed with a high-resolution 

SEM/EDX analysis after each machining pass to measure the flank wear and characterize 

the lubricating layer on the rake surface of the cutting tool.  After the SEM analysis, the 
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tool was placed back into the machine to complete another machining pass. This 

procedure was repeated until the fourth pass, then four additional machining passes were 

made and a final examination was conducted on the 8th pass. 

Worn surfaces of machine tools used in the machine tests were analyzed to 

characterize the lubricating layer on the rake surface of the machine tool. The formation 

of this lubricating layer was investigated using SEM/EDX to characterize the deposit 

layers on the rake surface of the machine tool after each machining pass. Focus Ion Beam 

(FIB) milling and high-resolution 3D optical profilometry were also used to measure the 

developing lubricating layer.  

Machine chips were collected during the tool-life tests to study the behavior of the 

non-metallic inclusions during machining. The machine chips were mounted and 

polished to view their cross section. The thickness of the chips was measured and the 

shear angle was calculated according to Eq. 1[11]: 

tan𝜑 =
𝑡

𝑇
cos 𝛼 ÷ (1 −

𝑡

𝑇
sin 𝛼)         (1) 

where: φ is calculated shear angle, t is uncut chip thickness (feed rate), T is chip thickness, 

and α is rake angle of cutting tool. A Dorian tool holder MSRNL 12-4B with a rake angle 

of -7° determined the rake angle for the machining tests. 

3. RESULTS AND DICUSSION 

3.1. NON-METALLIC INCLUSION ANALYSIS 

The non-metallic inclusions in the longitudinal direction can be seen in Figure 2. 

The majority of the inclusions are MnS inclusions that were elongated during hot-rolling. 

Oxide inclusions are also visible in the Ca-treated steels N2 and N3. It can also be seen 

that the non-metallic inclusions in N3 are smaller than in the other two steels.  
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The total concentration of elements within the non-metallic inclusions observed in 

a 1 mm2 area is shown in Figure 3. The results show that the majority of the non-metallic 

inclusions in the steels are MnS. During the EDX analysis of MnS inclusions observed in 

the polished sections, it was noted that these inclusions also had some amount of Fe and 

Cr (<10 wt%) in solid solution in the inclusions. 

 

Figure 2: Non-metallic inclusions in longitude directions of bars from three studied 

steels: N1 (a), N2 (b), and N3 (c). 

 

 

 

 

 

Figure 3: Total concentration (ppm) of elements within non-metallic inclusions. 
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To isolate the effect of the Cr-Ni matrix from the inclusion analysis, several 

methods illustrated in Figure 4 were employed and their results compared.   Conventional 

EDX analysis of the polished inclusion section (a), FIB trenching to isolate the inclusion 

(b), and EDX analysis of the extracted inclusions (c). The EDX results for each method 

are listed in Table 2. During the FIB analysis, the EDX was taken while trenching one 

side and also from two sides to attempt to isolate the sulfide inclusion from the matrix 

during analysis. The conventional and FIB analyses revealed similar results, with 

approximately 10 wt.% Cr and between 10-14 wt.% Fe in the sulfide inclusion. The 

corresponding concentration of Fe and Cr in the extracted sulfide inclusion shown in 

Figure 5c can be seen in Table 2.  This analysis suggests that the sulfide inclusion 

contains about 7 wt.% Cr and <0.5 wt.% Fe, which is less than the levels observed using 

FIB analysis.  The differences could be due the electron beam signal interacting with the 

matrix material in the FIB cavity, or from selective loss of Fe from the inclusion during 

extraction. In either case, the analysis shows that there is some solid solution of Cr in the 

MnS inclusions.  

 

 

 

 

Figure 4: Comparison of methods used for analyzing non-metallic inclusions 

conventional top view analysis (a), FIB trenching from both sides (b), and extraction of  

non-metallic inclusions (c). 
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Figure 4: Comparison of methods used for analyzing non-metallic inclusions 

conventional top view analysis (a), FIB trenching from both sides (b), and extraction of 

non-metallic inclusions (c) cont. 

 

 

 

Table 2: Comparison of Different Analysis of Elements in Sulfide Inclusions, wt. %. 

SEM/EDX 

Method 
Cr Fe Mn S 

Cr/Fe 

Ratio 

Top View 7.6 10.7 55.2 33 0.71 

FIB One side 10.7 14.8 52.1 21.4 0.72 

FIB Two side 9.9 12.1 52.9 23.1 0.82 

Extraction 7.3 0.4 50.5 35 9.9 

 

 

 

  

Figure 5: Comparison of non-inclusion morphology in polished 2D section (a and c) with 

3D extracted (b and d) in steel N1 (a and b) and steel N3 (c and d). MnS inclusions are 

light grey and oxides inclusions are darker.  
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Figure 5: Comparison of non-inclusion morphology in polished 2D section (a and c) with 

3D extracted (b and d) in steel N1 (a and b) and steel N3 (c and d). MnS inclusions are 

light grey and oxides inclusions are darker cont.  

 

 

 

The Ca-treated steels N2 and N3 show a slightly higher total ppm of inclusions 

compared to the base sample N1 as seen in Figure 3 and steels N2 and N3 have 

significant amount of Ca in the inclusions. While the Mn in the inclusions was mainly 

associated with sulfides, some manganese was found along with aluminum, silicon, and 

calcium in the oxide inclusions. An additional analysis using an adjusted contrast 

threshold was performed to characterize the oxide inclusions, which were much less 

numerous than the MnS inclusions. The oxide inclusions analysed by this method 

excluded both sulfides and oxy-sulfides. A composition threshold of 10 wt.% S was also 

applied to the data after the analysis to obtain only oxide inclusions. Ca-treatment 

modified the oxide inclusions to be deformable during hot-working and machining. The 

total concentration of elements within the oxide inclusions in ppm are presented in Figure 

6. Ca-treatment increases the oxide inclusion population when comparing N1 to N2 and 

N3. When comparing the Ca-treated steels, N2 had a higher content of Mn, while steel 

N3 had a higher content of Ca in the oxide inclusions. Figure 5 shows some SEM images 

of inclusions in the as-polished 2D plane along with extracted inclusions to show the 3D 
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morphology of the inclusions. The oxide inclusions in steel N1 were much less numerous 

and connected multiple sulfide inclusions as observed in Figure 5b. The Ca-treated steels 

had an increased amount of oxide inclusions that were present as free oxides and oxides 

that resided on the tails of the oxy-sulfide inclusions as seen in Figure 5b and Figure 5c. 

The modified oxide inclusions appear to be deformable, which could be beneficial for 

machinability. 

 

 

 

 

Figure 6: Total concentration (ppm) of elements in oxide inclusions. 

 

 

 

Size distributions presented in Figure 7 were measured on polished samples using 

SEM automated feature analysis. The distributions represented in Figure 7 were 

measured in the longitudinal (rolling) direction. The size distribution for specimen N1 is 

much wider compared to the Ca-treated steels. The calcium treatment tended to 

globularize the MnS inclusions which can be seen in the SEM images. This led to a 

decrease in the average inclusion diameter for specimen N3 in the longitudinal direction. 
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Figure 7: Inclusion Diameter in longitudinal samples for specimens N1, N2, and N3. 

 

 

 

3.2. MACHINING RESULTS 

The initial stages of machining were investigated to observe the formation of the 

lubricating layers which was found on the rake surface of the machine tools. The results 

are shown in Figure 8. The measured flank wear and wear rate for the Ca-treated steels 

are significantly lower. The machinability of the steels are as follows: specimen N3 

showing the lowest flank wear, followed by N2, and lastly N1 having the highest flank 

wear. 

 

 

 

 

Figure 8:  Flank wear results for initial wear machining tests. 
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The progressive flank wear results for the tool-life tests can be seen in Figure 9. 

Both Ca-treated steels show a significantly longer tool life. When comparing specimen 

N2 to N1 tool life was increased 3.5 times. When comparing specimen N3 to N1 an 

increase of almost 5 times in tool life was observed.  

 

 

 

 

Figure 9:  Machining results for tool-life tests. Critical tool wear of 0.07 mm used as tool 

life criterion. 

 

 

 

The lubricating layers on the rake surface of the machine tools were characterized 

using an SEM equipped with EDX. The presence of a lubricating layer can reduce tool 

wear during machining. The layer can also resist crater wear by acting as a diffusion 

barrier at high cutting speeds. Desaigues et al.[12] observed a lubricating layer consisting 

mainly of MnS inclusions while machining a low carbon re-sulfurized steel. Previous 

studies[8,13,14] found a lubricating layer consisting of Ca, Al, Si, Mn, and S originating 

from both oxide and sulfide inclusions while machining Ca-treated steels. The SEM 

images in Figure 10 illustrate the different lubricating layers observed on the machining 

tools used in the current work after the 3rd machining pass.  For steel N1, a MnS layer was 
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found on the rake surface of the cutting tool. In the case of the Ca-treated steels N2 and 

N3, an additional lubricating layer was observed containing oxides of Ca, Si, and Al 

labeled “oxide layer” in the SEM images shown in Figure 10. The complex oxide layer is 

comprised of elements found in oxide inclusions in the steel, but the cutting tool also has 

an Al-doped coating which could interfere with the Al detected in the EDX analysis.  

After about 7 minutes of additional machining time, the tool surfaces were 

analyzed again. The SEM images for this case are shown in Figures 10d (N1), 10e (N2), 

and 10f (N3). It is apparent that the lubricating layers continue to build up as more 

inclusions are deposited onto the tool. The oxide layers on the machining tools for the 

Ca-treated steels appear to be covered by a MnS layer as more inclusions are deposited 

onto the tool as machining continues. This likely occurs because MnS inclusions greatly 

outnumber the oxide inclusions in the steel. 

 

 

 

   

Figure 10: SEM images of the rake surface of machine tools used for initial wear test: 

after the 3rd machining pass N1 (a), N2 (b), and N3 (c); after 8th machining pass N1 (d), 

N2 (e), and N3 (f). 
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Figure 10: SEM images of the rake surface of machine tools used for initial wear test: 

after the 3rd machining pass N1 (a), N2 (b), and N3 (c); after 8th machining pass N1 (d), 

N2 (e), and N3 (f) cont.  

 

 

 

The thickness of the lubricating layer was measured with an optical profilometer, 

and then verified by using a FIB sectioning technique to trench through the lubricating 

layer and measure the layer thickness. Figure 11 shows the results of the FIB method (a) 

and the optical profilometer method (b). The thickness of the lubricating layer was 

measured to be 6.5 μm using the FIB, and was found to be 8 μm in thickness using the 

optical profilometer. The optical profilometer appears to provide the resolution needed to 

measure the thickness of the lubricating layer directly. The thickness results for the 

lubricating layers shown in Figure 10 are in listed in Table 3. The Ca-treated steels 

appear to have a thicker and more stable lubricating layer of about 8 μm in thickness, 

whereas sample N1 only has a 3 μm thick lubricating layer after machining an equivalent 

amount of material.  
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Figure 11: Verification of lubricating layer thickness by FIB trenching method (a) and 

using optical profilometer (b).  

 

 

 

Table 3: Thickness of the Lubricating Layer for the Short Machining Test Tools 

Specimen Lubricating Layer Thickness 

N1 3 μm 

N2 8 μm 

N3 8 μm 

 

 

 

4. DISCUSSION 

Experimental results showed that Ca-treatment of resulfurized 303 stainless steel 

can greatly improve machinability.  The behavior of inclusions during machining was 
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observed in the machining chips (Figure 12a (N1), 12b (N2), and 12c (N3). MnS 

inclusions in all three steels readily deformed during machining, assisting chip formation. 

This is one of the benefits that sulfide inclusions provide during machining. The other 

benefit is the ability of MnS inclusions to be extruded onto the rake surface of the 

machining tool to form a lubricating layer. In the case of the Ca-treated steels N2 and N3, 

the Ca-bearing oxide inclusions also deformed during machining. Ca-treatment modifies 

the oxide inclusions to be more malleable at the temperatures encountered during 

machining. These oxide inclusions can be heavily deformed, as shown in Figure 12c, 

which is beneficial for chip formation. 

 

 

 

   

Figure 12: SEM images of polished cross sections of machine chips from N1 (a), N2 (b), 

and N3 (c). 

 

 

 

The thickness of the machining chips was measured and the shear angle for each 

specimen was calculated using Eq. 1. The results are shown in Figure 13. Segmented 

chips are encountered at higher cutting speeds, and these types of chips were found for all 

three steels. The calculated shear angle for N1 and N2 are quite similar in the machining 

chips analyzed. On the other hand, specimen N3 has an increase in shear angle of two 
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degrees for the same machining conditions. This increase in shear angle could be due to 

the increased total ppm of oxide inclusions and modification of the shape of MnS 

inclusions in specimen N3. Kim and Park[11] investigated the machinability of austenitic 

stainless steels with Cu and S additions, while also measuring machine chip thickness and 

reported that the steels with better machinability showed a decrease in chip thickness and 

thus an increase in shear angle. 

 

 

 

 

Figure 13: Calculated shear angle and measured chip thickness from machine chips. 

 

 

 

There are other factors that could contribute to the observed improvements in 

machinability that could be attributed to Ca-treatment. One factor is the increase in the 

total ppm of inclusions present in the steel that may be beneficial for chip breaking. Ca-

treatment also modified the shape and decreased the size of the MnS inclusions in the 

rolling direction. Jiang et al[15] studied the machinability of different free machining 

austenitic stainless steels and found that a decrease in the shape factor (more globular) 
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inclusions were better for chip formation because of voids formed during chip formation 

that reduced flank wear. 

It was shown that the oxide inclusions modified by Ca-treatment was beneficial 

for machinability. The average composition of the oxide inclusions for all three steels 

were measured using extracted oxide inclusions and plotted on the ternary phase 

diagrams shown in Figure 14. Due to different content of Mn in the oxide inclusions in 

specimens N1 and N2, the results were plotted on the CaO-SiO2-MnO ternary fixed at 15 

wt.% Al2O3. Specimen N3 heavily treated by Ca was plotted on the CaO-SiO2-Al2O3 

phase diagram. The average compositions of the complex oxide inclusions were 

recalculated to fit the corresponding ternary phase diagrams. This was done as an attempt 

to approximate the liquidus temperature the oxide inclusions present in the steels. It has 

been shown that lower melting oxide inclusions are more malleable at machining 

temperatures which can positively influence the machinability. Oxide inclusions in the 

Gehlenite and Anorthite regions of the phase diagram are the targeted regions to for best 

machinability reported by previous studies.[7,13] Specimen N2 has oxide inclusions that 

fall within the Galaxite phase field which has a similar liquidus temperature compared to 

Gehlenite. Oxide inclusions in specimen N3 fall within Ca2SiO4 phase field, but is close 

to the Gehlenite phase field. The oxide inclusions in specimen N1 consisted of mainly 

Mn-Si with some Al and Ca, but being plotted on the ternary phase diagram can only be 

approximated and further study needs to be done. The Ca-treated oxide inclusions in 

specimens N2 and N3 agree with the previous studies[7,13] that an increase in tool life was 

observed by Ca-treatment. 
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Figure 14: CaO-SiO2-MnO phase diagram[17] (top) and CaO-SiO2-Al2O3 ternary phase 

diagram[18] (bottom) used for approximate liquidus temperature of oxide inclusions. 

 

 

 

Another important factor could be related to effect of lubricating layer. A 

lubricating layer was found on all the machine tools during machining of 303 stainless 

steel. The main component of the lubricating layer comprised of MnS inclusions. An 

additional oxide lubricating layer was found on the Ca-treated steels that consisted of Ca, 
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Si, and Al. From the SEM images shown in Figure 10 the Ca-treated steels appear to have 

a more stable lubricating layer compared to specimen N1. The thickness of the 

lubricating layers for the Ca-treated steels were thicker than that of the base steel.  

Helle[16] studied the interactions of inclusions in steel and cutting tools and found that the 

presence of oxide inclusions can form a more stable lubricating layer compared to a MnS 

lubricating layer on sintered carbide machine tools. This additional lubricating layer can 

contribute to a reduction in tool wear during machining. 

5. CONCLUSIONS 

The machinability of 303 stainless steel was quantified by measuring the 

progressive flank wear and corresponding tool life. It was found that Ca-treatment 

improves the machinability of 303 stainless steel by increasing the tool life by almost 5 

times compared to the untreated steel. Ca-treatment affects many factors that can 

contribute to the improved machinability. Ca-treating improves the machinability by 

modifying the MnS inclusions to be more globular which can improve chip formation. 

The oxide inclusions are also modified by Ca-treatment to be more deformable during 

machining. In addition, a modified oxide lubricating layer was found on the Ca-treated 

steels that can act as an additional lubrication layer and diffusion barrier that may help to 

stabilize the MnS layer to further reduce tool wear during machining. 
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SECTION 

4. CONCLUSION 

The effect of different non-metallic inclusions on the machinability of four 

different industrially produced steels was investigated. A SEM/EDX was used to 

characterize the non-metallic inclusions present in the steel. There are numerous effects 

that inclusions can have on the machinability of steel. In the case of the 4140 steel 

surrounding the oxide inclusions by sulfide shells can reduce the abrasive nature of the 

oxide inclusions. This can lead to a decrease in tool wear. This also allowed the Al-rich 

oxide cores and Ca-Al encapsulated inclusions plastically deform during machining 

assisting chip formation. There was also evidence of Mn, S, Ca, and Si on the rake 

surface of the machine tool suggesting the presence of a lubricating layer. In the case of 

the AR450 steel the number of inclusions per unit area had a significant impact on the 

final flank wear during the fixed volume machining tests. It was shown that too few 

inclusions present in the steel, chip formation is difficult which has a detrimental effect 

on machinability. On the other hand, too many abrasive inclusions per unit area can also 

have a negative impact on the machinability. Modification of inclusions by Ca-treatment 

can improve the machinability of resulfurized 303 stainless steel. It was shown that Ca-

treatment can modify the oxide inclusions to form lower melting point oxides close to the 

gehlenite phase field that can be heavily deformed during machining. These oxides can 

assist in chip formation. The MnS inclusions in the Ca-treated steels also show the 

possibility to be globularized, and promote a higher density of inclusions which could 

influence the machinability.  
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The oxide inclusions promoted by Ca-treatment seemed to stabilize the lubricating layer 

during machining. In the case of the treated super austenitic stainless steel the synergistic 

effects of grain size and non-metallic inclusions were investigated. It was found that the 

treated steel had a 13% decrease in flank wear when compared to the base steel.   
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5. FUTURE WORK 

5.1. CHARATERIZATION OF GRAIN-PINNING PRECIPITATES 

The AISI 4140 steel studied has vanadium and aluminum additions to the steel for 

the purpose of grain pinning during heat treatment. Aluminum will be in the form of AlN 

precipitates, while vanadium would be present as VN or V(C,N) for grain pinning 

applications. These precipitates are sub-micron in size, and a transmission electron 

microscopy (TEM) investigation would be necessary to observe the presence of these 

precipitates. The results could show some differences in the precipitate properties, and 

this may influence machinability. 

5.2. IMPROVEMENT OF CACLIUM TREATMENT FOR ENHANCED 

MACHIANBILITY OF 303 STAINLESS STEEL 

 

The calcium treated grades of 303 stainless steel N2 and N3 showed a significant 

increase in tool-life compared to the base grade of 303 stainless steel. This was the result 

of modifying the oxide inclusions to be deformable in the primary shear zone to assist 

chip formation, and promote a more stable lubricating layer on the machine tool. The 

modified oxide inclusions were nearing the targeted region of the CaO-SiO2-Al2O3 

ternary phase diagram, but further modification of the oxide inclusions can greatly 

increase the tool-life. From the literature review anorthite inclusions show the greatest 

benefit to machinability due to the lower melting temperature of this oxide inclusion. 

Gehlenite oxides are also favorable for increasing machinability, but to a lesser extent.  

It would be beneficial to carry out a thermodynamic study of modifying the oxide 

inclusions to determine the optimal conditions during calcium treatment and other 

additions to target the formation of anorthite oxide inclusions. This could then be coupled 
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with sampling of the non-metallic inclusions with SEM/EDX of industrial heats to further 

improve the machinability of 303 stainless steel. 

5.3. EFFECT OF EQUIAXED GRAIN SIZE ON MACHINABILITY 

Grain refinement of the cast structure of austenitic stainless steels are of great 

importance. Equiaxed grains are targeted for better material performance. In this work a 

finer columnar grain size was achieved in super austenitic stainless steel, which had an 

improvement of the machinability. A new experimental heat with a fully refined equiaxed 

structure would be beneficial to investigate the effect of fine equiaxed grains on 

machinability.  

Investigating the individual effects of grain size and non-metallic inclusions 

separately would be beneficial. Conducting an experimental heat while casting a base 

steel, and a steel inoculated with TiN and Al2MgO4 inclusions poured at a high pouring 

temperature to influence a similar columnar structure in both steels to look at the effect of 

the abrasive inclusions on machinability testing. One way to study the grain size of the 

castings would be to vary the amount of superheat during the pour. When identifying the 

effect of grain size on machinability two castings could be poured, one with a very low 

superheat to promote an equiaxed grain structure, and the other casting with a much 

higher amount of superheat to promote a columnar structure.   
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ABSTRACT 

A grain refined structure in high alloy 19Cr-17Ni-6Mo superaustenitic stainless 

steel was achieved by the in-situ formation of titanium nitrides (TiN) on previously 

formed spinel (MgAl2O4) inclusions, thus promoting heterogeneous nucleation of 

austenite during solidification. The alloys were cast under laboratory conditions in a sand 

mold, producing a heavy section 100 lb. cylindrical casting. These castings were 

subjected to a homogenization heat treatment based on industry practice for 

superaustenitic steel, and no coarsening or additional refining of the as-cast grain 

structure was observed in either the base or grain refined steels. An automated ASPEX 

SEM/EDX analysis was used to analyze non-metallic inclusions and interdendritic Cr, 

Ni, and Mo segregation. It was found that the grain refined structure was more effective 

at reducing interdendritic segregation after heat treatment than the unmodified steel. The 
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experimentally measured segregation was compared to predicted results using a scheil 

solidification model.  

The properties of an unmodified and inoculated steel were compared in this work. 

Tensile testing in the heat-treated condition revealed improvements in ultimate tensile 

strength, ductility, and yield strength for the grain refined material.  The room 

temperature impact properties exhibited a slight decrease in average impact energy, but 

showed reduced variability compared to the base steel. Fixed volume machining tests 

were conducted for material in the base and inoculated condition. The machining results 

showed that the inoculated steel had a slightly improved machinability. This appears to 

be due to the finer grain size of the modified steel which may offset the potential negative 

impact of the higher volume fraction of non-metallic inclusions in the grain refined steel. 

Corrosion testing was performed at an elevated temperature (ASTM A262-15 Practice B) 

and at room temperature (ASTM G48-11 Method A) to determine corrosion rate and 

pitting characteristics. The inoculated alloy compared to the base alloy exhibited a 

decrease in corrosion rate, but an increase in mass loss due to pitting. Characterization of 

base vs inoculated high alloy superaustenitic stainless steel reveals the merits of using 

inoculation during the steelmaking process to improve the properties of cast products. 

1. INTRODUCTION 

In addition to the verification of the effect of grain refinement on mechanical 

properties and corrosion resistance, the impact of grain refinement on machinability were 

also evaluated. The definition of machinability is the ease with which a material can be 

machined. This can be evaluated by several parameters: tool life, tool forces, surface 

roughness of the workpiece, and chip formation.[15] The tool life criterion is one of the 
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more common practices of defining the machinability of a material.[16] Superaustenitic 

stainless steel is known to be very difficult to machine. This is because of the high 

alloying content namely Cr, Ni, and Mo. Problems associated with machining this kind of 

stainless steel include: excessive tool wear in the forms of flank wear, notch wear, crater 

wear, edge chipping, and built-up edge.[17-19] It is more common to find research on the 

machinability of 304 and 316 austenitic stainless steel; however, there is little research 

done on the machinability of superaustenitic stainless steel. Previous research has 

investigated the effect of grain size on the machinability of 304 stainless steel. Komatsu 

et al. studied the effect of grain size during micro-milling.[20] They found that when the 

grain size was decreased from 9 μm to 1.5 μm the surface finish was significantly 

improved by reduction of burr formation during machining. Jiang et al. studied the effect 

of grain size on the tool life during machining of 304L.[21] They varied the grain size by 

varying the holding temperature after hot-working to promote grain growth. Tool wear 

increased as grain size increased. Many researchers studied the effect of abrasive 

inclusions on machinability of different steels.[22-26] Their findings agree that tool life is 

decreased when machining a steel with a higher volume fraction of inclusions compared 

to machining a cleaner steel. No research was found that investigated the combined 

effects of grain size reduction and the presence of abrasive inclusions on machinability of 

a steel. 

2. EXPERIMENTAL PROCEDURE 

2.1. Cast steels and sampling  

Two pairs of experimental heats were conducted in a 100 lb. coreless induction 

furnace and details of inoculation treatment for grain refinement were described 
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elsewhere.[7] The charge material used in all heats were ingots possessing the desired base 

composition of the targeted superaustenitic stainless steel alloy. These ingots were melted 

under an argon cover. A set of two unmodified (base) heats underwent a deoxidizing 

treatment by adding aluminum and calcium wire to the tap stream during furnace tap into 

the ladle. The furnace was tapped at a temperature of 1640 oC. The melt was then poured 

at a temperature of 1500 oC into a no-bake, silica sand mold shown in Figure 1(a) thus 

producing a cylindrical casting with a 100 mm diameter. The melt treatment in Figure 

1(b) indicates the steps of the casting process in the pair of inoculated heats which 

targeted grain refinement. The melt was deoxidized with aluminum, calcium treated, and 

argon stirred. Nitrogen content of the melt was adjusted by an addition of nitrided 

ferrochrome in the furnace just before tapping into the ladle at a temperature of 1640 oC. 

Nuclei forming additions of Mg-Al-Ti were made in the ladle just prior to pouring into the 

mold at 1500 oC. One casting from each set (base and refined) was used to study 

microstructure and mechanical properties while the remaining two castings from each set 

were used for the machinability tests  
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Figure 1. Mold design (top) and a layout of the grain refining melt treatment (bottom) 

used in this study. 

 

 

 

An outline of the composition achieved in both heats are outlined in Table 1. 

These values were collected by spectrometer and LECO combustion analyzer. The 

biggest difference in heat design can be observed in the quantity of nuclei forming 

elements Mg-Al-Ti-N. 

 

 

 

Table 1. Chemistries of experimental heats, wt.%. 

Heat 
Base Elements Nuclei Formers 

C Si Mn Cr Mo Ni Cu Mg Al Ti N 

Base 0.03 0.63 0.54 19.2 6.08 17.1 0.64 0.000 0.01 0.00 0.093 

Refined 0.04 0.78 0.54 18.9 5.92 17.4 0.65 0.009 0.08 0.07 0.091 
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2.2 Characterization of properties 

Machining test specimens were prepared according to the schematic shown in 

Figure 5. The second heat in each casting set were carried out specifically to produce 

large specimens for the comprehensive machinability study. The chemistry of the heats 

are similar to those shown in Table 1. These castings were also heat treated accordingly 

to the heat schedule outlined in section 2.1. The as-cast surface layer was removed prior 

to starting each test. A live center was also used to increase the rigidity during machining. 

The machining tests were carried out on a HAAS TL-1 CNC lathe. The machining 

parameters were chosen for this study: cutting velocity 53 m/min, depth of cut 0.81 mm, 

feed rate 0.13 mm/rev, and dry cutting condition. A Sandvik Coromant SNMG 431 QM-

235 coated cemented carbide tool was used for this study. Two fixed volume machining 

tests were completed for each condition to test the repeatability of the machining 

conditions. The test was completed after machining about 309 cm3 of material. The 

progressive flank wear was measured throughout the test, and the final flank wear was 

recorded. The material with the lower final flank wear exhibited better machinability. 

Because material was removed during machining, the only qualitative observation of the 

real macro structure was done visually on fine machined surface each time after several 

machining steps.  
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Figure 4. Machining test specimen. 

 

 

 

Machine chips were collected and analyzed in a SEM to determine the influence 

of non-metallic inclusions on chip formation. The worn surfaces of the cutting tools were 

also investigated. These analyses were completed to determine the synergistic effects of 

non-metallic inclusions and grain size on machinability of super austenitic stainless steel. 

3. RESULTS & DISCUSSION 

3.1.  Effect of grain refinement on properties 

Machining. Heavy section castings from superaustenitic steel were subjected to 

intensive machining. The effect of grain refinement on machinability was verified on the 

second set of experimental castings. The average grain size was qualitatively estimated 

during machining for the top, middle, and bottom position of cut section in the base and 

inoculated castings, and are shown in Table 5. The casting from the base steel has a 

significantly coarser grain size overall when compared to the refined casting. The refined 

casting has a finer grain size due to the addition of active nuclei in the melting process. 

For example, the top section the base casting has a grain size of 8.0 mm while the refined 

casting has a grain size of 2.9 mm; however, in studied heavy section casting, the grain 

size near the chilled bottom are similar in both conditions. 
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Table 5. Average grain size for the unmodified and modified steels. 

 

 

 

The progressive flank wear measurements from the machining tests can be seen in 

Figure 13. The refined castings had a final flank wear value of 0.188 mm, although the 

base castings had a final flank value of around 0.21 mm after machining an equivalent 

volume of material. The second test showed good repeatability of measured flank wear. 

This results in a 13% decrease in flank wear for the refined casting when machining 

under the same cutting conditions, and giving the refined castings a slightly improved 

machinability. 

 

 

 

 

Figure 13. Progressive flank wear curves for the base and refined steels. The machining 

parameters were chosen for this study: cutting velocity 53 m/min, depth of cut 0.81 mm, 

feed rate 0.13 mm/rev, and dry cutting condition. 

 

 

 

Parameter 
Base Refined 

Bottom Middle Top Bottom Middle Top 

Average grain size, mm 3.3 6.6 8.0 2.7 4.7 2.9 
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There are several factors that could affect the machinability in grain refined steels 

including grain size, segregations and non-metallic inclusions. A decrease in grain size 

and segregations was observed for the refined alloy using TiN and Al-Mg spinel 

inclusions. The inclusions present in the base casting are complex oxides containing Mn-

Al-Ti and some MnS inclusions. Overall, the inclusion populations are consistent 

throughout the machining volume when comparing the top and the bottom locations. 

However, the inclusion population density was nearly 4 times larger in the refined alloy. 

Jiang, et al. varied the grain size of a 304 stainless steel by hot working, and 

observed that the finer grain size specimens exhibited better machinability.[21] Holappa et 

al. reported a clean steel will have a detrimental effect on machinability.[22] Multiple 

authors show that the presence of abrasive oxide inclusions in different steels will lead to 

an increase in tool wear, and that a higher volume fraction of abrasive inclusions decrease 

tool life.[23-25] From these reported results it seems that the presence of specific types of 

inclusions can be beneficial for machinability, but too many abrasive inclusions can lead 

to aggressive tool wear. No previous studies investigate the combined effects of non-

metallic inclusions and grain size. The benefit of the finer grain size of the modified steel 

offsets the negative effect of abrasive non-metallic inclusions present in the steel.  

The cutting tools used in both steels showed built-up edge, flank wear, some 

chipping wear, and excessive notch wear. The rake surface of the worn cutting tools 

shown in Figure 14 was investigated. Figures 14(a,b) are the surfaces of the cutting tools 

for the base and refined steels respectively. A noticeable difference in the region of the 

rake surface that the chips flow over was observed between these two steels. Inclusions 

present in both the base and refined steels were found in the chip flow region. Table 6 
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shows the elemental makeup of the inclusions found on the machining tool. The same 

type of complex oxide found in the case of the base condition. It can also be seen that in 

the case of the refined condition TiN and MgAl2O4 spinel inclusions were observed on the 

cutting tool. 

 

 

  

 
(a)                                                             (b) 

Figure 14. The SEM image of rake surface of the cutting tool used for machining the base 

steel (a) and the refined steel (b). The chemical composition of the inclusions observed 

on the rake surface are listed in the table below. 

 

 

 

Table 6. EDX Results of the Inclusions Found on the Rake Surface of the Cutting Tool 

Steel Area Cr Mn N Ti Al Mg 

Base 1 47.3 39.7 - 6.7 6.3 - 

Refined 

1 - - - - 79.7 20.3 

2 - - - - 77.5 22.5 

3 - - 22.2 77.8 - - 

4 - - 30.2 66.7 - - 

 

 

 

 Machine chips for both base and refined conditions were also observed in SEM. The 

serrated type of chips shown in Figure 15(a) were formed under the machining conditions 
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for both steels. Higher magnification of the SEM images in Figure 15(b,c) show a region 

of the machine chip from the refined steel that was heavily deformed during machining. 

The EDX results from points 1, 2, and 3 can be seen in Table 7. Area 1 is the matrix 

which consists of Fe, Cr, Ni, and Mo. Area 2 is a fractured TiN inclusion, and the other 

voids above the crack are visible in Figure 15(c) which showed signals of fractured TiN 

inclusions. Area 3 is a second phase that is rich in Cr and Mo, but lean in Ni this is 

evident of the σ-phase found in high alloyed stainless steels. This phase is obviously 

brittle due to it being fractured in multiple areas.[9] Both steels have σ-phase present in the 

steel, which can weaken the matrix material during machining. The refined steel has a 

higher volume fraction of inclusions which fractured during machining. This could lead 

to a lower force required for machining. Zanatta et al. found fractured Ti(C,N) inclusions 

in their chip analysis when machining VP100 mold steel.[26] They measured cutting 

forces during machining and showed a decrease in cutting forces when machining steel 

with elevated Ti content, in the form of Ti(C,N) inclusions. They claimed this could be 

due to the fracture of the inclusions during machining. Singh et al. also observed a 

decrease in tool forces during machining a steel with a higher volume fraction of hard 

inclusions.[24] However, both studies show an increase in flank wear when machining 

steels with a higher volume fraction of hard inclusions. The lower flank wear reported in 

this study could be due to the finer grain size of the modified steel which balances the 

negative effect of the higher volume fraction of TiN inclusions.  



 

 

95 

     

(a)                                                  (b)                                                        

 

                               (c) 

Figure 15. SEM image of a representative machine chip collected during machining (a) 

(both steels had serrated chips present in machining), (b) and (c) are higher magnification 

SEM images of a machine chip showing fractured σ-phase and TiN inclusions. The EDX 

results of the points in (c) can be seen in the table below. 

 

 

 

Table 7. EDX analysis (wt.%) of the points shown in Figure 15(c). 

Area Fe Cr Ni Mo Ti 

1 53.2 22.7 18 4.8  

2 42.8 18.1 15.1 4 18 

3 50.2 27.3 11.4 9.3  
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4. CONCLUSIONS 

The refined steel exhibited slightly improved machinability by decreasing the 

final flank wear by 13% for the fixed volume of machined material when compared to the 

base steel. The fine grain size offset the negative effect of inclusions present in the 

modified steel when compared to the unmodified condition. Mass losses due to pitting 

corrosion were nearly four times larger for the refined alloy than the base alloy. These 

pits were caused by the dissolving of clustered TiN and spinel inclusions in ferric chloride 

solution. However, the refined alloy experienced a 30% decrease in corrosion rate during 

intergranular corrosion testing. This improvement may be related to the improved 

homogenization of the segregated regions. 
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