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ABSTRACT 

 

The objective of this thesis work was to design ceramic paste systems that assist 

in achieving a high theoretical density (>95%) after deposition by a novel additive 

manufacturing process, i.e. Ceramic On-Demand Extrusion (CODE). The work is 

encompassed in five main sections: Sections 1 and 2 provide an introduction and 

literature review of relevant topics for the following sections of experimentation. Section 

3 provides an analysis of a reaction chemistry to identify three discrete materials that 

could be combined via CODE and result in zirconium diboride (ZrB2) post-sintering. 

Section 4 describes the development of a high solids loading, aqueous yttria-stabilized 

zirconia paste. This material was identified as the next viable technical ceramic system 

after alumina for addition to the CODE portfolio. Section 5 details the use of sol-

synthesized pre-mullite composite powder to densify stoichiometric mullite at modest 

temperatures. Section 6 provides a conclusion to the research results provided in the 

preceding three sections, as well as future work outlined in Section 7. 
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1. INTRODUCTION 

 

The objective of this thesis work was to design ceramic paste systems for room 

temperature deposition via Ceramic On-Demand Extrusion for fabricating parts with 

overhangs, voids, embedded components, or complex patterning, and achieve a high 

relative bulk density after post processing. The design criteria included: solids loading, 

solvent pH, dispersion strategy, dispersant type, sintering time, and sintering temperature. 

This was applied to three separate ceramic systems to develop: 1) a proof-of-concept 

chemistry for in situ fabrication of zirconium diboride that would be compatible with 

stereolithography technology; 2) a yttria stabilized zirconia paste for deposition of 

complex parts; and 3) a mullite system that would be compatible with alumina for use in 

a graded composite. 

For the fabrication of high-temperature sensors with components embedded into a 

ceramic matrix, the additive manufacturing method named Ceramic On-Demand 

Extrusion (CODE) was developed [1]. This technique, similar to Direct-Write Assembly 

[2], Direct Ink Writing [3], or Robocasting [4], is a novel and robust method for additive 

manufacturing (AM) of technical ceramics using extrusion-based AM techniques; already 

a small field of research, few other techniques are capable of successfully fabricating 

fully dense ceramic parts, e.g. stereolithography and powder bed fusion [5]. Using high 

solids loading (>50 vol%), aqueous, ceramic extrudate, deposition is done at room 

temperature to build a 3D geometry layer-upon-layer. After deposition, each layer is 

partially solidified by uniform infrared radiation applied perpendicular to the top face. 

Concurrently, the built portion is surrounded, flush with the top most layer, by a low 

molecular weight oil to promote one-dimensional drying. Drying in this way eliminates a 

water content gradient in the deposited part, imparting greater structural stability during 

the build, and enables the production of ceramic parts free of fracture and warpage.  

With proper control of deposition and drying, the design of extrudate is essential 

to prevent the introduction of flaws. An inhomogeneous paste not only affects the bulk 

article, but also its deposition. Inconsistent deposition and density gradients will lead to a 

low density bulk, if not outright failure during sintering. For materials like stoichiometric 
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mullite, multi-hour isothermal holds are necessary for the densification of the bulk and 

phase development. These steps are detrimental to processing efficiency, making it more 

desirable to use a system that reaction sinters, utilizes transient sintering, or has a 

submicron initial particle size.  

Sintering of non-oxide ceramics is often difficult because of their high melting 

temperature, due to strong covalent bonds (metallic, ionic, and covalent in the case of 

zirconium diboride) [6]. Sintering to high densities is normally achieved through solid-

state sintering by pressure-assisted methods, such as hot pressing and hot isostatic 

pressing. However, these methods limit production to the creation of monolithic 

geometries, and as such, are not viable for complex geometries often associated with 

additive manufacturing. Alternative pressureless processing routes have proven equally 

successful [7], [8]. Pressureless sintering is the promotion of densification without the 

application of an external pressure upon a body. This is the most common sintering 

method and often what is referred to when ‘sintering’ a ceramic body [9]. Zirconium 

diboride (ZrB2) is classified as an ultrahigh temperature ceramic (UHTC), which have 

melting temperatures over 3000oC [10]. This class of material performs well in harsh 

environments, often exceeding the capabilities of traditional engineering materials.  

Reaction sintering is a method in which both chemical reaction and densification 

occur in a single sintering cycle. Normally a method reserved for production of high 

purity powders, several reaction paths have been introduced with varying thermodynamic 

requirements [11], [12]. However, none have been applied to in situ fabrication using 

additive manufacturing (AM). With application of colloidal processing techniques, an 

extrudate may be designed, such that it has the desired rheological properties for 

deposition, the chemistry for reaction sintering, and a particle size to promote specific 

phase development [13]. These parameters can be further controlled to promote high 

relative density without pressure-assisted sintering, such that complex, near net-shape 

components may be fabricated. Elimination of the machining costs associated with 

ceramic materials would alone justify in situ fabrication. The structural and thermal 

properties of ZrB2 are valuable to many industries that would favor a method of 



3 

 

production that provides a high degree of compositional control with low machining 

costs.  

Pressureless reaction sintering, applied to CODE, provides a solution to in situ 

fabrication of near net-shape UHTC components with a high degree of microstructural 

control and minimal post-processing that has not yet been achieved in AM to date. This 

thesis work uses the following three sections to describe (Section 1.) the initial 

investigation to design an oxide-carbide-nitride extrudate to fabricate highly complex 

near net-shape components, (Section 2.) development of a high solids loading yttrium 

oxide-stabilized zirconium oxide (3YSZ) paste, and (Section 3.) identification of a 

method for synthesizing mullite at low temperatures and times.  
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2. LITERATURE REVIEW 

 

2.1. STATE OF CERAMIC ADDITIVE MANUFACTURING 

In 2010, the American Society for Testing and Materials (ASTM) established the 

committee ASTM F42 – Additive Manufacturing, to set standards for additive 

manufacturing (AM) processes and technology. This committee differentiated the types 

of AM processes into seven categories: binder jetting, directed energy deposition, 

material extrusion, material jetting, powder bed fusion, sheet lamination, and vat 

photopolymerization [14]. However, ASTM F2792 was withdrawn in 2015 with no 

replacement after a tri-annual review of the terms, nomenclature, and acronyms defined 

within. It was replaced with a more generalized document by ASTM subcommittee 

F42.01 on Terminology that same year, titled ISO/ASTM 52900:2015 Standard 

Terminology for Additive Manufacturing- General Principles – Terminology. Like its 

predecessor, ASTM 52900 seeks to define new terms and processes accurately and 

consolidate terminology used by AM users in industry, academic, and media. ISO/ASTM 

52900 is due for evaluation this year for revision and update. 

A review published by Guo and Leu (2013), noted that polymers are the main 

focus of AM research, with the major processing having starting materials of liquid 

resins, extrudates, powder bed, or solid sheets[15]. They also acknowledged that metal 

AM has been studied enough in the literature to have established processing methods that 

yield dense components with mechanical properties comparable to the bulk metal. 

Furthermore, they noticed that there is significant potential in fields from aerospace to 

energy, but the technology is considered a niche in industry. Another review that year, 

published by Vaezi et al. (2013), focused on multiple material additive manufacturing 

(MMAM), which was described as a process that does not have pre-mixed or composited 

raw materials, or secondary integration by infiltration, coating, or a non-AM post process. 

Vaezi et al. considered all seven groups outlined by ASTM but concluded that material 

jetting and material extrusion processes were most compatible with MMAM. In terms of 

ceramic additive manufacturing, the most recent reference considered was 2011, and it 

was predicted that inkjet printing would be the best method for fabrication of components 
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such as capacitors and sensors, as well as conductive thick films, with extrusion 

deposition leading the way for bioceramics [16].  

A second review by Vaezi et al. (2013), focused on the state of micro-additive 

manufacturing technologies, and featured technical ceramics systems more so than the 

previous MMAM review. Of the key micro-AM systems, micro-stereolithography 

(MSL), microlaser sintering (MLS), three-dimensional printing (3DP), inkjet printing, 

and laminated object manufacturing (LOM) were amenable to ceramic fabrication. MSL, 

3DP, LOM, and, like the previous review, extrusion-based processes, were capable of 

producing relatively dense parts (< 20 % porosity) [17]. Lithography AM techniques, 

such as digital light processing (DLP), have been used to fabricate dense zirconia parts 

using resins with 45 vol% solid loading. Mitteramskolger et al. (2014) demonstrated that 

by controlling the depth of cure parameter and designing for light scattering distortion of 

their DLP system, sub-pixel resolution can be obtained, i.e. 25 μm, as well as no fracture 

after debinding for their zirconia samples [18]. However, Mitteramskolger et al. did not 

provide the percent theoretical density of their sintered specimens. Though lithography 

has the highest resolution of AM techniques (in the range of 20-100 μm), the vol% of 

resin is detrimental to densification [19], [20].  

The most thorough review of additive manufacturing of ceramics was Travitzky 

et al. (2014); the publication focused solely on ceramic materials [21]. In the publication, 

a table summarized what ceramic materials could be fabricated by 3DP, selective laser 

sintering (SLS), stereolithography (SLA), extrusion freeform fabrication (EFF), and 

LOM, characterized as structural, functional, or bioceramics. Of the techniques 

discussed, LOM and EFF can directly produce dense ceramics. LOM is amenable to 

fabricating dense non-oxide ceramics, such as silicon nitride (Si3N4), because the process 

uses a preceramic paper or cast tape. Such parts have been fabricated by Rodrigues et al. 

(2000) with a relative density of 97% when sintered at 1750oC for 2 hr [22]. The resultant 

mechanical properties were dependent on whether or not the greenforms were infiltrated 

with a polyurea-silazane resin: un-infiltrated LOM parts had a Young’s modulus of 307 

GPa, an average room temperature flexural strength of 918 MPa, and a fracture toughness 

of 7.45 MPa·√𝑚, which they found comparable to traditionally fabricated Si3N4. 



6 

 

Infiltrated parts exhibited lower mechanical properties due to increased flaw population 

from the infiltration process, with a Young’s modulus of 301 GPa, flexural strength of 

707 MPa, and fracture toughness of 5.42 MPa·√𝑚. Even the density of the infiltrated part 

was lower at 3.142 g/cm3, versus the uninfiltrated parts at 3.248 g/cm3. 

SLA has continued to be the technique of choice for those fabricating non-oxide 

ceramics, especially silicon oxycarbide (SiOC). The HRL Laboratories demonstrated a 

SiOC microlattice using SLA and pyrolysis of the preceramic polymer to synthesize 

SiOC [23]. They identified a mixture of UV-curable siloxane resins compatible with a 

photoinitiator and fabricated several complex microlattice geometries. Concurrently, de 

Hazan (2016), also using SLA, modified a polycarbosilane system with nonpolar acrylate 

monomers to make SiC and SiOC mesoscale lattices, though with pore volumes ranging 

from 0.024-.33 cm3/g in the solid specimens [24]. 

The most historically notable EFF technique to be discussed was robocasting 

(RC). Using this technique, less than 1% organics can be used to fabricate and dry a part 

within 24 hr, with an aqueous extrudate deposited on a heated plate to induce dilatancy 

by drying the deposited shape. The historical portfolio of material systems included 

alumina, alumina:Al composites, alumina:Mo composites, lead zirconate titanate, zinc 

oxide, kaolin, stabilized zirconia, and mullite [25]. Due to its use of high solids loading 

extrudate, RC has been continued to be used for piezoelectric monolithic and composite 

geometries [25], mesoscopic spanning structures [27], as well as near-net-shaped 

components of a variety of designed extrudates [28]. 

Freeze-form Extrusion Fabrication (FEF) was developed in response to size 

limitations of other EFF techniques, such as development of drying gradients, and 

resulting fracture, during robocasting of mesoscale architectures. FEF was intended to be 

environmentally friendly, i.e. the systems were predominantly aqueous, and deposited in 

a temperature-controlled chamber, onto a sub-0oC substrate to solidify high solids loading 

pastes. This allowed for the fabrication of thick-walled specimens with paste systems of 

varying densities (3.986 – 15.63 g/cm3). The extrusion mechanism was extensively 

modeled and optimized for ram force-controlled deposition, as well as the effect of 

environment temperature on build quality [29], [30], [31]. With the optimization of early 
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FEF designs, systems were developed to deposit alumina [32], [33], 13-93 bioactive glass 

[34], [35], and three-component systems for functionally graded composites [36].  

Extrusion freeform fabrication techniques have a broader portfolio in the literature 

concerning technical ceramics, structural ceramics, as well as biomaterials. Extrusion 

principles are widely known, due to industry use, so customizable printers are easily 

designed and built. W. Li et al. demonstrated this by developing the CODE system to 

improve upon FEF and applied colloidal processing techniques, i.e. particle size control 

and pH control, to fabricate stabilized zirconia parts [37]. Other research groups have 

recognized the ease of use and popularity and have built similar systems for their research 

needs [38].  Bioprinting is a general term used to describe the extrusion deposition of 

organic carrier systems loaded with bioactive materials. This EFF technique has been 

applied to biomaterial systems like PCL/borate glass composites [39] and calcium 

silicate/calcium phosphate scaffolds [40]. 

 

2.2. COLLOIDAL PROCESSING OF CERAMICS 

Control of interparticle forces is key for stability of dispersed powders in a liquid 

suspension. A colloidal dispersion is a system in which a particulate is homogeneously 

dispersed in a continuous phase, e.g. distilled water. One dimension of the dispersed 

phase (colloid) must be within the submicron range (< 10-6 – 10-9 m) and are often 

nanoparticles or macromolecules.  The interface of the colloid and the continuous phase 

controls the surface properties of the colloid: surface charge, electric double layer, and 

adsorption. These properties are key to homogeneous dispersion and stability, which is 

the summation of particle interaction, particle-solution interaction, and solution-solution 

interaction; the continuous phase could more generally be called a medium, if not an 

aqueous solution [41]. 

When a ceramic particle, i.e. an oxide, is put into water and the surface is 

hydrated the surface chemistry is represented by either equation (1) or (2) depending on 

the material’s isoelectric point (IEP): 

 

𝑀𝑂𝐻2
+

(𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
↔  𝑀𝑂𝐻(𝑠𝑢𝑟𝑓𝑎𝑐𝑒) +  𝐻(𝑠𝑢𝑟𝑓𝑎𝑐𝑒)

+    (1) 
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𝑀𝑂𝐻(𝑠𝑢𝑟𝑓𝑎𝑐𝑒)  ↔  𝑀𝑂(𝑠𝑢𝑟𝑓𝑎𝑐𝑒)
− + 𝐻(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

+    (2) 

 

where M represents a metal ion on the surface, such as Al3+ and is bonded to a bulk 

oxygen ion to satisfy electronegativity. The point of zero charge (PZC) is the average of 

the rate values of the reaction, which describes the acid-base character of the surface. 

Hydrated surfaces of an oxide in pure water will have reactions determined only by H3O
+

 

and OH-. The pH value when the protonation and deprotonation is in equilibrium, the 

PZC, is termed the isoelectric point. Exchange at the surface of the oxide is reversible, 

time dependent, and potential determining, meaning dissolution of a particle is minimized 

at the PZC. If there are ions in solution, they may neutralize surface sites, or build up into 

a diffuse double layer of ions and counter ions. When two particle double-layers interact, 

the potential this causes or the energy barrier due to competing attractive and repulsive 

forces in solution is called DLVO Theory (named after Derjaguin, Landau, Verwey, and 

Overbeek) [42].  

 Generally, there are three methods to stabilize a dispersion, which are described 

by the interaction potential at a specific scale: 1) electrostatically (2κ-1), 2) sterically (2δ), 

and 3) structural contributions (σ), shown in Figure 2.1. Electrostatic stabilization occurs 

when enough charges of the same kind and magnitude are generated on a surface, shown 

in Figure 2.1A. The resulting electrostatic potential is exponentially dependent upon the 

distance from the surface, and the strength depends on the potential induced on an 

interacting surface as well as the dielectric property of the medium. This is predicted by 

DLVO theory, where dispersions are destabilized by shifting the pH toward the IEP or 

increasing the solution ionic strength. The network of ions and counterions that make up 

the diffuse double layer are then described by κ-1. 

Steric stabilization occurs due to strong adsorption of an organic molecule, with 

enough surface site density to overcome van der Waals attraction, shown in Figure 2.1B. 

The conformation of the adsorbed layer is highly dependent upon solvent quality, the 

adsorbed molecular structure, adsorption density, and concentration in solution. This 

adsorbed layer is called the adlayer, δ. The adsorbed species may be a polyelectrolyte, 

which provides steric and electrostatic stabilization, a subtype called electrosteric 
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stabilization. A polyelectrolyte will have at least one ionizable group, e.g. carboxylic, 

and may be homopolymers or co-block polymers with multiple ionizable segments. 

Electrosteric stabilization is highly susceptible to surface and solvent chemistry, so 

adsorption is favorable when the ionized group and surface have opposite charges. 

At low concentrations, a species can promote flocculation due to surface charge 

neutralization or bridging between surfaces. The conformation is also susceptible to 

solvent conditions, i.e. pH and ionic strength. Low pH will cause organic chains to 

coil up densely, creating a low adlayer thickness, while a high pH causes full 

ionization and an open configuration occurs due to intersegment repulsion [43], 

[44]. 

Structural contributions to stabilization, called depletion stabilization, refers to the 

depletion forces that occur between the “large” colloidal particles in solution with 

smaller, nonadsorbed species between, e.g. polymers/oligomers/monomers or finer 

colloids, shown in Figure 2.1C. These species, called depletants, may promote 

flocculation or stabilization of the primary colloidal species, where depletion refers to the 

existence of a negative concentration gradient near the primary surface. Stable 

dispersions may undergo a transition from stable, to depletion flocculation, to depletion 

stabilization as the depletant volume fraction increases. Destabilization occurs when the 

depletant is excluded from the interparticle gap and flocculation potentially occurs due to 

an osmotic pressure differential. The scale for depletion forces, σ, are related to the 

depletant diameter, and in some cases the medium (solvent) diameter [45]. 

For dispersions with a solids loading φ > 0.4, there is a structure that develops 

between the surfaces, which can be described as a particulate gel, in the case of ceramic 

dispersions. This is due to the potential between the particles or the steric interaction of 

adsorbed species. Due to the close proximity of interacting surfaces, ΔpH or Δ[ionic 

strength] will have a significant and disparate impact on the gel structure. Any change in 

the pH alone may be used to identify the system pHIEP, which is now highly sensitive due 

to φ > 0.4. A similar change will be seen with Δ[ionic strength], a response which 

describes the colloid’s electrophoretic mobility, or the zeta potential, ζ. 
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That is to say that near the IEP or at the lowest zeta potential value, the dispersion 

is destabilized and will sediment, while the highest zeta potential value for a range of pH 

and ionic strength identifies stability [46]. The state of the gel structure can be measured 

with static light scattering, dynamic light scattering (DLS), diffuse wave spectroscopy, 

small-angle x-ray scattering (SAXS), small angle neutron scattering (SANS), dynamic 

rheology with confocal microscopy, or more simply with a dispersion study. How the 

dispersion is designed, the particle size, solids loading, solvent, pH, ionic strength, and 

Figure 2.1. Representation of interaction potentials between two particles 

in suspension and their respective scale length for (A) electrostatic, (B) 

steric, and (C) depletion forces. 



11 

 

temperature, will all affect the final characteristic of the dispersion rheology, mechanical 

and optical properties [47].  

 

2.3. SINTERING OF CERAMICS 

The process step involving the heat treatment of the debinded green body for 

conversion into a functional solid is referred to as firing or sintering. There are four 

categories of sintering: solid-state, liquid-phase, viscous, and vitrification. There are also 

sintering under an externally applied load and reaction sintering. For the following 

studies, only solid state, viscous, and reaction sintering will be discussed. The categories 

of sintering describe both the driving force for sintering as well as how matter is 

transported. Sintering is an irreversible process and driven by the reduction of free energy 

in the system, which for the case of solid-state sintering is the reduction of surface area of 

a green body. There are three stages to sintering. During the initial stage, atomic mobility 

begins, concave necks form between particles, and typically 3-5% linear shrinkage 

occurs. This stage ends around 65% relative density. The second stage is characterized by 

elimination of high curvature contacts between particles and the bulk becomes a network 

of solid grains with continuous pores at the edges of grains. This stage ends with 

approximately 90% relative density. The final stage is the reduction of pore radius and 

isolation at grain triple-junction corners. Pores are assumed to shrink and disappear 

altogether in the idealized model, with monosized spheres [48]. 

 Particle size and shape is a major factor in sintering, affecting surface as well as 

coordination number, which is based on a spherical, monosized model. In a powder 

compact, if the particle size is such that the coordination number, N, is less than 6, the 

intergranular porosity will shrink. If the coordination number is equal to six, theoretically 

the pore growth is metastable, but if the coordination number is high (N > 6) the pore 

may grow. In solid-state sintering, the coordination number of the particles in a compact 

greatly affects the resultant porosity after sintering. However, sintering occurs via 

diffusion of material. There are six mechanisms, but only half contribute to densification: 

grain boundary diffusion, lattice diffusion from the grain boundary to the pore, and 

plastic flow by dislocation motion [49], [50]. 
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Viscous sintering is a conditional form of liquid-phase sintering. It is limited by 

the viscosity of the liquid that forms and can generally be thought of in terms of liquid-

phase sintering. So, liquid-phase or viscous sintering involves the formation of a liquid 

that wets and separates the solid phase, facilitating easier rearrangement and material 

diffusion. For strict viscous sintering states, material diffusion is higher than solid-state, 

but lower than pure liquid-state sintering. Like solid-state sintering, liquid-phase sintering 

is described in three stages. The first stage is formation of the liquid, rearrangement of 

the solid phase, and distribution of the liquid by capillary forces. The second stage is 

slower as the liquid phase penetrates the solid at the grain boundaries, dissolves the solid, 

and diffuses the dissolved material through the liquid to areas with lower chemical 

potential. This redistributed solution is reprecipitated in the regions of lower chemical 

potential to cause grain coarsening. The final stage is dominated by densification of the 

solid, coarsened grain network via grain shape accommodation. This means that liquid is 

distributed away from more efficiently packed regions of grains into open porosity, or 

from the compact if not reprecipitated [51]. 

Reaction or reactive sintering specifies a process in which new phases form 

during sintering. During solid-state and liquid-phase sintering, some reaction occurs 

between the start and end of the heat treatment that is resolved during the final isothermal 

soak; this is considered transient reaction sintering because the secondary phase that 

forms is absorbed. Reaction sintering is defined as a synthesis process by which the 

major phase is resultant from the two or more reactant components. The reactants may be 

solid:solid, solid:liquid, or solid:gas, and involve free energy reduction through chemical 

reaction that is larger than the change in free energy from surface area reduction [52]. 

This could be done via the ammonolysis of porous silica to yield oxynitride powders 

[53], magnetron sputtering for nanoparticles of designed core/shell arrangement [54], 

high purity mullite from β-cristobalite and diaspore (HalO2) [55], or a powder mixture of 

ZrH2, Al, and C to synthesize the MAX phase Zr2AlC [56]. The possibilities for reaction 

sintering are vast, but limitations arise when reactions are incomplete, unexpected phases 

form, or are not thermodynamically favorable, which can complicate or hinder 

densification processes [57]. 
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2.4. RELEVANT SYSTEMS AND THEIR ENGINEERING DESIGN CRITERIA 

2.4.1 Zirconium Diboride. ZrB2 has a high melting temperature (3245oC), high 

Young's modulus (526 GPa), high hardness (23 GPa), and a theoretical density of 6.09 

g/cm3 [58], [59]. The application of additive manufacturing for UHTCs may provide a 

cost-effective method for fabrication of complex components for next-generation gas 

turbines, rocket engines, and hypersonic vehicles [60]. Multiple sintering additives have 

been found to assist in pressureless sintering of ZrB2: 1.7 wt% carbon sintered at 1900oC 

and 4.5 wt% B4C sintered at 1850oC resulted in near theoretical density for powder 

attrition milled with tungsten carbide (WC) media [61]. 

2.4.2 Stoichiometric Mullite. Mullite has several promising engineering 

properties which include heat resistance, high strength (200-500 MPa), thermal 

(~1500oC) and chemical stability, low thermal expansion coefficient (4 X 10-6/oC in 20o 

to 200oC), and high creep resistance [62]. Due to its thermal stability and creep 

resistance, mullite is an excellent option as a ceramic coating material. It has also been 

used as fiber reinforcement for thermal and electrical insulation. Traditional 

consolidation routes require hot-pressing above 1500oC or pressureless sintering above 

1650oC; low temperature processing (900-1500oC) for the formation of single-phase 

mullite can be achieved using chemically synthesized powders and colloidal methods 

[63]. 

The synthesis of a composite powder via a sol-gel technique described by 

Schneider et al. yields a powder with an Al2O3 core and a coating of amorphous silica 

[64]. Upon heat treatment and sintering, the proximity of the precursor material as well as 

the initial particle size drastically reduces the required sintering temperature (900-

1200oC), time for formation, and densification [65]; these steps are shown in Figure 2.2. 

This procedure uses tetraethyl orthosilicate (TEOS) as the silica precursor material and 

boehmite (AlO(OH)) sol as the Al2O3 precursor. The composite powder, called M32, is 

base-catalyzed to produce discrete particles and because there is no interest in forming a 

ceramic monolith, only the coated particles, the synthesis time is greatly reduced; ageing 

times of many hours are often required for formation of a gel network [66].  
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Figure 2.2. Diagram depicting the synthesis of premullite and reaction to 3:2 mullite. 

 

 

For the in situ synthesis of mullite in a functionally graded composite application, 

alumina and an aluminosilicate may be used, such as kaolin. When designing an alumina 

to mullite gradient, it is assumed that as the ratio of alumina:kaolin changes from the ratio 

necessary to form mullite, a resultant phase will be a mixture containing a solid solution 

of  mullite with precipitated Al2O3 as the gradient increases in Al2O3 content. This is 

shown in the Al2O3- SiO2 binary phase diagram Figure 2.3, as the mol% Al2O3 increases 

within approx. 58-65%, the mullite solid solution forms. Traditionally, mullite synthesis 

requires sintering above 1600oC with multiple hour hold times ( > 5 hr) to yield dense 

mullite. Sintering aids or “mineralizers,” such as CaO, MgO, CeO2 etc., may be used to 

facilitate lower sintering temperatures due to the formation of a glass phase that decreases 

diffusion time for densification and grain growth; the limiting factor to densification is 

diffusion of Si4+  [67], [68]. 

2.4.3 3 mol% Yttria-Stabilized Zirconia. Pure zirconia, without a stabilizing 

agent, is not a viable option for fabrication of single-phase zirconia parts, due to high 

temperature phase transformations. Upon cooling, the crystal structure will transform 

from tetragonal to monoclinic at 1200oC, which is the low temperature martensitic (t-m) 

transformation, which results in a 3-5% volume expansion [69]. This expansion in the 

matrix of a sintered bulk leads to catastrophic fracture of the ceramic body. To stabilize 
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the high temperature phases and prevent transformation upon cooling, soluble oxide 

stabilizing agents are added, such as yttrium oxide, also called yttria (Y2O3). 

 

 

 

Figure 2.3.  Al2O3-SiO2 phase field showing solid solution formation at approx. 58-65% 

alumina content. This solid solution phase is called mullite. 

 

 

Doped zirconia is analogous to pure zirconia, but the dopant ions, e.g. Y3+, sit on 

the Zr4+ sites, and charge is maintained by partial oxygen site vacancy. Stabilization 

occurs due to intra-granular precipitations of tetragonal zirconia, though metastability can 

occur when the tetragonal precipitates are too small and do not transform or are too large 

and spontaneously transform to the monoclinic crystallographic arrangement [70].  For 

the purpose of this study and interest in tough technical ceramic composites, the 3 mol% 

yttria-stabilized zirconia system was used to develop a high solids loading paste.  
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3. REACTION SINTERING ZIRCONIUM DIBORIDE BY OXY-CARBO-

NITRIDE SYSTEM FOR CERAMIC ON-DEMAND EXTRUSION 

 

3.1. PROJECT INTRODUCTION 

Most additive manufacturing techniques, including stereolithography, have 

difficulties fabricating ultra-high temperature ceramics (UHTCs) and non-oxide 

materials. This is due to nonmetals, metals, and metalloids’ ability to absorb or reflect the 

light used to initiate photopolymerization, resulting in partial or incomplete 

polymerization. Ultimately, the result is poor resolution, insufficient cure depth, or 

unacceptable structural integrity. A system was devised using reactant materials that 

would act as discrete pastes but be mixed to the appropriate ratio using CODE to result in 

a zirconium diboride bulk. The system would then require further development as a four-

phase system (oxide, carbide, nitride, resin) for stereolithography, with a resin refractive 

index near that of one of the reactants [71]. Zirconium oxide was chosen as the zirconium 

source and boron nitride as the boron source, rather than boron oxide, to prevent the 

liquefaction and volatilization of the boria during the reaction process. Boron nitride acts 

as both boron source and high temperature reducing agent. To verify pressureless 

sintering and reaction route a carbon source was included, using boron carbide, to 

increase the reduction potential and boron content. 

 

3.2. EXPERIMENTAL PROCEDURE 

The surface area of as-received powder was measured using nitrogen adsorption 

analysis according to the Brunauer-Emmett-Teller method (BET), (Nova2000e, 

Quantachrome Instruments, Boynton Beach, Florida, USA) and the particle size 

distribution by laser diffraction (S3500, Microtrac, York, Pennsylvania, USA). 

Sedimentation studies were used to approximate the best concentration of dispersant on a 

surface area basis, using Darvan C-N (ammonium polymethacrylate; Vanderbilt 

Minerals, LLC, Norwalk, Virginia, USA) and Dolapix CE 64 (carbonic acid; Zschimmer 

& Schwarz, Lahnstein, Rhineland-Palantinate, Germany). For a sedimentation study, 0.5-

2.0 mg/m2 dispersant was added to respective 10 mL graduated cylinders with pH 10.0 

solution with 3 g of as-received powder. Each cylinder was covered using paraffin film, 
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agitated, then ultrasonicated for 600 s before being left stationary for sedimentation. The 

levels of sediment were monitored every 30 min for 8 hr and repeated for 1 g samples. 

The pH value was measured using a pH meter (HI 2210, Hannah Instruments, 

Woonsocket, Rhode Island, USA) and adjusted dropwise using an ammonium hydroxide 

solution (NH4OH, 30% NH3 basis, Sigma Aldrich, St. Louis, Missouri, USA). 

3.2.1 Pressureless Sintering. Commercially available zirconium diboride (ZrB2, 

Grade B, H.C. Starck, Karlsruhe, Baden-Wüttemberg, Germany) and boron carbide (B4C, 

Grade HS, H.C. Starck, Karlsruhe, Baden-Wüttemberg, Germany) powder were used to 

establish a baseline sintering temperature. The reported average particle size was in a 

range of 1.5-3.0 µm with a 97% (metal basis) purity for ZrB2; the average particle size of 

the B4C powder was 0.8 μm, with a surface area of 15-20 m2/g, and a B:C ratio of 3.7-

3.8. A ZrB2 composition with 4 wt% B4C additive was used for pressureless sintering 

studies. These powders were attrition-milled in a polymer-lined jar using cobalt-bonded 

tungsten carbide (WC) media at 600 rpm for 2 h in acetone or methyl ethyl ketone (MEK, 

Sigma Aldrich, St. Louis, Missouri, USA).  

After milling, the powder was retrieved via rotary evaporation (Rotovapor R-124, 

Bucchi, Flawil, St. Gallen, Switzerland). The powder was then crushed using a diamonite 

mortar and pestle and passed through a sieve stack:  250 µm / 60 mesh; 150 µm / 100 

mesh; 106 µm / 140 mesh; and 90 µm / 170 mesh. Collected powder was uniaxially 

pressed into pellets for a sintering study. Two samples, of five pellets each, were made 

using a laboratory benchtop press (model 3851-O, Carver, Wabash, Indiana, USA), one 

set with and the other without a high molecular weight polyvinyl alcohol binder (PVA; 

avg. molecular weight 70,000-100,000, Sigma Aldrich, St. Louis, Missouri, USA). Due 

to incompatibility between PVA and MEK, batches that included binder were milled in 

acetone. After the doped ZrB2 powder was retrieved, PVA binder was introduced as a 10 

wt% solution resulting in 0.1% binder and the mixture was milled in a high density 

polyethylene (HDPE) wide-mouth bottle with WC media for 2 h to homogenize. Solvent 

was removed by boiling the slurry under a high (700-1200) rpm stir until dry, rather than 

rotary evaporation to prevent low recovery. For each pellet, 1.5 g of powder was loaded 
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into a 12.7 mm die and pressed for 60 s at 70.3 MPa; between pellets, the die was cleaned 

with acetone and lubricated with stearic acid.  

The samples were sintered individually; a 6.35 cm dia. x 5.33 cm tall cylindrical 

graphite crucible was lined with flexible graphite foil (GRAFOIL, GrafTech Intl., Parma, 

Ohio, USA) and coated with an aerosol boron nitride lubricant (BN SP-2018, Materion, 

Buffalo, New York, USA) for sintering. Once dry, the crucible was loaded and topped 

with a permeable graphite foil lid. The sintering schedule was carried out in a resistance-

heated, graphite, bottom-loading furnace (model 1000-4360-FP30, Thermal Technology 

Inc., Santa Rosa, CA, USA). The furnace was ramped from room temperature to 700oC at 

10oC/min in flowing argon. Once at temperature, the furnace was held for 0.5 h before 

ramping to 1450oC at 10oC/min. A partial vacuum (∼160-120 millitorr) was pulled and 

the temperature held for 1 h. Afterward, the furnace was ramped to 1600oC at 10oC/min 

and held for 1 h. During these high temperature isothermal holds, the mild vacuum was 

monitored; an increase in pressure indicated volatilization of material or that reaction was 

occurring. A manual hold, not exceeding an additional 15 min, was performed to allow 

the vacuum to decrease as much as possible before proceeding. The final ramp from 

1600oC to 1900oC at 30oC/min occurred under flowing argon, then dwelled for 2h to 

sinter, and cooled to 50oC at a rate of 30oC/min. 

Relative density of each sample was determined using the Archimedes’ method 

with water as the immersion medium. All pellets were weighed to obtain their dry mass, 

D, put in individual beakers of distilled water, and brought to a boil. Then the beakers 

were transferred to a vacuum chamber, where they were infiltrated for 24 h. The vacuum 

was checked and re-pulled at 10 h to ensure integrity. After the saturated weight, M, and 

suspended weight, S, were measured and the bulk density was calculated according to 

Equation 3 [72]:  

 

B = D/(M-S)       (3) 

 



19 

 

Percent relative density was then determined by dividing the bulk density, B, by 

theoretical density. The value of the theoretical density of a mixed powder was 

determined by a rule of mixtures calculation.  

Specimens achieving higher than 98% theoretical density were then mounted to 

polish the face of the pellet to a 0.25 μm finish using successively finer diamond 

abrasives. The specimens were chemically etched in a 1:1 KOH solution at 200oC for 30 

s; their microstructures were analyzed using scanning electron microscopy (SEM; field 

emission S-4700, Hitachi, Schaumburg, Illinois, USA). An average grain size was 

measured using ImageJ, the open source imaging software (National Institutes of Health, 

Bethesda, Maryland, USA). 

3.2.2 Reaction Sintering of ZrB2. The sequence of reactions in Table 3.1 was the 

assumed route of reaction for in situ reaction sintering. Reactions (2) - (5) represent 

sequential and concurrent reactions, while reaction (1) is the intended overall reaction. 

The Gibbs free energy (ΔG) values can be calculated using: ΔG = ΔGo + RTlnKp, where 

ΔGo is the change in standard state Gibbs free energy, R is the ideal gas constant, T is the 

temperature, and Kp is a reaction constant. 

 

 

Table 3.1. Intended reaction path and Gibbs free energy for each reaction step. 

Reaction ΔG (kJ)) 

(1) ZrO2 + 2BN + 2C → ZrB2 + 2CO +N2 ΔG = 1055.6 - 0.761T ( ΔG < 0, T > 

1115oC) 

(2) 4BN + C → B4C + 2N2 ΔG = 941.0 - 0.487T ( ΔG < 0, T > 

1659oC) 

(3) 2ZrO2 + B4C + 3C → 2ZrB2 + 4CO ΔG = 1170.3 - 1.002T (ΔG < 0, T > 

895oC) 

(4) ZrO2 + 3C→ ZrC + 2CO ΔG = 679.8 - 0.503T ( ΔG < 0, T > 

1078oC) 

(5) ZrC + 2BN → ZrB2 + N2 + C ΔG = 375.9 - 0.241T (Δ G < 0, T > 

1287oC) 

 

 

The reactants for reaction (1) were verified for nonstandard states at high 

temperatures for sintering and pressures below 1 bar, under flowing argon and partial 
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vacuum, using thermodynamic software, FactSage 7.0. Raw materials for reaction were 

commercially available zirconia (ZrO2; Inframet Advanced Materials, Manchester, 

Connecticut, USA), boron nitride (BN; Grade F 15, H.C. Starck, Karlsruhe, Baden-

Wüttemberg, Germany), and graphite (Carbon Black, Cabot, Alpharetta, Georgia, USA). 

A composition was batched according to the molar ratios of reaction (1) and mixed with 

WC media in a mill jar for 1 h in MEK. The solvent was removed via rotary evaporation 

and the powder uniaxially pressed according to the same procedure as the pressureless 

sintering study. These specimens were reaction sintered using the same rates and 

isothermal holds as the pressureless sintering study; this was to verify the times and 

temperatures for reaction. After reaction, the crystalline phases were identified using 

powder X-ray diffraction (XRD; PANalytical X’pert Phillips, Eindhoven, The 

Netherlands). 

3.2.3 Extrudate Batching. Formulation of 55 vol% 10 mL test batches were done 

by mixing milled ZrB2 + 4 wt% B4C powders in 50 mL beakers using a flat stainless steel 

spatula. After achieving a smooth mixture, a binder solution was introduced, of which 

two types were used for the formulation of extrudate: PVA and cold water dispersible 

hydroxypropyl methylcellulose (Methocel J5MS, DOW, Midland, Michigan, USA). A 

baseline concentration of 1 wt% was used for PVA, while Methocel concentrations were 

0.5 and 0.25 wt%. Rheometry was employed to measure the viscoelastic response of each 

extrudate batch. 

3.2.4 Viscometry. A digital viscometer (DV-III, Brookfield AMETEK, Inc., 

Middleboro, Massachusetts, USA) was used for all viscosity measurements, with a small 

sample adapter and a number 28 spindle. With these peripherals, the possible viscosity 

range is 200-5,000,000 cP and the possible shear rate range is 0-56 s-1. The chamber was 

loaded with 10 mL of extrudate, then the spindle was attached and inserted into the 

extrudate. Once the viscometer was loaded with a sample, a high shear history was put on 

the sample by running at 100 RPM for 5 min. Afterward, a viscosity reading was taken 

every 10 s for 180 s, after which the torque was recorded. This was repeated three times 

for each respective RPM, which was stepped 100, 75, 50, 25, and 5 to provide a range of 

shear stress. 
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3.3. RESULTS AND DISCUSSION 

3.3.1 Verification of Pressureless Sintering. Two powders were investigated to 

confirm the efficacy of pressureless sintering a UHTC: ZrB2 + 4 wt% B4C and ZrB2 + 4 

wt% B4C + PVA binder. Compact specimens of each composition were pressed at 70.3 

MPa and sintered at 1900oC with a 2 hr hold. Pellets pressed without a binder had an 

average green density 59% and sintered to 79.6% of theoretical density indicating 

negligible densification. Specimens containing PVA binder had an average green density 

of 61% and sintered to near theoretical density (≥99%). Microstructural analysis was 

done to measure the average grain size and verify the sintering schedule of pressurelessly 

sintered ZrB2 + 4 wt% B4C. As shown in Figure 3.1, there is no intergranular or 

intragranular porosity, which verifies the sintering time and temperature to achieve high 

relative density. In the high magnification image (a), it is possible to see some voids, but 

this is due to polishing and the caustic nature of the KOH etchant, not a product of 

sintering. A grain size analysis was done using ImageJ to measure the average grain area 

and estimate an equivalent circular diameter. Using this method, the approximate grain 

diameter of the specimens sintered at 1900oC was 10.56 µm, based on a count of 797 

grains. This included only the grey phase, in Figure 3.1, which is ZrB2, while the black 

phase is B4C.  

3.3.2 Preparation of Single-Phase Paste. Dispersions with Darvan C-N and 

Dolapix CE 64 all suggest 0.5 wt% Darvan C-N to be most effective at dispersing 

submicron ZrB2 powder in an alkaline pH≈10 suspension. Dispersions were checked 

every 30 min and most of these rapidly sedimented, leaving a clear or nearly transparent 

supernatant fluid after 1 hr. The accuracy of this test is in question without zeta potential 

measurements to verify the dispersion stability; however, it is known that the isoelectric 

point of ZrB2 is pH ~ 4.5 according to studies done by Huang (2007) [73], and that an 

alkaline pH > 8.0 will provide maximum stability. Huang et al. (2007) did a similar study 

and fabricated a high solids loading ZrB2 paste using the dispersant Darvan 821A 

(ammonium polyacrylate). They noted that Darvan 821A shifted the IEP to a pH 1.8, 

while ammonium polymethacrylate dispersants (Darvan C) shifted the IEP to a slightly 

higher pH 2.7. In the study, both Darvan C and Darvan 821A exhibited an IEP near pH  
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9.0, but Darvan 821A had a zeta potential near -110 mV, while Darvan C exhibited a zeta 

potential of only -50 mV. The zeta potential of Darvan C is similar to that of the zeta 

potential of solution of ZrB2 particles in water, suggesting that ammonium 

polymethacrylate is not effective at dispersing ZrB2, especially compared to Darvan 81A 

[74]. However, zeta potential measurements are performed at low concentrations when 

the particle-particle interaction is the least, and more of a measure of particle-medium 

interaction. Such measurements are good initial steps for system design, but for high 

solids loading, dynamic approaches such as rheology are a better quality control metric 

for stability. Powders used for dispersion were characterized with surface area and 

particle size analysis, the results of which are listed in Table 3.2. 

Viscometry of the high solids loading test batches with PVA and Methocel 

binders showed a strong non-Newtonian relationship for batches with 1 wt% PVA and 

0.5 wt% Methocel (Figure 3.2). The trend of decreasing viscosity with increasing shear 

rates is the hallmark of non-Newtonian response, i.e. shear thinning. 

 

Figure 3.1. Microstructure of pressurelessly sintered ZrB2; (a) high magnification 

showing no inter- or intragranular porosity; (b) low magnification, showing grain 

development and pinning. 

(a

) 

(b

) 
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Table 3.2. Measured physical properties of powders. 

Material Surface Area (m2/g) 
Average Particle Size, 

d50 (µm) 

Boron Carbide (B4C) 16.653 0.82 

Boron Nitride (BN) 9.931 - 

Graphite I 30.172 - 

Zirconia (ZrO2) 15.467 0.53 

Zirconium Diboride (ZrB2) 1.849 2.58 

 

 

One batch of 1 wt% PVA was tested 24 hr after batching, to determine the effect 

of sedimentation and current extrudate shelf-life. At the lowest shear rates, the drag on 

the spring-spindle assembly reached the maximum torque; similar behavior was seen 

with low concentrations of Methocel. This response in the sedimented PVA batch was 

due to high shear stress from friction between the sediment. The batch with low 

concentrations of Methocel may have exhibited similar behavior, but due to the 

molecular weight of the binder (86,000 g/mol) and likely bridging between adsorbed 

species. Higher concentrations of binder exceeded the maximum viscosity of the 

viscometer, while lower concentrations did not provide consistent data, trial to trial, 

across the entire shear stress range, suggesting more sensitive measuring equipment is 

required. 

Wiesner et al. (2016) used highly-loaded, φ=49, ZrB2 suspension for injection 

molding experiments. Their tests similarly suggested that the higher binder content 

increased the stress required to initiate flow. The binder used was polyvinylpyrrolidone 

(PVP) in concentrations as high as 5 vol%, while the lowest stress to initiate flow was 

measured at concentrations of 3 vol% [75].  Similarly, when the concentration of 

Methocel was halved, the data was more consistent, less shear thinning, and lower torque. 

The lower stress was likely due to improved steric stabilization and adlayer thickness 

from an appropriate concentration of binder. 
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Figure 3.2. Comparison of PVA and Methocel binders in high solids loading batches of 

single phase ZrB2 paste. 

 

 

Based on the rheological measurements, a 55 vol% sample batch of extrudate was 

made using 0.5 wt% Methocel to print test bars via CODE. A-bar geometries (2.0 mm x 

1.5 mm x 25 mm), according to ASTM C1161-18 Standard Test Method for Flexural 

Strength of Advanced Ceramics at Ambient Temperature were fabricated for a sintering 

study [76]. Unfortunately, as seen in Figure 3.3 post sintering longitudinal cracks were 

seen in all bars along the entire length and through the thickness. Not visible after drying, 

they were however due to drying stresses and became exaggerated during the sintering 

process. The fractures appear to follow the fusion lines between rasters and are able to 

run along the thickness because of how the rasters aligned during deposition. Not until 

the rasters are slightly misaligned does the fracture diverge and terminate. Fracture 

behavior like this is known to follow the weakest barrier and is a perfect example of 

designing for additive manufacturing and the effect of aligned rasters in a fabricated 

specimen. The density of these specimens was not recorded, due to the critical fracture. 
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Many studies have been applied to the change in mechanical properties according 

to print orientation of polymers. Feilden et al, (2017) studied hierarchical design of 

bioinspired ceramic materials to control crack propagation. As expected, trans-filament 

flexural strength of their Al2O3 structures exhibited the highest values, 202 ± 10 MPa, 

while the traverse filament flexural strength exhibited the lowest at 125 ± 12 MPa with 

fracture propagating along the aligned raster boundaries [77].  The same failure 

mechanism is proposed in Figure 3.3, though exacerbated due to the low relative sintered 

density. 

 

 

 

 

3.3.3 Reaction Sintered ZrB2. Without the ability to characterize the paste fully, 

single-phase paste was abandoned in favor of characterizing the reaction-sintered system. 

A reaction to yield ZrB2 is often the decomposition of a boron species (borothermal) or 

carbon species (carbothermal) with a zirconium source. The oxide-carbide-nitride system 

proposed is a hybrid boro/carbothermal reduction. This multi-step reaction (Table 3.1) 

was verified by thermochemical software, however the path may be affected or hindered 

by particle size, the isothermal holds during sintering, and partial vacuum steps during 

sintering. For this reason, powder XRD analysis of crushed samples was used to identify  

(

b) 

Figure 3.3. Transverse through-cracks in CODE ZrB2 specimens following aligned 

inter-raster bonding locations. 
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the product, revealing that the predominant crystallographic phase of the powder sample 

was zirconium diboride (Figure 3.4a). Residual phases from incomplete reaction would 

present themselves as intermediate intensity peaks, such that peaks in Figure 3.4a. 

However, this is not the case, as the peaks of the scanned sample correspond to the 

chemical tag of zirconium diboride. None of the major peaks of the reactants present 

themselves, confirming the formation of single phase crystalline zirconium diboride. 

Unfortunately, because of the starting materials: ZrO2, BN, and C, the nominal volume 

change of the system was 40.5% resulting in a relative density of 74% when sintered at 

1950oC for 2 hr.  

In terms of reaction sequence, this chemistry is viable for forming ZrB2 in situ, 

but without further analysis of sintering agents, temperature, and time, this system is 

inviable for pressurelessly fabricating functional ZrB2 parts with CODE. In Guo and 

Zhang (2009), the reaction route of boro/carbothermal reduction of ZrO2 to produce ZrB2 

was analyzed. Using B4C as a reducing agent with carbon, they considered the reactions:  

Figure 3.4. XRD micrograph of predominant phase of reaction sintered ZrB2 

showing single phase, crystalline ZrB2 through hybrid boro/carbothermal reaction. 
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2ZrO2 + B4C +3C → 2ZrB2 + 4CO      (4) 

7ZrO2 + 5B4C → 7ZrB2 +3B2O3 + 5CO     (5) 

ZrO2 + B2O3 + 5C → ZrB2 + 5CO      (6) 

 

when in standard state (Pco = 1.013 bar), the reaction in equations 4-6 above become 

thermodynamically favorable at 1424oC, 1218oC, and 1509oC respectively. Using this 

reaction path, it is assumed that the zirconia will be continuously reduced by B4C and C 

additions, further reaction with formed B2O3 until no oxide phase remains and producing 

only ZrB2 and carbon monoxide. Their analysis was of synthesized powder, not a powder 

compact, so no density information is available, but they did note the difference in 

powder morphology dependent on sintering temperature: columnar at 1750oC and 

spherical at 1650oC [78][77].   

 An intermediate phase that could possibly form, not reported in Guo and Zhang 

(2009), is zirconium carbide (ZrC) from the reaction of ZrO2 + C. Another publication on 

the study of in situ synthesis of SiBCN-Zr, outlines the reaction of ZrO2 with boron 

nitride (BN). This reactant will act as a high temperature reducing agent as well as a 

boron source for reacting ZrB2 favorably. Miao et al. stated that not only does BN reduce 

ZrC, but also ZrO2, aiding in the prevention of oxidation at temperatures above 1600oC 

[79].   

 The proposed reaction path in Table 3.1: ZrO2 + 2BN + 2C → ZrB2 + 2CO + N2, 

is corroborated by Guo and Zhang (2009) and Miao et al. (2016), so this path was chosen 

from a similar study by Yan et al. (2016) [80]. Their thermodynamic and XRD analyses 

suggested that the overall reaction became thermodynamically favorable at temperatures 

< 1200oC and could synthesize submicron powder (200-800 nm) at temperatures as low 

as 1550oC. The BN and C reactants would continue to act as reducing agents at 

temperatures above 1200oC to reduce ZrC and form B4C, which was the low temperature 

reducing agent for ZrO2. This reaction path produced non-oxide ceramic phases, and 

reduced intermediate reaction phases, along the entire heat treatment to 1550oC, making 

it favorable for low temperature in situ synthesis. However, much higher temperatures, 

1900oC and above, were necessary for densification. 
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4.  DEVELOPMENT OF A 3YSZ PASTE FOR CERAMIC ON-DEMAND 

EXTRUSION 

 

4.1. PROJECT INTRODUCTION 

With the development of CODE and its establishment as a viable extrusion AM 

technique, several iterations of test pastes were produced to begin the fabrication of 

complex parts with embedded components. The proof-of-concept paste for the use of 

zirconia was a fully stabilized, 8 mol% yttria-stabilized zirconia system. This paste was 

used to fabricate rectangular bulk specimens for mechanical testing, which is described 

fully in [81]. With the success of the stabilization of a zirconia paste, a similar strategy 

was applied for the 3YSZ paste system, which was used with both inorganic [82] and 

organic [83] support materials to fabricate increasingly complex components. The 

inorganic support material being a high solids loading calcium carbonate (CaCO3) paste, 

necessitating a two-step sintering processing, with intermediate dissolution of the evolved 

calcium oxide (CaO). The process for formulating this support material paste is not 

expanded upon here. 

 

4.2. EXPERIMENTAL PROCEDURE 

4.2.1 Determining Stability. Prior to performing sedimentation tests, the surface 

area of the as-received TZ-3Y-E powder was measured by nitrogen adsorption analysis 

using the Nova2000e. Two dispersants were selected, Dispex CX 4240 (ammonium 

polyacrylate, BASF Corporation, Cleveland, OH, USA) and Dolapix CE 64 (ammonium 

polyacrylate, Zschimmer & Schwarz, Inc., Lahnstein, Rhineland-Palatinate, Germany) 

for sedimentation studies. Two settling studies were performed to identify the pH and 

concentration for stability. To identify an appropriate concentration, ten graduated 

cylinders were filled with a pH 7.0 solution to test the effect of dispersant concentration. 

The concentrations were measured according to powder surface area, from 0.2-2.0 

mg/m2. Ultimately the concentration was determined to be approximately equivalent to 5 

wt% (dry weight basis) of the dispersed phase.  

The concentration was then kept constant at 5 wt% and the pH adjusted to 

determine the effect of pH on dispersion stability. Ten graduated cylinders were filled 
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with pH adjusted solution from pH 1-10 respectively and 1 g of TZ-3Y-E (3 mol% yttria-

stabilized zirconia, TOSOH, Grove City, OH, USA); the pH was adjusted using either 

hydrochloric acid (HCl) or ammonium hydroxide (NH4OH). Dispersion stability was 

determined by qualitatively measuring the separation of the opaque and supernatant 

fluids within the graduated cylinders, i.e. the level of the opaque liquid, supernatant, and 

type (hard or soft) of sediment after 18-20 hr. 

4.2.2 Paste Production. Paste was produced in batches 24 hours prior to 

fabrication, according to need. Batches were produced in 50-100 mL quantities and 

consisted of 50 vol% ceramic solids. Ammoniated water was prepared using distilled 

water and 30% ammonium hydroxide solution (NH4OH, Sigma Aldrich, St. Louis, MO, 

USA). The pH was adjusted until an alkaline pH ≈ 9-10 was achieved, as measured by a 

pH meter (HI 2210, Hannah Instruments, Woonsocket, RI, USA). Dolapix CE 64 was 

used as the dispersant and no binder was used.  The paste was milled in a HDPE jar using 

spherical 3mm zirconia grinding media (YSZ, Inframat Advanced Materials LLC, 

Manchester, CT, USA) for 18 hr to homogenize. Post recovery deaeration was done using 

a vacuum power whip mixer (Model F, Whip Mix, Louisville, KY, USA), pulling a mild 

vacuum (~20 kPa). The final step involved transferring the paste to charging syringes, 

that attached to the CODE auger valve, which were agitated on a vibratory table to 

remove entrapped air. 

 

4.3. RESULTS AND DISCUSSION 

4.3.1 Paste Performance. The measured surface area of the TZ-3Y-E specimen 

from lot #S300894P was 6.002 m2/g with a correlation coefficient value r = 0.99991, 

suggesting little data scatter and near linearity. Using the surface area to determine the 

concentrations of dispersant Dispex CX 4240, concentrations were tested from 0.2-2.0 

mg/m2 using 1 g of zirconia powder mixed into each respective graduated cylinder filled 

with pH 7.0 solution. The graduated cylinders were monitored for four hours, noting the 

level of sedimentation of each on the hour. Except for extreme pH’s 1.0, 9.0, and 10.0, 

Dispex CX 4240 proved ineffective to disperse TZ-3Y-E. The same experiment was 

repeated with Dolapix CE 64, with similar results – no dispersion at pH 7.0 and full 
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sedimentation after 1 hr for the majority of the sample. The pHIEP of the 3YSZ is 

approximately pH 4.5-6.0, so it was expected that the colloid could be dispersed using an 

ammonium polyacrylate in the acidic regime, however Y3+ leaches into acidic solutions.  

Sedimentation at a neutral pH was not unexpected, as a neutral pH is above the 

pHIEP for 3YSZ so the surface is nominally negative and both Dispex and Dolapix are 

anionic dispersants. The trials were repeated with increasing concentration of dispersant 

until it was determined that Dolapix CE 64 provided stability in both extremes of pH with 

an optimal concentration of 8 mg/m2, which was approximately equivalent to 5 wt% on a 

dry weights basis of the zirconia powder with a surface area of 6.016 m2/g. The 

dispersion mechanism was assumed to be electrosteric for the acidic regime, and 

deleption stabilization for the alkaline regime. With a high solids loading φ > 0.5, 

depletion stabilization was a better option for attempting to design shear thinning 

behavior without rheological measurements. Using an acidic pH would have initially 

provided the highest stability for the paste because of strong adsorption of the dispersant. 

However, it would have limited dispersion stability (shelf life) because of the leaching 

Y3+ in solution, which would destabilize the paste over time.  

In contrast, the dispersant acted as a depletant in solution of alkaline pH, by only 

adsorbing to some surface sites in low concentration. This high pH would also cause the 

species to experience full hydration and intersegment repulsion, so the dispersant would 

take up the maximum volume and creating a larger double layer, σ, between particles. 

Resulting shear thinning behavior seen in the paste was then the result of the 

concentration and conformation of the depletant, which was flocculating ↔ restabilizing 

the suspension. 

 Non-idealized dispersion conditions were chosen by controlling ΔpH such that 

the suspension was above but near the boundary of the pHIEP. At the boundary of the 

suspension pHIEP there will be localized instability introduced and particles will begin to 

weakly flocculate. A designed extrudate in this fashion will act as a bulk solid until a 

stress is applied, upon which the viscosity decreases and the paste flows readily. After 

deposition the applied stress is effectively removed and the bulk behavior becomes solid 

again. This occurs due to shear stresses from the auger valve or slip from pneumatic 
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pressure at the chamber wall, which can readily separate the weakly flocculated particles, 

disrupting the percolated network. Once separate and locally dispersed, the viscosity 

decreases sharply.  

Analysis of the surface chemistry of zirconia polymorphs by Hertl [81], suggests 

that thermal treatment of zirconia has a drastic effect on the surface chemistry. Tetragonal 

zirconia readily acts as a Lewis acid, with site charges of 2+. Reaction with CO or 

carbonates in solution readily produce carbonic acid, HCO3
-, which would suggest the 

need for a strong stabilizing counter ion and adsorbate to disperse zirconia. Recent 

studies show the effect of counter and co-ions on the stability of colloids. Cao et al.  

related the ionic strength of co-ions, those with the same charge as the surface, and 

counter-ions in solution to a critical concentration at which irreversible flocculation 

occurs [85]. Ultimately, they determined that regardless of the species, organic or salt, the 

critical concentration scales with the inverse of the valency of multi-valent species. This 

is further verification of the application of depletion stabilization mechanisms, not only 

effective for dispersion, but also stabilization of the pH.  

Two other studies also discussed the network of concentration nanoparticle 

suspensions, and the effect of stability on structure and fluid properties. Rao [86] and 

Conrad et al. [87] focused on establishing design criteria and a phase diagram for stability 

above or below the critical concentration point. They mentioned the effect of particle 

geometry on gel formation as concentration increases: particles are amenable to 

amorphous gels or crystals, while plates produce porous amorphous structures, and rods 

form aligned gel structures. The formation of the gel structure is highly susceptible to the 

surface chemistry and adsorbed species as one would expect, which explains the ability 

of spheres to form both crystals and glasses, rods to align, and platelets to only create 

porous networks. 

The paste was qualitatively monitored batch-to-batch. With an assumed IEP, 

stability was designed around this using a pH > 9.0 and Dolapix CE 64. The effect of the 

solids loading and particle size are understood, but not quantitatively analyzed at this 

time. All parts fabricated with this paste were sintered at 1550oC for 0.5 hr to achieve a 

submicron grain size. The initial sintering study compared sintering conditions of 1500oC 
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for 2.5 hr, 1500oC for 0.5 hr, and 1600oC for 0.5 hr. A microstructural analysis was 

performed using ImageJ software to measure the average grain area and estimate the 

equivalent circular diameter.  

4.3.2 Fabricated Demo Parts. Microstructures for the sintering study are shown 

in Figure 6.6., and though all reached a relative density > 95% they demonstrate the 

importance of optimizing the sintering schedule. The sample sintered at 1500oC for 2.5 hr 

exhibited an average grain size of 3.82 μm, based on a measurement of 304 grains; the 

sample sintered at 1500oC for 0.5 hr exhibited an average grain size of 0.63 μm; while the 

sample sintered at 1600oC for 0.5 hr exhibited an average grain size of 5.07 μm. This 

disparity between longer time or higher temperature shows that neither are a direct 

relation to densification. In the case of the sample shown in Figure 4.1a, the average grain 

size was 3.82 μm, while this is not large, there are some grains that are significantly 

larger than others. This, alongside the intragranular porosity indicates rapid grain growth, 

likely due to the sintering time. The sample shown in Figure 4.1b had the smallest 

average grain size, at 0.63 μm, it was sintered at a higher temperature than the sample in 

(A), but for a fifth of the time. The result is a submicron grain size, a uniform grain size, 

and no porosity. It is worth noting that the image in Figure 4.1B is of a free sintered 

surface because the sample was not polished to the same level as the samples in (A) and 

(C). Like the case of sample (A), the sample shown in Figure 4.1C exhibits a large 

average grain size at 5.07 μm and intragranular porosity. This is indicative that despite 

the time being the same as sample (B), the temperature was too high for sintering.  

The rheological properties of the 50-55 vol% pastes were consistent enough 

batch-to-batch that the system was deemed workable to fabricate dense, functional parts 

demonstrated in Figure 4.2. Further analysis was done on the mechanical properties of 

printed structures (see Li et al. [37]), spanning multiple publications, including a 

performance analysis of parts printed with organic support material and a similar analysis 

for dissolvable inorganic support material mentioned in the section 4 introduction. 
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(A) 

 

(B) 

 

(C) 

Figure 4.1. Microstructural development of 3YSZ under sintering conditions: 

 (A) 1500oC 2.5 hr, (B) 1550oC 0.5 hr, and (C) 1600oC 0.5 hr. 
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Figure 4.2. 3YSZ symmetrical gear fabricated via CODE. 

 

 

To optimize the paste, it would be necessary to compare the effects of solids 

loading, dispersant, pH, and binder against the rheological response. An analysis would 

make it possible to control the extrusion behavior for more complex geometries, such as 

gap bridging and unsupported overhangs, as well as increase the solids loading by 

improving the suspension stability.   
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5. IDENTIFICATION OF ALTERNATIVE FABRICATION ROUTE FOR 

STOICHIOMETRIC MULLITE AT LOW TEMPERATURE AND 

SHORTENED SINTERING TIME 

 

5.1. PROJECT INTRODUCTION 

Another ceramic system needed to be identified for use in conjunction with 

alumina in a graded composite application. This system would be mixed in specific 

volume fractions as needed to create the alumina gradient, necessitating CTE and 

chemical compatibility. Mullite was chosen, not only because it is a well understood 

system, but also because it is the resultant solid solution of a specific ratio of 

alumina:silica. It was hypothesized that a gradient of alumina to mullite would be 

mechanically and chemically compatible due to the mixture of the solid solution and 

precipitated alumina phases, facilitating a functional gradient with favorable engineering 

properties. It was not known whether the co-sintering process would be detrimental to the 

alumina phase, due to mullite commonly being processed at temperatures exceeding 

1600oC and isothermal holds exceeding 5 hours. The goal of the following study was to 

reduce the processing time and temperature of a theoretical alumina-mullite graded 

composite part. 

Initial tests were performed to attempt to disperse and sinter stoichiometric 

mullite powder that was commercially available. It proved difficult to disperse and to 

require multi-hour isothermal holds for full mullite development. The surface area of 

these powders was measured after milling trials done at 18 and 20 hours to reduce their 

average particle size to a submicron range. Ultimately, it was determined that reaction 

sintering would be easier due to the readily available materials. Three methods were 

employed: reaction sintering of mullite and kyanite, reaction sintering of kaolin:alumina 

mixtures, and sol-derived premullite composite powders. 

Six series of mullite, magnesium oxide, and kyanite were studied at sintering 

temperatures of 1550 and 1700oC to achieve densification. Magnesium oxide (MgO) was 

added at a constant concentration as a mineralizing agent, to pin grains and promote 

primary mullite formation. Kyanite was introduced at two levels of concentration for 

liquid phase sintering and mullite formation.  



36 

 

5.2. EXPERIMENTAL PROCEDURE 

5.2.1 Reaction Sintering of Mullite via Kaolin-Alumina. For the fabrication of 

functionally gradient composites of alumina (Al2O3) and mullite (3Al2O3·2SiO2), the 

mixture of kaolin and alumina was studied at three sintering temperatures (1400, 1500, 

1600oC) to yield stoichiometric mullite to alumina gradients. The ratio of kaolin-alumina 

to yield mullite is 2:2.68 kaolin to alumina, and so the sintering study was done to 

determine the lowest sintering temperature for dense, functional mullite without a 

sintering aid [88], [98].  

 Sintered specimens were crushed using a diamonite mortar and pestle and passed 

through a sieve stack: 106 µm / 140 mesh and 90 µm / 170 mesh, then analyzed via 

powder X-Ray diffraction (XRD) at room temperature using a powder diffractometer 

with Ni-filtered CuKα radiation (PANalytical X’Pert PRO, Malvern Panalytical, 

Westborough, MA, USA). Diffraction patterns were recorded in the 4o to 90o 2θ range, in 

continuous scan mode. Sintered specimens were polished to a 0.25 μm finish using 

diamond abrasive slurries and microstructural development was evaluated using SEM. 

5.2.2 Synthesis of Stoichiometric Mullite via Sol-Gel Method. Despite 

successful formation and relatively high density of 90.8% for alumina-kaolin reaction-

sintered specimens, an alternative route was investigated for the formation of mullite to 

decrease the sintering temperature and reduce the time required for thermal treatment. A 

composite premullite powder (M32) was synthesized using TEOS as the source of silica 

and boehmite as the source of alumina. The quantities of each were calculated to yield 

3Al2O3·2SiO2 once sintered. The tetraethyl orthosilicate (TEOS, Sigma Aldrich, St. 

Louis, MO, USA) was measured in a graduated cylinder, 30 mL total, then poured into a 

round bottom flask. This flask sat inside of a water bath that was held at 60oC. The stir 

bar was set to 40 RPM and 31 mL of ethanol was added. For base-catalyzed M32, 38 mL 

of ammoniated distilled water was poured into the flask. The pH must be ~9 for rapid 

hydrolysis, which required approximately 4 drops of NH4OH.  

Prior to mixing the ammoniated water and TEOS, a boehmite sol was prepared. A 

total of 72.1 g of boehmite (AlO(OH), Sasol, Westlake, LA, USA) was mixed into 300 

mL of ammoniated water and allowed to mix using a magnetic stir bar for 10 minutes. 
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Once dispersed, this sol was then introduced into the TEOS/ethanol solution. The mixture 

was allowed to stir for 3 hr at 60oC to incubate, before being transferred to a large beaker 

and dried at 200oC in a convection oven. The powder cake was then collected and heat 

treated in a resistively heated muffle furnace (Vulcan 3-550, Bloomfield, CT, USA) to 

oxidize and form a silica layer. The cycle for oxidation was 2oC/min to 100oC with a 0.5 

hr hold, ramp to 500oC at 5oC/min, hold for 5.0 hr, then ramp to 50oC at 10oC/min to 

complete. The M32 powder was pulverized using a diamonite mortar and pestle and 

passed through a sieve stack of 150, 106, and 75 μm, before being pressed into pellets 

using a polycarbonate binder (QPAC40, Empower Materials, Inc., New Castle, DE, 

USA) for a sintering study. Powder specimens were also used for differential thermal 

analysis (DTA) to measure the transformation of precursor materials at 1500oC, as well 

as phase development using XRD.  

 

5.3. RESULTS AND DISCUSSION 

Initial steps to formulate a 50 vol% paste out of single-phase mullite (MJ5M, 

Kyanite Mining Corp, Farmville, VA, USA), using Darvan C-N and Darvan 2 

(Vanderbilt Minerals LLC, Norwalk, CT, USA) as the dispersant resulted in partial 

stability, with the high solids loading paste (55 vol%) slowly sedimenting, i.e. loss of 0.5-

0.75 mL of liquid in 24 hr. The initial test batches were prepared at a pH 5.0, below the 

pHIEP 7.0 of mullite. This partial stability was assumed to be due to low dispersant 

concentration, incorrect pH, and the lenticular geometry of mullite powder. This issue 

persisted after the powder was ball milled for 72 hr, resulting in a surface area of 4.831 

m2/g from 1.593 m2/g in the as received state. The slow sedimentation was eventually 

prevented by introducing 1.5 wt% METHOCEL J7 MS-N solution (1 wt% solids) 

(hydroxypropyl methylcellulose, DOW Chemical Company, Florissant, MO, USA). With 

the addition of a binder, the suspension stability was over 48 hr, and a series of test bars 

were fabricated for sintering. Samples were sintered at 1550oC for 0.5 hr and 1700oC for 

0.5 hr to compare sintering conditions similar to that of alumina and conditions that are 

necessary for mullite formation. The percent theoretical density of the sample sintered at 

1550oC was 69.7%, while the 1700oC sample was 82.8%. Though there was significant 
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increase in density in the second sample, this temperature exceeds the sintering 

temperature that would be used for the systems combined with mullite in a composite, 

complicating the co-sintering process. It was believed that the >1550oC temperatures 

required for densification of mullite necessitated a lower temperature route if combined 

with Al2O3 in a graded composite. 

The combination of aluminosilicates such as kaolin and alumina to form mullite 

are well known [88], [89], [90]. Three samples were mixed and pressed into pellets. A 

sample of five pellets was sintered for each temperature at 1400, 1500, and 1600oC 

respectively, each for 2 hr. Specimens showed residual alumina content when treated at 

1400o and 1500oC for 2 hr, while the specimen sintered at 1600oC for 2 hr showed near 

complete reaction and dominant mullite formation, with unidentified peaks assumed to be 

residual alumina, shown in Appendix Figure 1 (Appendix Figure 1 is included in the 

Appendix for purpose of image clarity). 

Though successful reaction occurred at modest temperatures in the range of 1400-

1600oC, the specimens exhibited fracture during the sintering process; it is unknown 

whether this was due to mullite formation and phase expansion or was an artifact from 

sample preparation via compaction. The average relative density of the samples is 

outlined in Table 5.1, with the 1600oC sample achieving a relative density of 90.8%. 

Despite the ability of this sintering process to achieve final stage densification, it fails to 

achieve high relative density in a short time span, necessitating yet another method to 

form mullite that is > 95% theoretically dense.  

 

 

Table 5.1. Relative density of sintered kaolin:alumina compacts for various sintering 

temperatures and a 2 hr isothermal hold. 

Sintering Conditions 

[ temperature oC (time hr) ] 
Relative Density (%) 

1400 (2) 84.3 

1500 (2) 84.8 

1600 (2) 90.8 
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SEM micrographs in Figure 5.1 show the microstructural development of each 

specimen; the acicular grain morphology is indicative of mullite formation from reaction 

between kaolin:alumina. Some view microstructural development as a benefit for tough 

mullite, while it can also become a hindrance to full densification [91]. 

 

 

 

(A) 

 

(B) 

 

(C) 

Figure 5.1. Microstructural development of (A) 1400oC, (B) 1500oC, (C) 1600oC 

specimens sintered for 2 hours with acicular grains indicative of mullite formation. 



40 

 

 The final attempt to develop a mullite system that would sinter at temperatures 

below 1600oC, after a single-phase paste and reaction sinter kaolin/alumina system, a 

diphasic mullite precursor was attempted. Several types of methods are available, such as 

monophasic, amorphous gels diphasic gels, or a hybrid mixture of polymeric gel and sol 

[92]. The synthesis of this premullite powder was fully described by Wei and Halloran 

[64] and could be synthesized in two ways: acid or base catalyzed.  Batches of both types 

were synthesized and allowed to incubate in a water bath at 60oC to determine which 

yielded the highest surface area; this is outlined in Table 5.2.  

There was not enough variance between the base and acid catalyzed series to 

suggest that incubation times would have an effect. However, acid catalyzed 48 hr 

incubation time yielded the highest surface area of all tested samples. For hybrid sol-gel 

methods, Huling and Messing (1989) suggest that incubation time may be critical, if a 

small polymeric gel fraction is included introduces potentially finer nucleation sites and 

increases the apparent rate for a finer grain size of 0.4 μm at 1550oC [93]. 

 

 

Table 5.2. Surface area of incubated acid and base catlayzed series M32. 

 Acid Catalyzed Base Catalyzed 

Incubation time: 
Surface Area (m2/g) 

[correlation value, r] 

24 hr N/A 
164.801 

[0.9995] 

48 hr 
206.413 

[0.9966] 

165.194 

[0.9995] 

72 hr 
170.979 

[0.9966] 

159.082 

[0.9969] 

   

 

  A sample of acid catalyzed, 48 hr incubated M32 was analyzed using differential 

scanning calorimetry (DSC) (SDT Q600 Differential Scanning Calorimeter, TA 

Instruments, New Castle, DE, USA) to identify the characteristic exothermic peak around 

1440oC, which suggests primary mullite formation. Figure 5.2 illustrates just that, with a 

sharp exotherm identified at 1442oC. This aligns with data collected in Schneider et al.  
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[94] as well as Wang and Sacks (1996) [95] for thermally treated diphasic mullite gels 

and represents mullite formation below 1550oC.  

Three 25.4 mm diameter x 3 mm thick pellets were prepared for sintering. 

Incubated acid catalyzed series M32 was first mixed with 2 wt% QPAC40 and milled in 

acetone overnight. The sample was collected via rotary evaporation and passed through a 

100 μm sieve. To consolidate the powder, 3.0 g of powder was pressed at 70.3 MPa for 

60 s. These pellets were then sintered in a furnace (Deltech, Model 31-9, Denver, CO) at 

1550oC for 1 hr; the cycle ramped to 750oC at 10oC/min, held for 0.5 hr, ramped to 

1550oC at 5oC/min, held for 1 hr, and ramped to room temperature at 10oC/min to end. 

Unfortunately, the average relative density of these pellets was only 70.4% theoretical. 

However, there is some indication as to why in Figure 5.3. These curves represent the 

difference in energy required for mullite formation at the same heating conditions: 

10oC/min to 1500oC. They indicated that when the M32 powder is milled the energy of 

formation required is significantly more endothermic than as-synthesized M32. This 

suggests that the intimate contact of the Al2O3 and SiO2 formed during synthesis and 

oxidation is completely undone by milling the powder for 18 hr. 

Figure 5.2. DSC micrograph showing premullite reactants converting to mullite 

according to characteristic mullite exotherm at 1440oC. 
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No pellets were sintered of as-synthesized powder, though it is hypothesized that 

it will form mullite. Analysis by Wei and Halloran identifies that stoichiometric 

aluminosilicate gels, like the ones produced, can produce mullite at modest temperatures. 

However, formation and densification are controlled by short-range diffusion and 

transformation is preceded by a temperature-dependent incubation time [96]. This 

confirms that though mullitization can occur at temperatures below 1300oC, isothermal 

treatment cannot be avoided for full development, only reduction of the temperature at 

which it is necessary. In this study, that was avoided to prevent complications with future 

alumina:mullite graded composites, for fear of exaggerated grain growth in the alumina. 

Wei and Halloran also proved through direct microstructural observations that growing 

mullite phase in diphasic gels pins larger Al2O3 grains. This mechanism may be the key 

to prevent previous fears for processing a mullite:alumina graded composite. 

Figure 5.3. Heat flow of as-synthesized (top) vs. milled (bottom) M32, with 

evident increase in energy requirements to convert premullite powder to mullite 

due to separate of reactants after milling process. 
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 A later analysis by Sacks et al. (1991) also confirmed the analysis by Wei and 

Halloran, finding that full densification can occur as low as 1300oC with multi-hour 

isothermal holds to develop fine grained mullite at higher temperatures of 1550oC [98]. 

With this evidence from the literature, it is clear that a study should be conducted to 

determine an improved method for reduction of the sol-gel processed M32, a design of 

experiments to control the average particle size of synthesized composite powders, or 

direct fabrication using the gel. Finally, a study by Sacks et al. (1995) demonstrated the 

benefit of seeding microcomposite particles for phase development. An addition of 

approximately 2 wt% of seed particles could control the formation of fine grained mullite 

(≤ 0.4 μm) at low temperatures where densification occurs (1300-1400oC) [98]. With the 

current process of synthesis and comminution, seeding could aid in phase development 

and densification despite the large endothermic difference caused by separation of the 

M32 particle reactants. 
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6. CONCLUSION 

 

This thesis work was to design ceramic paste systems for room temperature 

deposition via Ceramic On-Demand Extrusion for fabricating dense complex ceramic 

parts. Overall, this thesis work provided a solid foundation for further development of 

ceramic paste extrudates compatible with the CODE process.   

An oxide-nitride-carbide system for in situ fabrication of ZrB2, as well as an 

aqueous paste for deposition of single-phase ZrB2, with two aqueous binders as options 

for developing an extrudate were presented. Having confirmed a chemistry for reaction 

sintering, future development is necessary to achieve densification during sintering. 

Alternative additives, such as boron salts and high char yielding resins, could be used to 

reach the goal of achieving a high degree of microstructural control.  

The development of a high solids loading (50 vol%) yttria-stabilized zirconia 

paste capable of producing near theoretical density (> 98%) sintered parts was studied. 

This system is binderless, but also compatible with aqueous binders, and needs further 

development for suspension stability, increased shelf life and higher solids loading. For 

dispersion of the 3YSZ an anionic polyelectrolyte was used in an alkaline regime to take 

advantage of depletion stabilization, but with zeta potential measurements, it is likely a 

more stable paste could be developed using the same electrolyte in an acidic regime. 

A mullite system was developed for the design of a functionally graded composite 

of mullite and alumina. Due to the sintering temperatures exceeding 1600oC and multi-

hour isothermal holds necessary for primary mullite formation, diphasic mullite powder 

was synthesized. This premullite composite powder fully transforms into mullite at a 

temperature of 1440oC, but becomes significantly more energy intensive if the composite 

particle is fractured, i.e. milled. Samples that were milled and sintered at 1550oC for 1 hr 

exhibited lack-luster relative densities averaging 70.4% of theoretical density. The 

compacts made from as-synthesized powder, M32, may potentially achieve higher 

densities through a two-step viscous transient sintering cycle, with isothermal holds at 

1300oC and 1550oC. Literature also suggests that seeding could aid in phase development 

at lower sintering temperatures, if the M32 is comminuted for a finer particle size. 
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7. FUTURE WORK 

 

To add value to this thesis work, quantitative rheological characterization of the 

paste systems is necessary. Rheological analysis of structured fluids can be done to 

design a functional paste for a specific application. To begin, it would be necessary to 

gauge the shelf life and sensitivity of a test batch to the rheological procedure using a 

solvent trap. This would involve measuring the change in viscosity with a constant shear 

rate for a fixed time frame, e.g. 5 minutes. Any increase in viscosity is likely due to rapid 

sedimentation and separation of the paste in a controlled humidity environment. The first 

test is to determine the high and low resolution of the flow behavior. It includes 

measuring the flow curve across a broad range of shear rates, e.g. 1.0-100 s-1, and 

determining the shear rate with the lowest repeatable viscosity in a sample. This identifies 

a shear range where the viscosity is most sensitive. Next it would be valuable to 

determine if a transient viscosity peak is detectable, which can be done by measuring the 

viscosity curve with different measuring point durations at a low shear rate. One curve 

should have a set dwell time, e.g. 10 s, and one with logarithmic dwell times, e.g. 50s – 

2s, for changing shear rates. A common rule is that for shear rates γ < 1 s-1 the duration 

(t) at a measured value corresponds to the reciprocal of the set shear-rate, so t > 1/γ. 

Additionally, strain or stress sweeps can be used to determine the change between 

solid and fluid mechanics, identifying the linear viscoelastic region. This is done by 

changing the stress or strain amplitude with respect to time. The aim is to describe the 

deformation behavior of a sample in a non-destructive manner by identifying the upper 

limit of deformation before flow or shear. The storage behavior and dispersion stability 

can then be identified by a frequency sweep to describe the time-dependent behavior of 

the sample. Using the upper limits from the amplitude and frequency sweeps, one can 

begin to measure the storage modulus (G’) and loss modulus (G”), which describe the 

elastic and viscous portion of the sample fluid mechanics respectively. If  G’ > G”, the 

sample can be called a viscoelastic solid, having significant potential energy due to 

chemical or physical interaction in the structure. If G” > G’, the sample is a viscoelastic 

liquid, with energy being dissipated through the interaction of the individual units of the 
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structure, which are not strongly bonded or linked. Finally, constant dynamic-mechanical 

conditions can be applied, from the frequency and amplitude tests, to determine any time-

dependent behavior of the sample. A similar test, though somewhat extraneous for 

CODE, could be temperature-dependent behavior. Also a dynamic-mechanical test this 

test would identify material softening or melting behavior on heating, and solidification, 

crystallization, or gelation upon cooling. 

The characterization results from these tests would provide flow curves showing 

the change in viscosity with respect to shear rate, the determination of a zero-shear 

viscosity regime, the paste yield point, the complex moduli, G*, and sensitivity to shear 

history. Not only are these parameters necessary for designing complex fluids for 

advanced deposition applications, but commonly reported in the current literature for 

concentrated suspensions. Useful publications in literature for designing dynamic 

rheological tests include Lewis [45], Pugh and Bergstrom [99], and Mezger [100].  

Further value could be added to the quantitative understanding of developed 

pastes by using dynamic light scattering (DLS) techniques to measure the initial average 

particle size (d50), and to understand the developed network and fracture of the network if 

applied to dynamic rheological evaluations described above. Small angle light scattering 

(SALS), which is a lower resolution version of small angle x-ray scattering (SAXS) can 

provide rheological and structural information, i.e. particle shape, size, orientation, and 

distribution. This information can be used to tune dispersion strategy and deposition 

parameters. 
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