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ABSTRACT 

Sleep is the most important thing to rest our brain and body. A lack of sleep has 

adverse effects on overall personal health and may lead to a variety of health disorders. 

According to Data from the Center for disease control and prevention in the United States 

of America, there is a formidable increase in the number of people suffering from sleep 

disorders like insomnia, sleep apnea, hypersomnia and many more. Sleep disorders can 

be avoided by assessing an individual’s activity over a period of time to determine the 

sleep pattern and duration. The sleep pattern and duration can be determined for an 

individual with the help of commercially available fitness devices such as Fitbit, Nike, 

Apple, and many others, which are activity trackers with accelerometer sensors. But these 

devices determine sleep duration from a “Proprietary Algorithm”, which processes the 

movement sensor data. Due to the proprietary nature, in a long-term study, the developer 

of the algorithm could update and make changes to the algorithm without revealing the 

details of the update to the user. This affects the measures reported by the algorithm. 

Hence to determine correct and reliable sleep duration, an Algorithm is developed by 

directly analyzing the actigraphy signals using time series segmentation. The study was 

done on a group of 20 healthy Undergraduate students from Missouri University of 

Science and Technology, whose daily physical activities were recorded using the 

GENEActiv accelerometer wristwatch worn on the non-dominant wrist. In this thesis, an 

open source algorithm has been developed using the daily physical activity data to 

estimate the sleep duration for any individual. 

Keywords: Actigraphy, GENEActiv, Sleep, Data Analysis, Time series segmentation, 

Physical Activity, Algorithm 
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1. INTRODUCTION 

1.1. BACKGROUND 

Sleep is required and necessary to rest the brain and body. It plays an important 

role in maintaining good physical health and wellness throughout our lives. Sleep also 

plays a crucial role in helping the brain work adequately and efficiently. Getting the right 

amount of sleep helps in improving one’s problem-solving skills and improves one’s 

learning capability. On the contrary, sleep deprivation has adverse effects on a person's 

health and life in several different ways [1]. 

In recent times, sleep deprivation has been a common problem. Sleep deprivation 

is caused to an individual if he or she gets less sleep than required for normal functioning 

of the body. However, normal differs across individuals. According to the article in 

Medical News Today by Kathleen Davis FNP [2] sleep deprivation has many adverse 

effects on the human body system.  

Some of the effects include but not limited to: 

• The weakening of the immune system 

• Respiratory diseases 

• High risk of Diabetes 

• Risk of cardiovascular disease 

• Hormone production   

• Depression 

• Obesity 

The usual cause of sleep deprivation [1] are sleep disorders like insomnia, sleep 

apnea, Restless Leg Syndrome (RLS), and primary hypersomnia. According to the 

American Sleep Association (ASA) [3], “Sleep Disorders represent some of the most 

challenging medical conditions and affect 1 in 3 people at some stage of their lives.”  

According to the Centers of Disease Control and Prevention (CDC) [4] 50-70 million US 

adults suffer from a sleep disorder and 37.9% of people reported unintentionally falling 

asleep during the day at least once, in the preceding month. Furthermore, 4.7% proclaim 

that they nod off or fell asleep while driving at least once in the preceding month. In 

addition, drowsy driving due to inappropriate sleep accounted for nearly 1,550 fatalities 
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and 40,000 non-fatal injuries reported annually in the United States of America. 

According to CDC [4], Insomnia is the most prevalent sleep disorder, with short-term 

issues reported by 30% adults and chronic insomnia affecting 10% of all adults in the 

U.S. Out of 25 million U.S. adults having obstructive sleep apnea, 9-21% in women; 24-

31% in men. In addition, 100,000 deaths are caused each year in US hospitals due to 

medical errors and sleep deprivation. 

Further, statistics shown in the study by The RAND Corporation [5] reveals that 

lack of sleep has a big impact on the nation’s economy. The study states that the United 

States of America sustains economic losses up to $411 billion dollars per year (2.28% of 

its GDP) due to lack of sleep. It has been observed that lack of productivity is in part due 

to lack of sleep. In the United States, 1.2 million working days are lost annually due to 

lack of sleep. In addition, lack of sleep leads to 13% higher mortality risk. The statistics 

show that the problem of not obtaining adequate sleep is a serious one and cannot be 

ignored. In order to prevent it, an accurate sleep pattern assessment and determining the 

sleep duration of an individual should be done to find the causes and severity of the sleep 

disorders. 

There are different methods in which sleep pattern can be assessed, like 

questionnaires, actigraphy, polysomnography and multiple sleep latency test. Among all 

the methods mentioned, Actigraphy is an instrumental method where the evaluation is 

done through human activity and movement measurement. 

Actigraphy is recorded and measured continuously with the help of a small device 

called Actigraph (wrist-worn accelerometer). An accelerometer is an electromechanical 

device which measures the acceleration forces of the body. Moreover, an actigraph is 

generally a lightweight portable device, which is normally the size of a wristwatch. It is 

worn mostly on the hip, belts, ankles, arms, wrist and other body movement collection 

points of interests. As the actigraph records and detects the movement of an individual, in 

recent times wrist actigraphy have been widely employed for assessing the sleep pattern 

of an individual over a continuous period of time [6]. In order to determine the sleep 

pattern and sleep duration for an individual in the long term, developing an automatic 

sleep scoring algorithm that is cost-efficient and easily available is important. It is 

through the development of such an algorithm that small changes in an individual activity 
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and sleep patterns can be assessed. This capability to assess the small variability on an 

individual basis would prove useful to any long-term study that seeks to assess habitual 

patterns for individuals and a possible correlation between activity and sleep patterns. 

 

1.2. MOTIVATION AND SCOPE.   

The sleep pattern and sleep duration can be determined for an individual with the 

help of commercially available fitness devices which are in the form of a wristwatch or 

by examining the person in a sleep laboratory. Some of the well-known companies like 

Fitbit, Nike, Apple, Samsung, Nokia, Garmin and many others make fitness devices. 

These devices do direct analysis on the data collected and display the summary of each 

day which includes sleep duration, deep sleep duration, a number of steps walked 

throughout the day and other useful information to turn an individual into a healthier 

human being. The summary data can be used by an individual to change their behavior 

towards leading a healthier life. Thus, by presenting an individual with their activity and 

sleep, then they can be proactive in making better decisions. These decisions include 

going to bed at an earlier time, walking more to meet physical activity goals, duration of 

activity and other key activity summary information. The following Figure 1.1 shows the 

working of a commercially available fitness device [7]. 

 

 

 

 

  

Figure 1.1. Working of Commercially Available Fitness Devices 

 

 

 

PROPRIETARY 
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But these devices though useful and informative, use a “Proprietary algorithm” to 

analyze their data. Proprietary algorithms are the algorithm developed by the company to 

achieve a specific goal. The company has sole rights, trademarks, and often have a 

patent(s) associated with the algorithm. The company does not reveal what and how they 

are analyzing the accelerometer data with the algorithm which makes it difficult to 

understand how the data is analyzed, summarized, and presented to the end user. 

Moreover, whether the results of the analyzed data are appropriate for changing the 

individual’s daily habits to lead a healthier life. In addition, the measures determined by 

the device are affected if there is any update provided for the algorithm by the 

manufacturer during a long-term study. This makes it unreliable to use these devices for 

analyzing the sleep pattern and to have reliable sleep duration of the individual over a 

long-term study. 

On the other hand, the sleep centers help in determining sleep duration and sleep 

pattern of the person by performing a sleep study in a lab. In this sleep study, a 

technologist places different sensors or electrodes on the person’s body and records 

different types of sensor data (heart and breathing rates, body movements, eye 

movements and many others) while the person is asleep. The data collected from the 

sleep study is analyzed by the technologist and then later evaluated by a doctor. 

Depending upon the results the doctor recommends a change in daily activities to lead a 

healthier life. 

Thus, it is necessary to have an algorithm where the individual can be assessed in 

a more open environment, knows how the analysis takes place in the device and have 

reliable results regarding the common sleep measures. The sleep measures include sleep 

duration, activity, and so forth.   

The algorithm would help in knowing how a person’s sleep pattern and sleep 

duration differs from day to day. It has remained an elusive correlation in the literature 

that sleep and more importantly, lack of sleep can impact the cognitive performance of 

the individuals. 

Cognitive performance [8]– [10] is the capability of the person in utilizing the 

knowledge acquired by the mental process to perform a certain action. Furthermore, with 

the help of results from the Algorithm, we could find the relation between the sleep 
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pattern and sleep duration of an individual with that of the cognitive performance, which 

according to the literature remains an elusive correlation due to lack of long-term studies 

and complexities involved with sleep. By determining the sleep pattern and sleep 

duration of an individual with that of the previous night we can examine the performance 

of the individual for the following day and continue this study for a long term to see if an 

individual’s unique sleep patterns and rhythm, variations, and other key characteristics 

information can be tied down. 

 

1.3. LITERATURE REVIEW 

1.3.1. The Emergence of Actigraphy.  The early research in actigraphy data   

analysis involved using a piezoelectric transducer to record wrist activity, (D. J Mullaney 

et al., 1980) [11] used the piezoelectric transducer to record the actigraphy data of the 

participants in his sleep study to determine their total sleep time. They also recorded the 

activity of the brain with Electroencephalography (EEG), the activity of skeletal muscles 

with electromyography (EMG) and eye movement with the help of Electrooculography 

(EOG). Each recorded activity which was then scored into two states: sleep state and 

wake state. The research study by (D. J Mullaney et al., 1980) [11] showed that the 

actigraphy overestimated the total sleep time (TST) by 15 minutes using the 

Rechtschaffen and Kales model [12]. The overestimation was due to the actigraphy 

interpreting very low-frequency movement as sleep despite the person being awake in the 

bed, which is a clear drawback of using accelerometers, which only record movement 

information. Thus, small movements or periods of low mobility have the potential to 

misclassifying an individual in the sleep state. Furthermore, despite the overestimation of 

the sleep duration on an average by 15 minutes with respect to EEG it still has the benefit 

of being low in cost and individual does not have to be monitored in the sleep lab, which 

is often an uncomfortable situation. Thus, the research showed that Actigraphy is more 

convenient to use and can be a reliable method to be used for clinical purposes. The cost-

benefit of the actigraphy can be increased further, by developing algorithms which can 

improve the scoring of sleep and give more reliable sleep duration. 

Keeping this in mind (Webster et al., 1982) [13] developed the first automatic 

sleep scoring algorithm. The study measured the participant’s wrist activity with the help 
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of a piezoceramic transducer, which was digitized to identify the sleep and wake states of 

an individual. This digitized activity signal was then scored using an automatic scoring 

program which was a combination of ten different mathematically formulated algorithms 

to identify the sleep/wake states with that of the EEG. Both the scores agreed 94.46% of 

the time. (Webster et al.. 1982) [13] also collected data and recorded specific movement 

functions using a wearable microprocessor-based digital activity monitor. The automatic 

scoring program devised by them also scored the newly collected data, obtained from the 

wearable microprocessor-based digital activity monitor which agreed 93.4% with the 

EEG regarding the sleep duration measure. The study (Webster et al.. 1982) [13] 

indicated that the data from the wrist activity can be digitized and scored using an 

automatic scoring program with the help of the computer with negligible loss in the 

accuracy of sleep duration. The automatic scoring program was 5 to 10 times less costly 

as compared to EEG scoring and could compute the score in seconds. Furthermore, the 

use of an all-digital system is a fast, accurate and a cost-efficient method to monitor sleep 

using wrist activity data in an ambulatory environment. Unlike EEG which required 

electrodes to be placed throughout the human body mostly the scalp, a digital activity 

monitor is comfortable and appropriate as it is a non-intrusive sensor. This research led to 

the advancement and development to improve the automatic sleep scoring algorithm. 

1.3.2. Early Research in Automatic Sleep-Scoring Systems.  (Sadeh et. Al, 

 1989) [14] used an automatic scoring procedure on actigraphy data to discriminate 

between sleep and wake states and validate it against the Polysomnography (PSG) 

recordings. Polysomnography (PSG) is a type of test similar to EEG, conducted during 

sleep for the purpose of detecting sleep disorders in an individual. The automatic scoring 

procedure developed by (Sadeh et. Al, 1989)[14] has the following attributes: handled 

large data sets, correctly classified sleep-wake states and accurately estimated the sleep 

efficiency. Sleep efficiency is the ratio of time an individual is asleep at night to that of 

the total time the individual has spent in the bed. To classify the sleep and wake states 

correctly an optimal discriminant function [15] was developed from the accelerometer 

data. Further, the automatic scoring procedure correctly differentiated between the 

individuals from a normal population and an individual belonging to a group of 

insomniacs and individuals with sleep apnea. The procedure could also correctly identify 
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the severity of sleep apnea by using the actigraphy/accelerometer data alone. The study 

concluded that the actigraphy recordings can be used for initial large-scale screening 

studies and in studies of the clinical nature. An actigraph can be used as a tool for 

assessing the problems or issues of sleep, obtaining clinical data from physical activity 

data, and differentiating sleep and wake states for patients in bed. But the study needed to 

have more improvement in the sleep scoring procedure to achieve the clinical standards. 

(Cole et al., 1992) [16] developed an automatic scoring algorithm for 

distinguishing sleep and wakefulness states based on data collected from wrist activity 

via an accelerometer. The method was a replicate of the Webster’s algorithm [13], with 

(Cole et al., 1992) rescaling the Webster’s algorithm to attain a high accuracy for 

identifying the sleep and wake state. The accuracy obtained from wrist activity to 

distinguish sleep and wake state was 88% accurate with that of the polysomnography 

(PSG) in a mixed sample of subjects. The research study found that it is easier to record 

multiple night sleep recordings using a wrist activity as compared to Polysomnography 

due to its convenience, non-intrusive nature, and cost efficiency. Furthermore, the study 

stated that in spite of night sleep variability in humans, the actigraph can be used as a 

device to identify the sleep and wake states by recording multiple nights in order to 

improve the accuracy. With the growing popularity of using actigraphy in sleep studies, 

the research focus now turned towards its validation and actigraphy specifications 

1.3.3. Actigraphy Validation Techniques and Methodological Issues.   

(Sadeh et. Al, 1994) [17] developed and validated a new sleep-wake scoring algorithm 

for the miniature wrist actigraph (AMA-32, Ambulatory Monitoring, Inc. Ardsley, NY) 

and assessed the different methodological issues of actigraphy placement. The results of 

the algorithm were compared with the Polysomnography readings (PSG). The non-

dominant hand and dominant hand scoring agreed 91%-93% with that of PSG’s 

sleep/wake period durations. The activity levels from the dominant and non-dominant 

hand differed during the sleep and wake period. The study suggested methodological 

issues of the variation in the device sensitivity with regards to movements. The 

methodological issues include correct use of actigraphy and its artifacts which are not 

addressed properly in clinical research. To identify artifacts related to breathing motion 

during sleep, the use of twin wrist actigraphy is helpful. This study involved a group of 
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subjects ranging from 10-25 years of age. In order to expand the research and involve 

other age groups (Sadeh et. al, 1995) [18] further expanded his work in the field of 

actigraphy by examining the validity of actigraphy in the assessment of sleep-wake 

patterns of infants. In this research study instead of using the PSG as a means for 

validation, an observation method was selected where the infant was observed 

continuously by an expert to examine and score the movement of an infant during sleep. 

This study also used the miniature wrist actigraph (AMA-32, Ambulatory Monitoring, 

Inc. Ardsley, NY), which was attached to the infant's ankle in order to collect the activity 

data. In order to assess the sleep and wake pattern of the actigraphy data, an automatic 

scoring algorithm was developed and validated with the observer scoring. The use of 

experts is common practice and PSG itself is a form of expert-based translations where 

the signal is marked to define different states of sleep, based on various signal properties. 

Results showed that the automatic sleep scoring algorithm and the observer scoring 

agreed 95.3% of the time. The research specifically stated that while examining the infant 

with actigraphy data, the data first should be structured and cleaned using a program [14, 

19] to apply an automatic scoring algorithm. Otherwise, the actigraph can lead to 

confusing results with an infant being identified as sleeping due to very low-frequency 

movements. This research concluded by stating that actigraphy can be used for assessing 

the sleep-wake patterns for an infant in order to determine whether the infant has any 

disorder development in the early phase of life like breathing difficulties, problems in 

sleeping, and others. Since actigraphy can be used for long-term sleep studies, further 

research is required for doing longitudinal studies to assess the maturational pattern in 

different types of infants. Moreover, research should be done to know if actigraphy can 

be used as a tool to evaluate the clinical interventions. 

In a review study, (Sadeh et. al, 1995) [20] examined the previously available 

experimental actigraphy data to find its potential clinical and research use in the field of 

sleep medicine. The review was divided into three different parts, with the first part 

focused on the methods which were used for assessing the validity and reliability of 

actigraphic sleep assessment. The second part focused on actigraphic experimental and 

clinical methods in sleep medicine. Lastly, the third part discussed the issues related to 

methodology in a sleep-wake study using actigraphy. The review stated that the 
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actigraphy had methodological issues which include actigraphy reliability and validity in 

assessing the sleep and wake patterns, uniform use of units of measurement, placement of 

actigraphic device, artifacts like sleeping surface, moving bed partner, a mattress and also 

individual differences between the participants demographic information like age, 

gender, and others. However, can be mastered with further research related to actigraphy 

placement, improving the recording of ambulatory movements, and with further research 

in automatic scoring algorithms. Based on the review study (Sadeh et. al, 1995) [20] 

stated that actigraphy can be used in assessing the sleep disorders as it is one of the most 

cost-efficient methods for long-term assessment of sleep. Actigraphy, can differentiate 

between the sleep and wake states in a person lying in the bed and can assess sleep and 

wake patterns in patients suffering from sleep disorders. This review then helped other 

researchers to make improvement in the sleep study research using actigraphy. 

Actigraphy has gained popularity in sleep study research, (Clete A. Khushida et 

al, 2001) [21] obtained common sleep measures from actigraphy like total sleep time 

(sleep duration), sleep efficiency (measure of mobility during sleep. E.g. tossing & 

turning), and wakefulness (amount of time spent active). These sleep measures were then 

validated with Polysomnography (PSG) recordings and subjective questionnaires. The 

methodology involved sleep disordered patients, whose actigraphic and PSG data was 

used to calculate the sensitivity, specificity and accuracy measure for a 30 sec time period 

or epoch. The results of the study stated that the sleep measures like total sleep time and 

sleep efficiency from the PSG data had high significance with the combination of 

actigraphy and subjective data. The research study concluded that in order to determine 

the total sleep duration and sleep efficiency in sleep-disordered subjects, the use of 

subjective data is more beneficial than the actigraphic data. This is because when the 

sleep measures for the combined data of actigraphy and subjective data were not 

statistically significantly different from the PSG data. The research results showed that it 

is more beneficial to use a subjective data rather than the actigraphy data for a person’s 

sleep duration. 

1.3.4. Reviewing the Role of Actigraphy in Sleep Medicines.  In the (Sadeh et.  

Al, 2002) [22] study mention effectiveness, dependability, and restrictions for identifying 

the sleep and wake patterns using actigraphy. The study mentioned that actigraphy has 
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been declared as a reliable method in order to determine sleep and wake disorders and 

also to differentiate between different clinical groups. The research also states that there 

are pitfalls related to actigraphy, for example actigraphy cannot distinguish between 

patients having long periods of low activity or one who is active in sleep. There is no 

validation available for scoring algorithms, devices or clinical groups. Further, using 

automatic scoring algorithms by ignoring artifacts lead to inaccurate results. The authors 

of (Sadeh et. al, 2002) gave recommendations in order to overcome the pitfalls mentioned 

to improve future research and clinical studies which involves the use of actigraphy. The 

pitfalls mentioned were then used in the future research in order to improve the results. 

(Luciane de Souza et. al, 2003) [23] in their paper have the main objective, which was to 

assess the similarity between Polysomnography (PSG) and formerly proposed an 

algorithm of Cole et al. (1992) and Sadeh et al. (1994) in order to analyze the actigraphy 

recordings. The per minute agreeance between the algorithms and PSG was evaluated by 

calculating the sensitivity, specificity, and accuracy with regards to sleep duration and 

other sleep measures. The calculation of specificity and sensitivity gave more information 

about the similarity between the two algorithms. The similarity of the sleep parameters 

like sleep latency, sleep efficiency, total sleep time and intermediate awakening 

calculated from the two algorithms was compared with the PSG by Bland and Altman 

technique. Bland and Altman developed a technique to estimate the similarity within a 

sample on the basis of the mean difference between two systems from each subject 

[24,25]. The research study stated that the Bland and Altman's technique is a powerful 

technique, which showed that actigraphy overestimated all the sleep parameters and 

underestimated the awakening for each subject. The study provided information on the 

advantages and drawbacks of actigraphy, in addition, stated that the extent of similarity 

between the actigraphy and PSG should be decided by the researcher which might 

influence their research study. 

1.3.5. Wrist Activity Monitor.  (G.Jean-Louis et. Al, 2001) [26] determined   

sleep-wake states from the nighttime wrist movement by using different motion- 

quantifying algorithms and was compared with the Polysomnography (PSG) readings. 

The study involved healthy adults wearing commercially available wrist activity monitor 

Actillume I (Ambulatory Monitoring, Inc. Ardsley, NY) and Mini Motionlogger 
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(Ambulatory Monitoring, Inc. Ardsley, NY), in addition, PSG recordings were done 

simultaneously with Somnostar digital polysomnography (SensorMedics, Yorba Linda, 

CA) to compare the results from the wrist activity monitors.  The study involved 

estimating the sleep and wake states from nighttime wrist movements with five different 

actigraphy modalities and comparing the results with the Polysomnography (PSG) 

readings. All the five modalities agreed with the PSG readings with a range of 91.4%-

96.5% agreement, the Proportional Integrating Mode (PIM) from the Mini Motionlogger 

(Ambulatory Monitoring, Inc. Ardsley, NY) performed the best (96.5%) to differentiate 

between the sleep and the wake states. This research showed that the commercially 

available actigraphic device can be used for sleep study research. The sleep and wake 

states can be distinguished by recording the wrist activity data of an individual. 

In another research study related to wrist activity monitor (Lotojonen et al. 2003) 

[27] differentiated the sleep and wake states during bedtime and naptime using an online 

activity monitoring device Vivago WristCare (IST International Security Technology Oy, 

Helsinki, Finland) and actigraphy (ActiWatch, Cambridge Neurotechnology, AW4). The 

result was calculated using two previously developed scoring algorithm by Jean-Louis et 

al. (1996) [28] and Sadeh et. Al (1994) [17] and tested against the PSG recordings. Both 

the devices Vivago WristCare and Actiwatch showed similar performance when tested 

against Polysomnography (PSG). On the other hand for the nap-time analysis, the results 

were compared with each other (Vivago WristCare and Actiwatch) which showed similar 

results. (Lotojonen et al. 2003) [27] concluded by stating that the Vivago WristCare 

which is a physical activity monitoring device and a security device used by elderly 

people can be used for determining the sleep and wake states in long-term sleep study as 

it showed similar performance with actigraphy.    

Since actigraph devices were available commercially in different types of 

configurations, (Kathleen Benson et al. 2004) [29] in the research study compared two 

commercially available actigraphy devices with different manufacturer, hardware, 

firmware and PC software: Actiwatch L(Mini-Mitter Co., Inc, Bend, Ore) and Basic Mini 

Motionlogger (Ambulatory Monitoring, Inc, Ardsley, NY) to assess the performance in 

deriving measures of sleep. The results showed that the Mini Motionlogger when set to 

high sensitivity resulted in more total sleep time, less wake after sleep onset time and 
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greater sleep efficiency as compared to the Actiwatch L. Furthermore, when the 

sensitivity was set to low the Mini Motionlogger resulted in higher wake after sleep onset 

as compared to Actiwatch L. The study showed that when the sensitivity was set to 

medium both the device had similarity in their performance. The purpose of the study 

was to compare the results of devices with each other and find if we have equivalent 

results despite different configurations (hardware and software) for both the devices. The 

author concluded by stating that for the selection of commercial actigraph device other 

specific characteristics like cost, memory, weight, interface, and output measures should 

be taken into consideration. In addition, the authors stated that the sleep measures like 

sleep latency, total sleep time, wake after sleep onset, sleep efficiency obtained from the 

actigraph devices cannot be validated without the PSG recordings. The research showed 

the necessity of using PSG data to validate the results from the actigraphy device.   

Keeping this research in mind and the necessity to validate the sleep measures 

from the commercially available actigraphy device with the polysomnography (PSG) 

recordings, (Lorenzo Tonetti et al. 2008) [30] in the research study compared two 

commercially available actigraphy with that of the PSG recordings in a population of 

healthy subjects. The study involved the subjects wearing commercially available 

actigraphs: Basic Mini-Motionlogger (MML; Ambulatory Monitoring, Inc., Ardsley, 

New York, USA) and Actiwatch (AW; Cambridge Neurotechnology Ltd, Cambridge, 

UK) with parallel PSG recording. Both the actigraph devices and polysomnography 

(PSG) gave sleep measures: sleep onset latency, total sleep time, wake after sleep onset, 

and sleep efficiency. The comparison of sleep measures from the two actigraph devices 

and polysomnography resulted in the Sleep onset latency being underestimated by both 

the actigraph devices while having similar performances with other measures of sleep. 

(Lorenzo Tonetti et al. 2008) [30] concluded that both the commercially available 

actigraph devices can be used for measuring the sleep measures except for Sleep Onset 

Latency (SOL) and a limitation of obtaining results for healthy population only. The 

research study showed that the commercially available actigraphs have good performance 

when compared to PSG and can be used for assessing sleep and wake states. This led to 

an increase in the use of commercially available actigraphs in sleep research study. 
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 (Allison R. Weiss et. al, 2010) [31] also used a commercially available device 

used for measuring core physical activity to estimate sleep. The devices used for the 

study were: Sleepwatch (Ambulatory Monitoring, Inc., Ardsley, NY), Actiwatch 

(Respironics, Pittsburgh, PA) and Actical (Respironics, Pittsburgh, PA) in addition 

Polysomnography (PSG) recordings were also recorded for result comparison. All the 

three devices overestimated the total sleep time with regards to the PSG recordings, this 

is due to the inability of actigraphy to correctly detect the wake-up periods in a subject 

that is not moving much. The study showed that the Actical device which is used for 

specifically measuring core physical activity gave strong results of total sleep time in 

correlation with the other actigraphy devices (Actiwatch and Sleepwatch). (Allison R. 

Weiss et. al, 2010) [31] thus concluded that using a physical activity measurement device 

in sleep research, it helps in knowing a distinct sleep and physical activity statistics for 

each participant which will result in knowing their health behaviors. 

1.3.6. Probabilistic & Statistical Distribution Models in Actigraphy. 

(Andrew S.P Lim et. al, 2011) [32] developed a model using actigraphy data to assess 

fragments of human rest and active patterns using a probabilistic state transition model. 

The study states that actigraphy has more advantages over polysomnography to assess the 

rest and activity pattern in an individual. The advantages of the actigraphy include it is a 

non-invasive/intrusive method and has the ability to record activity on a long-term basis, 

that can be used in an open environment and has the ability to interpret the behavior of 

the individual. The fragmentation of rest differs with the individual's age, sex, and Body 

Mass Index (BMI). The probabilistic model developed in the research study is cost 

efficient, can be effortlessly implemented in analyzing data and has the ability to be 

implemented in exhaustive clinical studies. 

In (A. Domingues et. al 2012) [33] the author developed a model for describing 

the different states in actigraphy data based on three statistical distribution: Exponential, 

Rayleigh, and Gaussian. The study stated that by utilizing the parameters and weights of 

combination model of the three distributions it can be seen that the sleep and the wake are 

a different statistical distribution which was then used to distinguish between two states. 

The research showed that the sleep and wake states can be differentiated by examining 

the statistical properties like the distribution of the states. The results obtained from the 
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model were not lucid to determine the best mixture distribution and more research is 

required to improve the distribution models.  

1.3.7. Use of Actigraphy Signals.  As actigraphy records the data of activity  

for each subject by recording the signals. (Cristina Crespo et al. 2012) [34] developed an 

algorithm to identify the activity and rest periods by using the actigraphy signals in order 

to correctly identify the ambulatory blood pressure monitoring parameters. The algorithm 

developed in the study uses morphological processing of actigraphy signals, adaptive 

rank-order filters, and rank-order decision logic. The algorithm performance was around 

94% when tested on the dominant and non-dominant hand of 104 subjects. The 

previously developed algorithms like Sadeh et. Al (1995) [20], Cole et. Al (1992) [16] 

was specifically used for studying sleep disorders where they are highly sensitive to 

numerous wake periods during an individual’s sleep. This drawback is overcome by the 

algorithm developed for identifying the sleep and rest cycle with respect to the 

ambulatory blood pressure monitoring and assessment related to cardiovascular risk. The 

proposed algorithm is not highly sensitive and ignores the short periods of transition 

between the rest and activity period. The algorithm in spite of the high performance 

should be validated with the differently available algorithm in order to be used for 

clinical applications. Specifically characterizing the performance of the algorithm with 

different population would help in the more detailed examination of the algorithm 

developed.  

The actigraph device records signal with different features which are then used for 

analyzing the human activity. In the research study by (Mohammed A. Khabou et al. 

2013) [35], they used 63 common features which are already used in actigraphy data 

analysis to find the best performers from them [36]. To find the best features the study 

used two algorithms: entropy minimization and add-one feature, among which the add-

one feature algorithm performed better. On the selection of the best features, a class 

prototype was generated using K-means and min-max clustering algorithms for 

classifying the actigraphy signals into five different activities like standing, lying down, 

sitting at a desk and jogging on the treadmill. The algorithm performed with a 

classification accuracy of 95%-100% by using only 1-5 features. The model needs more 

improvement by using a more refined classifier to get a more accurate classification. In 
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order to achieve more accurate classification a study (D.Martin-Martinez et. Al, 2014) 

[37], proposed methodology to determine the sleep and wake periods automatically by 

analyzing the actigraphy signals. The design parameters for the actigraphy signal are 

automatically set by first estimating the binary classification (sleep and wake states) by 

using the expectation-maximization algorithm. Secondly, the previously determined 

binary classification is refined using an iterative linear classifier for better determination 

of the two states. This methodology had a general application and was able to identify 

few minutes of multiple rest intervals.       

(Matthew William Driller et al. 2017) [38] studied device placement to measure 

sleep by wearing an actigraphy device on the dominant and non-dominant wrist. The 

study measured different sleep measures like total sleep time, total time in bed, sleep 

efficiency, sleep latency, wake after sleep onset, sleep onset time and wake time for both 

the writs to measure sleep. The results showed that there was no notable difference 

between any of the sleep measures which proved that the actigraphy device can be worn 

on any wrist to analyze the actigraphy data. Further, this research gave an insight that the 

actigraphy device placement does not matter to determine the accurate sleep measures. 

So, the device placement is up to the researcher and the individual on which wrist to opt 

for recording the activity. The device should be placed on the wrist which is more 

comfortable for the user. Till now the wrist activity was monitored to record the person 

movement. To take the research a step further (Kelsie M.Full et.al 2018) [39] validated 

hip and wrist-borne physical activity accelerometer devices used for recording the 

physical activity data with polysomnography (PSG). The physical activity accelerometer 

device (GT3X+ Actigraph, LLC, Pensacola, FL) measured the sleep measures like total 

sleep time, sleep efficiency and wake after sleep onset time and was compared to the 

sleep measure data of the polysomnography (PSG) recordings. The results showed that 

there was no significant difference between the sleep measures determined by the 

accelerometer and the polysomnography (PSG) which proved that the physical activity 

accelerometers can be used for determining viable sleep measures. 

The literature review thus encourages to develop an algorithm that automatically 

identifies the Sleep and Wake states of a person using the activity signals alone for 

assessing the sleep pattern and sleep duration. The previous studies do not include 
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research where the algorithm is developed by directly analyzing the activity signals 

recorded by the actigraph. This encourages to develop an algorithm which can analyze 

actigraphy signals recorded using the actigraphic device for all types of user and not too 

focused to a specific group of users. The algorithm developed in the thesis is an open 

source and can be used for determining sleep duration in a preliminary long-term sleep 

study. The working of the algorithm involves directly analyzing the actigraphy signals for 

each individual involved in the study over a 24-hour duration by using Changepoint 

detection and Z-scoring to determine the sleep duration. 
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2. METHODOLOGY 

This section will describe the methodology used to develop the algorithm for 

determining the sleep duration of participants in detail. The methodology uses a 

combination of preprocessing accelerometer data, statistical change point, threshold 

classification, and time series segmentation. The following Figure 2.1. shows a flowchart 

of the important steps involved in developing the methodology: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Flowchart of the Methodology 

 

 

 

 

2.1. DATA DETAILS 

The data for the experiment was collected using the GENEActiv Original 

smartwatch [40]. This smartwatch consists of an accelerometer which is used to measure 

the human activities. The GENEActiv was specifically chosen for the research because it 

has the advantage of collecting raw data. This feature is not provided by any other 

manufacturer. Thus, it provides the benefit of using the unfiltered data, so that researchers 

can reuse the data anytime in the future for comparison. It also gives the flexibility of 

using different tools and statistical packages to analyze the data. Lastly, GENEActiv is an 
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open source giving more benefit for researchers.  Figure 2.2 illustrates a GENEActiv 

smartwatch [41]. 

 

 

 

 

 

Figure 2.2. GENEActiv Original made by Activinsights 

 

 

 

 

The raw accelerometer data was recorded at a sampling frequency rate of 60 Hz 

but was downsampled to one-minute aggregates. These aggregates are the sum of signals 

beyond the sensing threshold of the accelerometer device, refer to GENEActiv watch for 

details regarding these sensing thresholds [41]. These one-minute aggregates show the 

daily activity of the person in all types of environments as it captures mobility throughout 

the entire day. The data collection was done for the Fall 2016 semester and Spring 2017 

semester across 28 participants which included 5218 days. All the participants were 

healthy Undergraduate students both males and females from the Missouri University of 

Science and Technology. The student participants were all between 18-20 years of age. 

The watch was worn on the non-dominant wrist for all participants. The watch was 

charged once a month for 5 hours for each participant, which resulted in loss of days’ 

worth of data for the individual due to charging. The data collected include mean 

acceleration in the x, y, and z-direction, sum vector magnitude, near body temperature 

and light exposure for each participant [40]. These measures will be fully described in the 

proceeding section of this document. 
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2.2. DATA DETAILS 

The GENEActiv watch records 10 different data, which were aggregated to per 

minute sums for each participant. For this thesis, the focus was solely on the feature of 

sum vector magnitude (SVM) which is the summation of the magnitude of acceleration 

along all the three axes (x, y, and z) together. This helps in knowing the magnitude of the 

movement in all the direction without using a feature of each axes separately. Table 2.1 

shows the 10 different features that are recorded by the GENEActiv watch. 

 

 

 

 

Table 2.1. Data Set Features 

Features Description 

x_m Mean of acceleration in the X direction (x) 

y_m Mean of acceleration in the Y direction (y) 

z_m Mean of acceleration in the Z direction (z) 

lux_m Mean light level 

temp_m Mean temperature 

SVM sum of vector magnitudes 

(SVMgs = [(x2 + y2+ z2 )1/2 - 1g ]) 

x_p The standard deviation in the X direction 

y_p The standard deviation in the Y direction 

z_p The standard deviation in the Z direction 

lux_p Peak light level 
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2.3. ALGORITHM 

To develop the algorithm for determining the sleep duration from sleep, data is 

first collected and converted into suitable file format required for doing the analysis. All 

the converted data files undergo data pre-processing which involves cleaning & prepping 

the data files along with data filtering using a Butterworth filter to remove the extreme 

high and low-frequency data points. The filtering process sought to remove all data 

related to frequencies not commonly observed in human activity. Further, we segment the 

filtered time series data into 1440 minutes, which contains a full 24-hour segment of data 

from noon to the next day’s noon. Next, change point detection analysis is applied and z-

score is then used to create a clear threshold value to classify activity signals as sleep or 

activity. This threshold results in a determination of the sleep duration of a person based 

on their activity captured by the one-minute aggregates of accelerometer data. This 

process is discussed in detail in the proceeding sections. 

 

2.4. DATA COLLECTION AND CONVERSION   

The data recorded for each participant in the GENEActiv wrist-worn 

accelerometer is transferred to the Desktop/Laptop using the GENEActiv software 

platform [42]. Initially, the files are in binary (.bin) format which is then converted using 

the Data Converter tab of the GENEActiv software to a comma separated (.csv) file 

format for the purpose of analysis. The epoch length during the conversion of the binary 

file to comma separated file is set to 60 seconds. The comma separated file (.csv) has all 

the features mentioned above in Table 1.1 for each minute. The sum vector magnitude is 

created for each epoch and the gravitational force (1g) is subtracted. The comma 

separated value (.csv) file having all the features of table 1.1. for each minute is then used 

for doing further analysis. The GENEActiv watch has been previously used in a variety 

of activity and sleep research [43-45]. 
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2.5. DATA PRE-PROCESSING 

2.5.1. Data Preparation.  The first stage of data pre-processing involves the  

data preparation of the data collected for each participant. The data collected from the 

watch was not clean and structured i.e. it did not have the same start-time and end-time 

for all the participants, which makes the analysis difficult. 

In order to make it structured, the data had to be cleaned, especially in regard to the start-

time and end-time. This is because each participant picks up their respective watch at 

different times of the day at the initial start of a collection and during the charging 

periods. The goal of structuring the data is to have complete days of activity information 

that have the same start-time and end-time, which will make the analysis easier. In this 

thesis, the start-time for a day of data considered from 12:00 pm to 11:59 am on the 

following day. This was achieved by writing a program script as shown in Appendix, in 

the RStudio environment using the R package [46].  

The data cleaning assured that each participant had complete days of data i.e. 

1440 minutes. The start- time (12:00:00 pm) and end-time (11:59:00 am) was specifically 

chosen to ensure the analysis considers the most common time most people sleep. Hence, 

this time block was chosen with the hopes that it would capture the full time in bed for 

any person. It should be noted that not all people sleep during this time block. Thus, some 

days resulted in the sleep period extending beyond this time block or beginning with 

sleep into the afternoon. Inconsistent Participants 

After cleaning all the data files, it was compiled into one file containing all the 

participants with complete days of data using the ‘readbulk’ package of the CRAN-R 

project [47]. The final data file consisted of 1160 days of data across 20 participants. 

Figure 2.3 illustrates the activity pattern of a participant after preparing the dataset: 
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Figure 2.3 Typical Unfiltered Activity Graph of a Participant 

 

 

 

 

2.5.2. Data Filtering.  After the data preparation, the second stage of the data  

pre-processing involves filtering actigraphy signals. As per the research study by 

Redmond and Hegge [48], a voluntary human movement does not exceed 3-4 Hz, on 

another hand, an involuntary movement like tremor or shivering does not exceed 5 Hz. 

To remove frequencies that are outside of this human movement frequency range from 

the dataset. The data was filtered. The filtering process results in a smoother 

representation of the signal. A bandpass filter has the ability to remove the high and low 

frequencies from a recorded signal. Thus, a low bandpass Butterworth filter is used to 

remove the low frequency and attenuate the high-frequency noise from the actigraphy 

signals. The data filtering helps to have the frequency response as flat as possible to 

distinguish between the sleep and wake state. This also allows the focus of exploration of 

the activity data common to human activity.   

For this analysis, the low pass Butterworth filter with order 3 was used for 

filtering out the high-frequency points of the Sum Vector Magnitude (SVM) feature for 

further analysis. The Sum Vector Magnitude (SVM) is specifically used to analyze the 

data as it is a vector magnitude of acceleration in all the directions (x, y, and z). This 

helps in knowing the magnitude of the wrist movement in all the direction without using 

a feature of each axes separately in the analysis.   

12:00:00 PM 11:59:00 AM 
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To generate and apply the Butterworth filter for the data, the Signal package from 

the CRAN-R project [49] in the R studio environment was used. From the ‘signal’ 

package, to generate the Butterworth filter, ‘butter’ function was used. Further, the 

‘filtfilt’ function was used to apply the generated Butterworth filter to smooth the data. 

The ‘filtfilt’ function uses a forward and a reverse pass to filter the signal using the 

generated filter to get a square magnitude response in the process. Mathematically, 

according to the [55] the square magnitude response of the Nth order Butterworth filter is 

represented as,  
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Where, 

wc is the cut-off frequency, which in this case is set to 0.04, and 

w  is the frequency of the original signal that will be processed  

The cut-off frequency of 0.04 is selected to eliminate the frequencies greater than 0.04 

Hz, further for digital filters the cut-off frequency should be between 0 and 1. 

The figure 2.4 below represents an unfiltered signal of the SVM data: 

 

 

 

 

 

Figure 2.4. Unfiltered Signal of Sum Vector Magnitude (SVM) 

12:00:00 PM 
11:59:00 AM 



24 

 

Once we apply the Butterworth filter to the SVM data we get a smoother activity 

signal with less fine-grained variation to be used for further analysis. The Figure 2.5 

below shows the filtered signal which we get after applying the filter: 

 

 

 

 

 

Figure 2.5. Applying Butterworth Filter on Sum Vector Magnitude(SVM) 

 

 

 

 

2.6. TIME SERIES SEGMENTATION 

This section discusses the application of the statistical Change Point Detection in 

detail to the cleaned and filtered human activity signals. The human activity involves 

multiple sections of high and low levels of activity all throughout the day, which is the 

reason that draws attention to assess the change in variance. That is when people are 

sleeping their movements are less frequent and less intense than when they are awake and 

active. The main aim of this methodology is to identify the positions of the change point 

by assessing the change in variance. 

To make the reader easily understand the concept of detecting the change point by 

assessing the variance, it is necessary to summarize and represent it mathematically. The 

methodology uses the concept of detecting changes in variance by assuming no 

consistency in the probability of false alarm or mean as developed in (Douglas M. 

Hawkins and K. D. Zamba, 2005 [50]). The methodology as developed in [50] is 

summarized as below: 

12:00:00 PM 
11:59:00 AM 
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For a step change to be detected from one specified in-control level to some other 

specified out of control level in a normally distributed data, can be represented by the 

change point formulation as shown below: 

Let Xi be the sequence of two samples of data following a normal distribution: 

1 1

2 2
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Where τ is the change point, while the remaining variables are mean and standard 

deviations 1 1,  respectively. 

Now, consider Xi a sequence of datapoints for a given dataset, which would follow the 

equation of change point model as shown in Equation (2). Considering there are ‘n’ data 

points accumulated, the statistical summary for 0 ≤ i < k ≤ n is explained as below: 

,

1 ( )

k
j

i k

j i

X
X

k i= +

=
−


    (3) 

The Equation (3) calculates the mean by taking a sample (i to k) from the total sequence 

of data points. 
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The Equation (4) calculates the difference of the point from the mean for the interval i to 

k. 

Now, if a change point is considered at τ = k we now have two samples, then the 

remaining parameters are calculated for both the samples i.e. between the sequence 0 to k 

and k to n: 

0,1
ˆ kX =

    (5) 

Where Equation (5) calculates mean for the sequence 0 to k 

,2
ˆ k nX =

      (6) 

Equation (6) calculates mean for the sequence k to n 
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Equation (7) calculates the variance for the sequence 0 to k 

2
,2

ˆ / ( 1)k nV n k = − −
            (8) 

Equation (8) calculates the variance for the sequence k to n 

The equation (5),(6),(7), and (8) are calculated to find the unknown parameters - mean 

and variance 1̂ , 2̂ , 2

1̂  and 2

2̂  respectively. Thus, the variance is determined depending 

on the mean. 

The variance for the sequence from 0 to n is calculated by adding the 0 to k and k to n 

variance: 

2
, ,( ) / ( 2)o k k nV V n = + −

               (9) 

Further, to test the equality of variance using the standard deviations calculated in 

equation (7), (8) and (9), the likelihood ratio test statistic is applied. The likelihood ratio 

test statistic compares the goodness of fit for two statistical models. The likelihood ratio 

is calculated to understand the likeliness of the data under one model than the other. The 

likelihood ratio can be compared to the critical value to decide whether the model should 

be rejected or accepted. 

The likelihood ratio test statistics is determined using (Bartlett and Kendall (1946), 

Bartlett (1937), Bartlett (1955)).  
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Where, 

C = Bartlett correction factor 

1 1 11 ( 1) ( 1) ( 2) / 3C k n k n− − − = + − + − − − −   

The ‘C’ is used for adjusting the degree of freedom as the variance is estimated by 

calculating the mean. 

,k nG  is represented in the form of F-ratio to test the equality of variance. It is a two-sided 

statistical hypothesis of the variance between two samples of data. If the ratio is equal, then the 
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variance is always equal to 1. As F-ratio is represented as F = 

2

2

2

1

ˆ

ˆ




, then the equation (10) 

represents as below: 

   1

,

( 1) ln 1 ( 1) ( 1) ln ( 1) 1 ( 2) ln( 2)
k n

k k n k F n k k F n k n n
G

C

− − − + − − + − − − + − − − − −
 =   

The ,k nG  values go on increasing considerably above or below 1, increasing the size of 

the distribution. A large value of this ratio of variance would show the distribution 

variance are unequal which would help in detecting a significant statistical change in the 

distribution. 

Thus, to determine the change in the variance without knowing the change point ( ) at 

first, the Generalized likelihood ratio test is used. The Generalized likelihood ratio test is 

given by maximizing the value of ,k nG across all the possible values of k where the range 

of k>1. We can define the Generalized likelihood ratio test statistic to determine the 

change in the variance when the change point is unknown: 

max, ,max
2 2

n k nG G
k n

=
  −    (11) 

To summarize the procedure for determining the step change when the change point is 

unknown, the following steps should be followed: 

• max, nG  which is the generalized likelihood ratio is computed for a shift in the 

variance at some unknown previous time after having added all the n observations 

to the total data set. 

• If max, nG ≤ hn, where hn is denoted as some suitable control limit which is user-

defined. If the condition is satisfied then there is no variance shift leaving the 

process intact 

• If max, nG > hn, then there is a shift in the variance  

The Generalized likelihood ratio concept is applied in the methodology for identifying 

the sleep/wake states by assessing the variance in the activity signal recorded for each 

individual participant wearing the watch.  

For performing the change point detection analysis, the ‘changepoint’ package 

was used from the CRAN-R project [51] and implemented it in the RStudio environment. 
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The changepoint package follows the same procedure for assessing the variance as 

developed in [50]. Further, the data points with a change in variance were identified using 

the function ‘cpt.var’ from the ‘changepoint’ package, by using the ‘PELT’ method. The 

PELT algorithm which has similarity with the segment neighborhood algorithm is used 

for providing the exact segmentation of the change points. The PELT algorithm is more 

computationally efficient as it uses pruning and dynamic programming. It has the ability 

to detect change point as the data set increases, with the change points being spread and 

not confined to one area of the segment. The PELT algorithm is represented 

mathematically to make it clearer for the reader [52]. 

PELT ALGORITHM:  This algorithm is similar to the Optical Partitioning or OP method 

[52] but is more computationally efficient and has the ability to find the global minimum 

of the cost function. The global minimum of the cost function is calculated by: 
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The PELT algorithm improves its computational efficiency by pruning. Pruning 

eliminates the values of change points (τ) that can never attain the minima. The 

minimization is calculated at each iteration with the following equation: 

0 * ( 1) : *( *) min [ ( ) ( ) ]F F C y       += + +     (13) 

Where τ*=1…n 

The condition under which the pruning can be done is proved in the following theorem: 

Theorem: 

Assume that when a change point is introduced in a sequence of observation, the cost C 

of the sequence reduces. There exists a constant K such that for all t<s<T,  

( 1) : ( 1) : ( 1) :( ) ( ) ( )t s s T t TC y C y K C y+ + ++ + 
       (14) 

Then, if 

( 1) :( ) ( ) ( )t sF t C y K F s++ +                (15) 

holds at a future time T>s, t can never be the optimal last changepoint prior to T. 

The condition in the theorem for a changepoint, t, is removed which are not relevant for 

obtaining the final change points which helps improve the computational efficiency. 
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The pseudo code for the PELT algorithm is given in the Appendix. The code 

demonstrates that at each step the changepoint which satisfied the condition is removed 

from the following iteration.   

After the PELT algorithm is applied, a new vector is created to include the first 

and the last point of the sequence to find the maximum difference between all the 

breakpoints. Further, we mark the sleep period identified by the change point as red and 

wake period as black. The points between the two numbers giving the maximum 

difference between the change point are the sleep period and the rest is the wake period. 

The outliers present in the sleep period detected by the change point analysis are 

identified by the boxplot. The points lying on the periphery of the boxplot which is in fact 

wake are detected as sleep, are converted back to wake. Once the filtering of data and 

changepoint detection is completed, Z-scoring is applied. 

 

2.7. Z-SCORING 

This section discusses the Z-score, which is the preceding step before determining 

the sleep duration. Z-score is a value which helps determine whether the value obtained 

from the analysis is useful for the dataset. In order to apply the z-score, a predetermined 

value is selected by the statistician and values above or below the z-score are eliminated 

from the dataset as an outlier. This will determine the cutoff point, threshold, to classify 

activity data as belonging to the sleep period or is considered to be wake activity.  

In this case, a point is considered as an outlier if the Z- the score is less than 1.96 or has 

less than 95% confidence interval, in the sleep period identified by the Change Point 

Detection analysis. This level can be adjusted by the researcher. After the scoring 

completion, the data is binarized to represent the sleep and wake periods in the data set 

with 1 being wake and 0 being sleep. This was done to clearly determine the sleep and 

wake periods of the participant. The z-score was calculated mathematically as: 

 

Z-score =  
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Where, 

Filtered SVM data = FSVM 

Mean of Filtered SVM data corresponding to non-active periods = Mean(FSVMred) 

Standard Deviation of Filtered SVM data corresponding to non-active periods = 

SD(FSVMred) 

After eliminating the outliers and determining the z-score we can now determine the 

sleep duration of the person with the sleep start time and wake time. 

 

2.8. SLEEP DURATION 

This section discusses how to determine the sleep duration once the data set was 

structured and filtered. For determining the sleep duration in a particular day, the 

binarized results of change point detection were used, where ‘0’ being sleep and ‘1’ being 

awake. The maximum sequence of continuous ‘0’ was considered as sleep duration for 

each day and participant.  

In addition, the sleep start and the wake time was determined for each participant.  

While determining, the sleep duration, we eliminate the days where the participants sleep 

all day (1440 minutes) or who doesn't sleep at all (0 minutes) and stays awake. The 

participants result with 1440 minutes of sleep as the accelerometer device sensor might 

have been stuck at a lower frequency. This may result in the actigraphy showing a long 

period of sleep duration.  The sleep duration obtained from our method was compared 

with the GENEActiv Macro [53-54] in order to determine the accuracy of the results 

obtained.   

The following Figure 2.6 shows the visualizations after applying change point detection 

analysis and z-scoring for a participant in the data set. 
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Figure 2.6. Change Point Detection Analysis Results for a Single Day  
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3. RESULTS 

This section highlights the analysis of the actigraphy signals. Furthermore, this 

section seeks to illustrate the sleep scoring algorithm previously outlined in the 

methodology section of the document.  

All the analysis was done in the R studio environment. Before analyzing the 

results, participants with the highly inconsistent data were removed from the dataset in an 

effort to have a reliable analysis of actigraphy signals and proposed methodology. The 

highly inconsistent data consisted of long periods of wake or sleep states in an individual. 

Such type of activity pattern is not found in a normal healthy human activity and is 

suspected to have been caused by faulty sensing. These faulty sensing periods can occur 

when the sensor is momentarily stuck. The Figure 3.1. Below illustrates one of the 

participants with inconsistent data: 

 

 

 

 

 

Figure 3.1. Participant with Inconsistent Physical Activity Data 
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From the above Figure 3.1., it is seen that the recording of the activity signal from 

the sensor is highly inconsistent. This is because the sensor might have been stuck at a 

higher frequency, thereby recording a high-frequency signal even when the person is not 

in an active state. Another reason for the inconsistency may be due to the participant not 

wearing the watch continuously resulting in a very low activity being recorded. Activity 

pattern recorded in such an inconsistent manner cannot be considered for determining the 

sleep duration of the participant and were excluded from the analysis. After removing the 

inconsistent participants, the final data set consisted of 1160 days of data for 20 

participants.  Once, the participants with inconsistent data were removed, sleep duration 

was determined using the methodology as explained in Section 2 of this document. As 

given in the methodology section that Sum Vector Magnitude (SVM) is the only feature 

used for determining the sleep duration. Thus, it is the only one examined for 

inconsistency. The other individual sensor data like acceleration in x, y, and z direction is 

not considered during analysis or for its inconsistency in recording the activity data. The 

results of the algorithm were validated against the sleep duration from GENEActiv 

Macro [49]. 

The main purpose of the analysis was to increase the agreeance of sleep duration, 

i.e. reduce the average difference of sleep duration from the Algorithm and GENEActiv 

Macro. This was done by adjusting different parameters and finding the best results. The 

following subsection describes the analysis in detail: 

 

3.1. ANALYSIS-1 

The first part of the analysis involved testing different orders of the Butterworth 

filter. The Butterworth filter order helps in getting a flat frequency response. Higher the 

filter order more the flat frequency response. By testing the different order of Butterworth 

filter, the best order which would help differentiate the sleep and wake was order 3. 

Selection of the best filter order was done by inspecting the data visually and testing 

different orders of the filter. The order 3 of the Butterworth filter gave the best flat 

frequency response. Further, the change point was also able to differentiate between the 

sleep and wake states accurately as compared to other orders. 
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Once the order was decided, the critical values were tested while analyzing the 

data. The critical values help to discriminate between two groups in a dataset by 

comparing the test results with the critical values. In this case, the Z-scores was 

calculated and tested with a critical value to determine the sleep duration. For the reader 

to understand the critical value more clearly it is explained with the help of the following 

Figure 3.2.: 

 

 

 
 

 

Figure 3.2. Normally Distributed Data with Different Regions 

 

 

 

 

The critical values are the boundary of the rejection region in the given 

distribution. The above Figure 3.2. shows the critical values 1.96 which are the 

boundaries of the rejection region. The red regions on both sides of the distribution are 

the rejection regions. The green region tells us that, if the Z-score lies within this region 

then it has 95% probability that the results determined as sleep is in fact sleep. If the Z-

score lies within the rejection region then the null hypothesis is rejected, and that point 

has a low probability of being sleep. The researcher himself decides how much data 

should be considered for determining the sleep. The researcher sets these critical values 

Rejection 

Region 

Critical Values 

Rejection 

Region 



35 

 

himself. Keeping this in mind different critical values were considered to analyze the 

average difference between the sleep duration of the algorithm and the GENEActiv 

Macro. The following Table 3.1. Summarizes the results of different critical values: 

 

 

 

 

Table 3.1. Results for Different Critical Values 

Critical 

Values 

Confidence Interval 

(%) 

Alpha Sample 

size 

Average 

Duration 

Difference 

1.96 95 0.05 1160 60.93 

1.75 92 0.08 1160 41.96 

1.65 90 0.1 1160 31.38 

1.45 85 0.15 1160 8.96 

 

 

 

 

From the above Table 3.1., the results show that the average difference between 

the sleep duration from the algorithm and GENEActiv Macro reduces as we reduce the 

critical values. The lesser the confidence interval more is the agreeance between the sleep 

duration of the algorithm and GENEActiv Macro. For a critical value of 1.45 and having 

a confidence interval of 85%, the Algorithm overestimated the sleep duration from the 

GENEActiv Macro by only 8.96 minutes. This tells that as the critical value or in simpler 

words a threshold value for the recorded signal is reduced more amount of the sleep 

period is captured. Further, the average difference between the sleep duration from the 

Algorithm and GENEActiv Macro is reduced. As the critical value of 1.45 gave the least 

average sleep duration difference, further analysis was done using this critical value. The 

following Table 3.2. shows the best results in the sleep duration and Table 3.3. shows the 

worst results of sleep duration when compared with GENEActiv Macro: 
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Table 3.2. Best Results of GENEActiv Macro and Algorithm 

Date Participant Day Algorithm Duration 

(mins) 

Macro 

Duration 

(mins) 

10/31/2016 21 Monday 367 387 

3/22/2017 32 Wednesday 336 320 

3/31/2017 32 Friday 236 236 

2/17/2017 34 Friday 444 458 

2/23/2017 40 Thursday 370 384 

3/1/2017 42 Wednesday 340 340 

3/28/2017 46 Tuesday 348 336 

1/21/2017 47 Saturday 204 201 

 

 

 

 

Table 3.3. Worst Results of GENEActiv Macro and Algorithm 

Date Participant Day Algorithm Duration 

(mins) 

Macro 

Duration 

(mins) 

3/29/2017 50 Wednesday 870 525 

11/27/2017 55 Monday 414 226 

11/30/2017 55 Thursday 78 261 

9/16/2017 57 Saturday 1137 407 

9/11/2017 59 Monday 605 286 

9/15/2017 60 Friday 775 358 

9/6/2017 65 Wednesday 383 723 

9/30/2017 67 Saturday 990 389 

 

 

 

 

3.2. ANALYSIS-2 

Further, to inspect the results visually, a plot of the sleep duration from the 

GENEActiv Macro and algorithm was plotted. The following Figure 3.3. shows the plot 

below:  
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Figure 3.3. Comparison of Sleep Duration from GENEActiv vs Algorithm 

 

 

 

 

The above Figure 3.3. shows that there are outliers in the results obtained for the 

sleep duration. The outliers are mostly the higher sleep durations. In order to remove the 

outliers, an assumption was made that a normal healthy person sleeps for 8 hours (480 

minutes) per day. All the days which has slept more than 8 hours of the day should be 

removed. For this, sleep duration was incrementally reduced, and four different data sets 

were created as follows: 

•  Firstly, removing days with more than or equal to 1400 minutes of sleep 

• Secondly, removing days with more than or equal to 1200 minutes of sleep 

• Thirdly, removing days with more than or equal to 800 minutes of sleep 

• Lastly, removing days with more than 480 minutes of sleep 

By incrementally eliminating the days with the respective sleep duration, as shown 

above, the sample size automatically goes on decreasing. Further, to have in-depth 

analysis, the four newly created data sets were again tested with the critical value as 

shown in table 3.2. For the purpose of explanation, results of only one critical value i.e. 

1.45 is shown and explained. The analysis of the other critical values as shown in table 



38 

 

3.2. are summarized in the Appendix B. The following Table 3.4. summarizes the results 

of the different sample size used: 

 

 

 

 

Table 3.4. Standard Error and P-value for Different Sample Sizes 

Origin

al 

Sampl

e Size 

Duratio

n (d) 

remove

d 

(mins) 

Final 

Sampl

e Size 

y=mx+b Standar

d Error 

P-

Value 

Conclusi

on 

Average 

Duration 

Differen

ce 

1160 0 1160 240.93x+0.46 0.0198 0.398

2 

Accept 

Null 

Hypothes

is 

8.96 

1160 d>1400 1124 343.39x+0.19 0.0212 0.53 Accept 

Null 

Hypothes

is 

5.16 

1160 d>1200 1112 356.66x+0.15

66 

0.0218 0.951

9 

Accept 

Null 

Hypothes

is 

0.46* 

1160 d>800 1042 332.27x+0.22

82 

0.0285 7.37E

-07 

Reject 

Null 

Hypothes

is 

33.33* 

1160 d>480 774 327.93x+0.23

62 

0.0471 2.20E

-16 

Reject 

Null 

Hypothes

is 

88.33* 

*- sleep duration of algorithm underestimates from the sleep duration of GENEActiv 

Macro 

 

 

 

 

From the above Table 3.4., it is seen that the agreeance in the sleep duration from 

the GENEActiv Macro and algorithm increases as we reduce the sample size by only a 

few data points. This shows that as the outliers are removed from the data the average 

difference of the sleep duration goes on decreasing. But this comes with a tradeoff, as we 
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reduce the sample size by eliminating the days the standard error goes on increasing. 

Additionally, as we reduce the sample size by eliminating sleep duration of more than 20 

hours, the algorithm starts to underestimate the sleep duration from the GENEActiv 

Macro.  

To summarize the analysis, the Algorithm cannot perform accurately for all the 

sample sizes. In order to improve its performance, there has to be a tradeoff for losing the 

data in order to get more information about the individual’s sleep duration. This is done 

by making assumptions about eliminating the outliers, adjusting different parameters, and 

reducing the sample size.  

Further, every individual has his own sleep pattern, which makes it difficult for 

the algorithm to detect the sleep duration accurately for each one of them. In addition, the 

analysis is focused solely on the sleep duration because it helps us determine the sleep 

pattern of the person. It also tells us the days where an individual sleep more and days 

where he sleeps lesss. Further, it also helps in determining whether a person follows the 

same pattern for a longer period of time or changes frequently. For example, the 

following Figure 3.4. shows the sleep duration in percentage for each day of the week: 

 

 

 

 

 

Figure 3.4. Sleep Duration for Each Weekday According to Algorithm 
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The Figure 3.4. shows us that the all participants sleep more on Saturday followed by 

Friday. 

To get more insight into the sleep duration for each participant, refer Appendix 

for plots of various participants to illustrate differences in duration of sleep throughout 

the week. The participants 57 and 67 are not visualized as both the participants had more 

than 8 hours of sleep.   

Lastly, the GENEActiv Macro has been used in previous research studies which 

makes it reliable validation method for testing the performance of the algorithm. So, for 

example, if the sleep duration between the Algorithm and GENEActiv Macro agrees 

more it can be assumed that the algorithm performs better. The below Table 3.5. shows 

the mean difference between the sleep duration for each participant. 

 

 

 

 

Table 3.5. Sleep Duration for each Participant 

Participant Algorithm GENEActiv 

Macro 

21 314 413.4 

22 283.8 435.625 

24 326.6 394.8125 

32 281.6 395.4643 

34 299 327.6364 

40 297.8 445.1081 

42 311.5 403.8974 

44 303.5 384.8049 

46 366 631.7561 

47 312.6 340.6049 

50 418.3 401.0833 

55 287.8 316.359 

59 413.1 287.8667 
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Table 3.5. Sleep Duration for each   

Participant (contd.) 

Participant Algorithm GENEActiv 

Macro 

60 226 384.48 

63 408.4 333.9583 

65 369 423.8816 

71 327.1 359.1154 

74 266.7 451.6842 

 

 

 

It can be seen from the Table 3.5. that the participants 71, 50, 55, 24, 32 and 47 

have close agreeance with the sleep duration from the algorithm and GENEActiv Macro. 

While the other participants sleep duration is either overestimated or underestimated. 

This brings us to the conclusion that no algorithm can determine the exact sleep duration 

as every person has different activity pattern.  

 

3.3. ANALYSIS-3 

ANOVA Analysis 

 

Further to test the results, ANOVA analysis was used. The ANOVA analysis was 

done for the data set without the outliers. The linear function of ANOVA gives us great 

insights into the results. The first plot shows the residual vs fitted for the sleep duration 

from Algorithm and GENEActiv Macro. The residual vs fitted plot is shown below in 

Figure 3.5. tells us that the data is evenly spread with no real dominant slope and no 

increasing or decreasing spread is observed. Further, the error is evenly distributed above 

and below by almost the same amount.   
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Figure 3.5. Residual vs Fitted Values of Sleep Duration 

 

 

 

 

The next plot, normal QQ plot states whether the samples are coming from the 

same distribution or not. In our case, as shown below in Figure 3.6. the QQ plot shows 

that the positive side seems to differ, and the sleep duration of the algorithm is generally 

higher than expected when compared to GENEActiv Macro. They are still some outliers 

that influence the distribution. 

 

 

 

  

 

Figure 3.6. Normal Q-Q Plot for Sleep Duration 
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Next, we plot the scale-location plot as shown below in Figure 3.7. The plot 

shows a horizontal line which shows that the variance is equal throughout the two 

samples. The below Figure 3.7. shows the Scale location plot: 

 

 

 

 

 
Figure 3.7. Scale Location for the Sleep Duration 

 

 

 

 

The residual vs leverage plot as shown below shows that there are few outliers 

that might be dominating the estimate of the linear model. These outliers might be 

throwing the estimate of the coefficient off. The Figure 3.8. below show the residuals vs 

leverage plot: 

 

 

 

 

 
Figure 3.8. Residuals vs Leverage Plot for Sleep Duration 
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The results show that the sleep duration from the GENEActiv Macro and the 

Algorithm have close agreeance with each other on an average. The ANOVA results also 

state that as the higher sleep duration are eliminated from the data set, the agreeance 

increases.  
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4. CONCLUSION 

4.1. DISCUSSION 

In this thesis, an Algorithm is developed for determining the sleep duration of a 

person using sensor-based physical wrist activity data. The algorithm used the physical 

activity signals recorded by the GENEActiv wrist-worn accelerometer device. The 

physical activity signals were analyzed, and the sleep duration was determined for 20 

individual participants over a period of 1160 days, after removing participants with 

highly inconsistent physical activity data. In addition, the Butterworth filter filtered out 

the data and eliminated the low-frequency noise from the signal and attenuated the high-

frequency points. 

The algorithm was developed using the Statistical method of Changepoint 

detection and Z-scoring as the threshold/ cutoff between the two classifications of sleep 

and wake. Further, the sleep duration was determined by first identifying the sleep and 

wake states using the Changepoint detection and then scoring the exact sleep duration of 

the participants using the Z-scoring. The Z-score was tested against the threshold value 

selected by the researcher. The sleep duration obtained from the algorithm was then 

validated with sleep duration resulted from the GENEActiv Macro. The results show that 

the sleep duration was overestimated by 8 minutes on an average by the algorithm with 

that of the sleep duration from the GENEActiv Macro. The parameters used for obtaining 

this result were Butterworth filter of order 3 and the threshold value of 1.45.  

The algorithm developed in this thesis is an open source and can be applied for 

determining sleep duration in long-term sleep research studies. It is robust and performed 

well for different participants in the dataset. Unlike the previous algorithms as explained 

in the literature, the algorithm developed in this thesis directly analyzes the activity signal 

to determine the sleep duration of the person. 

 Despite the algorithm having the ability to determine the sleep duration, there are 

some limitations to this process. The results of the analysis as described in section 3, it 

can be seen that it is difficult to determine the sleep duration by examining the physical 

activity of the person recorded by an actigraphic device. A physical activity involves 

various high and low-frequency movements. In this thesis, the signals recorded by the 
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actigraphic device are analyzed directly. This makes it difficult for differentiating 

different activities. For instance, when the signals are analyzed, the low-level frequency 

movements like sitting, taking a nap, writing, etc. are considered as the person sleeping. 

This is because the value of the frequency signal is very low and almost equal to a person 

sleeping. On the other hand, sometimes a person moves frequently while sleeping, which 

causes some high-frequency movement in the signal recorded. Thus, the signals of high 

frequency are recorded by the actigraphic device in spite of the person sleeping. This 

makes it difficult to determine the exact sleep duration for each day in the dataset. 

Further, each person has different sleeping habits and patterns, which makes it tricky to 

find the exact sleep duration for each person. 

 

4.2. FUTURE WORK 

This research can be used as a baseline for developing other sophisticated models 

and algorithms related to automatic sleep scoring. The sophisticated models include 

developing Deep Nets to identify different movements from the activity signal. 

Further, this research can be further expanded by relating the sleep duration of the person 

with his cognitive performance. The cognitive performance includes the person’s ability 

to think critically, daily activities, working, driving etc. By doing so we can come to 

know how a person performs the following day by knowing the sleep duration from the 

previous night. This indeed would help us get activity pattern of the person with his 

cognitive performance.  

Polysomnography (PSG) is a well know validation test used in sleep studies, the 

sleep duration from the PSG should be validated with the sleep duration of the Algorithm 

for testing the performance. This validation would help in knowing in more detail about 

the performance of the algorithm developed and what further improvements might be 

needed to improve the performance. 

Also, other parameters like the critical frequency of the Butterworth filter and 

penalty for detecting change point should also be tested to improve the results. Analyzing 

and testing these parameters is important as it would tell which parameters have the most 

effect on the algorithm and parameters needed to be removed.  
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APPENDIX 

1. The following code is used for finding the sleep duration of any individual using 

Changepoint detection and Z-scoring. Please refer to the code comments for an 

explanation of each step. 

Code: 

print(" Sleep Duration Algorithm: Ivan G. Guardiola and Yogesh Lad") 

print("LOADING ALL LIBRARIES FOR PROCESSING") 

library(mmand);library(ggplot2);library(lattice);library(zoo);library(caret) 

library(changepoint);library(e1071);library(dplyr);library(lubridate) 

library(cluster);library(foreign);library(progress) 

library(ecp);library(mvtnorm);library(zoo);library(mmand);library(changepoint) 

library(BreakoutDetection);library(TTR);library(Mcomp);library(lattice) 

library(MASS);library(smoother);library(signal);library(ppls);library(plyr) 

########################################################################

########################################################################

############# 

 

#Data cleaning and structuring 

getwd() 

wd<-setwd("C:/Users/guardiolai/Desktop/Sleep/")#set Working directory 

 

list.files(wd) 

dat03<-read.csv("CASB050_left wrist_034190_2017-04-13 14-10-34.csv", header = 

TRUE)#read one minute CSV actigraphy data 

head(dat03) 

 

 

#create two new columns with date and time separated for easier segmentation 

dat03$tmsp<-as.POSIXct(dat03$TimeStamp ,format = "%Y-%m-%d %H:%M", 

tz="UTC") 
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head(dat03) 

Data<-dat03[-1] 

head(Data) 

 

 

#Determine first day of date 

firstinst<-as.POSIXct(head(Data$tmsp,n=1),format= "%Y-%m-%d %H:%M",tz="UTC") 

lastinst<-as.POSIXct(tail(Data$tmsp, n=1),format="%Y-%m-%d %H:%M",tz="UTC") 

paste("Start Date: ", firstinst, " End Date: ", lastinst) 

 

class(Data$tmsp) 

lastinst 

 

library(lubridate) 

 

# if the first day starts before noon then start date is same day at noon 

#else if the first data starts after noon then beginning date is the next day at noon 

if (hour(firstinst)<12){ 

  startdate<-as.POSIXct(paste(as.Date(firstinst)," 12:00"),format= "%Y-%m-%d 

%H:%M",tz="UTC") 

}else{ 

  startdate<-as.POSIXct(paste(as.Date(firstinst)+days(1)," 12:00"),format= "%Y-%m-%d 

%H:%M",tz="UTC") 

} 

#similarly this must be done for the enddate 

 

if (hour(lastinst)<12){ 

  enddate<-as.POSIXct(paste(as.Date(lastinst)-days(1)," 12:00"),format= "%Y-%m-%d 

%H:%M",tz="UTC") 

   

}else{ 
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  enddate<-as.POSIXct(paste(as.Date(lastinst)," 12:00"),format= "%Y-%m-%d 

%H:%M",tz="UTC") 

} 

paste("New Start Date: ", startdate, " New End Date: ", enddate) 

 

#Determine number of days in the data  

n_days<-abs(round(as.numeric(difftime(startdate ,enddate , units = c("days"))),digits=0)) 

#create sequence of startdates 

seqStart<-seq(startdate, by= "day", length.out = n_days) 

seqStart 

seqEnd<-seq(startdate+days(1)-minutes(1), by="day", length.out = n_days) 

seqEnd 

#check if the number of start end dates are the same 

paste("Are the number of start and end dates the same? 

",length(seqStart)==length(seqEnd)) 

paste("This file contains ", n_days, " days of complete data." ) 

 

#plot all days of data SVM 

tmp_list <- list() # create temporary list 

 

for (i in 1:n_days)#loop through number of days  

{ 

  print(paste("Proc day:", i)) 

   

  print(paste("Length of Day " ,i," is: ", length(subset(Data, tmsp >= seqStart[i] & tmsp 

<=seqEnd[i])$SVM), "day:",seqStart[i],seqEnd[i])) 

  tmp_list[[i]] <- subset(Data, tmsp >= seqStart[i] & tmsp <=seqEnd[i])$SVM} 

 

 

dataDout <- data.frame(tmp_list) #creates data frame with only SVM as columns for 

respective night date as names 
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names(dataDout) <- paste0(as.Date(seqEnd)) #names columns as datasets 

 

#plot all days together 

require(ggplot2) 

require(reshape2) 

dataDout$Time<-1:1440 

df <- melt(dataDout ,  id.vars = 'Time', variable.name = 'Nights') 

ggplot(df, aes(Time,value)) + geom_line(aes(colour = Nights)) #all on one graph 

ggplot(df, aes(Time,value)) + geom_line() + facet_grid(Nights ~ .) #all on separate 

panels 

 

#create a column of participant name this column is "Participant" 

 

ParticipantNum<-50#assign participant number here 

 

#segment all data for all days that are complete 

ComData<-subset(Data,tmsp>=head(seqStart,n=1)& tmsp<=tail(seqEnd,n=1)) 

head(ComData, n=3) 

tail(ComData,n=3) 

#export data for all complete dates 

#naming convention is as: Participant ID, x,y,z and magnitude- (Timestamp, 

x_m,y_m,z_m, SVM ) 

ComData$Participant<-rep.int(ParticipantNum,length(ComData$SVM)) 

 

head(ComData,n=3) 

writeDat<-ComData[,c(13,12,1,2,3,4,6,7,8,9,10,11)] #organizing column order 

head(writeDat) 

 

# Write CSV in R 

write.csv(writeDat, file = "CASB_050_03.csv",row.names=FALSE) #name output file 
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########################################################################

########################################################################

# 

 

#Combining all the output files after cleaning the data and making one data frame 

library(readbulk) 

fulldat <- read_bulk(directory = "C:/Users/Yogesh/Downloads/",subdirectories = 

FALSE,verbose = TRUE) 

names(fulldat) 

head(fulldat) 

 

########################################################################

########################################################################

# 

 

print("READING ALL DATA") 

Dat<-read.csv("C:/Users/Yogesh/Downloads/CASB_sleepdata-Spring.csv", 

header=TRUE)#read csv file 

head(Dat) 

AllDat <- Dat[,c(-1,-2,-17)]#Deleting unwanted columns 

head(AllDat) 

AllDat<-AllDat[!(AllDat$Participant==36),]#removing inconsistent participant 

participants<-unique(AllDat$Participant) #determine the set of participants in the data 

print(paste0("Data contains ", length(participants)," participants for processing")) 

datafile<-data.frame() 

 

########################################################################

########################################################################

# 

#Change Point Detection Analysis 

##### start of processing all participants 
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P=1; 

for(P in 1:length(participants)){ 

  print(paste0("Processing Participant: ",participants[P])) 

  Dat<-AllDat[AllDat$Participant==participants[P],] 

  print(head(Dat)) 

  LL<-length(Dat$Participant) # determines the length of a column this is the total 

number of observations in the column 

  print("CHECKING DATA") 

  print(paste0("Is the data divisible by 1440: ", base::ifelse(LL%%1440==0," YES ", " 

NO "))) #checks we have complete data  

  print("SETTING UP PRELIMINARIES") 

  Inc<-seq(1,LL,by=1440) #Creates the sequence for i increments 

  N_day<-LL/1440 # determines the number of complete days of data accross all 

participants 

  print(paste0("Number of complete days of data: ", N_day)) 

  pb <- progress_bar$new(total =N_day) #progress bar set up 

  n=1 #initiate progress bar 

  print("FILTERING RAW DATA: DERIVING SMOOTHER") 

  W<-.04 

  b1 <- butter(2, W) 

  Dat$SmoothSVM<- filtfilt(b1, Dat$SVM) 

  histogram(Dat$SmoothSVM) 

   

  

########################################################################

###################### 

  #Looping through the entire day to find the sleep duration 

  print("BEGINNING CHANGE-POINT ANALYSIS") 

  i<-NULL 

  for(i in 1:N_day){ 

    if(i<N_day){ 
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      Sys.sleep(n/N_day) #update progress bar 

      n = n+1 #increment the progress bar counter 

      x <-seq(1:1441) #x vector for plots 

      y <-seq(1:1106) 

      pb$tick() #generate tick for progress bar  

      a<-Inc[[i]] 

      b<-Inc[[i+1]]-1 

      day <-Dat$SmoothSVM[a:b] # attain entire day of data 

      res<-cpt.var(day,penalty="AIC",pen.value=0.001,method="PELT") #attain vhange in 

variance  

      pp<-c(0,cpts(res),1440)#creating a variable to store a vector so to include 0 and 1440  

      breakp <-pp[c(which.max(diff(pp)),which.max(diff(pp))+1)] #obtains max diff 

between all breakpoints 

      cols <-c(rep("black", times=breakp[[1]]),rep("red",times=breakp[[2]]-breakp[[1]]), 

rep("black", times=1440-breakp[[2]])) 

    } 

  } 

  #Adding a new column named group to the original data frame 

  Dat$group <- with(data = Dat,cols) 

  #Dat$BinaryCP <- ifelse(Dat$group=="black",0,1) 

  #plot(Dat$SmoothSVM[1:1440],col=Dat$group, main = "Change point analysis") 

  outsDat<-boxplot.stats(Dat$SmoothSVM[Dat$group=="red"])$out #determines the 

outliers in the red sleep group 

  for(j in 1:length(Dat$SVM)){ 

    if(Dat$group[j]=="red"&& Dat$SmoothSVM[j] %in% 

outsDat==TRUE){Dat$group[j]<-"black" }} 

  print("\nFILTERING COMPLETED") 

  #plot(Dat$SmoothSVM[1:1440],col=Dat$group, main = "Change point analysis") 

   

  print("BEGINNING SCORING") 
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  Dat$Z_S<-(Dat$SmoothSVM-

mean(Dat$SmoothSVM[Dat$group=="red"]))/sd(Dat$SmoothSVM[Dat$group=="red"]) 

#generate z scores 

  #Desired Confidence Interval Z Score 

  #90% 95% 99% 1.645 1.96 2.576 

  Dat$Fgroup<-ifelse(Dat$Z_S<1.45,"red","black") 

  Dat$BinSW<-ifelse(Dat$Z_S<1.45,0,1) 

  print("END SCORING") 

   

  #### plot for checking 

  print("PRINTING PLOTS FOR VISUAL INSPECTION") 

  plot.new() 

  par(mfrow=c(3,1)) 

  plot(Dat$SmoothSVM[1:1440],col=Dat$group, main = paste0("CPA Participant:  ", 

participants[P]),xlab = "Minutes",ylab = "SVM") 

  plot(Dat$BinSW[1:1440], col=Dat$Fgroup,main="Binarized", type="l",xlab = 

"Minutes",ylab = "SVM") 

  plot(Dat$SVM[1:1440], col=Dat$Fgroup, main="Original with Z Scoring",xlab = 

"Minutes",ylab = "SVM") 

   

  print("DETERMINING SLEEP MEASURES") 

  nameP<-paste0("C:/Users/Yogesh/Downloads/Plots",participants[P],".png" ) 

  dev.copy(png,nameP) 

  dev.off() 

   

  DFSleep<-data.frame(Dat) #creates new data frame for results 

   

  print(paste0("Participant",participants[P]," has been processed.")) 

  #bring this code into the for loop to create output for each participant.  

  Outname<-paste0("OutDatParticipant", participants[P],".csv") 

  write.csv(DFSleep, file = Outname) 
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  #rm(DFOut,Dat,DFSleep,i,j) 

} 

 

########################################################################

####################################################################### 

 

#Combining all the output files 

library(readbulk) 

fulldat <- read_bulk(directory = "C:/Users/Yogesh/Downloads/Sleep data 

frame",subdirectories = FALSE,verbose = TRUE) 

names(fulldat) 

head(fulldat) 

final_data <- fulldat[,c(-1,-2,-7,-21)] 

final_data <- 

final_data[,c("TimeStamp","X_m","Y_m","Z_m","Lux_m","Temp_m","SVM","X_std","

Y_std","Z_std","Lux_p","Participant","SmoothSVM","group","Z_S","Fgroup","BinSW")

] 

head(final_data) 

write.csv(final_data,"Final_Sleep_df.csv") 

########################################################################

###################################################################### 

 

#Reading the data obtained from Change point and Z-scoring 

rle_dat <- read.csv("Final_Sleep_df.csv",header=TRUE) 

head(rle_dat) 

rle_dat <- rle_dat[,-1]#removing the unwanted column 

rle_dat$Date <- as.Date(rle_dat$TimeStamp)#converting timestamp to date 

head(rle_dat) 

#Determing the sleep duration 

k<-NULL 

LL<-length(rle_dat$BinSW) 
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Inc<-seq(1,LL,by=1440) #Creates the sequence for k increments 

N_day<-(LL/1440) 

new_dat <- data.frame() 

for(k in 1:N_day){ 

    if(k<N_day){ 

    a<-Inc[[k]] 

    print(a) 

    b<-Inc[[k+1]]-1 

    print(b) 

    max_rle <- rle(rle_dat$BinSW[a:b]) 

    #print(max_rle) 

    if(max_rle$lengths==1440&&max_rle$values==1){ 

      new_dat[k,2]<-0 

      new_dat[k,1] <- rle_dat$TimeStamp[[a]] 

      new_dat[k,3] <- rle_dat$Participant[[a]] 

    }else{ 

    myruns <- max(max_rle$lengths[max_rle$values==0])#finding the max sequence of 

zeros 

    h <- ifelse(myruns<1440,myruns,1440)#replacing lengths equal to 1440 with 1440 

    print(paste0("Duration "  ,h))#printing the max duration 

    #adding values in the newdataframe 

    new_dat[k,1] <- rle_dat$TimeStamp[[a]] 

    new_dat[k,2] <- h 

    new_dat[k,3] <- rle_dat$Participant[[a]] 

    } 

  } 

} 

colnames(new_dat) <- c("Date","Algorithm_Sleep_Duration","Participant")#renaming 

the columns for new_dat 

new_dat$Date <- as.Date(new_dat$Date)#converting the timestamp to date 

new_dat$Day <- weekdays(as.Date(new_dat$Date)) 
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head(new_dat) 

new_dat <- new_dat[,c("Participant","Date","Day","Algorithm_Sleep_Duration")] 

head(new_dat) 

 

#Validation Dataset 

library(dplyr) 

summary <- read.csv("SummaryStats.csv",header = TRUE) 

sum <- summary%>%arrange(PartNo)#arranging the summary data by participant 

sum$Day <- as.character(sum$Day)#converting the timestamp to string format 

class(sum$Day) 

x <- sum$Day 

sum$Date <- substr(x,10,20)#extracting the date by mentioning the character number 

sum$Date <- as.Date(sum$Date)#Date format 

class(sum$Date) 

 

#Changing the column names for the MACRO summary dataset 

colnames(sum)[colnames(sum)=="PartNo"]<-"Participant" 

colnames(sum)[colnames(sum)=="Sleep.time"]<-"Sleep_Duration_Macro" 

colnames(sum)[colnames(sum)=="Sleep.Efficiency"]<-"Sleep_Efficiency_Macro" 

 

summary_final <- sum[,c("Date","Participant","Sleep_Duration_Macro")]#arranging the 

columns 

#merging dataframes 

tf <- merge(new_dat, summary_final, by=c("Date","Participant"), all = TRUE) 

tf <- unique(tf) 

total_data <- tf %>% arrange(Participant)#arrange the data frame with participant 

number 

head(total_data) 

#new data frame by removing NA's 

total_data <- total_data[complete.cases(total_data), ]#removing NAs 

head(total_data) 
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hist(new_dat$Algorithm_Sleep_Duration, main = "Algorithm Sleep Duration",xlab = 

"Sleep Duration")#histograms 

hist(summary$Sleep.time, main = "GENEActiv Macro Sleep Duration",xlab = "Sleep 

Duration")#histograms 

write.csv(total_data,"Sleep_Validation.csv")#writing the csv file 

########################################################################

######################################################################## 

 

#Results 

#t-test for the whole sample 

t.test(total_data$Algorithm_Sleep_Duration,total_data$Sleep_Duration_Macro) #t-test 

 

########################################################################

######################################################################## 

#Analysis without outliers 

#Analysis by removing days with 1440 minutes of sleep 

remove_1400 <- total_data[!(total_data$Algorithm_Sleep_Duration>=1400),] 

analysis_1400 <- lm(Sleep_Duration_Macro~Algorithm_Sleep_Duration,data = 

remove_1400) 

summary(analysis_1400) 

summary(analysis_1400)$coefficients[, "Std. Error"] 

t.test(remove_1400$Algorithm_Sleep_Duration,remove_1400$Sleep_Duration_Macro) 

#t-test 

 

 

#Analysis by removing with 1200 minutes of sleep 

remove_1200 <- total_data[!(total_data$Algorithm_Sleep_Duration>=1200),] 

analysis_1200 <- lm(Sleep_Duration_Macro~Algorithm_Sleep_Duration,data = 

remove_1200) 

summary(analysis_1200) 

summary(analysis_1200)$coefficients[, "Std. Error"] 
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t.test(remove_1200$Algorithm_Sleep_Duration,remove_1200$Sleep_Duration_Macro) 

#t-test 

 

 

#Analysis by removing with 800 minutes of sleep 

remove_800 <- total_data[!(total_data$Algorithm_Sleep_Duration>=800),] 

analysis_800 <- lm(Sleep_Duration_Macro~Algorithm_Sleep_Duration,data = 

remove_800) 

summary(analysis_800) 

summary(analysis_800)$coefficients[, "Std. Error"] 

t.test(remove_800$Algorithm_Sleep_Duration,remove_800$Sleep_Duration_Macro) #t-

test 

 

 

#Analysis by removing with greater than 480 minutes of sleep   

remove_480 <- total_data[!(total_data$Algorithm_Sleep_Duration>480),] 

analysis_480 <- lm(Sleep_Duration_Macro~Algorithm_Sleep_Duration,data = 

remove_480) 

summary(analysis_480) 

summary(analysis_480)$coefficients[, "Std. Error"] 

t.test(remove_480$Algorithm_Sleep_Duration,remove_480$Sleep_Duration_Macro) #t-

test 

 

########################################################################

######################################################################## 

 

#Comaprison of GENEActiv and Algorithm for outliers and without outliers 

#Analysis of the whole sample 

anova_outlier <- aov(Sleep_Duration_Macro~Algorithm_Sleep_Duration,data = 

total_data) 
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analysis_outlier <- lm(Sleep_Duration_Macro~Algorithm_Sleep_Duration,data = 

total_data) 

msum <- summary(analysis_outlier) 

summary(analysis_outlier)$coefficients[, "Std. Error"] 

pval = pf(msum$fstatistic[1], msum$fstatistic[2], msum$fstatistic[3], lower.tail=FALSE) 

rsq = summary(analysis_outlier)$r.squared 

plot(total_data$Algorithm_Sleep_Duration,total_data$Sleep_Duration_Macro,main="Ge

neactiv vs Algorithm",xlab="Algorithm Sleep Time (Hours)",ylab="Gneactiv Sleep Time 

(Hours)") 

abline(anova_outlier$coefficients,lty=2) 

mtext(paste("r-squared:", signif(rsq,3), "\np:", signif(pval,3)),1,line=3.5,at=7.5) 

 

 

#Analysis without outlier 

anova_wdoutlier <- aov(Sleep_Duration_Macro~Algorithm_Sleep_Duration, data = 

remove_480) 

analysis_wdoutlier <- lm(Sleep_Duration_Macro~Algorithm_Sleep_Duration,data = 

remove_480) 

msum_wdoutlier <- summary(analysis_wdoutlier) 

summary(analysis_wdoutlier)$coefficients[, "Std. Error"] 

pval_wdoutlier = pf(msum_wdoutlier$fstatistic[1], msum_wdoutlier$fstatistic[2], 

msum_wdoutlier$fstatistic[3], lower.tail=FALSE) 

rsq_wdoutlier = summary(analysis_wdoutlier)$r.squared 

plot(remove_480$Algorithm_Sleep_Duration,remove_480$Sleep_Duration_Macro,main

="Geneactiv vs Algorithm",xlab="Algorithm Sleep Time (Hours)",ylab="Gneactiv Sleep 

Time (Hours)") 

abline(anova_wdoutlier$coefficients,lty=2) 

mtext(paste("r-squared:", signif(rsq_wdoutlier,3), "\np:", 

signif(pval_wdoutlier,3)),1,line=3.5,at=7.5) 
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########################################################################

######################################################################## 

#ANOVA analysis  

#ANOVA analysis of Sleep duration from algorithm and MACRO with 8 hours of sleep 

analysis <- aov(Sleep_Duration_Macro~Algorithm_Sleep_Duration, data = remove_480) 

summary(analysis) 

plot(analysis, which =1, main = "Sleep Duration (Algorithm vs GENEActiv Macro)") 

plot(analysis, which =2,  main = "Sleep Duration (Algorithm vs GENEActiv Macro)") 

plot(analysis, which =3,  main = "Sleep Duration (Algorithm vs GENEActiv Macro)") 

plot(analysis, which =5,  main = "Sleep Duration (Algorithm vs GENEActiv Macro)") 

 

#ANOVA analysis of Sleep duration from algorithm and MACRO for complete data  

analysis2 <- aov(Sleep_Duration_Macro~Algorithm_Sleep_Duration, data = total_data) 

summary(analysis2) 

plot(analysis2, which =1, main = "Sleep Duration (Algorithm vs GENEActiv Macro)") 

plot(analysis2, which =2,  main = "Sleep Duration (Algorithm vs GENEActiv Macro)") 

plot(analysis2, which =3,  main = "Sleep Duration (Algorithm vs GENEActiv Macro)") 

plot(analysis2, which =5,  main = "Sleep Duration (Algorithm vs GENEActiv Macro)") 

 

#Plotting the difference for sleep duration for each day 

remove_480$Participant <- as.factor(remove_480$Participant)#converting to factors 

class(remove_480$Participant) 

remove_480$Day <- as.factor(remove_480$Day)#converting to factors 

class(remove_480$Day) 

analysis_hsd <- aov(Algorithm_Sleep_Duration~Participant, data = remove_480) 

plot(TukeyHSD(analysis_hsd)) 

 

########################################################################

######################################################################## 

 

 



62 

 

#mean difference between each participant sleep duration 

table_A_480 <- aggregate(Algorithm_Sleep_Duration ~ Participant, data=remove_480, 

mean) 

table_M_480 <- aggregate(Sleep_Duration_Macro ~ Participant, data=remove_480, 

mean) 

 

table_A_800 <- aggregate(Algorithm_Sleep_Duration ~ Participant, data=remove_800, 

mean) 

table_M_800 <- aggregate(Sleep_Duration_Macro ~ Participant, data=remove_800, 

mean) 

 

table_A_1200 <- aggregate(Algorithm_Sleep_Duration ~ Participant, 

data=remove_1200, mean) 

table_M_1200 <- aggregate(Sleep_Duration_Macro ~ Participant, data=remove_1200, 

mean) 

 

table_A_1400 <- aggregate(Algorithm_Sleep_Duration ~ Participant, 

data=remove_1400, mean) 

table_M_1400 <- aggregate(Sleep_Duration_Macro ~ Participant, data=remove_1400, 

mean) 

 

table_A_total_data <- aggregate(Algorithm_Sleep_Duration ~ Participant, 

data=total_data, mean) 

table_M_total_data <- aggregate(Sleep_Duration_Macro ~ Participant, data=total_data, 

mean) 

 

########################################################################

######################################################################## 
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#subsetting data by participant (Change the particiapnt number for plotting different 

participants) 

part <- remove_480[remove_480$Participant==21,] 

#Distribution of the sleep duration throughout the week for all the participant 

#calculating the total duration of sleep for each day of the week 

weekday_dat <- aggregate(part$Algorithm_Sleep_Duration, by=list(Day=part$Day), 

FUN=sum) 

#finding the sum of all the days 

weekday_dat$Totalsum <- sum(part$Algorithm_Sleep_Duration) 

#calculating the percentage 

weekday_dat$Percent <- (weekday_dat$x/weekday_dat$Totalsum)*100 

#plotting the graph for each weekday 

ggplot(data=weekday_dat, aes(x = Day, y=Percent, fill=Day))+geom_bar(stat = 

"identity")+ggtitle(label = "Algorithm Sleep Duration for 

Weekdays")+theme_minimal()+xlab("Week Day")+ylab("Algorithm Sleep Duration 

(%)") 

 

 

########################################################################

######################################################################## 

 

2. PELT Algorithm as given in [52] 

PELT Method 

Input:  A set of data of the form, (y1,y2,….,yn) where yi belongs to R 

 A measure of fit C(.) dependent on the data 

A penalty constant β which does not depend on the number or location of changepoints. 

A constant K that statisfies equation (13) in section 2 of the thesis. 

Initialise: Let n= length of the data and set F(0) = -β, cp(0) =NULL, R1={0} 

Iterate for τ = 1,…..,n 

1. Calculate  0 * ( 1) : *( *) min [ ( ) ( ) ]F F C y       += + + . 
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2. Let 
1

( 1) : **arg{min [ ( ) ( ) ]}R F C y     += + +
  

3. Set 
1 1( *) [ ( ), ]cp cp  =   

4. Set * 1 * 1 : *{ * { : ( ) ( ) ( *)}}R R F C y K F      + +=   + +    

Output: the change point recorded in cp(n). 

 

3. The below tables are for different critical values used in the Analysis Section in section 

3 of the thesis: 

Table-1 Average sleep duration difference for different sample size for critical value of 

1.96 

Critical 

Values 

Confidence Interval 

(%) 

Alpha Sample 

size 

Average 

Duration 

Difference 

1.96 95 0.05 1160 60.93 

1.96 95 0.05 1122 56.87 

1.96 95 0.05 1101 45.96 

1.96 95 0.05 1000 0.05 

1.96 95 0.05 682 52.15* 

 

Table-2 Average sleep duration difference for different sample size for critical value of 

1.75 

Critical 

Values 

Confidence Interval 

(%) 

Alpha Sample 

size 

Average 

Duration 

Difference 

1.75 92 0.08 1160 41.96 

1.75 92 0.08 1123 38.11 

1.75 92 0.08 1106 29.7 

1.75 92 0.08 1021 9* 

1.75 92 0.08 725 63 * 
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Table-1 Average sleep duration difference for different sample size for critical value of 

1.65 

Critical 

Values 

Confidence Interval 

(%) 

Alpha Sample 

size 

Average 

Duration 

Difference 

1.65 90 0.1 1160 31.38 

1.65 90 0.1 1124 28.3 

1.65 90 0.1 1108 20.12 

1.65 90 0.1 1030 16* 

1.65 90 0.1 743 69* 

 

4. Plots for each participant for critical value of 1.45 for each day of the week 
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