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ABSTRACT

Increasing number of battery operated devices creates a need for energy-efficient

real-time operating system for such devices. Designing a truly energy-efficient system is a

multi-staged effort; this thesis consists of three main tasks that address different aspects of

energy efficiency of a real-time system (RTS).

The first chapter introduces an energy-efficient algorithm that alternates processor

frequency using DVFS to schedule tasks on cores. Speed profiles is calculated for every

task that gives information about how long a task would run for and at what processor

speed. We pair tasks with similar speed profiles to give us a resultant merged speed profile

that can be efficient scheduled on a cluster. Experiments carried out on ODROID-XU3 are

compared with a reference approach that provides energy saving of up to 20%.

The second chapter proposes power-aware techniques to segregate a task set over a

heterogeneous platform such that the overall energy consumption is minimized. With the

help of calculated speed profiles, second contribution of this work feasibly partitions a given

task set into individual sets for a cluster based homogeneous platform. Various heuristics

are proposed that are compared against a baseline approach with simulation results.

The final chapter of this thesis focuses on the importance of having an underlying

energy-efficient operating system. We discuss an energy-efficient way of porting a real-time

operating system(RTOS), QP, over TMS320F28377S along with modifications to make the

Operating System(OS) consume minimal energy for its operation.
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1. INTRODUCTION

Our society has seen tremendous growth in embedded systems in the last few

decades. They are efficiently designed that attracts little attention to their presence while

serving their purpose, although their impact in the society can hardly be ignored. From

electronic calculators to heavy machinery for construction, embedded systems play a major

role in the functioning of our society. Its significance has been increasing in the recent years

and doesn’t show a trend of slowing down in the future. An embedded system is generally

designed to have dedicated functions within a bigger electrical or mechanical system to

solve specific issues. Unlike a general purpose computer, it does not have monitor or

keyboard, but they can be integrated into systems to prompt user interface. They generally

encompass at least one microprocessor, both RAM and ROM and some I/O devices. With

the advancement of technology, real-time applications in embedded systems are becoming

increasingly computational intensive.

1.1. WHAT ARE REAL-TIME SYSTEMS?

A real-time system consists of stringent timing requirements for its applications.

They are system that are expected to respond in very short and guaranteed period. real-time

applications consists of a task divided into many sub-tasks that can concurrently execute

on a processor within the given time-frame. Execution of a task may require access to

multiple resources on an embedded platform, for example Gang tasks are tasks that demand

simultaneous execution, thus the beginning of those tasks could be delayed as they would

wait for a minimum required number of processors to be free such that their parallel

execution can be facilitated Feitelson and Rudolph (1992). In other cases, multiple tasks

could require access to the same resource like reading/writing to a memory location. A

resource can only be used by one task at a time as their simultaneous usage could end up in
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garbage values being written or read from that memory location, in worst cases this would

prove fatal to the application leading to a system crash. To deal with such situations resource

locking/unlocking policies are introduced to prevent cases of deadlock or unlawful usage of

resources Sha et al. (1990) Goodenough and Sha (1988) Chen and Lin (1990) Baker (1990).

Although a relatively young field compared to many existing fields, real-time scheduling of

tasks has been a hugely active research area in academics and industrial applications.

Within a real-time system a correct output is expected within a certain time frame.

Failure to complete the task in the expected time could lead to catastrophic results. Let

us consider a real-time system designed for an aircraft as an example, the system could

be running multiple tasks like measuring air pressure, temperature, velocity etc. all at the

same time. The response time for these tasks are generally expected to have very small

durations within specified bounds. If the system would fail to achieve them in the expected

time slot, it could delay the execution of other tasks. This could very well cause the system

to malfunction crashing the plane. Another example we can consider is a real-time system

designed to operate a nuclear reactor. As can be imagined, this would require the system to

run uncountable calculations every second and with utmost precision. Any sort of delay in

the system or an unlawful computational output could very well lead to system instability.

This could pose a wide range threat as a nuclear blast would be an absolute disaster causing

uncountable loss of property and human lives.

1.2. TYPES OF TASKS

There are three general categories of tasks used in a real-time system viz. periodic

tasks, aperiodic tasks and sporadic tasks. Periodic tasks are tasks with constant periods,

which means that time between any two consecutive releases of a periodic task is constant.

A sporadic task can be understood as a task having a minimum inter-release time between
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two consecutive releases. Whereas aperiodic tasks have no relation between its consecutive

release times. It can unexpectedly be released at time, the information for which is generally

known only during run-time.

From the explained situations we can understand that a real-time system needs

careful considerations of a number of factors for rightful functioning. The purpose of a

having a real-time system is to make the system predictable, so any abnormal cases can

be detected and avoided in early stages of development making the system more robust

and reliable. A real-time task has two basic characteristics, one is its logical correctness,

the other is temporal correctness. Logical correctness refers to the output of a process,

no matter how complex, being logically or mathematically correct. For example a simple

addition of 3+4 should always give an output of 7. Though an easy example in this case, this

actual implementation on a processor would be a multi-staged process. The coded program

is generally compiled into an executable code that can be stored in the internal memory

of a processor. For execution, the processor loads the two variables into two internal

registers where values are manipulated in binary. Depending on the coded procedure, the

processor performs the computation and gives an output, which would need to be logically

correct. If the given output is wrong, the system would fail. Concurrently, the output for

a real-time system is expected within a certain duration. For a system running multiple

tasks, the execution of one task could lead to delay in completion of another task. A late

output is considered as a wrong output in real-time systems, this contributes to its temporal

correctness.

1.3. SCHEDULING ALGORITHMS

A real-time system usually assigns priorities to every task that helps the systemmake

scheduling decisions. Priority assignment is decided by the protocol used by the underlying

scheduler. At any moment, the scheduler is responsible for choosing the task with highest

priority among all available tasks and execute it. There are two main categories of priority
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assigning algorithms, one where the priority of every task is pre-assigned and never changes

through the course of system execution known as ’static priorities’. The other is ’dynamic

priorities’ where task priorities are assigned during run-time and are changed continuously

as execution progresses. Schedulability tests exists for each type of algorithm. They help to

ensure whether a a given task set is schedulable or not under a particular algorithm. Some

example of static and dynamic priority algorithms are given below.

Static Priority Algorithms. This paradigm consists of algorithms that assigns a

permanent priority to every tasks before system start up. Assigned priority can be based

on a decided parameter like task period or deadline. Rate-Monotonic (RM) algorithm is

one of the most famously used algorithms for uniprocessor scheduling. In this algorithm,

tasks with shorter periods are assigned higher priorities. This enables the most frequently

occurring tasks to be scheduled ahead of the less frequent ones. DeadlineMonotonic (DM)is

a similar algorithm that prioritizes tasks based on their deadlines. Hence tasks with shorter

deadlines will have higher priorities. Since the deadlines and periods of a task would not

change, neither will their priorities.

Dynamic Priority Algorithm. In contrary to static priorities, dynamic priorities

will change a task’s priorities every time instant based on the scheduled algorithm. Two of

the most widely used dynamic priority algorithms are Earliest Deadline First(EDF) where

a task’s priority at any time instant t is decided based its relative deadline compared to other

tasks at that instant. As the name suggests, the task with the earliest deadline will have the

greatest priority. EDF is an optimal algorithm for scheduling tasks sets on uniprocessors

that have total utilization ≤ 1. Least Laxity First(LLF) or Least Slack Time (LST) is another

optimal uniprocessor algorithm that gives higher priority to tasks with lesser laxity. Laxity

of a task at any time instant t can be defined as the time left for a job until its deadline. It

required the given task set to have a total utilization ≤ 1 as well as requires the system to

keep track of more variables compared to EDF algorithm.
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2. LITERATURE REVIEW

Multi-core platforms are often preferred for applications requiring energy efficiency,

performance and real-time guarantees. The paper by Pagani and Chen (2013) show that we

can significantly reduce total energy consumption if the load is evenly distributed between

two cores rather than assigning the entire load on one core running at double frequency.

Much work has aimed at energy-efficient and power-aware scheduling of sequential tasks

on multi-core homogeneous systems Bambagini et al. (2016). Chen et al. (2009) and

Liu et al. (2012) present an energy-efficient design for scheduling tasks on heterogeneous

systems. Problems related with allocating real-time applications in an energy efficient

manner onto heterogeneous platforms has been addressed by Colin et al. (2014). Little

attention has been given to researching problems relating to power minimization along with

intra-task parallelism. Graph tasks are scheduled with minimum power consumption in

Zhu et al. (2004) and Zhu et al. (2002). Energy awareness for cores with block partitioning,

where cores are divided into blocks sharing a common power supply, was studied by Qi

and Zhu (2011). Gang scheduling policy was studied by Paolillo et al. (2014), where a

task uses multiple processors in parallel for its execution. Paper published by Chen et al.

(2014) considers per-core Dynamic Voltage and Frequency Scaling(DVFS) and introduces

a technique to combine dynamic power management with DVFS for dependent tasks. Kong

et al. (2011) minimizes energy consumption for tasks with implicit deadlines based on level

packing. Non of the work mentioned above considers inter-task processor sharing, the

research done in Guo et al. (2017a) is the closest to the work presented in this thesis.

There has been much attention given towards designing underlying operating sys-

tems that are focused on conserving power. Anumber of papers have researched and reported

various energy efficient aspects for an Operating System(OS) Lee et al. (1998)Lorch and

Smith (1997).Lorch and Smith (1998). The work in Vahdat et al. (2000) focuses on every
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aspect from an energy efficient point of view rather than the traditional performance-based

approach. Energy is considered as the resource with highest priority managed by the OS in

Ellis (1999).
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3. ENERGY EFFICIENT REAL-TIME SCHEDULING OF DAGS ON
CLUSTERED MULTI-CORE PLATFORMS

3.1. BACKGROUND AND SYSTEMMODEL

Here a brief introduction about real-time systems is given particularly pertaining

to aspects relevant to this thesis. Real-time systems can be understood as a system with

stringent timing requirements for its task’s execution. A real-time task is characterized

by dual correctness viz. logical correctness and temporal correctness. That means the

achieved output would not only have to be logically correct but also has to be computed

within the given timing constraint, else the output not only holds no significance but also

could leads to a system failure in worst cases. A system producing a late result is equivalent

to one producing an incorrect result. A real-time system generally consists of various tasks

with or without any dependency between any two of them. Two kinds of tasks can be

considered for a real time system, hard real-time tasks and soft real-time tasks. A task

with soft real-time requirements will have steady reduction in usefulness for every timing

violation whereas hard real-time constrains are not capable of tolerating any violations of

their timing requirements what-so-ever.

3.1.1. Real-Time Task Characteristics. A task τi can have the following charac-

teristics:

• Release time, ri : Time instant at which the task was released

• Worst-case execution time, Ci : Time required to executed a task in the worst case

scenario

• Relative deadline, Di : Duration within which the task needs to complete

• Period, Ti : Duration after which the cycle repeats
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They can be written as a tuple (ri,Ci,Ti,Di). A task can release many sub-tasks

known as jobs. The relation between a task’s release and period help us determine its

periodicity. A periodic job is released strictly every T time units. A sporadic task however

has a minimum inter arrival time between its subsequent releases i.e. they would be released

at least T units apart. Finally we have aperiodic jobs which have no predictable release

times, they are randomly released by the system. A task with period equal to or more than

its deadline (T ≥ D), is known as a constrained deadline task. If the period is equal to its

deadline (T = D), it is known as an implicit deadline task.

3.1.2. Directed Acyclic Graph (DAG). A Directed Acyclic Graph (DAG) is a

directed graph with finite number of edges and vertices placed in topological ordering as

shown in figure 3.1. Each edge is directed from one vertex to another without any cyclic

sequence. It would mean that if we started at a vertex A and followed a directed sequence of

path, there is no way we can loop back to A. For this thesis, we consider a task set of sporadic

tasks denoted by τ = {τ1, τ2, τ3, . . . , τn}, where n denotes the number of tasks in the set and

each task τi is expressed as a DAG with deadline Di and minimum inter-arrival separation

of Ti time units. Vertexs/Nodes within a DAG represent the execution requirements while

edges represent the dependencies among nodes.

Figure 3.1. DAG representation
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A node Ni would be called the parent node or immediate predecessor of node Nk if

there exists an edge directed from Ni to Nk . This implies that the execution of Nk cannot start

until Ni finishes its execution (predecessor constraint). The execution requirement of node

Ni is denoted as c j
i . Addition of all individual requirements of the nodes of a DAG gives us

its total execution requirement denoted by Ci. If we follow a DAG from the start to the end

of its graph, the path with longest total execution requirement among all available paths is

known as a critical path. Sum of execution requirements of all nodes that lie on a critical

path is known as the critical path length, denoted by Li. Thus Li gives us minimum time

required to execute a DAG even if we have multiple processors available at our disposal. In

turn it is implied that for a task τi to be schedulable, at least Li time units are needed. The

above given explanation can be understood better with an example. In the given figure 3.1,

the longest path is through nodes N2
i − > N3

i − > N5
i − > N7

i , thus the longest path length

will be addition of their individual execution requirements, equal to 15 units.

3.1.3. Power Model. At any given time instant t, we can denote the frequency of

a processor as s(t) (we assume continuous frequency scheme for sake of simplicity). Thus

the power consumption P(s) of the processor can be calculated by equation 3.1

P(s) = Ps + Pd(s) = β + αsγ (3.1)

In Equation 3.1, P(s) is the power consumption due to leakage current while Pd(s)

is introduced due to switching activity. Here Pd(s) is frequency dependent and can be

represented as β+αsγ. β > 0 is introduced whenever a processor remains on and thus is the

static part part of the equation. α is the effective switching capacitance where as γ ∈ 2, 3 is a

fixed parameter determined by the hardware. The adopted power model is widely accepted

in the real-time community Pagani and Chen (2014)Narayana et al. (2016)Huang et al.

(2014)Aydin and Yang (2003). Comparison of actual power consumption from Howard

et al. and the power model presented in equation 3.1 deemed it to be highly realistic.

This work considers a continuous frequency scheme, although our approach is not widely
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affected on its application to systems with discrete frequency level. This is owed to the

fact that we can get discrete values by rounding up values from the continuous frequency

scheme and most state-of-the-art micro-processors available today have a relatively fine

grained step-to-scale frequencies. ODROID-XU3 has a frequency range from 100MHz-

1400MHz for the LITTLE core and 100MHz-2000MHz for the big core with a scale step of

100MHz. Such fine grained step frequency can still be closely applicable to our approach.

Based on this discussion, we can calculate the total energy consumed during interval [g, h]

as E(g, h) =
∫ h
g

P(s, t) dt.

3.1.4. Platform. The hardware platformwe consider for experimentation isODROID-

XU3, a Heterogeneous Multi-Processor(HMP) consisting of Samsung Exynos5422 Octa-

core SoC employing ARM’s big.LITTLE architecture. Its architecture consists of a ’big’

cluster with quad Cortex-A15s and another ’LITTLE’ cluster with quad Cortex-A7s. All

processors in the same cluster operate at the same frequency as they have the same supply

voltage, although the two clusters can operate at their individual frequencies levels. Four TI

INA231 power sensors are integrated into the board to accurately measure power consumed

by A-7 cores, A-15 cores, RAM and GPU in real-time. The ‘big’ cluster is the performance

cluster whereas ‘LITTTLE’ is the slower, battery-saving cluster.

3.1.5. DynamicVoltage andFrequencyScaling. DynamicVoltage andFrequency

Scaling (DVFS) is a technique to change the voltage in a component depending upon cir-

cumstances. For situations where a processor might be overloaded with work, increasing

the voltage would in turn lead to an increase in the processor frequency. Similarly for lightly

loaded work decreasing processor frequency can aid in lesser power consumption. This

technique is widely used in mobiles and laptops to reduce power usage and extend battery

life. The experiment presented in this thesis utilizes DVFS technique to dynamically alter

processor frequency as and when required.
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3.2. PROBLEM STATEMENT

We find a feasible strategy to minimize total power consumption for scheduling an

implicit deadline and constrained deadline task set on a cluster based system. It is already

known that finding an energy efficient partition is NP-hard for both, parallel Li (2012) and

sequential tasksAydin andYang (2003). Our approach for tacking this problem is as follows:

(1) We consider a sporadic task set and apply the existing task decomposition technique

followed by the inter-DAG merging from Guo et al. (2017a). (2) With information obtained

from the above step, we merge every DAG with a suitable partner such that they both can

be assigned on the same cluster while the overall power consumption is minimized.

3.3. PRELIMINARIES

Definition 1 (Speed-Profile) When assigned to the cores, the speed-profile of a task de-

scribes how long it takes for the task to execute and at what rate of speed. We will represent

the speed-profile of a DAG as a random variable S which has an associated probability

function (PF), fS(∗) where fS(s) = P(S = s) and s has a finite set of values. Here, s

represents the speed and fS(s) represents the portion of the DAG period when it is running

at this speed (see Example 3.3).

Example 3.3. Consider a DAG τ1 with speed profile S1 =
©«
0.2 0.5

0.3 0.7

ª®®¬ , having a

time-period of 10 units. The speed profile S1 indicates that the DAG would run at speed of

0.2 for the initial 3 units of its time period and would run at speed of 0.5 for the rest of its

duration i.e 7 units.

3.3.1. Task Decomposition. The task decomposition technique breaks down a par-

allel task τi in to smaller individual sub-tasks also known as jobsSaifullah et al. (2014a).

This leverages us to schedule them as sequential tasks (preemptive and non-preemptive)

along with traditional analysis of multiprocessor scheduling. On decomposition into indi-
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vidual tasks, every sub-task has its own release offset, execution time and deadline. These

sub-tasks can be scheduled on a multiprocessor forming segments defined by their bound-

aries i.e. release and deadlines of a sub-task can be understood as the start or end of a

segment. Seeming it is a multiprocessor, there can be multiple sub-tasks sharing the same

segment as their execution times may overlap. Sub-task release and deadline are assigned

in such a way that the original release and deadline of the DAG along with all dependencies

between the nodes are respected. Figure 3.2 shows how the DAG represented by figure 3.1

will look like after applying task decomposition technique (Refer Guo et al. (2017a) for

more details).

Figure 3.2. DAG after applying task decomposition

3.3.2. Segment Extension. On applying the task decomposition technique we get

information like release times and deadline of every node which maybe sufficient but not

necessary. This gives room for rearranging the execution of certain nodes to conserve energy.

For example consider figure 3.2 where node N6
i can be executed in segment 4, allowing us

to turn off the third processor, although task decomposition adds an unnecessary condition

for it to finish by end of segment 2. Segment extension is a technique to determine the
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scheduling window constraints for a node N j
i . Scheduling window constraints refers to the

necessary and sufficient time frame beginning from a nodes release offset until its deadline

(Refer Guo et al. (2017a) for more details).

3.3.3. Intra-Task Processor Merging. On applying the task decomposition tech-

nique, we get information about the schedulable windows for individual sub-tasks. On

assigning an initial schedule, it may happen that some processors are more heavily loaded

than others, such uneven distribution of load may lead to poor energy efficiency. Accord-

ing to Guo et al. (2017a), lightly loaded cores can be combined into one heavily loaded

processor. The workload distributed among a pair of lightly loaded cores can be transfered

onto just one core, provided it doesn’t overflow the total capacity of the processor. During

such reallocations, care is taken that no deadline of any DAG is missed. This technique

reduces the overall number of cores required, leading to lesser leakage current which is one

of the major factors of the total power consumption. We consider a cluster based platform

where all cores in a cluster operate at the same frequency, thus it would not be possible to

lower down the frequency of a lightly loaded core to save power. However modern micro-

processors do have the ability to selectively turn off a processor when not in use. From

time-to-time intra-task processor merging may free up a processor which can be turned off,

leading to power savings. (Refer Guo et al. (2017a) for more details)

3.4. INTER-TASK MERGING: IMPLICIT DEADLINE TASKS

3.4.1. Choosing Single Speed for the Whole Task Period. Task Decomposition

and segment extension and intra-task processor sharing techniques give us various important

details like the number of cores required for execution as well as the execution speed of cores

at particular instances of time. This information is vital to calculate a single speed for a given

DAG. But at any time instant, different nodes within the DAG can require different speeds,

so how do we select a single speed at that instant? To tackle this scenario, we select a single

necessary speed throughout the task period of a DAG. Motivation for this comes from the
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claim derived in Theorem 2 of Guo et al. (2017a): The total energy consumption (assuming

processor remains on) is minimized in any scheduling slot/window when execution speed

remains uniform(the same) through the interval. In our current approach, we determine

the workload(execution requirement) among all cores and select the maximum workload

from all available ones to calculate the aggregate workload. The desired single speed for a

DAG is achieved by dividing the aggregate workload by the task period. Consider a task τi

allocated to M cores. For any segment j having a length of tc
j , the workload and speed of a

core k can be given by wi, j,k and si, j,k . Workload can be calculated as,

wi, j,k = si, j,k × tc
j .

The maximum workload per segment among all cores is calculated by,

wi, j = max(∀k(wi, j,k)).

The desired single speed and the aggregate workload wi for a task can be calculated

using the following equation,

wi =

Z∑
j=1

wi, j, si =
wi

Ti
. (3.2)

Here, Z denotes the total number of segments in τi. A single speed is calculated

for the whole task period and denoted by P, which is represented as < si, pi >. Here, the

probability of a cluster to run at speed si will be pi.

3.4.2. GreedyMerging. In subsection 3.4.1we introduced algorithm 1 that outputs

a single executable speed si for every DAG τi. This section explains the technique to find

the most suitable DAGs for merging based on their calculated single speeds and assign them

to be scheduled on the same cluster. We follow a greedy approach for selecting the most

suitable pair, the proposed steps for inter-DAG processor merging are as follows:
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Algorithm 1: Single Speed for a Task
Input: Speed si, j at every segment j, for a task τi.
Output: A single speed si for the whole task period.
wi = 0; . total workload of τi;
for j = 1 to total Segments do

maxLoad = 0;
for k = 1 to total Cores-1 do

wi, j,k = si, j,k × tc
j ;

maxLoad = max(maxLoad,wi, j,k,wi, j,k+1);
end
wi, j = maxLoad;
wi = wi + wi, j ;

end
si = wi/Ti;
return si;

1. Initially, all speeds are marked unselected.

2. Stat with the largest speed and mark it selected.

3. Start from the largest unselected speed and try to merge it with one selected in step 2.

4. Calculate power savings according to the merging technique discussed in Subsection

4.1 of Guo et al. (2017a), merge them into the same cluster with speed of the one

selected in step 2 and mark it selected as well.

5. Follow instruction given in step 3 until no more speeds can be merged.

6. Follow instruction given in step 2 until all speeds are selected.

3.5. INTER-TASK MERGING: CONSTRAINED DEADLINES TASK

As explained before, tasks with constrained deadlines have their deadlines shorter

than their periods. This makes a task more heavily loaded compared to the case with

implicit deadline and imposes tighter constraints. We propose two different approaches in

this section for creating a DAG’s speed profile and also discuss greedy pairwise merging of

tasks for maximum power savings.
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3.5.1. Creating Speed-Profile. To create the speed-profile of a DAG, we propose

two approaches, (1) Choose the maximum speed among all running cores within a cluster

for any time instant t and (2) calculate single speed for the whole task deadline.

Maximum speed at each segment. As mentioned before, by applying the task

decomposition and segment extension technique we can get important information for a

DAG like duration and execution speed of each segment and the number of cores required

to schedule the DAG. For this approach, we consider the maximum speed of a core among

all available cores within a cluster at any time instant t(see Algorithm 2). This ensures that

we always operate the cluster at a speed that can satisfy execution of even the most heaviest

node. For tasks with constrained deadlines, its execution has to be completed by deadline

D, where Di ≤ Ti. Thus for the rest of the time(Ti − Di), we can assume the core is idle.

We create a pair Pj for every segment j ∈ τi, where Pj =< si, j, pi, j >. Here, si, j denotes the

maximum speed of the j th segment and pi, j denotes the probability of the cluster running

on that speed. For any given segment j, the maximum speed si, j can be calculated using as,

si, j = max(∀k∈M(si, j,k)).

Here, M denotes the number of cores allocated to task τi. Its probability cab be

calculated as,

pi, j =
tc
j

Ti
.

The expected speed profile Si will look like so,

Si =
©«

si,1 si,2 · · · si,z

pi,1 pi,2 · · · pi,z

ª®®¬ .
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As the cluster will remain idle for duration (Ti − Di), we will add an additional pair

Pj+1, where Pj+1 =< 0, (Ti − Di)/Ti >. Thus, Si will be,

Si =
©«

si,1 si,2 · · · si,z 0

pi,1 pi,2 · · · pi,z (Ti − Di)/Ti

ª®®¬ .

Algorithm 2:Max Speed at Each Segment
Input: A task τi, with speed si, j at each segment j.
Output: Maximum speed at each segment.
for j = 1 to total Segments do

maxSpeed = 0;
for k = 1 to total Cores-1 do

maxSpeed = max(maxSpeed, si, j,k, si, j,k+1);
end
si, j = maxSpeed;

end
return si, j ;

Example 3.5.1 Consider we have an implicit deadline task with deadline as 9 and

time period as 12(Di = 9,Ti = 12) divided into two segments. We consider the maximum

speed at each segment, thus there will be two pairs Pj each expressed as < si, j, pi, j >. Since

the give deadline is 9, the sum of all time segments should be 9.

Let us consider that tc
1 = 2.5, tc

2 = 4, si,1 = 0.55 and sc
2 = 0.78. Probability Values

for creating the speed-profile can be calculated as p1 = 2.5/12 = 0.21 and p2 = 4/12 = 0.3.

Since the task in consideration is an implicit deadline task, where (D ≤ T), we will add an

addition of speed 0 for the idle period, p3 = 0.54.

Thus final speed profile will Pj will be,

Si =
©«
0.55 0.78 0

0.21 0.3 0.49

ª®®¬ .
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Single Speed Throughout. Another technique we propose is to calculate a single

speed for the DAG. The algorithm is similar to that followed in section 3.4.1, except for

a minor change. Since we are considering constrained deadlines, we calculate the single

speed for the whole deadline rather than for the whole period. Thus the workload is divided

by Di instead of Ti. Since we consider single speed, the speed profile of a DAG would now

consist of one pair < si, j, pi, j > and another pair with speed zero added for the idle period.

3.5.2. Task Combination:Greedy Merging. In this section, we introduce the

method to merge two tasks with similar speed profiles for efficient energy consumption

during their execution. But in order to understand this technique, some preliminaries are

explained as given below:

The previous sections give us the methods to decompose a DAG into individual

sub-tasks and schedule them efficiently on a multiprocessor such that the all deadline are

respected and we have minimum cores required to schedule the DAG. This section explains

the technique to merge a DAG with its best fit pair to efficiently utilize a processor for

their execution. We consider a sporadic task set Ts = {τ1, τ2, ...τn} with n tasks, where

(1 ≤ i ≤ n) and every task τi is represented as a DAG. In a clustered multi-core system, the

number of cores per cluster is fixed and at any given time, all cores in a cluster operate at

the same frequency. Due to the sporadic nature of a task and the underlying requirement

of a clustered multi-core platform, it is extremely difficult to predict the exact speed of a

cluster at any given instant. To tackle this issue, the operating speed of a cluster at any given

time is calculated by the probabilistic speeds-profiles of tasks. The speed-profile of a task

indicates the duration of how long a task would be executed for and at what speed. We can

use the speed-profiles of two DAGs and merge them to create an resultant speed-profile that

satisfies the execution of both the DAGs and gives us the speed to run the cluster on.

Example 3.5.2 Figure 3.3 gives a visual representation of how speed selection for a

cluster can be affected by the sporadic arrival of tasks. In the given example, we have two

sporadic tasks τ1 and τ2 each with their own speed profile as shown in figure 3.3. Consider
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Figure 3.3. Two DAG tasks τ1 and τ2 with different speeds and arrival times and a resultant
merged DAG τ12 with resultant speed pattern. Values closed in rectangles denote the
execution speed. X and Y axis denote the time and speed respectively.

figure 3.3(a) where the periods of the two DAGs are 8 and 10 time units respectively. As

all cores within the same cluster run at the same speed for any given time instant t, speed of

the cluster for time interval [0-4] will be 0.7 units. For interval [4-8], τ1 executes at speed

0.2 units and τ2 executes at speed 0.6 units. In order to ensure that both DAGs meet their

deadlines, the cluster should execute at a speed of 0.6 units during that time interval [4-8].

For the remaining time interval [8-10], the cluster will operate at the speed of 0.6 units.

Consider figure 3.3(b) where the tasks arrive at different times. Here the tasks have a

relatively different speed profiles as compared to figure 3.3(a). Since we need to maintain

the maximum cluster speed required by any task for at any time instant t, the cluster would
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execute at a speed of 0.8 units for the interval [0-5] and change to 0.7 units for interval [5-6].

Similarly, speed of the cluster will be 0.6 units for time interval [6-9] and will be 0.2 units

for the rest of the interval [9-12].

For two DAGs that have overlapping execution times, the operating frequency for

the give cluster at any time instant would be the maximum speed required among both the

DAGs at that instant. Doing so ensures two primary objectives viz. all the cores within a

cluster operate at the same frequency and deadlines of both the tasks are met. Selecting

the maximum speed ensures that we satisfy the need of even the heaviest task at any given

moment, thus not violating its deadline. To do this, we introduce a special operator, �. It

operates on two given variables and returns the larger one.

Definition 2 Give two variables X and Y, special operator � performs an operation on

both the variables and returns the larger one. During this operation, each entryXi (Xi ∈ X)

is compared with each entry Yi (Yi ∈ Y) and calculates Zii as Zii = max(Xi,Yi). It

multiplies the probabilities associated with Xi and Yi. Lastly, multiple entries of the

same speed values are merged into a single entry with their associated probabilistic values

summer together.

Example 3.5.2 Let X =
©«

7 3

0.2 0.8

ª®®¬ and Y =
©«

7 5

0.2 0.8

ª®®¬.
ThenZ = X � Y =

©«
7 7 7 5

0.04 0.16 0.16 0.64

ª®®¬ =
©«

7 5

0.36 0.64

ª®®¬ .
WhenX2 (value 3with probability 0.8) is comparedwithY2 (value 5with probability

0.6) Z22 becomes 5 (max(X2,Y2) = 5) with probability 0.64. Finally, the repeated values

(Z11,Z12, andZ21 in this example), are merged into a single entry while their probabilities

are summer together.
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Consider two task τi and τj , we can calculate the respective speed profiles Si and

Sj by following steps given in subsection 3.4.1. The method to calculate a resultant

speed profile by merging both tasks is illustrated in Example 3.5.2. To choose two tasks

for merging that would share the same cluster, we greedily choose the pair that provides

maximum power savings according to section 4.1 of Guo et al. (2017a). It should be noted

that their approach cannot be directly applied to our case. Work done in Guo et al. (2017a)

merges cores within the same DAG, whereas we merge two DAGs that will be allocated on

the same cluster. We use our concept of speed-profiles to tackle this problem. The profile

gives us information about the speeds required by a task and their probabilistic values within

the task’s period, thus we do not need to consider the period as the values are probabilistic

ones. Another difference to be noted is that Guo et al. (2017a) simply sums up the speeds

of two cores during merging. In our case, we take consider the maximum execution speed

at any given time instant t.

We allow merging of two DAGs that previously haven’t been merged before. The

pseudo-code presented in algorithm 3 elaborates represents the above mentioned steps. We

begin with two empty lists S̄ and S̃ that will hold the possible and selected speed profiles.

Lines 2 − 6 calculate the temporary possible speed profiles and insert them into S̄. The

pair of DAG providing maximum energy savings is selected greedily and put into S̃. We

update S̄ by removing the selected pair, preventing it from further merging. The final list

S̃ is returned.

3.6. EXPERIMENT

This section elaborates the details and procedures carried out for experimentation

on the ODROID-XU3 board. ODROID-XU3 is a powerful and energy efficient computing

device. It can be run as a stand-alone computer with open source support offering various

operating system choices includingUbuntu 16.04, Android 4.4 KitKat as well as 7.1 Nougat.

To support advanced processing on ARM devices, it implements eMMC 5.0, Gigabit
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Algorithm 3: Greedy Merging
Input: Task-set τ, with speed-profile Si for each task.
Output: Speed-profile S̃ (with processor power saving).
S̄, S̃ ← ∅ . All the possible/selected speed-profiles;
for i = 1 to n do

for j = i + 1 to n do
Si j ← Si � Sj ; S̄ ← S̄ ∪ Si j ;

end
end
while ∃Sxy ∈ S̄ and Sxy provides non-zero power saving do
Sxy ← the pair from S̄ with maximum power saving;
S̃ ← S̃ ∪ Sxy;
for k = 1 to n do
S̄ ← S̄ − Sk x − Sky;

end
end
return S̃;

Ethernet Interfaces and USB 3.0 which boasts amazing data transfer speeds. As mentioned

before, ODROID-XU3 employs ARM’s big.LITTLE architecture with two cluster islands.

Four integrated TI INA231 power sensors provide us with accurate and real-time power

reading for various components on the board like A-15 cluster and A-7 cluster GPU and

RAM. For the experiment, we directly utilize on-board sensors to get accurate power

consumptionwhile an energymonitoring script, emoxy3 EnergyMonitoring logs the energy

consumption of the workload.

3.6.1. DAGGeneration. Ourworkload is generated using theErdös-Rényimethod-

Cordeiro et al. (2010). It is as well knowmethod for generatingDAG task sets. For any given

number of nodes n in a DAG, the probability of having a connection between two nodes

in represented by p. This method does not guarantee to generate to produce a connected

DAG. Hence in case a disconnected DAG is generated, we append the fewest number of

edges required to make the DAG connected. In our case, we set p to 0.25. For fixing task

periods to our set, we consider arbitrary periods, where every period Ti is determined using

a Gamma distribution Gamma distribution and set Ti as, Ti = Li + 2(Ci/m)(1 + Γ(2, 1)/4)
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Saifullah et al. (2014b), Guo et al. (2017b), where critical path of task Ti is denoted by Li.

We compute the critical path length for every DAG as mentioned in section 3.2 i.e. sum of

execution requirements of all nodes that lie on the critical path for a DAG.

To better demonstrate the effectiveness of our proposed algorithm, we generate a

two task sets of 300 DAGs each. Keeping in mind the architectural nature of our evaluation

platform, we assign one set of tasks to run on the big core while the other set is for the

LITTLE core. Energy consumption over a period of 230000ms was measured, this is one

hyperperiod of the DAGs.

3.6.2. Rt-App. Themost basic unit of execution in a processor is known as a thread.

DAGs and its nodes are represented as threads in the system. Their generation and workflow

is achieved by using the POSIX Thread model, also known as pthreads. POSIX Threads

is an execution model that allows control over multiple different workflows that may have

timing overlaps. It is an API defined by standard POSIX.1c, (IEEE Std 1003.1c-1995). It

is freely available bundled in many Unix-like operating systems such as NetBSD, Linux,

Mac OS X, Android, FreeBDS and Solaris, typically as ’libpthread’ library. For more

information, please refer to Rt-App documentation.

Calls to pthread API are managed through ’rt-app’ program. rt-app is one of the

scheduler tool available in Linux, typically used to emulate real-time system use cases along

with giving their runtime information. Through rt-app we generate the workload for each

DAG which utilizes the POSIX Thread model to call and execute threads. The life cycle of

these threads are bounded by execution time, period, priority, core assignment along with

other values that can be specified with rt-app. rt-app accepts a JASON file as an input

that defines these aforementioned thread values. In this experiment, we randomly select the

execution time for each node to be between [300ms, 700ms]. Please note that rt-app itself

occurs a certain varying latency between 13-150ms every time it is called, hence we add

the upper limit of this i.e. 150ms to the execution time of every thread.
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Figure 3.4. The energy consumption and frequency variation of our proposed approach on
ODROID-XU3

3.6.3. DAG Scheduling. DAG scheduling is carried out by using the Linux built-

in scheduler sched_FIFO. sched_FIFO is a built-in scheduler in Linus that implements a

fixed-priority scheduling algorithm. All DAG tasks have been given a priority higher than

other system tasks to ensure no system task interferes with our DAG execution. It should be

noted that our approach is also applicable to other work-conserving scheduling algorithms.

3.6.4. Frequency Scaling. We deploy a run-time monitor that detects the arrival

and completion of a nodes in the system. Based on the frequency/speed profile for a

particular node as mentioned in section 3.4, system frequency is scaled using cpufreq-set

program from the cpufrequtils package. The main overhead in our experiment is due to

the online frequency scaling mechanism. As measured on ODROID-XU3, the big cluster

takes at most 40 ms to 60 ms for scaling-down and scaling-up respectively. Whereas on the

LITTLE cluster, it takes at most 15ms for scaling both up and down.
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3.6.5. The Reference Approach. No previous work has studied the problem we

address in this thesis, hence we did not directly find a proper reference approach for

comparison form literature. We consider a reference approach that studied energy efficient

scheduling of sequential tasks in Chen and Kuo (2007), where every task is assigned a

frequency it operates at and scheduled at run-time based on their individual operational

frequency. For the reference approach, we compute the operational frequency for each

DAG. While ensuring all deadlines of all DAGs, their execution times are stretched out by

the operational frequency as much as possible. For fair comparison, the reference approach,

like our approach, also executes two sets of DAG, one for the big cluster and the other for

the LITTLE cluster without the merging technique proposed in section 3.4.
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Figure 3.5. The energy consumption and frequency variation of the reference approach on
ODROID-XU3

3.6.6. Results. Experimental results are plotted in Figure 3.4 and 3.5. In the given

figures we display (1) operating frequencies of the big and LITTLE cluster and (2) energy

consumption over the hyperperiod interval for all DAGs i.e. 230000ms. The three lines in
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the figure give us the energy consumption of the big cluster, LITTLE cluster and the total

system system consumption. It can be observed that the total energy consumption is higher

than the summation of big and LITTLE cluster energy consumption. This is owing to the

fact the the total system consumption also includes energy consumed by GPU and DRAM,

however there is negligible difference between the two approaches for GPU and DRAM

consumption. Operating frequency levels of the big and LITTLE cluster are denoted by

diamonds and stars at a particular instant, respectively.
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Figure 3.6. Frequency occurrence probability

Comparison of results for both approaches are summarized in table 3.1, where

energy consumption for both clusters along with the overall system energy consumption

and the energy saving by our approach is presented. As seen in the table, our approach

consumes 32 J and 312 J on the LITTLE and big clusters, respectively. In comparison

with the reference approach, our approach saves energy by 20% and 16% on the clusters,

whereas it saved 18% total energy consumption.
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Ours (J) Ref (J) Energy Saving (%)
big cluster 312 389 20
LITTLE cluster 32 38 16
Total 387 472 18

Table 3.1. Summary of experimental results

The reference approach only scales the system frequency per DAG, whereas our

approach can change the frequency during the scheduling of a DAG where ever applicable,

thus giving us the advantage of having amuchfiner grained frequency scaling. Asmentioned

before, the operational frequency is recorded by emoxu3 every 1000 ms. Figure 3.6 shows

the probability of a frequency occurring on the big and the LITTLE cluster. It can be

seen in the figure that for a given time interval, the reference approach has a much higher

probability of executing at high frequency, specially at the max frequency, thus leading

to higher energy consumption. Our approach on the other hand has a greater chance of

executing at a lower frequencies, thus leading to a lower energy consumption.
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4. TASK-TO-CORE MAPPING ON HETEROGENEOUS PLATFORM

The previous section introduced an energy efficient algorithm to schedule DAGs on

their assigned cluster. In this section, we propose techniques that can be used to map a

given task set on a heterogeneous platform.

For ease of explanation, rest of the paper will focus on application of our theory to

ARM’s big.LITTLE heterogeneous architecture but the concept itself is certainly applicable

to other heterogeneous platforms. A given task set is scheduled into two task sets, one for

the big cluster, the other for LITTLE cluster, such that when scheduled, the total power

consumption from both cores will be minimal. In this section we explain how a task’s

speed-profile can be used to estimate its power consumption by using our power model.

Let us consider the power equation introduced in section 3.1.3, where the power P(s)

consumed by a processor running at a frequency s(t) at any time instant t can be calculated

as,

P(s) = Ps + Pd(s) = β + αsγ

Also, speed-profile of a task can have a general expression of S =
©«

s1 s2 . . . se

p1 p2 . . . pe

ª®®¬ ,
where e depicts the maximum number of columns a DAG contains in its profile.

To understand the correlation of the speed-profile and the power model, we once

again direct our readers’ attention to work published by Guo et al. (2017a), particularly to

Section 4.1, equation (8). It gives a direct relation between a task’s speed profile and its

power consumption on a processor running at speed s. The equation is as given below,

Pj = β + α
∑

k

tk
i

Ti
(Sk

j )
γ (4.1)
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Pj represents the power consumed by the k th portion of a task τi running with speed

Sk
j on the j th processor. For example, consider the speed profile Sl for a DAG task τi with

deadline 30 running with speed 0.2 for initial 12 units of time and speed 0.4 for the latter

portion on the LITTLE core can be given as, Sl =
©«
0.2 0.4

0.4 0.6

ª®®¬.
the power consumed on one core can be calculated as,

P = β + α(12
30
.0.2γ +

18
30
.0.4γ)

As mentioned before, α, β and γ are hardware dependent values which can be found

in a work published by Liu et al. Liu et al. (2015). Knowing the value of α, β and γ for the

big and LITTLE core and a task’s speed-profile, we can calculate the power required by a

task for both cores.

4.1. CHALLENGES

Depending on the core assigned, a task can have varying energy consumption. The

processor-speed values for a tasks’ speed profile will be larger for the power intensive core

and will be lower for the energy saving core. The segregational duration would stay the

same for both as they represent the part of the tasks’ time-period during which the DAG

may have greater or lower speed. Task-to-Core mapping is a well known NP-Hard problem.

The overall power consumption also depends on hardware specific variables α, β and γ as

we have seen in the problem statement, which would change if our target platform changes.

The total utilization per cluster is bounded which prevents us from infinitely allocating tasks

to cores. As the number of cores are limited, so should be the total utilization of allocated

tasks.



30

4.2. HEURISTICS

To tackle the challenges mentioned in Challenges, we propose heuristics that provide

energy-efficient mapping of tasks to ARM’s big.LITTLE core and compare the results. Our

solution would partition the original task set into two resultant task sets, one containing

all tasks assigned to the big cluster and the other containing tasks assigned to the LITTLE

cluster. For all heuristics, we will assume that our initial task set is schedulable with total

utilization equal to double of max utilization of the LITTLE core. This helps us guarantee

the schedulability of our resultant task sets as some tasks will be alloted to the big core,

where the utilization will always be within bounds.

4.2.1. Greedy Algorithm. Greedy algorithm is a well know algorithmic paradigm

for solving NP-hard problems, offering various algorithms, each with its own advantages

and disadvantages. Some examples of the most widely used greedy algorithms are First Fit,

Best Fit, Worst Fit Decreasing/Increasing etc. These algorithms hope to find the globally

optimum solution by making locally optimum choices.

First Fit. We resort to implementing the First Fit Algorithm to map our given

task set on the two clusters. For the given task set, choosing tasks in a First-Come-First-

Serve basis, we find the first cluster that can schedule the given task with minimum power

consumption without violating its utilization constrains. On finding a suitable cluster, the

chosen task is assigned to the big or LITTLE task set, respective. This is repeated until all

tasks in the original task set are assigned to either a big or the LITTLE core.

4.2.2. Randomization. Randomization is known to be another effective method to

tackle NP-hard tasks, often achieving better results that greedy approaches. As the name

suggests, all tasks are randomly assigned to the big and LITTLE cluster. The random

assignment is repeated multiple times and the power consumption for each assignment is

recorded.
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4.2.3. Non-Linear Programming. Non-Linear Programming(NLP) consists of

tackling problems with non-linear difficulties. We tackle our task our minimization problem

to solve it using MINLP with constrained variables, where our solution is (1 × n) vector

consisting of binary values. Here n represented the number of tasks in our initial task set

where a 1 in the solution vector would represent that the task is allocated to the big cluster

and a 0 would represent that the task is allocated to the LITTLE cluster.

4.2.4. Genetic Algorithm. Genetic Algorithm is a technique that attempts to solve

problems by replicating biological evolution. Its a natural selection based process that

can be used to solve problems with constrained as well as non-constrained variables. The

algorithm usually begins with an initial population, which can be a set of random solutions

for the given problem. In our case, for a task set with n tasks, the initial population can

consists of a random (1 × n) binary vector with 1 representing that the task is alloted to the

big cluster and a 0 meaning it is alloted to the LITTLE cluster. Here, every element in a

solution set can be understood as gene, many genes combine to form a chromosome. A

bunch of chromosomes together are called a population. With the help of a fitness function a

score is assigned to each individual(solution). This fitness score also decides the probability

of an individual to be chosen for cross-over, individuals with higher fitness scores are more

likely to be chosen that those with lower ones. On choosing a pair of individuals based on

their fitness scores, a cross-over point is selected at random and the genes are interchanged

among parents until the cross-over point, this gives rise to an offspringwhich are added to the

population. A pre-set probability changes the individual genes within certain offsprings to

maintain diversity within the population and prevent premature convergence. This process

is repeated until the there isn’t significant difference between the new offsprings being

produced and its parent population.
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4.2.5. Baseline: Brute Force Method. Brute force method refers to trying every

possible combination in a give set. Though effective it is not generally preferred as its

complexity is O(2n), where n denotes the total number of tasks. We consider this as our

baseline as it could give us the least power consumed and optimally partition the set into

two sets.

4.3. RESULTS

Simulation results carried out on MATLAB for allocating a tasks set on ARM’s

big.LITTLE architecture are presented here. A task set consisting of 20 tasks with initial

utilization equal to maximum utilization for the LITTLE cluster. Since LITTLE cluster

consists of 4 cores, our initial utilization is 4. Maximum utilization of the task set is

incremented by 0.05 at every iteration until maximum utilization is equal to sum of big

cluster utilization and LITTLE cluster utilization. This procedure is carried out for every

technique presented in section 4.2.

Figure 4.1 shows the plotted values ofminimumpower consumed inWatts calculated

by the different techniques proposed, brute force method acts as our baseline.

4.3.1. Brute Force. We calculate the minimum power consumed during each iter-

ation by trying all possible allocation for the tasks in the task set. In our case the task set

consists of 20 tasks, thus we can schedule the task set 2n ways on the big and the LITTLE

cluster. Each combination is checked whether it satisfies the utilization constraints for both

clusters, if it does, the power consumption for that combination is noted. This increase the

computation time required as the number of tasks increase. We can notice in figure 4.2, the

time complexity increases exponentially as the number of tasks increases. We keep a track

of the least power consumed through all iterations. Brute force power consumption is rep-

resented by the blue line in figure 4.1, it almost perfectly overlaps with power consumption

by the genetic algorithm.
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Figure 4.1. Variation in power consumption of taskset with 20 tasks as utilization increases

4.3.2. Greedy Algorithm. Greedy algorithm aims at finding the first available

core consuming least power and thus it often tends to get stuck in a local minima. Hence it

achieves ideal consumption on only one case as can be seen in figure 4.1. Time complexity

is lightly affected and doesn’t have too much veriance as seen in figure 4.2.

4.3.3. Randomization. As seen in figure 4.1, randomization closely follows the

baseline approach. For task set with higher utilization randomization provides power

consumption of an average of 24% higher than the ideal consumption. Figure 4.2 shows

us that time complexity for randomization doesn’t change much as the number of tasks

increases.

4.3.4. Non-Linear Programming. For NLP, the solution to our objective function

is a (1xn) integer vector where a 0 represents that the task is allocated on the LITTLE core

and a 1 represents that it is allocated on the big core. From the figure we can observe
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Figure 4.2. Time complexity of each proposed technique as the number of tasks increases

that NLP gives consistently bad results as seen in figure 4.1. The reason being that values

obtained from NLP are fractional between 0 and 1. These values are then rounded off to the

nearest integer in an attempt to map the nearest least power consumption. Time complexity

stays within milliseconds as seen in figure 4.2.

4.3.5. Genetic Algorithm. As mentioned earlier, the minimum power consumed

by genetic algorithm equal to the minimum power consumption observed with brute force

method for majority of the cases. In figure 4.1, the orange line almost perfectly overlaps the

blue line, which represent the power consumption due to genetic algorithm and the brute

force method respectively. Figure 4.2 shows us that the time complexity for GA doesn’t

fluctuate much as the number of tasks increases, which is a desirable quality tasking into

account the results for power consumption it provides.
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4.4. CONCLUSION

For real-time systems timings constraints are an important factor to consider. We

can conclude from the results that Genetic Algorithm provides us with optimal results

within minimal time, which makes it desirable to incorporate in a real-time system. To take

advantage of the heterogeneous architecture, we can have one of the cores actively running

the task-to-core mapping technique giving us placements for the upcoming tasks.
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5. ENERGY EFFICIENT REAL-TIME OPERATING SYSTEM

Implementing a truly energy-efficient system is a multi stage process. It can consist

of not only having an energy efficient processor but also the operating system running

over it. Thus far we have seen viable methods for segregating tasks on different types of

processors that minimizes the cumulative energy consumption of all processors without

violating utilization constrains. Following that we discovered an algorithm that further

reduces energy consumption by considering the frequency/speed profile of every task and

pairs them with the most suitable one by process of task merging to create a resultant speed

profile that can be scheduled on the alloted processor. Until this point, implementation could

be carried out assuming you have an underlying operating system that handles the actual

scheduling of tasks through system calls and APIs. But what if the underlying operating

system is not energy-efficient itself? The later part of this thesis focuses on the importance

of having an energy efficient OS and explains the various stages of designing an OS where

energy can be saved.

5.1. REAL-TIME OPERATING SYSTEM

An operating system is an extremely important system software that manages your

computer’s memory and processes, as well as its software and hardware. It is represented as

a layer that sits between your applications and the hardware. Without an OS, applications

would need to be coded to interact directly with the hardware, which would make the

application inflexible and non-portable. Having anOS gives you the advantage of not having

to worry about hardware specific details and lets you concentrate on building the application

through use of common libraries. An OS can handle running multiple applications on the

same hardware at the same time, providing a sense of multi-tasking to the user, hence most

applications are programmed to be OS specific rather than hardware specific. The OS
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is responsible for handling your hardware resources which includes input devices such as

mouse and keyboard, output devices like printers or monitors, network components like

routers or adapters as well as storage devices like external or internal drives. You can find an

OS to be present almost all devices that consists of a computer like mobile phones, laptops,

game consoles etc.

A Real-Time Operating System(RTOS) is an operating system with well defined

timings constraints. Analogous to a real-ime task, an RTOS has the dual restriction of being

logically as well as temporally correct, which means that the generated output not only has

to be logically right but also has to be within the timing restriction given, else the system

would fail. An RTOS typically processes data as it comes in without buffer delays and is

widely used for applications with severe time bounds. Generally they are time sharing or

event driven. A time sharing system uses system clock interrupts to switch between tasks

while an event driven system utilizes task priorities for switching. The specific RTOS we

consider in this thesis is called QP by Quantum Leaps, which will be ported on a TI C2000

based micro-processor.

5.2. QUANTUM PLATFORM - RTOS

Quantum Platform (QP) is a family of real-time framework offered by Quantum

Leaps based on active objects for building embedded software. The family consists of

QP/C, QP/C++ and QP-nano which are all open source, lightweight frameworks that can

completely replace traditional RTOS on bare-metal single chip micro-controllers. The

behavior of active object is adopted from Hierarchical State Machines (UML Statecharts).

The framework gives us a selection of built-in real-time kernels (RTOS kernels) like the

co-operative QV kernel, preemptive QK kernel or the dual-mode QXK kernel. The scope

of this thesis is focused on the QP/C framework with the preemptive QK kernel.
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Kernel. A kernel is often referred to as the heart of any OS. It has complete control

over the memory, cpu, task scheduling and also responsible for task management, memory

management, disk managements and process management as described by Webopedia

Kernel Description. For any system there are limited resources that might be demanded by

multiple applications. The kernel consists a layer of hardware abstraction that curtains the

low level interface for connecting software with the hardware. The kernel decides when and

how long a task gets to access a particular hardware resource while attempting to provide a

fair share to all tasks while maintaining correctness. QP gives us the option to choose from

three types of kernels, one being the co-operative QV kernel, also known as the Vanilla

Kernel, second is the preemptive QK kernel and lastly a dual-mode QXK kernel which acts

as a hybrid version of the first two.

Co-operative QV Kernel. The co-operative QV, or as previously known ’vanilla’

kernel schedules active objects one at a time according to Quantum Leaps, QV kernel. It

deploys a priority based algorithm that searches the ready queue for an active job with the

highest priority and dispatches it to the related active object. As event processing duration

for state machines are naturally short, the vanilla kernel is sufficient in most cases.

Preemptive QK Kernel. The preemptive QK kernel is designed such that it runs

non-blocking active objects according to Quantum Leaps, Qk kernel. Active object man-

agements is analogous to how an interrupt is handled using single stack by a Prioritized

Interrupt Controller (like NVIC in Cortex-M). Here nesting of active objects is allowed

where a higher priority object can preempt a lower priority one. Active objects are executed

in a Run-to-Completion (RTC) fashion and are removed from the call stack upon comple-

tion, similar to how nested interrupts are removed from stack. This kernel follows the RM

Schedule and can be used in hard real-time Applications.

Dual-mode QXK Kernel. The dual-mode QXK Kernel behaves exactly like a

conventional RTOS described by Quantum Leaps, QXK kernel. It is a small, preemptive

kernel that can execute basic threads like active objects along with traditional blocking
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extended threads. It is specifically designed to mix traditionally blocking code along with

event-driven active object execution. The scope of this work pertains to the preemptive QK

kernel.

We will also encounter various steps during the port and execution of QP/C where

modifications have been made keeping energy conservation in mind.

5.3. PROBLEM STATEMENT

Given an RTOS, we need to port it over to our desired platform making it energy-

efficient such that it consumes minimal energy for functioning.

5.4. HARDWARE PLATFORM

Texas Instruments (TI) provides a wide range of embedded processors like ARM-

based micro-controllers to Digital Signal Processors(DSP) to choose from based on re-

quirements. 32-bit real-time C2000 micro-controller family from TI includes C2000 fixed-

point, Piccolo, Delfino and Concerto Series. The platform we use is TMS320F28377S,

a single core 32-bit floating-point micro-controller unit belonging to the Delfino SeriesTI

TMS320F28377S Delfino. It consists of six GPIO ports with support for onboard flash

memory up to 1MB and up to 164KB of SRAM. For more details regarding the platform

please refer to TI TMS320F28377S Datasheet. It is ideal for closed loop applications such

as digital power, servo motor control, solar inverters etc.

5.5. PORTING

Porting is the process of adapting a software to an environment it was not originally

meant for. Often RTOSs are written with the idea of making it ’portable’ which helps

improve their market along with scalability. The system is coded in stages that separate the

hardware dependent layer/code from the actual functioning of the OS itself. This makes
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it easier to port an OS over different platforms by making changes only for the hardware

specific features rather than having the whole application rewritten, eventually making it

convenient and speeding up their release times.

Hardware specific changes are mainly incorporated in a Board Support Package

(BSP) that is tuned specifically for the target platform. A typical BSP written in C would

be saved as ’bsp.c’. Some other changes that are incorporated are the device specific

header files, drivers and command files. Device specific header files and drivers define

the variables, structures and methods the are typically used to interface with the device. It

includes private details like structure of registers for the device, structures for defining the

bits used in those registers as well as macros, constants and other define statements. Some

public functions/methods like initializing the peripherals or accessing General Purpose

Input-Output (GPIO) pins etc. can also be found in these files. They are generally stored

under a ’device_xx’ folder as ’device_xx_driver .c/.h’ files. Other files such as command

or linker files provide methods to build with different configurations such as ’debug’ or

’release’ and also help map software code and data into hardware memory.

Porting QP/C to TMS320F28377S. Beginning from QP version 4.5.04 onwards,

support for TMS320F28x along with a wide range of other platforms was dropped to reduce

the release time for QP/C; these platforms are since identified as ’legacy platforms’. We

carry out porting of QP/C version 6.0.4 on TI C2000 based TMS320F28377S platform.

The basic philosophy of building embedded applications and the distribution of QP

frameworks was changed since QP v5.4Quantum Leaps QP/C Revision History. Tradition-

ally QP framework distribution and their port for supported platforms were independent,

this release combines the QP baseline code with all available development kits to avoid any

potential mistakes in downloading and installation of separate pieces of code. Additionally

it also modifies the fundamental concept of building embedded application with the QP

framework. All projects from then on include the QP framework as source code instead
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of statically linking to libraries. Doing so maintained the correctness of compiler config-

urations and ensures consistent tool-set options are applied to application along with the

framework code.

Project Structure. Wemodify the project structure of an old port for TMS320F28x

to be consistent with all updates, as well as incorporate changes to consume minimal power

during runtime. ’Dining philosopher’ example was structured using Code Composer Studio

(CCSv7). The challenges and remedies carried out are as follows:

1. Initial step is to create separate folders for QP source and port files. It is important to

create them as ’Linked folders’. This can be done by expanding the ’Advanced’ tab in

the window for adding a new folder and selecting ’Link to alternate location (Linked

Folder)’ option. Typically four folders need to be created:

(a) QK: Linked to folder containing the source code for the preemptive Run-To-

Completion (Non-blocking) QK kernel implementation.

(b) QF: Linked to folder containing the source code of Active Object framework.

(c) QP_include: Linked to folder containing the include header files for QP/C

(d) QP_port: Linked to folder containing port files. We can choose to remove the

debug, rel and spy folders and only let the header files reside in that folder.

2. Main application and board support package files are added to the project in the same

way, i.e as linked files.

3. Update include path for any file that we would be adding. CCS would look for

included files in the ’include paths’. The successful building of project is conditional

on the compiler finding those files at the specified path.

4. Current version ofQP/C adopts the standard integer header file (stdint.h and stdbool.h)

over the traditional non-standard uint_t data types for stricter type analysis. In

qep_port.h, found in the QP_port linked folder, we include <stdbool.h> and <stdint.h>

while commenting out all other defined data types except uint8_t.
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Note: In rare cases CCS will throw an error stating it cannot find "stdbool.h" or

"stdint.h". To fix it we need to make sure the compiler tool’s include folder is added

to the search path in CCS.

5. Many factors in C code are compiler dependent. A code that runs on one compiler

does not guarantee the same expected execution on another compiler. Hence we need

to make sure that the right compiler is chosen for our project. In our case we would

choose Compiler Version TI v6.1.x under CCS General Settings.

6. Under General setting, we will choose our project belongs to C2000 family and select

TMS320F28377S as the variant.

7. Configuration setting for the project need to be modified as well. Right-click on

Project–>Properties and change the run-time support library to <automatic>. Make

sure the correct command file is selected. The linker command file is responsible

for mapping your code and data into memory. In our case, we would be using

F2837x_FLASH_lnk.cmd that can usually be found coupled with device drivers.

Under CCS Build options, check the box for ’Use default build command’ in the

Builder tab.

8. An additional command file would need to be passed to the linker based on whether

our project is BIOS or non-BIOS based. This header linker command file is required

to link the peripheral structures to the proper locations within the memory map.

Since our project is non-BIOS based, we will add F2837xS_Header_nonBIOS.cmd

in "Include command file" options for the linker. This file is also generally coupled

with device drivers.

So far we have generated the required project directory structure and configuration

setting for CCS. Here on we discuss about the specific features that can be modified for

energy-efficient functioning of RTOS.
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Modification for Energy Efficiency. As mentioned before, porting for a specific

platform usually requires a BSP to be written for that platform. A bsp.c file pertains to

all code and functions related to a particular hardware. It may include the selection and

configuration of system clock and various other peripherals. It may also include the platform

dependent functions like specifying an Interrupt Service Routine(ISR) in case the program

is interrupted from a known source. A ’bsp_init()’ function is called from main that takes

care of the hardware specific initialization.

1. A device header file is absolutely necessary and one of the very first things that should

be included in the bsp.c file. The device header file defines the various typedefs for

variables consistent with the device along with calling other platform dependent

header files that manage the system’s GPIO function, PIE Control, PIE Vector Tables

etc.

2. Unbounded Input/Outputs in the system can cause leakage power consumptions,

which in many cases is a major contributor to the overall power consumption in a

micro-processor. Hence as soon as bsp_init() function is called, the first task is to call

a system initialization function that disables the watchdog timer, enables Pull-Ups on

unbounded IOs to reduce power consumption and also checks if the device is trimmed

or not, apply static calibration values if it is not.

3. Initialize the Phase Locked Loop(PLL) control and manage the peripheral clocks.

Here we selectively turn off clocks for all peripherals except for ones that are actually

used in the application. For our project we require Timer0, I2C, PWM and ADCA,

thus turn on clocks for only the related peripherals and consume lesser static energy

due to unused peripheral components.

4. Initialize the Peripheral Interrupt Enable (PIE) Control and map the PIE Vector Table

to their designated ISRs. We direct all PIE Vector addresses to point to an illegal ISR

except for the peripherals we actually use. An illegal ISR is nothing but an infinite
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loop which would help us detect an unexpected or illegal execution in the application.

As mentioned before, our application uses Timer0, PWM, I2C and ADCA thus when

an interrupt occurs from these known sources, control is transferred to their respective

ISRs. It is a well known fact that RAM memory provides the quickest access and

search results compared to all other memories available. Taking advantage of this

fact, the required ISRs have been placed in the RAM memory for greater speed and

efficiency. Thus our application spends lesser clock cycles and hence spends less

energy in searching for data or code to execute.

5. QP uses the Timer0 to clock its “ticks” called QK_tick. These can be essentially

understood as the heartbeats of QP which takes its decisions once every QK_tick.

Every time an interrupt is thrown by Timer0, its ISR calls a scheduler which selects

the active object with the highest prioritywith a non-empty event queue and dispatches

it for execution. To integrate PLECSwith QP, we change the Timer0’s ISR such that it

allows interrupt from only one peripheral, the ADCA, to preempt QP. The status of all

peripheral registers before entering the main Timer0 ISR is saved and all interrupts

except the ADCA interrupt are disabled. A counter keeps a track of the interrupt

nesting level. The original peripheral interrupt status is restored after the ISR is

completed. This makes sure that processor is always available for data conversion

even if QP temporarily disables all other interrupts. Also saving and restoring the

interrupt status allows us to maintain the integrity of the system.

6. Lastly a great chunk of energy savings is achieved by putting the processor on IDLE

mode for majority of the execution cycle. IDLE mode is essentially a “Low-Power”

mode where the CPU1 is turned to IDLE mode and flash is powered down, the

processor can be woken up from the idle mode by any of the interrupts. Thus the

processor spends most of its life consuming around 80 mA in idle mode whereas it

consumes 250 mA in normal operational mode. This way the processor is only active

when there is an interrupt required to be served, else can remain idle.
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To sum up, we have created a custom version of a Real-Time Operating System,

QP, that uses active objects based on Hierarchical State Machines(UML Statecharts). The

created version provides efficient energy savings by utilizingminimal peripheral restricted to

requirements of our application. TheRTOS ismodified to save on static energy consumption

by running the core on IDLE mode throughout most of its execution life and would be

switched to operational mode only in case an event becomes available to process, this

enables us to reduce energy consumption by almost 68%. Occasionally QP disabled all

interrupts globally to serve Timer0 ISR, contrary to our custom version which allows

interrupt through one peripheral, ADCA, at all times and keep the processor available even

if all other interrupts are disabled globally. Even though our version of energy-efficient

RTOS restricts only one interrupt to be available at all times, certainly the concept explained

is reusable to add more interrupts based on application needs.
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6. CONCLUSIONS

This thesis reports 3 major contribution to efficiently design a real-time system.

The works can be understood as a multi-stage process, steps are provided to create an

energy-efficient RTOS that consumes minimal itself over which applications are scheduled.

Secondly different techniques are introduced that can efficiently partition a given real-time

task set into different sets for power-aware execution on a HMP platform. Lastly, we

introduce an algorithm that merges two tasks with similar speed-profiles and creates a

resultant speed-profile for simultaneous execution of the two tasks on the same cluster, this

further provides more energy savings. Energy is an extremely important resource that is

carefully considered at every stage in this presented work. Results and simulations provided

strongly back the given theory.
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