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ABSTRACT

Modern ASICs and FPGAs are becoming more and more dense, which is causing

an increasing demand of the current draw from the power distribution network (PDN).

And one of the main design objectives of a power distribution network is to reduce the

voltage noise ripple below a specified allowable limit. Although the target impedance

is a commonly used criterion in most PDN designs, it may not be efficient because it’s

usually rather pessimistic. Herein a time domain voltage ripple decomposition approach is

proposed to avoid overdesign as well as provide design guidance to PI engineers. Based

on a physics-based circuit model for PDN and a switching current generator including both

high frequency switching and low frequency power gating, the total voltage ripple can be

divided into several components. Each component will have a one-to-one correspondence

to the real PDN geometry. Thus design curves can also be derived, which can guide PI

engineers when making design decisions.

Peak distortion analysis (PDA) is commonly used to find the worst-case eye diagram

and data pattern. Compared to traditional long transient simulations, PDA can significantly

reduce the computation time by only taking into consideration the worst case. Generally

PDA is based on a superposition technique with a single bit response (SBR), which requires

the system to be linear time invariant (LTI) or can be well approximated as an LTI sys-

tem. SBR is no longer applicable for systems which have different rising and falling edge

responses due to asymmetric I/O design or mismatches between pull-up and pull-down

drivers. Also sometimes the nonlinearity can extend beyond the edge transitions which

can result from the voltage noise on the power distribution network (PDN). Herein PDA

based on the superposition of multiple edge responses (MER) is proposed to account for a

non-LTI system as well as asymmetric rising and falling edges.
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1. INTRODUCTION TO AN EQUIVALENT CIRCUIT MODEL FOR PCB PDN
BASED ON THE CAVITY MODEL AND PEEC

With the increasing device density and decreasing power supply voltage for modern

ASICs and FPGAs, to satisfy the total current demand is becoming more and more chal-

lenging. IC current flowing from power to power return (often known as "ground") can be

as high as hundreds of Amperes and thus can cause significant voltage ripple in the power

supply, resulting in power integrity (PI) problems such as logic malfunction and timing

jitter in signals [1]. So one of the main design objectives of a power distribution network is

to reduce the voltage ripple below a specified allowable limit.

Figure 1.1. Typical input impedance of a cascaded PCB and package PDN.

The input impedance in frequency domain of a typical cascaded PCB PDN and

matched package PDN is as depicted in Figure 1.1. Different kinds of decoupling capacitors

are used to lower the PDN input impedance at different frequencies, resulting in many

resonances and anti-resonances in the impedance curve. To determine the number or

location of those decoupling capacitors, a very common and convenient guideline for PDN

design is the target impedance in frequency domain [2]. It is defined as the input impedance
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seen by the IC that results in the maximum tolerable voltage fluctuation for a specified

current draw by the IC. There must be enough decoupling capacitors in a PDN to ensure

an input impedance lower than the target impedance, which can then ensure a voltage noise

ripple lower than the limit.

Although target impedance is a very straightforward and intuitive concept. However,

this definition might be overly pessimistic and can result in overdesign. A relationship

between the PDN geometry, the PDN input impedance and the actual voltage ripple would

be more useful in the early design stages.

1.1. THE CAVITY MODEL

The cavity model was first proposed and used to solve the problem of finding the

radiation patterns and impedance of a patch antenna [3]. In [3], the theoretical result is

shown to compare favourably with the experimental result. Thus it can be validated to

treat those narrow-banded patch antennas as cavities with appropriate boundary conditions.

Later on the cavity model is applied to calculate both self and mutual inductances associated

with PCB vias that are between a pair of parallel plates [4]. Since in most PCBs, its vertical

size is usually much smaller than its horizontal size, the same method can be applied to

treat two consecutive PCB layers as a two dimensional planar circuit [5]. A planar circuit

is in the sense that the circuit elements are much smaller in size as compared with the

wavelength in one direction, but comparable to the wavelength in the other two directions,

that is, within that cavity, the derivative of the electromagnetic field with respect to the

vertical coordinate can be assumed to be zero. So the 3-D Helmholtz equation for the PCB

cavities comprised of two adjacent metal layers and a dielectric layer can be reduced to a

2-D Helmholtz equation and can thus be easily solved.

1.1.1. Wave Equation and Boundary Conditions for the Cavity Model. As

shown in Figure 1.2, a typical cavity structure in a multi-layer PCB is formed by two

adjacent rectangular layers. A via penetrating those two layers with electrical current
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flowing through it can excite electromagnetic field inside that cavity. So it’s pretty straight-

forward that the solution of the Maxwell’s equations with an impressed electrical current

source inside that cavity is what needs to be derived, as shown in Equation (1.1).

Figure 1.2. A Cavity formed by two adjacent PCB layers.

In Equation (1.1), Ji is the impressed electric current density and there is no other

kind of source in this case such as impressed magnetic current or electric charge.

∇ × E = − jωµH

∇ × H = Ji + jωεE

∇ · E = 0

∇ · H = 0

(1.1)

Substitute the first equation of Equation (1.1) into the left side of the second equation

in Equation (1.1) and use the vector identity as shown in Equation (1.2), we can derive the

Helmholtz equation for the electric field as shown in Equation (1.3). Note that the divergence

of the electric field is zero since there is no electric charge herein.

∇ × ∇ × F = ∇(∇ · F) − ∇2F (1.2)

∇2E + ω2µεE = jωµJi (1.3)



4

Equation (1.3) is a vector Helmholtz equation and can be reduced to a scalar

Helmholtz equation by applying the top and bottom boundary condition and the planar

circuit assumption. Figure 1.3 shows the impressed source current and the response electric

field. Since the top and bottom layers are metal layers, PEC boundary condition can be

applied. The electric field in the x and y direction can be assumed to be zero at the top and

bottom surfaces. Also since the planar circuit assumption is satisfied herein, the variation

of the electric field in the z direction is assumed to be zero, which means

∂Ez

∂z
= 0

Thus only the electric field in the z direction can exist in the whole cavity. The 3-

dimensional vector Helmholtz equation can therefore be reduced to a 2-dimensional scalar

Helmholtz equation as in

∂2Ez

∂x2 +
∂2Ez

∂y2 + ω
2µεEz = jωµJi (1.4)

Figure 1.3. Source current and electric fields.

Since the magnetic field always wraps the conductors and the planar circuit assump-

tion is satisfied, so the tangential part of the magnetic fields should be zero, that is, PMC

boundary conditions should be applied to the cavity sidewalls. Amore intuitive way to think
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about this is that the surface current cannot flow outwards the cavity. Also the distortion

at the corners can be neglected due to the planar circuit assumption. This is shown in

Figure 1.4.

Figure 1.4. Field distribution at the cavity edges.

The electric field is related to themagnetic field by the first equation of Equation (1.1)

as
∇ × E
− jωµ

= H

So the Neumann’s (second-type) boundary condition is derived for the electric field

as
∂Ez

∂n
= 0, (x = 0, x = a, y = 0, y = b) (1.5)

Here (x = 0, x = a, y = 0, y = b) is the boundary of the cavity.

1.1.2. Solution to the 2-D Scalar Helmholtz Equation and an Equivalent Circuit

Model for the Cavity. Green’s function is a common approach to solve the wave equation

Equation (1.4), which has been reduced to a 2 dimensional Helmholtz equation with the

boundary condition as in Equation (1.5). The problem to be solved is thus the 2 dimensional

Helmholtz equation with a delta electric current source as in

∂2G
∂x2 +

∂2G
∂y2 + ω

2µεG = jωµδ(x − ξ)(y − η) (1.6)
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Here (ξ, η) is the coordinate of the current source. The homogeneous form of

Equation (1.6) is

∂2G
∂x2 +

∂2G
∂y2 + ω

2µεG = 0 (1.7)

The eigenfunctions and eigenvalues of the homogeneous equation Equation (1.7) can

be easily derived by separation of variables [6]. Since the second-type boundary conditions

are applied for this case, so the eigenfunctions are in the form of cos
(mπx

a

)
cos

( nπy
b

)
whose

derivatives at the cavity edges are zero. After normalization, the eigenfunctions can be

derived as

ψmn(x, y) =
σmσn√

ab
cos

(mπx
a

)
cos

( nπy
b

)
, m, n = 0, 1, 2...

σm =


1; m = 0
√

2; m , 0

σn =


1; n = 0
√

2; n , 0

(1.8)

The corresponding eigenvalues are

λmn =
(mπ

a

)2
+

(nπ
b

)2
(1.9)

By Sturm-Liouville operator theory [7], the Green’s function can be expressed as a

double summation of two-dimensional eigenfunctions as

G(x, y; ξ, η) = jωµ
∑

m

∑
n

ψmn(ξ, η)ψmn(x, y)
λ − λmn

(1.10)

Here λ = ω2µε is the wave number, λmn =
(mπ

a

)2
+

( nπ
b

)2 is the eigenvalue of the

eigenfunction ψmn. Assuming the PCB vias can be approximated as rectangulars and the

current is uniformly distributed over the entire cross section, as shown in Figure 1.5 and
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expressed in Equation (1.11). The electric field can thus be determined by the integration

of the Green’s function with the source current distribution as in Equation (1.12).

J(ξ, η) =
I

txty
(1.11)

Ez(x, y) =

tx∫
o

ty∫
0

G(x, y, ξ, η)J(ξ, η)dξdη (1.12)

Figure 1.5. A port is set to the outer boundaries of the antipads.

To extract an equivalent circuit model for the PCB vias, a port is set to the outer

boundaries of the antipads of that via, as shown in Figure 1.6. One terminal of that port

is the outer boundary of the antipad on the top layer and the other terminal is the outer

boundary of the antipad on the bottom layer. Since the electric field is assumed to be

constant along the z direction, the voltage drop between the top layer and the bottom layer

at any point can be obtained by simply multiplying the electric field with the thickness of

the dielectric as in

V(x, y) = Ez(x, y) × d (1.13)
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Figure 1.6. PCB via geometry and current distribution approximation.

The voltage difference between the two terminals of the via caused the impressed

current source can then be derived by taking the average voltage over the cross section of

the via as in

V =

d
tx∫
0

ty∫
0

Ez(x, y)dxdy

txty
(1.14)

The input impedance of that via port is thus calculated by

Z =
V
I

(1.15)

Figure 1.7 shows the connection between the via and the cavity with or without

the antipad, in which the via can be assumed as a short. When the via antipad is present,

the via is connected to the port by the parasitic capacitance, which can be neglected in the

frequency range of interest.

When multiple vias are present, the Z parameters of that cavity with all the via ports

can then be calculated from Equation (1.10) to Equation (1.15) as in
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Figure 1.7. Via to cavity port connection.

Zi j =
1

jωCP
+ jωLi j(ω);

where

CP =
εab

d ,

Li j(ω) =
µd
ab

∞∑
m=0

∞∑
n=0

σ2
mσ

2
n

(mπ
a )

2
+( nπb )

2
−ω2µε

× cos
(mπxi

a

)
cos

(mπtxi
2a

)
cos

( nπyi
b

)
cos

(
nπtyi
2b

)
× cos

(
mπxj

a

)
cos

(
mπtx j

2a

)
cos

(
nπyj

b

)
cos

(
nπty j

2b

)
(1.16)

Note that Zi j can be decomposed into a capacitor, which is the parallel plate capac-

itance between the top and bottom layers, and a frequency dependent inductor [8]. To get

the lumped circuit model, the frequency dependent term is neglected, that is, only the DC

inductance is used and the distribution behaviour can not be captured by using this lumped

circuit model. However, it has been found that The frequency dependent inductance is

nearly constant at the frequencies below approximately 60% of the first cavity resonance

frequency, which is usually higher than the frequency range of interest for PDN analysis,

and therefore it can be approximated to the DC value, when ω = 0 [4]. Thus a circuit model

for the cavity with multiple vias can be extracted as shown in Figure 1.8.
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Figure 1.8. Equivalent circuit model for the a cavity with two vias connected to the bottom
layer.

1.1.3. Limitations of the Circuit Model. The first limitation of the circuit model

is that the computation time for the inductance is long when there are a lot of vias. Although

the infinite summation can be truncated in practice as soon as target convergence is achieved,

the mode number still needs to be more than m = n = 800 to reach the target convergence

within 5% for the test structure in paper [8]. A faster way to calculate this double-sided

summation is to replace it with the single-sided summation [9]. With the single-sided

inductance formula, the computation time for the inductance matrix associated with several

hundreds of vias can be reduced to less than 1 hour with acceptable accuracy.

Another approach is discussed herein to try to derive the closed-form expressions

for the inductance calculations. For 1D Helmholtz equation, the closed-form expression

can be easily derived [9] because the singularity at the source location can be written as just

the derivative of a step function. However, it’s not the case for a 2D Helmholtz equation

and only the series form is found in literature. However, as has been mentioned earlier,

only the DC inductance is needed for common PI analysis and the 2D Helmholtz equation

can be reduced to a 2D Poisson equation when ω = 0. A closed-form solution to the 2D
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Poisson equation in a rectangular area with the first-type boundary condition has already

been derived in [10]. A similar approach is taken herein to find the closed-form solution

to the 2D Poisson equation in a rectangular area with the second-type boundary condition.

The approach is to apply conformal Schwarz-Christoffel transformation and image theory

to convert the boundary of a rectangular to infinity. Since the closed-form solution to

the free space Green’s function for a 2D Poisson equation has already been derived [9],

the closed-form solution to the Poisson equation with a rectangular boundary can then be

extracted.

Figure 1.9. Conformal transformation and image theory are applied.

As shown in Figure 1.9,by using conformal Schwarz-Christoffel transformation, the

rectangular boundary can be converted to the whole u axis in the z plane. For the first-type

boundary condition, the image source has opposite polarity as the original source, which

can result in a zero value at infinity. However, for the second-type boundary condition,

the Green’s function goes to infinity since the image source has the same polarity as the
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original source. So, although the computation time can be significantly reduced (in the

example shown in Figure 1.10 and Figure 1.11, the computation time can be reduced from

7s to 3ms), this approach doesn’t apply to the second-type boundary condition.

Figure 1.10. Green’s function of a 2D Poisson equation in a rectangular area with first-type
boundary condition.

The second limitation of the lumped circuit model is that it cannot capture the dis-

tributed behaviour since the frequency dependent term has been removed in Equation (1.16)

to construct the lumped circuit model. As has been mentioned earlier, this approximation

is appropriate for most PDN designs since the frequency range of interest is usually low.

The third limitation of the circuit model is that the Green’s functions is derived

by using impressed current source, which means the boundary conditions at the edges

of the vias are not taken into consideration. Since multiple scattering can happen at the

via boundary and can have a significant influence on the inductance value when the via

diameter to pitch ratio is large [11], so the circuit model is no longer suitable for closely-

spaced vias. However, the circuit model can be improved by applying a more practical

current distribution which can account for the proximity effect. The current distribution
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Figure 1.11. Green’s function of a 2D Poisson equation in a rectangular area with second-
type boundary condition.

accounting for the proximity effect for multi-turn loop antennas has been derived in [12].

For most PCB PDNs, the circuit model is acceptable since usually the via diameter to pitch

ratio in PCBs are not so large. A comparison between the cavity model and full-wave

simulations is shown in Figure 1.12.

1.2. PEEC METHOD

There are many other structures in PCBs that the cavity model cannot handle, such

as some power net area fills which has many cutouts and voids, or the SMT decoupling

capacitors and soldering pads. PEECmethod is thus applied to extract the equivalent circuit

model for those geometries.
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Figure 1.12. Comparison between the cavity model and full-wave simulations.

For the decoupling capacitors of the PDN, the equivalent circuit model can be

extracted by using PMSR [13], [14], which can take into consideration all the ESL, the

soldering pad and the trace. Figure 1.13 shows how the equivalent total inductance is

derived for a pair of decoupling capacitors1.

For power net area fills with irregular shapes, a specific PEEC method is proposed

called parallel plate PEEC (PPP) [15]. Basically PPP and the cavity model deals with the

same PCB structure. The difference is that PPP can deal with all kinds of cutouts and voids
1In this thesis, all the results and circuit models for the decoupling capacitors are provided by Ying, Xiang

and Tamar, students at MST EMC laboratory.
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Figure 1.13. PEEC method is applied to the decoupling capacitor modeling.

on the metal layer while the cavity model cannnot handle them. An example is shown

in Figure 1.14, in which the input impedance is compared for the PPP calculations and

full-wave simulations2.

1.3. MERGE POWER CAVITIES AND GROUND CAVITIES

Basically there are two types of cavities in a common PCB PDN design. One is

called ground cavity and comprises two full rectangular ground layers and the other is power

cavity comprising one ground layer and one power layer. Usually the power layer has many

cutouts and voids, so it’s not a full plate and often called a power net area fill instead. As

has been discussed earlier, the ground cavity can be handled easily with the cavity model

while the power cavity has to be dealt with PPP because the boundary conditions that are

applied to the cavity model are not appropriate any more for power net area fills with many

2In this thesis, all the data and circuit models from PPP are provided by Siqi, a PhD student at MST EMC
laboratory.
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Figure 1.14. PPP is applied to irregular power net area fills modeling.

cutouts and voids. Since two methodologies are applied herein, the question then arises as

to how to connect power cavities and ground cavities. Two ways are shown in this section:

one is by just adding the inductance together and the other is by internal ports. The results

are shown to compare favourably with experiments or full-wave simulations.

1.3.1. Connecting Power Cavities and Ground Cavities in an Inductance Fash-

ion. Generally a PDN design is more concerned with the total inductance associated with

the current path from decoupling capacitors to ICs because the PDN impedance is closely

related to the total inductance at higher frequencies. So sometimes at early PDN design

stages, it’s more useful to provide a fast total inductance estimation than to analyze the total

input impedance over the required frequency range.

The total inductance can be divided into different pieces by tracing the current

path. As shown in Figure 1.15, there are 4 pieces of inductance: LPCB_IC_Via is the

inductance associated with the PCB IC vias, LPCB_plane is the inductance associated with

the PCB power net area fills, LPCB_IC_Decap_Via is the inductance associated with the

PCB decoupling capacitor vias and LPCB_Decap_above is the inductance associated with the

PCB decoupling capacitor mounting and ESL. As has been discussed earlier, they can be

calculated with different modeling methods. LPCB_IC_Via and LPCB_IC_Decap_Via are related

to the ground cavity and can be calculated with the cavity model. LPCB_plane is related to
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the horizontal current flowing across the power net area fill and can thus be calculated by

using PPP. And LPCB_Decap_above is about the decoupling capacitors and can be calculated

with PEEC. Usually the capacitor vendors also provide a circuit model and ESL value for

their capacitors, which are often obtained by experiments.

Figure 1.15. Total inductance can be divided by tracing the current path.

A test vehicle is used herein to validate this methodology. Figure 1.16 shows the

geometries of the test vehicle. Decoupling capacitors are placed at the left bottom side under

the PCB. The inductance associated with both the IC vias and the decoupling capacitor vias

are first calculated using the cavity model. As for the power cavities, since the current flow

in the upper power cavity and the current flow in the lower cavity are parallel, as shown in

Figure 1.17, the total inductance related to power cavities is then the parallel inductance

of the upper power cavity inductance and the lower power cavity inductance, which can be

calculated using PPP. To make it simpler, the value 500pH used herein for LPCB_Decap_above

is just a typical ESL value associatedwith common decoupling capacitors, which is obtained
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(a) Stackup and ground layers.

(b) Power net area fill.

Figure 1.16. Geometries of the test vehicle.

from muRata. The total inductance associated with the current path from the decoupling

capacitors under the PCB all the way to the IC is then calculated by adding up LPCB_IC_Via,

LPCB_plane, LPCB_IC_Decap_Via and LPCB_Decap_above.

Four different cases are taken into consideration herein with different number of de-

coupling capacitor pairs, as show inTable 1.1. LPCB_IC_Via, LPCB_plane and LPCB_IC_Decap_Via

are first calculated for the one pair case. As the number of decoupling capacitor pair in-

creases, only the current associated with the decoupling capacitor will change. Since

decoupling capacitors are parallel with each other and the mutual inductance can be ne-

glected between each decoupling capacitor pair, so for the rest three cases, LPCB_IC_Via
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(a) Current flow in the upper power cavity.

(b) Current flow in the lower power cavity.

Figure 1.17. Current flow in the upper and lower power cavities.

and LPCB_plane are assumed to be same as the one pair case while LPCB_IC_Decap_Via and

LPCB_Decap_above are approximated as proportional to 1/n, where n is the number of decou-

pling capacitor pairs.

The total inductance values for all the four cases are also simulated by using CST

Microwave Studio. Table 1.1 shows the comparison between calculations using the cavity

model and PPP and simulations usingCST. It can be seen fromTable 1.1 that the calculations

agree well with simulations with less than 10% difference.

1.3.2. Connecting Power Cavities and Ground Cavities in a Network Fashion.

While the total inductance of a PDN gives some idea about the quality of that PDN, a more

rigorous and common way to analyze the performance of a PDN is to compare its input
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impedance with the target impedance [2]. Since an alternating current has the tendency to

flow only on the surface of a PEC conductor due to skin effect, so two adjacent cavities

are actually separated by metal layers and connected through voids and cutouts. Based on

this concept, herein two adjacent cavities are connected through internal ports which are

set over via antipads as shown in Figure 1.18.

Table 1.1. Inductance values from both calculations and simulations.

Regular: # of Decap Pairs
pH 1 2 3 4

LPCB_IC_Via 460 460 460 460

LPlane 267 267 267 267

LPCB_Decap_Via 734 367 244 183

LPCB_Decap_above 595 297 198 149

Ltotal_calculated 2056 1391 1169 1059

Ltotal_CST 1965 1266 1116 975

Figure 1.18. Ground cavities and power cavities are connected through internal ports.
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Figure 1.18 shows the connection between a ground cavity modelled with the cavity

model and a power cavity modelled with PPP that are immediately below that ground cavity.

It can be seen that for a ground cavity, internal ports should be set at power vias on both the

top and bottom planes. And for a power cavity, internals ports should be set at power vias

on one plane and ground vias on the other. Then network parameters of the ground cavity

can be extracted from the cavity model with Equation (1.16). And network parameters of

the power cavity can be extracted from PPP with the circuit models mentioned in [15]. With

those network parameters of different cavities, the input impedance of a PCB PDN can

thus be extracted by cascading all the network parameters through their common internal

ports. External components such as decoupling capacitors and chip packages can also be

connected through external ports as shown in Figure 1.18.

1.3.3. Measurement Validation. Atest vehicle is designed and the input impedance

of that test vehicle is measured to validate the hybrid method of modeling multi-layer PCB

PDNs by connecting different cavities through internal via ports. The stackup of the test

vehicle is shown in Figure 1.19. As can be seen from Figure 1.19, the test vehicle comprises

6 metal layers and 5 cavities in total. 1 oz copper is used for metal layers and the power

layer is colored in red and is the fourth layer from top to bottom.

The size of the ground planes is 4 inch by 7 inch, as shown in Figure 1.20. Power

net area fill is colored in red, which looks like a letter P. Two types of decoupling capacitors

are used in the test vehicle: 10 capacitors with 2.2uF capacitance and 4 capacitor with

10uF capacitance. There are in total 4 different port locations for the input impedance

measurement and in this paper only Port 2 is used. There is a void grid at Port 3, which is

used to represent the dense antipads under IC regions. The size of the void grid is shown

in Figure 1.21. Also for the plated-through hole vias used in this test vehicle, the finished

hole size is 15mils and their antipad diameter is 42mils.
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Figure 1.19. Test vehicle stackup.

The PDN port pad pattern looks like that of a surface mounted SMA connector, as

shown in Figure 1.22. There are four ground vias connected to a circular ground pin and

one power via connected to the power pin. The input impedance of the PCB PDN is then

the impedance by looking into the test vehicle from those power and ground pins.

Tomeasure the input impedance of the test PCB PDN, a two-port transfer impedance

measurement approach is employed herein [? ]. Since PDN usually has a very low

input impedance, S11 ≈ 1. Thus conventional one-port impedance measurement using S11

requires well-characterized and precise test fixtures for locating reference plane and accurate

phase information, which is difficult or expensive to achieve, as is the case in [16], where a

precise wafer probe is used to perform input impedance measurement for a production-level

PCB PDN.

The port settings to perform a two port measurement herein is as shown in Fig-

ure 1.23. Two coaxial cables are connected to the VNA two ports and at the other end

of the two cables, the cable jacket is removed so that the signal and ground of the cable

can be soldered to the power and ground pins of the test vehicle respectively. In this way,
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Figure 1.20. Test vehicle top view.

the measurement is set up with the two ports as marked in Figure 1.23. Since both the

power nodes and ground nodes of the two ports are connected to the same power pin and

ground pin of the test vehicle respectively, so the transfer impedance Z12 or Z21 between the

two ports is thus equal to the input impedance of the test PCB PDN. When the PDN input

impedance is low, Z12 can be related to S12 simply by [? ]

|Z12 | ≈
|S12 |

2
Z0. (1.17)

With this simple relationship between Z12 and S12. It’s much easier to perform a

two port measurement than a one port measurement. Even port extension is not needed if

the two cables are not too long.
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(a) Void grid.

(b) Void size.

Figure 1.21. Void region at Port 3.

The measurement setup with all the decoupling capacitors soldered is shown in

Figure 1.23 and Figure 1.24. Four 10uF 0805 decoupling capacitors are soldered at the top

and ten 2.2uF 0805 decoupling capacitors are soldered in the middle. There are one power

via and one ground via associated with each decoupling capacitor and one power via and

four ground vias associated with each PDN port. So in total 48 internal ports are needed to

connect the power cavities and ground cavities. Herein Port 2 is used to perform the two

port PDN input impedance measurement. Besides the measurement, simulations to get the

input impedance looking into Port 2 are also done with Cadence Sigrity tools.

The input impedance results looking into Port 2 from measurements, simulations

and calculations based on the hybrid method mentioned in Section 1.3.2 are compared in

Figure 1.25. The results from calculations based on PPP and the cavity model are shown

to compare favourably with the results from measurements and simulations. The total

inductance results are also compared in Table 1.2. It can be seen that the hybrid approach

based on PPP and the cavity model can capture the total inductance of the test PCB PDN

accurately with only around 3% difference from measurements and around 7.5% difference
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Figure 1.22. Test vehicle port pad pattern for input impedance measurement.

from simulations. Herein 48 vias are used in the test vehicle which are related to 48 internal

ports for the connections between different cavities. More complicated PCB PDNs can be

modelled using the same hybrid approach based on PPP and the cavity model by modifying

the PPP circuit and increase internal ports.

Figure 1.25 also shows that by merging different cavities in a network fashion, other

external components such as decoupling capacitors can also be taken into consideration.

As can be seen from Figure 1.20, two types of decoupling capacitors with two different

capacitance values are used in the test vehicle and the capacitors with larger capacitance

are located further away from Port 2 than capacitors with less capacitance. This means the

parasitic inductance associated with the current flowing from Port 2 to the 10uF capacitors

is larger than that of the 2.2uF capacitors. Thus at lower frequency, current would flow

through those 10uF capacitors and before those 2.2uF capacitors come into effect, there will

be a resonance between the larger parasitic inductance related to the 10uF capacitors and

the capacitance of those 2.2uF capacitors. This resonance can be observed from Figure 1.25

which happens around 1MHz. It is shown in Figure 1.25 that although there is an obvious
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Figure 1.23. Two port measurement settings.

difference of the Q factor between the calculations and measurements, the hybrid approach

with merging different cavities in a network fashion can capture the resonance frequencies

between different types of decoupling capacitors very well. Moreover, the difference of the

Q factor is mainly due to the absence of some loss terms in the PPP method and the cavity

model and the hybrid approach can be further improved by including those loss terms.

Anothermismatch between the calculations and themeasurementswhich can be seen

from Figure 1.25 is the resonance happens at around 500M. This resonance is due to the

parallel-plate parasitic capacitance of the power net area fills and the ground planes. After

that resonance, current wouldmostly go as displacement current from the power net area fills

to the nearby ground planes instead of travelling all the way to decoupling capacitors which

have larger parasitic inductance. Figure 1.25 shows the resonance frequency calculated

from PPP and the cavity model is higher than that from measurements or simulations,
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Figure 1.24. Measurement setup.

which means the parasitic parallel-plate capacitance from the hybrid approach is smaller

since they have almost the same total inductance. This could be due to the absence of the

fringing capacitance in PPP and the cavity model.

However for most PCB PDN designs, this resonance is of little concern because

usually chip packages will provide extra decoupling capacitance which is larger than the

parasitic parallel-plate capacitance. So that resonance generally cannot be observed in a

system-level PDN input impedance curve with chip packages included.

1.3.4. Conclusion. The paper shows a hybrid multi-layer PCB PDN modeling

approach with good accuracy based on PPP and the cavity model. This method is based

on model extraction for a single cavity comprised of two adjacent metal layers and a
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Figure 1.25. Input impedance results comparison between calculations, simulations and
measurements.

Table 1.2. Total inductance comparison of test PCB PDN at Port 2 between calculations,
measurements and simulations.

Total inductances (pH) @ 100 MHz

Simulations measurements Cavity model + PPP calculations

1017 972 941

merging method of different cavities using internal ports set across via antipads. Both fast

total inductance calculations and input impedance extractions can be performed with this

approach for multi-layer PCB PDNs. The total inductance calculation was first verified

by comparing with simulations for a PCB PDN model based on a practical PDN design.

Later on the input impedance extraction was also verified by comparing the response from

the hybrid method with that from simulations using Cadence Sigrity tool and a two-port

measurement. The results from simulations and measurements are shown to agree well
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with the results from the hybrid method. Despite the absence of the fringing capacitance,

this hybrid approach can still give an accurate model for multi-layer PCB PDNs to run

system-level PDN analyses.
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2. POWER INTEGRITY WITH VOLTAGE RIPPLE SPECTRUM
DECOMPOSITION FOR PCB AND PACKAGE PDNS

As has been mentioned earlier, although target impedance is a very straightforward

and intuitive concept, this definition might be overly pessimistic and result in overdesign. A

relationship between the PDN geometry, the PDN input impedance and the actual voltage

ripple would be more useful in the early design stages.

Previous work has focused on PCB PDNs [17]. For a typical PCB PDN, its input

impedance can be calculated by using an equivalent circuit model extracted from cavity

model. With the information of switching current, the voltage ripple can then be obtained

either by using a frequency segmentation method [17]. By decomposing the voltage ripple

of a typical PCB PDN into a high frequency component and a low frequency component,

relationships between the PCB PDN geometry and its voltage noise ripple can thus be

derived. The high frequency component is mainly due to vias connecting the IC to the

power plane, while the low frequency component is closely related to vias connecting

decoupling capacitors. Thus increasing the number of decoupling capacitors can only

help to reduce the low frequency voltage component while the high frequency component

remains approximately the same. This low frequency component can be reduced to nearly

zero if there are enough decoupling capacitors. On the other hand, adding more IC vias

can only reduce the high frequency voltage ripple component and won’t change the low

frequency component.

In this chapter, a switching current synthesizer based on chip-level simulations is

discussed first in Section 2.1. It can generate a switching current profile based on a given

joint probability distribution function of the parameters. Both the high frequency component

at GHz and the lower frequency component from power gating or clock gating are included

in this synthesizer. Later on an equivalent circuit model is introduced in Section 2.2 and the

one-on-one correspondence between the circuit elements and the PDN geometry pieces are
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illustrated. Next the voltage ripple spectrum decomposition approach proposed in [17] is

extended for cascaded PCB and package PDNs in Section 2.3. The one-on-one relationships

between the voltage aspects, the PDN geometry and the PDN input impedance in frequency

domain are also discussed in Section 2.3. Last section shows how this extended approach

is applied to a real design. Relationship between different voltage aspects and the number

of on-PCB decoupling capacitors are discussed in Section 2.4 .

2.1. A SWITCHING CURRENT SYNTHESIZER

IC switching current profiles are essential to perform a time domain system-level

analysis of the whole PDN. The current signature can dramatically influence the voltage

ripple since the voltage ripple is just the product of the switching current and the input

impedance of PDN in frequency domain. IC switching current may not be unique and is

dependent on the functions and operation modes of the silicon. So the current profile should

be able to mimic the switching activities of the silicon [18]. Apart from the chip operations

at several GHz, in modern ICs, techniques such as power gating (kHz to 0.1MHz), clock

gating (0.1 to 100MHz) and dynamic voltage/frequency scaling (<kHz) are commonly used

to maximize the power efficiency of a system. Those chip operations are usually at very

low frequency and can make radical changes on the current signature which could cause a

serious simultaneous switching noise (SSN) [19].

To capture chip operations at both high frequency and at low frequency, herein

current profiles are synthesized by multiplying a high-frequency component and a low-

frequency component. Both components consist of a trapezoidal pulse unit and a bit

sequence.

The unit trapezoidal pulse is showed in Figure 2.1. It contains 6 parameters: Ipeak,

Iidle, tr, ton, tf and toff. In these 6 parameters, Ipeak and Iidle are related to the IC switching

current amplitude at on state and idle state respectively, and tr, ton, tf and toff describe the

time scale of a unit pulse: tr and tf are the rise time and the fall time during the switching,
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Figure 2.1. Unit trapezoidal pulse when the bit value is 1.

and ton and toff are the on time and the off time. In order to capture the noise during IC

operations, these 6 parameters are assumed to be random variables. For every pulse, a

set of these 6 parameters are generated from a realization based on the joint probability

distribution function (PDF) of these 6 random variables.

Figure 2.2 shows the flow chart to generate a high-frequency or a low-frequency

switching current component. For both the high-frequency and the low-frequency compo-

nents, a bit sequence is defined at the beginning. A trapezoidal pulse is then generated from

a realization for every bit with value 1. For zero bits, the current amplitude is Iidle at any

time during that bit. Next the high-frequency component and the low-frequency component

are obtained by combining all the pulses and finally the total switching current is derived

by multiplying the high-frequency component and the low-frequency component, as shown

in the example in Figure 2.3.
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Figure 2.2. Flow chart to generate the low/high frequency current component.

2.2. AN EQUIVALENT CIRCUIT MODEL

Many reports in the literature on power distribution network have focused on ex-

tracting the parasitic inductance or capacitance associated with a certain piece of the PDN

geometry [13], [14], [20], [15]. And thus an equivalent circuit model can be derived based

on those inductances and capacitances [21], [16].

Despite the fact that the PDN geometry can be very complicated, the equivalent cir-

cuit model is always simple.Typically several types of decoupling capacitors are employed

in a power distribution network to lower the input impedance in different frequency ranges,

which can provide hierarchical charge reservoirs for the IC. In general, PCB decoupling

capacitors have larger capacitance and loop inductance while on-package decoupling ca-

pacitors have smaller capacitance and inductance. Thus the PDN structure can be modeled

as cascaded LC circuits, as shown in Figure 2.4 and Figure 2.5.

It’s also fairly common that different capacitors are used for PCBPDNs. In the circuit

model shown in Figure 2.4(b), each vertical RLC branches represents a group of capacitors

which have similar capacitance and loop inductance. The blue branch is associated with
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(a) Total switching current.

(b) Zoomed-in current waveform in the red circle.

Figure 2.3. A synthesized current profile example.

capacitors on the top layer and away from the IC, power net area fills between the IC and the

capacitors, and also vias and pads connecting the power net area fills to those capacitors.

And the purple branch is related to capacitors under the IC. Apart from the vertical circuit

components, the horizontal red resistor RPCB_IC_vias and inductor LPCB_IC_vias represent the

resistance and inductance associated with vias connecting IC pads to power net area fills

respectively.
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(a) Typical PCB PDN geometry.

(b) Corresponding circuit model.

Figure 2.4. An equivalent circuit model for the PCB PDN.

Due to limited space, there are much less decoupling capacitors in the package.

However the one-on-one correspondence between the package PDN geometry and the

package PDN equivalent circuit is very similar to that of the PCB PDN. In the circuit

model shown in Figure 2.5(b), the vertical resistor RPKG_Cap and inductor LPKG_Cap are

associated with the current that starts from the power net area fill, flows to the on-package

decoupling capacitor and returns through adjacent ground planes, as colored yellow in

Figure 2.5(a). The vertical capacitor CPKG_Cap then represents all the capacitance of the

on-package decoupling capacitors. Similar to RPCB_IC_vias and LPCB_IC_vias in Figure 2.4(b),
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(a) Typical package PDN geometry.

(b) Corresponding circuit model.

Figure 2.5. An equivalent circuit model for the package PDN.

the horizontal black resistor RPKG_PCB and inductor LPKG_PCB relate to solder balls and vias

connecting those balls to the power net area fill. And RPKG_die and LPKG_die relate to solder

bumps and vias connecting those bumps to the power net area fill.

2.3. VOLTAGE RIPPLE SPECTRUM DECOMPOSITION

By combining the current profile generated from the current synthesizer mentioned

in Section 2.1 with the circuit models mentioned in Section 2.2, the time-domain voltage

noise ripple can then be calculated. And finding one-on-one relationships between PDN ge-
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ometries and different voltage ripple aspects based on those calculations will be much more

helpful to the PDN designing because the dominant voltage ripple aspect and associated

geometry can thus be identified easily.

Closed-form expressions for the maximum transient noise voltage caused by a

triangle current pulse on a power distribution network comprised of traces with decoupling

capacitors have been derived in [22], which is very helpful in early design stages by giving

a simple and intuitive relationship between the PDN geometry and the actual noise voltage.

And later on that idea was extended for a burst train of triangle current pulses [23]. However,

although the shape of the input impedance curve of a PDN structure with power traces as

used in [22] and [23] is fairly similar to that of a multi-layer PCB PDN, when the switching

current profile is more complicated, it’s no longer practical to solve the voltage noise ripple

analytically in time domain. Thus a voltage noise ripple calculation and decomposition

approach in time domain has been proposed for the PCB PDN in [17]. Herein this approach

is extended for cascaded PCB and package PDNs.

2.3.1. Input Impedance Spectrum Decomposition and Its One-on-one Corre-

spondence with the PDN Geometry. As mentioned in Section 2.1. In frequency do-

main, the voltage noise ripple is the product of the switching current and the PDN input

impedance. Thus to establish a one-on-one correspondence between different voltage as-

pects and the PDN geometry, it’s critical to first find the relationship between the PDN

input impedance and the PDN geometry. The one-on-one relationship between the PCB

PDN input impedance and the PCB PDN geometry has been given in [17]. To extend that

idea to cascaded PCB and package PDNs, the entire range of frequencies is divided into

3 subdivisions based on the antiresonance frequency between the PCB inductance and the

on-package capacitance, as shown in Figure 2.6.
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Figure 2.6. The entire range of frequencies are divided into 3 subdivisions: PCB range,
resonance range and package range.

Figure 2.6 is from a real design, and the 3 subdivisions are PCB range, resonance

range and package range. The antiresonance in the resonance range is caused by the parallel

LC resonance between the PCB inductance and the package capacitance. A basic LRC

circuit model is drawn in Figure 2.7, and the impedance of that circuit is given as

Z =
jωL(1 + jωCR)

1 − ω2LC + jωCR
, where ω = 2π f . (2.1)

And the parallel LC resonance frequency and the input impedance at that frequency

is given as

fpeak =
1

2π
√

LC
(2.2)

Zpeak =
L + jR

√
CL

RC
. (2.3)

It can be seen from Equation (2.3) that if R goes to zero, the denominator RC would

go to zero at f = fpeak and the total input impedance Zpeak of that circuit would approach

infinity. That means the PDN input impedance around that resonance frequency can be very
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Figure 2.7. Basic LRC circuit.

high if the resistance is not designed well to damp that resonance, which is a very important

design consideration because the voltage noise can be very significant if the resonance is not

damped well and the switching current happens to have much energy around that frequency.

Thus the resonance range in Figure 2.6 is related to the cascaded PDN impedance when

the PCB inductance and the on-package capacitance resonates and can be used to check the

associated voltage noise ripple aspect that can dominate if there is not enough resistance to

damp that resonance. Since generally more resistance means more associated inductance

and it’s also essential to keep the inductance low to bring down the total input impedance

at high frequencies, there is always a trade-off between more resistance and less inductance

when choosing on-package capacitors.

Before establishing one-on-one relationships between the cascaded PDN input

impedancewith the PDN geometry for the other two frequency ranges in Figure 2.6 , an open

circuit approximation is proposed herein which assumes the on-PCB decoupling capacitors

are open circuits in the package range while the on-package capacitors are open circuits

in the PCB range. Although on-PCB capacitors always have larger capacitance and thus

lower impedance at low frequencies than on-package capacitors, they also have larger loop

inductance, which gives them higher impedance at high frequencies than the on-package

capacitors. So the approximation is valid when the ratio of the on-package capacitance

and the on-PCB capacitance and ratio of the package inductance and the PCB inductance
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associated with those decoupling capacitors are sufficiently large, which is always the case

for PCB PDNs and matched package PDNs. Thus the one-on-one correspondence between

the PDN impedance and the PDN geometry for both the PCB frequency range and the

package frequency range in Figure 2.6 can be derived from the same approach as is used in

[17].

(a) Total input impedance in the PCB range. (b) Input impedance aspect associated with
PCB decoupling capacitors.

(c) Input impedance aspect associated with
PCB IC vias.

Figure 2.8. PDN input impedance spectrum decomposition and its one-on-one correspon-
dence with the geometry in the PCB range.

As shown in Figure 2.8, the PDN impedance in the PCB range is divided into 2

parts, one is associated with PCB decoupling capacitors and the other is related to PCB IC

vias, as depicted in Figure 2.4. Same colors are used for corresponding geometry pieces,

equivalent circuit elements and input impedance aspects in frequency domain. For the

PCB PDN, decoupling capacitor types and their locations can be very different, which
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can result in several resonances in the PCB range. Sometimes the parasitic parallel-plate

capacitance of the PDN power and ground planes can resonate with the loop inductance

of the decoupling capacitors as well. Since this capacitance is very similar to that of the

decoupling capacitors, it’s not drawn in Figure 2.4(b), The example shown in Figure 2.4(a)

has two types of decoupling capacitors as illustrated in Section 2.2. Herein cap 1 represents

the decoupling capacitors that are away from the IC and have larger capacitance and loop

inductance than cap 2, which is related to those small 0402 SMT capacitors that are right

under the IC. The input impedance aspect associated with the PCB decoupling capacitors

can be further reduced to nearly zero if enough capacitors are added despite the fact that the

apparent impedance seen between the power and ground planes may not decrease as 1/N as

might be thought due to mutual terms [24].

Another impedance aspect is related to the PCB ICvias, as is colored red in Figure 2.4

and Figure 2.8. This part of the impedance is from the inductance and resistance associated

with the part of the PCB IC vias that interconnects the PCB IC pads and the power net area

fill. So instead of adding or removing decoupling capacitors, which will have no influence

on this impedance aspect, adding IC vias or alternating IC power and ground vias can help

to bring down the impedance.

Same decomposition approach can be adopted for the package range, as shown in

Figure 2.9. Unlike the PCB PDN, generally there is only one series LC resonance in the

package frequency range due to the limited space for decoupling capacitors in packages.

However, the relationships between the package PDN input impedance and the package

PDN geometry is very similar to that of the PCB PDNs. The impedance aspect related to

on-package capacitors which is colored yellow in Figure 2.5 and Figure 2.9 would also go

to zero as more and more on-package capacitors are added. The impedance aspect colored

green is related to the part of the vias that interconnects the solder bumps and the power net

area fill in the package. There are also inductance and resistance associated with another

part of the vias that interconnects the solder balls and the power net area fill of package
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PDNs, namely LPKG_PCB and RPKG_PCB in Figure 2.5. However they are not shown in

Figure 2.9 because based on the approximation proposed earlier in this subsection, the PCB

is assumed to be open in the package frequency range and thus LPKG_PCB and RPKG_PCB

won’t contribute to the total impedance in the package range.

(a) Total input impedance in the package
range.

(b) Input impedance aspect associated with
package decoupling capacitors.

(c) Input impedance aspect associated with pack-
age IC vias.

Figure 2.9. PDN input impedance spectrum decomposition and its one-on-one correspon-
dence with the geometry in the package range.

2.3.2. Voltage Noise Ripple Calculation and Decomposition. The IC switching

current can also be divided into 3 parts according to Figure 2.6. With the input impedance

spectrum decomposition mentioned in last subsection, the total voltage noise ripple can
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then be calculated and decomposed as

v(t)total = F−1 {
I( f )total × Z( f )total

}
= F−1 {

I( f )PCB × Z( f )total + I( f )resonance × Z( f )total + I( f )PKG × Z( f )total
}

= F−1 {
I( f )PCB × Z( f )PCB + I( f )resonance × Z( f )resonance + I( f )PKG × Z( f )PKG

}
= F−1 {

I( f )PCB × Z( f )PCB_decap
}
+ F−1 {

I( f )PCB × Z( f )PCB_IC_vias
}
+

F−1 {
I( f )resonance × Z( f )resonance

}
+ F−1 {

I( f )PKG × Z( f )PKG_decap
}
+

F−1 {
I( f )PKG × Z( f )PKG_die_vias

}
= v(t)PCB_decap + v(t)PCB_IC_vias + v(t)resonance + v(t)PKG_decap + v(t)PKG_IC_vias

Herein the total voltage noise ripple is calculated using inverse Fourier transform and it

comprises 5 aspects in frequency domain. Since both Fourier transform and inverse Fourier

transform are linear operations, the total voltage noise ripple can then be divided into 5

aspects in time domain, as shown in the equation above.

2.4. EXAMPLES BASED ON A REAL DESIGN

The decomposition approach proposed in this paper is applied to a real PCB and

package design in this section. Since the high frequency component are already well

decoupled at chip level for this design, herein only a low frequency component is considered

for this design. The switching current waveform used in this example is 1MHz periodic

triangles as depicted in Figure 2.10. And the input impedance of the cascaded PCB and

package PDN is shown in Figure 2.11. Normalized impedance are shown in Figure 2.11

to be compared with the switching current spectrum which is also normalized. Same as

what has been discussed in Section 2.3, herein two types of on-PCB decoupling capacitors

are used. Cap 1 refers to the decoupling capacitors that are away from the IC and the other

capacitors are 0402 capacitors under the IC. It can be seen from the impedance curve that as

more and more cap 1s are added, the first anti-resonance which is due to the loop inductance
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of all cap 1s and the capacitance of all the 0402 capacitors disappears because the loop

inductance associated with cap 1s is reduced. However, adding more on-PCB capacitors

won’t change the inductance of the PCB IC vias or the package impedance because they are

related to other parts of the PDN geometry.

Figure 2.10. Switching current waveform.

The total voltage noise ripple seen at the package bumps caused by that switching

current is then calculated using FFT and IFFT, as shown in Figure 2.12(a). After that the

decompositionmethod is applied. Twodominant voltage aspects are shown in Figure 2.12(b)

and Figure 2.12(c). Other aspects are not shown here because they are too subtle. It can

be seen from Figure 2.12(b) that as more and more PCB decoupling capacitors are added,

the voltage ripple aspect associated with PCB PDN capacitors is reduced significantly. The

maximum voltage ripple related to the PCB capacitors is reduced by about 1.3mV if 9

more capacitors are added, as can be seen from the red and green curves in Figure 2.12(b).

And instead of using 100 cap 1s, 10 cap 1s might be enough because it takes another 90

capacitors to lower the maximum voltage ripple only by 0.2mV.
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Figure 2.11. Normalized ZPDN and current spectrum.

Figure 2.12(c) shows another dominant voltage ripple aspect which is related to the

PCB IC vias and the PCB-package interconnects. In this voltage ripple aspect waveform,

those sudden jumps are related to the inductance which happen when the derivative of the

switching current changes at the triangle vertexes, and those slopes are associated with the

resistance which are related to the triangle sides of the switching current. Adding more

PCB capacitors won’t help to reduce this voltage ripple aspect. A more effective way to

bring down this voltage ripple aspect would be adding more IC vias or changing IC via

patterns to make the mutual inductance between the power vias and ground vias larger [24].
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2.5. CONCLUSION

For PDN time domain voltage ripple calculation, the switching current profile can

be synthesized by multiplying a high frequency component and a low frequency component

based on a given joint probability distribution function of the parameters of the compo-

nents. Based on an open circuit approximation, the voltage ripple spectrum decomposition

approach is extended from PCB PDNs to cascaded PCB and package PDNs. The one-

on-one relationships between the voltage aspects, the PDN geometry and the PDN input

impedance in frequency domain are then established. An example based on a real design

shows how this decomposition approach can help to find the dominant voltage ripple aspects

and their associated parts of the PDN geometry, thus avoiding too much overdesign.
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(a) Total voltage ripple.

(b) Voltage noise across the PCB decoupling capacitors.

(c) Voltage noise across the PCB and package IC vias.

Figure 2.12. Voltage noise ripple.
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3. A TOOL DEVELOPMENT FOR PEAK DISTORTION ANALYSIS BASED ON
MULTIPLE EDGE RESPONSES

Intersymbol interference (ISI) is playing a more and more important role in the

signal integrity of modern high-speed systems. And eye diagrams are the main diagnostic

technique for evaluating the signal quality. Although conventional transient simulations

with a long PRBS source can accurately characterize the eye diagram, sometimes it can take

a very long time. Thus peak distortion analysis (PDA) is often used to extract the worst-case

eye diagram and associated worst-case bit pattern in a much shorter time by only looking

into the worst-case [25].

For linear time invariant (LTI) systems or systems that can be well approximated as

an LTI system, single bit response (SBR) can work very well [25]. However, non-linearity is

a common limitation for the use of SBR.Although the double edge response (DER) approach

can handle asymmetric rising and falling edges [26], a more general edge response set is

needed for non-linear systems, which is called multiple edge responses (MER).

3.1. NONLINEAR SYSTEMS AND MULTIPLE EDGE RESPONSES

In [27], [28], and [29], a DER or MER approach is applied to nonlinear systems

with voltage noise associated with the power supply network. However, as indicated in [30],

even with a clean power supply, nonlinearity also needs to be taken into consideration to

give an accurate worst-case estimation.

MER is very similar to DER in the way that any response can be decomposed as a

summation of a set of edge responses and their shifted versions. An edge response set of

DER only consists of a rising edge response and a falling edge response. However, due to

nonlinearity, different bit patterns that are previous on the edge response can have different

impact on that edge response, which means the edge response set needs to be extended by
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also considering the previous bit pattern to be able to capture the nonlinearity in systems.

Depending on the duration of the nonlinearity, the number of previous bits needed can be

different. This can be related to the time constant associated with the power distribution

network or the delay time of the channel. Thus MER is proposed for nonlinear systems,

with the order of MER to be the number of previous bits needed.

(a) Rising edge response with previous two bits to be 00.

(b) Rising edge response with previous two bits to be 10.

Figure 3.1. Different rising edge responses associated with different previous bit patterns
for 2nd order MER.
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[28] gives a rigorous way to extract the edge response sets of different order of

MER. Herein only basic illustration is given as in Figure 3.1 and Figure 3.2 with the use of a

simple example by assuming the MER order to be 2 and the edge response duration to be 9

UIs, which means after 9 UIs, the edge response will settle down. Since 2nd order of MER

is assumed, there are four different previous bit patterns: "00", "01", ’10’ and ’11’. Among

them "00" and "10" are associated with two rising edge responses as shown in Figure 3.1,

and "01" and "11" are associated with two falling edge responses. Herein r10(t) refers to

the rising edge response with the previous two bit pattern to be "10" and etc.

Figure 3.2. Any response can be decomposed as a summation of shifted MERs.

After extracting all the edge responses, any response with any input bit pattern can

be synthesized by the superposition of corresponding shifted edge responses. An example

is shown in Figure 3.2 with the input bit pattern to be "00 101 100 000 0". For the first

rising edge, since the previous bit pattern is "00", r00(t) is thus used. For the second rising

edge, since the previous bit pattern is "10", r10(t) is used. And the same goes for the other
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falling edge responses. The total response is thus constructed by adding up all these shifted

edge responses. Herein y101,100,000,0(t) refers to the response of the input bit pattern "101

100 000 0" from b1 to b10.

3.2. PEAK DISTORTION ANALYSIS BASED ON MERS

A rigorous peak distortion analysis approach based onMER is given in [31] by using

the idea of dynamic programming [32]. Herein a simpler and more intuitive explanation is

given in Figure 3.3 and Figure 3.4 with the same example as in last section.

Figure 3.3. Recursive relationship.

The general way to determine the worst-case eye diagram is to compare all the

possible responses at b10 since the assumption is made that the duration of edge responses

is 9 UIs. Extracting all the responses from y000,000,000,0(t) to y111,111,111,1(t) can be done

by using the synthesizing approach mentioned in last section. However, it’s obvious from
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Figure 3.4. Recursive relationship using dynamic programming.

Figure 3.3 that the total number of comparisons is exponential to the number of UIs that

the edge responses need to settle down. In this case, it takes around 210 = 1024 times of

comparisons.

A better way to perform the comparisons, asmention in [31], can be realized by using

dynamic programming. This is done by comparing temporary worst-case with different bit

patterns at each bit from b1 to b10. Herein Abxby( j) refers to temporary worst case response

ending with bxby at the j th bit. It’s obvious from Figure 3.4 that the total number of

comparisons now becomes roportional to the number of UIs. Only 22 × 10 = 40 times of

comparisons is needed. This can save a lot of computation time when the duration of edge

responses are long.
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3.3. A MATLAB TOOL DEVELOPMENT FOR PDA BASED ON MERS

AMatlb tool is developed based on the algorithm in [31]. Figure 3.5 shows the flow

chart of the tool. Automatic Hspice simulations are run first to extract the edge response set

needed. Then PDA calculation is performed based on the edge response set and worst-case

eye diagram and associated worst-case bit pattern are given to the user.

Figure 3.5. Flow chart of the PDA tool.

Figure 3.6 and Figure 3.7 show a nonlinear circuit model used for test and the PDA

calculation results respectively. It can be seen that compared to PDA based on SBR, PDA

based on MER can better capture asymmetric r/f edges and non-linearity in the system.

Also by increasing the order of MER, the worst case eye extracted from PDA calculation is

more and more close to the real worst-case eye.
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Figure 3.6. Test circuit of the Matlab tool.
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(a) Results in 2 UIs.

(b) Zoomed-in at the right corner.

Figure 3.7. Comparison between PDA and transient simulation.
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