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ABSTRACT

The 3C-2D seismic datasets were acquired in 2008 in the Spring Coulee Field,
Alberta, which is located in Township 4, Range 23, and west of the 4th Meridian in the
Alberta Basin. Line 2008-SC-01 was reprocessed to obtain better image of the formation
targeted at between 1300 ms and 1400 ms. The depositional settings of the Madison
Formation consist of shallow and carbonate shelf deposits. The processing workflow was
designed by testing several methods, algorithms, and parameters, and finding the optimal
processing solution. The processing steps included elevation statics, noise suppression,
deconvolution operator, and 2D Kirchhoff poststack time migration. In order to obtain the
high quality seismic section, noise suppressing is important for this study because data
include high ground rolls and air blast noises. Therefore, the recorded effects of ground
roll and air blast were suppressed using suppress module, F-K, and bandpass filters. The
final seismic section provides a high quality imaging of the subsurface. Combining the
results of the reprocessed seismic data with well data from the same area allows for seismic

interpretation and hydrocarbon exploration.
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1. INTRODUCTION

The 3C-2D seismic datasets used in this study were acquired in 2008 through the
CREWES Project by University of Calgary in the Spring Coulee Field, Alberta. The survey
area is located in Township 4, Range 23, and west of the 4th Meridian in the Alberta Basin

(Figure 1.1) (Lu and Hall, 2008).
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Figure 1.1. Map of the Alberta Basin and the study area (modified from Liu et al., 1997).

There was no oil and gas production in the survey area. The purpose of the survey
is to analyze the hydrocarbon potential of the survey area. Different types of sources and
receivers were used to compare the effect on the seismic data from the various sources and

receivers (Bertram et al., 2008).



Location of Line 2008-SC-01 used in this study is shown in Figure 1.2. SM7 analog
sensor was utilized with the ARAM recording systems. The source was two Mertz Hemi

vibes. The length of the survey line was 6.5 km (Bertram et al., 2008).
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Figure 1.2. Location of Line 2008-SC-01 (Lu and Hall, 2008).

The main purpose of this study is to reprocess Line 2008-SC-01 to enhance the
image of the target zone, which is the Madison Formation between 1300 ms and 1400 ms.
The Madison Formation has a potential of finding hydrocarbons in the target sandstone

reservoirs and neighboring shales (Lauren and Stewart, 2008).



1.1. GEOLOGICAL BACKGROUND

The western Canadian sedimentary basin contains the eastern Canadian Cordillera,
Alberta Basin, and Williston Basin (Wright et al., 1994). The Spring Coulee Field is located
in the Alberta Basin (Figure 1.3). The Alberta Basin is bordered by the Rock Mountain
Thrust Belt to the west, and the Williston Basin to the southeast (Liu et al., 1997). The basin
is a simple monocline structure consisting of unreformed, northwestern trending Paleozoic

and Mesozoic sediment rocks (Connolly et al., 1990).
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Figure 1.3. Location of the Alberta Basin (Garland et al., 2012).

The study area is unexplored, and no well was drilled. Therefore, analyzing the
hydrocarbon potential of the study area is challenging. However, there are two wells nearby
the study area. Well 3-32 produces from the Madison Formation of the Mississippian age,

which is approximately 10 miles to the south. Well 4-34 produces from the Second White



Speckled Shale of Creataceous age, which is about 80 miles to the southeast (Lauren and
Stewart, 2008). Therefore, Well 3-32 is useful to understand the geological structure of the
area.

The hydrocarbon potential of the area is evaluated and concluded with that there
is a possibility to find petroleum in the zone of interest. The Madison Formation was
deposited on a shallow and carbonate shelf. Thus, the formation has a potential to be a
good reservoir due to dolomitization, fractures, and structure caused by tectonic movement
(Lauren and Stewart, 2008). The Paleozoic strata are approximately 870 m thick, and the
Madison Formation is roughly 150 m. Mississippian rocks are generally carbonates and,
the youngest rocks of carbonates occur in the Mississippian Madison Formation (Kent and
Kreis, 2001) (Figure 1.4). Also, shale formation is observed in the deeper Mississippian

(Ostridge et al., 2009).
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Figure 1.4. Stratigraphic formations in the Spring Coulee Field (modified from Higley,
2013).



1.2. GENERAL OVERVIEW OF LAND DATA ACQUISITION

In general, a seismic acquisition system constitutes the source such as dynamite,
vibroseis, hammer, etc., receivers, recorder, gain controller, A/D converter, tape driver,
and cable (Figure 1.5). Data acquisitions are conducted as 2D and 3D surveys. They are
preferred with respect to survey purpose and cost. Geophones are alligned in the same line.

However, sources may not be in the same order for 2D surveys (Evans and Dragoset, 1997).

Recording Truck i11d 1
Shooter 4 Drilling Rig
_:; % PREC.M'I.I'EF Station
= A _L- 4 -—

Geophones

H Shot Hole

Figure 1.5. Seismic data acquisition operation system with an exploisve source (Evans and
Dragoset, 1997).

[

1.2.1. Sources. For land seismic data acquisition, different types of sources such
as explosive sources (dynamite and air gun) and non explosive sources (vibroseis) are
used. Also, they produce generally compressional waves which play a key role for seismic
surveying. They are differ in energy levels and frequency characteristics (Figure 1.6). The
frequency content ranges from 1 Hz to several hundred Hz. The most popular sources used

for seismic survey are vibroseis and dynamite (Kearey et al.,2013).
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Figure 1.6. Frequency ranges for seismic sources (Kearey et al., 2013).

Vibroseis, invented by Conoco, is the most common method among non-explosive
sources. Sweep signal, known as low amplitude and continuously varying frequency, is pro-
duced by vibroseis. The frequency band limits between 10 and 80 Hz. The obtained seismic
trace from field recording includes low amplitude signal obscured by ambient noise. There-
fore, to improve signal-to-noise ratio and also shorten the pulse length, cross-correlation is
implemented (Figure 1.7). After the cross-correlation, the seismogram appears similar to
the seismogram obtained from explosive source, and the produced signal wavelet is zero
phase (Kearey et al., 2013).

Dynamite is an impulsive source. This results an impulsive source with a wide
bandwidth. Also, the wavelet type is a minimum phase. Gelatin dynamite and ammonium
nitrate are used as an explosive for seismic surveys (Sheriff and Geldart, 1983).

The significant difference between vibroseis and dynamite is that frequency can be
controlled in vibroseis method, and this provides improved signal to noise ratio in areas
where surface waves are a problem (Costain and Coruh, 2004). Although dynamite provides

high energy sources, it has several disadvantages such as high cost, damage to nature and
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Figure 1.7. Cross-correlation section (Kearey et al., 2013).
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buildings, needing wells, time etc. On the other hand, vibroseis source is quick, repeatable,
and not harmful for environment. Vibroseis can be used in towns; however, using dynamite
in towns is not possible (Kearey et al., 2013).

1.2.2. Receivers. Receivers are used to convert a mechanical input (the seismic
pulse) into an electrical output. On land surveys, they are known as seismometers or
geophones to detect seismic ground motions. Modern geophones are generally moving-coil
electromagnetic type. Geophones, preferred in accordance with the purpose of survey have
natural frequency from 1 Hz to 60 Hz. 4-15 Hz geophones are used for oil exploration
reflection method (Sheriff and Geldart,1983).

Working principle of typical geophones is related to vertical movement, but they
cannot give an output for horizontal movement. Thus, several type of special geophones
(shear geophone, gimballed geophone, and three-component geophone) were upgraded by
manufacturers. Shear wave geophones can be used to detect horizontal movements. Also,

gimballed geophone has the same principle as the shear geophone, but the difference is



that it performs well at tilt angles up to 30 degree (Evans and Dragoset, 1997). The three-
component geophone includes X, Y, and Z components. The Z component is able to acquire
P-wave, while the X component and Y component can obtain S-wave. As a result, P-wave
and S-wave can be received by the three-component geophone (Zhang et al., 2017) (Figure

1.8).

Figure 1.8. Three-component geophone (Kearey et al., 2013).

1.3. SURVEY ACQUISITION

The 3C-2D is to use conventional source to acquire the 2D data recorded on 3C
geophone. The survey has two main purposes, which include to compare 3C geophone data
to MEMS accelerometer data and to investigate development potential of the survey area.
In this survey, different sources and receivers are used in the 2-D seismic lines (Figure 1.9).
Three different receivers, which are SM7, SM24, and Sercel DSU3 respectively, are used
in order to obtain a true comparision of the sensors for signal-to-noise ratio and sensitivity
(Bertram et al., 2008).

Line 1 starts with station 101 in the north and ends with station 752 in the south.
Receiver spacing is 10 m, and a three-component Sensor SM7 geophone and a Sercel DSU3
MEMS accelerometer are placed about 0.5 m apart at each stations (Bertram et al., 2008)

(Figure 1.10).



Line 2

S5M-24 10 Hz

Line 1 Line 6 Line Ish Line 4
dynamite 48000 Ibs IVI mini
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Figure 1.9. Layout of the Spring Coulee survey (Suarez and Stewart, 2008).

Figure 1.10. Right SM7 geophone, left DSU3 MEMS sensor at one station
(Bertram et al., 2008).

A three-component Sensor SM24 geophone is installed alongside the other two

sensors from station 669 to station 308 (Bertram et al., 2008).
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There are three different sources used in this survey. The first source is two Mertz
Hemi 48,000 Ib vibrators from station 101 to station 689 at every third station. The total
shots number is 196. The sweep signal is 4 Hz to 130 Hz over 12 seconds, 4 sweeps per
vibroseis shot (Bertram et al., 2008).

EnviroVibe, 18.000 Ib, is used in order to obtain data set. Shots are placed at every
station 101 to 224, then every third station to 439 and are recorded by SM7 geophones.
There are 136 EnviroVibe shots. The sweep signal is 10 Hz to 200 Hz over 12 seconds, 4
sweeps per vibroseis shot (Bertram et al., 2008).

2 kg dynamite charge at 18 m depth is used for this survey from station 266 to station
419 at every third station, 54 dynamite shots are recorded (Bertram et al., 2008).

There are two different systems to record data, Sercel 428XL system and Aries
SPMLite recorder system. DSU3 sensors and half of SM24 geophones are recorded by
the Sercel 428XI sytem. On the other hand, SM27 geophones are acquired by the Aries
SPML.ite recorder system (Bertram et al., 2008).

Line 2008-SC-01 was acquired via two Mertz Hemi vibroseis and were recorded by
ARAM (recorder) using SM7 geophones. The line length is 6.5 km. The receiver interval
is 10 m, and the shot interval is 30 m. Table 1.1 shows the acqusition parameters for Line
2008-SC-01.

Table 1.1. Line 2008-SC-01 acquisition parameters used in this study.

Line length 6.5 km
Shot interval 30m
Receiver interval 10m
Source Vibroseis
Shot number 196
Receiver number 652
Sample rate 2 ms
Number of channel | 592
Record length 6s
Sweep length 12s
Minimum offset 10m
Maximum offset 6490 m
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1.4. DATAQUALITY

Several shot gathers of raw data selected from first, middle, and last records are
shown in Figure 1.11. The signal-to-noise ratio is good and reflections are visible. Line
2008-SC-01 was analyzed to assess the data quality on selected shot gather 110 (Figure
1.12). Strong reflections are observed on the seismic section with heavy ground rolls and
random noise.

Spectral analysis was also conducted for shot gather 110 to examine frequency
content of the seismic data (Figure 1.13). The frequency bandwidth is from 12 Hz to 38
Hz for 10 dB amplitude value. Amplitude spectrum shows that data quality is satisfying in
terms of frequency.

Optimal parameters used in the processing of Line 2008-SC-01 vertical component
seismic data were assigned by testing on selected shot gathers. After determining the

parameters, the seismic data were processed with the selected parameters.

1.5. OBJECTIVES

The Spring Coulee 3C-2D data consists of a set of different source and receiver
types. The data acquired from the two Mertz Hemi vibroseis and SM7 geophones have
good signal-to-noise ratio, however the data contains ground rolls and air blast noises. The
data set is selected for reprocessing in order to obtain the better seismic images in the target
zone. The main objective is to improve vertical resolution and attain a high quality poststack
time migrated section. Various noise suppression techniques are utilized in order to reduce
strong noise exhibited on raw shot gathers. The target zone, i.e., the Madison Formation,
has been indicated as a potential reservoir in the study area by previous studies (Ostridge
etal., 2009). The reprocessing focus is mainly concentrated on the vertical window ranging

from 1300 ms to 1400 ms that covers the Madison Formation.
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2. METHODOLOGY

In order to process the Spring Coulee Line 2008-SC-01 seismic data, the processing
software of Echos by Paradigm (version 17) was used. Several shots of the data were
selected from first, middle, and last records to decide which parameter is suitable for the
seismic data. Then, these paramaters were applied to all datasets.

The processing flow was created by testing parameters, methods, and algorithms
such as deconvolution, static correction, and migration (Figure 2.1). After deconvolution,
stack was applied to analyze the effect of the processing steps. Although this data contains
some noises such as air blasts and ground rolls, reflections are clear and seismic data quality
is good. The main target on the data is between 13000 ms and 1400 ms. The areas between
1400 ms and 2500 ms contain reflections. The areas below 2500 ms are not considered
because seismic quality reduced, and there was not any reflection there. In this study, the

results from applying processing steps are presented indetails.

2.1. DATAIMPORT AND GEOMETRY

Data import and geometry are in the pre-processing part, which they lay foundation
for the following processing steps such as static corrections and CMP sorting.

Seismic data are recorded in a multiplexed mode. The data first are demultiplexed,
which is the mathematical operation of transposing a big matrix. This matrix is arranged
seismic traces acquired at different offsets with a common shot point. In this process, the
data are converted to a specific format that is used during the seismic processing. Seismic
data are stored in a specific format determined by companies (Yilmaz, 2001).

The most popular formats are SEG-D and SEG-Y. The seismic data used in this
study were recorded as the SEG-D format. Then, it was converted to the SEG-Y format

(Drijkoningen and Verschuur, 2003).
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Seismic data are sorted into the CMP gather so that the geometry of the acquisition
layout, which contains the source and receiver locations, group spacing, stations and others,
must be defined on the seismic processing software (Lee et al., 1999). In this study, when
the data were imported to the processing software, elevations of sources and receivers were
not correct. In order to fix this complication, elevations were restored manually. Figure
2.2 and Figure 2.3 show the shot and receiver locations and elevations used in this survey,
respectively.

The offset plot is used to verify the offset geometry relationships. The offset should
be sustained by the distance from the shot to receiver. Figure 2.4 represents the offset plot
for selected shot gathers.

Line 2008-SC-01 consists of 652 channels. Source interval is 30 m and receiver

interval is 10 m. The obtained fold number is 98.

2.2. TRACEEDITING

Trace editing, which is a pre-processing step, is needed to handle noisy seismic
records (Pokhriyal et al., 1992). During seismic data acquisitions, bad shots or bad traces
occur, and they lead to degradation of the seismic data. For instance, during the processing
of a shot gather, a bad trace or bad dead shots will affect the result. Thus, all bad shots and/or
noisy traces are edited or omitted at an early step of processing for further the processing
steps.

Dead shots or missing traces cause the artifacts at the edges of the dead data, so they
are omitted or filled with zeros before applying noise attenuation. Therefore, observer logs
must be analyzed to check dead shots or bad traces.

Before the integration of leading-edge technology in seismic acquisition and seismic
processing, the manual edition of seismic traces were applied. A great amount of time were
spent on manual editing because the volume of seismic data were large. In recent years,

automatic trace editing is common.
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All shot gathers contain noises. Some noises can be tolerated in the trace editing
section because they can be omitted in the noise attenuation stage to avoid data lost. On the
other hand, some noise effects are so strong on the data, and they influence the quality of
further processing steps. In this study, the first and second shot include strong noise, affect
the signal-to-noise ratio, and also demolish the reflections. Therefore, the first shot and the
second shot were omitted during the trace editing stage. Although shot gather 3 includes
some noise, they can be suppressed during the noise suppressing because reflections are
clear. Therefore, shot gather 3 did not omitted. Figure 2.5 shows shot gather 2 and shot

gather 3.

2.3. STATICCORRECTIONS

Static corrections are applied to seismic data to balance the influence of variations
in weathering velocity and thickness, and elevation (Sheriff, 2002). Therefore, for land
data, static corrections are an essential processing step because they affect the qualities of
ensuing processing steps and resolution of the migration result. In order to conduct static
corrections, correcting near-surface and elevation variations play a key role (Deere, 2009).
Incorrect static results in low quality resolution, both spatial and temporal, and it could be
an obstacle during the interpretation stage (Zhu et al.,2014).

Non-planar reflectors, near surface low velocity zones, and rugged surface acquisi-
tion are reasons to apply static corrections. They are based upon short wavelengths (small
shift in time) and long wavelengths (larger time shifts). Static corrections are used to solve
the effect of long wavelengths, while residual static methods are effective to remove short
wavelengths effect. Residual statics methods are discussed later in this study (Li et al.,

2006).



22

"PaNIWO 10U SI 11 0S ‘Buo.lS 10U aJe SasION "€ Jayreb 10ys (g -asiou Buons 01 anp g Jayreh 10ys paniwQ (e "G’z ainbi

1z

ST

FEEFEy

pg

S
.
-
"3}
g
=

i e

1 biS bbG TS b8P
£
(9) Hew=00

bSb b2b PEE POS PSS BOS bi2 bbe

R EH A
=
=
"
=

(e)

{Ja5}
BT



23

Static correction methods include field statics, also known as elevation statics or
datum statics, refraction statics, and residual static corrections. Elevation statics include
the weathering corrections and the elevation corrections for removing effect of near-surface
layers and source and receiver elevations (Al Mukhtar and Aswad, 2016).

In this study, elevation static corrections were applied to the data. Computed statics

for receiver and shot stations are shown in Figure 2.6 and Figure 2.7, respectively.

2.4. NOISE ATTENUATION

Figure 2.9 illustrates selected shot gathers before processing. The geometrical
spreading of the wavefront causes seismic wave amplitude decay. Therefore, automatic
gain control (AGC) was applied to the seismic data to improve the amplitude of the seismic
data (Figure 2.10).

Seismic data frequently contains seismic noises such as ground rolls, swell noise,
and air blast. The purposes of the noise attenuation are to suppress the seismic noise and
improve the signal-to-noise ratio. The first step in noise attenuation is to analyze the seismic
data in order to determine the sources of the noise and the noise characteristics. The seismic
noise is divided into two categories, which are coherent noise and incoherent noise. The
other classifying noise type is whether noise is repeatable or not.

Coherent noise contains surface waves, refractions, and multiple reflections. Co-
herent noise except multiples travel horizontally and, all except vehicular noise such as cars
and trucks noise are repeatable on shots. Thus, coherent noise is categorized by energy that
travels horizontally or reaches the spread more or less vertically (Talagapu,2004).

Incoherent noise is also known as random noise, which indicates non predictability
and certain statistical properties. Small scale faulting and near surface irregularities generate
incoherent noise. Also, wind blowing, a person walking near a receiver, distant earthquakes,
and movement of the roots of trees may create random noise (Talagapu, 2004). There are

several methods to eliminate coherent noise or random noise (Table2.1).
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Table 2.1. The methods applied to seismic data in order to suppress random and coherent
noise.

Random Coherent

Band pass filtering | Band pass filtering

Notch filtering Velocity filtering i.e. F-K filtering
K-filtering Muting

F-K filtering Coherency filtering

Stacking

Editing

Coherency filtering

F-X filtering

The energy source on land generates an airwave, which is known as the air blast.
Velocity of the air blast is approximately 350 m/sec. The speed could be changed due to
temperature and humidity (Talagapu, 2004).

Seismic sources compose ground rolls due to the nature and position of the source,
and near surface environment, and ground rolls generally occur on the land seismic data
(Deighan and Watts, 1997). Ground rolls are defined with low frequency, high amplitude,
and low velocity. Ground rolls cause some factors such as reducing the signal-to-noise ratio,
incorrect velocity analyzing, and lowering quality of stacking and migrating steps (Chiu
et al., 2008). A seismic trace includes high frequency ambient noise and low frequency
noise such as ground rolls. The seismic energy bandwidth is between 10 Hz to 70 Hz. In
general, dominant frequency is approximately 30 Hz. In order to suppress these noises,
several frequency filtering can be applied such as high pass (low cut), or low pass (high
cut) band pass, and band reject. Band pass filtering, which is a combination of low pass
and high pass filtering is efficient method to suppress low frequency and high frequency
noise (Yilmaz, 2001). Therefore, in order to suppress the ground rolls, band-pass filter was
applied to the data, and acquired results are shown in Figure 2.11. After applying the band

pass filtering, the low frequency and high frequency noise were reduced significantly.
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The suppress module performs time-variant band-limited noise suppression, such
as ground roll or swell noise. Data are decomposed into good and bad signal bands and
time-variant noise suppression is then performed by thresholding the noise envelope with
the signal envelope. After band pass filtering, the data still contain ground rolls and air
blast. Thus, to remove these noises, the suppress module was applied to the seismic data
and the result shows removed noise (Figure 2.12).

The F-K filtering is also known as dip filtering. In general, coherent linear noise,
guided waves, and ground rolls obscure reflections, but they can be distinguished in the F-K
spectrum (Yilmaz, 2001). Figure 2.8 shows the F-K spectrum of seismic events and typical
noises. In order to eliminate linear and random noise of the seismic data, the F-K filtering

is commonly applied (Chen et al., 2015).

Reflected events (signal)
f

Back scattered High velocity
noise noise

Ground roll

Figure 2.8. F-K spectrum of the seismic events and noises.
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In many situations, band pass filtering is not enough to eliminate a certain type of
noise. In this study, although band pass filtering and a suppressing module were applied,
the data still contained ground rolls which caused the quality of reflections placed in the
target area, and decreased the signal-to-noise ratio. Therefore, the F-K filtering was used
two times to the seismic data in order to suppress ground rolls (Figures 2.14 and 2.15).
First F-K filtering was applied on the positive wave number, and second was applied on the
negative wavenumber.

The important point is to avoid spatial aliasing while applying the F-K filtering.
Spatial aliasing causes dispersive noise that reduces the quality of seismic data. Seismic
data with no spatial aliasing problems are typically clear of steep dipping events that are
associated with low velocity. Figure 2.13 represents an aliasing problem.

Ground rolls in data are associated with velocity around 1200 m/s, which is too
high to be aliased for group interval. However, air blasts have a low velocity and are
severely spatially aliased. In order to prevent the aliasing problem, further noise suppression
processes are required. For instance, the suppress module was utilized to reduce air blast
spatial aliasing in particular with specific parameters. Figures 2.16 and 2.17 show that
spatial aliasing is not observed on the F-K spectrum.

The seismic data was influenced by seismic noise, as mentioned previously in the
data quality section. During the noise attenuation stage, several parameters were checked to
suppress the seismic noise. The shot 102 was selected to check these parameters, and then
the selected parameters were applied to the seismic data. The obtained result suggested
that air blast and ground rolls were suppressed efficiently, reflections were stronger, and the
signal-to-noise ratio was improved for further processing steps. The final results applying

several noise attenuation methods are shown in Figure2.18.
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2.5. DECONVOLUTION

Deconvolution is a crucial processing step in seismic exploration. It is an inverse

In order to understand deconvolution, the

process of convolution (Velis et al., 2006).

earth impulse response is essential. The earth consists of rock layers that have different

lithology and physical properties. The densities and velocities characterize the rock layers.

They compose the acoustic impedance, which leads to seismic reflections recorded along a

convolution of the seismic wavelet

surface profile. In this way, to obtain the seismogram

surface reflections, and geophone

IS used, containing waveshape pattern, recording filter
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response. The impulse response occurrs, if the wavelet is just a spike, and this impulse
response includes reflections and all possible multiples. Enhancing the temporal resolution
of seismic data by the wavelet is a result of deconvolution (Yilmaz,2001).

Norbert Wiener developed a mathematical algorithm that separates radar signals
from noise during the World War 2. This is also known as smoothing or Wiener filtering.
The reversing of this filtering is a processing of a deconvolution, and then this filtering was
integrated into processing reflection seismic data. Therefore, all types of deconvolution
such as predictive deconvolution and spiking deconvolution are based on the Wiener filter
theory (Leinbach, 1995).

Spiking deconvolution is used so as to compress the effective source waveletincluded
in the seismic traces in order to enhance temporal resolution (Yao et al., 1999). In this study,
spiking deconvolution was applied to obtain sharper seismic events and have a frequency
bandwidth filter (Figure 2.19).

Predictive deconvolution isasingle trace operator (Zhou, 2014). The autocorrelation
of the source wavelet, gap, and operator length are required in order to use predictive
deconvolution. These parameters are applied to the data in the time domain (Broadhead
et al., 2007). Predictive deconvolution is generally used to remove multiple reflections
(Ulrych and Matsuoka, 1991). Also, it can be applied to alter the spectrum of the input data
to enhance resolution. Land seismic vibrator data can generate multiple reflections. In this
study, the source was vibroseis, but multiple reflections were not observed on the data.

The spectral analysis was introduced before and after the spiking deconvolution
to analyze recovery in the frequency bandwidth (Figures 2.20 and 2.21). The analysis of
the amplitude spectrum represents that frequency bandwidth was expanded.The frequency
bandwidth was from 10 Hz to 38 Hz before the spiking deconvolution, while it was enhanced

from 8 Hz to 92 Hz for 10 dB amplitude value after the spiking deconvolution.
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Until this stage, static corrections, noise attenuation, and deconvolution were applied
to data. Stacked sections were obtained for before (Figure 2.22) and after (Figure 2.23)
deconvolution in order to determine the quality of data for further processing steps. The
obtained stacked sections show that the quality of the data are good to continue for further
processing steps because seismic reflections are clear and strong at the target area, which is
between 1300 ms and 1400 ms. Additionally, the area near the subsurface shows significant

improvement.

2.6. VELOCITY ANALYSIS AND NORMAL MOVE-OUT (NMO) CORRECTION

Seismic velocity plays a key role in seismic processing and interpretationo. The
accuracy of picking velocity is a fundamental parameter. Stacking, normal move out (NMO)
corrections, time-to-depth conversion, and migration are related to seismic velocity, so the
accuracy of velocity picking is vital for further processing steps (Qin et al., 2009). The
seismic velocity is considered as a function of depth and vertical travel time, which are
related to the computation of depths and displacements (Kaufman, 1953). Additionally,
various velocity types can be used for several purposes and computed in different ways such
as interval, average, NMO, RMS, stacking, and Dix velocity.

Porosity, density, pressure, and temperature are some main factors that influence the
seismic velocities. Porosity has the highest effect on seismic velocity. Seismic velocity is
also affected by frequency of seismic energy source and fractures in the subsurface (Yilmaz,
2001).

After deconvolution, the velocities from seismic data are designated in this study.
The velocities obtained from seismic data give the best stack. NMO processing is crucial for
picking velocities in order so that reflections are lined up in CMP gathers (Yilmaz, 2001).
Velocity should have the correct value for acquiring flat reflections. If the velocity is low

or high, the reflections overcorrected or undercorrected respectively (Figure 2.24).
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Figure 2.24. CMP gather showing reflection. a) With low velocity. b) Correct velocity.
c) High velocity (Drijkoningen and Verschuur, 2003).

Number of traces, spread length, frequency bandwidth of seismic source, and spread
length are some factors that have impacts on the resolution and accuracy in velocity analysis.
Inthis step, pre-stack deconvolution is used to seismic data in order to enhance the resolution,
which assists to have higher velocity resolution in the velocity spectrum (Yilmaz, 2001).

There are several velocity analysis techniques which include the following:

1. Constant velocity panels (CVP)

2. Constant velocity stacks(CVS)

3. Analysis of velocityspectra

4. Barehole methods and VSP

5. (t2-x2) analysis

A velocity spectrum is generated before picking velocities. The conventional NMO
semblance method is a common method to generate a velocity spectrum (Taner and Koehler,
1969). The principle is based on the NMO correction on selected CMP gathers over a
velocity spectrum. In this study, the constant velocity stack and the semblance method were
applied. Paradigm Echos, which is the software used in this study, has two different tools

for velocity analysis (Figures 2.25 and2.26).
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Figures 2.27 and 2.28 show before applying NMO and after applying NMO. The
primary reflections of the seismic data were flattened which indicates that the velocities.

They can be used to obtain the best quality stack.

2.7. RESIDUAL STATICCORRECTIONS

Some reflections are influenced by very near surface conditions such as topography
and velocity and the position of each shot and receiver. They cause short wavelength
variations (small time shifts) for each trace. Correcting short wavelength time shifts is
called residual static corrections (Pugin and Pullan, 2000). Also, near-surface velocity
variations and inhomogeneity cause time anomalies, and these anomalies can be considered
as surface consistent (Ronen and Claerbout, 1985). A surface-consistent model is applied
in several seismic processing steps such as deconvolution and surface-consistent statics.
Therefore, residual static corrections are crucial because they directly affect the quality of
stack and migration section. Also, these corrections can be applied for processing both
land and shallow marine data (Yilmaz, 2001). Applying the datum correction in the static
correction stage is not enough to solve the near surface problem. Therefore, the residual
statics are applied to seismic data before stacking to fix small time shifts and obtain better
seismic data imaging (Faquan et al.,2011).

Residual static corrections are applied to seismic data without NMO. The iteration
number of residual static corrections can differ based on the purpose of the study. After
computing and applying iterations, velocity analysis is conducted again. This can help
reanalyze the effect on the quality of the stacking section (Marsden, 1993).

In this study, two iterations of residual static correction were performed to the data.
Figure 2.29 shows the stacked section before the residual statics. Figure 2.30 represents
the horizontal display after the residual static corrections. After applying residual static

corrections, reflections were stronger. The Madison Formation became more visible.
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Figure 2.27. Several selected gathers 475-485 before applying NMO.
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2.8. STACKING

Stacking is combining traces from different records with a common depth point
(CDP). Seismic data processing includes three crucial techniques, which are deconvolution,
stacking, and migration (Figure 2.31) (Yilmaz, 2001). The main purpose of stacking is to
minimize the noise and improve the quality of seismic data in the offset direction. Stacking
is applied to traces after performing the NMO correction and then by compressing these in

the offset domain.

3
AT
o &%° Midpoint

Migration

Time
Deconvolution

Figure 2.31. Three main steps in sesimic data processing (Yilmaz, 2001).

In general, floating datum, which is the smoothed version of the surface topography,
is applied to seismic data. However, several migration algorithms are based on the horizontal
plane (Zheng et al., 2000). In this study, after performing residual static corrections,
a final stacking was permormed after applying NMO correction and picking velocities.
Additionally, a floating datum stack gather and a flat datum stacked gather were obtained
(Figures 2.32, 2.33, and 2.34). After applying flat datum, the data were shifted back to a

flat datum, which is suitable to applymigration.
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2.9. MIGRATION

Migration is one of the most important step of seismic data processing. It moves re-
flectors to their correct spatial and temporal positions, eliminates diffractions, and increases
resolution. The main purpose of migration is to obtain the stacked gather which reflects the
geologic cross section. There are several types of migration techniques in order to image
the subsurface. These techniques contain (Yilmaz, 2001):

1. Time or depth migration

2. Prestack or poststack migration

3. Dimensionality, 2D or3D

These migration techniques differ based on the nature of the subsurface. Therefore,
the geology of the area plays a key role in order to determine which migration technique is
suitable for the study area (Yilmaz, 2001).

Time migration is applied to produce a subsurface image since it is more efficient
than depth migration. The other benefit of time migration is its lower sensitivity than
depth migration (Dell et al., 2012). Beside, depth migration is used for complex velocity
structures such as salt domes, near fault shadows, and thrust belts (Hill, 2001).

Prestack migration is generally used for complex geological structures because the
common midpoint stacking fails. For complex geological structures, common mid-point
are not the same as the common reflection point (Bording and Lines, 1997). Thus, prestack
migrations generally require a fairly uniform offset distribution to be effective. On the other
hand, the poststack migration is a partial prestack time migration. It has weaker sensibility
to velocity. The Poststack migration is also cheaper than the prestack migration (Yilmaz,
2001). Several migration algorithms are used today. Cost, maximum dip to migrate, and
frequency content of seismic data are key factors to decide which migration type is suitable
to get the best result for seismic data. Generating an extrapolated seismic wavefield and
moving reflectors to correct positions by using extrapolated seismic wavefield are two steps

for migration methods working (Zhou, 2014).
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In this study, 2D Kirchhoff time migration was applied to obtain the subsurface
imaging. Two parameters, which are aperture width, also known as aperture migration,
and maximum dip to migrate, affect the quality of Kirchhoff migration (Yilmaz, 2001).
Kirchhoff migration is related to the diffraction accumulation approach. The aperture width
is based on the amplitude summation (Rastogi et al., 2000). Maximum dip is the desired
depth (in time) in the migration section.

In this study, poststack time migration was used to obtain the image of the target
zone. Aperture width and maximum dip parameters were tested several times in order to
acquire better imaging of the migration section (Figure 2.35). Figure 2.36 shows the result
of the migration section with the target zone and target formation, which is the Madison
Formation of the Mississippian Age. The formation was clearly shown on the final section

of migration.
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3. CONCLUSIONS

The Spring Coulee 3C-2D seismic data Line 2008-SC-01 is reprocessed to obtain
a better image of the subsurface and improve the quality of resolution of the Madison
Formation, which is at between 1300 ms and 1400 ms.

The Echos software by Paradigm is used to process the seismic data. The seismic
data is converted to the SEG-Y format from the SEG-D format. In the data, elevations of
source and receivers are not correct, so these values are restored manually.

The first and second shots include strong noise, which can affect the quality of
further processing steps. Therefore, they are omitted during the trace editing stage.

In order to remove the efeect of long wavelengths on the seismic data, elevation
static correction are applied to the data.

AGC is applied to the data to improve the amplitude of the data. The data includes
noises, such as ground rolls, high velocity noise, and air blast. To reduce the effect of
these noises, band pass filtering, Supress module, and F-K filter are applied to the data.
The results of applying band pass filtering show lowered air blast effect. After the Supress
module, ground roll noises are reduced. Air blast and swell noises are omitted during this
time. The data have strong ground rolls. In order to suppress ground rolls, F-K filtering is
applied to the data. Several parameters are tested for each step on selected seismic gathers
to decide which parameters give the best solution for the noise problem. Then, the chosen
parameters are applied to the entire data. As a result of these steps, noises are removed
significantly, and reflections are stronger.

Spiking deconvolution is performed on the data in order to acquire the temporal
resolution of the data and enhance the frequency bandwidth. Before deconvolution, the
frequency bandwidth is from 10 Hz to 35 Hz. After applying spiking deconvolution, this

values enhance from 8 Hz to 95 Hz.
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There are two different interactive tools used for velocity picking. Also, after
velocity picking, mute and Normal Moveout (NMO) correction are applied to the data.
After NMO correction, the reflections of the seismic data are flattened, which helps acquire
the best quality stack.

Residual static corrections are used on the data to fix small time shifts (short
wavelength) variations for each trace. Two iterations of residual static corrections are
performed on the data in order to observe the improvement of reflections of the target area.
After each iteration, velocity analysis is renewed because of the changing CMP gather.
After each residual static correction, stacking is performed to analyze the improvement of
the data. The results indicate that reflections are strong, and this stacked gather can be used
for next processing steps.

Velocity analysis is renewed and Flat datum is applied to the data in order to obtain
final stack gather to obtain final stacking gather, which is used for the migration.

In this study, 2D Kirchhoff poststack time migration is applied to the data. In order
to obtain the best migration section, aperture width and maximum dip are selected many
times. After deciding these parameters, the results show the quality and resolution of the

target zone is significantly improved.
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