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ABSTRACT

In this thesis, a Lyapunov-based method for analyzing the stability of a switched

microgrid system is proposed. First, a small second-order system is explored as example

to demonstrate the effectiveness of switching patterns on the stability of a system switching

among different respectively stable operating points. Lyapunov function is employed in

order to determine the proper state-based switching conditions under which global stability

is guaranteed, or under which the system is driven unstable. Then, a linearized state-

space model of a looped seven-node microgrid is established. Solid-state transformers

(SSTs), distributed energy storage devices and synchronous generators are introduced and

modeled in this system. The model uses accurate SST models to highlight the different

performance in terms of stability between traditional power grid system and distributed

microgrid system. Also, a control method is employed to ensure static stability. Based

on this model, the system transfer matrix is derived and used in the Lyapunov function

computation numerically. Finally, a high order system switching function is derived.

The switching function is a state-based hypersurface. System stability may be ensured

by switching the load or power command when the operating point cross the switching

function. Conversely, system instability may be ensured with a different switching function.

Finally, the approach is verified using MATLAB simulations.
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SECTION

1. INTRODUCTION

1.1. MICROGRID

The modern power systems have been becoming more intelligent and more reliable.

This profits from the proposed concept of microgrid. Microgrids promote the traditional

electric power delivery network to smart-grid by introducing the distributed energy resources

(DERs). A special feature of microgrid is the ability to operate in islanded mode which

means the microgrid can supply power to local load without connecting to the main grid all

the time. Supported by the local generation sources and distributed energy storage devices

(DESDs), the microgrid can not only manage the loads of the local network but sell extra

power to the main grid as well. Microgrids are providing such flexible power supply but,

at the same time, also causing problems. The control scheme of islanded microgrid are

open to be researched actively. Different from the traditional power grid, DERs mostly have

DC voltage and exchange power with AC bus through controlled SSTs. These DERs have

relative lower inertia. Together with synchronous generators which have higher inertia, the

dynamics of the system come to be very interesting. There are, also, power electronics

devices in the SSTs which can make the control scheme even more complicated.

1.2. LYAPUNOV-BASED METHOD

To better serve the local users and cooperate with themain grid, a stable performance

of the microgrid is required. In the physical domain, one of the methods to analyze the

stability problem is using Lyapunov functions. It is a well-developed tool to study a lot

of complicated power systems, of cause also microgrids, stability problems. In terms of
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linear system, Lyapunov function can transfer the system response to a scalar function. It

can also be used to describe the operating mode. For a switched system switching among

different stable operating points, Lyapunov-like function can be used to analyze the stability

problems. Certainly, it can be used to address network domain. A well-designed model

is thus needed to combine all the sub-system together and make the system analyzable by

Lyapunov-based methods.

1.3. LITERATURE REVIEW

The research about the dynamic behavior analysis of the traditional power grid

have been performing for decades and have had sufficient achievements. Because of the

high inertia and relatively slow dynamic response, the “quasi-static model” is earlier used

to perform dynamic analysis successfully but with limitations in terms of faster response

introduced by some power electronic devices [7]. The occurrence of “Time-varying phasor”

breaks the limitation and is used often to analyze these kind of phenomena [2]. However,

as the modern grid is developing, more and more emerging electrical energy resources

and energy storage devices are coming into the power system. In 2004, a new concept

“microgrid” was proposed in [11]. It also brought out the islanded mode and its meaning

of a microgrid. In the following years, the increasing number of distributed generators

and power electronics devices are causing challenges. Then, a hierarchical control for

application in microgrids is discussed, and control strategies about reserve provision of

DERs, loads and RESRs were proposed in [21]. In the well distributed microgrid system,

stability is crucial, as each microgrid must support its own load with high power quality

and reliability. Because of the introduction of Solid State Transformers (SSTs) [8] [15], the

DC loads, DERs and RESRs are connected to the AC buses through SSTs, in which case

the dynamics of microgrids mentioned in [9] are becoming even more complicated. With

load perturbations, the dynamics of microgrids may be modeled as switched systems which

is discussed in [5]. These dynamics prospectively causes more difficult stability issues and



3

control problems. A general principle in switched system analysis is that the stability of the

switched system is not guaranteed by the stability of individual modes, but instead must be

analyzed at the system level.

One possibility is to use a common Lyapunov function [14], that is, a single function

that is applicable to all switchingmodes and satisfies all of the conventional requirements for

Lyapunov stability. Sometimes, a commonLyapunov function is not possible, but Lyapunov-

like functions [13] may be found. Samples of a Lyapunov-like function at switching instants

form a decreasing series. In a switched system where the individual modes have different

stable operating points, a common Lyapunov function is not possible; a set of Lyapunov-like

functions may be possible, but switching conditions are needed [13].

Analyzing a complete microgrid poses serious computational challenges. A good

model is the key for fast and accurate analysis. The main goal is to analyze the dynam-

ics of the system, so a small signal state-space model is appropriate to be built. In an

NSF sponsored system - the Future Renewable Electric Energy Delivery and Management

(FREEDM) [10] uses 7-node system which has a reasonable size for the balance between

the complicatedness and calculability to help analyze some power management and control

issues. A seven-node loop-type microgrid with five SST-connected loads and two diesel

generators could have a model with about one hundred states. For the system only has

SSTs, [19] gives an accurate model on which the model proposed in this thesis is based,

and [22] also proposed some ideas about the inverter model. The control strategy is also

addressed. In [3] and [12], a three-phase generator model is implemented in the computer

simulation. The exciter model of the generator is described in [18]. The governor and

other parts of model are precisely stated in [16]. But in the above models, there are not

combination of SSTs and generators. Another paper proposed a survey [1] which mentions

the system modeling of a microgrid but without detailed control strategy. The generator

model of the generator is also too complicated which can affect the dynamics observation

to the SSTs.
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Therefore, the following section focuses on a smaller example system first, an open-

loop boost converter with only two states. Not only is the computational burden reduced,

but also graphical methods are easier to visualize. However, the methods used can be

extended to n-dimensional space. This thesis will illustrate that a two-state, two-mode

switched system, where each mode is linear and stable, may be driven to instability through

the choice of switching conditions. Thus, the derivation of constraints on switching is

necessary. Section 2.1 introduces a state-space model of the switched boost converter

system. In Section 2.2, the nonlinear model is converted to a linearized switched system.

Section 2.3 introduces the basic Lyapunov stability theory and importantly proposes a

method for determining the state-based switching condition. In Section 2.4 the simulation

results verify the method and more detailed observation is given. At last, the results are

discussed.

The remainder of the thesis is organized as follows. The similar method used in

the example system will be used to make the system converge faster which means better

stability. Section 3.1 introduces a larger 7-node state-space model of the microgrid system.

In Section 3.2, there is the method for determining the state-based switching condition.

Then, in Section 3.3, the method implementation is given. Finally, we have the conclusion.
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2. SWITCHING CONTROL METHOD IN THE EXAMPLE SYSTEM

2.1. STATE-SPACE MODELING

A switching power converter may be represented with a switched state-space model

composed of several state space equations in the form of (2.1) for switching mode i.

Ûx = Ai x + Biu (2.1)

The boost converter system analyzed here is shown in Fig. 2.1. This is a second

order system, so in (2.1), x is a vector with two elements of states, u is the vector with two

external input elements as in (2.2), and Ûx is the time derivative of the state vector.

x =


iL

VC

 , u = Vin (2.2)

The model will be derived assuming that the switching of the controlled transistor T

in the boost converter is ideal and the voltage drop of the diode is zero. The boost converter

has two independent working modes in continuous conduction situation [20]. One is switch

‘ON’ mode, and the other is switch ‘OFF’ mode.

During ‘ON’ mode, the switch is closed while the diode is open. The inductor is

charged through Vin. There is no current flowing from Vin to the capacitor, and the capacitor

is discharging through the load resistor. The equivalent circuit is just two separate loops.

We obtain the differential equations from the current mode as (2.3) and (2.4).

Ûx1 =
−RL

L
x1 +

Vin

L
(2.3)

Ûx2 =
−1

(RC + R)C
x2 (2.4)
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L
RL Diode

RC

C

R2 R1

iL

D
VC

+

_ S1 S2 

Vin T

Figure 2.1. Actual circuit of the boost converter.

When the switch is OFF, the diode conducts, and the voltage source starts recharging

the capacitor and providing voltage for the load. The system switches to a new mode with

a set of differential equations defined in (2.5) and (2.6).

RL x1 + L Ûx1 + RCC Ûx2 = Vin − x2 (2.5)

R(x1 − C Ûx2) = x2 + RCC Ûx2 (2.6)

With simple modification to the above equations, the state space equations to these two

modes are represented in the equations (2.7) and (2.8)-(2.9) respectively.

Aon =


−RL

L 0

0 −1
(RC+R)C

 , Bon =


1
L

0

 (2.7)

Ao f f =


−

RCRL+R(RC+RL)

L(R+RC )
−R

L(R+RC )

R
L(R+RC )

−1
(R+RC )C

 (2.8)

Bo f f =


1
L

0

 (2.9)

The duty ratio is not yet included, as the time spent in each switching state has not yet been

addressed.
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2.1.1. Average Model. Based on the two-mode model above, the average state

space model [6] can be obtained with all the equations weighted by the time of contribution.

This is given by the duty ratio D as shown in (2.10) and (2.11).

Aav = DAon + (1 − D)Ao f f (2.10)

Bav = DBon + (1 − D)Bo f f (2.11)

Substituting Aon and Ao f f into these two equations above yields the state-transition

matrix (2.12) and (2.13) of the average model which can be used for later study.

Aav =


−

RCRL+R[(1−D)RC+RL]

L(R+RC )
−
(1−D)R

L(R+RC )

(1−D)R
L(R+RC )

− 1
(R+RC )C

 (2.12)

Bav =


1
L

0

 (2.13)

The duty ratio D is now introduced in Aav. Therefore, the model is nonlinear [6].

2.1.2. Small Signal Model. A small signal model, compared to the large signal

model, is a model linearized near a stable operating point. Linear models are easier

to analyze because straightforward methods are available to find Lyapunov functions or

otherwise determine stability. The linearized small signal model [17] is shown as (2.14) in

which x̃ represents the deviation between the current state x and the steady state X as in

(2.15).

Û̃x = Ãi x̃ (2.14)

x̃ = x − Xi (2.15)
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In this system, the state transition matrix Ãi in the linearized model is the same as

Aav in the average model. The system small signal model ends up to be (2.16).

Û̃x = Aav x̃ (2.16)

2.2. DYNAMICS OF SWITCHED SYSTEM

A prototypical switched system [13] can be defined as

Ûx = fp(x(t)), p ∈ P (2.17)

P is an index set, and it is typically a subset of a finite-dimensional linear vector space.

The fundamental dynamics of such a switched system occurs when switching actions are

executed at discrete time instants. In Section 2.1,(2.14) is the linearization of (2.17) around

steady state Xi while the system stays in mode i. When the system is switched frommode i to

mode j at time instant ts, the new small-signal state becomes (2.18) where∆s = X j−Xi [17].

x̃(t+s ) = x̃(t−s ) − ∆s

= xs − X j (2.18)

That is, the actual state x does not change, but the small-signal state x̃ changes because

there is a shift in the “origin” (the relevant steady-state operating point). In general, x may

not be near enough to X j to satisfy small-signal linearization assumptions, but for the boost

converter analyzed below, the linearization is valid over a large region.
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2.3. LYAPUNOV STABILITY ANALYSIS

Lyapunov stability is one of the methods that discuss the solutions of differential

equations describing dynamical systems. The stability of the system can be determined by

certain conditions of the Lyapunov function. The Lyapunov stability idea can be applied to

high order systems which helps in this topic which involves a high order microgrid system.

2.3.1. Definition. For a switched system before any switching action to be asymp-

totically stable, the eigenvalues of the state transition matrix should have negative real parts.

In the linear state space model form, the condition is equivalent to the following expression:

There exists a positive definite symmetric matrix Q for which a unique positive definite

symmetric matrix P satisfies the Lyapunov equation as (2.19).

AT P + PA = −Q (2.19)

The corresponding Lyapunov function is defined as (2.20).

V(x̃) = x̃T Px̃ (2.20)

The derivative of V is given as

ÛV(x̃) = −x̃TQx̃ (2.21)

The Lyapunov function V(x̃) must be positive definite, radially unbounded and

non-increasing for the system to be stable. This condition can be expressed as

V(x̃) > 0, ∀ x̃ , 0 (2.22)

V(0) = 0 (2.23)

ÛV(x̃) ≤ 0 (2.24)
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For a switched linear system, it is natural to consider quadratic common Lyapunov

functions, of the form (2.20), such that for some positive definite symmetric Q we have

AT
p P + PAp � −Q, ∀p ∈ P . (2.25)

However, in the absence of a common Lyapunov function, multiple Lyapunov functions

may be used.

2.3.2. Multiple Lyapunov Functions. For the boost converter system described in

Section 2.1, it is not hard to prove that the system is locally asymptotically stable in any

single mode (under a certain constant load), but the stability of the switched system cannot

be determined using only the individual information of each mode. Switching actions

could drive the system unstable. Here, a condition is derived whereby a switched system

consisting of stable modes may be driven unstable by constrained switching [4].

Consider the switched system (2.17) with P = {1, 2}. In terms of the linearized

boost converter system, suppose that both systems

Û̃x1 = Ã1 x̃1, Û̃x2 = Ã2 x̃2 (2.26)

are asymptotically stable, and let V1 and V2 be their Lyapunov functions respectively as

(2.27).

V1(x̃) = x̃T
1 P1 x̃1, V2(x̃) = x̃T

2 P2 x̃2 (2.27)

Obviously, the stability depends on the switching signal σ, and Vσ is a piecewise-

continuous Lyapunov-like function for this switched system [13] as shown in Fig. 2.2. The

system is switched after enough dwell time each time so that the state is nearer to the

corresponding stable operating point. Both V1 and V2 have a decreasing trend. In this case,

the overall system is stable. On the contrary, the switched system would be unstable if
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Figure 2.2. Switched system stability using multiple Lyapunov functions.

Vσ keeps increasing in general. Equivalently, the switched system will be unstable if the

distance from x to the individual operating points grows without bound, or at the least enters

a region where the linearization is no longer valid.

2.3.3. Switching Condition forGuaranteed Instability. There are two categories

of switching control methods which are time-dependent switching and state-dependent

switching. For the boost converter, time-dependent switching was found to be stable across

a wide range of rates, so state-dependent switching is used here instead.

The switching condition here is derived by using trajectory analysis. As mentioned

in last subsection, ÛVp(x̃) ≤ 0 is one of the conditions that assure the system stability with

respect to one certain mode. This condition can also help obtain the inter-mode switching.

The system will become unstable if ÛVp(x̃) ≥ 0. Within one mode, this cannot happen

because each mode is independently asymptotically stable. However, by monitoring the

changing trend of Vp of the target mode to which the system will switch, there may be a

condition for which ÛVp(x̃) = 0 or even ÛVp(x̃) > 0.

Consider Fig. 2.3. The system is switching between mode 1 and mode 2. Each

mode corresponds to a different constant load, and the stable operating points are X1 and X2

respectively. Let the system initially be in mode 2. The corresponding small-signal states
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are x̃2 = x − X2. We are now only interested in the changing trend of V1 = x̃T
1 P1 x̃1 with

respect to mode 2. If the switching occurs at the correct moment, V1 will have grown to its

maximum value while in mode 2.

This condition is “worst-case switching". In Fig. 2.3, V1(x̃) = c1 and V2(x̃) = c2 are

level sets for mode 1 and mode 2 respectively at the state point of x. For convenience in the

illustration, we use vectors l1 and l2 to indicate Ã1 x̃1 and Ã2 x̃2 respectively, with l1 and l2

representing the moving direction of the states in mode 1 and mode 2 respectively. While in

mode 2, as the state values varying, vector l2 could point either outwards or inwards, i.e., it

forms an angle greater than or less than 90◦ respectively with the line connecting to the new

origin, X1. If it points inwards, the state will approach X1. If it points outwards, the state

will move away from X1 until vector l2 becomes perpendicular to the line going through

the current state x and the point X1. A complementary switching law may be found while

in mode 1 and switching to mode 2.

Mathematical conditions may be derived from the Lyapunov functions and state

dynamics as follows.

From mode 2 to mode 1 when:
dV1
dt

����
x̃=x−X2

= 0 (2.28)

⇒
∂V1
∂ x̃2
·

dx̃2
dt
= 0 (2.29)

⇒ [(P1 + PT
1 ) · x̃2 + (P1 + PT

1 ) · ∆s] · (A2 · x̃2) = 0 (2.30)

⇒ [(P1 + PT
1 ) · x̃1] · (A2 · x̃2) = 0 (2.31)

Switching then proceeds autonomously, but in a manner constrained by the state

trajectories [13].

2.3.4. Switching Condition for Guaranteed Stability. Similarly, the same con-

cept can be applied to guarantee the system stability by modifying the switching condition

from “worst-case switching" to “best-case switching". The method for determining the
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X2

X1

V2(x)=c2

V1(x)=c1

x
l2

l1

Figure 2.3. State-dependent switching condition.

switching point is totally the same as mentioned in subsection 2.3.3, but only the direction

of hitting the switching curve is right opposite. By doing this, the system will be going

toward a more damping situation upon every switching and force the system converging

faster.

The simulation has been done to demonstrate the effectiveness of the switching

control method in both of these two cases.

2.4. SIMULATION AND RESULTS

To demonstrate the effectiveness of the switching strategy, a Simulink model was

built to plot the trajectories of the states with the state-dependent switching surfaces applied.

The linearized state space model of the boost converter derived in Section II was used as



14

Table 2.1. Simulated system parameters.

Parameter Value
Duty Ratio (D) D
Inductance (L) 0.95 mH
Capacitance (C) 120 µF
Resistance C (RC) 0.01 Ω
Resistance L (RL) 0.01 Ω
Input Voltage (Vin) 200 V
Resistance Load (R) Rσ

Table 2.2. Loads and duty ratios.

Sequence Value R1 Value R2 Value D
1 500 Ω 30 Ω 0.5
2 100 Ω 10 Ω 0.5

a study objective. The system simulation is operated base on the parameters shown in the

following tables. The system parameters are given in Table 2.1, and the two modes in the

simulation are shown in Table 2.2.

Along with the Simulink simulation, all the switching surfaces curves are calculated

in Mathematica. The simulation is divided into two parts. In the first part, three simulations

are performed under the duty ratio of 0.5 but three different load sets. This identifies the

instabilities of the system when differing among the various stable loads. In the second part,

the duty ratio is reduced to 0.1, and the load changed also. This is to check the effect of duty

ratio to the system instability. Due to the real characteristics of the practical system, it is not

necessary for the states to go to infinity. Once the inductance current and capacitor voltage

both go negative, the boost converter will no longer be functional and the linearization

assumptions will fail. Since the capacitor voltage limit is the most fragile one to keep that

almost no negative capacitor voltage can be accepted, we can assume the stability condition

as the following where Im is the maximum current value the system can handle and Vms is
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Figure 2.4. Hyperbola switching surface - Simulation I.

the maximum stable state voltage.

I ∈ [−Im, Im] and V ∈ (0, 2Vms) (2.32)

Negative current is possible with synchronous rectification.

2.4.1. Simulation I: Instability (Light Loads). The ideal output voltage is Vo =

Vin

1 − D
, which is 400 V . In the first simulation, the initial condition of the system state is

I = 20 A, V = 390 V .

One switching surface is an ellipse and the other is the upper branch of the hyperbola

shown in Fig. 2.4. One is for switching from mode 2 to mode 1, and the other one is for

switching from mode 1 back to mode 2.

The two curves are pretty close to each other around the two stable points that they

are almost collinear. As shown in Fig. 2.5, the two black points identify the two steady state

points. That two curves are the switching surfaces. In detail, after starting from an initial

state point, the trajectory keep going anticlockwise. If the system is in mode 2, the system

switch happens only when the trajectory hits the red dashed line upwards; On the contrary,

if the system is in mode 2, it switches when the path hits the solid green line from the top.
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Figure 2.5. Normal scale - Simulation I.
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Figure 2.6. Zoomed in - Simulation I.
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Figure 2.7. System trajectory for Simulation I.

The red curve and the green curve are intersected right at X1 and X2 (Fig. 2.6) which means

no matter how close the initial states are to any one of the stable points, the trajectory may

still be able to hit the switching curve, and the system goes unstable.

With this in mind, we set the initial point a little further. Back to the result in

Fig. 2.7, the trajectory shows that the oscillation of the system is huge then the inductance

current easily becomes negative, but we can still accept it. It is also shown in the trajectory

that the capacitor voltage finally crosses the zero line which means the system is finally

driven unstable successfully even the trajectory ends up in a limit cycle instead of going far

away to infinity.

2.4.2. Simulation II: Instability (Heavier Loads). This time the system load

changed to be a little heavier than in the first simulation. The initial point is the same as

before. The difference is that the upper switching curve is calculated to be a parabola like

Fig. 2.8.

The lower curve is still an ellipse. As the trajectory shown in Fig. 2.11, the system

again is unstable. Fig. 2.9 and Fig. 2.10 show the detail of the switching map shape.

Additional load conditions fall into one of these two categories, or a third category

in which the parabolic surface becomes an ellipse.
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Figure 2.8. Parabola switching surface - Simulation II.
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Figure 2.9. Normal scale - Simulation II.
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Figure 2.10. Zoomed in - Simulation II.
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Figure 2.11. System trajectory for Simulation II.

2.4.3. Simulation III: Stability. In this case, the switching flags are modified to

make the switching only happens when the trajectory hit the switching curve from the

opposite side to which in the cases before. Fig. 2.12 shows the case without switching

control, so the system have poor damping and takes long time to settle down. Fig. 2.13

shows the case with the switching control, and the system damped much faster obviously.

This can be better observed from Fig. 2.14 and Fig. 2.15. They shows the changing of the

Lyapunov function Vs (blue solid line) and 2 states. As we can see, the Lyapunov function

converged faster in the switching controlled case which is Fig. 2.15 than that in the case

without control in Fig. 2.14. According to the result, the system can be driven more stable

by using state-based switching control.

The next step will be to derive conditions that guarantee stability for the microgrid

system which is surly much larger. To guarantee stability, in a sense, may be seen as the dual

problem: what are the switching conditions so that the Lyapunov-like function is guaranteed

to decrease?
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Figure 2.12. System trajectory for Simulation III.
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Figure 2.13. System trajectory for Simulation IV.
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Figure 2.14. Switching controlled case.
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Figure 2.15. Without switching control.
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2.5. SIMULATION RESULTS ANALYSIS

An open loop boost converter system is able to be destabilized by switching even

if all individual subsystems are stable. The state-dependent worst-case switching strategy

described in this paper works for driving a relatively uncomplicated boost converter system

unstable. Thismethodmay be implemented on a larger dynamic system, such as amicrogrid,

at least to prove the possibility of the instability of such a system.

Between these two extremes lie switching conditions that result in bounded, but

large, stable oscillations.

The shapes of the worst-case switching boundaries were observed to change from

hyperbolas to parabolas to ellipses, depending on load and duty ratio. These differences

may also illuminate the stability conditions.



23

3. OVERVIEW OF THE SEVEN-NODE MICROGRID SYSTEM

3.1. MICROGRID MODELING

The proposedmicrogrid system is an islanded, looped system as shown in Fig. 3.1. It

consists of seven buses. Five of them are SST based DESD buses with constant impedance

loads. The other two of them are diesel generators of witch one operating in droop mode

and another operating in isochronous mode. Both generators have no load on the buses.

The feeder is rated at 12.47 kV and the two generators are rated at 1.425 MVA and 380

VL−N each. The transformers are rated at 1.5 MVA, 0.38 kV/12.47 kV. The transmission

lines have a positive sequence resistance of 0.77 Ω, positive sequence inductance of 1.97

mH. The droop generator (G2) is set to run at 400 kW at 5% droop.

3.1.1. Park’s Transformation. Park’s transformation is often used in the three-

phase power system to transfer three-phase voltages and currents from abc-axis based

reference frame to dq-axis based reference frame. The transformation is shown below.


fd

fq

f0


=

2
3


cos(ωt) cos(ωt − 2π

3 ) cos(ωt + 2π
3 )

− sin(ωt) − sin(ωt − 2π
3 ) − sin(ωt + 2π

3 )

1
2

1
2

1
2




fa

fb

fc


(3.1)

If the system has three-phase equivalent currents and voltages, then there will be no zero

components while calculating. For the convenience and consistency of the following work,

dq reference frame will be used for all the system equations.

3.1.2. Diesel GeneratorModeling. The traditional synchronous generator models

differ a lot in the aspect of how accurately the generator features are expressed. The more

major the generators playing as a role in the system, the more accurate the generator model

need to be. Normally, a very large power system always have hundreds or thousands of
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Figure 3.1. The microgrid system configuration.

power components so that the model will have also very high order which could become a

disaster for calculation and analysis. For timely real time prediction and decision-making,

we are more prone to use relatively simple model with only crucial feature kept and ignore

those parameters which are not going to impact the main analysis work. In the seven-node

system used here, the effects of the SSTs interest us more because the power electronic

switching is involved witch can make the system dynamics even dramatic. As a result, the

three-order practical synchronous generator model is employed in this thesis.

The three-order practical model is the simplest model while the excitation dynamics

still needs to be considered. Some assumptions are made about this model: (1) Ignore the

dynamics of the d, q windings of the stator; (2) In the stator voltage equations, the angular

frequency always satisfies ω ≈ ωn which is the nominal frequency; (3) Ignore the damping

winding D and Q. The D and Q axis output currents for the isochronous generator in global
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frame are 
ÛiD =

1
Lg
(−RgiD + ωiQLg −

vbD

Tratio
+ ED)

ÛiQ =
1
Lg
(−RgiQ − ωiDLg −

vbQ

Tratio
+ EQ)

(3.2)

The terminal voltage equation is

ut =

√
(
vbD

Tratio
)2 + (

vbQ

Tratio
)2 (3.3)

The generator transient electromotive force can be written in this form

Eq =
ωLa f E f
√

2R f
(3.4)

The rotor equation of motion is modified to be

Ûω =
ωn

2H · SB
(Pm − Pe) (3.5)

And another rotor equation of motion is

Ûδ = ω − ωs . (3.6)

Here ωs is the synchronous angular frequency of the system. It is, in other words, the

frequency of the global reference frame relative to the static abc frame. For grid-connected

systems, ωs is the nominal grid frequency. In islanded systems, ωs is the frequency of

whichever subsystem chosen as the global reference frame.

3.1.2.1. Governor control. The governor here refers to the speed controller for the

diesel engine. The engine needs to run at a preset speed to keep the generator producing

required power constantly. The generator G1 that operates in isochronous mode must have

the ability to produce sufficient power to supply loads together with other power sources

and maintain the power balance of the whole microgrid. This process can be represented
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by a PI controller. It is used to take the difference between the nominal frequency and the

generator frequency to generate corresponding active power command.

Ûθ = ωn − ω (3.7)

Pm = kimθ + kpm Ûθ (3.8)

The electrical power produced by the generator can be represented by

Pe = EQiQ + EDiD (3.9)

Then, the rotor equation can be obtained. The generator G2 is designed to operate at droop

mode. The engine is represented as 1
RP

, the power command signal comes out through

droop in terms of ω to get Pm. RP and RQ are the P − ω and Q − V droop regulations for

the droop generator G2 respectively.

Pm = Tnωn + ωn
1

RP
(ωn − ω) (3.10)

3.1.2.2. Excitation system. The excitation system is using an ideal fast exciter as

below. The signals are already linearized, and the effect of field current and feedback

excitation control are ignored. Also, to mostly simplify the exciter model, power system

stabilizer is not used in the model.

ÛVi = Vre f − Vt (3.11)

The field voltage is set by PI controller.

ÛE f = kpv ÛVi + kivVi (3.12)
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Figure 3.2. The generator and transformer configuration.

In G2, the desired line to line voltage E∗q at the droop generator is introduced. E∗q can be

calculated from Q −V droop equations. Then a PI controller is used to set the field voltage.

ÛEi = E∗q − Eq (3.13)

ÛE f = kpe ÛEi + kieEi (3.14)

θq = δ −
π

2
+ tan−1(

VbQ

VbD
) (3.15)

θq is the angle between the local voltage and global bus voltage. It is used in the E∗q equation.

E∗q =
ωLg

nVt cos θ
(Vre f − Vt + RQQr) +

Vt

cos θ
(3.16)

Qr is the rated reactive power which is set by 0.

3.1.2.3. Transformermodeling. The transformer is represented by an ideal voltage

step up device between the terminal of the generator and the bus, and it is an ideal transformer

with the ratio of Tratio=N:1=12.47kV/0.380kV . Other parameters like resistance, the

negative and zero sequence components are all omitted. The structure is shown in Fig. 3.2.
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Figure 3.3. Inverter control diagram.

3.1.3. Inverter Modeling. The inverter dynamic model is based on the microgrid

dynamicmodel from [19]. A detailed description of the structure and control of a SST based

inverter will be given below. As mentioned in section 3.1.1, the state space equations of the

system will be expressed in dq reference frame. To start with, the control diagram is shown

as Fig. 3.3. Each inverter is connected to the bus through a LCL filter. A constant impedance

load is connected to each bus. The input of the converter is the active power command

and the reactive power command set by the operator according to the load requirement or

scheduled plans. The converter will be operating in droop mode which requires a droop

controller to set up the proper operating parameters.

3.1.3.1. Phase-locked loop (PLL). To obtain phase and frequency of the inverter,

a traditional PLL is used. The PLL locks the q-axis to be in phase with the output voltage

by forcing the d-axis voltage to be 0. So a proportional-integral (PI) controller is used here.
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The PLL equations are

Ûvod, f = ωc,PLLvod − ωc,PLLvod, f (3.17)

ÛφPLL = 0 − vod, f (3.18)

ωPLL = ωn + ki,PLLφ + kp,PLL Ûφ (3.19)

Ûθ = ωPLL (3.20)

3.1.3.2. Outer control loop. The output current and voltage can be measured from

the LCL filter. The active power p and reactive power q are calculated from these current

and voltage and then pass through a low-pass filter before going to the droop controller. The

power equations are

p =
3
2
(vodiod + voqioq) (3.21)

q =
3
2
(voqiod − vodioq) (3.22)

ÛP = ωcp − ωcP =
3
2
ωc(vodiod + voqioq) − ωcP (3.23)

ÛQ = ωcq − ωcQ =
3
2
ωc(voqiod − vodioq) − ωcQ (3.24)

The nominal frequency and regular voltage together with the power measured before

determine the reference power. The error between the measured power and the reference

power is sent through a proportional-integral (PI) controller to obtain the current reference

signal which will be used in the inner loop current controller. The droop equations

Pcm = P∗ −
1
m
(ωPLL − ωn) (3.25)

Qcm = Q∗ −
1
n
(voq − Vn) (3.26)
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The error between the power command and calculated power is sent to the outer controller

to generate voltage command for the inner loop control.

ÛφP = P − P∗ (3.27)

ild,cm = kicφP + kpc ÛφP (3.28)

ÛφQ = Q∗ −Q (3.29)

ilq,cm = kicφQ + kpc ÛφQ (3.30)

3.1.3.3. Inner control loop. This reference current is then compared with the

current measured from the output terminal of the inverter which is before the LCL filter.

The compared error is sent to the inner loop voltage controller to generate the final switching

signals for the power electronics device of the converter. The inner loop equations are

Ûγd = ild,cm − ild (3.31)

vld,cm = kivγd + kpv Ûγd − ωnL f ilq (3.32)

Ûγq = ilq,cm − ilq (3.33)

vlq,cm = kivγq + kpv Ûγq + ωnL f ild (3.34)
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3.1.3.4. LCL filter. The LCL filter has three components relative to differential

equations, filter inductor L f , coupling inductor Lc and filter capacitor C f . All the resistance

on the filter is lumped to Rd . The relative equations are

Ûild =
1

L f
(vid − vod − r f ild) + ωPLLilq (3.35)

Ûilq =
1

L f
(viq − voq − r f ilq) − ωPLLild (3.36)

Ûiod =
1
Lc
(vod − vbd − rciod) + ωPLLioq (3.37)

Ûioq =
1
Lc
(voq − vbq − rcioq) − ωPLLiod (3.38)

Ûvod =
1

C f
(ild − iod) + ωPLLvoq + Rd(Ûild − Ûiod) (3.39)

Ûvoq =
1

C f
(ilq − ioq) − ωPLLvod + Rd(Ûilq − Ûioq) (3.40)

3.1.3.5. Local and global reference frames transformation. Every inverter has

its own local reference frame. The variables derived from the local calculation cannot be

use in the global reference frame directly. Every subsystems should be combined within a

common reference frame which means a local-global transformation is needed. To achieve

this, we choose one subsystem SST1 as the global reference. Every other subsystem has a

difference of rotation angle δ from the reference frame. So, the rotation transformation is


fD

fQ

 = T (δ)


fd

fq

 ,


fd

fq

 = T
−1(δ)


fD

fQ

 (3.41)

T (δ) =


cos δ sin δ

− sin δ cos δ

 (3.42)
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In (3.41) and (3.42), T (δ) represents the rotation for angle δ anticlockwise. The

variables with upper case subscripts DQ indicate the global reference frame, and the ones

with lower case subscripts dq represent the local reference frame.

As shown in Fig. 3.1, every SST bus has a local constant impedance load on it, and

every bus, including the bus with generator, is connected to 2 of its adjacent bus through

transmission lines. The load at bus i is given by

ÛilineD,i j =
1

Lline
(vbD,i − vbD, j − rlineilineD,i j) + ωPLLilineQ,i j (3.43)

ÛilineQ,i j =
1

Lline
(vbQ,i − vbQ, j − rlineilineQ,i j) − ωPLLilineD,i j (3.44)

ilineD,i j means the current flow from bus i to bus j and so on.

3.1.3.6. Combination and evaluation of the mathematical model. Since the mi-

crogrid system is an islanded system, there is no grid frequency as reference, measured

frequency of the first inverter can be set as the reference. But in this case, the global

frequency ωn is set as the reference frequency for the whole system. We notice that the

phase angle δ equation (3.6) in section 3.1.2 will become

Ûδ = ωn − ωPLL . (3.45)

The phase angle derivations for DERi will be

Ûδ = ωn − ωPLL,i . (3.46)
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On every bus, the bus voltage and injected currents are related by virtual resistor equation

(3.48). This method assumes a certain large resistance rn between the bus and ground.

vbDQ,i = rn(ioDQ,i − iloadDQ,i +
∑
j,i

ilineDQ, ji) (3.47)

ilineDQ, ji = −ilineDQ,i j (3.48)

3.2. LINEARIZED MODEL

The system states are divided into 8 groups. The generator 1 and 2 both have 5

states. Each inverter out of 5 has 15 states. The loads have 14 states. The distribution lines

have 14 states. There are 2 states for PI controller for the generators. Totally, there are 115

states.
xinv,i = [δi Pi Qi vod, f ,i φPLLi φPi φQi γdi γqi

ildi ilqi vodi voqi iodi ioqi] (1 6 i 6 5)
(3.49)

xgen,6 = [δ6 E f 6 ω6 iD6 iQ6] (3.50)

xgen,7 = [δ7 E f 7 ω7 iD7 iQ7] (3.51)

xload,i = [iloadD,i iloadQ,i] (1 6 i 6 7) (3.52)

xline,i j = [ilineD,i j ilineQ,i j] (i < j) (3.53)

The state vector for all the system states is

x = [xinv,1 · · · xinv,5 xgen,6 xgen,7 iload,1 · · · iload,7 (3.54)

iline,12 iline,23 iline,37 iline,47 iline,45 iline,56 iline,16] (3.55)
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The system equations can be described as

Ûx = fsys(x) (3.56)

The system A matrix can be derived by calculating the Jacobian derivation of equations

group (3.56). The steady-state operating point of the microgrid xop is the equilibrium

solution of the nonlinear equations of the system. It can be derived by solving the following

equations

0 = fsys(xop) (3.57)

3.3. PROPOSED METHOD AND CORRESPOND CALCULATION

The 7-node microgrid system model is represented in the former chapter. At this

point, the correspondingmethod for driving the system stablewill be applied in themicrogrid

system.

3.3.1. Lyapunov Function Calculation. The microgrid system matrix Asys can

be calculated using the method from the previous chapter. The matrix P is generated by

Lyapunov equation, and Lyapunov function comes out to be

V(x̃) = x̃T Px̃ (3.58)

Because the high-order system transient cannot be plotted, the scalar Lyapunov function

can be used to illustrate the change process during the switching actions.
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3.3.2. State-Based Switching Condition. The switching condition equation (from

mode 2 to mode 1) also holds the same form as the (2.31). It can be further simplified to

(3.59)
x̃T

1 (P1 + PT
1 )A2 x̃2 = 0

M2,1 = (P1 + PT
1 )A2

⇒ x̃T
1 M2,1 x̃2 = 0

(3.59)
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4. SUMMARY AND CONCLUSIONS

The microgrid system is able to be destabilized by switching even if all individual

subsystems are stable. The state-dependent best-case switching strategy described in this

paper works for making a complicated seven-node microgrid system return stable operating

points faster after a instant load change or power command change.

The microgrid system model in this thesis is relatively vulnerable so that it can be

made unstable easily with the change of parameters in the system like droop equations and

PI controller parameters. The method to guarantee stability will be even more important.

Lyapunov function based analysis is used to represent the system operating condition

from a simple but direct way. And we can stabilize the microgrid system without dig into

every subsystem’s working condition but focus on the overall instability so that we can make

switching at proper times to increase the system stability.
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Clear["Global`*"];

This derives an average model of a normal boost converter circuit without control components.

Switch Close Mode

(*

Close mode differential equations:

iL'==
-RL

L
iL+

Vin

L
; vC'==

-1

(RC+R)C
vC;

*)

dx11 =
-Rl

L
x11 +

Vin

L
;

dx12 =
-1

(Rc + R) c
x12;

A1 = D[{dx11, dx12}, {{x11, x12}}];

MatrixForm[%]

-
Rl
L 0

0 -
1

c (R+Rc)

B1 = D[{{dx11}, {dx12}} - A1.{{x11}, {x12}}, Vin];

MatrixForm[%]

1
L
0

Switch Open Mode

State-space model calculation.
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7-Bus Microgrid System Model
Clear["Global`*"];

Parameters
(* Substitution *)

{wc, wn, wcPLL, m, n,

kpPLL, kiPLL, kppq, kipq, kim, kpm, kicd, kicq, kpcd, kpcq

Lf, Lc, Cf, Rd, rf, rc, Lline, rline, rn,

Rload01, Rload02, Lload01, Lload02, Rpert, Lpert, Rload, Lload,

H, Xt, Xd, Xq, Xdp, Tmc, Rmc, Trate(*Transformer's rate*),

Ka, Ta, Td0p} =

{50.26, 377.0, 7853.98, 0.001, 0.001,

0.25, 2.0, 0.0005, 0.025, 25, 0.25, 100.0, 100.0

4.2 * 10^-3, 0.5 * 10^-3, 15.0 * 10^-6, 2.025, 0.5, 0.09, 1.97 * 10^-3, 0.77,

25, 25, 15 * 10^-3, 7.5 * 10^-3, 25, 7.5 * 10^-3, , 25, 7.5 * 10^-3,

(*0.025*)2.586, 0.0067, 0.6534, 0.3364, 0.04, (* *)0.03, (*0.49,*)0.001, (* *)1,

180, 0.02, 5.48};

{Pstar01, Qstar01, Pstar02, Qstar02, Vstar} = {-50000, 0, 50000, 0, 12470};

{Vref, Pref} = {Vstar / Trate, 381000};(* SST:285kVA droop Gen:400kW 5%*)

(* delta01=0;*)

Line current conversion;

7-node microgrid system model.
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11/29/17 11:58 AM C:\Users\bzfw6\Doc...\Boost_code_Mar12.m 1 of 2

format compact
% A1=subs(A1,[R d L c Rc Rl Vin] , [3. 0.5 9.5/10^4 1.2/10^4 0.01 0.01 200]);
% A2=subs(A2,[R2 d L c Rc Rl Vin] , [5. 0.5 9.5/10^4 1.2/10^4 0.01 0.01 200]);
% A3=subs(A2,[R3 d L c Rc Rl Vin] , [1.875 0.5 9.5/10^4 1.2/10^4 0.01 0.01 200]);
% A4=subs(A2,[R3 d L c Rc Rl Vin] , [1. 0.5 9.5/10^4 1.2/10^4 0.01 0.01 200]);
 
    R=[1.875, 500, 30, 8, 4];
%     R=[1.875, 100, 10, 8, 4];
%     R=[1.875, 90, 10, 8, 4];
%     R=[1.875, 1500, 40, 8, 4];
%     d=0.5;
    d=0.1;
    L=9.5/10^4;
    c=1.2/10^4;
    Rc=0.01;
    Rl=0.01;
    Vin=200;
 
A1=[(R(1)*((-1 + d)*Rc - Rl) - Rc*Rl)/(L*(R(1) + Rc)),((-1 + d)*R(1))/(L*(R(1) + Rc));(R
(1) - d*R(1))/(c*R(1) + c*Rc),-(1/(c*R(1) + c*Rc))];
A2=[(R(2)*((-1 + d)*Rc - Rl) - Rc*Rl)/(L*(R(2) + Rc)),((-1 + d)*R(2))/(L*(R(2) + Rc));(R
(2) - d*R(2))/(c*R(2) + c*Rc),-(1/(c*R(2) + c*Rc))];
A3=[(R(3)*((-1 + d)*Rc - Rl) - Rc*Rl)/(L*(R(3) + Rc)),((-1 + d)*R(3))/(L*(R(3) + Rc));(R
(3) - d*R(3))/(c*R(3) + c*Rc),-(1/(c*R(3) + c*Rc))];
% P=[0.0199147,-0.000044551;-0.000044551,0.00251315];
% [50;395]
% X:[3; 5;  1.875;  1;  4];
% L c still use 10^4, Rc Rl still use 0.01.
% X1=[262.298;393.447];3   
% X2=[158.416;396.041];5
% X3=[415.596,389.621];1.875
% % X4=[761.977;380.988];1
% % X4=[79.6021;398.01];10
% X4=[99.379;397.516];8
% X5=[197.532;395.064];4
 
% X:[3000,5000,1875,8000,4000];
 
% X1=[19.975,399.501];
% X2=[9.99375,399.75];
% X3=[42.5532,398.936];
% X4=[158.416;396.041];
% X5=[262.298;393.447];
% X1=[1.9975,399.501];
% X2=[0.999375,399.75];
% X3=[4.25532,398.936];
% X4=[1.5984,399.6];
% X5=[2.66223,399.334];
% {19.7532,395.064}
% {9.9379,397.516}
% {41.5596,389.621}

Operating point set up.
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11/29/17 11:58 AM Block: Boost_2ss_Apr10_50.../ Functions1 1 of 2

function [flag1,at2,at3,abs23,abs32,cmpr23,cmpr32,fl1,fl2] = SwitchCondition(xpre2,xpre3,
xaft,xx1,xx2,xx1dl,xx2dl)
%#codegen
cond3to2 = -159971. + 21.3162*xx1 - 1.00059*xx1^2 + 4423.36*xx2 - 0.209085*xx1*xx2 - 
10.0588*xx2^2;
cond2to3 = -160177. + 51.2502*xx1 - 1.00021*xx1^2 + 399.672*xx2 - 0.0325521*xx1*xx2 + 
0.00165803*xx2^2;
 
% [100 10]
% -159904. + 33.0105*xx1 - 0.999952*xx1^2 + 4203.67*xx2 - 0.0755656*xx1*xx2 - 9.51376
*xx2^2;
% -164749. + 157.289*xx1 - 1.0008*xx1^2 + 412.585*xx2 - 0.149376*xx1*xx2 - 0.00574871
*xx2^2;
% [500 30]
% -159971. + 21.3162*xx1 - 1.00059*xx1^2 + 4423.36*xx2 - 0.209085*xx1*xx2 - 10.0588
*xx2^2;
% -160177. + 51.2502*xx1 - 1.00021*xx1^2 + 399.672*xx2 - 0.0325521*xx1*xx2 + 0.00165803
*xx2^2;
% [10 5]
% -164749. + 161.328*xx1 - 0.999116*xx1^2 + 1221.25*xx2 + 0.165658*xx1*xx2 - 2.10263
*xx2^2;
% -181944. + 315.879*xx1 - 1.00094*xx1^2 + 600.746*xx2 - 0.181249*xx1*xx2 - 0.443264
*xx2^2;
% [50 5]
% -159936. + 50.4173*xx1 - 0.999128*xx1^2 + 4489.77*xx2 + 0.0819328*xx1*xx2 - 10.2408
*xx2^2;
% -181944. + 315.114*xx1 - 1.00169*xx1^2 + 447.401*xx2 - 0.32651*xx1*xx2 + 0.002927
*xx2^2;
% [50 30]
% -706960 + 122.672*xx1 - 0.999838*xx1^2 + 2845.54*xx2 + 0.015195*xx1*xx2 - 2.71376
*xx2^2;
% 57507.5 + 17.0612*xx1 - 1.00026*xx1^2 - 15.1487*xx2 - 0.0461341*xx1*xx2 - 0.320493
*xx2^2;
% [40 5]
% -160000. + 54.539*xx1 - 0.998986*xx1^2 + 3717.49*xx2 + 0.129683*xx1*xx2 - 8.31364
*xx2^2;
% -181944. + 315.161*xx1 - 1.00164*xx1^2 + 456.992*xx2 - 0.317424*xx1*xx2 - 0.0249808
*xx2^2;
at2 = ~any(xpre2-xaft); % Ture only if xpre2==xaft
at3 = ~any(xpre3-xaft);
abs23 = abs(cond2to3);
abs32 = abs(cond3to2);
cmpr23 = abs23<=3000;
cmpr32 = abs32<=3000;
persistent flag;            % Used for controlling the switch
if isempty(flag)
    flag=1;
else
end
 
persistent f1;              % Used for judging that if the switching condition equation 

Switching map control.
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