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ABSTRACT

Stochastic computing as a computing paradigm is currently undergoing revival as

the advancements in technology make it applicable especially in the wake of the need for

higher computing power for emerging applications. Recent research in stochastic computing

exploits the benefits of approximate computing, called Approximate Stochastic Computing

(ASC), which further reduces the operational overhead in implementing stochastic circuits.

A mathematical model is proposed to analyze the efficiency and error involved in ASC.

Using this mathematical model, a new generalized adaptive method improving on ASC is

proposed in the current thesis. The proposed method has been discussed with two possible

implementation variants - Area efficient and Time efficient. The proposed method has also

been implemented in Matlab to compare against ASC and is shown to perform better than

previous approaches for error-tolerant applications.
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1. INTRODUCTION

The modern history of computing architectures is comprised of multiple approaches

and refinements to the field of computing since its inception ranging from Analog architec-

tures in 1822 [5] to modern architectures of the current day. Most successful and prominent

ones that are in use at present are based on Arithmetic and Logic Units (ALUs) working

on the binary representation of numbers. Due to advancements in the field of VLSI, higher

computational efficiency was made possible which paved the way for microprocessor-based

designs to dominate the field of computing.

Further improvements in CMOS technology among other technological advance-

ments have made very high-speed operations in the range of Trillion Floating Point Op-

erations Per Second (TFLOPS) [12]. Other methods of computing were ahead of time in

technology and had difficulties in being realized during initial stages of VLSI improve-

ments; for example - Quantum computing, Optical computing, and Stochastic computing

among others. The current document focuses on Stochastic Computing (SC) since the

enhancements in technology enable the use of SC in realistic applications.

1.1. STOCHASTIC COMPUTING

Stochastic computing refers to the method of using probabilistic representations of

numbers to perform numerical operations. Stochastic computing was introduced as a con-

cept of computing in 1956 [13]. This concept was further improved with implementations

throughout the 1960s [7, 9]. To explain the concept of stochastic computing, it is necessary

to understand stochastic representation of data.

1.1.1. Stochastic Representation of Information. Consider binary representa-

tion. The binary representation of numbers depends on a set number of bits to represent

each number. Each position corresponds to a different weight in the representation. The
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weighted sum of all the bits with appropriate weights will reproduce the number stored. All

arithmetic operations can be done on the Binary information similar to decimal informa-

tion. In contrast with that, Stochastic computing depends on stream sof data to represent

one single number. Said stream is a random variable with a mean corresponding to the

number being represented. This is called Stochastic stream. There are different methods of

achieving stochastic representation:

1. Analog representation - Where analog values are used in the Stochastic stream

2. Bipolar representation - where the values+1 and−1 are used to represent the Stochas-

tic stream

3. Unipolar representation - where the values 0 and 1 are used to represent the Stochastic

stream

This document uses unipolar representation throughout since this ismore compatible

with the current ecosystem of technologies and the data format used is the same. Such a

Stochastic stream is known as Stochastic bit stream since it consists of binary bits. Using

this representation can be beneficial as outlined in some of the basic concepts of stochastic

computing below.

1.1.2. Basic Stochastic Circuits. To convert any number into a stochastic bit

stream, a comparator and a Random Number Generator (RNG) can be used as shown

in Figure 1.1. It is to be noted that the input number and the RNG output need to be on the

same scale for the conversion to be appropriate. The RNG can also be reused to represent

multiple inputs in a stochastic system; this results in correlation between the stochastic bit

streams which can be detrimental to the operation of certain stochastic circuits but it can

also be exploited for benefits as detailed in [2].

Using a stochastic bit stream, it is possible to use the probabilistic nature of logic

gates to perform arithmetic operations. Consider a simple AND logical gate as shown

below in Figure 1.2. The truth table for the AND gate is given in Table 1.1. If the inputs
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Figure 1.1. Bit stream generation using comparator and RNG

are considered as streams of bits, It can be observed from this truth table that the inputs are

of probability 0.5 each (denoting that the probability of finding bit ‘1‘in the stream is 0.5).

Similarly, the output stream has a probability of 0.25. Here the input probabilities seem to

have been multiplied.

Figure 1.2. AND logical gate

Table 1.1. AND logical truth table

A B Y = A · B
0 0 0
0 1 0
1 0 0
1 1 1

And as long as the logic behind the gate is the same, the same effect can be observed

for input streams of any probability at the input. Similarly, other logic gates can be used

to perform different operations as outlined in [3]. Some of the circuits are shown below

in Figure 1.3 along with their equivalent stochastic operation. Some of the more complex

mathematical operations are outlined in [8].
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(a) Scaled adder using 2 × 1 multiplexer (b) Inverter using NOT logical gate

Figure 1.3. Basic stochastic circuits

To consume the result of these stochastic circuits, the stochastic bit stream can be

converted back using a counter to calculate the probability of 1 in the output bit stream.

1.2. EXISTING RESEARCH AND APPLICATIONS OF STOCHASTIC
COMPUTING

Stochastic circuits are most viable for applications with inherent fault tolerance.

A few examples are Image processing, Signal processing, Neural networks among others.

These applications can be considered sufficiently fault tolerant since error percentage or

peak signal to noise ratio (PSNR) seem to not affect the intended outcome drastically from

the perspective of human observation.

As an example, consider the process of edge detection from image processing

domain. Edge detection refers to the process of highlighting intensity variations in an image

while suppressing constant intensity areas. There are multiple edge detection mechanisms

available [6]. One of the simpler yet efficient edge detection mechanism is Robert-Cross

edge detection. This algorithm works on a 2 × 2 pixel neighborhood to detect edges in an

intensity image. The following images in Figure 1.4 show the result of Robert-Cross edge

detection algorithm using stochastic computing with various bit stream duration/length.
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(a) Original input image

(b) 8 bit stochastic length (c) 64 bit stochastic length

(d) 128 bit stochastic length (e) 256 bit stochastic length

Figure 1.4. Comparing edge detection outputs for different bit stream lengths

Figure 1.4 shows that although statistically insignificant lengths were chosen for

stochastic bit streams, the output is not affected drastically. Further, [4] presents more

information on stochastic computing applied to image processing techniques.
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1.2.1. Approximate Computing. Figure 1.4 also shows that stochastic computing

is an approximate method of computation. The result gets closer to the intended original

value as the length of stochastic bit stream increases; just as the expected value (mean) of a

sample set reaches the true mean as the sample size increases. To achieve better efficiency

along with allowing error to increase slightly, lower stochastic bit lengths can be favored for

faster execution. Another way of doing the same would be to intentionally truncate lower

significant bits from the input binary numbers. This is known as Approximate Stochastic

Computing (ASC) [10].

1.3. APPROXIMATE STOCHASTIC COMPUTING

In stochastic computing, as a rule of thumb, 2n bits are used in the stochastic domain

to represent an n bit binary number. However, evidently from Figure 1.4, it may not be

necessary. This involves analysis of lowest energy point as described in [1]. Applying

approximate computing at the input level by discarding bits of lower significance form

the input will further reduce the number of stochastic bits required since the number of

bits required to represent the input is now lowered. If m bits are truncated from the input

numbers, the required number of bits in the stochastic stream would approximately be 2n−m.

A complete analysis of this concept is presented in [10]. Here, the author uses the values

of n = 4 and m = 4 for implementation.

Additionally, to increase the efficiency especially for the Robert-Cross edge detec-

tion implementation, an adaptive mechanism has been discussed in [11]. This adaptive

mechanism suggests adding an extra count of 1 to the output bit stream while converting

back to the binary domain. This extra count is conditional and is only applied when the

majority of the inputs have the bit 1 in their 5th most significant bit position. The current

document aims to propose an improvement over the concept of ASC.
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1.4. ORGANIZATION OF THE CURRENT DOCUMENT

The following sections present a method proposed as an analysis and improvement

over ASC. Section 2 shows a mathematical model for error involved in a stochastic process

and uses the model to analyze ASC and design goals for the proposed method. Section 3

discusses the proposedmethod in detail and provides a fewways of implementation. Section

4 shows the performance of the proposed method using the Robert-Cross edge detection

application and compares the proposed design to ASC and adaptive ASC. Section 5 provides

a summary of the current document. Appendices A and B provide implementation code

and supporting information for simulations used for analysis.
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2. MODELLING STOCHASTIC ERROR

2.1. ANALYSIS

The nature of stochastic computing is to embrace error in randomness to simplify

operation. Analysis of stochastic error due to randomness is necessary to find the minimum

energy point of operation in stochastic circuits [1]. To find the most optimum stochastic bit

length, s, for use in any stochastic system design, probabilistic error in representation of a

binary number in stochastic domain needs to be examined. To perform this analysis, Matlab

scripts were employed as an experiment to evaluate the absolute error and percentage error

in this process. The Matlab script used here is given in Appendix A.

2.2. IMPLEMENTATION

To evaluate stochastic process error, consider an experiment where an n bit number,

N , is converted into a stochastic bit stream of length s, and then the original number N

is approximated as N̂ , using this bit stream. This experiment when performed on a single

value of N with a specific bit stream length allows us to calculate the process error involved

by computing the difference between N and N̂ . This error is representative of stochastic

process error involved for the chosen values of N , n and s. To generalize this error, this

experiment was performed L = 5×106 times, for statistical significance, with random values

of N , and all values of n and s within the bounds as specified, and then the results were

summarized. The sample set of values chosen for n was (4, 6, 8, 10, 12, 14, 16). Accordingly,

the value of N was uniformly varied between 0 and 2n − 1. The value of s for each N was

varied between 1 and 2n − 1.
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To compute the error in this process, equations (2.1) and (2.2) were used, where

εsc,a is the absolute error and εsc,p is the percentage error involved.

εsc,a =
��N − N̂

�� (2.1)

εsc,p =
εsc,a

N
× 100 (2.2)

To aggregate the error for a uniformly distributed input, average error εsc is consid-

ered, given by (2.3)

εsc =
1
L

L∑
i=0

εsc,a[i] (2.3)

This experiment yields a plot as shown in Figure 2.1. The plot shows how εsc varies

as s varies. Also, Figure 2.2 shows how εsc,p varies as s varies.

Figure 2.1. Variation in absolute error εsc,a for different n, as s varies
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Figure 2.2. Variation in percentage error εsc,p for different n, as s varies

Figure 2.1 does not reveal much information in the state presented and zooming in

reveals that the data for any value of n is in a much different range than the data for other

values of n. This is shown in Figure 2.3.

Figure 2.3. Zoomed in view of the variation in absolute error εsc,a for different n, as s varies
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This also suggests that for fair comparison the horizontal axis needs to be normalized

since for different n, the range of possible numbers varies exponentially. Normalizing the

horizontal axis, the plot takes the form as shown in Figure 2.4

Figure 2.4. Variation in percentage error εsc,p for different n, as normalized s varies

The curves represented in Figure 2.4 resembles an exponential decay function as

given by y = ae−bx . Hence plotting this in a natural logarithmic domain reveals more

information than what is visible in above plots. Therefore a plot for εsc was generated with

normalized axis variables x and y, as given in equations (2.4) and (2.5) respectively.

x = ln
( s
2n − 1

)
(2.4)

y = ln
(
εsc

2 n
2

)
(2.5)

It can be noted that the equation (2.5) incorporates a scaling factor of 2 n
2 before

the logarithm operation. This scaling factor was experimentally determined and also

corresponds to the average of a uniform distribution in the range (0, 2n). This is appropriate
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since the error being shown is the average error of applying stochastic process to any n bit

number chosen randomly using a uniform distribution of the same range. The plot of y

versus x is shown in Figure 2.5.

Figure 2.5. Logarithmic plot of εsc

Figure 2.5 shows that the normalized average error can be modelled as a straight

line in logarithmic domain.

2.3. MATHEMATICAL MODEL

Observing the Figure 2.5, it can be estimated that the equation of the curve is of the

form shown in equation (2.6)

y = mx + c (2.6)

This estimation can be realized using polynomial fitting function, polyfit(), in

Matlab. Matlab code for this estimation is presented in Appendix B.
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The first two entries for each n are discarded since they evidently do not contribute

to the polynomial fit. This polynomial fitting results in the equation (2.7).

y = −0.5057x − 2.4523 (2.7)

The coefficients−0.5057 and−2.4523 are approximated to−0.5 and−2 respectively

to simplify the equation. To justify this approximation, consider the value of εsc at x = 0

from equations (2.7) and (2.5), which evaluates to 4.3775 × 10−223. The same evaluation

yields 1.2020× 10−268 for the approximated co-efficient values of −0.5 and −2. The values

themselves and also their difference is very low since they represent average absolute error

in stochastic process. Hence, equation (2.7) can be approximated as equation (2.8).

y = −0.5x − 2 (2.8)

Substituting (2.4) and (2.5) in (2.8),

ln
(
εsc

2 n
2

)
= −0.5 × ln

( s
2n − 1

)
− 2

= −

[
ln

(√
s

2n − 1

)
+ 2 × ln(e)

]
= −

[
ln

(√
s

2n − 1

)
+ ln(e2)

]
= −

[
ln

(√
s

2n − 1
× (e2)

)]
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= ln

(
1
e2

√
2n − 1

s

)
⇒

εsc

2 n
2
=

1
e2

√
2n − 1

s

which gives

εsc =
1
e2

√
2n (2n − 1)

s
(2.9)

Equation (2.9) quantifies the error built into the stochastic process being employed.

Furthermore, as [10, 11] describe, additionally truncating bits from the given input operands

is time efficient and approximates the output close to the actual value but then introduces

an error. Mathematically this truncation error for any number N while truncating m bits is

given by (2.10).

εt = N mod 2m (2.10)

Hence, on an average, the combined error for any number from 0 through 2n − 1 in

total can be shown in (2.11).

ε =
1
e2

√
2k

(
2k − 1

)
s

+ N mod 2m (2.11)

where k is n − m, the number of bits chosen to be kept after the truncation.
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2.4. INFERENCE

In [10], for a fixed truncation with n = 8 and m = 4, where the least four significant

bits are truncated, the truncation error is in the range (0, 15). Hence, the average truncation

error is the mean of a uniform distribution in this range, which is ≈ 7.5. Additionally, the

average stochastic error for [10] where the remaining k bits after truncation are represented

using 24 = 16 clock cycles, i.e k = 4 and s = 16, is εsc = 0.5 using equation (2.9). Thus

the combined error for the process described in [10] is ε ≈ 7.5 + 0.5 = 8.

For the same value of n = 8 if the stochastic bit length s is capped at 16 instead of

2n − 1 = 255, with no intentional loss of any information due to truncation (i.e, truncation

error = 0), equation (2.11) approximates the total process error to 8.6445. This is fairly

comparable to the value obtained above for [10], while still being equally time efficient (i.e,

s = 16).

This also shows that the equation (2.11) can be used as a tool to estimate the total

approximate process error due to factors such as input bit length (n), stochastic bit length

(s), number of bits truncated (m), and/or to estimate the optimal stochastic bit length when

a predefined average process error (ε) can be tolerated.

2.5. CONSTRAINTS FOR DESIGN

With the above analysis, any method that may be proposed to improve upon [10]

needs to satisfy the following constraints to be more generic and adaptive.

1. Avoid deterministic components in procedure to preserve the random nature of

Stochastic Computing.

2. Adaptive truncation based on input number since all numerical values are not affected

by optimization mechanism the same way.
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3. Allow variable input bit length to remain applicable for any application that may use

different bit length n.

4. Allow pre-calculation of tolerable error in stochastic process so that the procedure

incorporates determining the error margin in design phase for any implementation.

5. Flexibility to choose truncation length and stochastic bit length based on tolerable

error.

6. Improve overall accuracy while optimizing area and/or execution time.

Following the above mentioned constraints as closely as possible, a generalized

adaptive truncation methodology has been proposed in the current document.
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3. PROPOSED DESIGN

3.1. INFORMATION IN BINARY FORMAT

Consider numbers stored in binary format (integers for simplicity). Information

stored in such a format lies in between the most significant high bit and the least significant

high bit in any number’s representation. This can be represented as shown in Figure 3.1.

Figure 3.1. Information in Binary format

It is imperative to perform mathematical operations on information stored in above

format by using the bits shown in the information range. This also means that truncating

certain bits based on position, in any number, may result in lost information. The proposed

method aims to perform any operation in the information range of its operands instead of a

fixed position range. Consider the following examples for n = 8 bit operands.

A = 000000

B = 000000

A + B
2
= 000000


01

11

01


= (1)base 10

= (3)base 10

= (1)base 10

(3.1)
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A = 00

B = 00

A + B
2
= 00


0101

1110

1001


00 = (20)base 10

00 = (56)base 10

10 = (38)base 10

(3.2)

The example shown in (3.1) shows that the operation is dominant in the range of two

lowest significant bits (highlighted with brackets). Similarly the example in (3.2) shows that

the operation is dominant in the range of 6th lowest significant bit to 3rd lowest significant

bit. The dominant information among the operands takes precedence, which means the

information bit range varies based on the operands for a given operation.

3.2. COMPUTING USING INFORMATION BITS

The generic process of working with specific information bit ranges in any given set

of operands could be outlined as follows

1. Extract information bits from all operands

2. Perform the operation on extracted information bits

3. Modify the result to match original scale of the operands

Although there may be various methods to achieve the above steps, two methods

are proposed below. Both the methods are designed to be efficient in different ways while

realizing the same process above.

3.3. METHOD 1: AREA EFFICIENT

The current section provides the algorithm and an example to help explain the area

efficient implementation of proposed method. It is followed by the block diagram and

analysis on the proposed implementation.
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3.3.1. Algorithm. This method is designed to keep area of the implementation

fairly low by trading off number of clock cycles. This method involves shifting each

operand to the left until at least one of the operands has a high bit in the most significant

position, and then performing the operation on as as many bits as necessary. The following

steps show the algorithm.

1. Left shift all operands until there is at least one high bit at most significant position

among the inputs; say η number of shifts

2. Consider first k MSBs of the resulting set; k is number of bits kept after truncation

3. Perform the required operation

4. Store the result as first k MSBs of an n bit number

5. Right shift the result as many times as the inputs were left shifted in first step, i.e., by

the amount of η

3.3.2. Example. To illustrate this, consider the following example. The operation

to be performed is A+B+C+D
4 as given in equation (3.3) below, and the operands are n = 8

bit integers.

A = 00

B = 00

C = 00

D = 00

A + B + C + D
4

= 00



00 1011

10 0101

11 1000

01 0101

01 1111


(3.3)

In the above equation, it can be observed that the required operation has to be

performed only in the bit range from position 1 to position 6, right to left.

Step 1 - According to the algorithm, the operands have to be left shifted by a factor

of η = 2. Thus the operands can be rewritten as shown in equation (3.4).
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A′ = 0010 1100

B′ = 1001 0100

C′ = 1110 0000

D′ = 0111 1100

(3.4)

Step 2 - Now these operands can be truncated by keeping k most significant bits in

each operand. Consider the case where k = 3. The operands will now be as shown in (3.5).

Ak = 001

Bk = 100

Ck = 111

Dk = 011

(3.5)

Step 3 - Operating on these operands, the operation A+B+C+D
4 results in a value

around Ok = 111 when constrained to k = 3 bits.

Step 4 - Storing the above output as first k = 3 MSBs of an n = 8 bit number gives

the output O′ = 11100000

Step 5 - This intermediate result has to be shifted to the right by a value of η = 2 to

obtain the intended output Oη = 00011000

The output calculated can be represented in decimal as the number 24 and the

original result shown in (3.3) can be represented in decimal as 31. This difference is due to

the bits truncated in step 2.

3.3.3. Block Diagram. Figure 3.2 shows the block diagram for Method 1. Here,

all the steps before performing the operation are represented as Pre-condiddtioning steps,

since the input operands are conditioned to be sent to the operation block. Similarly, all the
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steps performed after the operation are referred to as Post-conditioning steps since these

steps condition the intermediate result of the operation, Ok , to get an estimation of the

desired output, Oη.

Figure 3.2. Block diagram of Method 1

3.3.4. Analysis. This method allows for a simple algorithm to eliminate truncation

error in lower values of input, compared to the fixed truncation method [10]. However, it

adds significant clock cycle overhead before execution of the operation. This overhead is

not fixed and gets more significant as the input values get lower. Exact implementation of

the method may vary the actual amount of overhead but the fact remains that there is more

sequential procedure in the above method than parallel procedure.
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To mitigate some of the overhead issue, another method is proposed where parallel

execution is favored.

3.4. METHOD 2: TIME EFFICIENT

For the time efficientmethod, the concept of InformationLook-upTable is introduced

so that converting operands to information bits and then adjusting the output to the right

scale is done in parallel in this process.

3.4.1. Condensing Information: Information Look-up Table (ILUT). To be

able to represent all the information in a number, the following method proposes usage of

specific details of the inputs as listed below. This allows for mathematical operations to be

performed on different set of bit positions for the given inputs rather than fixed set of bit

positions for any set of inputs.

1. I - Information between the most and least significant 1s in the number

2. α - The number of trailing zeros after the least significant 1

3. β - The number of bits in I

The above parameters were chosen based on the two following factors -

1. Ability to recreate the original number from the condensed information.

2. Ability to variably shift or scale a given number for any operation based on other

operands required in that operation.

The above process produces the following look up table for n = 4 bit numbers, for

example as given in Table 3.1.
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Table 3.1. ILUT for an n = 4 bit number

Number I α β

0000 0 0 0
0001 1 0 1
0010 1 1 1
0011 11 0 2
0100 1 2 1
0101 101 0 3
0110 11 1 2
0111 111 0 3
1000 1 3 1
1001 1001 0 4
1010 101 1 3
1011 1011 0 4
1100 11 2 2
1101 1101 0 4
1110 111 1 3
1111 1111 0 4

3.4.2. Operating on Information Bits: Usage of the ILUT. Since the informa-

tion range of any operation depends on the operands, the current method requires pre-

conditioning the operands to be used in the operation. Consider an example below in

(3.6).

A = 0

B = 0

A + B
2
= 0


01

10

01


0

0

1

(3.6)

To achieve the result given, consider the values of I and α for the operands from

Table 3.1. The values are as given in Table 3.2 below.

Table 3.2. ILUT for n = 4 bit operands in example

Number I α β

0100 1 1 1
1000 1 2 1
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For the current operation, note that the operation is most dominant in the range of

3rd least significant bit to the 2nd least significant bit. To use the information given in Table

3.2 to perform the operation in given range, it can be observed that the operation starts at

an index equal to lowest α, denoted by αmin, and ends at an index equal to highest α + β,

denoted by µmax .

We can calculate the amount of shift, α̂, to be applied to each I as α − αmin if α is

represented as a matrix as shown in the equation (3.7)

α̂ =


1

2

 − αmin =


0

1

 (3.7)

applying the corresponding calculated shifts to each I, we obtain I′ as shown in

(3.8). These values can now be used to perform the operation.

I′ =


01

10

 (3.8)

The result of the operation for I′ will now be A+B
2 = [01]. This result needs to

be shifted appropriately by a factor of αmin = 1 to arrive at the final output as shown in

equation (3.9)

A + B
2
= 0010 (3.9)

3.4.3. Algorithm. The current method involves creating an ILUT for a specific n

value chosen for any operation. The example above can be further extended to have a k

bit constraint on the length of bits in I. In which case, the lower bound of the operation is

not αmin as given in the example above. The lower bound now is max (α + β − k) among

the operands. This means that the ILUT can directly store α and µ = α + β − k for each

input instead of just α and β. Information from this ILUT can then be used to perform the

operation as outlined in the algorithm below.
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1. Fetch information bits, I, number of trailing zeros, α, and µ for each of the operands

2. Conditionally shift each I by a factor of α − µmax , giving I′, where µmax is the

maximum value for µ among the operands

3. Perform the operation on I′

4. Shift the result back by a factor of µmax

3.4.4. Example. Consider the same example as given in section 3.3.2 of Method

1, reproduced in equation (3.10), where the operation to be performed is O = A+B+C+D
4 .

A = 00

B = 00

C = 00

D = 00

A + B + C + D
4

= 00



00 1011

10 0101

11 1000

01 0101

01 1111


(3.10)

The operation is still significant only in the bounds of bit positions 1 through 6, right

to left. The following steps illustrate the algorithm in detail.

Step 1 - Fetch I, α and µ. For this set of operands the ILUT can be given as shown

in Table 3.3 for k = 3.

Table 3.3. ILUT for n = 8 bit operands, keeping k = 3 bits in I for current example

Number I α µ = α + β − k
0000 1011 101 0 2
0010 0101 100 0 3
0011 1000 111 3 3
0001 0101 101 0 2

Step 2 - Conditionally shift the operands by a factor of α − µmax . Conditional shift

means to shift the I bits to the left if the value of α − µmax is positive, and shift it to the

right when negative. The operands are now modified as shown in equation (3.11)
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I′A = 001

I′B = 100

I′C = 111

I′D = 010

(3.11)

Step 3 - Perform the operation on I′ values. The operation will result in a number

around O′ = 011.

Step 4 - Shift by a factor of µmax . This will result in the output Oµ = 00011000,

which is the same as the output obtained by Method 1.

3.4.5. Block Diagram. The Figure 3.3 shows the block diagram for this method.

This is comparable to the block diagram of Method 1 from Figure 3.2. It can be observed

that the sequential Pre-conditioning is replaced with a parallel procedure in Method 2.

Figure 3.3. Block diagram of Method 2
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3.4.6. Analysis. This method proposes an algorithm while fetching information

bits in parallel and executing the operation directly on the information bits results in the

desired output in a more time efficient manner. However this results in larger area since

complete ILUT storage is necessary. Additionally, the size of ILUT increases exponentially

as n increases linearly, thus requiring additional space for memory.

3.5. COMPARISON: METHOD 1 VS METHOD 2

The Table 3.4 gives a brief summary and comparison between the methods pro-

posed above. This comparison can help choose between the methods for any particular

implementation as necessary.

Table 3.4. Comparison of Method 1 and Method 2

Method 1 Method 2
Area efficient Time efficient
No need of ILUT, thus reduc-
ing area

ILUT increases exponentially
as n increases linearly, thus in-
creasing area required

Number of clock cycles vary
based on the input operands

Same number of clock cycles
for any input with fixed n

3.6. COMPARISON WITH ASC

The Table 3.5 shows how the proposed method compares with ASC and/or Adaptive

ASC [10, 11].
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Table 3.5. Comparison of proposed method and ASC

Proposed method ASC/Adaptive ASC
Better performance for operations involv-
ing smaller numbers. In image process-
ing, this means better performance in low
intensity images/areas

Higher percentage error in lower numer-
ical ranges

Number of kept bits, k, can be calculated
(hence, also truncation length m) using
εsc from equation (2.9)

Fixed truncation length m = 4 for n = 8
bit numbers

Number of clock cycles can also be a
choice based on equation (2.9)

Fixed number of clock cycles: s = 16 in
ASC and s = 16 or s = 17 for adaptive
ASC

Can be extended to different ranges of n Specific for n = 8 bit operations
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4. PERFORMANCE

To evaluate the proposed method in comparison with [10], a Robert Cross filter was

implemented Matlab to simulate this process in order to benchmark its performance. The

implementation uses the values of n = 8 and m = 4 (truncated bits) resulting in k = 4 for

fairness in comparison with approximate stochastic processing as defined in [10].

4.1. ROBERT CROSS EDGE DETECTION

Robert Cross edge detection is an algorithm applied to gray scale images over a

neighborhood of 2 × 2 pixels highlighting the changes in intensities which results in an

image that highlights only the edges in the input image. The approximate equation for this

process is given in (4.1), where X is the input image, Y is the output image, (i, j) are pixel

indices in vertical and horizontal direction respectively.

Y (i, j) = 0.5 × (|X(i + 1, j + 1) − X(i, j)| + |X(i, j + 1) − X(i + 1, j)|) (4.1)

4.1.1. Robert Cross Algorithm in Stochastic Computing. The stochastic equiv-

alent for the operation given in (4.1) is as shown Figure 4.1.

For this implementation, correlated random numbers are assumed at all four inputs

when converting the inputs from Binary to Stochastic bit streams. This means that all the

four inputs are converted to stochastic bit streams using the same random number at their

comparators. The block diagram for Adaptive Variable-bit truncation ASC as proposed in

[11] is given in Figure 4.2.
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Figure 4.1. Robert Cross algorithm in stochastic domain

Figure 4.2. Block diagram of Robert Cross algorithm using proposed method from [11]

4.2. RESULTS

In order to better analyze the performance of the proposed design as compared with

previous research, the same metrics as used in [10, 11] are used in the current document.

They are explained as follows.
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4.2.1. Result Metrics. Two metrics were employed to measure the performance of

the proposed design -

1. Mean Squared Error (MSE) - This metric is chosen to show how different the output

of proposedmethod (or anymethod being compared) is, as compared to the theoretical

output of Robert-Cross algorithm.

2. Peak Signal-to-Noise Ratio (PSNR) - This metric depicts the amount of noise present

in the output as compared to the signal, due to MSE.

These metrics are calculated using the equations shown in equations (4.2) and (4.3)

below.

MSE =
r∑

i=0

c∑
j=0
|O(i, j) −Ot(i, j)|2 (4.2)

PSNR = 10 × log10

(
2552

MSE

)
(4.3)

Where r is the number of rows in the input image, c is the number of columns in the

input image, O is the output being compared, and Ot is the theoretical Robert-Cross edge

detection output. The number 255 in (4.3) refers to the peak possible signal for an 8 bit

image.
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The following figures in the next section contain sub-figures labelled (a) through (d)

alphabetically, which are structured in this manner -

(a) Original image used as the input for the edge detection algorithm

(b) Output obtained using Binary operation as given in Robert-Cross equation 4.1

(c) Output obtained using the proposed method.

(d) Output obtained using ASC with 16 clock cycles (truncation only)

(e) Output obtained using ASC with 17 clock cycles (truncation and compensation with

extra clock cycle)

The Table 4.1 shows a metric comparison of results for proposed method, and the

methods from [10] and [11]. Input images for these results are presented in detail below. It

can be observed that the proposed method almost always has lower MSE and higher PSNR

compared to [11].
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4.2.2. Standard Image Result: Cameraman. Figure 4.3 is a standard test image

used in image processing applications to benchmark any image processing algorithm. It

can be observed in Figure 4.3 that output in Sub-Figure 4.3c contains visibly lesser noise

in low intensity areas such as the coat and the sky, when compared to both sub-figures 4.3d

and 4.3e. This is also evident in the MSE and PSNR values from Table 4.1.

(a) Original input image

(b) Theoretical output (c) Output using proposed
method

(d) ASC output with 16 cycles (e) ASC output uing 17 cycles

Figure 4.3. Comparing edge detection outputs for a standard image: Camera man
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4.2.3. Standard Image Result: Lena. Similar to Figure 4.3, the Figure 4.4 also

shows a standard image used for benchmarking image processing algorithms. Sub-Figure

4.4c shows visibly lesser noise in low intensity areas (such as hat and shoulder areas) as

compared to sub-figures 4.4d and 4.4e.

(a) Original input image

(b) Theoretical output (c) Output using proposed
method

(d) ASC output with 16 cycles (e) ASC output with 17 cycles

Figure 4.4. Comparing edge detection outputs for a standard image: Lena



36

4.2.4. Generated Image Result. Figure 4.5 shows a generated image which con-

sists of varying frequency and intensity components. The image mainly contains a slow-

varying intensity gradient from left to right changing from black to white. This will

facilitate inspection of the algorithm’s performance at various intensity ranges. Sub-Figure

4.5c shows lower intensity performance in the proposed method is better than that of the

result shown in Sub-Figure 4.5d and 4.5e.

(a) Original input image

(b) Theoretical output (c) Output using proposed method

(d) ASC output with 16 cycles (e) ASC output with 17 cycles

Figure 4.5. Comparing edge detection outputs for a generated image with varying intensity
and frequency
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4.3. INTENSITY BASED ANALYSIS

The following input figureswere generated using a slight gradientwith three different

intensity ranges. This helps analyze the performance of each algorithm being compared

specifically in terms of intensity. Each of the Figures 4.6, 4.7 and 4.8 below show (a)

Original input, (b) Theoretical output using Robert-Cross equation, (c) ASC output with 16

clock cycles, and (d) ASC output with 17 clock cycles.

(a) (b) (c) (d) (e)

Figure 4.6. Low intensity image

(a) (b) (c) (d) (e)

Figure 4.7. Moderate intensity image

(a) (b) (c) (d) (e)

Figure 4.8. High intensity image

To help explain these results, consider the percentage error involved in stochastic

process when using truncation method as in [10]. Truncating bits in a number introduces

peaks of percentage error as shown in the Figure 4.9. The proposed method performs
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the same as ASC as defined in [10] in higher numerical ranges, but in lower ranges the

percentage error spikes are reduced significantly and the percentage error does not increase

beyond 10%.

Figure 4.9. Error introduced during truncation in [10] as compared to proposed method

4.4. RESULTS FOR REAL WORLD IMAGES

The following Figures 4.10, 4.11 and 4.12 show some real world examples following

similar theme as discussed above. The MSE and PSNR values for these images are also

presented in Table 4.1.
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(a) Original input image

(b) Theoretical output (c) Output using proposed
method

(d) ASC output with 16 cycles (e) ASC output with 17 cycles

Figure 4.10. Banana image
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(a) Original input image

(b) Theoretical output (c) Output using proposed
method

(d) ASC output with 16 cycles (e) ASC output with 17 cycles

Figure 4.11. Horizontal stripes
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(a) Original input image

(b) Theoretical output (c) Output using proposed
method

(d) ASC output with 16 cycles (e) ASC output with 17 cycles

Figure 4.12. MRI of a human skull
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5. CONCLUSION

The current document describes an approximate stochastic computing methodology

and generalizes the error involved in the process. A mathematical model for the error

involved is presented and is used to build constraints to propose a new methodology. This

mathematical model can be used as a tool to estimate expected error in any stochastic system

where truncation is involved at the input, to any degree.

Using these constraints, the generalized error, and a common understanding of bi-

nary information in general, a new method for performing operations on information using

approximate stochastic computing techniques is proposed. This new method is compared

against simple approximate stochastic computing and adaptive approximate stochastic com-

puting methodologies. The comparison shows that the method proposed performs better

than ASC and adaptive ASC in most respects.

Future work involves hardware implementation of the method for computation-

ally challenging applications such as neural networks and artificial intelligence to reduce

computation times and area of implementation.
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GENERATE ILUT
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1 %% Housekeeping
2 clc;clearvars;close all;
3 set(0, 'defaulttextinterpreter', 'latex');
4 set(0, 'defaultlegendinterpreter', 'latex');
5 set(groot, 'defaultAxesTickLabelInterpreter', 'latex');
6 set(groot, 'defaultLegendInterpreter', 'latex');
7 set(gcf, 'PaperSize', [6 3.6]);
8
9 %% n-bit look up table

10
11 % Configure here
12
13 n = 8; % Bit length
14 k = 4; % Kept bits after truncation
15
16 %% Initialization
17
18 % Number range
19 x = 0:(2^n-1);
20 % Empty array for error storage
21 init_empty = x'*0;
22 % Index of first high bit
23 x_first_1_index = init_empty;
24 % Absolute error for proposed method
25 error = init_empty;
26 % Percentage error for proposed method
27 error_percentage = init_empty;
28 % Absolute error with simple truncation
29 truncation_error = init_empty;
30 % Percentage error with simple truncation
31 truncation_percent = init_empty;
32 % Condensed information metrics
33 alpha = init_empty;
34 beta = init_empty;
35 mu = init_empty;
36 % Information bits binary array
37 I_bin = de2bi((1:(2^n - 1))*0, k, 'left-msb');
38
39 % Other temporary variables
40 x_lmsb = de2bi(x, n, 'left-msb');
41
42 % Process
43 for i = 2:2^n
44 x_first_1_index(i) = find(x_lmsb(i,:), 1);
45
46 trunc_index = x_first_1_index(i) + k;
47
48 x_lmsb(i,trunc_index:n) = 0;
49 x_decimal_after_trunc = bi2de(x_lmsb(i,:), 'left-msb');
50
51 error(i) = abs(x(i) - x_decimal_after_trunc);
52 error_percentage(i) = error(i)*100/x(i);
53
54 truncation_error(i) = mod(x(i),2^(n - k));
55 truncation_percent(i) = truncation_error(i)*100/x(i);
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56
57 alpha(i) = find(de2bi(x_decimal_after_trunc , n), 1) - 1;
58 beta(i) = length(x_first_1_index(i):n-alpha(i));
59 mu(i) = alpha(i) + beta(i) - k;
60
61 I_bin(i,:) = de2bi(bi2de(x_lmsb(i,x_first_1_index(i):n-

alpha(i)), 'left-msb'), k, 'left-msb');
62 end
63
64 %information bits integers
65 I_int = bi2de(I_bin, 'left-msb');
66
67 save('lut', 'I_int', 'alpha', 'mu', 'k');
68
69 %% Plot a few results
70 plot(x, truncation_percent , '--k');
71 hold on;
72 grid on;
73 plot(x, error_percentage , '-k');
74 title('Percentage error involved in truncation');
75 legend('$4$ bit Truncation method', 'Poposed method with $k

= 4$ kept bits');
76 xlabel('Numbers');
77 ylabel('Percentage error');
78 set(gcf, 'PaperSize', [6 3.6]);
79 pbaspect([5/3 1 1]);
80 ylim([0 100]);
81 xlim([0 max(x)])
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1 %% Housekeeping
2 clc;close all;clear all;
3
4 %% Configuration
5 n_max = 16;
6 n_array = [4 6 8 10 12 14 16];
7
8 %% Intermediate values
9 s_array = zeros(1,n_max);

10 for x = 1:n_max
11 s_array(x) = 2^x-1;
12 end
13
14 numberOfIntegers = 5e6;
15 error = NaN(length(n_array), length(s_array),

numberOfIntegers);
16 inputIntegers = error;
17 averageError = NaN(length(n_array), length(s_array));
18 averagePercentError = averageError;
19
20 %% Process
21 for k = 1:length(n_array)
22 n = n_array(k);
23 for l = 1:length(s_array)
24 s = s_array(l);
25 inputIntegers(k,l,:) = uint16(ones(1,1,

numberOfIntegers)*0.05*(2^n-1));
26 for i = 1:numberOfIntegers
27 stream = rand(1,s) <= double(inputIntegers(k,l,i

))/(2^n-1);
28 outputNumber = uint16((mean(stream))*(2^n-1));
29 error(k,l,i) = outputNumber - inputIntegers(k,l,

i);
30 end
31 averageError(k,l) = mean(abs(error(k,l,:)));
32 averagePercentError(k,l) = mean(100 * abs(error(k,l

,:)) ./ (inputIntegers(k,l,:) + 0.01));
33 end
34 end
35
36 % save ( ' aa_abs_percent.mat ' ) ;
37
38 %% Set markers
39
40 markers = {'o', '+', '*', 'x', 's', 'd', '^'};
41 set(0, 'DefaultTextInterpreter', 'latex');
42 set(gcf, 'PaperSize', [6 3.6]);
43
44 %% s versus averageError for different n
45
46 figure;
47 hold on;
48 for i = 1:length(n_array)
49 n = n_array(i);
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50 s = s_array(s_array < 2^n);
51 x = s;
52 y = averageError(i,1:length(s));
53 plot(x,y, ['-k' markers{i}], 'LineWidth', 1);
54 end
55 xlim([0 max(x)]);
56 ylim([0 max(y)]);
57 legend('$n = 4$','$n = 6$', '$n = 8$', '$n = 10$', '$n = 12$

', '$n = 14$', '$n = 16$')
58 grid on;
59 box on;
60 pbaspect([5/3 1 1]);
61 title('Average stochastic error for different $n$ as $s$

varies', 'Interpreter', 'latex');
62 xlabel('Length of stochastic bit stream, $s$','Interpreter',

'latex');
63 ylabel('Average error $\epsilon_{sc}$','Interpreter', 'latex

');
64
65 %% s versus averagePercentError for different n
66
67 figure;
68 hold on;
69 for i = 1:length(n_array)
70 n = n_array(i);
71 s = s_array(s_array < 2^n);
72 x = s;
73 y = averagePercentError(i,1:length(s));
74 plot(x,y, ['-k' markers{i}], 'LineWidth', 1);
75 end
76 xlim([0 max(x)]);
77 ylim([0 max(y)]);
78 legend('$n = 4$','$n = 6$', '$n = 8$', '$n = 10$', '$n = 12$

', '$n = 14$', '$n = 16$')
79 grid on;
80 box on;
81 pbaspect([5/3 1 1]);
82 title('Average Percentage stochastic error for different $n$

as $s$ varies', 'Interpreter', 'latex');
83 xlabel('Length of stochastic bit stream, $s$','Interpreter',

'latex');
84 ylabel('Average $\epsilon_{sc,p}$','Interpreter', 'latex');
85
86 %% Normalized s versus averageError for different n
87
88 figure;
89 for i = 1:length(n_array)
90 n = n_array(i);
91 s = s_array(s_array < 2^n);
92 x = s/(2^n - 1);
93 y = averageError(i,1:length(s));
94 plot(x,y, ['-k' markers{i}], 'LineWidth', 1);
95 hold on;
96 end
97 xlim([0 0.2]);
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98 ylim([0 500]);
99 legend('$n = 4$','$n = 6$', '$n = 8$', '$n = 10$', '$n = 12$

', '$n = 14$', '$n = 16$')
100 grid on;
101 box on;
102 pbaspect([5/3 1 1]);
103 title('Average stochastic error for different $n$ as

normalized $s$ varies', 'Interpreter', 'latex');
104 xlabel('Normalized length of stochastic bit stream, $\frac{s

}{2^n - 1}$','Interpreter', 'latex');
105 ylabel('Average error $\epsilon_{sc}$','Interpreter', 'latex

');
106
107 %% Logarithmic normalized s versus averageError for

different n
108
109 figure;
110 data_x = [];
111 data_y = [];
112 for i = 1:length(n_array)
113 n = n_array(i);
114 s = s_array(s_array < 2^n);
115 x = log(s./max(s));
116 y = log(shiftdim(averageError(i,1:length(s)))./(2^(n

/2)));
117 plot(x,y, ['-k' markers{i}], 'LineWidth', 1);
118 data_x = [data_x x(3:end)];
119 data_y = [data_y y(3:end)'];
120 hold on;
121 end
122
123 combined_data = sortrows([data_x' data_y ']);
124 [P, S] = polyfit(combined_data(:,1), combined_data(:,2), 1);
125
126 plot(x, P(1).*x + P(2), '--k', 'LineWidth', 1);
127
128 xlim([min(x) max(x)]);
129 ylim([min(y) max(y)]);
130 legend('$n = 4$','$n = 6$', '$n = 8$', '$n = 10$', '$n = 12$

', '$n = 14$', '$n = 16$', 'Polynomial fit')
131 grid on;
132 box on;
133 pbaspect([5/3 1 1]);
134 title('Logarithmic normalized $\epsilon_{sc}$ for different

$n$ as $s$ varies', 'Interpreter', 'latex');
135 xlabel('Logarithmic normalized length of stochastic bit

stream, $s$','Interpreter', 'latex');
136 ylabel('$\frac{ln\left(\epsilon_{sc}\right)}{2^{n/2}}$','

Interpreter', 'latex');
137
138 %% Logarithmic normalized s versus averagePercentageError

for different n
139
140 figure;
141 for i = 1:length(n_array)
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142 n = n_array(i);
143 s = s_array(s_array < 2^n);
144 x = log(s./max(s));
145 y = log(shiftdim(averagePercentError(i,1:length(s)))

.*(2^(n/2)));
146 plot(x,y, ['-k' markers{i}], 'LineWidth', 1);
147 hold on;
148 end
149 xlim([min(x) max(x)]);
150 ylim([min(y) max(y)]);
151 legend('$n = 4$','$n = 6$', '$n = 8$', '$n = 10$', '$n = 12$

', '$n = 14$', '$n = 16$')
152 grid on;
153 box on;
154 pbaspect([5/3 1 1]);
155 title('Average stochastic error $\epsilon_{sc}$ for

different $n$ as $s$ varies', 'Interpreter', 'latex');
156 xlabel('Length of stochastic bit stream, $s$','Interpreter',

'latex');
157 ylabel('Average error $\epsilon_{sc}$','Interpreter', 'latex

');
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