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ABSTRACT 

 

In distributed transactional systems deployed over some massively decentralized 

cloud servers, access policies are typically replicated. Interdependencies ad 

inconsistencies among policies need to be addressed as they can affect performance, 

throughput and accuracy. Several stringent levels of policy consistency constraints and 

enforcement approaches to guarantee the trustworthiness of transactions on cloud servers 

are proposed. We define a look-up table to store policy versions and the concept of 

“Tree-Based Consistency” approach to maintain a tree structure of the servers. By 

integrating look-up table and the consistency tree based approach, we propose an 

enhanced version of Two-phase validation commit (2PVC) protocol integrated with the 

Paxos commit protocol with reduced or almost the same performance overhead without 

affecting accuracy and precision. 

A new caching scheme has been proposed which takes into consideration 

Military/Defense applications of Delay-tolerant Networks (DTNs) where data that need 

to be cached follows a whole different priority levels. In these applications, data 

popularity can be defined not only based on request frequency, but also based on the 

importance like who created and ranked point of interests in the data, when and where it 

was created; higher rank data belonging to some specific location may be more important 

though frequency of those may not be higher than more popular lower priority data. Thus, 

our caching scheme is designed by taking different requirements into consideration for 

DTN networks for defense applications. The performance evaluation shows that our 

caching scheme reduces the overall access latency, cache miss and usage of cache 

memory when compared to using caching schemes. 
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1. INTRODUCTION 

 

1.1 INTRODUCTION AND MOTIVATION FOR CLOUD TRANSACTION 

Cloud is a computing model that provides on-demand computing resources 

ranging from small – large scale applications to data centers over the internet on a pay for 

use basis. Cloud computing provides many features like elasticity, which is the ability of 

a system to automatically up-scale or down-scale the computing resources on demand as 

workload changes. Cloud based applications run on distant computers “in the cloud” that 

are owned and operated by others (Amazon, Google, Yahoo, Microsoft etc.,) and that 

connect to users’ computers via the Internet. It also provides cloud-based environment to 

support the complete life cycle of building and delivering web-based applications without 

the cost and complexity of buying and managing the underlying hardware, software, 

provisioning and hosting. 

One of  the  most  appealing  aspects  of  cloud  computing is  its  elasticity, which  

provides an  illusion of  infinite, on- demand  resources  [1]  making  it  an  attractive  

environment for  highly-scalable, multi-tiered applications. However, this can create 

additional challenges for back-end, transactional database systems, which were designed 

without elasticity in mind. Despite the efforts of key-value stores like Amazon’s 

SimpleDB, Dynamo, and Google’s Bigtable to provide scalable access to huge amounts 

of data, transactional guarantees remain a bottleneck [2]. 

The most important aspects of cloud computing are elasticity and scalability, 

which catalyzed much of the recent interest in cloud computing, raises many complex 

issues for back-end, transactional database systems. Cloud services often make heavy use 

of replication to ensure consistent performance and availability. A common trait 

characterizing the new generation of cloud data platforms is the adoption of weak 

consistency models, such as eventual consistency, restricted transactional semantics and 

non-serializable isolation levels. 

Eventual consistency allows data to be inconsistent among some replicas during 

the update process, but ensures that updates will eventually be propagated to all replicas. 

The major problem associated with this approach is the difficulty in maintaining the 
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ACID guarantees, in which Consistency is compromised to provide reasonable 

availability. 

Authorization policies describes the conditions under which users should be 

permitted access to resources and describes the relationships between the system 

principals, as well as the certified credentials that users must provide to attest to their 

attributes. The transactional database system is deployed in a highly distributed and 

elastic system, policies are typically replicated among multiple servers following the 

eventual consistency model. It therefore becomes possible based on policy-based 

authorization system is prone to make unsafe decisions using stale policies. 

Interesting consistency problems can arise as transactional database systems are 

deployed  in  cloud  environments and use  policy-based authorization systems  to  protect  

sensitive resources. In addition to handling consistency issues amongst database replicas, 

we must also handle two types of security inconsistency conditions. First, the system may 

suffer from policy inconsistencies during policy updates due to the relaxed consistency 

model underlying most cloud services. For example, it is possible for several versions of 

the policy to be observed at multiple sites within a single transaction, leading to 

inconsistent (and likely unsafe) access decisions during the transaction. Second, it is 

possible for external factors to cause user credential inconsistencies over the lifetime of a 

transaction [3]. For instance, a user’s login credentials could be invalidated or revoked 

after collection by the authorization server, but before the completion of the transaction. 

If the problems associated with policy consistency are not alleviated, the company or 

individual may face a potential risk. The company may leak information about customers 

and face harsh penalties and loss of credibility. 

Cloud services are widely adopted by various organizations for resource sharing 

and elasticity.  The vendors of cloud services generally lack consistency among the 

policies across all the servers. Due to this inconsistency, there is a possibility of 

transaction abort when a user tries to request with older policy. In this case, the user will 

not be able to access the data item as the policy doesn’t match with the newer policy. A 

user who earlier had access to the data item will not be able to perform any operations on 

the data item. Such situations should be avoided, and we present the below mechanism to 

resolve such issues. 
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In addition to handling consistency issues among database replicas, policy 

inconsistencies and user credential inconsistencies needs to be addressed for which 

possible solutions have been proposed. But there are performance and latency issues with 

these solutions and we address them in this paper. 

 

1.2 INTRODUCTION AND MOTIVATION FOR CACHING 

Caching data within DTNs is discovered as a means for both persisting data 

locally to make the data both more readily available in close proximity, and to reduce 

resource usage through a reduction in hops to the high priority data sources. Additionally, 

DTNs present an even more significant challenge for data persistence as they are, by 

nature generally isolated and disconnected from a larger network or the Internet. 

Therefore, DTNs must cache mission critical useful data to share within the network. 

Though local device caching of data is a useful method to accomplish data persistence 

and increase availability, it comes with its own set of challenges and problems in DTNs. 

Situations can arise where specific nodes within the network become over utilized by 

caching too many data points due to the uncertainty of data transmission, thus multiple 

data copies need to be cached at different locations to ensure higher data dissemination. 

The difficulty in coordinating multiple caching nodes due to the lack of persistence 

network connectivity makes it hard to optimize the trade-off between data accessibility 

and caching overhead. Thus, each node has to decide what data to be cached as nodes 

cannot design a cooperative caching schemes because of not knowing which other nodes 

they can reach. A situation may come where specific nodes become over burdened by 

caching too many important messages. This results in the storage space for that specific 

device becoming over utilized and the battery life being exhausted due to the device 

carrying a disproportionate amount of data and forwarding requests for the data it holds 

to each peer it meets. Caching in DTNs can create a situation where the data might not be 

proximate to the nodes that need it. This results in an increase in the energy utilization 

due to the need to disseminate the data across many peers. Caching can consider the 

location of the node, POIs and queries performed by the node and then predicting the 

caching needs at the next time instants. 
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DTN networks use caching as a technique to store some of the transferring files in 

order to satisfy the future requests reduced data access delay. Each Network Operating 

System (NOS) which uses DTNs requires a unique kind of caching method to fulfil its 

particular needs. From all the data caching methods we have studied, file popularity and 

cooperative caching have always been the main motivation behind the file selection for 

caching to satisfy future requests and how cache replacement should to be done. 

Although these methods are efficient in many general scenarios where users transfer 

picture or other kinds of media files in a busy network using mobile devices, there are 

some scenarios where these methods of caching entirely fail to address the requirement. 

In situations like Military networks, or any other defense data networks, the data need 

that need to be cached follows a whole different priority. Some files despite of low 

popularity should be cached with highest priority which is completely against the 

conventional caching methods that we use today. Some other classified data files even 

with the increasing demand the data replication should be restricted to a certain number 

of times in order to prevent data theft or other security issues. So, a new caching 

technique has to be designed which takes different requirements into consideration to 

fulfil this necessity in defense data networks. 

The simplest solution would be to just cache everything we can on every device 

and update it as we make connections to other nodes in the network, the problem with 

this is twofold: collisions, and space/energy constraints, so this approach is unrealistic. 

Because of this we must make decisions in exactly how we are going to cache data 

around this network. If an item is too popular a single node may become overwhelmed 

with requests for that data, so it should probably be replicated. In addition, data that is not 

cached locally must be retrieved with one or more hops around the network. This adds 

latency to the system, and consumes more power with the requests and responses for the 

data, so exactly where to store the data is another dimension of concern. And some data 

may not be as popular, but latency to it may be such a concern that it must be accessible 

quickly. These three elements: location, latency, and popularity of the data will be the 

primary qualities we use to judge data in how exactly to cache it. 
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2. RELATED WORK 

 

2.1 RELATED WORK IN SECURE CLOUD TRANSACTIONS DOMAIN 

Cloud providers lack services that guarantee both data and access control policy 

consistency across multiple data centers. In the article [3], several policy and user 

credential consistency problems are identified, and policy based authorization systems 

are used to enforce access control. In previous papers [4], [5], the confluence of data, 

policy, and credential inconsistency problems that can emerge using transactional 

database systems are addressed. In doing so, the authors made the following 

contributions: 

• Initially, formalization of the concept of trusted transactions is presented. Trusted 

transactions are those transactions that do not violate credential or policy 

inconsistencies over the lifetime of the transaction. The authors then presented a 

more general term, safe transactions, that is used to identify transactions that 

conform to the ACID properties of distributed database systems and are trusted in 

terms of the validity of the policy evaluation. 

• Since achieving ACID properties in distributed transactional databases has been 

extensively studied [4], [5], they focused on how to achieve trusted transactions. 

Accordingly, they defined different levels of policy consistency constraints as 

well as different enforcement approaches to guarantee the trustworthiness of 

transactions executing on cloud servers. 

• The authors also proposed a solution that involves an adaptation of the Two-Phase 

Commit (2PC) protocol to enforce trusted transactions, which we refer to as Two-

Phase Validation Commit (2PVC) protocol. The protocol ensures that a 

transaction is safe, as it ensures policy and credential consistency as well as data 

consistency. 

• The authors presented a performance analysis study of the proposed approaches. 

Proof of Authorization 

We now present a formal definition of a proof of authorization. Let fsi = <qi, si, 

Psi(m(qi)), ti, c> denote the proof of authorization evaluated at server si, where qi is a 

query defined over a set of read/write requests submitted to that server. Psi denote the 
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proofs of authorizations enforced by server si and belonging to the same administrative 

domain A. Function m is a mapping such that m : Q → 2D, that is, m identifies the set of 

data items that are being touched by query q. Time ti is the time instance at which the 

proof of authorization is being evaluated, and finally c is a set of credentials presented by 

the user to complete the proof of authorization such that c ⊆ C which is the set of all 

credentials. 

Let F denote the set of all proofs of authorizations, and the set TS contains all 

possible timestamps. The validity of each proof of authorization f ∈ F at time instance t is 

evaluated using the predicate eval(f, t) such that eval : F ×TS → B. The Boolean sign is 

true if the proof of authorization is valid. The validity of a proof of authorization is 

asserted in two cases: 

1) Credentials are syntactically and semantically valid: According to the definitions 

in [4], a credential ck is syntactically valid if the following conditions hold: (i) it is 

formatted properly, (ii) it has a valid digital signature, (iii) the start time of each 

transaction α(ck) has passed, and (iv) the time at which the transaction finishes 

execution and is ready to commit β(ck) has not yet passed. A credential ck issued 

at time ti is semantically valid at time t if an online method of verifying ck’s status 

indicates that ck was not revoked at time t′ and ti ≤ t′ ≤ t. 

2) The inference rules are satisfying: A policy is a set of inference rules that are 

encoded by policy makers to capture system’s access control regulations. Given 

policy P, and user credentials C, if the inference rules of the policy can be 

satisfied using the user credentials, then the proof of authorization is said to be 

valid and the access is granted accordingly. 

Consistency Levels 

Since transactions are executed over time, the state information of the credentials 

and the policies enforced by different servers are subject to changes at any time instance, 

therefore it becomes important to introduce precise definitions for different consistency 

levels that could be achieved within transaction’s lifetime. These consistency models 

strengthen the notion of trusted transaction by defining the environment in which policy 

versions are consistent relative to the rest of the system. Before we do that, we define a 
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transaction’s view in terms of different proofs of authorizations evaluated during the 

lifetime of a transaction. 

Two consistency models have been proposed to handle consistency within 

transactions: 

• View Consistency: A view VT ={<qi, si, Psi (m(qi)), ti, c>, . . . , <qn, sn, Psn (m(qn)), 

tn, c>} is view consistent, or Φ-consistent, if VT satisfies a predicate Φ-consistent 

that places constraints on the versioning of the policies such that Φ-consistent(VT) 

↔ ∀i, j : ver(Psi) = ver(Psj) for all policies belonging to the same administrator A, 

where function ver is defined as ver : P → N where P is set of all policies and N is 

the infinite set of natural numbers. 

The policy versions should be internally consistent among all servers 

executing the transaction. With a view consistency model, the policy versions 

should be internally consistent across all servers executing the transaction. The 

view consistency model is weak in that the policy version agreed upon by the 

subset of servers within the transaction may not be the latest policy version v. It 

may be the case that a server outside S servers has a policy P that belongs to the 

same administrative domain A and with a version v′ > v. A more strict consistency 

model is the global consistency and is defined as follows. 

• Global Consistency:   A view VT ={<qi, si, Psi (m(qi)), ti, c>, . . . , <qn, sn, Psn 

(m(qn)), tn, c>} is global consistent, or  Ψ-consistent, if VT satisfies a predicate Ψ-

consistent that places constraints on the versioning of the policies such that  Ψ-

consistent(VT ) ↔ ∀i : ver(Psi) = ver(P) for all policies belonging to the same 

administrator A, and function ver follows the same aforementioned definition, 

while ver(P) refers to the latest policy version. 

The policies used to evaluate the proofs of authorization during a 

transaction execution among S servers should match the latest policy version 

among the entire policy set P, for all policies enforced by the same administrator 

A. 

Trusted Transactions 

Trusted transactions are defined as transactions which do not fail to agree with the 

credential or policy inconsistencies during execution. Given a transaction T ={q1, q2, . . . , 
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qn} and its corresponding view VT , T is trusted iff ∀fsi ∈VT : eval(fsi , t), at some time 

instance t : α(T) ≤ t ≤ β(T)∧(Φ-consistent(VT)∨Ψ-consistent(VT )). 

Based on the consistency models, the term safe transaction is defined which is a 

trusted transaction and satisfies all data integrity constraints imposed by the database 

management system. In practical, a transaction will commit if it is safe and any unsafe 

transaction is forced to rollback. 

Trusted Transactions Enforcement 

A variety of light-weight proof enforcement and consistency models (Deferred, 

Punctual, Incremental, and Continuous models) have been proposed that enforced 

increasingly strong protections with minimal runtime overheads. A brief description of 

different proofs of authorization models is given below: 

• Deferred proofs of authorization are evaluated simultaneously at commit time to 

decide whether the transaction is trusted. A transaction T and its corresponding 

view VT , T is trusted under the deferred proofs of authorization approach, iff at 

commit time α(T), ∀fsi ∈ VT : eval(fsi,β(T))∧(Φ-consistent(VT) ∨ Ψ-consistent(VT)). 

By employing deferred proofs of authorizations, transactions are most likely to 

execute faster but on the expense of risking a transaction to be forced to rollback 

after it has proceeded till the commit time in case of violation of the trusted 

transaction condition. 

• Punctual proofs of authorization are evaluated instantaneously whenever a query 

is being handled by a server. This is a proactive approach and facilitates early 

detection of unsafe transactions, saving system from getting into costly undo 

operations. Proofs of authorization are re-evaluated at the commit time. Given a 

transaction T and its corresponding view VT, T is trusted under the Punctual proofs 

of authorization approach, iff at any time instance ti : α(T) ≤ti ≤ β(T) ∀ fsi ∈ VT : 

eval(fsi, ti) ∧ eval(fsi , β(T)) ∧ (Φ-consistent(VT) ∨ Ψ-consistent(VT)). 

Punctual proofs of authorization do not impose any restrictions on the 

freshness of the policies used by the servers to evaluate the proofs during the 

transaction execution. It is only at commit time when the proofs of authorization 

are re-evaluated while enforcing view consistency or global consistency. Hence, 

due to the weak consistency paradigm on which cloud servers operate, a server 
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might evaluate a proof based on an old version of a policy and in that case there is 

no guarantee that the decision made by that server is valid or invalid. 

Consequently, servers might have false negative decisions and deny access to 

queries, and on the other hand, false positive decisions could also be made. 

• Incremental Punctual proofs of authorization doesn’t allow a transaction to 

proceed unless each server achieves the desired level of the policy consistency 

with all previous servers. All participating servers are forced to be in consistent 

view with the first executing server and if a newer policy version shows up at a 

later server, the transaction aborts. Given a transaction T and its corresponding 

view VT , T is trusted under the Incremental Punctual proofs of authorization 

approach, iff at any time instance ti : α(T) ≤ ti ≤ β(T), ∀fsi ∈VT
ti: eval(fsi, ti) ∧ (Φ-

consistent(VT
ti) ∨ Ψ-consistent(VT

ti)). 

If the first server s1 does not have the latest version, the proof of 

authorization at that server is risked to be evaluated using an older policy. Note 

that in this scenario if any of the other servers has a newer policy version, the 

consistency condition will not be satisfied and the transaction will be forced to 

rollback, saving the transaction from doing any further untrusted authorizations. 

• Continuous proofs of authorization are evaluated throughout a transaction’s 

lifetime and if a newer version of the policy is found at any of the participating 

server, all previous proofs have to be re-evaluated after updating policies on all 

inconsistent servers. A transaction T is declared trusted under the Continuous 

approach, iff ∀1≤i≤n∀1≤j≤i : eval(fsi, ti) = true ∧ eval(fsj, ti) = true ∧ (Φ-

consistent(VT
ti) ∨ Ψ-consistent(VT

ti)) at any time instance t : α(T) ≤ ti ≤ β(T). 

In Continuous proofs of authorizations, at every time instance when an 

evaluation of a proof of authorization is being made, all previous proofs of 

authorizations are forced to be re-evaluated before the transaction can proceed. If 

any of the evaluations fail at any time instance, the entire transaction is forced to 

rollback. 

Two-Phase Validate Commit Algorithm 

A two-phase validation commit protocol (2PVC) is proposed which is an 

improvised version of the two-phase commit protocol (2PC) and the two phase validation 
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protocol (2PV). In 2PVC validation of the authorization policy and credentials are carried 

out compared to 2PC in which data integrity check is performed. 2PVC will evaluate the 

policies and authorizations within the voting phase. That is, when the TM sends out a 

Prepare-to-Commit message for a transaction, the participant server has three values to 

report: (1) the YES or NO reply for the satisfaction of integrity constraints as in 2PC, (2) 

the TRUE or FALSE reply for the satisfaction of the proofs of authorizations as in 2PV, 

and (3) the version number of the policies used to build the proofs (vi, pi) as in 2PV. 

________________________________________________________________________ 

Algorithm: Two-Phase Validation Commit 2PVC 

1  Send “Prepare-to-Commit” to all participants 

2  Wait for all replies (Yes/No, True/False, and a set of policy versions for 

each unique policy) 

3  If any participant replied No for integrity check 

4          ABORT 

5  Identify the largest version for all unique policies 

6  If all participants utilize the largest version for each unique policy 

7          If any responded False 

8                   ABORT 

9          Otherwise 

10                   COMMIT 

11  Otherwise, for participants with old policies 

12        Send “Update” with the largest version number of each 

policy 

13          Wait for all replies 

14          Goto 5 

The process given in Algorithm 2 is for the TM under view consistency. It is very 

similar to that of 2PV with the exception of handling the YES or NO reply for integrity 

constraint validation and having a decision of COMMIT rather than CONTINUE. The 
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TM enforces the same behaviour as 2PV in that it identifies policy inconsistency, sends 

Update messages to create consistency, and re-executes the first phase. The same changes 

to 2PV can be made here to provide global consistency. That is, the global 2PVC does 

not need to determine the latest version number from the participant votes. Instead, it 

simply asks some master server on the system which knows the latest policy version at 

Step 5.  

Complexity 

The cost of 2PC is typically measured in terms of log complexity (i.e., the number 

of times the protocol forcibly logs for recovery) and message complexity (i.e., the 

number of messages sent). We add another metric, namely the number of proof 

evaluations. These metrics are given with respect to the number of participants involved 

with the decision, n, the number of queries, u, and the number of voting rounds, r. The 

log complexity of 2PVC is no different than normal 2PC, which has a log complexity of 

2n + 1 [4]. Table 2.1 shows the complexity—in terms of the maximum number of 

messages and proofs—for each proof of authorization scheme for both view and global 

consistency. 

Simulated workloads have been used to experimentally evaluate implementations 

of the consistency models relative to three core metrics: transaction processing 

performance, accuracy and precision.  

Table 2.1. Contrasting The Various Proofs Of Authorization 

 Deferred Punctual Incremental Continuous 

 View Global View Global V

iew 

Global View Global 

Messages 2n + 

4n 

2n + 

2nr + r 

2n + 

4n 

2n + 

2nr + r 4n 4n + u 

u(u + 1) 

+ 4n 

u(u + 1) + 

u + 2n + 

2nr + r 

Proofs 2u - 1 ur u+ 2u 

− 1 

u + ur u u u(u+1)/2 u(u+1)/2 + 

ur 
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2.2 RELATED WORK IN DTN OPPORTUNISTIC CACHING DOMAIN 

The paper [20] deals with improving the coordination between the multiple 

caching nodes in the delay tolerant networks (DTN's) to optimize the data accessibility 

and caching overhead. The main challenges that are dealt in this paper are how to select 

the nodes that are optimal to cache the data. How to overcome the limited buffer space in 

central nodes to improve the total caching limit, how to prioritize the data that need to be 

cached are all issues plagued by any research into this topic. 

To select the Network Central Locations (NCL's) three types of NCL selection 

methods are used namely NCL selection metric, Trace-based validation and Practical 

NCL selection. In NCL selection metric the nodes which participate most in connecting 

all the nodes using the shortest path with less cost are selected and made as NCLs. In 

trace-based validation we select the nodes based on their popularity. The nodes are 

selected using realistic DTN traces. These traces are observed for a certain amount of 

time and each node popularity is decided on how well they are connected to the other 

nodes. In practical NCL selection we select 'K' best NCLs that are available in the 

network. In this method we use NCL selection metric that was used before, but we try to 

limit the NCL's to K number. Two ways to make this selection are global selection where 

the nodes are selected recursively to support the previous nodes until K nodes are 

selected and distributed selection where the k nodes are selected independent of the 

global network knowledge. 

To expand the cache buffer space if all the NCLs cache is full then the nodes that 

are close to NCLs are selected and they are used to store the less popular data. To 

improve the coordination between the NCLs whenever two NCL’s encounter each other 

they compare and share their respective information to optimize the information. So, with 

the increase in time all the NCLs might encounter each other and the information they 

carry becomes optimized. 

Coordination between different NCLs and optimization of data of every NCL can 

become an endless optimization cycle which consumes a lot of energy if the network is 

very big and can never be optimized. To overcome this drawback, we think the NCL 

optimization should be limited to certain range and the range depends on how diverse the 

nodes are and how big the network is. From this paper we can understand how NCL 
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placement in the network is critical for the efficient data transmission and how caching 

space limitations can be improved. 

In the paper [21], we consider a delay-tolerant content sharing network built over 

a network of mobile users and wireless access points, where the users download content 

opportunistically from each other via short-range communications (e.g. Bluetooth or Wi-

Fi). If the requested content is not found within the prescribed time, the users will 

download it through the more expensive 3G network. 

This paper discusses the factors that contribute for caching in DTNs are Cache 

capacity within each node, User mobility, Density of the access points, how well the 

requests are distributed within the nodes to find the data and contact duration i.e. at least 

for long should the connection exist to transfer the complete file. The ultimate goal is to 

send the query request to all the nodes and retrieve the data back to requested node within 

a certain amount of time. 

Cooperative caching is the method used in this paper and to achieve that 

cooperation between the nodes we use Zipf’s law. According to Zipf’s law every file has 

a certain probability of getting requested and the files with higher probability should be 

replicated more to improve the data retrieval time. Due to the additional time constraint 

i.e. to retrieve the data within a certain amount of time, four different pushing methods 

are used to flood the nodes with all the available data. 

1) Random Pushing: Each mobile device randomly stores K files in their cache. 

2) K-most Popular: The K files with highest probability of request are cached. 

3) Optimal: Files are distributed according to optimal file distribution algorithm. 

4) Pushing Algorithm: Files are distributed because of the above selective pushing 

algorithm. 

From the analysis, to improve the overall average hit ratio of the cache, the files 

which are popular should be replicated more and less popular files should be less 

replicated. By storing more copies of the popular files and less copies of the unpopular 

files, the overall hit rate could possibly improve. The miss ratio decreases exponentially 

with the patience time. Random push strategy has the highest miss ratio compared to 

others whereas k-most popular miss ratio didn’t change much with increase in file 

number. Optimal file pushing strategy got less miss ratio with the increase in file number. 
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One assumption made in this paper by authors is that all the nodes has the same amount 

of cache space and all the nodes are well and uniformly connected to each other. So, there 

is no discussion about the selection of NCLs in the network. This clearly is a drawback 

because in a practical situation no two nodes behave similarly and NCLs play a huge role 

in DTN caching data retrieval. 

The main contribution of the paper [22] is to provide a formal framework for the 

characterization of the performance of optimal in-network caching in ICNs, as well as 

opportunistic in-network caching at the edge of ICNs—i.e., close to the end-users. The 

authors used Independent Reference Model (IRM), which assumes that the objects are 

equal sized whose references occur independently, to study the benefits of using 

universal caching compared to a simple policy of caching only at the edge of the network 

assuming a simple hierarchical caching structure. 

The authors consider a hierarchy of LRU (Least Recently Used) caches in the 

form of a tree with its root acting as the content source. The paper assumes that the 

source stores permanent copies of all the information objects in the system. Alternatively, 

the source can be considered as a collection of all possible content hosts that are logically 

collapsed into one single entity as the root of the tree in our model. The tree comprises L 

+ 2 levels. The content subscribers (i.e., users or information requesters) are at the 0th 

level, while the content source is at level L + 1. Subsequently, there exist L levels of 

nodes with caching capabilities between users and the content source which are 

sequentially labelled from bottom (level 1) to the top (level L). 

The caching paradigm used to optimize is called “on-path caching” which works 

as follows. When a request for an object is raised at level 0, it is forwarded along the 

(unique) path of intermediate caches towards the root until a cache hit occurs. If all cache 

accesses are missed along the path, the request will be fulfilled by fetching a copy of the 

object directly from the source (root). Once located, the object is transferred on the 

reverse path back to the requester and a local copy is also stored on each and every node 

along the path. 

The results using this model demonstrate that, while optimal caching naturally 

tends towards the edge with an increased caching budget, higher degrees of reference 

locality further accelerate this transition. The results indicate that the optimal caching 
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approach based on universal caching provides only marginal benefits over the simple 

policy of caching only at the edge routers of the ICN. The paper failed to take into 

consideration the following aspects: 

• More realistic topologies and Develop model for random networks. 

• Verify synthetic traces for locality of reference model with real traffic traces. 

• New approaches to integrate routing with edge caching. 

The paper [23] discusses about locating the Network Central Locations (NCL) 

within all the DTNs based on the node’s social levels and how well it is connected to 

other nodes. Selected data which has great popularity in a region is cached on a node at 

that location. Even though the most popular data of the network has many duplicate 

copies within the NCLs the popularity of the data is gradually decreased depending on 

that node’s distance from the node where that data has highest popularity. Caching space 

limitation is improved by utilizing the cache space of the other selective nodes near the 

NCLs. The cache of the NCLs is replaced periodically with new data based on the 

frequency of data usage, user requests and freshness of data access. To find the best 

nodes to be selected as NCLs within all DTNs K-Means Clustering algorithm is used. 

This paper proposes a new method called social based forwarding approach for 

content retrieval. This method follows several steps which are as follows. 

Compute Social-Tie Relationship: Two nodes are said to have a strong tie if they 

have met frequently in the recent past. We compute the social tie be1tween two nodes 

using the history of encounter events. 

Compute centrality: Each node maintains a social-tie table that contains the social 

distances from the current node to all other encountered nodes. During the encounter 

period, the social-tie table is exchanged and merged into the other node’s social-tie table. 

Based on the social-tie table, a node can compute each other node’s centrality. We 

estimate the centrality by considering both the average social-tie values and their 

distribution. Namely, we favor nodes with high, uniformly distributed social ties to all 

other nodes. 

Compute Social Level: Nodes that have similar centrality tend to have similar 

level of contacts with other nodes and thus similar knowledge on content providers. To 

reduce the forwarding cost of the content query phase, we propose to group together 
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nodes with similar centrality into the same cluster. Interest packets are only forwarded 

from one cluster to another cluster. There is no Interest forwarding within a cluster. Each 

cluster represents a social level in the network. 

Content Name Digest Convergence: To facilitate content query, each content 

provider actively announces its content name digest (a list of names of contents a node 

owns) to nodes in higher centrality clusters. Each node maintains a local data structure 

called digest table (which maps the provider ID to the digest) to store the received digests 

from lower centrality nodes. Furthermore, when nodes encounter each other, the digest 

table will be sent to the node with the higher centrality. Throughout this process, the 

content name digests from each content provider are converged toward higher centrality 

nodes. Subsequently, higher centrality nodes have broad knowledge of which node owns 

which content in the network. 

Interest Packet Forwarding: The Interest packet is carried by the requester and is 

forwarded to the first encountered node that has a higher social level than the requester 

itself. Subsequently, the requester keeps a copy of the Interest packet and forwards it to 

the next encountered node that has an even higher social level than the last relay node. 

After a node receives an Interest packet from other nodes it encountered, it will 

first check its local digest table to see if there is any matched name. If no matched name 

is found, it will continue forwarding the Interest packet. Each relay node performs the 

same strategy; forwarding the Interest packet to the next relay node that has a higher 

social level than the last relay node. Following this strategy, the Interest packet is 

forwarded upward, level by level, toward the most popular node in the centrality 

hierarchy. 

Data Packet Forwarding: After the Interest packet reaches the content provider, 

the content provider will social-tie route the data packet back to the requester. The 

content provider only responds once to the same Interest packet that originates from the 

same requester. Subsequent received duplicate Interest packets are ignored. The 

prominent issues faced during caching schema are what data is needed to be cached, 

where the data needed to be cached and how the cached data should be replaced when 

new data comes into play. 
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Cached Data Selection: Intuitively, popular data is a good candidate for caching. 

We compute the content popularity (relative to the current node) by considering both the 

frequency and freshness of content requests arriving at a node over a history of request 

arrivals. 

Cache Location: If each node has unlimited cache space, then it is trivial to 

identify suitable caching locations, as data can be cached everywhere. Given that each 

node has limited space for caching, we follow a conservative approach and only cache 

data at nodes satisfying the following conditions: 

1) Selected nodes are on the query forwarding paths. 

2) They are traversed through by many common requests. 

3) Caching in neighbors of central nodes, whose caches are heavily utilized, is 

another optimization implemented in this scheme. 

Cache Replacement: When the cache buffer is full, existing data must be evicted 

from the cache, to accommodate new data. There are two related issues: 1) Determining 

the amount of data to evict. 2) Identifying particular data to evict. For the first issue, we 

need to evict as much data as the size of the new data. Regarding the second issue, we 

propose to remove data from the cache that is identified as least popular. That is, we 

consider both the frequency and freshness of data access. 

Caching Protocol: Nodes periodically advertise their spare cache capacity to each 

other. This allows central nodes to opportunistically make decisions regarding which 

cached data to move to neighboring nodes so that central nodes have more space to cache 

new popular data. 

Cooperative caching is the main key to find which data should be stored at which 

NCL so that the data retrieval is easier and query requests are processed efficiently. Since 

the file popularity decreases gradually the query search can be stopped after certain range 

from the NCL where the data was popular. From this paper we can understand how the 

file popularity helps to cache a file for a long time and how modifying this file popularity 

index for a file manually can improve a file’s life-time which has less requests but of high 

value for some users. This paper fails to address the following issues. 

• Trying to update the social tie values and local digest table involving all the nodes 

increases the nodes power consumption. 
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• How to preserve the data which is less popular but very important for some set of 

users. 

In paper [24] content distribution is defined as the task of providing requested 

data to the clients. Requests are constructed by the client and transmitted to a node 

capable of servicing them, usually a server or repository. This is different from caching, 

which ideally is used to provide the same data item to a large number of clients and 

thereby involves individual nodes keeping a copy of the data item so that they can fulfil 

requests just as well as the server. A mobile repository, sometimes called a data store or a 

throwbox, contains a large collection of related items, thus allowing the device to fulfil 

most requests. 

In DTNs, social context can be used to improve the efficiency of certain tasks 

such as routing or caching. Clients’ content requests tend to be influenced by social 

patterns. In general, if a client’s contacts request a specific data item, that client has a 

greater probability of requesting the item as well. To take advantage of this tendency, a 

node first must identify the consistent contacts of a node. In a dynamic environment in 

which nodes are added and removed, the social structure must accommodate such 

changes. 

The purpose of the Social Content Distribution (SCD) schema is to locate the 

optimal position for mobile repositories. This is accomplished by evaluating the existing 

social structure of the network, identifying which nodes and groups issue frequent 

content requests, and locating the devices most capable of fulfilling these requests. 

Initially, a node identifies its frequent contacts, forming small groups. These groups are 

merged, joined, and left by nodes to accurately reflect the network’s social structure. The 

end result is the positioning of repositories in close proximity to requests, increasing 

content availability and reducing the average delivery time. 

If a set of nodes meet frequently, the algorithm will assume the nodes are in a 

group. The request predictions are based on historical patterns; if a node requests data 

from a throwboxes frequently or are in a social group whose members frequently request 

content, the throwboxes assumes it will do so in the future. Based on the nodes’ predicted 

content request, the throwboxes relocates itself to serve these requests quickly. 



 

 

19 

Grouping: In this context, a social group is a collection of nodes that have regular 

contact with each other. Nodes within a social group maintain group data, including 

group membership and the metrics of all group members. All nodes maintain their group 

list in one of following three ways: 

i) Two nodes having regular contact with one another form a new social group: 

The first step in determining any groups formed by nodes is to establish a metric by 

which to measure the distance between two nodes. The SCD schema calculates the 

percentage of time spent in direct contact, using an exponential moving average formula 

to adjust the current estimate. With this information, a cumulative estimate of the contact 

strength is calculated and compared to a group formation threshold. When the contact 

strength exceeds a control threshold, the nodes are considered close enough to form a 

new group. 

ii) Two social groups with similar members merge: By tracking the contact 

strength between nodes, a series of two-node social groups can be formed. The next step 

is to integrate these links into larger groups by merging similar groups. Nodes that are 

joint members of two groups will periodically review the group data for merges. If the 

joint node determines that the two groups are similar enough, then a SUGGEST message 

is sent to the group head of the smaller of the two groups. This message indicates that the 

node believes that merging the two groups is justifiable. Performing merges in this 

manner updates groups in a limited environment. The drawback is that it does not ensure 

that all nodes of the group are strongly connected to all members of the new group. To 

address this issue, nodes can resign from groups to which they no longer have a strong 

attachment. 

iii) Nodes resign from groups in which they no longer participate: Periodically, 

nodes will review their group list to ensure that they are still participating. The average 

contact strength to all group members is calculated, and if it is beneath ψ, the node 

resigns from the group. To avoid fragmentation, the sending node will not remove any 

group data until the message has been confirmed. 

Content Repository Positioning: 

i) Request Frequency: To determine the optimal position for a repository, it is 

necessary to identify nodes which frequently request data items. Whenever a node makes 
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a user request, the update process estimates the average time between requests based on 

the previous estimate and the control variable threshold, which determines how much 

emphasis, is placed on historical data. This process allows nodes to maintain up to-date 

estimates adjusted to reflect their individual request patterns. 

ii) Group Request Score: A node’s ranking depends on its own ability, as well as 

the ability of its contacts, to deliver a content item to requesting nodes. A node can 

calculate its Request with Group Score (RGS) which is the time required for a node or a 

neighboring node to serve a data request. 

iii) Repository Position Ranking: At this stage of the process, nodes are aware of 

the frequency with which they contact other nodes (Request Frequency) and how often 

these nodes will request content, either on their own behalf or that of their neighbors 

(Group Request Score). The ranking algorithm establishes a metric, the Rank Position 

Score (RPS), which is the sum of another node’s chance of requesting the data times the 

chance of encountering node. If RPS of Node B is greater than RPS of Node A, this 

indicates that Node B is closer than Node A to other nodes that make more frequent 

requests. A message updating the data owner is sent, and the entire repository shifts. 

This paper presented a social algorithm, identifying groups dynamically by 

measuring the contact intervals. It then used this data to accurately identify which nodes 

served as optimal positions for mobile repositories. 
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ABSTRACT 

 

In distributed transactional systems deployed over some massively decentralized 

cloud servers, access policies are typically replicated. Interdependencies and 

inconsistencies among policy version replicas can affect performance, throughput and 

accuracy, which can increase the transaction failure rate and cause long delays. Thus, 

policy and user credential inconsistencies need to be addressed. Several stringent levels 

of policy consistency constraints and enforcement approaches to guarantee the 

trustworthiness of transactions on cloud servers are proposed. However, there are 

performance issues associated with the policies proposed while retrieving the latest 

policy versions present in various cloud servers. In this paper, first, we define a look-up 

table in which the policy versions used for authorization is stored and updated on a 

regular basis and this information can be easily retrieved by the transaction manager. 

Next, we use the concept of “Tree-Based Consistency” approach to maintain a tree 

structure of the servers where a particular data item is replicated. By integrating look-up 

table for policy versions and the consistency tree based approach, finally, we propose an 

enhanced version of Two-phase validation commit (2PVC) protocol integrated with the 

Paxos commit protocol to increase the number of commits of transactions with reduced 

or almost the same performance overhead (transaction execution time) without affecting 

accuracy and precision, but reducing the number of transaction aborts in comparison with 

a most recent work. 
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 INTRODUCTION 

 

Cloud provides on-demand [1] resources for highly-scalable multi-tiered 

applications to reduce the latency, and provide resiliency as needed. However, this can 

create additional challenges for back-end transactional database systems, which were 

designed without elasticity. Despite the efforts of key-value stores like Dynamo [7] and 

Bigtable [8] to provide scalable access to huge amounts of data, transactional guarantees 

remain a bottleneck [2]. 

       Cloud services make use of replication to ensure consistent performance 

and availability. A common trait characterizing the new generation of cloud data 

platforms is the adoption of weak consistency models, such as eventual consistency, 

restricted transactional semantics and non-serializable isolation levels. Eventual 

consistency allows data to be inconsistent among some replicas during the update 

process, but ensures that updates will eventually be propagated to all replicas. The major 

problem associated with this approach is the difficulty in maintaining the ACID 

guarantees, in which consistency is compromised to provide reasonable availability. 

Authorization policies describe the conditions under which users should be 

permitted access to resources and describes the relationships between the system 

principals, as well as the certified credentials that users must provide to attest to their 

attributes. The transactional database system is deployed in a highly distributed and 

elastic system; policies are typically replicated among servers following the eventual 

consistency model. It therefore becomes possible, based on policy-based authorization 

system, to make unsafe decisions using stale policies. 

Interesting consistency problems can arise as transactional database systems are 

deployed in cloud environments and use policy-based authorization systems to protect 

sensitive resources. In addition to handling consistency issues amongst database replicas, 

we must also handle two types of security inconsistency conditions. First, the system may 

suffer from policy inconsistencies during policy updates due to the relaxed consistency 

model underlying most cloud services. For example, it is possible for several versions of 

the policy to be observed at multiple sites within a single transaction, leading to 

inconsistent (and likely unsafe) access decisions during the transaction. Second, it is 
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possible for external factors to cause user credential inconsistencies over the lifetime of a 

transaction [3]. For instance, a user’s login credentials could be invalidated or revoked 

after collection by the authorization server, but before the completion of the transaction. 

If the problems associated with policy consistency are not alleviated, the company or 

individual may face a potential risk. The company may leak information about customers 

and face harsh penalties and loss of credibility.  

Due to inconsistency among the policies across the servers, there is a possibility 

of transaction abort when a user tries to request with older policy. In this case, a user will 

not be able to access the data item as the policy doesn’t match with the newer policy. A 

user who earlier had access to the data item will not be able to perform any operation on 

the data item. Such situations should be avoided. 

In addition to handling consistency issues among database replicas, policy 

inconsistencies and user credential inconsistencies need to be addressed for which 

possible solutions have been proposed [4,5]. These papers address the data, policy, and 

credential inconsistency problems in transactional database systems deployed in the 

cloud. The notion of trusted transactions when dealing with proofs of authorization is 

defined. Accordingly, it proposes several stringent levels of policy consistency 

constraints, and present different enforcement approaches to guarantee the 

trustworthiness of transactions executing on cloud servers. This work also formalized the 

concept of trusted transactions; transactions that do not violate credential or policy 

inconsistencies over the lifetime of the transaction. It defines several different levels of 

policy consistency constraints and corresponding enforcement approaches that guarantee 

the trustworthiness of transactions executing on cloud servers. The authors used Two-

Phase Validation Commit (TPVC) protocol as a solution, which is a modified version of 

the traditional Two-Phase Commit protocol. It ensures that a transaction is safe by 

checking policy, credential, and data consistency during transaction execution. The 

previous work presented several approaches for checking and enforcing consistency 

during transaction execution. However, it never considered enforcing any level of 

consistency proactively into the system. The whole cloud system is based on Eventual 

Consistency and as a result, there is a high chance of rollbacks after spending a 

considerable time executing a transaction. These rollbacks increase significantly if either 
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the policy updates occur too frequently or the average transaction time is more. Another 

issue is that their proposed solution is based on traditional 2PC, which is not non-

blocking, and thus, any failure in the system will result in a transaction abort.    

In our work proposed here, we use a look up table in which the policy versions of 

the different servers used for authorization is stored and updated on a regular basis, which 

can be easily retrieved by the transaction manager. To reduce the interdependency among 

replica servers and maintain strict policies, we integrate it with the concept of Tree-Based 

Consistency [6] to maintain a tree structure of the nodes where a data item is replicated. 

By making use of look-up table and the tree based approach, we propose an enhanced 

version of Two-phase validation commit protocol (TPVC) integrated with the Paxos 

commit protocol which ensures safety of the transaction by checking policy, credential 

and data consistency during transaction execution and reduces the performance overhead 

in case of failures without affecting accuracy and precision during transaction executions. 

The performance using simulation study shows an increase in transaction throughput and 

commit ratio compared with recent work [5] with update rate of 1150ms. This is due to 

increase in the number of commits and decrease in the number of aborts, which are 

generally caused by lack of consistency and fault tolerance in [5]. Stricter consistency 

reduces the number of aborts caused due to inconsistencies, and integration of Paxos 

makes sure that no transaction is aborted due to faults in the system. Thus, we are able to 

enforce strict-consistency with increased reduction in aborts, which can reduce latency 

and cost of overhead of acquiring resources and re-executing those distributed 

transactions again. 

   

 LITERATURE REVIEW AND PRELIMINARIES 

 

Many database solutions have been proposed for the cloud environment like 

Dynamo [7], BigTable [8], and Cassandra [9]. Cloud providers lack services that 

guarantee both data and access control policy consistency across multiple data centers. 

Such consistency models add a new dimension to the complexity in the design of large-

scale applications, and introduce a new set of consistency problems [11]. In [12], the 

authors presented a model that allows users to express consistency and concurrency 
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constraints on their queries that can be enforced by the DBMS at runtime. On the other 

hand, [13] introduces a dynamic consistency rationing mechanism, which automatically 

adapts the level of consistency at runtime. Our work focuses on attaining both data and 

policy consistency, while both of these works [12,13] and [10] focus on data consistency. 

CloudTPS provides full ACID properties with a scalable transaction manager 

designed for a NoSQL environment [14]. However, CloudTPS is primarily concerned 

with providing consistency and isolation upon data without regard to considerations of 

authorization policies. In [19], it provides a cure, a causal consistency model for 

performance improvement. 

The work in [15] proactively ensures that data stored at a particular site conforms 

to the policy stored at that site. If the policy is updated, the server will scan the data items 

and throw out any that would be denied based on the revised policy. It is obvious that this 

will lead to an eventually consistent state where data and policy conform, but this work 

only concerns itself with local consistency of a single node, not with transactions that 

span multiple nodes. 

The consistency of distributed proofs of authorization has previously been 

studied, though not in a dynamic cloud environment (e.g., [3]). The authors develop 

protocols that enable various consistency guarantees to be enforced during the proof 

construction process to minimize these types of security issues. These consistency 

guarantees are similar to notions of safe transactions in [4]. However, our work addresses 

the case in which policies—in addition to credentials—may be altered or modified during 

a transaction. 

In [4], several policy and user credential consistency problems are identified and 

policy based authorization systems are used to enforce access control. In [4, 5], the 

confluence of data, policy, and credential inconsistency problems that can emerge using 

transactional database systems are addressed. Since achieving ACID properties in 

distributed transactional databases has been extensively studied [3,16], they focused on 

how to achieve trusted transactions. 

Two consistency models have been proposed to handle transactions. A transaction 

is said to be View Consistent if all the servers participating in transaction execution have 

the same policy version. A transaction is said to be globally Consistent if all the servers 



 

 

26 

participating in transaction execution have the same policy version as the latest policy in 

the entire cloud. Trusted transactions are defined as transactions which do not fail to 

agree with the credential or policy inconsistencies during execution. The term safe 

transaction is defined as a trusted transaction, which satisfies all data integrity constraints 

imposed by the database management system. In practical, a transaction will commit only 

if it is safe and any unsafe transaction is forced to rollback. 

The authors proposed a solution involving an adaptation of the Two-Phase 

Commit (2PC) to enforce trusted transactions, which is referred to as Two-Phase 

Validation Commit (2PVC) protocol. The protocol ensures that a transaction is safe, as it 

ensures policy and credential consistency as well as data consistency. Authors introduced 

trusted transactions; that do not violate credential or policy inconsistencies over the 

lifetime of the transaction. The authors then presented a more general term, safe 

transactions, that is used to identify transactions that conform to the ACID properties of 

distributed database systems and are trusted in terms of the validity of the policy 

evaluation. 

  

 SYSTEM ASSUMPTIONS AND PROBLEM STATEMENT 

 

3.1 SYSTEM MODEL   

The cloud infrastructure assumed here consists of a set of Servers S, at least one 

Transaction Manager (TM) and an optional Master Policy Server. Each server is 

responsible for hosting a subset D of data items belonging to a specific application 

domain. The users interact with the system by submitting queries or update requests 

adhering to ACID properties. That is, each transaction T = q1, q2,…qn is a set of 

sequential queries/updates and each query qi ∈ Q (the set of queries ) will act on one or 

more data items. A TM is responsible for executing queries submitted by users. 

TMs coordinate transaction execution across servers. In case of increase system 

workload, multiple TMs could be invoked for load balancing, but each transaction is 

handled by one TM. Each TM maintains a lookup table consists of version numbers 

pertaining to all the data items on a server. This is the major component of the system 

model introduced to implement strict consistency. 
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In this model, we assume heart beat signals are sent to the master server by each 

node to inform about its availability at regular intervals. We use these heart beat signals 

sent by the data nodes to the master server to update the policy versions in the table 

structure. These signals are sent in regular intervals to the master server. We also assume 

the same structure in case of Global transactions, which will be executed over different 

servers on different clouds. These assumptions do not affect the correctness or the 

validity of the consistency definitions by the authors in [4,5]. 

 

Figure 1.  Interaction Among System Components 

 Further, the transaction manager uses a “Tree-Based Consistency” approach in 

order to reduce the interdependency among replica servers to minimize the response of 

cloud databases and maximize the performance of the applications [6]. The transaction 

manager is responsible to generate a weighted graph G(V,E) with replica servers as 

vertices V, and connections among these servers as edges E. The Transaction Manager 

(TM) in addition to assigning the transactions to the servers will (1) periodically 

communicate with the  replica servers, (2) handle server failures, (3) integrates the 

servers which join after recovery, (4) synchronizes with other replica servers, and (5) 

maintains service logs used to build the tree. The replica servers hold the data items with 

them and help serve transactions. Upon calculating the weights  of the replica servers and 

using the look up table, TM builds the consistency tree. The replica server with highest 

weight will have child nodes connected to it. The number of child nodes connected to it is 

limited, in order to reduce the load on the replica server. Algorithm such as Dijkistra is 

used to measure the shortest path between the replica servers and their child nodes. This 
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tree based structure of the replica servers is then used by the TM to select the servers, in 

which the policy updates has to be carried out based on priority for providing reliable and 

accurate transaction processing in the cloud. 

Let P denote the set of authorization policies and each authorization policy P ∈ P 

enforced by a server si governing the access to the subset of data items D is defined as Psi 

(D), where the policy P is a mapping such that P : S × 2D → 2R × A ×N. The value R 

indicates the set of inference rules to define the authorization policy. A refers to 

authorization policy of the administrator who is in charge of dictating an application’s 

policy to the cloud servers, and N is the set of natural numbers used to identify policy 

version v. 

 

3.2 PROBLEM MOTIVATION 

The eventual consistency policy to maintain consistency throughout the data 

replicas is also used to enforce policy consistency in the cloud. This paves way for 

inconsistent policies across different servers in the cloud. Stringent levels of consistency 

have to be applied to carry out transactions without any false positive access to the data 

items in the server.  

As we discussed in the previous section, there are four different approaches used 

to enforce trusted transactions in the cloud [4]. These four models are evaluated on 

Precision, Accuracy and Performance. The precision is high in case of all the approaches, 

whereas the accuracy and performance factors vary based on the frequency of the policy 

updates and application complexity.  

Accuracy in deferred and punctual models are low-medium there by maintaining 

low consistency levels during transaction execution. But these two approaches provide 

higher performance as the policy consistency check won’t interrupt the execution of the 

transaction. The accuracy in Incremental and Continuous approaches is medium-high as 

the policy consistency is checked and enforced at each and every level of transaction 

execution. Though these approaches provide high levels of security, there is a noticeable 

latency in transaction execution. The performance is highly affected in global transaction 

setup where multiple cloud domains are involved. 
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The delay may also vary based on which level of consistency we are trying to 

achieve. In case of view consistency, where servers of a single cloud are involved, the 

delay will be negligible. The complexity increases as we try to achieve global consistency 

over servers from different clouds. This will cause great delay in transaction execution 

when using incremental and continuous approaches. 

To reduce this delay, we can maintain considerable level of strict policy 

consistency across servers. We can define a cloud system as strict policy consistent if 

updates to the policies are applied to all the servers, which contains unique copies of data 

items, which belong to a particular domain. A cloud system C is said to be strict policy 

consistent (Σ - Consistent) if there exists a server S for every data item D ∈ Đ (set of all 

data items) with a policy P where ver(P)=max(ver(Đ)). 

In the following sections, we discuss how to impose strict policy consistency by 

using policy version look-up table and a tree structure. At the same time, we show how 

transaction mangers can access this table to reduce the latency issues while implementing 

the consistency enforcement approaches and maintaining same levels of accuracy and 

precision. 

 

 OUR PROPOSED APPROACH 

 

In this section, we present an approach for implementing strict policy consistency 

using a look-up table and a tree structure. We show how this design will help in 

increasing policy consistency and performance of the transactions executing in the cloud 

without compromising on either security or performance.  Later, we propose a revised 

Two-Phase Validation Commit protocol, which uses the same table to reduce the latency 

in transaction execution due to multiple validation checks while using incremental and 

continuous approaches. 

Strict Policy Consistency: As mentioned in the earlier sections, the Master server 

or Transaction Manager contains a look-up table, which holds the policy versions of data 

items that are present on a server. The transaction managers use this table to keep track of 

the servers whose policies are not updated. 
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We are assuming that the cloud servers send heart-beat signal informing the 

master server of its availability. We tweak this functionality so that the servers send 

policy versions along with the heart-beat signals at regular intervals. This enables 

transaction managers in selecting the servers to execute the transactions submitted by the 

users with great accuracy. This helps in avoiding multiple aborts, in case of any 

inconsistencies between policy versions. 

The data items required to execute a transaction are replicated among two or more 

servers. If we can make sure that at least one of these servers has the most recent policy 

version then the latency that can occur due to consistency checks can be avoided. 

Whenever a policy update arrives for specific data items, we will have to update at least 

one of the servers, which is responsible for replicating the data items associated with the 

corresponding data items. 

The master server or the transaction manager will coordinate with other servers 

hosting the data items to keep the policies updated across them. Whenever a policy 

update arrives at a master server, it will start finding all the servers where the respective 

data items are replicated.  

The transaction manager builds the consistency tree and stores information such 

as total number of servers, connection path between servers, the probability of failure of 

the connection paths and the failure rate of servers. The following steps are involved 

while building the tree: 

 

Figure 2. Consistency Tree Of Replica Servers 
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Connection Graph: Initially, transaction manager prepares the weighted 

connection graph G (V, E). V stands for the set of vertices, which are the server nodes, 

hosting the data items. E stands for the set of edges, which are the connections among 

those servers. Network path reliability is considered as the weight of the edges, since G is 

a weighted connection graph. 

Root of the tree: The transaction manager will choose the most reliable server as 

the primary server. It acts as the parent node and the other servers connected to the 

primary server are the child nodes. 

Consistency Tree: The transaction manager builds the consistency graph by 

applying Dijkstra’s single source shortest path algorithm to select the maximum reliable 

path to every child node. Consolidating all the paths will form the consistency tree. Then 

based on the tree structure the master server will decide which server will be updated first 

to ensure availability with strict consistent policy. Thus, the master server or a transaction 

manager will make at least one copy of a data item is available with latest policy in the 

cluster. 

Update Operation: The transaction manager informs all servers about its 

immediate descendants and each server is responsible for its own descendants. Each 

server in the tree stores two flags: 

Partially Consistent Flag: Whenever there is an update of policy version, the 

transaction manager sends a notification containing information about update to all its 

descendants. All the descendants will send an acknowledgement to the transaction 

manager indicating the receipt of update information. After receiving the 

acknowledgement, the parent node updates the policy with latest version and stores the 

operation sequence number as partially consistent flag. The intermediate nodes propagate 

the update operations in the same way. 

Fully Consistent Flag: When the update operation propagates to the leaf nodes, 

there will be an empty list of descendants to send the notification. The leaf nodes store 

the operation sequence number as the partially consistent flag and fully consistent flag. 

The leaf node sends a notification to its immediate ancestor to store the fully consistent 

flag. The intermediate node receives the notification from the leaf node to store the fully 

consistent flag and stores the operation sequence number as fully consistent flag and 
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informs its immediate ancestor. This propagates until the primary server is reached and it 

cannot commit the transaction until it sets the last operation sequence number as its fully 

consistent flag.  

Failure Recovery: Due to heavy load or technical issues the server might go down 

at any time. The transaction manager also handles these failures and resolves by 

recovering it. Three types of situations can arise in this scenario: 

Primary Server is Down: The transaction manager initially connects to the parent 

server. If it discovers that there is a failure in the parent node it communicates with its 

immediate descendants about its partially and fully consistent flags. If they are the same, 

the transaction manager will select the maximum reliable server as the root. If not, the 

transaction manager will find the latest updated servers by querying its immediate 

descendants for the partially consistent flag. If there is a match, then the transaction 

manager will select it as the root. The connection graph is reconfigured with the latest 

updated servers and the consistency tree is built. 

Other server or communication path is down: When an intermediate node reports 

unresponsive behavior of its child node, the transaction manager tries to contact the child 

node. If the connection is not established, then the child node is considered as down and 

the consistency tree is reconfigured without the failed node. In this way, a new 

consistency tree is built and the other servers are informed about the new structure. 

If the communication path is down, the transaction manager tries to contact the 

server through another path and the transaction manager can reconfigure the connection 

graph with the server and build the consistency tree with the same root. 

The tree based consistency approach reduces the dependency between the servers 

as the communication is between the server and its immediate descendant. Hence, the 

risk of transaction failure is minimized to a greater extent even in highly unreliable 

network. 

Modified Two-Phase Validation Commit Algorithm The original Two-Phase 

Validation Commit algorithm can be used to ensure the data and policy consistency of 

safe transactions. The validation is carried out in two phases; first the voting phase and 

then the validation phase. During both the phases there are several rounds of 
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communication carried out between the servers and the transaction managers, which 

creates additional latency. 

As we are maintaining strict consistent policy in our system using the design 

presented above, there is no need to check if the policy is consistent across all the 

participating servers. The transaction manager can select the servers with latest policies 

for the data items needed to execute a transaction. This proactive step will drop the 

additional step of checking the versions of the servers before committing. It is highly 

unlikely that a policy update will arrive during the lifetime of a transaction. Unless the 

average execution time of a transaction is higher than the average interval between each 

update, there is very little chance of such scenarios. Now we propose a new modified 

version of Two-Phase Validation Commit algorithm (2PVC-Modified), which reduces 

the latency and increases the performance. 

We focus on reducing this latency using policy look-up table that is implemented 

in the system. Instead of collecting the policy versions from all the servers, we have them 

listed in the transaction manager. We can look-up this table to check for a server with 

latest version of policies pertaining to the data items required executing the transaction. 

By this we will make sure that servers participating in transaction execution is already 

policy consistent. This ensures increased performance while enforcing safe transactions 

with great precision and accuracy. This algorithm works very effectively for clouds 

where the average transaction execution time is less than the average of update intervals. 

Algorithm 1: Modified Two-Phase Validation Commit 2PVC  

1 Send “Prepare-to-Commit” to all participants 

2 Wait for all replies (Yes/No, True/False) //[Additional Proof of Authorization] 

3 If any participant replied No for integrity check 

4  ABORT 

5 If any participant replied FALSE for Proof of Authorization 

6  ABORT 

7 Send “Update” with the largest version number of each policy 

8 Re-run the transaction 

9 If any new policy updates arrived during transaction execution time 
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10  ABORT  

11 For participants with old policies 

12 Send “Update” with the largest version number of each policy 

13 Wait for the update to finish 

14 Re-run the transaction 

15 Otherwise  

16  COMMIT 

 

If the average transaction length is greater than the average update interval, the 

traditional 2PVC may lead to aborts. In clouds, with this kind of scenario, we can 

implement another level of validation of proofs of authorization at individual servers 

where the transaction is being executed. This makes sure that the transaction won’t abort 

at the end after completing all the operations. The Algorithm 1 shows the modified steps 

where we have added a new level of proof of authorization to be performed at each server 

in the steps 5-8. If any of the servers returns FALSE for the proof of authorization, then 

the transaction is aborted and the update is sent to the servers. The updates then are 

propagated down the consistency trees associated with the data items used to run the 

transaction. Once the update is finished, the transaction is executed again in the servers. 

Advantages:  Some of the advantages of using the proposed algorithm over the 

original algorithm are: (a) Improved policy consistency across the cloud, (b) Minimized 

trade-off between performance and accuracy, (c) Effective Updates and failure recovery, 

(d) Reduced communication overhead between servers, (e) Reduced latency during 

transaction execution, and (f) Minimized aborts due to policy updates.  

Non-blocking Paxos Commit 

Problem with 2PC: In a transaction commit protocol, if one or more RMs fail, the 

transaction is usually aborted. For example, in the Two-Phase Commit protocol, if the 

TM does not receive a Prepared message from some RM soon enough after sending the 

Prepare message, then it will abort the transaction by sending Abort messages to the 

other RMs. However, the failure of the TM can cause the protocol to block until the TM 

is repaired. In particular, if the TM fails right after every RM has sent a Prepared 
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message, then the other RMs have no way of knowing whether the TM committed or 

aborted the transaction. The solution comes in the form of a very popular non-blocking 

protocol called Paxos Algorithm. 

 

Figure 3. The Message Flow For Paxos Commit In The Normal Failure-Free Case 

Paxos Commit: The Paxos algorithm is a popular asynchronous consensus 

algorithm [17]. Paxos Commit uses a separate instance of the original Paxos consensus 

algorithm to come to an agreement on the decision each RM makes of whether to prepare 

or abort—a decision represented by the values Prepared and Aborted. So there is one 

instance of the consensus algorithm for each RM. The transaction is committed iff each 

RM’s instance chooses Prepared; otherwise the transaction is aborted. A set of acceptors 

and a leader play the role of Transaction Manager / Coordinator. Let there be N resource 

managers, and to survive F failures we need 2F+1 acceptors. The message flow for 

commit in the normal failure free-case is shown below in Table 1. RM1 is the first RM to 

enter the prepared state, thus initiating the round. 

Algorithm 2: Two-Phase Validation with Paxos Commit 

1 Initiate Paxos commit algorithm along with 2PV using Continuous Proof of 

Authorization  

2 Wait for all replies (True/False)  

3 If any acceptor was unable to commit 

4  ABORT 

5 If any participant replied FALSE for Proof of Authorization 
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6  ABORT 

7 Send “Update” with the largest version number of each policy 

8 Re-run the transaction 

9 If any new policy updates arrived during transaction execution time or during 

Paxos 

10  ABORT  

11 For participants with old policies 

12 Send “Update” with the largest version number of each policy 

13 Wait for the update to finish 

14 Re-run the transaction 

15 Otherwise 

16 COMMIT 

 

 

Table 1. Tradeoff Between 2PC and Paxos 

Two-Phase 

Commit 

Paxos Commit 

N processes agree on 

a value 

Tolerates F faults 

3N+1 messages 
3N+ 2F(N+1) +1 

messages 

N+1 stable writes N+ 2F +1 stable writes 

4 message delays 5 message delays 

2 stable-write 

delays 
2 stable-write delays 

Same algorithm when F=0 and 

TM=Acceptor 
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Trade-off discussion: The tradeoff between 2PC and Paxos commit is shown in 

Table 1. Both the algorithms are same if there is no failure and if one of the acceptors act 

as TM. Some of the advantages of using the Paxos Commit algorithm over 2PC are: it 

adds Fault Tolerance at the transaction level, and allows us commit on partial 

transactions, and allows us to handle Conflicting Policy Versions. 

Trade-off discussion based on update interval: 

• Transaction Length < Update Interval: The first version of the algorithm 

proposed is useful for these type of cloud systems. The proof of authorization is 

done at the TM, where it selects the servers for execution based on the 

consistency tree. So there are less chances of transaction aborts. We just need to 

make sure that there are no policy updates that arrived during the transaction 

execution. The log complexity of this version of 2PVC in these systems is 2n+1, 

which is same as a traditional 2PC. This is essentially same as the 2PC algorithm 

but an extra step added to check if any policies arrived during the transaction 

execution. 

• Transaction Length > Update Interval: In these systems an additional step of 

validating Proof of authorization can be used when a query arrives at each server. 

In these systems there is a high probability of getting an update before the 

transaction execution completes. The additional step we included is useful to 

avoid aborts that occur at the end of execution. To achieve high accuracy, we can 

use continuous proof of authorization approach proposed in [4,5]. We can also use 

other approaches such as punctual and incremental, but the latter is more accurate 

and precise. The log complexity of this version of 2PVC in these systems varies 

based on enforcement approach used to validate proof of authorization. 

 

 SIMULATION DESIGN AND EXPERIMENTS 

 

In the simulation, we had two major requirements i) communication over a 

network and ii) the ability to spawn threads. We chose the Java simulator from [4]. We 

generate random transactions of a varying number of database READ or WRITE 
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operations. We make use of the consistency tree generated and select the servers required 

for executing each transaction. Each CloudServer has network path reliability as the 

weight, which is used to construct the tree. The tree is a binary tree, which will have the 

most reliable node as the root. The next two reliable nodes will be children of the root 

and so on. A maximum degree of concurrency can be set in the parameters file. We use 

Deferred and Continuous methods for proof of authorization. 

The Deferred method can be used in a system where the transaction duration is 

greater than the policy update interval and the Continuous method for systems with 

transaction duration is lesser than the policy update interval.  When a new policy version 

is issued and stored, it pushes the policy version to all available cloud servers. The policy 

updater will update the root of the tree first and then rest of the nodes. This makes sure 

that we have at least one node available with the latest policy at all times. The rest of the 

nodes will be updated subsequently.  

Simulation Parameters: The parameters used in the simulation are stored in a text 

file named parameters.txt, which is read by all three major classes. The following are the 

variables that are set from the parameters file. Certain variables can be set through 

command line input and override the values set by the parameters file; these variables are 

noted below. 

• maxTransactions is the total number of transactions to run in a simulation. 

• minOperations and maxOperations are the minimum and maximum number of 

operations to be performed in a single transaction. Short transactions are defined 

as 8-15 operations, medium as 16-30 operations, and long as 31-50 operations.  

• maxServers is the total number of cloud server instances to be created for the 

simulation. 

• maxDegree is the degree of parallelism, or the maximum number of concurrent 

threads available to process transactions. 

• latencyMin and latencyMax are the minimum and maximum amount of 

simulated delay in milliseconds caused by network latency. LAN latency is 

defined as 5-25ms in our test-bed.  

• verificationType is an integer value representing which protocol to use (e.g., 

2PC, view consistency, etc.) at commit time. This variable is used by all 
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CloudServer instances and is sent over the network at the beginning of the 

simulation. This parameter can be set via the command line. 

• integrityCheckSuccessRate is a decimal value ranging from 0.0 to 1.0 for the 

rate at which a commit’s integrity check is successful. 

• localAuthorizationSuccessRate is a decimal value ranging from 0.0 to 1.0 for the 

rate at which an operation’s authority to perform an action is allowed. 

• policyUpdateMin and policyUpdateMax are integer values representing 

milliseconds between policy updates by the PolicyServer. 

Variables and Fixed Parameters: For initial experiments, we determine 

transaction cost in terms of time, successful commit ratio, and throughput of committed 

transactions as a function of policy update frequency. We use the same set of variables 

and fixed parameters for comparison as in [4,5]. 

To establish a series of policy update frequencies, we began with an initial time 

representing an average case of eight operations. Given a range of 75ms to 125ms for a 

READ operation and a range of 150ms to 225ms for a WRITE operation, we calculated 

the average duration of four READs and four WRITEs to be 1,150ms. We ran 

experiments using 1,150ms as the policy update frequency. For each policy update 

frequency, we varied transaction length and validation protocol and ran experiments for 

every combination between the two. The variables were set as follows: 

• Transaction lengths were divided into three ranges: short (8-15 operations), medium 

(16-30 operations), and long (31-50 operations) transaction. 

• Five validation protocols were used: 2PC, 2PC with local authorization checks, 

view consistency, global consistency, and Paxos Commit. 

With a combination matrix of these variables, we simulate 5 runs of 1,000 

transactions for each combination and averaged their results. For the purposes of our 

experiments, several parameters (see Table 2) were constant throughout experiments but 

can be varied in future experiments to further explore the performance of all the 

protocols. Though quite capable of implementation over a variety of networks, for 

simplicity the experiments will be carried out entirely on a single computer running 

separate terminal windows for each Java class client/server participant. 
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Table 2. Fixed Parameters 

Variable name Value 

maxServers 5 

maxDegree 10 

latencyMin 5ms 

latencyMax 25ms 

integrityCheckSuccessRate 1.000 

localAuthorizationSuccessRate 0.995 

The experiments utilize 5 cloud servers processing a maximum of ten transactions 

concurrently. The network latency parameters were set to simulate a local area network 

(LAN) environment. The local authorization success rate was set at 0.995, or 99.5%. 

Though this rate may initially appear artificially high, it is worth noting that it comes out 

to, on average, 1 out of every 200 operations failing local authorization. If four long 

transactions of 50 operations each are run, it is probable that one of them will fail local 

authorization and aborted. 

Performance evaluation: In all the graphs shown below, policy update frequency 

value is found along the X-axis. We begin with a policy update frequency of 1,150ms and 

doubled the frequency for each subsequent set of runs up to 36,800ms. 

Transaction Cost: We represent transaction cost as the time in milliseconds that a 

transaction requires for completion. We perform simulations of all protocols. for short 

transactions, medium transactions, and long transactions. We can find the transaction 

costs in ms along the Y-axis. For each simulation, we averaged the duration of each 

successfully committed transaction to provide a value of cost for view consistency, global 

consistency, and Paxos Commit. 

As seen in the graphs (Figure 4 & 5), 2PC (as in [4]) and in our implementation of 

Paxos Commit have the least transaction costs when compared to View and Global 

consistency validation. View consistency comes second and as because there is a re-

evaluation of proofs in Global consistency during the commit phase (both in 2 PC [4] as 

well as our Paxos Commit), it has the highest transaction costs. We can see that the 
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transaction cost with our integrated tree consistency with Paxos commit is approximately 

40-50 ms higher than with 2PC [4] because there is one more message delay (5 vs. 4) in 

Paxos commit when compared to 2PC. It also includes the costs for constructing the 

consistency tree before starting the transaction.  

Transaction Throughput: We represent transaction throughput as the number of 

commits in a simulation run divided by the time in milliseconds of the duration of that 

simulation run. We performed simulations of view consistency, global consistency, 2PC, 

and Paxos commit, for short transactions, medium transactions, and long transactions. 

The transaction throughput values are along the Y-axis. 

Transaction throughput (Figure 6 & 7) is higher in ours when compared to [4,5] 

because the number of commits is more when we use tree consistency and Paxos 

Commit. There is an approximate increase of 5% more commits when we use tree 

consistency and Paxos in all the consistency models. The increase is due to executing the 

transactions on reliable and updated servers rather than selecting random servers as in 

[4,5], and also due to the fault tolerant nature of Paxos.  

Successful Commit Ratio: We represent the commit ratio as the number of 

successful commits divided by the total number of transactions attempted. We perform 

simulations of all consistency models for short, medium, and long transactions. We can 

find the commit ratios along the Y-axis in the graphs below (Figure 8). The commit ratio 

is constant for 2PC and Paxos as in both we are not enforcing policy consistency checks. 

In case of view and global consistencies, the view consistency commit ratio is a bit lower 

then global consistency in both cases. 

 

Figure 4. Transaction Cost Without Consistency Tree and 2PC 
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Figure 5. Transaction Cost With Consistency Tree And Paxos Commit 

 
Figure 6. Transaction Throughput Without Consistency Tree And 2PC 

 
Figure 7. Transaction Throughput With Consistency Tree And Paxos Commit 

 
Figure 8. Commit Ratio Without Consistency Tree And 2PC 

 
Figure 9. Commit Ratio With Consistency Tree And Paxos Commit 

The number of aborts in the second chance global consistency model is less 

(Figure 8), which leads to increase in the number of committed transactions. The commit 

ratio is higher in every scenario when compared to [4,5] which does not use tree 
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consistency and Paxos commit. The commit ratio increases steadily as the update interval 

increases. This is due to less number of aborts at higher intervals due to policy 

consistencies. We can see the same trend between short, medium and long transactions as 

well. 

 

 CONCLUSION AND FUTURE WORK 

 

In this paper, we proposed a new approach to enforce strict policy consistency 

among cloud servers integrated with Two-Phase Validation Commit (2PVC) and Paxos 

commit, and server consistency tree structure to addresses the performance issues that can 

arise in cloud based transactional systems. Our approach offers stricter consistency with 

an increase of only 40-50 ms in execution time, but reduces the number of aborts caused 

due to policy inconsistencies, and use of Paxos makes sure that no transaction is aborted 

due to faults in the system. We noticed an increase in the number of commits by 

increasing the throughput and commit ratio by approximately 5% compared to [4] and 

still provide strict-consistency. 

In future, we will consider consistency rationing to implement more reliable ways 

of constructing the policy consistency tree and enforcing strict policy consistencies for 

nested transactions. More work is needed to handle high priority transactions without 

aborts in case of policy inconsistencies. 
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ABSTRACT 

 

In this paper, a new caching scheme has been proposed which takes into 

consideration Military/Defense applications of Delay-tolerant Networks (DTNs) where 

data that need to be cached follows a whole different priority levels. In these applications, 

data popularity can be defined not only on the basis of request frequency, but also based 

on the importance like who created and ranked POIs (point of interest) in the data 

(images), when and where it was created; higher rank data belonging to some specific 

location may be more important though frequency of those may not be higher than more 

popular lower priority data. Thus, our caching scheme for DTNs is designed by taking 

different requirements into consideration for DTN networks for defense applications so 

that access latency for more important but lesser accessed data is reduced. The 

performance evaluation shows that our caching scheme reduces the overall access 

latency, cache miss and usage of cache memory when compared to other caching 

schemes. 

 

 INTRODUCTION 

 

Caching data within Delay Tolerant Networks (DTNs) presents many challenges 

[1,2]. DTNs are, by design, volatile as certain nodes may or may not be available all the 

time in the network (disconnected or not reachable). So, how should individual nodes, 

and indeed the network at large choose what data to cache, where to cache, and how 

much to cache and thereafter, on what basis to do cache replacement? 
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Caching data within DTNs is discovered as a means for both persisting data 

locally available in close proximity to reduce latency and accuracy/consistency, and to 

reduce resource usage (bandwidth and energy) through a reduction in hops to the high 

priority data sources. DTNs present an even more significant challenge for data 

persistency as they are, by nature generally isolated and disconnected from a larger 

network. Therefore, DTNs must cache mission-oriented critical useful data to share at the 

strategic locations. The simplest solution to cache everything on every device and update 

it as we make connections to other nodes in the network will increase collisions as nodes 

will duplicate data, and waste buffer space and energy. Situations can arise where 

specific nodes within the network become over utilized by caching too many data points 

due to the uncertainty of data transmission, thus, multiple data copies need to be cached 

at different locations to ensure better data dissemination. The difficulty in coordinating 

multiple caching nodes due to the lack of persistence network connectivity in DTN 

makes it hard to optimize the trade-off between data accessibility (proximate to the 

nodes) and caching overhead (energy utilization due to the need to disseminate the data 

across many peers). Thus, each node must decide what data to be cached as nodes cannot 

design a cooperative caching schemes [1,2] because of not knowing which other nodes 

they can reach.  

Motivation. From all the data caching methods in DTNs we have studied, file 

popularity [2], social-relationships [4] and cooperative caching [1] have always been the 

main motivation behind the file selection for caching to satisfy future requests and how 

cache replacement should be done. Although these methods are efficient in many general 

scenarios where users transfer picture or other kinds of media files in networks using 

mobile devices, there are some scenarios where these methods of caching entirely fail to 

address the requirement. 

Consider situations like Mission-oriented networks, or Military/Defense 

applications where data that need to be cached follows a whole different priority levels. 

Some data despite of low access frequencies (only few nodes access) should be cached 

with a highest priority (as those nodes which access are decision-makers) at strategic 

locations which is completely different from the conventional DTN caching methods. 

Some other classified data files even with the increasing demand, the data caching should 
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be restricted to a certain number (may be within a certain radius) to prevent possible data 

theft or other security issues. In addition, some data may not be as popular (based on 

access frequency), but latency to access it may be such a concern that it must be 

accessible quickly. Data popularity can be defined not only on the basis of request 

frequency, but based on who (created) ranked those data, when and where it was created; 

higher rank data belonging at some specific location may be more important though 

frequency of those may not be high at this time than lower rank data. These three 

elements: location, access latency, data creator’s ranking, and popularity of the data 

based on ranking by intermediate nodes will be the primary qualities use to judge data in 

how exactly to cache it. Caching can consider the location/rank of the node who created 

it, resources at that location, perimeter of the nodes, POIs (point of interest) in the data 

(images), and requests by different nodes and then predicting the caching needs at the 

next time instant and its location. Thus, a new caching technique for DTNs needed to be 

designed which takes these different requirements into consideration to fulfil the 

necessity of defenese applications in DTN networks. 

   

 RELATED WORK 

 

Below, we review some of the caching schemes which are close to our objective. 

What data to cache? The problem of selecting the data to be cached is addressed 

by the authors in [2, 4]. In [2], the authors proposed a Selective Pushing algorithm which 

caches data with probability calculated using the Zipf-like distribution. The authors 

assume that the network is a homogeneous environment where all users share the same 

mobility or centrality statistic. In [4], they compute the content popularity (relative to the 

current node) by considering both the frequency and freshness of content requests 

arriving at a node over a history of request arrivals. Then they select the most popular 

data to cache at a network location. But whenever there is a change in cached data all the 

cache nodes have to update data, the social tie and digest tables which consumes time and 

energy. This article focuses on forming interest groups, which are set of nodes interested 

in a data item, which is closer to real time scenarios. We consider this approach in our 

design for selecting data to be cached with less overhead during updates. For example, in 
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DTN, updates at the friendly nodes are easier, at the few hopes away from the creator are 

fast, so nodes which experience more frequent updates should be closer to the owner who 

created.  

Where to cache it? This problem is addressed in [1, 4, 5]. In [1], nodes are 

selected to be NCLs (Network Central Locations) based on three approaches. These 

NCLs will be used to cache popular data that is needed by the nodes in the network. 

When NCLs buffer is filled, it will start caching the data on the nearby reliable nodes. 

Coordination between different NCLs and optimization of data of every NCL can become 

an endless optimization cycle which consumes a lot of energy if the network is very big 

and can never be optimized. In [4], clusters/groups of nodes are formed as interest 

groups. The POIs of the nodes in those groups are cached at the NCLs nearby to those 

group of nodes. In [5], node groups are formed based on the frequency of contact 

between the nodes, and the nodes are merged or resigned from the group if the POIs of 

the nodes in a group changes.  

How much to cache? The [3] does a good job of showing the performance 

differences between optimal and opportunistic ‘Edge’ caching. The results show that 

opportunistic caching performs on par with the optimistic caching in all most all the 

scenarios. We will be using opportunistic caching in our model to cache data at the Edge 

of the network i.e., near the end user. This will save the memory space across all the 

nodes in the network avoiding unnecessary data caching. 

 

 OUR MISSION-ORIENTED NETWORK MODEL 

 

The mission-oriented military network systems consist of tactical vehicles such as 

Warfighter Information Network-Tactical (WIN-T) or High Mobility Multipurpose 

Wheeled Vehicle (HMMWV) which act as Network Central Locations (NCLs). These 

NCLs are always active and they have long-range wireless connections to each other and 

individually, they may also have secure and reliable satellite connection. We assume here 

that DTN behavior is observed by the ground troops and Humvees and control base can 

also have more like MANET connectivity using WiFi.  
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Figure 1. Content Caches 

Content Caches. The network consists of devices, which are used to cache data 

and move in the network independently. These devices can range from tactical vehicles to 

custom-built systems just for caching. Some of these devices are mobile and some may 

be stationary. These devices can communicate with each other and exchange cached 

content between themselves using different wireless communication medium such as 

Bluetooth, WIFI-direct, etc. These devices will transfer data between them based on the 

demand around the nodes nearby.  Some of these devices act as NCLs in the network and 

the nodes nearby can request cached data, and then cache data of their own. For example, 

in a disaster application, raspberry-pi can be a such device, which can be planted at some 

safe location and can remain stationary. 

This network system consists of mobile nodes, which could be combat vehicles or 

ground forces, which move across the entire network freely. These ground forces need to 

send/receive messages which each other or should be able to send messages to tactical 

bases frequently that they are active and should be able to communicate with other 

tactical bases for further. Note that all the mobile nodes act as a delay-tolerant and use 

opportunistic ways to communicate. 



 

 

51 

 

Figure 2. Network Model 

 CACHING USING CONTENT CLASSIFICATION 

 

We need to deal with two main problems: (1) how to define the method for 

caching by considering different requirements of defense applications, and (2) a method 

to follow to replace the cached data when the cache memory becomes full. For caching, 

depending on the situation and requirement of the system, the data can be classified into 

different categories with different kinds of priority and ranking. In our case where the 

data needed to be cached belongs to a mission-oriented network such as military. There 

exists a lot of data that might not be popular based on frequency of access but very 

important for the specified users like for the decision-makers (high rank nodes). These 

kinds of data should be cached at nodes, even if the popularity is quite low in the network 

currently, at some specific locations from where data can be retrieved faster and data is 

secure/available (not very far from the nodes taking decisions). Some data items may 

have very high priority as defined by the ranked nodes and its overall impact is adjusted 

by the combination of rank and priority. 

We define a time and spatial decay functions to classify data items and use the 

same to replace them when cache memory is full. Each node in the network will have a 

set of data items {(Wi, l(vi) | i ∈ I}, where for each item i ∈ I , Wi > 0 (varies between 0 

and 1) is the weight of the item and l(vi) ∈ V is the location of the item cached at node v, 

where V is a set of nodes in the network. Here, I is the set of data items in the network. 
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The node defines weight of a data item where the item resides based on some parameters 

(including the space needed and considering all other data items it hosts) using the 

formula given below. 

We denote by DIST(l(v), l(u)) the distance (number of hops) between the location 

of the two nodes v and u in the network. A decay function is a non-increasing function 

and it determines the weight of a remote item as a function of its distance and some 

varying attributes, such as time or number of requests to access the items. The spatial 

weight of an item i ∈ I at the node v as viewed by a node u ∈ V is 

𝑑𝑢𝑣 = 𝐷𝐼𝑆𝑇(𝑙(𝑣), 𝑙(𝑢)) 

The weight of an item of interest at location v, 𝑤𝑣
𝑖 , might be modelled as attribute 

values, 𝑤𝑈
𝑖  associated with other location u, weighted by the inverse of the distance 

separating locations u and v, duv raised to a power β and the difference between the 

current time T and the time of creation of the item 𝑡𝑖 and 𝑡𝑖 ≤ 𝑇 :  

𝑤𝑣
𝑖 = 𝑟𝑢

𝑖 ∗ 𝑝𝑢
𝑖 ∗

𝑤𝑢
𝑖

(𝑑𝑢𝑣
𝑖 )

𝛽
(𝑇 − 𝑡𝑖)𝛼

, 𝛽 ≥ 0, 𝛼 ≥ 0 

The exponent β has the effect of reducing the influence of other locations as the 

distance to these increases. With β=0 distance has no effect, whilst with β = 1 the impact 

is linear. Values of β >>1 rapidly diminishes the contribution to the expression from 

locations that are more remote. The exponent α has the same effect as β. There will be 

some threshold defined for 𝑤𝑣
𝑖  to decide about cache replacement of an item, and the 

space is available.  

Note that the weight takes into consideration a priority p (a value of high (0.8), 

medium (0.6) and low (0.4) between 0 and 1) based on the category of data items defined 

by the ranker r (a value of high (0.9), medium (0.6) and low (0.3) between 0 and 1). Rank 

defines the importance of the node (0.9 means most important) and priority defines the 

importance assigned to the data item (0.8 being most important) by that node. The rank of 

a node r is fixed, whereas priorities p change based on the node who has assigned the p 

value. r values do not decay but p decays with distance and/or time as they are defined by 

the creator. Therefore, the parameters β and α can be adjusted to reflect data items 

defined by high ranked nodes, and thus, will be decaying slowly with respect to the 

frequency of access and time. Therefore, as explained earlier, due to slow decay, some 
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items created by high ranked nodes may be cached as needed even if they do not have 

very high access frequency or created much earlier.  

We can use the same decay equations to calculate the decay in weight based on 

other attributes like number of requests for an item instead of time. The function will be 

as follows. 

𝑤𝑣
𝑖 = 𝑟𝑢

𝑖 ∗ 𝑝𝑢
𝑖 ∗

𝑤𝑢
𝑖

(𝑑𝑢𝑣
𝑖 )

𝛽
(𝑁𝑡1 − 𝑁𝑡2)𝛼

, 𝛽 ≥ 0, 𝛼 ≥ 0 

Nt2 and Nt1 are the number of requests received at timestamps t2 and t1. The 

exponent α behaves the same way as it did for time. It will make this function relevant for 

some of the classes of data items in the network. 

We calculate spatial-time/request decaying weight sum for an item, i, using the 

following for a group of nodes g, which is a subset of all the nodes, V, in the network. 

𝑤𝑔
𝑖 =  ∑ 𝑟𝑣

𝑖 ∗ 𝑝𝑣
𝑖 ∗ 𝑤𝑣

𝑖

𝑣∈𝑔

, ∀𝑔 ⊆ 𝑉 

We categorize the data in the network into five different categories. 

Class 0: Emergency Data (high rank, high priority and high access frequency) 

The emergency data broadcasts are quite rare but are the most important data. 

This kind of data can be classified as important and urgent with much higher priority. 

This data should be stored at each node that is connected to the network to provide instant 

access to that data, but its expiry will be much faster. In case of low buffer space, the data 

that needs to be removed is chosen by priority.  First the least important data is removed 

and if space is still needed, then somewhat important but less frequently used data is 

removed followed by important and frequent data. After the end of emergency 

broadcasts, all the data deleted should be restored from the neighboring nodes. An 

example of emergency data is a sandstorm report for next 4 hours or area maps.  

The Class 0 data items decays exponentially with time and there may be no spatial 

decay for these data items. Therefore, the exponent β will be 0 for these items and the 

exponent α will be 2. The priorities will be 1 for this class of data items, and rank 

depends on the importance of node who has created the item and given its rank value 

between 0 and 1. As a result, if a node with high rank has created the Class 0 data item 

then they will be cached everywhere in the network until the value of the item decays 



 

 

54 

with time/frequency reaches some pre-defined threshold. After that items will no longer 

be cached in the network or declassified to be one of the lower classes as explained 

below.  

Class I: Highly Important (both high to medium ranked as well as priority) and 

frequently used data 

There are some types of data like log files, artillery count, injured-list, location-

images for situational-awareness etc. that are important for certain nodes 

(military/doctors) and are frequently accessed by only some selective nodes and updated, 

and to make sure that nothing gets stolen or lost from the battlefield. We assume that 

soldiers and army vehicles act as nodes, where these kinds of files are accessed by 

everyone to inform other troops of their status that they are still functional or how many 

soldiers got injured and their current status. Thus, these kinds of data need to be 

replicated at every node or most of the nodes (in case if some group of nodes are well 

connected). The need and priority of this data comes from the importance (ranking and 

priority) but less frequent usage data. The disadvantage with these data items is to 

maintain data consistency; all the file copies at all the nodes need to be frequently 

updated and therefore, the access latency should be minimum. Frequent updating at few 

hops away drains battery power of the intermediate nodes, which might become crucial 

for the ground troops to make emergency contacts. Therefore, to minimize these 

drawbacks, the data should be stored with a few hops from the source called cached-

radius, as well as update time limit called update-frequency, and this update-frequency is 

dynamic within the cached-radius to best fit the situation. These data can consider POIs, 

and quality of POIs as defined by the image quality and tags.  Data, if stored at far 

reaching nodes may get the updates slowly and therefore, may be of poor quality in terms 

of POIs. 

The Class I items decay both with space and time. As mentioned above, access 

latency needs to be minimum for these items. We should try to cache the items near the 

POIs which will be selected based on the spatial weight sum. Their weights will decay 

exponentially with space but only linearly with time. Thus, the exponents β and α will be 

2 and 1, respectively. 
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Class II: Important and secure (high to low rank and priority) but less frequently 

used data 

Many data files which are classified, and files with limited restriction comes 

under this category. These files are not accessed all the times since they have limited 

access thus, make them less popular and are mostly accessed from limited locations. 

However, caching these kinds of files are very important because they need to be 

accessed without much latency. Thus, these data files should be stored at NCLs and the 

data copies can be sent to other nodes upon request. These highest priority files can 

consume more buffer space like area maps for combat operations, POIs represent 

aggregated data, and thus, trying to replicate these files at every node reduces the caching 

efficiency of the network as well as can put the mission in danger. Therefore, trying to 

store these data at many nodes may pose a security threat. Thus, NCLs should be chosen 

well which has better caching space and has the best connectivity with other nodes. This 

kind of data ranked higher and has the highest priority of access by decision-making 

nodes.  This data may be used for example in taking important decisions such as path for 

troop movement, which qualifies as class 0 data. 

The Class II items, just like Class I, decays both with time and space but linearly. 

Thus, the exponents β and α will be 1 and 1, respectively. Weight sum will be used to 

choose the NCLs to cache, which includes both priority and ranking of the data items as 

well. 

Class III:  Not very important (medium to low rank and medium to low priority) 

but frequently accessed data 

This data that may not look very important from a broader perspective, but plays a 

key role during a battlefield situation. For example, information about some activities like 

local news, sudden sandstorm, forest fire, etc. that need to be shared immediately with 

many nodes. These data become insignificant with time. This problem is similar to 

caching using file popularity at a certain location. These kinds of data need to be 

replicated at certain locations where it is crucial even though the data originated at some 

other location. These data during caching is temporary and should be easily replaceable. 

The priority of this data is after the first two types of data, Class I and II. 
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The Class III items just like Class 0 decays with time and don’t use spatial 

weights. The time decay is linear, and number of requests can be used to decide on 

caching the items or promoting the item to Class 0. Thus, the exponents β and α will be 0 

and 1, respectively. Here also ranking and priory can rebalance the values to take a 

decision to cache replacement.  

Class IV: Not very high ranked data (low rank, and medium to low priority), but 

accessed on popularity (higher access frequency) 

At last there is some data, which is not important for the military networks (low 

ranked) but needs to be stored for general purposes (medium to low priority). These kind 

of data is cached using normal caching methods like file popularity, least recently used 

data etc. The priority of this data is way below the other kinds of data to provide easy 

access to important kinds of data. The frequency of data updating is kept low to maintain 

the update costs with very minimum overhead to preserve the battery power.  

The Class IV does not decay neither with space nor with time. The exponents β 

and α will be 0 and 0, respectively. We can use the linear decay based on the number of 

requests to decide on caching the item on an NCL or a node in the network. The ranking 

of such data is not high though priority can be very medium to low as defined by nodes. 

  

 CACHING ALGORITHM 

 

5.1 INITIAL DISTRIBUTION OF CACHING DATA 

When data is first created at the source, the data needs to be classified by the 

source as one of the five categories mentioned above. A source can be either a remote 

node or a moving NCL. If the source is a remote node, then the data is sent to all its 

neighboring nodes within its nearest NCL range for further validation. Additionally, 

while the data is sent to the NCL via remote nodes, it can be re-classified by the NCL. 

The heuristic for how they re-classify is up to them; for example, if the data is an image, 

and other nodes are getting similar images with POIs they may raise the classification. 

The important aspect is that prior to validation, remote nodes can also classify based on 

their understanding. This can impact/help in NCLs decision, once data reaches there. 
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It is important to send this data to an NCL because they are expected to have a 

larger cache size and wireless communication range. Additionally, if they is a Humvee, 

they may have additional data to influence the classification of the data in question. For 

example, if a photo of ambulance was taken, and to a solider it may look like an ordinary 

ambulance. However, if that is stolen by the enemy, it suddenly has become far more 

important, and that was not possible without the additional data that the base (and its 

operators) had. 

After an initial validation by the NCL and all its remote nodes, if the average class 

data is classified as class I or class II, then the data is sent to other NCLs for further 

validation. If most NCLs classify the data as class I, then that data is cached at some of 

the well-connected NCL locations who have validated it. Restricting the replication of 

such kind of data prevents data theft by enemy. 

If most of the NCLs categorizes the data as class II, i.e., important and Urgent, 

then this kind of data needs to be further evaluated using local popularity. For example, 

using the geographical location of this data’s popularity. Finding local popularity and 

locally caching data is important since it is classified as urgent. To find the local 

popularity, the NCL nodes which classified the data as class II, are selected and requested 

for local popularity evaluation. If there are N active local nodes for each NCL and if the 

data item gets more than N/2 positive responses then that data is popular in that place, 

and the data is cached in that NCL and some nearby local nodes depending on the hop 

distance between the nodes. Trying to avoid the involvement of remote nodes until the 

last step helps in reducing communication and preserving the battery. 

If the data is initially classified as class III or class IV by the source and/or its 

nearest NCL then the data caching follows normal caching methods such as file 

popularity and other popular methods. If the data is initially classified as class 0 i.e. the 

data as an emergency message, then the data is sent to all NCLs to cache and after 

caching the data is evaluated for classification. This process is like class I process but 

now we cache the data and evaluate later. 
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Algorithm 1. Distribution of Caching Data 

Input: Data item created at remote node or a moving NCL 

Output: Classify the input data item and cache it in various locations based on its class. 

Classify(data) 

if source is not an NCL then 

  Validate(data, source.NCL) 

if data.classification is Class0 then 

  Cache(NCLs, data) 

if data.classification is ClassI then 

  for ncl in source.NCLs 

    Cache(ncl, data) 

if data.classification is ClassII and #NCLs classifying data as Class II > 

#NCLs/2 then 

   Cache(source.NCL, data) 

If data.clssification is ClassIII or ClassIV then 

  Cache(source, data) 

5.2 CACHE REDISTRIBUTION UPON REQUESTS 

Data is cached with the intent that it will be requested later, and if it is found at an 

intermediate node along the path to the request it can be returned faster, or immediately if 

locally cached. It is because of that the cache should be re-evaluated upon a fulfilled 

request. 

Once the data is cached after initial distribution, the data should be replicated 

based on further user requests. When a data item is attempted to be retrieved from a 

source, the source either has it cached and can return it immediately (latency = 0), or it 

must hop to other nodes to retrieve the item (latency > 0). The amount of time it takes to 

retrieve the items via hops is that data item's latency. If the latency priority is lower 

(meaning the priority is to retrieve that data item in less time that it took to first retrieve 

it), then we cache it locally. 

We send a request to multiple DTN nodes to get an item, and take the latency of 

the node that returned the data as the maximum latency for that item. We would update 

the latency on future requests to the item if it changes and cache it on different nodes if 

needed to provide the reduced access latency. In case, the item requested already has the 

best latency then we will try to cache based on the popularity in the neighbouring nodes. 
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Algorithm 2. Cache Redistribution 

Input: Data item requested by a node 

Output: The input data item is either cached at the source of request or cached based on 

popularity 

if Cached(source, data) then 

  return GetCached(source, data) 

startTime = Now 

request = BroadcastRequestFor(data) 

// Time passes while waiting for request response from remote node 

endTime = Now 

if endTime–startTime > data.maxLatency then 

  Cache(source, request) 

else 

  CacheByPopularity(source, request) 

5.3 CACHE REPLACEMENT     

If a new data item needs to be cached at a node and if the cache space becomes 

full then some cache data needs to be removed to make room for the new data item. 

Cache space is divided into 2 levels with dynamic space allocation to each level. One 

level of cache memory is used to store class I, class II and class 0 types data and second 

level of cache memory is used for storing class III and class IV data. There is no separate 

memory space for class 0 data since class 0 data is very rare when compared to other 

types of data and allocating one more level just for class 0 data might deteriorate the 

cache performance of the network. 

If cache space becomes full and the new data item to be cached is of class I or 

class II then data from level 2 is removed and is cached in the neighboring nodes. While 

removing level 2 data, data in level 1 is declassified and moved to level 2 making space 

for the new item in level 1. If the space is still not sufficient then level 1 data is removed 

and must be cached in the neighboring nodes. If the new data item is of class III or class 

IV then level 2 data is removed and cached in neighboring nodes, until we have enough 

space to cache the new item.   
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Algorithm 3. Cache Replacement 

Input: New data item 

Output: New data item will replace the cached items either in Level1 or Level2 based on 

its class. 

if newData.classification ≥ ClassII then 

  for data in node do 

    if data.classification ≤ ClassIII then 

    // some other node may want to cache it, but we need to remove it 

      BroadcastToCache(data) 

      Remove(node, data) 

    if cache.spaceAvailible ≥ newData.size then 

       Cache(node, newData) 

       break 

  // end for 

  if not newData in node then 

    BroadcastToCache(newData) 

If data of class 0 needs to be cached and if the cache space is full then level 2 data 

is removed to replace this data. Unfortunately, if level 1 is filled, then class 2 is removed 

and cached in neighboring node to accommodate class 0 data. Class 0 data decays faster 

with time and can be removed later to get back the class II data. Class I data is not 

removed because this data is critical and will always be cached at well-connected NCL 

nodes. 

 

 SIMULATION AND EXPERIMENT 

 

To evaluate our caching algorithm, we used the ONE, a Java DTN simulator [6]. 

The ONE is suited for DTN simulations, with extensive use in modelling routing and 

caching algorithms. We use the ONE's default epidemic routing algorithm and extend the 

ActiveRouter Class to cache messages as per our algorithm. The ONE DTN Simulator 

exposes many different options and variables to tweak in for different results, and most of 

the results are dependent upon the setup of the nodes. For all our simulations, we will use 

the same initial nodes with roads as paths taken from a subset of the real world New 

Dubai map. 

The nodes are all chosen in a militaristic setting: 

• 6 groups of 10-40 Soldiers each spread across the map. 
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• 4 Humvees starting on a random point on the map. 

• A lone Base is in the center and Humvees will commonly drive through 

the area. 

Soldiers and Humvees move around randomly. All randomness throughout the 

simulation has the same initial seed so all runs will have the same "randomness". We 

have 6 groups of soldiers in the simulation. We increase the node count for each group in 

increments of 10. Soldiers in each group move around in a circle of 500 meters based on 

dense or sparse areas accordingly in different locations of the map. Soldiers are not tied 

to roads, but Humvees are. Bases do not move. All nodes simulate a wireless interface 

akin to Wi-Fi, with varying ranges based on node type. Soldiers generate the data. 

Humvees and Bases are intended to hold a lot of cached data as they do not have to be 

carried by mobile devices and can afford to have larger storage and computing power, so 

they act as NCLs. 

All simulations are run for 12 hours in simulation time. Messages are generated 

and requested randomly throughout the simulation. Messages have a random initial 

classification, and can be adjusted by remote nodes (Soldiers) and NCLs (Humvees and 

Bases) based on the decaying weights during the simulation. We let the simulation run 

for half time (6 hours), and then during the other half aggregate the latencies of fulfilled 

requests. 

We compared 3 versions of our own algorithm to 2 most commonly used caching 

schemes (cache by popularity and LRU) and a simulation run without any caching. The 3 

versions of our algorithm are as follows. 

Classification. We classify the data items created on the network and is cached 

based on the class (as discussed in section 4) assigned by the source and remains same till 

the end of the simulation. 

Dual classification without weights. This version also starts with the classification 

like the previous but during the simulation uses cache redistribution and replacement 

based on our algorithm to move around items in the network. 

Dual classification with weights. This is same as the previous version of our 

algorithm but also includes decaying weights which are calculated as discussed in the 
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previous section 4. These weights are used to declassify items during cache redistribution 

and replacement parts of our algorithm. 

Table 1. Simulation Parameters 

Parameters Values 

No of Soldier Groups 6 

Soldier Count per Group 10 - 40 

Transmission Speed 

Soldiers 5 Mbps 

Humvee 10 Mbps 

Base 15 Mbps 

Transmission Range 

Soldiers 200 meters 

Humvee 500 meters 

Base 1000 meters 

Cache Size 

Soldiers 1 GB 

Humvee 10 GB 

Base 50 GB 

Simulated Time 12 Hours 

For cache by popularity, we use the simple case that ONE simulator supports 

where more "popular" (P) messages have a higher P, where P = H * N, with H being the 

number of hops that message has travelled, and N being the number of times the node, 

deciding to cache, has seen that message. 

We also used ONE's default caching scheme such as Least Recently Used (LRU). 

By default, with LRU, the least recently used messages are evicted from the end of the 

cache until buffer space is created for the new messages. Finally, we also ran simulations 

using the same parameters without any caching to compare and see how a caching 

scheme affects the access latency in a network. 

We poll latencies, for all these 5 scenarios, to see how the caching schemes 

compare in different mission critical situations. Note that our proposed dual caching 
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scheme can be integrated with schemes like in [2, 4] for environments other than defense 

networks.  

 

 RESULT ANALYSIS 

 

All numbers measured are in seconds inside ONE DTN Simulator and 5 runs of 

each combination is averaged. 

The results of the latencies have been presented into two tables, with Table 2 

being the recorded average access latencies, for 6 different caching schemes discussed 

above. Table 3 has the percentage values of cache size used for 3 specific scenarios. 

Table 3 seems very useful to draw conclusions about the improvement of access 

latencies between different caching schemes at different node counts. We can clearly see 

that the five caching schemes vs. no caching as a base line clearly have a significant 

speedup. This makes sense as with data cached at more places, more requests can be 

fulfilled quicker. 

Once we examine the differences in the caching schemes, we can clearly see that 

our dual algorithm out performs all other caching schemes. There is a 58% speedup when 

we compare our algorithm with LRU and 12% speedup when we compare it with cache 

by popularity (which is used by most DTN algorithms). We can see a speed up of 20% 

from dual without weight and 23% from dual with weights when compared to simple 

classification. So, moving around the cached data based on popularity, and decaying 

weights shows a significant effect on the access latency. 

Only caching based on classification can sometimes be slower than caching with 

popularity, and that is probably due to our design, which prioritizes highly classified data. 

Another interesting observation is that although dual with weights version of our caching 

scheme should make the retrieval of critical items much faster, we only see around a 3% 

speedup over dual without weights (see Table 2). 

Next, we want to see how our algorithm will affect cache hit/miss and cache 

memory used by each node during the simulation. We can see the cache miss percentage 

plot in figure 3 for different node counts for dual with and without weights.  
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Table 2. Access Latencies Across Different Algorithms For Different Node Counts 

Soldier 

Count per 

Group 

Dual 

with 

Weight 

Dual 

Without 

Weight 

Classification Popularity LRU No 

Caching 

10 461.90 479.66 604.59 523.00 1119.59 2070.19 

20 462.97 468.71 627.27 535.50 1155.85 2110.75 

30 465.85 472.94 649.13 556.47 1209.96 2275.59 

40 471.33 497.39 684.66 573.96 1314.75 2486.17 

Table 3. Cached Size Used Percentage  

Soldier 

Count per 

Group 

Dual with 

Weight 

Dual Without 

Weight 

Popularity 

10 41.77% 54.37% 81.34% 

20 40.82% 49.79% 76.92% 

30 35.30% 46.60% 72.57% 

40 31.10% 45.71% 64.49% 

  

Figure 3. Cache Miss 
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Figure 4. Cache Memory Used 

As the number of nodes increases, the decaying weight help the network to make 

room for the incoming new messages by declassifying the unwanted data items and 

caching the new messages on NCLs and Base. The algorithm without decaying weights 

will just keep only the highly classified data leaving no space for the newly arriving low 

class data. This will result in the increase of cache miss, thereby increasing the 

percentage of misses. 

We can also see the average percentage of cache used on all the nodes in the 

network in Table 3 and plot in figure 4. We can clearly see that dual algorithm with 

decaying weights uses less cache memory than the one without weights and popularity 

caching. Again, the declassification and removal of data items which decays with time 

and distance helps free up the cache space. Our dual with weights is using less than 50% 

of the cache space used by popularity caching scheme and 15% less than dual without 

weights.  

From the results above, we can clearly see our dual algorithm with or without 

weights performs much better than any other common caching scheme in an environment 

like defense networks. By using decaying weights, we can achieve more consistent access 

latencies and improve cache hit/miss and reduce the total cache memory used. 
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 CONCLUSION 

 

In this paper, we propose a new caching scheme to opportunistically caches data 

for Mission-oriented Delay-tolerant Networks. The basics of this implementation demand 

that highly classified data is cached often across the network, even if it is not locally 

popular, and low classified items are cached based on popularity. Simulations using The 

ONE DTN Simulator show that our solution does lead to significant latency 

improvements for data access, over other caching schemes in mission oriented networks. 

Finally, our caching algorithm performs best by mixing data classification, redistribution 

and replacement and decaying weights. 

Our Dual caching scheme does not currently consider power usage, but instead it 

tries to best manage the cache, however in the future it could be extended to do so. The 

ONE could be made to expose the power usage and future research could gleam if the 

dual scheme also leads to power savings. 
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3. CONCLUSION 

 

We proposed a new approach to enforce strict policy consistency among cloud 

servers which reduces the number of aborts caused due to policy inconsistencies, and 

faults in the system. The proposed approach increases the number of commits by 

increasing the throughput and commit ratio by approximately 5% and still provide strict-

consistency. we will consider consistency rationing to implement more reliable ways of 

constructing the policy consistency tree. Future work includes enforcing strict policy 

consistencies for nested transactions and ways to handle high priority transactions 

without aborts in case of policy inconsistencies. 

We propose a new caching scheme to opportunistically caches data for Mission-

oriented DTNs. Our implementation demands that highly classified data should be 

cached, even if it is not locally popular. Our solution leads to significant latency 

improvements for data access, over other caching schemes in mission oriented networks. 

Our Dual caching scheme does not currently consider power usage, but instead it tries to 

best manage the cache, however in the future it could be extended to do so. 
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