
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2018

Cloud transactions and caching for improved performance in Cloud transactions and caching for improved performance in

clouds and DTNs clouds and DTNs

Dileep Mardham

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Mardham, Dileep, "Cloud transactions and caching for improved performance in clouds and DTNs" (2018).
Masters Theses. 7769.
https://scholarsmine.mst.edu/masters_theses/7769

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7769&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7769?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7769&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

CLOUD TRANSACTIONS AND CACHING FOR IMPROVED PERFORMANCE IN

CLOUDS AND DTNS

by

DILEEP KUMAR MARDHAM

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2018

Approved by

Dr. Sanjay Madria, Advisor

Dr. Wei Jiang

Dr. Fikret Ercal

 2018

Dileep Mardham

All Rights Reserved

iii

PUBLICATION THESIS OPTION

This thesis consists of the following articles that has been published as follows:

Paper I, Pages 21- 44 have been accepted to the 33rd ACM Symposium on

Applied Computing (SAC), 2018.

Paper II, Pages 45 - 66 have been accepted to the 14th Wireless On-demand

Network Systems and Services Conference (IEEE/IFIP WONS), 2018.

iv

ABSTRACT

In distributed transactional systems deployed over some massively decentralized

cloud servers, access policies are typically replicated. Interdependencies ad

inconsistencies among policies need to be addressed as they can affect performance,

throughput and accuracy. Several stringent levels of policy consistency constraints and

enforcement approaches to guarantee the trustworthiness of transactions on cloud servers

are proposed. We define a look-up table to store policy versions and the concept of

“Tree-Based Consistency” approach to maintain a tree structure of the servers. By

integrating look-up table and the consistency tree based approach, we propose an

enhanced version of Two-phase validation commit (2PVC) protocol integrated with the

Paxos commit protocol with reduced or almost the same performance overhead without

affecting accuracy and precision.

A new caching scheme has been proposed which takes into consideration

Military/Defense applications of Delay-tolerant Networks (DTNs) where data that need

to be cached follows a whole different priority levels. In these applications, data

popularity can be defined not only based on request frequency, but also based on the

importance like who created and ranked point of interests in the data, when and where it

was created; higher rank data belonging to some specific location may be more important

though frequency of those may not be higher than more popular lower priority data. Thus,

our caching scheme is designed by taking different requirements into consideration for

DTN networks for defense applications. The performance evaluation shows that our

caching scheme reduces the overall access latency, cache miss and usage of cache

memory when compared to using caching schemes.

v

ACKNOWLEDGMENTS

I would like to convey gratefulness to all those who helped me on this thesis. I

would like to thank my advisor Dr. Sanjay Kumar Madria, who gave me a wonderful

opportunity to work on this research. His suggestions, feedback and encouragement

carried me through strenuous times. His intellect and expertise in this field of research is

unparalleled. Secondly, I would also like to express my gratitude to Dr. Wei Jiang Yin

and Dr. Fikret Ercal for serving on my thesis committee and for taking time to review this

work.

I am grateful to all my lab mates and friends for their professional help, inputs.

This project is partially funded by the Air Force Research Laboratory (AFRL) in Rome,

New York and I express my gratitude to them as well.

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION ... iii

ABSTRACT ... iv

ACKNOWLEDGMENTS .. v

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES ... ix

SECTION

 1. INTRODUCTION .. 1

1.1 INTRODUCTION AND MOTIVATION FOR CLOUD TRANSACTION 1

1.2 INTRODUCTION AND MOTIVATION FOR CACHING 3

 2. RELATED WORK ... 5

2.1 RELATED WORK IN SECURE CLOUD TRANSACTIONS DOMAIN 5

2.2 RELATED WORK IN DTN OPPORTUNISTIC CACHING DOMAIN 12

PAPER

I. CLOUD TRANSACTIONS ADHERE TO STRICT POLICY CONSISTENCY

 FOR IMPROVED PERFORMANCE ... 21

ABSTRACT ... 21

 INTRODUCTION ... 22

 LITERATURE REVIEW AND PRELIMINARIES 24

 SYSTEM ASSUMPTIONS AND PROBLEM STATEMENT 26

 3.1 SYSTEM MODEL.. 26

 3.2 PROBLEM MOTIVATION ... 28

 OUR PROPOSED APPROACH ... 29

 SIMULATION DESIGN AND EXPERIMENTS 37

 CONCLUSION AND FUTURE WORK .. 43

REFERENCES ... 43

II. OPPORTUNISTIC DISTRIBUTED CACHING FOR MISSION-ORIENTED

 DELAY-TOLERANT NETWORKS ... 46

ABSTRACT ... 46

 INTRODUCTION ... 46

vii

 RELATED WORK .. 48

 OUR MISSION-ORIENTED NETWORK MODEL 49

 CACHING USING CONTENT CLASSIFICATION 51

 CACHING ALGORITHM .. 56

 5.1 INITIAL DISTRIBUTION OF CACHING DATA 56

 5.2 CACHE REDISTRIBUTION UPON REQUESTS 58

 5.3 CACHE REPLACEMENT .. 59

 SIMULATION AND EXPERIMENT ... 60

 RESULT ANALYSIS .. 63

 CONCLUSION .. 66

REFERENCES ... 66

SECTION

 3. CONCLUSION .. 68

REFERENCES ... 69

VITA. .. 71

viii

LIST OF ILLUSTRATIONS

Figure Page

PAPER I

1. Interaction Among System Components ... 27

2. Consistency Tree Of Replica Servers .. 30

3. The Message Flow For Paxos Commit In The Normal Failure-Free Case................ 35

4. Transaction Cost Without Consistency Tree And 2PC .. 41

5. Transaction Cost With Consistency Tree And Paxos Commit 42

6. Transaction Throughput Without Consistency Tree And 2PC 42

7. Transaction Throughput With Consistency Tree And Paxos Commit 42

8. Commit Ratio Without Consistency Tree And 2PC .. 42

9. Commit Ratio With Consistency Tree And Paxos Commit 42

PAPER II

1. Content Caches .. 50

2. Network Model .. 51

3. Cache Miss ... 64

4. Cache Memory Used.. 65

ix

LIST OF TABLES

Table Page

SECTION

2.1. Contrasting The Various Proofs Of Authorization ... 11

PAPER I

1. Tradeoff Between 2PC and Paxos ... 36

2. Fixed Parameters .. 40

PAPER II

1. Simulation Parameters ... 62

2. Access Latencies Across Different Algorithms For Different Node Counts 64

3. Cached Size Used Percentage .. 64

1. INTRODUCTION

1.1 INTRODUCTION AND MOTIVATION FOR CLOUD TRANSACTION

Cloud is a computing model that provides on-demand computing resources

ranging from small – large scale applications to data centers over the internet on a pay for

use basis. Cloud computing provides many features like elasticity, which is the ability of

a system to automatically up-scale or down-scale the computing resources on demand as

workload changes. Cloud based applications run on distant computers “in the cloud” that

are owned and operated by others (Amazon, Google, Yahoo, Microsoft etc.,) and that

connect to users’ computers via the Internet. It also provides cloud-based environment to

support the complete life cycle of building and delivering web-based applications without

the cost and complexity of buying and managing the underlying hardware, software,

provisioning and hosting.

One of the most appealing aspects of cloud computing is its elasticity, which

provides an illusion of infinite, on- demand resources [1] making it an attractive

environment for highly-scalable, multi-tiered applications. However, this can create

additional challenges for back-end, transactional database systems, which were designed

without elasticity in mind. Despite the efforts of key-value stores like Amazon’s

SimpleDB, Dynamo, and Google’s Bigtable to provide scalable access to huge amounts

of data, transactional guarantees remain a bottleneck [2].

The most important aspects of cloud computing are elasticity and scalability,

which catalyzed much of the recent interest in cloud computing, raises many complex

issues for back-end, transactional database systems. Cloud services often make heavy use

of replication to ensure consistent performance and availability. A common trait

characterizing the new generation of cloud data platforms is the adoption of weak

consistency models, such as eventual consistency, restricted transactional semantics and

non-serializable isolation levels.

Eventual consistency allows data to be inconsistent among some replicas during

the update process, but ensures that updates will eventually be propagated to all replicas.

The major problem associated with this approach is the difficulty in maintaining the

2

ACID guarantees, in which Consistency is compromised to provide reasonable

availability.

Authorization policies describes the conditions under which users should be

permitted access to resources and describes the relationships between the system

principals, as well as the certified credentials that users must provide to attest to their

attributes. The transactional database system is deployed in a highly distributed and

elastic system, policies are typically replicated among multiple servers following the

eventual consistency model. It therefore becomes possible based on policy-based

authorization system is prone to make unsafe decisions using stale policies.

Interesting consistency problems can arise as transactional database systems are

deployed in cloud environments and use policy-based authorization systems to protect

sensitive resources. In addition to handling consistency issues amongst database replicas,

we must also handle two types of security inconsistency conditions. First, the system may

suffer from policy inconsistencies during policy updates due to the relaxed consistency

model underlying most cloud services. For example, it is possible for several versions of

the policy to be observed at multiple sites within a single transaction, leading to

inconsistent (and likely unsafe) access decisions during the transaction. Second, it is

possible for external factors to cause user credential inconsistencies over the lifetime of a

transaction [3]. For instance, a user’s login credentials could be invalidated or revoked

after collection by the authorization server, but before the completion of the transaction.

If the problems associated with policy consistency are not alleviated, the company or

individual may face a potential risk. The company may leak information about customers

and face harsh penalties and loss of credibility.

Cloud services are widely adopted by various organizations for resource sharing

and elasticity. The vendors of cloud services generally lack consistency among the

policies across all the servers. Due to this inconsistency, there is a possibility of

transaction abort when a user tries to request with older policy. In this case, the user will

not be able to access the data item as the policy doesn’t match with the newer policy. A

user who earlier had access to the data item will not be able to perform any operations on

the data item. Such situations should be avoided, and we present the below mechanism to

resolve such issues.

3

In addition to handling consistency issues among database replicas, policy

inconsistencies and user credential inconsistencies needs to be addressed for which

possible solutions have been proposed. But there are performance and latency issues with

these solutions and we address them in this paper.

1.2 INTRODUCTION AND MOTIVATION FOR CACHING

Caching data within DTNs is discovered as a means for both persisting data

locally to make the data both more readily available in close proximity, and to reduce

resource usage through a reduction in hops to the high priority data sources. Additionally,

DTNs present an even more significant challenge for data persistence as they are, by

nature generally isolated and disconnected from a larger network or the Internet.

Therefore, DTNs must cache mission critical useful data to share within the network.

Though local device caching of data is a useful method to accomplish data persistence

and increase availability, it comes with its own set of challenges and problems in DTNs.

Situations can arise where specific nodes within the network become over utilized by

caching too many data points due to the uncertainty of data transmission, thus multiple

data copies need to be cached at different locations to ensure higher data dissemination.

The difficulty in coordinating multiple caching nodes due to the lack of persistence

network connectivity makes it hard to optimize the trade-off between data accessibility

and caching overhead. Thus, each node has to decide what data to be cached as nodes

cannot design a cooperative caching schemes because of not knowing which other nodes

they can reach. A situation may come where specific nodes become over burdened by

caching too many important messages. This results in the storage space for that specific

device becoming over utilized and the battery life being exhausted due to the device

carrying a disproportionate amount of data and forwarding requests for the data it holds

to each peer it meets. Caching in DTNs can create a situation where the data might not be

proximate to the nodes that need it. This results in an increase in the energy utilization

due to the need to disseminate the data across many peers. Caching can consider the

location of the node, POIs and queries performed by the node and then predicting the

caching needs at the next time instants.

4

DTN networks use caching as a technique to store some of the transferring files in

order to satisfy the future requests reduced data access delay. Each Network Operating

System (NOS) which uses DTNs requires a unique kind of caching method to fulfil its

particular needs. From all the data caching methods we have studied, file popularity and

cooperative caching have always been the main motivation behind the file selection for

caching to satisfy future requests and how cache replacement should to be done.

Although these methods are efficient in many general scenarios where users transfer

picture or other kinds of media files in a busy network using mobile devices, there are

some scenarios where these methods of caching entirely fail to address the requirement.

In situations like Military networks, or any other defense data networks, the data need

that need to be cached follows a whole different priority. Some files despite of low

popularity should be cached with highest priority which is completely against the

conventional caching methods that we use today. Some other classified data files even

with the increasing demand the data replication should be restricted to a certain number

of times in order to prevent data theft or other security issues. So, a new caching

technique has to be designed which takes different requirements into consideration to

fulfil this necessity in defense data networks.

The simplest solution would be to just cache everything we can on every device

and update it as we make connections to other nodes in the network, the problem with

this is twofold: collisions, and space/energy constraints, so this approach is unrealistic.

Because of this we must make decisions in exactly how we are going to cache data

around this network. If an item is too popular a single node may become overwhelmed

with requests for that data, so it should probably be replicated. In addition, data that is not

cached locally must be retrieved with one or more hops around the network. This adds

latency to the system, and consumes more power with the requests and responses for the

data, so exactly where to store the data is another dimension of concern. And some data

may not be as popular, but latency to it may be such a concern that it must be accessible

quickly. These three elements: location, latency, and popularity of the data will be the

primary qualities we use to judge data in how exactly to cache it.

5

2. RELATED WORK

2.1 RELATED WORK IN SECURE CLOUD TRANSACTIONS DOMAIN

Cloud providers lack services that guarantee both data and access control policy

consistency across multiple data centers. In the article [3], several policy and user

credential consistency problems are identified, and policy based authorization systems

are used to enforce access control. In previous papers [4], [5], the confluence of data,

policy, and credential inconsistency problems that can emerge using transactional

database systems are addressed. In doing so, the authors made the following

contributions:

• Initially, formalization of the concept of trusted transactions is presented. Trusted

transactions are those transactions that do not violate credential or policy

inconsistencies over the lifetime of the transaction. The authors then presented a

more general term, safe transactions, that is used to identify transactions that

conform to the ACID properties of distributed database systems and are trusted in

terms of the validity of the policy evaluation.

• Since achieving ACID properties in distributed transactional databases has been

extensively studied [4], [5], they focused on how to achieve trusted transactions.

Accordingly, they defined different levels of policy consistency constraints as

well as different enforcement approaches to guarantee the trustworthiness of

transactions executing on cloud servers.

• The authors also proposed a solution that involves an adaptation of the Two-Phase

Commit (2PC) protocol to enforce trusted transactions, which we refer to as Two-

Phase Validation Commit (2PVC) protocol. The protocol ensures that a

transaction is safe, as it ensures policy and credential consistency as well as data

consistency.

• The authors presented a performance analysis study of the proposed approaches.

Proof of Authorization

We now present a formal definition of a proof of authorization. Let fsi = <qi, si,

Psi(m(qi)), ti, c> denote the proof of authorization evaluated at server si, where qi is a

query defined over a set of read/write requests submitted to that server. Psi denote the

6

proofs of authorizations enforced by server si and belonging to the same administrative

domain A. Function m is a mapping such that m : Q → 2D, that is, m identifies the set of

data items that are being touched by query q. Time ti is the time instance at which the

proof of authorization is being evaluated, and finally c is a set of credentials presented by

the user to complete the proof of authorization such that c ⊆ C which is the set of all

credentials.

Let F denote the set of all proofs of authorizations, and the set TS contains all

possible timestamps. The validity of each proof of authorization f ∈ F at time instance t is

evaluated using the predicate eval(f, t) such that eval : F ×TS → B. The Boolean sign is

true if the proof of authorization is valid. The validity of a proof of authorization is

asserted in two cases:

1) Credentials are syntactically and semantically valid: According to the definitions

in [4], a credential ck is syntactically valid if the following conditions hold: (i) it is

formatted properly, (ii) it has a valid digital signature, (iii) the start time of each

transaction α(ck) has passed, and (iv) the time at which the transaction finishes

execution and is ready to commit β(ck) has not yet passed. A credential ck issued

at time ti is semantically valid at time t if an online method of verifying ck’s status

indicates that ck was not revoked at time t′ and ti ≤ t′ ≤ t.

2) The inference rules are satisfying: A policy is a set of inference rules that are

encoded by policy makers to capture system’s access control regulations. Given

policy P, and user credentials C, if the inference rules of the policy can be

satisfied using the user credentials, then the proof of authorization is said to be

valid and the access is granted accordingly.

Consistency Levels

Since transactions are executed over time, the state information of the credentials

and the policies enforced by different servers are subject to changes at any time instance,

therefore it becomes important to introduce precise definitions for different consistency

levels that could be achieved within transaction’s lifetime. These consistency models

strengthen the notion of trusted transaction by defining the environment in which policy

versions are consistent relative to the rest of the system. Before we do that, we define a

7

transaction’s view in terms of different proofs of authorizations evaluated during the

lifetime of a transaction.

Two consistency models have been proposed to handle consistency within

transactions:

• View Consistency: A view VT ={<qi, si, Psi (m(qi)), ti, c>, . . . , <qn, sn, Psn (m(qn)),

tn, c>} is view consistent, or Φ-consistent, if VT satisfies a predicate Φ-consistent

that places constraints on the versioning of the policies such that Φ-consistent(VT)

↔ ∀i, j : ver(Psi) = ver(Psj) for all policies belonging to the same administrator A,

where function ver is defined as ver : P → N where P is set of all policies and N is

the infinite set of natural numbers.

The policy versions should be internally consistent among all servers

executing the transaction. With a view consistency model, the policy versions

should be internally consistent across all servers executing the transaction. The

view consistency model is weak in that the policy version agreed upon by the

subset of servers within the transaction may not be the latest policy version v. It

may be the case that a server outside S servers has a policy P that belongs to the

same administrative domain A and with a version v′ > v. A more strict consistency

model is the global consistency and is defined as follows.

• Global Consistency: A view VT ={<qi, si, Psi (m(qi)), ti, c>, . . . , <qn, sn, Psn

(m(qn)), tn, c>} is global consistent, or Ψ-consistent, if VT satisfies a predicate Ψ-

consistent that places constraints on the versioning of the policies such that Ψ-

consistent(VT) ↔ ∀i : ver(Psi) = ver(P) for all policies belonging to the same

administrator A, and function ver follows the same aforementioned definition,

while ver(P) refers to the latest policy version.

The policies used to evaluate the proofs of authorization during a

transaction execution among S servers should match the latest policy version

among the entire policy set P, for all policies enforced by the same administrator

A.

Trusted Transactions

Trusted transactions are defined as transactions which do not fail to agree with the

credential or policy inconsistencies during execution. Given a transaction T ={q1, q2, . . . ,

8

qn} and its corresponding view VT , T is trusted iff ∀fsi ∈VT : eval(fsi , t), at some time

instance t : α(T) ≤ t ≤ β(T)∧(Φ-consistent(VT)∨Ψ-consistent(VT)).

Based on the consistency models, the term safe transaction is defined which is a

trusted transaction and satisfies all data integrity constraints imposed by the database

management system. In practical, a transaction will commit if it is safe and any unsafe

transaction is forced to rollback.

Trusted Transactions Enforcement

A variety of light-weight proof enforcement and consistency models (Deferred,

Punctual, Incremental, and Continuous models) have been proposed that enforced

increasingly strong protections with minimal runtime overheads. A brief description of

different proofs of authorization models is given below:

• Deferred proofs of authorization are evaluated simultaneously at commit time to

decide whether the transaction is trusted. A transaction T and its corresponding

view VT , T is trusted under the deferred proofs of authorization approach, iff at

commit time α(T), ∀fsi ∈ VT : eval(fsi,β(T))∧(Φ-consistent(VT) ∨ Ψ-consistent(VT)).

By employing deferred proofs of authorizations, transactions are most likely to

execute faster but on the expense of risking a transaction to be forced to rollback

after it has proceeded till the commit time in case of violation of the trusted

transaction condition.

• Punctual proofs of authorization are evaluated instantaneously whenever a query

is being handled by a server. This is a proactive approach and facilitates early

detection of unsafe transactions, saving system from getting into costly undo

operations. Proofs of authorization are re-evaluated at the commit time. Given a

transaction T and its corresponding view VT, T is trusted under the Punctual proofs

of authorization approach, iff at any time instance ti : α(T) ≤ti ≤ β(T) ∀ fsi ∈ VT :

eval(fsi, ti) ∧ eval(fsi , β(T)) ∧ (Φ-consistent(VT) ∨ Ψ-consistent(VT)).

Punctual proofs of authorization do not impose any restrictions on the

freshness of the policies used by the servers to evaluate the proofs during the

transaction execution. It is only at commit time when the proofs of authorization

are re-evaluated while enforcing view consistency or global consistency. Hence,

due to the weak consistency paradigm on which cloud servers operate, a server

9

might evaluate a proof based on an old version of a policy and in that case there is

no guarantee that the decision made by that server is valid or invalid.

Consequently, servers might have false negative decisions and deny access to

queries, and on the other hand, false positive decisions could also be made.

• Incremental Punctual proofs of authorization doesn’t allow a transaction to

proceed unless each server achieves the desired level of the policy consistency

with all previous servers. All participating servers are forced to be in consistent

view with the first executing server and if a newer policy version shows up at a

later server, the transaction aborts. Given a transaction T and its corresponding

view VT , T is trusted under the Incremental Punctual proofs of authorization

approach, iff at any time instance ti : α(T) ≤ ti ≤ β(T), ∀fsi ∈VT
ti: eval(fsi, ti) ∧ (Φ-

consistent(VT
ti) ∨ Ψ-consistent(VT

ti)).

If the first server s1 does not have the latest version, the proof of

authorization at that server is risked to be evaluated using an older policy. Note

that in this scenario if any of the other servers has a newer policy version, the

consistency condition will not be satisfied and the transaction will be forced to

rollback, saving the transaction from doing any further untrusted authorizations.

• Continuous proofs of authorization are evaluated throughout a transaction’s

lifetime and if a newer version of the policy is found at any of the participating

server, all previous proofs have to be re-evaluated after updating policies on all

inconsistent servers. A transaction T is declared trusted under the Continuous

approach, iff ∀1≤i≤n∀1≤j≤i : eval(fsi, ti) = true ∧ eval(fsj, ti) = true ∧ (Φ-

consistent(VT
ti) ∨ Ψ-consistent(VT

ti)) at any time instance t : α(T) ≤ ti ≤ β(T).

In Continuous proofs of authorizations, at every time instance when an

evaluation of a proof of authorization is being made, all previous proofs of

authorizations are forced to be re-evaluated before the transaction can proceed. If

any of the evaluations fail at any time instance, the entire transaction is forced to

rollback.

Two-Phase Validate Commit Algorithm

A two-phase validation commit protocol (2PVC) is proposed which is an

improvised version of the two-phase commit protocol (2PC) and the two phase validation

10

protocol (2PV). In 2PVC validation of the authorization policy and credentials are carried

out compared to 2PC in which data integrity check is performed. 2PVC will evaluate the

policies and authorizations within the voting phase. That is, when the TM sends out a

Prepare-to-Commit message for a transaction, the participant server has three values to

report: (1) the YES or NO reply for the satisfaction of integrity constraints as in 2PC, (2)

the TRUE or FALSE reply for the satisfaction of the proofs of authorizations as in 2PV,

and (3) the version number of the policies used to build the proofs (vi, pi) as in 2PV.

__

Algorithm: Two-Phase Validation Commit 2PVC

1 Send “Prepare-to-Commit” to all participants

2 Wait for all replies (Yes/No, True/False, and a set of policy versions for

each unique policy)

3 If any participant replied No for integrity check

4 ABORT

5 Identify the largest version for all unique policies

6 If all participants utilize the largest version for each unique policy

7 If any responded False

8 ABORT

9 Otherwise

10 COMMIT

11 Otherwise, for participants with old policies

12 Send “Update” with the largest version number of each

policy

13 Wait for all replies

14 Goto 5

The process given in Algorithm 2 is for the TM under view consistency. It is very

similar to that of 2PV with the exception of handling the YES or NO reply for integrity

constraint validation and having a decision of COMMIT rather than CONTINUE. The

11

TM enforces the same behaviour as 2PV in that it identifies policy inconsistency, sends

Update messages to create consistency, and re-executes the first phase. The same changes

to 2PV can be made here to provide global consistency. That is, the global 2PVC does

not need to determine the latest version number from the participant votes. Instead, it

simply asks some master server on the system which knows the latest policy version at

Step 5.

Complexity

The cost of 2PC is typically measured in terms of log complexity (i.e., the number

of times the protocol forcibly logs for recovery) and message complexity (i.e., the

number of messages sent). We add another metric, namely the number of proof

evaluations. These metrics are given with respect to the number of participants involved

with the decision, n, the number of queries, u, and the number of voting rounds, r. The

log complexity of 2PVC is no different than normal 2PC, which has a log complexity of

2n + 1 [4]. Table 2.1 shows the complexity—in terms of the maximum number of

messages and proofs—for each proof of authorization scheme for both view and global

consistency.

Simulated workloads have been used to experimentally evaluate implementations

of the consistency models relative to three core metrics: transaction processing

performance, accuracy and precision.

Table 2.1. Contrasting The Various Proofs Of Authorization

 Deferred Punctual Incremental Continuous

 View Global View Global V

iew

Global View Global

Messages 2n +

4n

2n +

2nr + r

2n +

4n

2n +

2nr + r 4n 4n + u

u(u + 1)

+ 4n

u(u + 1) +

u + 2n +

2nr + r

Proofs 2u - 1 ur u+ 2u

− 1

u + ur u u u(u+1)/2 u(u+1)/2 +

ur

12

2.2 RELATED WORK IN DTN OPPORTUNISTIC CACHING DOMAIN

The paper [20] deals with improving the coordination between the multiple

caching nodes in the delay tolerant networks (DTN's) to optimize the data accessibility

and caching overhead. The main challenges that are dealt in this paper are how to select

the nodes that are optimal to cache the data. How to overcome the limited buffer space in

central nodes to improve the total caching limit, how to prioritize the data that need to be

cached are all issues plagued by any research into this topic.

To select the Network Central Locations (NCL's) three types of NCL selection

methods are used namely NCL selection metric, Trace-based validation and Practical

NCL selection. In NCL selection metric the nodes which participate most in connecting

all the nodes using the shortest path with less cost are selected and made as NCLs. In

trace-based validation we select the nodes based on their popularity. The nodes are

selected using realistic DTN traces. These traces are observed for a certain amount of

time and each node popularity is decided on how well they are connected to the other

nodes. In practical NCL selection we select 'K' best NCLs that are available in the

network. In this method we use NCL selection metric that was used before, but we try to

limit the NCL's to K number. Two ways to make this selection are global selection where

the nodes are selected recursively to support the previous nodes until K nodes are

selected and distributed selection where the k nodes are selected independent of the

global network knowledge.

To expand the cache buffer space if all the NCLs cache is full then the nodes that

are close to NCLs are selected and they are used to store the less popular data. To

improve the coordination between the NCLs whenever two NCL’s encounter each other

they compare and share their respective information to optimize the information. So, with

the increase in time all the NCLs might encounter each other and the information they

carry becomes optimized.

Coordination between different NCLs and optimization of data of every NCL can

become an endless optimization cycle which consumes a lot of energy if the network is

very big and can never be optimized. To overcome this drawback, we think the NCL

optimization should be limited to certain range and the range depends on how diverse the

nodes are and how big the network is. From this paper we can understand how NCL

13

placement in the network is critical for the efficient data transmission and how caching

space limitations can be improved.

In the paper [21], we consider a delay-tolerant content sharing network built over

a network of mobile users and wireless access points, where the users download content

opportunistically from each other via short-range communications (e.g. Bluetooth or Wi-

Fi). If the requested content is not found within the prescribed time, the users will

download it through the more expensive 3G network.

This paper discusses the factors that contribute for caching in DTNs are Cache

capacity within each node, User mobility, Density of the access points, how well the

requests are distributed within the nodes to find the data and contact duration i.e. at least

for long should the connection exist to transfer the complete file. The ultimate goal is to

send the query request to all the nodes and retrieve the data back to requested node within

a certain amount of time.

Cooperative caching is the method used in this paper and to achieve that

cooperation between the nodes we use Zipf’s law. According to Zipf’s law every file has

a certain probability of getting requested and the files with higher probability should be

replicated more to improve the data retrieval time. Due to the additional time constraint

i.e. to retrieve the data within a certain amount of time, four different pushing methods

are used to flood the nodes with all the available data.

1) Random Pushing: Each mobile device randomly stores K files in their cache.

2) K-most Popular: The K files with highest probability of request are cached.

3) Optimal: Files are distributed according to optimal file distribution algorithm.

4) Pushing Algorithm: Files are distributed because of the above selective pushing

algorithm.

From the analysis, to improve the overall average hit ratio of the cache, the files

which are popular should be replicated more and less popular files should be less

replicated. By storing more copies of the popular files and less copies of the unpopular

files, the overall hit rate could possibly improve. The miss ratio decreases exponentially

with the patience time. Random push strategy has the highest miss ratio compared to

others whereas k-most popular miss ratio didn’t change much with increase in file

number. Optimal file pushing strategy got less miss ratio with the increase in file number.

14

One assumption made in this paper by authors is that all the nodes has the same amount

of cache space and all the nodes are well and uniformly connected to each other. So, there

is no discussion about the selection of NCLs in the network. This clearly is a drawback

because in a practical situation no two nodes behave similarly and NCLs play a huge role

in DTN caching data retrieval.

The main contribution of the paper [22] is to provide a formal framework for the

characterization of the performance of optimal in-network caching in ICNs, as well as

opportunistic in-network caching at the edge of ICNs—i.e., close to the end-users. The

authors used Independent Reference Model (IRM), which assumes that the objects are

equal sized whose references occur independently, to study the benefits of using

universal caching compared to a simple policy of caching only at the edge of the network

assuming a simple hierarchical caching structure.

The authors consider a hierarchy of LRU (Least Recently Used) caches in the

form of a tree with its root acting as the content source. The paper assumes that the

source stores permanent copies of all the information objects in the system. Alternatively,

the source can be considered as a collection of all possible content hosts that are logically

collapsed into one single entity as the root of the tree in our model. The tree comprises L

+ 2 levels. The content subscribers (i.e., users or information requesters) are at the 0th

level, while the content source is at level L + 1. Subsequently, there exist L levels of

nodes with caching capabilities between users and the content source which are

sequentially labelled from bottom (level 1) to the top (level L).

The caching paradigm used to optimize is called “on-path caching” which works

as follows. When a request for an object is raised at level 0, it is forwarded along the

(unique) path of intermediate caches towards the root until a cache hit occurs. If all cache

accesses are missed along the path, the request will be fulfilled by fetching a copy of the

object directly from the source (root). Once located, the object is transferred on the

reverse path back to the requester and a local copy is also stored on each and every node

along the path.

The results using this model demonstrate that, while optimal caching naturally

tends towards the edge with an increased caching budget, higher degrees of reference

locality further accelerate this transition. The results indicate that the optimal caching

15

approach based on universal caching provides only marginal benefits over the simple

policy of caching only at the edge routers of the ICN. The paper failed to take into

consideration the following aspects:

• More realistic topologies and Develop model for random networks.

• Verify synthetic traces for locality of reference model with real traffic traces.

• New approaches to integrate routing with edge caching.

The paper [23] discusses about locating the Network Central Locations (NCL)

within all the DTNs based on the node’s social levels and how well it is connected to

other nodes. Selected data which has great popularity in a region is cached on a node at

that location. Even though the most popular data of the network has many duplicate

copies within the NCLs the popularity of the data is gradually decreased depending on

that node’s distance from the node where that data has highest popularity. Caching space

limitation is improved by utilizing the cache space of the other selective nodes near the

NCLs. The cache of the NCLs is replaced periodically with new data based on the

frequency of data usage, user requests and freshness of data access. To find the best

nodes to be selected as NCLs within all DTNs K-Means Clustering algorithm is used.

This paper proposes a new method called social based forwarding approach for

content retrieval. This method follows several steps which are as follows.

Compute Social-Tie Relationship: Two nodes are said to have a strong tie if they

have met frequently in the recent past. We compute the social tie be1tween two nodes

using the history of encounter events.

Compute centrality: Each node maintains a social-tie table that contains the social

distances from the current node to all other encountered nodes. During the encounter

period, the social-tie table is exchanged and merged into the other node’s social-tie table.

Based on the social-tie table, a node can compute each other node’s centrality. We

estimate the centrality by considering both the average social-tie values and their

distribution. Namely, we favor nodes with high, uniformly distributed social ties to all

other nodes.

Compute Social Level: Nodes that have similar centrality tend to have similar

level of contacts with other nodes and thus similar knowledge on content providers. To

reduce the forwarding cost of the content query phase, we propose to group together

16

nodes with similar centrality into the same cluster. Interest packets are only forwarded

from one cluster to another cluster. There is no Interest forwarding within a cluster. Each

cluster represents a social level in the network.

Content Name Digest Convergence: To facilitate content query, each content

provider actively announces its content name digest (a list of names of contents a node

owns) to nodes in higher centrality clusters. Each node maintains a local data structure

called digest table (which maps the provider ID to the digest) to store the received digests

from lower centrality nodes. Furthermore, when nodes encounter each other, the digest

table will be sent to the node with the higher centrality. Throughout this process, the

content name digests from each content provider are converged toward higher centrality

nodes. Subsequently, higher centrality nodes have broad knowledge of which node owns

which content in the network.

Interest Packet Forwarding: The Interest packet is carried by the requester and is

forwarded to the first encountered node that has a higher social level than the requester

itself. Subsequently, the requester keeps a copy of the Interest packet and forwards it to

the next encountered node that has an even higher social level than the last relay node.

After a node receives an Interest packet from other nodes it encountered, it will

first check its local digest table to see if there is any matched name. If no matched name

is found, it will continue forwarding the Interest packet. Each relay node performs the

same strategy; forwarding the Interest packet to the next relay node that has a higher

social level than the last relay node. Following this strategy, the Interest packet is

forwarded upward, level by level, toward the most popular node in the centrality

hierarchy.

Data Packet Forwarding: After the Interest packet reaches the content provider,

the content provider will social-tie route the data packet back to the requester. The

content provider only responds once to the same Interest packet that originates from the

same requester. Subsequent received duplicate Interest packets are ignored. The

prominent issues faced during caching schema are what data is needed to be cached,

where the data needed to be cached and how the cached data should be replaced when

new data comes into play.

17

Cached Data Selection: Intuitively, popular data is a good candidate for caching.

We compute the content popularity (relative to the current node) by considering both the

frequency and freshness of content requests arriving at a node over a history of request

arrivals.

Cache Location: If each node has unlimited cache space, then it is trivial to

identify suitable caching locations, as data can be cached everywhere. Given that each

node has limited space for caching, we follow a conservative approach and only cache

data at nodes satisfying the following conditions:

1) Selected nodes are on the query forwarding paths.

2) They are traversed through by many common requests.

3) Caching in neighbors of central nodes, whose caches are heavily utilized, is

another optimization implemented in this scheme.

Cache Replacement: When the cache buffer is full, existing data must be evicted

from the cache, to accommodate new data. There are two related issues: 1) Determining

the amount of data to evict. 2) Identifying particular data to evict. For the first issue, we

need to evict as much data as the size of the new data. Regarding the second issue, we

propose to remove data from the cache that is identified as least popular. That is, we

consider both the frequency and freshness of data access.

Caching Protocol: Nodes periodically advertise their spare cache capacity to each

other. This allows central nodes to opportunistically make decisions regarding which

cached data to move to neighboring nodes so that central nodes have more space to cache

new popular data.

Cooperative caching is the main key to find which data should be stored at which

NCL so that the data retrieval is easier and query requests are processed efficiently. Since

the file popularity decreases gradually the query search can be stopped after certain range

from the NCL where the data was popular. From this paper we can understand how the

file popularity helps to cache a file for a long time and how modifying this file popularity

index for a file manually can improve a file’s life-time which has less requests but of high

value for some users. This paper fails to address the following issues.

• Trying to update the social tie values and local digest table involving all the nodes

increases the nodes power consumption.

18

• How to preserve the data which is less popular but very important for some set of

users.

In paper [24] content distribution is defined as the task of providing requested

data to the clients. Requests are constructed by the client and transmitted to a node

capable of servicing them, usually a server or repository. This is different from caching,

which ideally is used to provide the same data item to a large number of clients and

thereby involves individual nodes keeping a copy of the data item so that they can fulfil

requests just as well as the server. A mobile repository, sometimes called a data store or a

throwbox, contains a large collection of related items, thus allowing the device to fulfil

most requests.

In DTNs, social context can be used to improve the efficiency of certain tasks

such as routing or caching. Clients’ content requests tend to be influenced by social

patterns. In general, if a client’s contacts request a specific data item, that client has a

greater probability of requesting the item as well. To take advantage of this tendency, a

node first must identify the consistent contacts of a node. In a dynamic environment in

which nodes are added and removed, the social structure must accommodate such

changes.

The purpose of the Social Content Distribution (SCD) schema is to locate the

optimal position for mobile repositories. This is accomplished by evaluating the existing

social structure of the network, identifying which nodes and groups issue frequent

content requests, and locating the devices most capable of fulfilling these requests.

Initially, a node identifies its frequent contacts, forming small groups. These groups are

merged, joined, and left by nodes to accurately reflect the network’s social structure. The

end result is the positioning of repositories in close proximity to requests, increasing

content availability and reducing the average delivery time.

If a set of nodes meet frequently, the algorithm will assume the nodes are in a

group. The request predictions are based on historical patterns; if a node requests data

from a throwboxes frequently or are in a social group whose members frequently request

content, the throwboxes assumes it will do so in the future. Based on the nodes’ predicted

content request, the throwboxes relocates itself to serve these requests quickly.

19

Grouping: In this context, a social group is a collection of nodes that have regular

contact with each other. Nodes within a social group maintain group data, including

group membership and the metrics of all group members. All nodes maintain their group

list in one of following three ways:

i) Two nodes having regular contact with one another form a new social group:

The first step in determining any groups formed by nodes is to establish a metric by

which to measure the distance between two nodes. The SCD schema calculates the

percentage of time spent in direct contact, using an exponential moving average formula

to adjust the current estimate. With this information, a cumulative estimate of the contact

strength is calculated and compared to a group formation threshold. When the contact

strength exceeds a control threshold, the nodes are considered close enough to form a

new group.

ii) Two social groups with similar members merge: By tracking the contact

strength between nodes, a series of two-node social groups can be formed. The next step

is to integrate these links into larger groups by merging similar groups. Nodes that are

joint members of two groups will periodically review the group data for merges. If the

joint node determines that the two groups are similar enough, then a SUGGEST message

is sent to the group head of the smaller of the two groups. This message indicates that the

node believes that merging the two groups is justifiable. Performing merges in this

manner updates groups in a limited environment. The drawback is that it does not ensure

that all nodes of the group are strongly connected to all members of the new group. To

address this issue, nodes can resign from groups to which they no longer have a strong

attachment.

iii) Nodes resign from groups in which they no longer participate: Periodically,

nodes will review their group list to ensure that they are still participating. The average

contact strength to all group members is calculated, and if it is beneath ψ, the node

resigns from the group. To avoid fragmentation, the sending node will not remove any

group data until the message has been confirmed.

Content Repository Positioning:

i) Request Frequency: To determine the optimal position for a repository, it is

necessary to identify nodes which frequently request data items. Whenever a node makes

20

a user request, the update process estimates the average time between requests based on

the previous estimate and the control variable threshold, which determines how much

emphasis, is placed on historical data. This process allows nodes to maintain up to-date

estimates adjusted to reflect their individual request patterns.

ii) Group Request Score: A node’s ranking depends on its own ability, as well as

the ability of its contacts, to deliver a content item to requesting nodes. A node can

calculate its Request with Group Score (RGS) which is the time required for a node or a

neighboring node to serve a data request.

iii) Repository Position Ranking: At this stage of the process, nodes are aware of

the frequency with which they contact other nodes (Request Frequency) and how often

these nodes will request content, either on their own behalf or that of their neighbors

(Group Request Score). The ranking algorithm establishes a metric, the Rank Position

Score (RPS), which is the sum of another node’s chance of requesting the data times the

chance of encountering node. If RPS of Node B is greater than RPS of Node A, this

indicates that Node B is closer than Node A to other nodes that make more frequent

requests. A message updating the data owner is sent, and the entire repository shifts.

This paper presented a social algorithm, identifying groups dynamically by

measuring the contact intervals. It then used this data to accurately identify which nodes

served as optimal positions for mobile repositories.

21

PAPER

I. CLOUD TRANSACTIONS ADHERE TO STRICT POLICY

CONSISTENCY FOR IMPROVED PERFORMANCE

Dileep Mardham1, Sanjay Madria1, James Milligan2 and Mark Linderman2

1Missouri University of Science and technology, Rolla, MO, USA

1Air Force Research Lab, Rome, NY, USA

ABSTRACT

In distributed transactional systems deployed over some massively decentralized

cloud servers, access policies are typically replicated. Interdependencies and

inconsistencies among policy version replicas can affect performance, throughput and

accuracy, which can increase the transaction failure rate and cause long delays. Thus,

policy and user credential inconsistencies need to be addressed. Several stringent levels

of policy consistency constraints and enforcement approaches to guarantee the

trustworthiness of transactions on cloud servers are proposed. However, there are

performance issues associated with the policies proposed while retrieving the latest

policy versions present in various cloud servers. In this paper, first, we define a look-up

table in which the policy versions used for authorization is stored and updated on a

regular basis and this information can be easily retrieved by the transaction manager.

Next, we use the concept of “Tree-Based Consistency” approach to maintain a tree

structure of the servers where a particular data item is replicated. By integrating look-up

table for policy versions and the consistency tree based approach, finally, we propose an

enhanced version of Two-phase validation commit (2PVC) protocol integrated with the

Paxos commit protocol to increase the number of commits of transactions with reduced

or almost the same performance overhead (transaction execution time) without affecting

accuracy and precision, but reducing the number of transaction aborts in comparison with

a most recent work.

22

 INTRODUCTION

Cloud provides on-demand [1] resources for highly-scalable multi-tiered

applications to reduce the latency, and provide resiliency as needed. However, this can

create additional challenges for back-end transactional database systems, which were

designed without elasticity. Despite the efforts of key-value stores like Dynamo [7] and

Bigtable [8] to provide scalable access to huge amounts of data, transactional guarantees

remain a bottleneck [2].

 Cloud services make use of replication to ensure consistent performance

and availability. A common trait characterizing the new generation of cloud data

platforms is the adoption of weak consistency models, such as eventual consistency,

restricted transactional semantics and non-serializable isolation levels. Eventual

consistency allows data to be inconsistent among some replicas during the update

process, but ensures that updates will eventually be propagated to all replicas. The major

problem associated with this approach is the difficulty in maintaining the ACID

guarantees, in which consistency is compromised to provide reasonable availability.

Authorization policies describe the conditions under which users should be

permitted access to resources and describes the relationships between the system

principals, as well as the certified credentials that users must provide to attest to their

attributes. The transactional database system is deployed in a highly distributed and

elastic system; policies are typically replicated among servers following the eventual

consistency model. It therefore becomes possible, based on policy-based authorization

system, to make unsafe decisions using stale policies.

Interesting consistency problems can arise as transactional database systems are

deployed in cloud environments and use policy-based authorization systems to protect

sensitive resources. In addition to handling consistency issues amongst database replicas,

we must also handle two types of security inconsistency conditions. First, the system may

suffer from policy inconsistencies during policy updates due to the relaxed consistency

model underlying most cloud services. For example, it is possible for several versions of

the policy to be observed at multiple sites within a single transaction, leading to

inconsistent (and likely unsafe) access decisions during the transaction. Second, it is

23

possible for external factors to cause user credential inconsistencies over the lifetime of a

transaction [3]. For instance, a user’s login credentials could be invalidated or revoked

after collection by the authorization server, but before the completion of the transaction.

If the problems associated with policy consistency are not alleviated, the company or

individual may face a potential risk. The company may leak information about customers

and face harsh penalties and loss of credibility.

Due to inconsistency among the policies across the servers, there is a possibility

of transaction abort when a user tries to request with older policy. In this case, a user will

not be able to access the data item as the policy doesn’t match with the newer policy. A

user who earlier had access to the data item will not be able to perform any operation on

the data item. Such situations should be avoided.

In addition to handling consistency issues among database replicas, policy

inconsistencies and user credential inconsistencies need to be addressed for which

possible solutions have been proposed [4,5]. These papers address the data, policy, and

credential inconsistency problems in transactional database systems deployed in the

cloud. The notion of trusted transactions when dealing with proofs of authorization is

defined. Accordingly, it proposes several stringent levels of policy consistency

constraints, and present different enforcement approaches to guarantee the

trustworthiness of transactions executing on cloud servers. This work also formalized the

concept of trusted transactions; transactions that do not violate credential or policy

inconsistencies over the lifetime of the transaction. It defines several different levels of

policy consistency constraints and corresponding enforcement approaches that guarantee

the trustworthiness of transactions executing on cloud servers. The authors used Two-

Phase Validation Commit (TPVC) protocol as a solution, which is a modified version of

the traditional Two-Phase Commit protocol. It ensures that a transaction is safe by

checking policy, credential, and data consistency during transaction execution. The

previous work presented several approaches for checking and enforcing consistency

during transaction execution. However, it never considered enforcing any level of

consistency proactively into the system. The whole cloud system is based on Eventual

Consistency and as a result, there is a high chance of rollbacks after spending a

considerable time executing a transaction. These rollbacks increase significantly if either

24

the policy updates occur too frequently or the average transaction time is more. Another

issue is that their proposed solution is based on traditional 2PC, which is not non-

blocking, and thus, any failure in the system will result in a transaction abort.

In our work proposed here, we use a look up table in which the policy versions of

the different servers used for authorization is stored and updated on a regular basis, which

can be easily retrieved by the transaction manager. To reduce the interdependency among

replica servers and maintain strict policies, we integrate it with the concept of Tree-Based

Consistency [6] to maintain a tree structure of the nodes where a data item is replicated.

By making use of look-up table and the tree based approach, we propose an enhanced

version of Two-phase validation commit protocol (TPVC) integrated with the Paxos

commit protocol which ensures safety of the transaction by checking policy, credential

and data consistency during transaction execution and reduces the performance overhead

in case of failures without affecting accuracy and precision during transaction executions.

The performance using simulation study shows an increase in transaction throughput and

commit ratio compared with recent work [5] with update rate of 1150ms. This is due to

increase in the number of commits and decrease in the number of aborts, which are

generally caused by lack of consistency and fault tolerance in [5]. Stricter consistency

reduces the number of aborts caused due to inconsistencies, and integration of Paxos

makes sure that no transaction is aborted due to faults in the system. Thus, we are able to

enforce strict-consistency with increased reduction in aborts, which can reduce latency

and cost of overhead of acquiring resources and re-executing those distributed

transactions again.

 LITERATURE REVIEW AND PRELIMINARIES

Many database solutions have been proposed for the cloud environment like

Dynamo [7], BigTable [8], and Cassandra [9]. Cloud providers lack services that

guarantee both data and access control policy consistency across multiple data centers.

Such consistency models add a new dimension to the complexity in the design of large-

scale applications, and introduce a new set of consistency problems [11]. In [12], the

authors presented a model that allows users to express consistency and concurrency

25

constraints on their queries that can be enforced by the DBMS at runtime. On the other

hand, [13] introduces a dynamic consistency rationing mechanism, which automatically

adapts the level of consistency at runtime. Our work focuses on attaining both data and

policy consistency, while both of these works [12,13] and [10] focus on data consistency.

CloudTPS provides full ACID properties with a scalable transaction manager

designed for a NoSQL environment [14]. However, CloudTPS is primarily concerned

with providing consistency and isolation upon data without regard to considerations of

authorization policies. In [19], it provides a cure, a causal consistency model for

performance improvement.

The work in [15] proactively ensures that data stored at a particular site conforms

to the policy stored at that site. If the policy is updated, the server will scan the data items

and throw out any that would be denied based on the revised policy. It is obvious that this

will lead to an eventually consistent state where data and policy conform, but this work

only concerns itself with local consistency of a single node, not with transactions that

span multiple nodes.

The consistency of distributed proofs of authorization has previously been

studied, though not in a dynamic cloud environment (e.g., [3]). The authors develop

protocols that enable various consistency guarantees to be enforced during the proof

construction process to minimize these types of security issues. These consistency

guarantees are similar to notions of safe transactions in [4]. However, our work addresses

the case in which policies—in addition to credentials—may be altered or modified during

a transaction.

In [4], several policy and user credential consistency problems are identified and

policy based authorization systems are used to enforce access control. In [4, 5], the

confluence of data, policy, and credential inconsistency problems that can emerge using

transactional database systems are addressed. Since achieving ACID properties in

distributed transactional databases has been extensively studied [3,16], they focused on

how to achieve trusted transactions.

Two consistency models have been proposed to handle transactions. A transaction

is said to be View Consistent if all the servers participating in transaction execution have

the same policy version. A transaction is said to be globally Consistent if all the servers

26

participating in transaction execution have the same policy version as the latest policy in

the entire cloud. Trusted transactions are defined as transactions which do not fail to

agree with the credential or policy inconsistencies during execution. The term safe

transaction is defined as a trusted transaction, which satisfies all data integrity constraints

imposed by the database management system. In practical, a transaction will commit only

if it is safe and any unsafe transaction is forced to rollback.

The authors proposed a solution involving an adaptation of the Two-Phase

Commit (2PC) to enforce trusted transactions, which is referred to as Two-Phase

Validation Commit (2PVC) protocol. The protocol ensures that a transaction is safe, as it

ensures policy and credential consistency as well as data consistency. Authors introduced

trusted transactions; that do not violate credential or policy inconsistencies over the

lifetime of the transaction. The authors then presented a more general term, safe

transactions, that is used to identify transactions that conform to the ACID properties of

distributed database systems and are trusted in terms of the validity of the policy

evaluation.

 SYSTEM ASSUMPTIONS AND PROBLEM STATEMENT

3.1 SYSTEM MODEL

The cloud infrastructure assumed here consists of a set of Servers S, at least one

Transaction Manager (TM) and an optional Master Policy Server. Each server is

responsible for hosting a subset D of data items belonging to a specific application

domain. The users interact with the system by submitting queries or update requests

adhering to ACID properties. That is, each transaction T = q1, q2,…qn is a set of

sequential queries/updates and each query qi ∈ Q (the set of queries) will act on one or

more data items. A TM is responsible for executing queries submitted by users.

TMs coordinate transaction execution across servers. In case of increase system

workload, multiple TMs could be invoked for load balancing, but each transaction is

handled by one TM. Each TM maintains a lookup table consists of version numbers

pertaining to all the data items on a server. This is the major component of the system

model introduced to implement strict consistency.

27

In this model, we assume heart beat signals are sent to the master server by each

node to inform about its availability at regular intervals. We use these heart beat signals

sent by the data nodes to the master server to update the policy versions in the table

structure. These signals are sent in regular intervals to the master server. We also assume

the same structure in case of Global transactions, which will be executed over different

servers on different clouds. These assumptions do not affect the correctness or the

validity of the consistency definitions by the authors in [4,5].

Figure 1. Interaction Among System Components

 Further, the transaction manager uses a “Tree-Based Consistency” approach in

order to reduce the interdependency among replica servers to minimize the response of

cloud databases and maximize the performance of the applications [6]. The transaction

manager is responsible to generate a weighted graph G(V,E) with replica servers as

vertices V, and connections among these servers as edges E. The Transaction Manager

(TM) in addition to assigning the transactions to the servers will (1) periodically

communicate with the replica servers, (2) handle server failures, (3) integrates the

servers which join after recovery, (4) synchronizes with other replica servers, and (5)

maintains service logs used to build the tree. The replica servers hold the data items with

them and help serve transactions. Upon calculating the weights of the replica servers and

using the look up table, TM builds the consistency tree. The replica server with highest

weight will have child nodes connected to it. The number of child nodes connected to it is

limited, in order to reduce the load on the replica server. Algorithm such as Dijkistra is

used to measure the shortest path between the replica servers and their child nodes. This

28

tree based structure of the replica servers is then used by the TM to select the servers, in

which the policy updates has to be carried out based on priority for providing reliable and

accurate transaction processing in the cloud.

Let P denote the set of authorization policies and each authorization policy P ∈ P

enforced by a server si governing the access to the subset of data items D is defined as Psi

(D), where the policy P is a mapping such that P : S × 2D → 2R × A ×N. The value R

indicates the set of inference rules to define the authorization policy. A refers to

authorization policy of the administrator who is in charge of dictating an application’s

policy to the cloud servers, and N is the set of natural numbers used to identify policy

version v.

3.2 PROBLEM MOTIVATION

The eventual consistency policy to maintain consistency throughout the data

replicas is also used to enforce policy consistency in the cloud. This paves way for

inconsistent policies across different servers in the cloud. Stringent levels of consistency

have to be applied to carry out transactions without any false positive access to the data

items in the server.

As we discussed in the previous section, there are four different approaches used

to enforce trusted transactions in the cloud [4]. These four models are evaluated on

Precision, Accuracy and Performance. The precision is high in case of all the approaches,

whereas the accuracy and performance factors vary based on the frequency of the policy

updates and application complexity.

Accuracy in deferred and punctual models are low-medium there by maintaining

low consistency levels during transaction execution. But these two approaches provide

higher performance as the policy consistency check won’t interrupt the execution of the

transaction. The accuracy in Incremental and Continuous approaches is medium-high as

the policy consistency is checked and enforced at each and every level of transaction

execution. Though these approaches provide high levels of security, there is a noticeable

latency in transaction execution. The performance is highly affected in global transaction

setup where multiple cloud domains are involved.

29

The delay may also vary based on which level of consistency we are trying to

achieve. In case of view consistency, where servers of a single cloud are involved, the

delay will be negligible. The complexity increases as we try to achieve global consistency

over servers from different clouds. This will cause great delay in transaction execution

when using incremental and continuous approaches.

To reduce this delay, we can maintain considerable level of strict policy

consistency across servers. We can define a cloud system as strict policy consistent if

updates to the policies are applied to all the servers, which contains unique copies of data

items, which belong to a particular domain. A cloud system C is said to be strict policy

consistent (Σ - Consistent) if there exists a server S for every data item D ∈ Đ (set of all

data items) with a policy P where ver(P)=max(ver(Đ)).

In the following sections, we discuss how to impose strict policy consistency by

using policy version look-up table and a tree structure. At the same time, we show how

transaction mangers can access this table to reduce the latency issues while implementing

the consistency enforcement approaches and maintaining same levels of accuracy and

precision.

 OUR PROPOSED APPROACH

In this section, we present an approach for implementing strict policy consistency

using a look-up table and a tree structure. We show how this design will help in

increasing policy consistency and performance of the transactions executing in the cloud

without compromising on either security or performance. Later, we propose a revised

Two-Phase Validation Commit protocol, which uses the same table to reduce the latency

in transaction execution due to multiple validation checks while using incremental and

continuous approaches.

Strict Policy Consistency: As mentioned in the earlier sections, the Master server

or Transaction Manager contains a look-up table, which holds the policy versions of data

items that are present on a server. The transaction managers use this table to keep track of

the servers whose policies are not updated.

30

We are assuming that the cloud servers send heart-beat signal informing the

master server of its availability. We tweak this functionality so that the servers send

policy versions along with the heart-beat signals at regular intervals. This enables

transaction managers in selecting the servers to execute the transactions submitted by the

users with great accuracy. This helps in avoiding multiple aborts, in case of any

inconsistencies between policy versions.

The data items required to execute a transaction are replicated among two or more

servers. If we can make sure that at least one of these servers has the most recent policy

version then the latency that can occur due to consistency checks can be avoided.

Whenever a policy update arrives for specific data items, we will have to update at least

one of the servers, which is responsible for replicating the data items associated with the

corresponding data items.

The master server or the transaction manager will coordinate with other servers

hosting the data items to keep the policies updated across them. Whenever a policy

update arrives at a master server, it will start finding all the servers where the respective

data items are replicated.

The transaction manager builds the consistency tree and stores information such

as total number of servers, connection path between servers, the probability of failure of

the connection paths and the failure rate of servers. The following steps are involved

while building the tree:

Figure 2. Consistency Tree Of Replica Servers

31

Connection Graph: Initially, transaction manager prepares the weighted

connection graph G (V, E). V stands for the set of vertices, which are the server nodes,

hosting the data items. E stands for the set of edges, which are the connections among

those servers. Network path reliability is considered as the weight of the edges, since G is

a weighted connection graph.

Root of the tree: The transaction manager will choose the most reliable server as

the primary server. It acts as the parent node and the other servers connected to the

primary server are the child nodes.

Consistency Tree: The transaction manager builds the consistency graph by

applying Dijkstra’s single source shortest path algorithm to select the maximum reliable

path to every child node. Consolidating all the paths will form the consistency tree. Then

based on the tree structure the master server will decide which server will be updated first

to ensure availability with strict consistent policy. Thus, the master server or a transaction

manager will make at least one copy of a data item is available with latest policy in the

cluster.

Update Operation: The transaction manager informs all servers about its

immediate descendants and each server is responsible for its own descendants. Each

server in the tree stores two flags:

Partially Consistent Flag: Whenever there is an update of policy version, the

transaction manager sends a notification containing information about update to all its

descendants. All the descendants will send an acknowledgement to the transaction

manager indicating the receipt of update information. After receiving the

acknowledgement, the parent node updates the policy with latest version and stores the

operation sequence number as partially consistent flag. The intermediate nodes propagate

the update operations in the same way.

Fully Consistent Flag: When the update operation propagates to the leaf nodes,

there will be an empty list of descendants to send the notification. The leaf nodes store

the operation sequence number as the partially consistent flag and fully consistent flag.

The leaf node sends a notification to its immediate ancestor to store the fully consistent

flag. The intermediate node receives the notification from the leaf node to store the fully

consistent flag and stores the operation sequence number as fully consistent flag and

32

informs its immediate ancestor. This propagates until the primary server is reached and it

cannot commit the transaction until it sets the last operation sequence number as its fully

consistent flag.

Failure Recovery: Due to heavy load or technical issues the server might go down

at any time. The transaction manager also handles these failures and resolves by

recovering it. Three types of situations can arise in this scenario:

Primary Server is Down: The transaction manager initially connects to the parent

server. If it discovers that there is a failure in the parent node it communicates with its

immediate descendants about its partially and fully consistent flags. If they are the same,

the transaction manager will select the maximum reliable server as the root. If not, the

transaction manager will find the latest updated servers by querying its immediate

descendants for the partially consistent flag. If there is a match, then the transaction

manager will select it as the root. The connection graph is reconfigured with the latest

updated servers and the consistency tree is built.

Other server or communication path is down: When an intermediate node reports

unresponsive behavior of its child node, the transaction manager tries to contact the child

node. If the connection is not established, then the child node is considered as down and

the consistency tree is reconfigured without the failed node. In this way, a new

consistency tree is built and the other servers are informed about the new structure.

If the communication path is down, the transaction manager tries to contact the

server through another path and the transaction manager can reconfigure the connection

graph with the server and build the consistency tree with the same root.

The tree based consistency approach reduces the dependency between the servers

as the communication is between the server and its immediate descendant. Hence, the

risk of transaction failure is minimized to a greater extent even in highly unreliable

network.

Modified Two-Phase Validation Commit Algorithm The original Two-Phase

Validation Commit algorithm can be used to ensure the data and policy consistency of

safe transactions. The validation is carried out in two phases; first the voting phase and

then the validation phase. During both the phases there are several rounds of

33

communication carried out between the servers and the transaction managers, which

creates additional latency.

As we are maintaining strict consistent policy in our system using the design

presented above, there is no need to check if the policy is consistent across all the

participating servers. The transaction manager can select the servers with latest policies

for the data items needed to execute a transaction. This proactive step will drop the

additional step of checking the versions of the servers before committing. It is highly

unlikely that a policy update will arrive during the lifetime of a transaction. Unless the

average execution time of a transaction is higher than the average interval between each

update, there is very little chance of such scenarios. Now we propose a new modified

version of Two-Phase Validation Commit algorithm (2PVC-Modified), which reduces

the latency and increases the performance.

We focus on reducing this latency using policy look-up table that is implemented

in the system. Instead of collecting the policy versions from all the servers, we have them

listed in the transaction manager. We can look-up this table to check for a server with

latest version of policies pertaining to the data items required executing the transaction.

By this we will make sure that servers participating in transaction execution is already

policy consistent. This ensures increased performance while enforcing safe transactions

with great precision and accuracy. This algorithm works very effectively for clouds

where the average transaction execution time is less than the average of update intervals.

Algorithm 1: Modified Two-Phase Validation Commit 2PVC

1 Send “Prepare-to-Commit” to all participants

2 Wait for all replies (Yes/No, True/False) //[Additional Proof of Authorization]

3 If any participant replied No for integrity check

4 ABORT

5 If any participant replied FALSE for Proof of Authorization

6 ABORT

7 Send “Update” with the largest version number of each policy

8 Re-run the transaction

9 If any new policy updates arrived during transaction execution time

34

10 ABORT

11 For participants with old policies

12 Send “Update” with the largest version number of each policy

13 Wait for the update to finish

14 Re-run the transaction

15 Otherwise

16 COMMIT

If the average transaction length is greater than the average update interval, the

traditional 2PVC may lead to aborts. In clouds, with this kind of scenario, we can

implement another level of validation of proofs of authorization at individual servers

where the transaction is being executed. This makes sure that the transaction won’t abort

at the end after completing all the operations. The Algorithm 1 shows the modified steps

where we have added a new level of proof of authorization to be performed at each server

in the steps 5-8. If any of the servers returns FALSE for the proof of authorization, then

the transaction is aborted and the update is sent to the servers. The updates then are

propagated down the consistency trees associated with the data items used to run the

transaction. Once the update is finished, the transaction is executed again in the servers.

Advantages: Some of the advantages of using the proposed algorithm over the

original algorithm are: (a) Improved policy consistency across the cloud, (b) Minimized

trade-off between performance and accuracy, (c) Effective Updates and failure recovery,

(d) Reduced communication overhead between servers, (e) Reduced latency during

transaction execution, and (f) Minimized aborts due to policy updates.

Non-blocking Paxos Commit

Problem with 2PC: In a transaction commit protocol, if one or more RMs fail, the

transaction is usually aborted. For example, in the Two-Phase Commit protocol, if the

TM does not receive a Prepared message from some RM soon enough after sending the

Prepare message, then it will abort the transaction by sending Abort messages to the

other RMs. However, the failure of the TM can cause the protocol to block until the TM

is repaired. In particular, if the TM fails right after every RM has sent a Prepared

35

message, then the other RMs have no way of knowing whether the TM committed or

aborted the transaction. The solution comes in the form of a very popular non-blocking

protocol called Paxos Algorithm.

Figure 3. The Message Flow For Paxos Commit In The Normal Failure-Free Case

Paxos Commit: The Paxos algorithm is a popular asynchronous consensus

algorithm [17]. Paxos Commit uses a separate instance of the original Paxos consensus

algorithm to come to an agreement on the decision each RM makes of whether to prepare

or abort—a decision represented by the values Prepared and Aborted. So there is one

instance of the consensus algorithm for each RM. The transaction is committed iff each

RM’s instance chooses Prepared; otherwise the transaction is aborted. A set of acceptors

and a leader play the role of Transaction Manager / Coordinator. Let there be N resource

managers, and to survive F failures we need 2F+1 acceptors. The message flow for

commit in the normal failure free-case is shown below in Table 1. RM1 is the first RM to

enter the prepared state, thus initiating the round.

Algorithm 2: Two-Phase Validation with Paxos Commit

1 Initiate Paxos commit algorithm along with 2PV using Continuous Proof of

Authorization

2 Wait for all replies (True/False)

3 If any acceptor was unable to commit

4 ABORT

5 If any participant replied FALSE for Proof of Authorization

36

6 ABORT

7 Send “Update” with the largest version number of each policy

8 Re-run the transaction

9 If any new policy updates arrived during transaction execution time or during

Paxos

10 ABORT

11 For participants with old policies

12 Send “Update” with the largest version number of each policy

13 Wait for the update to finish

14 Re-run the transaction

15 Otherwise

16 COMMIT

Table 1. Tradeoff Between 2PC and Paxos

Two-Phase

Commit

Paxos Commit

N processes agree on

a value

Tolerates F faults

3N+1 messages
3N+ 2F(N+1) +1

messages

N+1 stable writes N+ 2F +1 stable writes

4 message delays 5 message delays

2 stable-write

delays
2 stable-write delays

Same algorithm when F=0 and

TM=Acceptor

37

Trade-off discussion: The tradeoff between 2PC and Paxos commit is shown in

Table 1. Both the algorithms are same if there is no failure and if one of the acceptors act

as TM. Some of the advantages of using the Paxos Commit algorithm over 2PC are: it

adds Fault Tolerance at the transaction level, and allows us commit on partial

transactions, and allows us to handle Conflicting Policy Versions.

Trade-off discussion based on update interval:

• Transaction Length < Update Interval: The first version of the algorithm

proposed is useful for these type of cloud systems. The proof of authorization is

done at the TM, where it selects the servers for execution based on the

consistency tree. So there are less chances of transaction aborts. We just need to

make sure that there are no policy updates that arrived during the transaction

execution. The log complexity of this version of 2PVC in these systems is 2n+1,

which is same as a traditional 2PC. This is essentially same as the 2PC algorithm

but an extra step added to check if any policies arrived during the transaction

execution.

• Transaction Length > Update Interval: In these systems an additional step of

validating Proof of authorization can be used when a query arrives at each server.

In these systems there is a high probability of getting an update before the

transaction execution completes. The additional step we included is useful to

avoid aborts that occur at the end of execution. To achieve high accuracy, we can

use continuous proof of authorization approach proposed in [4,5]. We can also use

other approaches such as punctual and incremental, but the latter is more accurate

and precise. The log complexity of this version of 2PVC in these systems varies

based on enforcement approach used to validate proof of authorization.

 SIMULATION DESIGN AND EXPERIMENTS

In the simulation, we had two major requirements i) communication over a

network and ii) the ability to spawn threads. We chose the Java simulator from [4]. We

generate random transactions of a varying number of database READ or WRITE

38

operations. We make use of the consistency tree generated and select the servers required

for executing each transaction. Each CloudServer has network path reliability as the

weight, which is used to construct the tree. The tree is a binary tree, which will have the

most reliable node as the root. The next two reliable nodes will be children of the root

and so on. A maximum degree of concurrency can be set in the parameters file. We use

Deferred and Continuous methods for proof of authorization.

The Deferred method can be used in a system where the transaction duration is

greater than the policy update interval and the Continuous method for systems with

transaction duration is lesser than the policy update interval. When a new policy version

is issued and stored, it pushes the policy version to all available cloud servers. The policy

updater will update the root of the tree first and then rest of the nodes. This makes sure

that we have at least one node available with the latest policy at all times. The rest of the

nodes will be updated subsequently.

Simulation Parameters: The parameters used in the simulation are stored in a text

file named parameters.txt, which is read by all three major classes. The following are the

variables that are set from the parameters file. Certain variables can be set through

command line input and override the values set by the parameters file; these variables are

noted below.

• maxTransactions is the total number of transactions to run in a simulation.

• minOperations and maxOperations are the minimum and maximum number of

operations to be performed in a single transaction. Short transactions are defined

as 8-15 operations, medium as 16-30 operations, and long as 31-50 operations.

• maxServers is the total number of cloud server instances to be created for the

simulation.

• maxDegree is the degree of parallelism, or the maximum number of concurrent

threads available to process transactions.

• latencyMin and latencyMax are the minimum and maximum amount of

simulated delay in milliseconds caused by network latency. LAN latency is

defined as 5-25ms in our test-bed.

• verificationType is an integer value representing which protocol to use (e.g.,

2PC, view consistency, etc.) at commit time. This variable is used by all

39

CloudServer instances and is sent over the network at the beginning of the

simulation. This parameter can be set via the command line.

• integrityCheckSuccessRate is a decimal value ranging from 0.0 to 1.0 for the

rate at which a commit’s integrity check is successful.

• localAuthorizationSuccessRate is a decimal value ranging from 0.0 to 1.0 for the

rate at which an operation’s authority to perform an action is allowed.

• policyUpdateMin and policyUpdateMax are integer values representing

milliseconds between policy updates by the PolicyServer.

Variables and Fixed Parameters: For initial experiments, we determine

transaction cost in terms of time, successful commit ratio, and throughput of committed

transactions as a function of policy update frequency. We use the same set of variables

and fixed parameters for comparison as in [4,5].

To establish a series of policy update frequencies, we began with an initial time

representing an average case of eight operations. Given a range of 75ms to 125ms for a

READ operation and a range of 150ms to 225ms for a WRITE operation, we calculated

the average duration of four READs and four WRITEs to be 1,150ms. We ran

experiments using 1,150ms as the policy update frequency. For each policy update

frequency, we varied transaction length and validation protocol and ran experiments for

every combination between the two. The variables were set as follows:

• Transaction lengths were divided into three ranges: short (8-15 operations), medium

(16-30 operations), and long (31-50 operations) transaction.

• Five validation protocols were used: 2PC, 2PC with local authorization checks,

view consistency, global consistency, and Paxos Commit.

With a combination matrix of these variables, we simulate 5 runs of 1,000

transactions for each combination and averaged their results. For the purposes of our

experiments, several parameters (see Table 2) were constant throughout experiments but

can be varied in future experiments to further explore the performance of all the

protocols. Though quite capable of implementation over a variety of networks, for

simplicity the experiments will be carried out entirely on a single computer running

separate terminal windows for each Java class client/server participant.

40

Table 2. Fixed Parameters

Variable name Value

maxServers 5

maxDegree 10

latencyMin 5ms

latencyMax 25ms

integrityCheckSuccessRate 1.000

localAuthorizationSuccessRate 0.995

The experiments utilize 5 cloud servers processing a maximum of ten transactions

concurrently. The network latency parameters were set to simulate a local area network

(LAN) environment. The local authorization success rate was set at 0.995, or 99.5%.

Though this rate may initially appear artificially high, it is worth noting that it comes out

to, on average, 1 out of every 200 operations failing local authorization. If four long

transactions of 50 operations each are run, it is probable that one of them will fail local

authorization and aborted.

Performance evaluation: In all the graphs shown below, policy update frequency

value is found along the X-axis. We begin with a policy update frequency of 1,150ms and

doubled the frequency for each subsequent set of runs up to 36,800ms.

Transaction Cost: We represent transaction cost as the time in milliseconds that a

transaction requires for completion. We perform simulations of all protocols. for short

transactions, medium transactions, and long transactions. We can find the transaction

costs in ms along the Y-axis. For each simulation, we averaged the duration of each

successfully committed transaction to provide a value of cost for view consistency, global

consistency, and Paxos Commit.

As seen in the graphs (Figure 4 & 5), 2PC (as in [4]) and in our implementation of

Paxos Commit have the least transaction costs when compared to View and Global

consistency validation. View consistency comes second and as because there is a re-

evaluation of proofs in Global consistency during the commit phase (both in 2 PC [4] as

well as our Paxos Commit), it has the highest transaction costs. We can see that the

41

transaction cost with our integrated tree consistency with Paxos commit is approximately

40-50 ms higher than with 2PC [4] because there is one more message delay (5 vs. 4) in

Paxos commit when compared to 2PC. It also includes the costs for constructing the

consistency tree before starting the transaction.

Transaction Throughput: We represent transaction throughput as the number of

commits in a simulation run divided by the time in milliseconds of the duration of that

simulation run. We performed simulations of view consistency, global consistency, 2PC,

and Paxos commit, for short transactions, medium transactions, and long transactions.

The transaction throughput values are along the Y-axis.

Transaction throughput (Figure 6 & 7) is higher in ours when compared to [4,5]

because the number of commits is more when we use tree consistency and Paxos

Commit. There is an approximate increase of 5% more commits when we use tree

consistency and Paxos in all the consistency models. The increase is due to executing the

transactions on reliable and updated servers rather than selecting random servers as in

[4,5], and also due to the fault tolerant nature of Paxos.

Successful Commit Ratio: We represent the commit ratio as the number of

successful commits divided by the total number of transactions attempted. We perform

simulations of all consistency models for short, medium, and long transactions. We can

find the commit ratios along the Y-axis in the graphs below (Figure 8). The commit ratio

is constant for 2PC and Paxos as in both we are not enforcing policy consistency checks.

In case of view and global consistencies, the view consistency commit ratio is a bit lower

then global consistency in both cases.

Figure 4. Transaction Cost Without Consistency Tree and 2PC

42

Figure 5. Transaction Cost With Consistency Tree And Paxos Commit

Figure 6. Transaction Throughput Without Consistency Tree And 2PC

Figure 7. Transaction Throughput With Consistency Tree And Paxos Commit

Figure 8. Commit Ratio Without Consistency Tree And 2PC

Figure 9. Commit Ratio With Consistency Tree And Paxos Commit

The number of aborts in the second chance global consistency model is less

(Figure 8), which leads to increase in the number of committed transactions. The commit

ratio is higher in every scenario when compared to [4,5] which does not use tree

43

consistency and Paxos commit. The commit ratio increases steadily as the update interval

increases. This is due to less number of aborts at higher intervals due to policy

consistencies. We can see the same trend between short, medium and long transactions as

well.

 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new approach to enforce strict policy consistency

among cloud servers integrated with Two-Phase Validation Commit (2PVC) and Paxos

commit, and server consistency tree structure to addresses the performance issues that can

arise in cloud based transactional systems. Our approach offers stricter consistency with

an increase of only 40-50 ms in execution time, but reduces the number of aborts caused

due to policy inconsistencies, and use of Paxos makes sure that no transaction is aborted

due to faults in the system. We noticed an increase in the number of commits by

increasing the throughput and commit ratio by approximately 5% compared to [4] and

still provide strict-consistency.

In future, we will consider consistency rationing to implement more reliable ways

of constructing the policy consistency tree and enforcing strict policy consistencies for

nested transactions. More work is needed to handle high priority transactions without

aborts in case of policy inconsistencies.

REFERENCES

[1] M. Armbrust et al., “Above the clouds: A Berkeley view of cloud computing,”

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-

2009-28, Feb. 2009.

[2] S. Das, D. Agrawal, and A. El Abbadi, Elastras: an elastic transactional data store

in the cloud, in USENIX HotCloud, 2009.

[3] A. J. Lee and M. Winslett, “Safety and consistency in policy-based authorization

systems”, in ACM CCS, 2006.

[4] M. K. Iskander, D. W. Wilkinson, A. J. Lee, and P. K. Chrysanthis, “Enforcing

policy and data consistency of cloud transactions,” in IEEE ICDCS-SPCC, 2011.

44

[5] Marian K. Iskander, Panos K. Chrysanthis, et al., Balancing Performance,

Accuracy, and Precision for Secure Cloud Transactions", IEEE Transactions on

Parallel & Distributed Systems, Feb. 2014.

[6] Islam, M.A., Vrbsky, S.V., Tree-Based Consistency Approach for Cloud

Databases," in IEEE Second International Conference on Cloud Computing

Technology and Science (CloudCom), 2010.

[7] G. DeCandia et al., “Dynamo: amazons highly available key-value store,” in ACM

SOSP, 2007.

[8] F. Chang, et al., “Bigtable: A distributed storage system for structured data,” in

USENIX OSDI, 2006.

[9] A. Lakshman and P. Malik, “Cassandra- a decentralized structured storage

system,” in ACM SIGOPS, Apr. 2010.

[10] Anand Tripathi et al. "A Transaction Model for Management of Replicated Data

with Multiple Consistency Levels," IEEE International Conference on Big Data

(Big Data), 2015.

[11] W. Vogels, “Eventually consistent,” in Communication of ACM, Jan. 2009.

[12] H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein, “Relaxed currency and

consistency: how to say ”good enough” in sql,” in ACM SIGMOD, 2004.

[13] T. Kraska M. Hentschel, G. Alonso, and D. Kossmann,“Consistency rationing in

the cloud: pay only when it matters,” in Proc. VLDB, Aug. 2009.

[14] Z. Wei, G. Pierre, and C.-H. Chi, “Scalable transactions for web applications in the

cloud,” in Euro-Par, Aug. 2009.

[15] T. Wobber, T. L. Rodeheer, and D. B. Terry, “Policy-based access control for

weakly consistent replication,” in ACM EuroSys, 2010.

[16] P. K. Chrysanthis et al., Recovery and performance of atomic commit processing

in distributed database systems, in Recovery Mechanisms in Database Systems.

Prentice Hall PTR, 1998.

[17] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing

Column), 32(4):18{25}, December 2001.

45

[18] Md Ashfakul Islam, Susan V. Vrbsky, and Mohammad A. Hoque. Performance

Analysis of a Tree-Based Consistency Approach for Cloud Databases, IEEE

International Conference on Networking and Communications (ICNC), 2012.

[19] D. Akkoorath, A. Z. Tomsic, et al. Cure: Strong semantics meets high availability

and low latency. In Proceedings of 36th IEEE ICDCS, June 2016.

46

II. OPPORTUNISTIC DISTRIBUTED CACHING FOR MISSION-

ORIENTED DELAY-TOLERANT NETWORKS

Dileep Mardham1, Sanjay Madria1, James Milligan2 and Mark Linderman2

1Missouri University of Science and technology, Rolla, MO, USA

1Air Force Research Lab, Rome, NY, USA

ABSTRACT

In this paper, a new caching scheme has been proposed which takes into

consideration Military/Defense applications of Delay-tolerant Networks (DTNs) where

data that need to be cached follows a whole different priority levels. In these applications,

data popularity can be defined not only on the basis of request frequency, but also based

on the importance like who created and ranked POIs (point of interest) in the data

(images), when and where it was created; higher rank data belonging to some specific

location may be more important though frequency of those may not be higher than more

popular lower priority data. Thus, our caching scheme for DTNs is designed by taking

different requirements into consideration for DTN networks for defense applications so

that access latency for more important but lesser accessed data is reduced. The

performance evaluation shows that our caching scheme reduces the overall access

latency, cache miss and usage of cache memory when compared to other caching

schemes.

 INTRODUCTION

Caching data within Delay Tolerant Networks (DTNs) presents many challenges

[1,2]. DTNs are, by design, volatile as certain nodes may or may not be available all the

time in the network (disconnected or not reachable). So, how should individual nodes,

and indeed the network at large choose what data to cache, where to cache, and how

much to cache and thereafter, on what basis to do cache replacement?

47

Caching data within DTNs is discovered as a means for both persisting data

locally available in close proximity to reduce latency and accuracy/consistency, and to

reduce resource usage (bandwidth and energy) through a reduction in hops to the high

priority data sources. DTNs present an even more significant challenge for data

persistency as they are, by nature generally isolated and disconnected from a larger

network. Therefore, DTNs must cache mission-oriented critical useful data to share at the

strategic locations. The simplest solution to cache everything on every device and update

it as we make connections to other nodes in the network will increase collisions as nodes

will duplicate data, and waste buffer space and energy. Situations can arise where

specific nodes within the network become over utilized by caching too many data points

due to the uncertainty of data transmission, thus, multiple data copies need to be cached

at different locations to ensure better data dissemination. The difficulty in coordinating

multiple caching nodes due to the lack of persistence network connectivity in DTN

makes it hard to optimize the trade-off between data accessibility (proximate to the

nodes) and caching overhead (energy utilization due to the need to disseminate the data

across many peers). Thus, each node must decide what data to be cached as nodes cannot

design a cooperative caching schemes [1,2] because of not knowing which other nodes

they can reach.

Motivation. From all the data caching methods in DTNs we have studied, file

popularity [2], social-relationships [4] and cooperative caching [1] have always been the

main motivation behind the file selection for caching to satisfy future requests and how

cache replacement should be done. Although these methods are efficient in many general

scenarios where users transfer picture or other kinds of media files in networks using

mobile devices, there are some scenarios where these methods of caching entirely fail to

address the requirement.

Consider situations like Mission-oriented networks, or Military/Defense

applications where data that need to be cached follows a whole different priority levels.

Some data despite of low access frequencies (only few nodes access) should be cached

with a highest priority (as those nodes which access are decision-makers) at strategic

locations which is completely different from the conventional DTN caching methods.

Some other classified data files even with the increasing demand, the data caching should

48

be restricted to a certain number (may be within a certain radius) to prevent possible data

theft or other security issues. In addition, some data may not be as popular (based on

access frequency), but latency to access it may be such a concern that it must be

accessible quickly. Data popularity can be defined not only on the basis of request

frequency, but based on who (created) ranked those data, when and where it was created;

higher rank data belonging at some specific location may be more important though

frequency of those may not be high at this time than lower rank data. These three

elements: location, access latency, data creator’s ranking, and popularity of the data

based on ranking by intermediate nodes will be the primary qualities use to judge data in

how exactly to cache it. Caching can consider the location/rank of the node who created

it, resources at that location, perimeter of the nodes, POIs (point of interest) in the data

(images), and requests by different nodes and then predicting the caching needs at the

next time instant and its location. Thus, a new caching technique for DTNs needed to be

designed which takes these different requirements into consideration to fulfil the

necessity of defenese applications in DTN networks.

 RELATED WORK

Below, we review some of the caching schemes which are close to our objective.

What data to cache? The problem of selecting the data to be cached is addressed

by the authors in [2, 4]. In [2], the authors proposed a Selective Pushing algorithm which

caches data with probability calculated using the Zipf-like distribution. The authors

assume that the network is a homogeneous environment where all users share the same

mobility or centrality statistic. In [4], they compute the content popularity (relative to the

current node) by considering both the frequency and freshness of content requests

arriving at a node over a history of request arrivals. Then they select the most popular

data to cache at a network location. But whenever there is a change in cached data all the

cache nodes have to update data, the social tie and digest tables which consumes time and

energy. This article focuses on forming interest groups, which are set of nodes interested

in a data item, which is closer to real time scenarios. We consider this approach in our

design for selecting data to be cached with less overhead during updates. For example, in

49

DTN, updates at the friendly nodes are easier, at the few hopes away from the creator are

fast, so nodes which experience more frequent updates should be closer to the owner who

created.

Where to cache it? This problem is addressed in [1, 4, 5]. In [1], nodes are

selected to be NCLs (Network Central Locations) based on three approaches. These

NCLs will be used to cache popular data that is needed by the nodes in the network.

When NCLs buffer is filled, it will start caching the data on the nearby reliable nodes.

Coordination between different NCLs and optimization of data of every NCL can become

an endless optimization cycle which consumes a lot of energy if the network is very big

and can never be optimized. In [4], clusters/groups of nodes are formed as interest

groups. The POIs of the nodes in those groups are cached at the NCLs nearby to those

group of nodes. In [5], node groups are formed based on the frequency of contact

between the nodes, and the nodes are merged or resigned from the group if the POIs of

the nodes in a group changes.

How much to cache? The [3] does a good job of showing the performance

differences between optimal and opportunistic ‘Edge’ caching. The results show that

opportunistic caching performs on par with the optimistic caching in all most all the

scenarios. We will be using opportunistic caching in our model to cache data at the Edge

of the network i.e., near the end user. This will save the memory space across all the

nodes in the network avoiding unnecessary data caching.

 OUR MISSION-ORIENTED NETWORK MODEL

The mission-oriented military network systems consist of tactical vehicles such as

Warfighter Information Network-Tactical (WIN-T) or High Mobility Multipurpose

Wheeled Vehicle (HMMWV) which act as Network Central Locations (NCLs). These

NCLs are always active and they have long-range wireless connections to each other and

individually, they may also have secure and reliable satellite connection. We assume here

that DTN behavior is observed by the ground troops and Humvees and control base can

also have more like MANET connectivity using WiFi.

50

Figure 1. Content Caches

Content Caches. The network consists of devices, which are used to cache data

and move in the network independently. These devices can range from tactical vehicles to

custom-built systems just for caching. Some of these devices are mobile and some may

be stationary. These devices can communicate with each other and exchange cached

content between themselves using different wireless communication medium such as

Bluetooth, WIFI-direct, etc. These devices will transfer data between them based on the

demand around the nodes nearby. Some of these devices act as NCLs in the network and

the nodes nearby can request cached data, and then cache data of their own. For example,

in a disaster application, raspberry-pi can be a such device, which can be planted at some

safe location and can remain stationary.

This network system consists of mobile nodes, which could be combat vehicles or

ground forces, which move across the entire network freely. These ground forces need to

send/receive messages which each other or should be able to send messages to tactical

bases frequently that they are active and should be able to communicate with other

tactical bases for further. Note that all the mobile nodes act as a delay-tolerant and use

opportunistic ways to communicate.

51

Figure 2. Network Model

 CACHING USING CONTENT CLASSIFICATION

We need to deal with two main problems: (1) how to define the method for

caching by considering different requirements of defense applications, and (2) a method

to follow to replace the cached data when the cache memory becomes full. For caching,

depending on the situation and requirement of the system, the data can be classified into

different categories with different kinds of priority and ranking. In our case where the

data needed to be cached belongs to a mission-oriented network such as military. There

exists a lot of data that might not be popular based on frequency of access but very

important for the specified users like for the decision-makers (high rank nodes). These

kinds of data should be cached at nodes, even if the popularity is quite low in the network

currently, at some specific locations from where data can be retrieved faster and data is

secure/available (not very far from the nodes taking decisions). Some data items may

have very high priority as defined by the ranked nodes and its overall impact is adjusted

by the combination of rank and priority.

We define a time and spatial decay functions to classify data items and use the

same to replace them when cache memory is full. Each node in the network will have a

set of data items {(Wi, l(vi) | i ∈ I}, where for each item i ∈ I , Wi > 0 (varies between 0

and 1) is the weight of the item and l(vi) ∈ V is the location of the item cached at node v,

where V is a set of nodes in the network. Here, I is the set of data items in the network.

52

The node defines weight of a data item where the item resides based on some parameters

(including the space needed and considering all other data items it hosts) using the

formula given below.

We denote by DIST(l(v), l(u)) the distance (number of hops) between the location

of the two nodes v and u in the network. A decay function is a non-increasing function

and it determines the weight of a remote item as a function of its distance and some

varying attributes, such as time or number of requests to access the items. The spatial

weight of an item i ∈ I at the node v as viewed by a node u ∈ V is

𝑑𝑢𝑣 = 𝐷𝐼𝑆𝑇(𝑙(𝑣), 𝑙(𝑢))

The weight of an item of interest at location v, 𝑤𝑣
𝑖 , might be modelled as attribute

values, 𝑤𝑈
𝑖 associated with other location u, weighted by the inverse of the distance

separating locations u and v, duv raised to a power β and the difference between the

current time T and the time of creation of the item 𝑡𝑖 and 𝑡𝑖 ≤ 𝑇 :

𝑤𝑣
𝑖 = 𝑟𝑢

𝑖 ∗ 𝑝𝑢
𝑖 ∗

𝑤𝑢
𝑖

(𝑑𝑢𝑣
𝑖)

𝛽
(𝑇 − 𝑡𝑖)𝛼

, 𝛽 ≥ 0, 𝛼 ≥ 0

The exponent β has the effect of reducing the influence of other locations as the

distance to these increases. With β=0 distance has no effect, whilst with β = 1 the impact

is linear. Values of β >>1 rapidly diminishes the contribution to the expression from

locations that are more remote. The exponent α has the same effect as β. There will be

some threshold defined for 𝑤𝑣
𝑖 to decide about cache replacement of an item, and the

space is available.

Note that the weight takes into consideration a priority p (a value of high (0.8),

medium (0.6) and low (0.4) between 0 and 1) based on the category of data items defined

by the ranker r (a value of high (0.9), medium (0.6) and low (0.3) between 0 and 1). Rank

defines the importance of the node (0.9 means most important) and priority defines the

importance assigned to the data item (0.8 being most important) by that node. The rank of

a node r is fixed, whereas priorities p change based on the node who has assigned the p

value. r values do not decay but p decays with distance and/or time as they are defined by

the creator. Therefore, the parameters β and α can be adjusted to reflect data items

defined by high ranked nodes, and thus, will be decaying slowly with respect to the

frequency of access and time. Therefore, as explained earlier, due to slow decay, some

53

items created by high ranked nodes may be cached as needed even if they do not have

very high access frequency or created much earlier.

We can use the same decay equations to calculate the decay in weight based on

other attributes like number of requests for an item instead of time. The function will be

as follows.

𝑤𝑣
𝑖 = 𝑟𝑢

𝑖 ∗ 𝑝𝑢
𝑖 ∗

𝑤𝑢
𝑖

(𝑑𝑢𝑣
𝑖)

𝛽
(𝑁𝑡1 − 𝑁𝑡2)𝛼

, 𝛽 ≥ 0, 𝛼 ≥ 0

Nt2 and Nt1 are the number of requests received at timestamps t2 and t1. The

exponent α behaves the same way as it did for time. It will make this function relevant for

some of the classes of data items in the network.

We calculate spatial-time/request decaying weight sum for an item, i, using the

following for a group of nodes g, which is a subset of all the nodes, V, in the network.

𝑤𝑔
𝑖 = ∑ 𝑟𝑣

𝑖 ∗ 𝑝𝑣
𝑖 ∗ 𝑤𝑣

𝑖

𝑣∈𝑔

, ∀𝑔 ⊆ 𝑉

We categorize the data in the network into five different categories.

Class 0: Emergency Data (high rank, high priority and high access frequency)

The emergency data broadcasts are quite rare but are the most important data.

This kind of data can be classified as important and urgent with much higher priority.

This data should be stored at each node that is connected to the network to provide instant

access to that data, but its expiry will be much faster. In case of low buffer space, the data

that needs to be removed is chosen by priority. First the least important data is removed

and if space is still needed, then somewhat important but less frequently used data is

removed followed by important and frequent data. After the end of emergency

broadcasts, all the data deleted should be restored from the neighboring nodes. An

example of emergency data is a sandstorm report for next 4 hours or area maps.

The Class 0 data items decays exponentially with time and there may be no spatial

decay for these data items. Therefore, the exponent β will be 0 for these items and the

exponent α will be 2. The priorities will be 1 for this class of data items, and rank

depends on the importance of node who has created the item and given its rank value

between 0 and 1. As a result, if a node with high rank has created the Class 0 data item

then they will be cached everywhere in the network until the value of the item decays

54

with time/frequency reaches some pre-defined threshold. After that items will no longer

be cached in the network or declassified to be one of the lower classes as explained

below.

Class I: Highly Important (both high to medium ranked as well as priority) and

frequently used data

There are some types of data like log files, artillery count, injured-list, location-

images for situational-awareness etc. that are important for certain nodes

(military/doctors) and are frequently accessed by only some selective nodes and updated,

and to make sure that nothing gets stolen or lost from the battlefield. We assume that

soldiers and army vehicles act as nodes, where these kinds of files are accessed by

everyone to inform other troops of their status that they are still functional or how many

soldiers got injured and their current status. Thus, these kinds of data need to be

replicated at every node or most of the nodes (in case if some group of nodes are well

connected). The need and priority of this data comes from the importance (ranking and

priority) but less frequent usage data. The disadvantage with these data items is to

maintain data consistency; all the file copies at all the nodes need to be frequently

updated and therefore, the access latency should be minimum. Frequent updating at few

hops away drains battery power of the intermediate nodes, which might become crucial

for the ground troops to make emergency contacts. Therefore, to minimize these

drawbacks, the data should be stored with a few hops from the source called cached-

radius, as well as update time limit called update-frequency, and this update-frequency is

dynamic within the cached-radius to best fit the situation. These data can consider POIs,

and quality of POIs as defined by the image quality and tags. Data, if stored at far

reaching nodes may get the updates slowly and therefore, may be of poor quality in terms

of POIs.

The Class I items decay both with space and time. As mentioned above, access

latency needs to be minimum for these items. We should try to cache the items near the

POIs which will be selected based on the spatial weight sum. Their weights will decay

exponentially with space but only linearly with time. Thus, the exponents β and α will be

2 and 1, respectively.

55

Class II: Important and secure (high to low rank and priority) but less frequently

used data

Many data files which are classified, and files with limited restriction comes

under this category. These files are not accessed all the times since they have limited

access thus, make them less popular and are mostly accessed from limited locations.

However, caching these kinds of files are very important because they need to be

accessed without much latency. Thus, these data files should be stored at NCLs and the

data copies can be sent to other nodes upon request. These highest priority files can

consume more buffer space like area maps for combat operations, POIs represent

aggregated data, and thus, trying to replicate these files at every node reduces the caching

efficiency of the network as well as can put the mission in danger. Therefore, trying to

store these data at many nodes may pose a security threat. Thus, NCLs should be chosen

well which has better caching space and has the best connectivity with other nodes. This

kind of data ranked higher and has the highest priority of access by decision-making

nodes. This data may be used for example in taking important decisions such as path for

troop movement, which qualifies as class 0 data.

The Class II items, just like Class I, decays both with time and space but linearly.

Thus, the exponents β and α will be 1 and 1, respectively. Weight sum will be used to

choose the NCLs to cache, which includes both priority and ranking of the data items as

well.

Class III: Not very important (medium to low rank and medium to low priority)

but frequently accessed data

This data that may not look very important from a broader perspective, but plays a

key role during a battlefield situation. For example, information about some activities like

local news, sudden sandstorm, forest fire, etc. that need to be shared immediately with

many nodes. These data become insignificant with time. This problem is similar to

caching using file popularity at a certain location. These kinds of data need to be

replicated at certain locations where it is crucial even though the data originated at some

other location. These data during caching is temporary and should be easily replaceable.

The priority of this data is after the first two types of data, Class I and II.

56

The Class III items just like Class 0 decays with time and don’t use spatial

weights. The time decay is linear, and number of requests can be used to decide on

caching the items or promoting the item to Class 0. Thus, the exponents β and α will be 0

and 1, respectively. Here also ranking and priory can rebalance the values to take a

decision to cache replacement.

Class IV: Not very high ranked data (low rank, and medium to low priority), but

accessed on popularity (higher access frequency)

At last there is some data, which is not important for the military networks (low

ranked) but needs to be stored for general purposes (medium to low priority). These kind

of data is cached using normal caching methods like file popularity, least recently used

data etc. The priority of this data is way below the other kinds of data to provide easy

access to important kinds of data. The frequency of data updating is kept low to maintain

the update costs with very minimum overhead to preserve the battery power.

The Class IV does not decay neither with space nor with time. The exponents β

and α will be 0 and 0, respectively. We can use the linear decay based on the number of

requests to decide on caching the item on an NCL or a node in the network. The ranking

of such data is not high though priority can be very medium to low as defined by nodes.

 CACHING ALGORITHM

5.1 INITIAL DISTRIBUTION OF CACHING DATA

When data is first created at the source, the data needs to be classified by the

source as one of the five categories mentioned above. A source can be either a remote

node or a moving NCL. If the source is a remote node, then the data is sent to all its

neighboring nodes within its nearest NCL range for further validation. Additionally,

while the data is sent to the NCL via remote nodes, it can be re-classified by the NCL.

The heuristic for how they re-classify is up to them; for example, if the data is an image,

and other nodes are getting similar images with POIs they may raise the classification.

The important aspect is that prior to validation, remote nodes can also classify based on

their understanding. This can impact/help in NCLs decision, once data reaches there.

57

It is important to send this data to an NCL because they are expected to have a

larger cache size and wireless communication range. Additionally, if they is a Humvee,

they may have additional data to influence the classification of the data in question. For

example, if a photo of ambulance was taken, and to a solider it may look like an ordinary

ambulance. However, if that is stolen by the enemy, it suddenly has become far more

important, and that was not possible without the additional data that the base (and its

operators) had.

After an initial validation by the NCL and all its remote nodes, if the average class

data is classified as class I or class II, then the data is sent to other NCLs for further

validation. If most NCLs classify the data as class I, then that data is cached at some of

the well-connected NCL locations who have validated it. Restricting the replication of

such kind of data prevents data theft by enemy.

If most of the NCLs categorizes the data as class II, i.e., important and Urgent,

then this kind of data needs to be further evaluated using local popularity. For example,

using the geographical location of this data’s popularity. Finding local popularity and

locally caching data is important since it is classified as urgent. To find the local

popularity, the NCL nodes which classified the data as class II, are selected and requested

for local popularity evaluation. If there are N active local nodes for each NCL and if the

data item gets more than N/2 positive responses then that data is popular in that place,

and the data is cached in that NCL and some nearby local nodes depending on the hop

distance between the nodes. Trying to avoid the involvement of remote nodes until the

last step helps in reducing communication and preserving the battery.

If the data is initially classified as class III or class IV by the source and/or its

nearest NCL then the data caching follows normal caching methods such as file

popularity and other popular methods. If the data is initially classified as class 0 i.e. the

data as an emergency message, then the data is sent to all NCLs to cache and after

caching the data is evaluated for classification. This process is like class I process but

now we cache the data and evaluate later.

58

Algorithm 1. Distribution of Caching Data

Input: Data item created at remote node or a moving NCL

Output: Classify the input data item and cache it in various locations based on its class.

Classify(data)

if source is not an NCL then

 Validate(data, source.NCL)

if data.classification is Class0 then

 Cache(NCLs, data)

if data.classification is ClassI then

 for ncl in source.NCLs

 Cache(ncl, data)

if data.classification is ClassII and #NCLs classifying data as Class II >

#NCLs/2 then

 Cache(source.NCL, data)

If data.clssification is ClassIII or ClassIV then

 Cache(source, data)

5.2 CACHE REDISTRIBUTION UPON REQUESTS

Data is cached with the intent that it will be requested later, and if it is found at an

intermediate node along the path to the request it can be returned faster, or immediately if

locally cached. It is because of that the cache should be re-evaluated upon a fulfilled

request.

Once the data is cached after initial distribution, the data should be replicated

based on further user requests. When a data item is attempted to be retrieved from a

source, the source either has it cached and can return it immediately (latency = 0), or it

must hop to other nodes to retrieve the item (latency > 0). The amount of time it takes to

retrieve the items via hops is that data item's latency. If the latency priority is lower

(meaning the priority is to retrieve that data item in less time that it took to first retrieve

it), then we cache it locally.

We send a request to multiple DTN nodes to get an item, and take the latency of

the node that returned the data as the maximum latency for that item. We would update

the latency on future requests to the item if it changes and cache it on different nodes if

needed to provide the reduced access latency. In case, the item requested already has the

best latency then we will try to cache based on the popularity in the neighbouring nodes.

59

Algorithm 2. Cache Redistribution

Input: Data item requested by a node

Output: The input data item is either cached at the source of request or cached based on

popularity

if Cached(source, data) then

 return GetCached(source, data)

startTime = Now

request = BroadcastRequestFor(data)

// Time passes while waiting for request response from remote node

endTime = Now

if endTime–startTime > data.maxLatency then

 Cache(source, request)

else

 CacheByPopularity(source, request)

5.3 CACHE REPLACEMENT

If a new data item needs to be cached at a node and if the cache space becomes

full then some cache data needs to be removed to make room for the new data item.

Cache space is divided into 2 levels with dynamic space allocation to each level. One

level of cache memory is used to store class I, class II and class 0 types data and second

level of cache memory is used for storing class III and class IV data. There is no separate

memory space for class 0 data since class 0 data is very rare when compared to other

types of data and allocating one more level just for class 0 data might deteriorate the

cache performance of the network.

If cache space becomes full and the new data item to be cached is of class I or

class II then data from level 2 is removed and is cached in the neighboring nodes. While

removing level 2 data, data in level 1 is declassified and moved to level 2 making space

for the new item in level 1. If the space is still not sufficient then level 1 data is removed

and must be cached in the neighboring nodes. If the new data item is of class III or class

IV then level 2 data is removed and cached in neighboring nodes, until we have enough

space to cache the new item.

60

Algorithm 3. Cache Replacement

Input: New data item

Output: New data item will replace the cached items either in Level1 or Level2 based on

its class.

if newData.classification ≥ ClassII then

 for data in node do

 if data.classification ≤ ClassIII then

 // some other node may want to cache it, but we need to remove it

 BroadcastToCache(data)

 Remove(node, data)

 if cache.spaceAvailible ≥ newData.size then

 Cache(node, newData)

 break

 // end for

 if not newData in node then

 BroadcastToCache(newData)

If data of class 0 needs to be cached and if the cache space is full then level 2 data

is removed to replace this data. Unfortunately, if level 1 is filled, then class 2 is removed

and cached in neighboring node to accommodate class 0 data. Class 0 data decays faster

with time and can be removed later to get back the class II data. Class I data is not

removed because this data is critical and will always be cached at well-connected NCL

nodes.

 SIMULATION AND EXPERIMENT

To evaluate our caching algorithm, we used the ONE, a Java DTN simulator [6].

The ONE is suited for DTN simulations, with extensive use in modelling routing and

caching algorithms. We use the ONE's default epidemic routing algorithm and extend the

ActiveRouter Class to cache messages as per our algorithm. The ONE DTN Simulator

exposes many different options and variables to tweak in for different results, and most of

the results are dependent upon the setup of the nodes. For all our simulations, we will use

the same initial nodes with roads as paths taken from a subset of the real world New

Dubai map.

The nodes are all chosen in a militaristic setting:

• 6 groups of 10-40 Soldiers each spread across the map.

61

• 4 Humvees starting on a random point on the map.

• A lone Base is in the center and Humvees will commonly drive through

the area.

Soldiers and Humvees move around randomly. All randomness throughout the

simulation has the same initial seed so all runs will have the same "randomness". We

have 6 groups of soldiers in the simulation. We increase the node count for each group in

increments of 10. Soldiers in each group move around in a circle of 500 meters based on

dense or sparse areas accordingly in different locations of the map. Soldiers are not tied

to roads, but Humvees are. Bases do not move. All nodes simulate a wireless interface

akin to Wi-Fi, with varying ranges based on node type. Soldiers generate the data.

Humvees and Bases are intended to hold a lot of cached data as they do not have to be

carried by mobile devices and can afford to have larger storage and computing power, so

they act as NCLs.

All simulations are run for 12 hours in simulation time. Messages are generated

and requested randomly throughout the simulation. Messages have a random initial

classification, and can be adjusted by remote nodes (Soldiers) and NCLs (Humvees and

Bases) based on the decaying weights during the simulation. We let the simulation run

for half time (6 hours), and then during the other half aggregate the latencies of fulfilled

requests.

We compared 3 versions of our own algorithm to 2 most commonly used caching

schemes (cache by popularity and LRU) and a simulation run without any caching. The 3

versions of our algorithm are as follows.

Classification. We classify the data items created on the network and is cached

based on the class (as discussed in section 4) assigned by the source and remains same till

the end of the simulation.

Dual classification without weights. This version also starts with the classification

like the previous but during the simulation uses cache redistribution and replacement

based on our algorithm to move around items in the network.

Dual classification with weights. This is same as the previous version of our

algorithm but also includes decaying weights which are calculated as discussed in the

62

previous section 4. These weights are used to declassify items during cache redistribution

and replacement parts of our algorithm.

Table 1. Simulation Parameters

Parameters Values

No of Soldier Groups 6

Soldier Count per Group 10 - 40

Transmission Speed

Soldiers 5 Mbps

Humvee 10 Mbps

Base 15 Mbps

Transmission Range

Soldiers 200 meters

Humvee 500 meters

Base 1000 meters

Cache Size

Soldiers 1 GB

Humvee 10 GB

Base 50 GB

Simulated Time 12 Hours

For cache by popularity, we use the simple case that ONE simulator supports

where more "popular" (P) messages have a higher P, where P = H * N, with H being the

number of hops that message has travelled, and N being the number of times the node,

deciding to cache, has seen that message.

We also used ONE's default caching scheme such as Least Recently Used (LRU).

By default, with LRU, the least recently used messages are evicted from the end of the

cache until buffer space is created for the new messages. Finally, we also ran simulations

using the same parameters without any caching to compare and see how a caching

scheme affects the access latency in a network.

We poll latencies, for all these 5 scenarios, to see how the caching schemes

compare in different mission critical situations. Note that our proposed dual caching

63

scheme can be integrated with schemes like in [2, 4] for environments other than defense

networks.

 RESULT ANALYSIS

All numbers measured are in seconds inside ONE DTN Simulator and 5 runs of

each combination is averaged.

The results of the latencies have been presented into two tables, with Table 2

being the recorded average access latencies, for 6 different caching schemes discussed

above. Table 3 has the percentage values of cache size used for 3 specific scenarios.

Table 3 seems very useful to draw conclusions about the improvement of access

latencies between different caching schemes at different node counts. We can clearly see

that the five caching schemes vs. no caching as a base line clearly have a significant

speedup. This makes sense as with data cached at more places, more requests can be

fulfilled quicker.

Once we examine the differences in the caching schemes, we can clearly see that

our dual algorithm out performs all other caching schemes. There is a 58% speedup when

we compare our algorithm with LRU and 12% speedup when we compare it with cache

by popularity (which is used by most DTN algorithms). We can see a speed up of 20%

from dual without weight and 23% from dual with weights when compared to simple

classification. So, moving around the cached data based on popularity, and decaying

weights shows a significant effect on the access latency.

Only caching based on classification can sometimes be slower than caching with

popularity, and that is probably due to our design, which prioritizes highly classified data.

Another interesting observation is that although dual with weights version of our caching

scheme should make the retrieval of critical items much faster, we only see around a 3%

speedup over dual without weights (see Table 2).

Next, we want to see how our algorithm will affect cache hit/miss and cache

memory used by each node during the simulation. We can see the cache miss percentage

plot in figure 3 for different node counts for dual with and without weights.

64

Table 2. Access Latencies Across Different Algorithms For Different Node Counts

Soldier

Count per

Group

Dual

with

Weight

Dual

Without

Weight

Classification Popularity LRU No

Caching

10 461.90 479.66 604.59 523.00 1119.59 2070.19

20 462.97 468.71 627.27 535.50 1155.85 2110.75

30 465.85 472.94 649.13 556.47 1209.96 2275.59

40 471.33 497.39 684.66 573.96 1314.75 2486.17

Table 3. Cached Size Used Percentage

Soldier

Count per

Group

Dual with

Weight

Dual Without

Weight

Popularity

10 41.77% 54.37% 81.34%

20 40.82% 49.79% 76.92%

30 35.30% 46.60% 72.57%

40 31.10% 45.71% 64.49%

Figure 3. Cache Miss

65

Figure 4. Cache Memory Used

As the number of nodes increases, the decaying weight help the network to make

room for the incoming new messages by declassifying the unwanted data items and

caching the new messages on NCLs and Base. The algorithm without decaying weights

will just keep only the highly classified data leaving no space for the newly arriving low

class data. This will result in the increase of cache miss, thereby increasing the

percentage of misses.

We can also see the average percentage of cache used on all the nodes in the

network in Table 3 and plot in figure 4. We can clearly see that dual algorithm with

decaying weights uses less cache memory than the one without weights and popularity

caching. Again, the declassification and removal of data items which decays with time

and distance helps free up the cache space. Our dual with weights is using less than 50%

of the cache space used by popularity caching scheme and 15% less than dual without

weights.

From the results above, we can clearly see our dual algorithm with or without

weights performs much better than any other common caching scheme in an environment

like defense networks. By using decaying weights, we can achieve more consistent access

latencies and improve cache hit/miss and reduce the total cache memory used.

66

 CONCLUSION

In this paper, we propose a new caching scheme to opportunistically caches data

for Mission-oriented Delay-tolerant Networks. The basics of this implementation demand

that highly classified data is cached often across the network, even if it is not locally

popular, and low classified items are cached based on popularity. Simulations using The

ONE DTN Simulator show that our solution does lead to significant latency

improvements for data access, over other caching schemes in mission oriented networks.

Finally, our caching algorithm performs best by mixing data classification, redistribution

and replacement and decaying weights.

Our Dual caching scheme does not currently consider power usage, but instead it

tries to best manage the cache, however in the future it could be extended to do so. The

ONE could be made to expose the power usage and future research could gleam if the

dual scheme also leads to power savings.

REFERENCES

[1] W. Gao; G. Cao; A. Iyengar, M. Srivatsa. “Cooperative Caching for Efficient Data

Access in Disruption Tolerant Networks” IEEE Transactions on Mobile

Computing, vol./13, no. 3, pp.611- 625, March 2014.

[2] Tiance Wang, Pan Hui, Sanjeev R. Kulkarni, Paul Cuff “Cooperative Caching

based on File Popularity Ranking in Delay Tolerant Networks”. CoRR, 2014.

[3] A. Dabirmoghaddam, M. Barijough, and J. Garcia-Luna-Aceves. "Understanding

optimal caching and opportunistic caching at the edge of information-centric

networks." in ACM Proceedings of the 1st international conference on Information-

centric networking, pp. 47-56., 2014.

[4] Tuan Le; You Lu; Gerla, M., "Social caching and content retrieval in Disruption

Tolerant Networks (DTNs)," International Conference on in Computing,

Networking and Communications (ICNC), pp.905-910, 16-19 Feb. 2015.

[5] Cabaniss, R.; Madria, S., "Content distribution in Delay-Tolerant Networks using

social context," in Wireless and Mobile Networking Conference (WMNC), 2014

7th IFIP, vol., no., pp.1-8, 20-22 May 2014.

67

[6] Ari Kernen, Jrg Ott, and Teemu Krkkinen. 2009. The ONE simulator for DTN

protocol evaluation. In Proceedings of the 2nd International Conference on

Simulation Tools and Techniques (Simutools ’09). ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), ICST,

Brussels, Belgium, Article 55, 10 pages.

68

3. CONCLUSION

We proposed a new approach to enforce strict policy consistency among cloud

servers which reduces the number of aborts caused due to policy inconsistencies, and

faults in the system. The proposed approach increases the number of commits by

increasing the throughput and commit ratio by approximately 5% and still provide strict-

consistency. we will consider consistency rationing to implement more reliable ways of

constructing the policy consistency tree. Future work includes enforcing strict policy

consistencies for nested transactions and ways to handle high priority transactions

without aborts in case of policy inconsistencies.

We propose a new caching scheme to opportunistically caches data for Mission-

oriented DTNs. Our implementation demands that highly classified data should be

cached, even if it is not locally popular. Our solution leads to significant latency

improvements for data access, over other caching schemes in mission oriented networks.

Our Dual caching scheme does not currently consider power usage, but instead it tries to

best manage the cache, however in the future it could be extended to do so.

69

REFERENCES

[1] M. Armbrust et al., “Above the clouds: A Berkeley view of cloud computing,”

EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-

2009-28, Feb. 2009.

[2] S. Das, D. Agrawal, and A. El Abbadi, Elastras: an elastic transactional data store

in the cloud, in USENIX HotCloud, 2009.

[3] A. J. Lee and M. Winslett, “Safety and consistency in policy-based authorization

systems”, in ACM CCS, 2006.

[4] M. K. Iskander, D. W. Wilkinson, A. J. Lee, and P. K. Chrysanthis, “Enforcing

policy and data consistency of cloud transactions,” in IEEE ICDCS-SPCC, 2011.

[5] Marian K. Iskander, Panos K. Chrysanthis, et al., Balancing Performance,

Accuracy, and Precision for Secure Cloud Transactions", IEEE Transactions on

Parallel & Distributed Systems, Feb. 2014.

[6] Islam, M.A., Vrbsky, S.V., Tree-Based Consistency Approach for Cloud

Databases," in IEEE Second International Conference on Cloud Computing

Technology and Science (CloudCom), 2010.

[7] G. DeCandia et al., “Dynamo: amazons highly available key-value store,” in ACM

SOSP, 2007.

[8] F. Chang, et al., “Bigtable: A distributed storage system for structured data,” in

USENIX OSDI, 2006.

[9] A. Lakshman and P. Malik, “Cassandra- a decentralized structured storage

system,” in ACM SIGOPS, Apr. 2010.

[10] Anand Tripathi et al. "A Transaction Model for Management of Replicated Data

with Multiple Consistency Levels," IEEE International Conference on Big Data

(Big Data), 2015.

[11] W. Vogels, “Eventually consistent,” in Communication of ACM, Jan. 2009.

[12] H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein, “Relaxed currency and

consistency: how to say ”good enough” in sql,” in ACM SIGMOD, 2004.

[13] T. Kraska M. Hentschel, G. Alonso, and D. Kossmann,“Consistency rationing in

the cloud: pay only when it matters,” in Proc. VLDB, Aug. 2009.

70

[14] Z. Wei, G. Pierre, and C.-H. Chi, “Scalable transactions for web applications in the

cloud,” in Euro-Par, Aug. 2009.

[15] T. Wobber, T. L. Rodeheer, and D. B. Terry, “Policy-based access control for

weakly consistent replication,” in ACM EuroSys, 2010.

[16] P. K. Chrysanthis et al., Recovery and performance of atomic commit processing

in distributed database systems, in Recovery Mechanisms in Database Systems.

Prentice Hall PTR, 1998.

[17] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing

Column), 32(4):18{25}, December 2001.

[18] Md Ashfakul Islam, Susan V. Vrbsky, and Mohammad A. Hoque. Performance

Analysis of a Tree-Based Consistency Approach for Cloud Databases, IEEE

International Conference on Networking and Communications (ICNC), 2012.

[19] D. Akkoorath, A. Z. Tomsic, et al. Cure: Strong semantics meets high availability

and low latency. In Proceedings of 36th IEEE ICDCS, June 2016.

[20] W. Gao; G. Cao; A. Iyengar, M. Srivatsa. “Cooperative Caching for Efficient Data

Access in Disruption Tolerant Networks” IEEE Transactions on Mobile

Computing, vol. 13, no. 3, pp.611- 625, March 2014.

[21] Tiance Wang, Pan Hui, Sanjeev R. Kulkarni, Paul Cuff “Cooperative Caching

based on File Popularity Ranking in Delay Tolerant Networks”. CoRR, 2014.

[22] A. Dabirmoghaddam, M. Barijough, and J. Garcia-Luna-Aceves. "Understanding

optimal caching and opportunistic caching at the edge of information-centric

networks." in ACM Proceedings of the 1st international conference on

Information-centric networking, pp. 47-56., 2014.

[23] Tuan Le; You Lu; Gerla, M., "Social caching and content retrieval in Disruption

Tolerant Networks (DTNs)," International Conference on in Computing,

Networking and Communications (ICNC), pp.905-910, 16-19 Feb. 2015.

[24] Cabaniss, R.; Madria, S., "Content distribution in Delay-Tolerant Networks using

social context," in Wireless and Mobile Networking Conference (WMNC), 2014

7th IFIP, vol., no., pp.1-8, 20-22 May 2014.

[25] Ari Kernen, Jrg Ott, and Teemu Krkkinen. 2009. The ONE simulator for DTN

protocol evaluation. In Proceedings of the 2nd International Conference on

Simulation Tools and Techniques (Simutools ’09). ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), ICST,

Brussels, Belgium, Article 55, 10 pages.

71

VITA

Dileep Kumar Mardham is from Tirupati, India. He received distinction in

Bachelor of Engineering degree in Computer Science and Engineering from Jawaharlal

Nehru Technological University, India in 2011. After working at one of the top five

software companies in Hyderabad for three years, he has been a graduate student in the

Computer Science Department at Missouri University of Science and Technology since

August 2015 and worked as a Graduate Research Assistant under Dr. Sanjay Kumar

Madria from January 2016 to December 2017 and as a Graduate Teaching Assistant for

the Computer Science Department. He received his Master’s in Computer Science at

Missouri University of Science and Technology in May 2018.

	Cloud transactions and caching for improved performance in clouds and DTNs
	Recommended Citation

	II

