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ABSTRACT 
 

Numerous sandstone filled depressions hosted in upper Cambrian to Middle 

Ordovociain dolostones in south-central Missouri have historically been identified as 

Pennsylvanian paleokarst structures. U-Pb detrital zircon geochronology is at odds the 

time of formation and sedimentological evidence challenges their classification. “Filled 

sink” deposits yield primary zircon age populations of 2.8-2.6 Ga (~50% of all analyzed 

grains), 1.2-1.1 Ga (~25%), 1.8-1.6 Ga (~15%) and 1.5-1.3 Ga (~10%). These zircon 

populations most likely originated from the Superior Craton and Midcontinent Rift and/or 

Grenville orogen, respectively. The Warrensburg and Moberly channel-fill sandstones of 

central Missouri were identified as good candidates for Pennsylvanian aged strata to 

which results from “filled sinks” may be compared. In contrast to “filled sink” deposits, 

channel-fill sandstones contain a population of Paleozoic zircon grains presumably 

derived from exhumed plutons of the uplifting and eroding Appalachian Mountains to the 

east. Existing data from Ordovician clastic strata (e.g., the Roubidoux and St. Peter 

Sandstones) in central Missouri show zircon age distributions that are strikingly similar to 

those “filled-sink” deposits. We suggest that the Taconic orogeny led to modest uplift in 

central Missouri, resulting in a significant disconformity below the St. Peter sandstone 

during the middle Ordovician. Far-field tectonism appears to have caused a 

reorganization of sediment dispersal pathways from the Archean Superior craton to the 

north to the growing mountains to the east, and in the process created a depositional 

hiatus forming the filled-sinks. The Taconic orogeny then proceeded to provide a source 

for detritus which arrived in the Missouri basin as early as the Upper Mississippian. 
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SECTION 

 

1. INTRODUCTION 

 

 The filled-sink formations of Missouri have been almost exclusively identified as 

Pennsylvanian age  karsting-induced features. This classification described the formation 

of the filled-sinks as the concurrent solutional removal of underlying strata with 

subsidence of overlying strata (Hinds and Greene, 1915; Keller et. al, 1954; Bretz, 1950; 

Asher-Bolinder 1992; He, 1995; Dunham 1916; Tarr, 1937; and Leach, 1980). Recently, 

this assertion has been challenged based on stratigraphic and sedimentological evidence. 

Primary structures within the collapse formations such as ripple marks, graded bedding, 

and cross bedding suggest a strong fluvial component to deposition. Additionally, 

overlying Mississippian detritus at outcrops and the apparent connectedness of the filled-

sinks as a drainage network (Little, 2004).  

The Ordovician Missouri environment was a shallow epeiric sea which received 

an influx of sediments from multiple sources. From the Cambrian to the Ordovician there 

was a major provenance shift from locally derived detritus to Superior craton detritus. 

Pennsylvanian formations in Missouri reflect a decline in the Superior craton zircon 

populations. Earlier geochronology of a “filled sink” shows a large Superior craton zircon 

population and no Paleozoic zircons. This led to a tentative interpretation of these “filled 

sinks” as Ordovician (Hua et. al., 2015).   
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2. LITERATURE REVIEW 

 

2.1. DETRITAL ZIRCON GEOCHRONOLOGY 

Zircon (ZrSiO4) is an abundant accessory mineral in sandstones. With a hardness 

of 6.5-7.5, a resistance to both physical and chemical weathering and the replacement of 

Zr with U and Th, zircon grains are a good candidate for geochronology. Some of the 

oldest datable sediments on earth are detrital zircon grains and so zircons can provide a 

large spectra of ages (Maas et. al. 1992; Gehrels et. al. 2011; Gehrels et. al, 2014; and 

Cawood et. al., 2012). 

2.1.1. Use as a Sedimentary Tool. Detrital zircon geochronology has been 

implemented as a tool for characterizing provenance of sedimentary rocks. Detrital 

zircons provide a multi-faceted approach to sedimentary provenance. Since the date of 

the measured zircon is assumed to be the crystallization age of the zircon, a sedimentary 

rock provenance can be characterized by the ages of the zircons it contains. These can be 

plotted on a normalized probability plot to visualize the various populations and identify 

source plutons, or they can be plotted on a cumulative probability plot to visualize a 

sediment mixing model.  

There is some risk in assumptions about detrital zircon provenance. Four major 

issues include: source terrane fertility equality, that zircon generation was produced 

uniquely for each terrane, that each terrane produces sufficient zircon to be analyzed, and 

that the spot chosen for analysis on a zircon grain is representative of the last source 

terrane (Moecher and Samson, 2006). Those issues are especially important for analysis 

of an individual rock sample; however as the analysis spans multiple rocks in a basin 
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across a period of time you can identify trends and make interpretations from those trends 

(Black et. al., 2004; Jackson et. al., 2004; and Woodhead et. al., 2004). 

2.1.2. Identifying Sedimentary Provenances. Zircon age data on a normalized 

probability plot can show multiple age peaks. These peaks can represent one or more 

source terranes. The larger the peak around a certain age, the more likely a randomly 

selected zircon from the sample will have the same age. Primary source terrane zircon 

ages have been identified by a variety of authors (Mackey et al., 2012; Gehrels et al., 

2011; Park et al., 2010; Hua et. al., 2015; and Blum and Pecha, 2014). Generally, age 

populations are grouped around known peaks; however there may be multiple 

provenances that may contribute to a single peak. Consistent interpretation then requires 

the recognition and either inclusion or exclusion of those sedimentary provenances based 

on geological evidence. Cathodoluminescence can be used to examine the zircons in 

detail and compare their cores, rims, and other textures to zircons from other plutons. The 

provenance can also be constrained based on the tectonic history of the basin, its spatial 

relations to zircon sources, and geochronology of other minerals such as monazite. 

 

2.2. “FILLED SINK” FORMATIONS 

 The “filled sink” formations of Missouri are an important set of features found in 

central Missouri. They have been studied for nearly a century and have had many 

theories generated about the cause of their formation.  

 2.2.1. Background. The “filled sink” formations of Missouri have historically 

been interpreted as Pennsylvanian aged karst collapse formations, typically hosted in 

Ordovician units and either not capped or capped by Pennsylvanian formations or 
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Mississippian formations or detritus. These formations have played some economic 

significance both from clays found within them and from their spatial and temporal 

relation to major lead deposits in Missouri (Asher-Bolinder, 1992; Bretz, 1950; Little, 

2004, Thacker, 1977). 

2.2.2. Theories on Formation. The three most commonly accepted theories for 

the formation of the chaotic collapse formations of central southern Missouri include: 

filled sinks formed and filled during the Pennsylvanian, caves with collapsed roofs, and 

concurrent subsidence of overlaying rocks with solutional removal (Bretz, 1950). 

Regardless of the theory, the driving creation force is karstification, whether in the 

vadose zone, via cave networks, or even fluvial or paludal in origin (Asher-Bolinder, 

1992).  

2.2.3. Evidence Challenging Classification and Age. In spite of the accepted age 

and nature of the chaotic collapse formations, there is evidence inconsistent with this 

interpretation. Sedimentological and structural evidence suggests that these are pre-

Pennsylvanian in age and represents a drainage network. The pre-Pennsylvanian age 

assertion was made on the presence of overlying Mississippian aged residuum and strata 

and the state maps showing overlying Devonian and Mississippian stratae. 

Sedimentological evidence was used to point out that these collapse-deposits were not 

very chaotic, had internal structures consistent with fluvial deposition, and had most of 

their disturbances towards the edge of the formation (Little, 2004). Additionally, there is 

a notable lack of any Pennsylvanian fossils in the “filled sinks” themselves, whereas the 

overlying cover has definitively Mississippian fossils or is sometimes even in situ 

Mississippian strata. 
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2.3. ORDOVICIAN MISSOURI CLASTIC FORMATIONS 

The Ordovician time period in Missouri was typified by a shallow epeiric inland 

sea, depositing large, extensive carbonate near shore facies formations (Overstreet et. al. 

2003).  This basin flanked the Ozark Dome uplift, and during the Ordovician was the 

deposition site of siliciclastic and carbonate units such as the Jefferson City Formation, 

Gasconade Dolomite, St. Peter Sandstone, and Rubidoux Formation. The St. Peter 

Sandstone is of special interest considering its apparent similarity to the chaotic collapse 

formations of Missouri based on stratigraphic, outcrop, and detrital zircon data. 

 

2.4. PENNSYLVANIAN MISSOURI CHANNEL FILL SANDSTONES 

 The Warrensburg and Moberly sandstones are Pennsylvanian Channel filled 

sandstones in central Missouri. Geological maps suggest these channels are separate 

branches of an ancient river disconnected by modern fluvial action. The deposits range 

from tens of feet to two hundred feet thick, extend 40 to 50 miles in length, and even 

extend further than that based on paleochannel geometry. Early investigations into the 

channel sandstones tended to focus on their economic significance and relation to coal 

beds. (Winslow, 1890; Doty and Hubert, 1961; Hinds and Green, 1915; Marbut, 1898). 

Lithologically these channels are dominated by sandstones, with interbedded limestones 

and shales with a basal conglomerate member. Quartz-Feldspar-Lithic ternary plots of 

these sandstones classify them as micaceous quartzite to quartzose greywacke. The 

relative abundance of quartz and lack of feldspars likely is a result of extensive sorting 

from transportation. 
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PAPER 

 

I. LATE ORDOVICIAN TECTONISM IN THE NORTH AMERICAN 
MIDCONTINENT: CONSTRAINTS FROM U-PB DETRITAL ZIRCON 

GEOCHRONOLOGY 

Daniel Meehan1, Alan Chapman2, Bill Little3 

1Missouri University of Science and Technology, Department of GGPE, 129 McNutt Hall 

1400 North Bishop Ave, Rolla, MO 65401 

2Macalester College, Geology, 1600 Grand Ave. St. Paul, MN 55105 

3Brigham Young University-Idaho, Department of Geology, Romney 150, 525 South 

Center St., Rexburg, ID 83460 – 0510 

 

ABSTRACT 

Numerous sandstone filled depressions hosted in upper Cambrian to Middle 

Ordovociain dolostones in south-central Missouri have historically been identified as 

Pennsylvanian paleokarst structures. U-Pb detrital zircon geochronology is at odds the 

time of formation and sedimentological evidence challenges their classification. “Filled 

sink” deposits yield primary zircon age populations of 2.8-2.6 Ga (~50% of all analyzed 

grains), 1.2-1.1 Ga (~25%), 1.8-1.6 Ga (~15%) and 1.5-1.3 Ga (~10%). These zircon 

populations most likely originated from the Superior Craton and Midcontinent Rift and/or 

Grenville orogen, respectively. The Warrensburg and Moberly channel-fill sandstones of 

central Missouri were identified as good candidates for Pennsylvanian aged strata to 

which results from “filled sinks” may be compared. In contrast to “filled sink” deposits, 

channel-fill sandstones contain a population of Paleozoic zircon grains presumably 

derived from exhumed plutons of the uplifting and eroding Appalachian Mountains to the 
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east. Existing data from Ordovician clastic strata (e.g., the Roubidoux and St. Peter 

Sandstones) in central Missouri show zircon age distributions that are strikingly similar to 

those “filled-sink” deposits. We suggest that the Taconic orogeny led to modest uplift in 

central Missouri, resulting in a significant disconformity below the St. Peter sandstone 

during the middle Ordovician. Far-field tectonism appears to have caused a 

reorganization of sediment dispersal pathways from the Archean Superior craton to the 

north to the growing mountains to the east, and in the process created a depositional 

hiatus forming the filled-sinks. The Taconic orogeny then proceeded to provide a source 

for detritus which arrived in the Missouri basin as early as the Upper Mississippian. 

 

1. INTRODUCTION  

Detrital zircon geochronology is a powerful tool with a variety of applications. 

We used detrital zircon data from several samples in Missouri to resolve a stratigraphic 

question about “filled sink” formations, and to resolve the influence of regional 

tectonism. These “filled sinks” have been historically identified as Pennsylvanian 

paleokarst formations. The method of sink filling has been debated through time; 

however the most widely accepted hypothesis asserts that they were filled from 

concurrent subsidence and dissolution. These assertions were based on the circular 

geometry in map view, apparently disturbed bedding, and presence of clay mineral 

alteration (Hinds and Greene, 1915; Keller et. al, 1954; Bretz, 1950; Asher-Bolinder 

1992). These formations lack Pennsylvanian aged fossils. This paper calls into question 

the timing and nature of the “filled sinks.”  Many outcrops show evidence of fluvial 
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origin including graded bedding, ripple marks, and trough-cross stratification. 

Additionally they are frequently covered by strata containing Mississippian aged fossils.  

In Ordovician time the North American midcontinent region was covered by a 

shallow epeiric sea (Figure 1). Detrital zircon data suggests a major sediment provenance 

change from the Cambrian to Ordovician, and the Ordovician through the Pennsylvanian 

time period in Missouri, and shows several Ordovician units that have similar detrital 

zircon profiles to the “filled sinks”. This detrital zircon evidence and the petrographic and 

stratigraphic similarity suggests a strong connection between the Ordovician units and the 

“filled sinks.” 

Detrital zircon geochronology of Ordovician formations in Missouri shows two 

primary peaks at 2.7 Ga and 1.1 Ga, both stronger than the same peaks found in 

Cambrian strata. This likely reflects the change from locally derived basement detritus to 

sediment from the Superior Craton (Hua et. al., 2015). The Warrensburg and Moberly 

channel sandstones are Pennsylvanian aged formations found in Missouri, two separated 

branches of an ancient river. Since the Moberly and Pennsylvanian sandstones are 

channel fill deposits and definitively Pennsylvanian, they provide a good comparison for 

the filled-sink formations which are alleged to have formed during the Pennsylvanian.  

We used detrital zircon geochronology from Ordovician (Roubidoux and St. Peter 

sandstones) and Pennsylvanian strata (Moberly-Warrensburg channel sandstones) to 

provide guideposts to compare to the age populations of detrital zircons recovered from 

"filled sink" deposits. Ordovician and Pennsylvanian detrital zircon age spectra will 

provide two end members for comparison with “filled sink” deposits. Additionally, the 

changes in age populations over time must be considered in light of the regional tectonic 
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history- what role did tectonics play in the formation of “filled sink” deposits? What was 

the impact of global sea level change at this time? These questions must be properly 

considered and treated in light of the given data.    

 

 

Fig. 1. Paleoenvironment map of Ordovician Missouri. Adapted from Blakey (2011). 
Missouri is mostly covered by the shallow inland sea at this time. 
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2. GEOLOGIC BACKGROUND 

 In order to properly understand the nature of the issues presented, we must 

examine the rocks used to identify the problems, and the rocks that can be used to test our 

hypothesis. The Pennsylvanian channel sands are the litmus test for the filled sink 

hypothesis. 

2.1 Pennsylvanian Samples 

 The Warrensburg and Moberly channel sandstone formations of Missouri have 

been recognized and studied for over a century (see Hinds and Greene, 1915; Winslow, 

1890; Marbut, 1898; Doty and Hubert, 1961). The Moberly and Pennsylvanian 

formations were first identified as channels and mapped by Winslow in 1890 for the 

following reasons: 

1) the great thickness (10-50 meters thick) of the deposit,  

2) the long and narrow shape of the outcrop/subcrop belt,  

3) the superposition of the sandstone upon the ‘Middle Coal Measure’ rocks, and  

4) the inclusion of fragments of adjacent rocks within the channels themselves. 

The geometry of the sandstones themselves- narrow at the base and wider towards the 

top- also suggests that these sandstones are filling in channels. The channels are very 

long and deep compared to their width- the Moberly had been mapped at nearly 64 

kilometers long and the Warrensburg at 80 kilometers long, and their paleochannel 

geometry indicates they were likely much longer. They range in thickness from tens of 

feet to two hundred feet thick, but are typically less than two to four kilometers wide. The 

lithological makeup of the channel fills tend to be dominated by sandstone, with some 

interbedded limestones and shales and typically a basal conglomerate.  
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We collected one sample each of Warrensburg and Moberly sandstones from 

outcrops near Warrensburg and Moberly, Missouri. The petrographic properties of each 

sandstone are nearly identical- dominantly quartz (75% on average), with feldspar, 

biotite, muscovite, and tourmaline. Zircon dominates the heavy mineral assemblage. 

Scanning electron microscope images of the zircon grains show three primary zircon 

morphologies in these channel sandstones- idiomorphic grains, fragmental grains, and 

rounded grains (Doty and Hubert, 1961). Figures 2 and 3 were obtained on the Hitachi S-

4700 SEM at the Missouri University of Science and Technology.  

 

 

Fig. 2. Scanning electron microscope (SEM) image of Warrensburg channel sandstone        
detrital zircons. Ages and errors overlain on zircons analyzed. Scale includes entire tick 
bar. Analytical pits were produced by laser ablation at the Arizona Laserchron Center. 

 

2.2 “Filled Sinks” 

 The “filled sinks” of South-Central Missouri have historically been interpreted as 

paleokarst formations generated during the Pennsylvanian. These “filled-sinks” consist of 

“more than 1000 roofless solution cavities… [that] lie on the northern and western slopes 

of the Ozark dome” (Bretz, 1950). These formations are typically hosted in Ordovician 
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strata or rarely in Cambrian strata, and are either not capped, or overlain by sediments 

ranging in age from Mississippian to Pennsylvanian (Asher-Bolinder, 1992; Bretz, 1950). 

 

 

Fig. 3. SEM image of Moberly channel sandstone detrital zircons. Ages and errors 
overlain on zircons analyzed. Scale includes entire tick bar. Analytical pits were 

produced by laser ablation at the Arizona Laserchron Center. 

 

Debate as to the exact nature of the filled-sinks provided a multitude of theories 

for their origin. Three of the most popular theories are that they are filled sinks, collapsed 

cave roofs, or that they result from concurrent subsidence and solution filling (Asher-

Bolinder, 1992). The filled-sink theory is supported by the centripetally dipping strata 

found in the sinks themselves, with brecciation, faulting, and a lack of evidence for 

compressional stresses evident in outcrop (Asher-Bolinder, 1992). The collapsed cave 
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roof theory is supported by the presence of breccia-fill from wall and roof rock, and this 

group is generally associated with economically significant circle-deposits found in 

Missouri. These tend to be filled with clays which are commonly mineralized. The 

solutional-removal theory is supported by the formations which are compacted, chaotic, 

and require the in-filling of cavities at nearly the same rate as basin subsidence (Bretz, 

1950).  

Asher-Bolinder (1992) suggested that the “filled sinks” subsided at the same rate 

with basin subsidence, suggesting that “Pennsylvanian seas would have allowed sinks to 

develop… as sea level continued to drop. As the water table fell and dissolution 

proceeded downward, sediments within the sinks sagged deeper into their centers, 

making room for more sediment to accumulate at the surface”.  

None of the above hypotheses address the issues of the overlying Mississippian 

strata or the observed fining upward gradation of the deposits; in fact this observation has 

generally been passed over in discussions. In each scenario it is assumed that there is a 

degree of replacement of the Ordovician rock with newer sediment which would mark 

the timing of the creation of the “filled sinks”. The removal of sediment between the 

Pennsylvanian and Ordovician is kept relatively local, and so the “filled sinks” would 

represent a recycling of overlying rocks. 

One “filled sink” structure near Rolla, Missouri is hosted in the Ordovician 

Jefferson City Dolomite and the infill consists primarily of shales and sandstones. Proctor 

and Lance (1993) note the internal structure of this “filled sink” deposit as containing 

typically shallow bedding (<30°) which dips towards the center of the sink (see Figure 4). 

The central portion of the sink is folded, dipping at high angles, and sometimes 
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overturned. Importantly, they interpret the origin of this sink as subsiding 

contemporaneously with the solution removal of the Jefferson City Dolomite so that the 

sink is made up of younger, overlying sediment.  

 

 

Fig. 4. Geological sketch of “filled sink” near I-44 in Rolla, Missouri. Adapted from 
Proctor, Lance, and Eyermann (1993). 

 

Alternatively, it could be argued that the “filled sinks” formed prior to the 

Pennsylvanian time based on the presence of overlying Mississippian aged residuum and 

strata and the state maps showing overlying  Mississippian strata as evidence for a Pre-

Pennsylvanian age. Sedimentological evidence shows these collapse-deposits have 

internal structures consistent with fluvial deposition, and most of their disturbances are 
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limited to the edges of the formation (Figure 5). The Mississippian aged residuum has 

been shown to be definitively Mississippian based on fossils found within it.  The chaotic 

features towards the edges and rim related to fluvial action and karsting, respectively. 

Internal structures including cross bedding, ripple marks, and graded bedding have been 

found at collapse structures near Truman Lake, north of Rolla, and in other filled sinks. 

 

 

Fig. 5. Trough cross bedded sandstone in the Truman Lake "filled sink" deposit. 

 

3. METHODOLOGY 

 Zircon grains were separated from samples collected from two separate collapse 

structures- representing both sink fill (samples 14MO6 and 14MO9) and rimrock 

(14MO10) facies - and one sample each from Warrensburg (15MO2) and Moberly 

(15MO1) channel sandstones by crushing and mineral separation at the Missouri 



16 
 

University of Science and Technology. Rocks were crushed in a jaw crusher, ground in a 

pulverizer, washed, and hand panned to separate out the heavy minerals. These heavy 

minerals were sieved and dried, then passed through a Frantz magnetic separator and 

methylene iodide to isolate the zircon grains. Samples were mounted for analysis at the 

University of Arizona LaserChron facility with in-house Sri Lanka (SL) and secondary 

R33 (Black et al., 2004) standards and polished to expose grain interiors prior to analysis. 

The U/Pb ratios were analyzed using a Nu-Plasma laser ablation multi-collector 

inductively couple plasma mass spectrometer (LA-MC-ICPMS). To ensure statistical 

significance, approximately 100 zircon grains were analyzed per sample, following 

methods outlined in Gehrels et al., (2008). The Sri Lanka standard, the age of which was 

determined by isotope dilution–thermal ionization mass spectrometry (ID-TIMS) of 

563.5±3.2 Ma (2σ), was analyzed once per every 5 unknown analyses to correct for 

potential mass fractionation and drift (Gehrels et al., 2008). A secondary standard R33 

(Black et al., 2004) with ID-TIMS age of 418.9 ± 0.4 Ma (2σ) was also analyzed once per 

every fifty unknown analyses.  Data reduction was done using in-house Microsoft Excel 

programs and ISOPLOT/Ex, version 3 (Ludwig, 2003).  

 

4. AGE SPECTRA RESULTS 

 Normalized probability plots for the analyzed Missouri clastic strata provide a 

data set which can be used for interpreting local and regional scale problems. The plots 

consist of ~100 grains per sample. 

 Figure 6 shows a collection of normalized probability plots for Missouri clastic 

strata. Sample14MO6 and 14MO9, and 14MO10, from a “filled sink” and its rim rock 
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were collected and analyzed for this paper. Samples 15MO1 and 15MO2, from the 

Moberly and Warrensburg channel sandstones, were also collected and analyzed for this 

paper. 

4.1 Pennsylvanian Channel Sandstones 

 Sample 15MO1 is of the Pennsylvanian Moberly channel sandstone. It was 

collected from an exposure in Norris Quarry in the Salt Springs Township of Missouri. It 

is a quartzose arkose, with paleocurrent indicators showing an East-West channel flow. 

Sample 15MO2 is of the Pennsylvanian Warrensburg channel sandstone. It was collected 

from an exposure in Cave Hollow Park in Warrensburg, Missouri. It is a micaceous 

quartzite and paleocurrent indicators show a North-South channel flow. 

 The age spectra for the Pennsylvanian Moberly and Warrensburg channel 

sandstones- 15MO1 and 15MO2 respectively- have two primary age populations- 1.3-1.1 

Ga (comprising ~70% of analyzed grains) and 600-400 Ma (~20%). There are also zircon 

grain age populations from 2.8-2.6 Ga (~5%) and 1.6-1.4 Ga (~5%).  

4.2 Collapse Structure Fill 

 Sample 14MO6 is from a “filled sink” in western Franklin County, Missouri. It is 

an orthoquartzite.  Sample 14MO9 is from a “filled sink” North of Rolla, Missouri. It is a 

quartzose graywacke. 

The age spectrum for the collapse structure zircon grains from 14MO6 and 

14MO9 reflects two primary populations. The first, 2.8-2.6 Ga (~50%) and second, 1.2-

1.1 Ga (~25%) comprise more than half of the detrital zircon ages. Other populations of 

1.8-1.6 Ga (~15%) and 1.5-1.3 Ga (~10%) were also measured.  There was also one 

zircon grain date 469.1 Ma ± 8.5. 
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Fig. 6. Normalized probability plots from the detrital zircon grains of the analyzed 
Missouri clastic strata. 14MO6 data from Hua et. al. (2015).  

 

4.3 Collapse Structure Rim 

 Sample 14MO10 is from the Fossil Hill sediments found in Rolla, Missouri. It is 

correlative to the rim rock from the “filled sink” 14MO9. It is a micaceous quartzite. 
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The age spectrum for the collapse structure rim zircon grains from 14MO10 

reflects two primary populations. The first, 2.8-2.6 Ga (~50%) and second, 1.2-1.1 Ga 

(~25%) comprise more than half of the detrital zircon ages. Other populations of 1.8-1.6 

Ga (~15%) and 1.5-1.3 Ga (~10%) were also measured.   

 

5. DISCUSSION 

 The issues surrounding the filled sinks are not cut and dry either stratigraphically 

or tectonically. Detrital zircon results do shed light on certain things and conclusions can 

be drawn from these data sets. In the following sections we discuss and interpret the 

results. 

5.1 Interpreting Normalized Probability Plots 

Zircon grain dates can be grouped together in age populations. ISOPLOT/Ex can 

create a normalized relative probability plot (NPP) for a sample which allows one to 

visually identify zircon populations with similar dates. Taller spikes on the graph indicate 

a higher likelihood that a randomly selected zircon grain from the sample would be 

measured at that age.  

Zircons of a particular provenance population can have a range of crystallization 

ages. Thus any zircon grain with an age between 2.8-2.6 Ga might represent the Superior 

craton, since grains dated directly from the Superior craton date from 2.8-2.6 Ga. The 

presence of a spike at 2.8-2.6 Ga on an NPP can be identified as a “Superior craton 

signal”. Other zircon age populations treated in this study include the Midcontinent Rift 

and/or Grenville orogeny (1.3-1.0 Ga), the Yavapai-Mazatzal province (1.8-1.6), the 

Granite-Rhyolite province (1.5-1.3 Ga), and the Paleozoic Appalachian basement (650-
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350 Ma) (ages from: Mackey et al., 2012; Gehrels et al., 2011; Park et al., 2010; Hua et. 

al., 2015; and Blum and Pecha, 2014). 

5.2 Sedimentary Provenance in Missouri  

The detrital zircon data from the “filled sink” deposits and the Pennsylvanian 

strata provide fingerprints for the provenance of these rocks. Figure 7 displays source 

regions of variable basement age that may have contributed detrital zircons to the 

midcontinent during the Paleozoic era.  

Previous detrital zircon in the Ozark Dome region indicates that detrital zircons in 

Ordovician strata in Missouri are characterized by a large peak centered at ca. 2.8 Ga, 

with lesser populations centered around 1.1 Ga, from 1.6-1.3 Ga, and at ca. 1.8 Ga. The 

most likely ultimate sources for these populations are the Superior Craton, Midcontinent 

Rift/Grenville orogeny, midcontinent graintoids, and Mazatzal-Yavapai orogens, 

respectively  (see: Mackey et al. (2012); Gehrels et al. (2011); Park et al. (2010), Hua et. 

al. (2015); and Blum and Pecha (2014))..  

Pennsylvanian Moberly-Warrensburg channel sandstones record two primary 

populations- one Paleozoic group from 650 to 350 Ma, and a group centered around 1.1 

Ga. Lesser populations of 1.6-1.3 Ga, and 1.8-1.7 Ga are also recorded. This stands in 

stark contrast to the Ordovician signal because of its lack of Superior craton zircons, or a 

population of 2.8 Ga zircons and the influx of Paleozoic, probably Appalachian zircon 

grains. Appalachian zircon grains in this case refers to the relatively young (650 to 350 

Ma) grains derived from volcanic or plutonic activity from the Taconic phase of the 

Appalachian orogeny and not necessarily older basement grains from the Appalachian 

terrane itself. 



21 
 

 

Fig. 7. Potential source regions from which zircon grains may have been derived to be 
deposited in Missouri from the Ordovician through Pennsylvanian time period. Adapted 
from Chapman et. al. (2015), Blum and Pecha (2014), Hua et. al (2015) and Gehrels et. 

al. (2011). 

 

5.3 Filled-Sinks 

 Detrital zircon populations of the filled-sinks of Missouri are distinctly different 

from the detrital zircon populations of the Pennsylvanian channel sandstones (Figures 5 

and 7). The “filled-sinks” do not contain the Appalachian basement population and 

contain an abundant population of Superior craton-aged zircon. The sediment which 

filled the Pennsylvanian channels and the sediment which filled the sinks have distinctly 
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different sources; therefore, it is highly unlikely that the sediment that filled the “filled 

sinks” was Pennsylvanian in age.  In spite of their historical identification as 

Pennsylvanian, the “filled sinks” are notably lacking in fossils. 

It could be argued that “filled sinks” were originally deposited sometime prior to 

the Pennsylvanian (e.g., the Ordovician through Mississippian), but were reworked into 

sink fills later. However, this scenario is unlikely given the primary features found in the 

filled sinks (e.g., continuous bedding and cross-bedding), the lack of chaotic structures, 

and the apparent map view connectivity of “filled sinks” (Figure 8). Additionally, the 

literature is conspicuously absent in describing any Pennsylvanian aged fossils in the 

“Pennsylvanian” aged formations. These sinks are also consistently overlain by 

Mississippian sediment, which has been identified as Mississippian base on the fossils it 

contains. 

The filled-sink detrital zircon NPP plots do look similar to the Ordovician 

formations found in Missouri, particularly the St. Peter sandstone. They share a large 

Superior craton zircon population, as well as the Grenville orogen and midcontinent 

grains. The St. Peter sandstone is found above a well-known unconformity and is at its 

thickest when filling Upper Ordovician sink holes. The erosional unconformity below the 

St. Peter is better documented to the North and East, and it may reflect a period of uplift 

and karstification of the lower Ordovician units (Thompson, 1995). As karstification 

continued small sinkholes and linear features began to grow and connect, forming  

solution valleys. The St. Peter was then deposited during the middle/upper Ordovician, 

filling in solution valleys which include both the documented sink holes and, as we 

suggest, the “filled-sinks” as well.  
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Fig. 8. State geological map of channel fills overlain by Devonian strata. Devonian strata 
(D) found overlaying Pennsylvanian age sandstones. The Pennsylvanian sandstones 

appear to be a drainage network. Adapted from state geological maps maps of Missouri. 
 

The interpretation of the “filled sinks” as Pennsylvanian in age and how they have 

been generated is not supported by detrital zircon geochronology. It is more likely that 

these are an established, interconnected drainage system that formed concurrently or just 

after the unconformity found near the top of the Ordovician, as in the one found below 

the St. Peter. It is indeed likely that the St. Peter Sandstone and the sediments which fill 

these sinks are genetically very similar. It may be possible that the solution valley infill- 

previously “filled sinks”- are correlative with the St. Peter. That is to say that the St. Peter 

formation is a sand sheet equivalent facies to the solution valley facies. 
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5.4 Cause of Provenance Changes 

 The Pennsylvanian and Ordovician strata display a number of differences. First, 

the Ordovician samples exhibit a strong Superior craton zircon signal and a large 

Midcontinent rift and/or Grenville orogeny zircon signal. Secondly, the Pennsylvanian 

samples contain the Paleozoic zircon grains presumably from the Appalachian basement. 

This transport of Paleozoic zircon grains from East to West continued in other basins in 

the midcontinent, including the Ouachita basin. These grains appear to have arrived in the 

Ouachita basin around the same time as they did in the Ozark Dome region (Gleason et. 

al., 2001). This may indicate that the zircons travelled essentially East to West across the 

North American continent, and can be found in the Grand Canyon in Pennsylvanian strata 

(Gehrels et.al, 2011), suggesting a rapid transport across the continent. It is possible that 

volcanism from the Taconic orogeny was responsible for the abundance of these 

Paleozoic grains and their extensive dispersal. 

The large difference in detrital zircon NPP profiles found in the Ordovician and 

Pennsylvanian strata indicate a major shift in provenance over this time interval. What 

caused the Ozark dome to move up relative to sea level during this time? According to 

sea level curves, sea level was rising during this time (Haq and Schutter, 2008; Sloss, 

1963). Since sea level was rising and the Ozark Dome was moving up relative to sea 

level (i.e., base level was rising), some tectonic influence must have occurred. The 

Taconic orogeny, well into its development by 450 Ma, may have put the Ozark Dome on 

an inland forebulge. Far field tectonism was influential enough to cause a pronounced 

uplift of the Ozark Dome during this time (Cox, 2009).  
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Fig. 9. Comparison of normalized probability plots. “Filled sinks” compared with 
Pennsylvanian Channel Sandstones (top) and Ordovician formations in Missouri 

(bottom). Filled sink and rim rock n=282, Pennsylvanian Channel Sandstones n=232, 
Ordovician formations n=379. 
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6. CONCLUSIONS 

 Detrital zircon geochronological data demonstrates that the “filled sinks” of 

Missouri are most likely Ordovician in age. This is because they contain a large Superior 

craton population of zircon grains, and they do not contain the Paleozoic Appalachian 

basement grains. Sedimentological, outcrop, and map data also do not support the 

formation of the “filled sinks” as solutional removal with concurrent subsidence. These 

sinks contain internal structures consistent with fluvial deposition, are interbedded with 

Ordovician strata, restrict most of their deformation towards the margins of the sink, and 

appear on a regional scale to resemble a large drainage network. These Pennsylvanian 

age “filled sinks” are neither Pennsylvanian in age nor are they filled sinks. It would be 

more consistent with evidence presented here to call them Ordovician and a solution 

valley facies equivalent to the St. Peter. 

 The Ordovician to Pennsylvanian shift in provenance for the Missouri basin 

reflects both changing base level due to large sedimentary sequences, as well as the 

tectonic influence of the Taconic orogeny. The shift in provenance from the Precambrian 

Superior Shield to the Paleozoic Appalachian basement was a change that affected the 

transportation and distribution of detritus across the North American continent. It is 

possible that this sediment was introduced via the Missouri basin on the way to the Grand 

Canyon. 
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  PETROGRAPHY OF SAMPLES 
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Prior Petrographic Data 

The Warrensburg sandstone was extensively detailed by Doty and Hubert. Their 

results have been reiterated in tables  A1 and A2: 

Table A1. From Doty and Hubert  (1961) petrography of the Warrensburg and other 
selected sandstones, values in percent. 

 

  Sample Member W1-1 W1-13 W1-27 W2-1 W2-13 
General 
Count 

Muscovite 5 3 4 2 7 
Biotite 2 1 1 3 1 

  Chlorite 9 8 2 - 1 
  Opaques 28 28 15 14 11 
  Detritial non-opaques 46 52 78 69 75 
  Authigenic anatase 10 8 - 12 5 
  Total 100 100 100 100 100 
              
Detrital, 
non-
micaceous, 
non-
opaque 
minerals 

Apatite 2 - 3 - 2 
Garnet 34 11 2 8 1 
Rutile 4 4 5 1 10 
Tourmaline- subangular to 
angular 

30 45 48 38 16 

Tourmaline- subrounded to 
rounded 

2 2 3 4 1 

  Zircon- idiomorphic angular 4 17 18 18 30 
  Zircon- fragmental angular 13 8 6 11 14 
  Zircon-subrounded to 

rounded 
2 10 13 19 25 

  Miscellaneous 9 3 2 1 1 
  Total 100 100 100 100 100 

 

 

Doty and Hubert additionally propose a lithological characterization of the sediment 

sources, with four primary groups: Pennsylvanian soils, metamorphic rocks, feldspathic 

crystalline rocks, and pre-Warrensburg Sedimentary rocks. The last two categories are 

split further: crystalline rocks include the feldspathic plutonic rocks and pegmatites and 

veins; and pre-Warrensburg sedimentary rocks are split into carbonates and siliclastics. 



32 
 

Table A2. From Doty and Hubert  (1961) petrography of the Warrensburg and other 
selected sandstones, values in percent. 

 

  Sample Member W2-35 W3-1 W3-13 W3-25 Mean 
General 
Count 

Muscovite 4 2 3 1 3 
Biotite 3 1 1 2 2 

  Chlorite 1 4 2 1 3 
  Opaques 11 11 7 7 15 
  Detritial non-opaques 78 82 86 86 72 
  Authigenic anatase 3 - 1 3 5 
  Total 100 100 100 100 100 
              
Detrital, 
non-
micaceous, 
non-
opaque 
minerals 

Apatite 4 3 1 1 2 
Garnet 5 19 5 3 8 
Rutile 4 6 5 6 5 
Tourmaline- 
subangular to angular 

53 9 8 6 28 

Tourmaline- 
subrounded to 
rounded 

2 2 3 1 2 

  Zircon- idiomorphic 
angular 

10 20 31 39 22 

  Zircon- fragmental 
angular 

7 12 16 12 12 

  Zircon-subrounded to 
rounded 

14 25 30 32 19 

  Miscellaneous 1 4 1 1 2 
  Total 100 100 100 100 100 
 

 

Each of these groupings and sub-groupings have specific grains which are 

associated with them e.g. metamorphic rocks contribute the highly undulose quartz, slate, 

phyllite, garnet, zircon, apatite, and others. These are cemented by silica and calcite 

cements over time. It is suggested that the metamorphic rocks are the strongest source of 

sediments, likely from the Archean Superior craton and Trans-Hudson arch. 

Figure A1 is the ternary quartz-feldspar-lithic plot composed by Doty and Hubert 
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(1961) recreated for clarity and readability. Their samples from the Warrensburg 

sandstone typically plot as quartzose greywacke or micaceous quartzite. They attribute 

the large amount of quartz as a result of selective sorting during fluvial transportation. 

 

 

Figure A1. Ternary QFL diagram recreated from Doty and Hubert (1961), from the data 
recorded in Table A1. 
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Petrographic Data from 14 MO9,14MO10, 15MO1, and 15MO2 
 

Table A2. QFL data from four samples analyzed as part of this research, including the 
collapse fill, rim rock from the collapse fill, and channel sandstones. 

 

Geologic unit  Collapse Fill Collapse Rim Moberly Warrensburg 
  14MO9 14MO10 15MO1 15MO2 
       
Location HWY 63 N of 

Rolla 
HWY 63 N of 
Rolla 

Outside of 
Moberly, MO 

Outside of 
Warrensburg, 
MO 

UTM zone 15S 15S 15S 15S 
Easting 610286 608945 533851 434292 
Northing 4203449 4203622 4360992 4291426 
         
Petrography        
         
Quartz 144 162 170 165 
Feldspar 51 24 37 31 
Lithic Fragments 44 33 26 22 
 239 219 233 218 
% Quartz 60.251 73.973 72.961 75.688 
% Feldspar 21.339 10.959 15.88 14.22 
% Lithic 
Fragments 

18.41 15.068 11.159 10.092 
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Figure A2. Ternary QFL diagram of four Missouri samples analyzed. Data recorded in 
Table A1. 
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Photos of 15MO1 and 15MO2 

 

 

Figure A3. Moberly sandstone exposed in a quarry owned and operated by Norris 
Quarries located in Salt Springs Township, MO. Photo credit to Dr. John P. Hogan. 

 

 

Figure A4. Moberly sandstone outcrop displaying planar bedding. Rock hammer for 
scale. Photo credit to Dr. John P. Hogan. 
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Figure A5. Warrensburg sandstone outcrop displaying cross stratification. Photo taken at 
outcrop of Warrensburg Sandstone located within Cave Hollow Park in Warrensburg, 

MO. Photo credit to Dr. John P. Hogan.  
 

 

Figure A6. Photograph of shaly portion of Warrensburg sandstone. Photo credit to Dr. 
John P. Hogan. 
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Figure A7. Outcrop of Warrensburg Channel Sandstone in Cave Hollow Park showing 
shaly layer in between cross-stratified sandstone layers. Photo credit to Dr. John P. 

Hogan. 
 

 

Figure A8. Outcrop of Warrensburg channel sandstone in Cave Hollow Park displaying 
prominent cross-stratification and terminations. Photo credit to Dr. John P. Hogan. 
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 Five samples were analyzed at Laserchron on the University of Arizona campus 

in Tuscon Arizona. These samples consisted of 14MO8 – the Gunter Sandstone, 14MO9 

and 14MO10 – filled sinks, and 15MO1 and 15MO2 – the Pennsylvanian Channel 

sandstones. Data reduction and creation of NPP were done using in-house ALC 

Microsoft Excel programs and ISOPLOT/Ex, version 3 (Ludwig, 2003), and this data is 

presented in the following figures. Raw data is available in supplemental file 1. 

14MO8 Discordance Diagram and raw detrital zircon data 

 

 

Figure B1.  Discordance Diagram of sample 14MO8. 
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14MO9 Discordance Diagram and raw detrital zircon data 

 

 

Figure B2. Discordance Diagram of sample 14MO9. 
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14MO10 Discordance Diagram and raw detrital zircon data 

 

 

Figure B3. Discordance Diagram of sample 14MO10. 
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15MO1 Discordance Diagram and raw detrital zircon data 

 

 

 Figure B4- Discordance Diagram of sample 15MO1. 
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15MO2 Discordance Diagram and raw detrital zircon data 

 

 

 Figure C5- Discordance Diagram of sample 15MO2. 
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