
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2017

A bounded actor-critic algorithm for reinforcement learning A bounded actor-critic algorithm for reinforcement learning

Ryan Jacob Lawhead

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Artificial Intelligence and Robotics Commons, and the Operations Research, Systems

Engineering and Industrial Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Lawhead, Ryan Jacob, "A bounded actor-critic algorithm for reinforcement learning" (2017). Masters
Theses. 7740.
https://scholarsmine.mst.edu/masters_theses/7740

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7740&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7740&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7740?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7740&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A BOUNDED ACTOR-CRITIC ALGORITHM FOR

REINFORCEMENT LEARNING

by

RYAN JACOB LAWHEAD

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

2017

Approved by

Dr. Abhijit Gosavi, Co-Advisor

Dr. Susan L. Murray, Co-Advisor

Dr. Zeyi Sun

 2017

Ryan Jacob Lawhead

All Rights Reserved

iii

ABSTRACT

 This thesis presents a new actor-critic algorithm from the domain of reinforcement

learning to solve Markov and semi-Markov decision processes (or problems) in the field

of airline revenue management (ARM). The ARM problem is one of control optimization

in which a decision-maker must accept or reject a customer based on a requested fare. This

thesis focuses on the so-called single-leg version of the ARM problem, which can be cast

as a semi-Markov decision process (SMDP). Large-scale Markov decision processes

(MDPs) and SMDPs suffer from the curses of dimensionality and modeling, making it

difficult to create the transition probability matrices (TPMs) necessary to solve them using

traditional methods such as dynamic and linear programming. This thesis seeks to employ

an actor-critic algorithm to overcome the challenges found in developing TPMs for large-

scale real-world problems. Unlike traditional actor-critic algorithms, where the values of

the so-called actor can either become very large or very small, the algorithm developed in

this thesis has an updating mechanism that keeps the values of the actor’s iterates bounded

in the limit and significantly smaller in magnitude than previous actor-critic algorithms.

This allows the algorithm to explore the state space fully and perform better than its

traditional counterpart. Numerical experiments conducted show encouraging results with

the new algorithm by delivering optimal results on small case MDPs and SMDPs and

consistently outperforming an airline industry heuristic, namely EMSR-b, on large-scale

ARM problems.

iv

ACKNOWLEDGMENTS

 I would like to thank my advisors, Dr. Abhijit Gosavi and Dr. Susan L. Murray, for

their guidance and encouragement throughout my graduate program. I am also appreciative

of them for instilling in me the qualities required to undertake academic research. I also

wish to thank Dr. Zeyi Sun for serving on my committee.

 I am also grateful for the support and funding for my research from both the

Intelligent Systems Center at Missouri University of Science and Technology and the

Department of Engineering Management and Systems Engineering at Missouri University

of Science and Technology.

 Finally, I would like to thank my parents for the encouragement and support they

have offered.

v

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS ... vi

LIST OF TABLES .. vii

SECTION

1. INTRODUCTION .. 1

2. PROBLEM DESCRIPTION .. 4

2.1. MARKOV DECISION PROCESSES (MDP) .. 4

2.2. SMDP .. 4

2.3. BELLMAN EQUATION.. 5

2.4. AIRLINE REVENUE MANAGEMENT ... 6

2.4.1. Overview .. 6

2.4.2. EMSR-b .. 9

2.4.3. SMDP in the Context of ARM. .. 10

3. LITERATURE REVIEW ... 12

4. SEMI-MARKOV ACTOR-CRITIC ALGORITHMS FOR AVERAGE COST 15

4.1. TRADITIONAL ACTOR-CRITIC .. 15

4.2. PROPOSED BOUNDED ACTOR-CRITIC .. 16

4.3. STEPS IN ALGORITHM ... 17

5. NUMERICAL RESULTS .. 19

5.1. SMALL MDP CASES .. 19

5.2. SMALL SMDP CASES .. 21

5.3. AIRLINE REVENUE MANAGEMENT CASE STUDY 23

5.3.1. Set Up ... 23

5.3.2. Experimental Results .. 24

6. CONCLUSION .. 45

BIBLIOGRAPHY .. 46

VITA .. 49

vi

LIST OF ILLUSTRATIONS

 Page

Figure 2.1 Hub and Spoke (Origin- Destination) Airline Network Diagram 8

Figure 4.1 Mechanics of actor-critic algorithm .. 18

Figure 5.1 Values of V(1) in learning phase for MDP Case 1 .. 21

Figure 5.2 Values of V(2) in learning phase for MDP Case 1 .. 21

Figure 5.3 Values of V(1) in learning phase for SMDP case 1 .. 23

Figure 5.4 Values of V(2) in learning phase for SMDP case 1 .. 23

Figure 5.5 4-fare-class comparison of results for EMSR-b and Actor-Critic 27

Figure 5.6 6-fare-class comparison of results from EMSR-b and Actor-Critic 28

Figure 5.7 Learning phase graph for Case 1 in 4-fare-class system 38

Figure 5.8 Learning phase graph for Case 2 in 4-fare-class system 38

Figure 5.9 Learning phase graph for Case 3 in 4-fare-class system 38

Figure 5.10 Learning phase graph for Case 4 in 4-fare-class system 39

Figure 5.11 Learning phase graph for Case 5 in 4-fare-class system 39

Figure 5.12 Learning phase graph for Case 6 in 4-fare-class system 39

Figure 5.13 Learning phase graph for Case 7 in 4-fare-class system 40

Figure 5.14 Learning phase graph for Case 8 in 4-fare-class system 40

Figure 5.15 Learning phase graph for Case 9 in 4-fare-class system 40

Figure 5.16 Learning phase graph for Case 10 in 4-fare-class system 41

Figure 5.17 Learning phase graph for Case 1 in 6-fare-class system 41

Figure 5.18 Learning phase graph for Case 2 in 6-fare-class system 41

Figure 5.19 Learning phase graph for Case 3 in 6-fare-class system 42

Figure 5.20 Learning phase graph for Case 4 in 6-fare-class system 42

Figure 5.21 Learning phase graph for Case 5 in 6-fare-class system 42

Figure 5.22 Learning phase graph for Case 6 in 6-fare-class system 43

Figure 5.23 Learning phase graph for Case 7 in 6-fare-class system 43

Figure 5.24 Learning phase graph for Case 8 in 6-fare-class system 43

Figure 5.25 Learning phase graph for Case 9 in 6-fare-class system 44

Figure 5.26 Learning phase graph for Case 10 in 6-fare-class system 44

vii

LIST OF TABLES

 Page

Table 5.1 Results for Value Iteration and Gosavi (2014a) actor-critic on MDP cases 20

Table 5.2 Results for Value Iteration and proposed actor-critic on MDP cases 20

Table 5.3 Data for SMDP Cases ... 22

Table 5.4 Results for policy iteration and actor-critic on SMDPs 22

Table 5.5 Fares in dollars for 4-fare-class and 6-fare-class problems 25

Table 5.6 Input Parameters for 4-fare-class and 6-fare-class systems 25

Table 5.7 Results for the 4-fare-class systems .. 26

Table 5.8 Results for the 6-Fare-class systems ... 27

Table 5.9 Booking limit results for EMSR-b for 4-fare-class system 28

Table 5.10 Booking limit results for EMSR-b for 6-fare-class system 29

Table 5.11 Action selection for Class 1 in 4-fare-class systems....................................... 29

Table 5.12 Action selection for Class 2 in 4-fare-class system .. 30

Table 5.13 Action selection for Class 3 in 4-fare-class system .. 30

Table 5.14 Action selection for Class 4 in 4-fare-class system .. 31

Table 5.15 Action selection for Class 1 in 6-fare-class system .. 32

Table 5.16 Action selection for Class 2 in 6-fare-class system .. 33

Table 5.17 Action selection for Class 3 in 6-fare-class system .. 34

Table 5.18 Action selection for Class 4 in 6-fare-class system .. 35

Table 5.19 Action selection for Class 5 in 6-fare-class system .. 36

Table 5.20 Action selection for Class 6 in 6-fare-class system .. 37

1. INTRODUCTION

 Markov Decision Problems or Processes (MDPs) are problems of sequential

decision making in which Markov chains dictate the system’s dynamics and behavior. In

every state visited by the system, a decision must be selected from the set of permitted

actions in that state. The objective considered in this thesis is to maximize a given cost or

reward function over an infinite period of time, or time horizon; an infinite time horizon is

chosen when one seeks to observe the system for a long time period and the system settles

down into a steady state after a long period of time.

In MDPs, the time of transition from one state to another is the same for every jump

and is considered to be one unit of time for every transition. MDPs are a special case of

what is called a Semi-MDP (SMDP). A SMDP has transition time explicitly modeled into

the objective function as a random variable. SMDPs have applications in numerous fields

including queuing control (Sennott, 1999), supply chain management (Buffett and Scott,

2004), and maintenance management (Schouten and Vanneste, 1995).

 Classical methods of solving both MDPs and SMDPs are dynamic programming

(DP) and linear programming (LP). DP seeks to solve these problems using so-called

transition probabilities (TPs). The TP is the probability of transitioning from one state to

another under a given action permitted in that state. Because TPs are required in DP, the

latter tends to breakdown when the number of state-action pairs exceeds a few thousand.

Once a sufficiently large number of state-action pairs are reached, the so-called transition

probability matrices (TPMs) become too large or complex to compute, especially on large-

scale problems in the real world.

A system containing too many state-action pairs exhibits the curse of

dimensionality, while the challenge of large complexity is known as the curse of modeling.

A system with 𝑛 states and 𝑚 actions would yield a 𝑛 × 𝑛 TPM for each of the 𝑚 actions

or 𝑛 × 𝑛 × 𝑚 elements. As a result, when n and m are large, it is difficult to store and

process all the elements of the TPMs, and then the curses of dimensionality and modeling

set in. LP requires that the number of constraints equals the number of state-actions pairs

causing it to exhibit the curse of dimensionality as well. With the need to model more

2

complex problems and the significant complexity involved in defining TPMs,

Reinforcement Learning (RL) was born.

 The MDP was developed by Bellman (1957) who also formulated what is now

known as the Bellman optimality equation that serves as the foundation for the more

modern Reinforcement Learning (RL) algorithms. RL is a simulation-based technique that

seeks to solve MDPs and SMDPs when the TPM becomes too large or too complex to

compute. By utilizing discrete-event simulations of the system, RL allows us to bypass the

construction of the TPMs and thus avoids the curses of dimensionality and modeling while

still producing near optimal solutions.

RL algorithms are typically classified into two major categories: Q-learning

algorithms and actor critic (adaptive critic) algorithms. Q-learning algorithms are primarily

based on value iteration while actor-critic algorithms are based on policy iteration. This

thesis will focus on an algorithm rooted in the latter of the two categories.

 In this thesis, a new version of the actor-critic algorithm is presented and will be

applied to a revenue management problem from the airline industry. The objective of the

actor-critic algorithm in this revenue management problem is to maximize the long-run

average reward over a given set of flights. This is achieved through exploration of the

appropriate number of seats to allocate to each fare class for any given origin-destination

path. The algorithm will be compared to a widely-used industrial heuristic known as

Expected Marginal Seat Revenue-b (EMSR-b).

 The main contributions of this thesis are threefold. First, it modifies the algorithms

from the literature (Kulkarni et al. (2011); Gosavi (2014a)) into one whose actor values not

only remain bounded but also tend to have small magnitudes, which is numerically very

efficient, as these values are used in the algorithm as powers of an exponential term when

selecting actions. Second, the modified algorithm leads to a more thorough exploration of

the state-action space, which in turn lowers the probability of sub-optimality in practice.

Third, the new algorithm is tested on a large-scale airline revenue management problem

with several million states, where it outperforms an industrial-scale heuristic.

 The remainder of this thesis is organized as follows: Section 2 provides a

background on MDPs and SMDPs, along with the details of airline revenue management

and the EMSR-b heuristic. Section 3 reviews the literature on reinforcement learning

3

techniques as well as on airline revenue management. Section 4 provides an in-depth

discussion on actor-critic algorithms for application in solving the SMDP for average

reward. Section 5 describes numerical results on small MDP and SMDP cases

benchmarked against optimal solutions, an experimental set up, and numerical results for

large-scale airline revenue management problems. Section 6 concludes the thesis with

closing remarks and a discussion of prospective future work in this field.

4

2. PROBLEM DESCRIPTION

 This section provides a background on Markov and semi-Markov decision

processes, as well as on the airline revenue management problem considered in this thesis.

2.1. MARKOV DECISION PROCESSES (MDP)

 The MDP consists of five major elements. These elements are:

• A decision maker: Also called the agent or controller, the decision maker selects

the actions that can occur in the system.

• Policies: The policy is a 𝑛-tuple consisting of the action to be selected in each state

of the MDP according to the decision maker.

• Transition probability matrices (TPMs): The TPM is a matrix associated with each

action that contains the probability of transitions between states in the system.

• Transition reward matrices (TRMs): The TRM is similar to the TPM but instead of

the probability, it contains the immediate reward associated with any given

transition under a specific action. A negative reward is equivalent to a cost.

• A performance metric (Objective function): The performance metric is a

quantifiable value(s) that is used to measure the performance of the system. Much

of the literature on infinite time horizon considers two metrics: the long run average

reward and the total discounted reward. Long-run average reward is the expected

revenue per unit time calculated over an infinite time period. Total discounted

reward is also calculated over an infinite time period but accounts for the time value

of money.

2.2. SMDP

 In the SMDP, the goal is to determine the best action to execute in each state when

the time of transition from one state to another is a random variable, which is also

considered in the objective function. In this thesis, the long-run average reward objective

function will be used due to the short time periods involved in airline revenue management.

First, some notation is required prior to defining long-run average reward.

5

• 𝑆: the finite set of states

• 𝐴(𝑖): the finite set of actions permitted in state 𝑖

• 𝜇(𝑖): the action chosen in state 𝑖 when policy μ is pursued, where ∪𝑖∈𝑆 𝐴(𝑖) = 𝐴

• 𝑟(𝑖, 𝑎, 𝑗): one-step immediate reward of transition from state 𝑖 to 𝑗 under action 𝑎

• 𝑡(𝑖, 𝑎, 𝑗): time spent in one transition from state 𝑖 to 𝑗 under action 𝑎

• 𝑝(𝑖, 𝑎, 𝑗): probability associated with the transition from state 𝑖 to 𝑗 under action 𝑎

 It follows that the expected immediate reward earned in state 𝑖 when action 𝑎 is

chosen is defined as: 𝑟̅(𝑖, 𝑎) = ∑ 𝑝(𝑖, 𝑎, 𝑗)𝑟(𝑖, 𝑎, 𝑗)
|𝑆|
𝑗=1 , and the expected transition time is

defined as 𝑡̅(𝑖, 𝑎)=∑ 𝑝(𝑖, 𝑎, 𝑗)𝑡(𝑖, 𝑎, 𝑗)
|𝑆|
𝑗=1 . Now the long-run average reward can be

expressed as follows:

Let

𝑅(𝑖) = lim𝑘→∞
E[∑ 𝑟̅𝑘

𝑠=1 (𝑥𝑠,𝜇(𝑥𝑠))|𝑥1=𝑖]

𝑘
 (1)

and

𝑇(𝑖) = lim𝑘→∞
E[∑ 𝑡̅𝑘

𝑠=1 (𝑥𝑠,𝜇(𝑥𝑠))|𝑥1=𝑖]

𝑘
. (2)

Then the long-run average reward of a policy μ in a SMDP, starting at any state 𝑖, is

𝜌𝜇 =
𝑅(𝑖)

𝑇(𝑖)
. (3)

2.3. BELLMAN EQUATION

 The objective of the average reward SMDP is to find a policy 𝜇 that maximizes the

reward 𝜌𝜇. Traditionally, this is done using the Bellman optimality equation for SMDPs.

The traditional Bellman equation for SMDPs under average reward is presented below:

𝑉(𝑖) = 𝑚𝑎𝑥
𝑎∈𝐴(𝑖)

[𝑟̅(𝑖, 𝑎) − 𝜌∗𝑡̅(𝑖, 𝑎) + ∑ 𝑝(𝑖, 𝑎, 𝑗)𝑉(𝑗)
|𝑆|
𝑗=1] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑆. (4)

 The optimal average reward will be denoted by 𝜌∗ throughout this thesis. Equation

4 above implies that if the solution to vector 𝑉 and the scalar of 𝜌∗ can be found, then the

following policy, d, is optimal, where

𝑑(𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝑆

[𝑟̅(𝑖, 𝑎) − 𝜌∗𝑡̅(𝑖, 𝑎) + ∑ 𝑝(𝑖, 𝑎, 𝑗)𝑉(𝑗)
|𝑆|
𝑗=1] for all 𝑖 ∈ S. (5)

The RL algorithms studied in this thesis will seek to solve the Bellman optimality equation

presented above while bypassing the transition probabilities.

6

2.4. AIRLINE REVENUE MANAGEMENT

 This section provides an overview of the airline revenue management (ARM)

problem as well as presents the industry heuristic typically used to solve this problem. It

also presents ARM in the context of SMDPs to be used throughout this thesis.

2.4.1. Overview. The airline revenue management problem is a well-studied

resource-allocation or inventory-control problem that started gaining significant attention

in 1978 with deregulation of the airline industry in the United States. The deregulation gave

the airlines flexibility to determine their own schedules, routes and fares, as long as they

followed FAA (Federal Aviation Administration) guidelines. More recently with the

progress of DP and simulation, “it has become possible to study the problem using near-

optimal or optimal techniques” (Kulkarni et al. , 2011).

 The airline revenue management problem is essentially an inventory-control

problem in which the decision maker must decide whether to accept or reject customers as

they arrive, via a website (McGill and van Ryzin, 1999). Durham (1995) estimates that a

reservation system may need to handle up to five thousand potential bookings per second.

The customer in the main cabin of the economy class (business class or higher classes here

are not considered here) is generally offered a set of several different fares for a given

origin-destination plan. Internally, for the airline, each fare is associated to a fare class.

Different fare classes do not imply that the seats are located in different sections of the

plane; all seats are available to all fare classes within the cabin. As more customers arrive,

generally, the lower fare classes are gradually closed down by the airline. This is because

in general the lower fare classes have the greatest demand and are sold first; however, do

note that the higher fare classes may offer advantages, and hence some passengers who

arrive early in the booking horizon may actually buy higher fares even when lower fares

are still available. Customers who choose to pay a higher fare, even when lower ones are

available, typically receive better benefits such as a lower cancellation penalty or the ability

to board the flight sooner.

Customers arriving earlier in the booking horizon are more likely to get a lower

priced ticket. Each airline typically updates its price offerings regularly based on time

remaining until departure, preferences of the customer, and many other factors. Prices

7

have to be adjusted in a suitable manner in order for the continued success of an airline

company.

 Essentially the problem of setting prices is one of determining the number of seats

to be allocated to each fare class to ensure a couple of objectives. The first objective is that

all customers do not purchase the cheapest tickets, which would lead to lower profits. The

second is to ensure that too many seats are not allocated to higher fare classes, leaving

empty seats at the time of departure. Further, airline seats are a perishable commodity

meaning that as soon as a flight departs, any empty seats signify a loss in potential revenue;

thus, it is necessary to get the arithmetic right in terms of how many seats are sold at each

fare, prior to flight departure.

 The revenue management problem can be studied in two forms: single-leg and

network (Talluri and van Ryzin, 2005). The single-leg version of the problem is the

problem being studied in this thesis; it involves a direct flight from one location to another

without any layovers. At the single-leg level, each fare is referred to as a class and the

problem is one of finding the number of customers allowed to book seats in each fare class.

The network version consists of layovers and multiple legs in the flight plan. In the network

version, each itinerary-fare combination is referred to as a product and the problem is one

of finding the number of customers allowed to book in each given product. Product

allocation of one leg in the network problem affecting the allocation and availability of one

or more of the other legs leads to increased complexity of analysis in the network problem

(Gosavi, 2007).

 Although customer-classification factors differ from airline to airline, all airlines

use two primary factors: time of the booking request and passenger itinerary. For the

following discussion, only 3-fare-classes will be considered, although real-world problems

can easily have up to ten fare classes:

• Lowest fare class (LC)—fare class with the lowest ticket price

• Middle fare class (MC) —fare class with ticket prices in between the lowest and

highest prices

• Highest fare class (HC)— fare class with the highest ticket price

 Time of booking request: Typically, passengers who book earlier in the booking

horizon get access to lower fare classes and those who arrive later to higher fare classes. If

8

classification were carried out on just this factor, then the assumption could be made that

the first few customers to book make up the LC while the next set of customers make up

the MC and the customers to arrive last would make up the HC, but this is not really what

happens in the real world. This is because of the origin-destination issue and also

cancellation privileges.

 Itinerary: To see how an origin-destination based (itinerary based) classification

works Figure 2.1 must be examined. Consider the following itineraries:

• Los Angeles- Las Vegas- Denver- Kansas City

• Seattle- Denver- Kansas City

• Salt Lake City- Denver- Kansas City

• Denver- Kansas City

Figure 2.1 Hub and Spoke (Origin- Destination) Airline Network Diagram

Source: https://en.wikipedia.org/wiki/Spoke%E2%80%93hub_distribution_paradigm#

/media/file:Airline_hub-1995.svg

 Analyzing the fare classes on the single-leg flight from Denver to Kansas City. The

passengers originating from Denver and flying to Kansas City would be members of the

HC. Passengers from Salt Lake City or Seattle or Las Vegas to Kansas City would form

the MC. Passengers from Los Angeles to Kansas City form the LC (Gosavi, 2004).

 The pricing and seat allocation problem is “further complicated by the effects of

cancellations, no shows, and overbooking” (Gosavi et al, 2007). Each customer that is

accepted and purchases a ticket has some probability of canceling their reservation or no

9

showing. Those passengers in the lower fare class typically have a low probability of

cancellation with a high fee for cancellation, while the higher fare classes have a higher

probability of cancellation and a low fee. A no-show means that at the time of takeoff the

customer had not cancelled but failed to show up to board the aircraft. While the airline

keeps all of the ticket fare for the empty seat, they still experience this as a lost opportunity,

because they are flying with an empty seat. Hence, airline companies strive to reduce the

probability of empty seats; of course, it’s a world of cut-throat competition, and every

opportunity to make revenues will be seized upon the competitors, making it essential for

every airline to ensure that it loses no opportunity to make revenues in a legal manner.

These cancellations and no shows are accounted for by overbooking a flight. This

means that the airline company sells more seats than the total number of seats available on

the plane. In addition, there are passengers called standby passengers as well. By

overbooking, they are attempting to fill any empty seats but they also introduce more risk

into the system. If the number of passengers who show up exceed the capacity, then they

must pay the passengers who could not get a seat a compensation fee and also find a new

flight for that passenger.

2.4.2. EMSR-b. The problem described above can be solved heuristically via the

so-called Expected Marginal Seat Revenue (EMSR) rule, which is rooted in Littlewood’s

equation (Littlewood (1972); Kulkarni et al (2011)). It has two versions: EMSR-a and

EMSR-b. The more widely used version in the airline industry is EMSR-b and will

therefore be the heuristic used to benchmark the actor-critic algorithm in this thesis.

EMSR-b is known to be robust and also capable of producing near-optimal solutions

(Belobaba, 1992).

Note that 𝑓𝑖 denotes the fare for the 𝑖th class and 𝑓1 < 𝑓2 < 𝑓3 < ⋯ < 𝑓𝑛. Now,

𝑌̅𝑖 = ∑ 𝑌𝑗
𝑛
𝑗=i (6)

will denote the sum of the demands of all fare classes above and including 𝑖, where 𝑌𝑗

denotes the demand in the jth class. The aggregate revenue for the 𝑖th class is defined as

follows:

𝑓𝑖̅ =
∑ 𝑓𝑗

𝑛
𝑗=1 𝚬[𝑌𝑗]

∑ 𝚬[𝑌𝑗]𝑛
𝑗=1

 (7)

Littlewood’s equation (Littlewood, 1972) is given as:

10

𝑓𝑖̅ = 𝑓𝑖̅+1Pr (𝑌̅𝑖+1 > 𝑃𝑖+1) (8)

for 𝑖 = 1,2, … , 𝑛 − 1, where 𝑃𝑖 is the so-called protection level for class 𝑖. The protection

level is the number of seats to be protected for all higher classes from the lower fare classes.

For example, 𝑃2 is the number of seats to be protected from class 1 for classes 2, 3, … , 𝑛.

There is no protection level for class 1, as it is the lowest fare class from which no

protection is needed. The booking limit for the 𝑖th class that the airline uses is then defined

as:

𝐵𝐿𝑖 = max {𝐶 − 𝑃𝑖+1, 0} (9)

for 𝑖 = 1,2, … , 𝑛 − 1. The booking limit for the highest fare class 𝑛 should clearly be the

capacity of the plane if no cancellations occur. However, cancellations can be incorporated

into the Littlewood’s equation as follows: Replace 𝐶 in the above by
𝐶

1−𝑝
, where 𝑝 is the

mean cancellation probability over all fare classes (see Kulkani et al. (2011) for additional

details). In the above, (1 − 𝑝) is the so-called correction factor. For solving Equation 9,

one must know the distribution of each random variable 𝑌̅𝑖.

2.4.3. SMDP in the Context of ARM. The SMDP for solving the Airline Revenue

Management (ARM) problem will be presented in this section. In reality, the ARM

problem has a finite horizon, but it can be transformed into one with an infinite time horizon

in which the booking horizon is continually reset. Using the infinite time horizon makes it

easy to use the RL algorithm discussed in this thesis that is designed for the infinite time

horizon. Some notation is required prior to defining the SMDP in context of ARM (which

is consistent with that of prior literature, e.g., Kulkarni et al. (2011)):

• 𝑠𝑖: the number of seats sold in fare class 𝑖

• 𝑛: the number of fare classes

• 𝑐: class of the current customer

• 𝑡: the time remaining for the departure of the plane

• 𝐻: the length of the booking horizon

• 𝑌𝑖: the demand for the number of customer in class 𝑖

• 𝐶: the capacity of the plane

• Λ: Poisson rate of arrival of all customer

11

 The objective is to maximize average reward per unit time. The set of actions for

this problem contains 2 actions, which are (𝐴𝑐𝑐𝑒𝑝𝑡, 𝑅𝑒𝑗𝑒𝑐𝑡), and the state space is as

follows:

(𝑐, 𝑡, 𝑠1, 𝑠2, … , 𝑠𝑛, 𝜓1, 𝜓2, … , 𝜓𝑛) ,

where 𝜓𝑛 is a n-tuple of size 𝑠𝑖 that contains the times of arrival (in the booking horizon)

of the passengers in the 𝑖th fare class.

 Due to the size of the state space in this problem, the number of seats sold and

arrival times must be encoded using basis functions. The following function from Gosavi

(2004) will be used to transform the state space to one with a manageable size for

exploration:

𝜑 = ∑ (𝑠𝑖 × 𝑓𝑖)/𝜃𝑛
i=1 (10)

where 𝑓𝑖 is the fare rate for the 𝑖th class and 𝜃 is a user-defined scaling value. The value of

𝜃 must be determined through experimentation (trial and error), and its value will be case

dependent. This equation actually produces a continuous state space since 𝜑 is a continuous

variable, but a discrete state space is needed for this algorithm to function. This is handled

by rounding the value of 𝜑 down to the nearest integer to create a discrete state space. By

utilizing this basis function, the state space can now be defined as (𝑐, 𝜑).

12

3. LITERATURE REVIEW

 Traditional methods of solving MDPs and SMDPs use classical DP algorithms such

as value iteration (Bellman, 1957) and policy iteration (Howard, 1960). Value iteration is

an iterative process that begins with setting the value function for all states to an arbitrary

value and then uses the Bellman optimality equation to update and improve the value

function. This is repeated until the values calculated on two consecutive iterations fall

within a predefined threshold value.

While value iteration explores the state space, policy iteration explores the policy

space. Beginning with an arbitrary initial policy, policy iteration requires two stages: the

policy evaluation stage and the policy improvement stage. The Bellman equation for a

policy is then used to obtain a value function for the current policy. The value function of

the current policy is then used to find a better policy (Gosavi, 2014b). These two stages

repeat until the value function obtained cannot yield a better policy.

Both of these DP methods depend on the TPs, which in large real-world problems

can be difficult to compute. In the absence of the TPs, DP breaks down and, oftentimes,

the MDP model is not employed; instead heuristics are used in practice. The root cause for

this is that as the problems get more complex, the MDP model is harder to construct for

the reasons stated previously, i.e., the curses of dimensionality and modeling. While the

benefit of heuristics is that they are simpler to model, most heuristics also provide a lower

quality solution than models that utilize MDPs. Therefore, if a problem can be cast as an

MDP without the need for TPs, it follows that a lower level of modeling effort would be

required while maintaining a high solution quality (Gosavi, 2014b). Reinforcement

Learning (RL) seeks to do exactly this.

 The benefit of RL methods is seen in that it does not require TPs, implying that it

can be used to model problems with much larger state spaces than DP (Bertsekas and

Tsitsiklis, 1996). RL deals with four main elements: a policy, a reward function, a value

function, and a simulator of the environment. The policy describes the decision maker’s

behavior in any given state. The reward function expresses the overall objective of the

decision maker and guides the decision maker toward an optimal solution. The value

function indicates the utility of a state-action pair over the time horizon of the simulation.

13

The simulation determines the next state given the current state and the selected action

(Sutton and Barto, 1999).

RL techniques have been widely applied to problems in supply chains

(Pontrandolfo et al. (2002); Chaharsooghi, Heydari, and Zegordi (2008)), manufacturing

(Wang and Usher, 2004), and preventative maintenance (Das, et al., 1999). RL typically

takes two different paths to solving SMDP and MDP problems through simulation: Q

learning (Watkins, 1989), which follows value iteration, and actor-critics (Barto, Sutton,

and Anderson (1983); Venayagamoorthy, Harley, and Wunsch (2002)), which follows

policy iteration.

 This thesis will deal with the actor-critic or adaptive-critic algorithms within the

field of RL. Actor-critic algorithms are comprised of two key elements: the actor and the

critic. “The actor is an agent that seeks all potential actions in each state visited,” while the

“critic is a less reactive agent that updates only when it sees a sensible action from the

actor.” (Gosavi, 2014a).

 Although the convergence of traditional actor-critic algorithms to the optimal

solution can be proven mathematically, the actor’s values become unbounded in practice.

Konda and Borkar (1999) explain “the unboundedness phenomenon by constraining the

actor’s values in their algorithm” (Gosavi, 2014a); this artificial constraining is achieved

via a projection. Their research seeks to overcome this problem of unboundedness and the

necessity to artificially constrain the actor’s values. Gosavi (2014a) presents a method of

reining in the actor value that eliminates the need to artificially constrain the values but

only considers small case MDPs. This thesis will apply a new version of the actor-critic

algorithm that is different from the one in Konda and Borkar (1999) and the one in Gosavi

(2014a) to a problem from the airline industry. Kulkarni et al. (2011) was an extension of

the MDP algorithm in Konda and Borkar (1999) to SMDPs, but still required the artificial

projection of Konda and Borkar (1999).

With the deregulation of the airline industry in 1978, revenue management (RM)

and optimization techniques began gaining popularity. By using RM techniques, American

Airlines estimated that it generated $1.4 billion in additional incremental revenue over a

three-year period around 1988, and many other airlines reported similar revenue growth

due to RM practices (Talluri and van Ryzin, 2005).

14

 As discussed in Section 2.3, the airline industry widely uses the EMSR heuristic

that has two version EMSR-a and EMSR-b. Both versions are rooted in Littlewood’s

equation (Littlewood, 1972) and use approximation to condense the problem at each stage

to two classes: the current class and all classes above that class (Talluri and van Ryzin,

2005). EMSR-a (Belobaba, 1989) is based on the aggregation of protection levels, while

EMSR-b aggregates the demand (Belobaba (1992); Talluri and van Ryzin (2004)). Both

of these heuristics are known to produce near-optimal results in perfect conditions, but

have been found to lose reliability once cancellations, no shows, and overbookings are

considered. To overcome this limitation, RL algorithms can be applied to solve the ARM

problem.

 More recently with the advancements in simulation, it has become possible to

model this problem using RL. While the λ-SMART algorithm (Gosavi, Bandla, and Das,

2002) and the actor-critic algorithm in Kulkarni et al. (2011) are RL algorithms that have

been applied to the airline revenue management problem in the past, the actor-critic

algorithms of the past were unstable and became unbounded in certain situations; further

the λ-SMART algorithm is based on a finite trajectory, which may not be applicable to all

RL settings. This thesis considers a new algorithm that provides a more stable and robust

solution while still outperforming the industry standard, namely the EMSR-b heuristic.

15

4. SEMI-MARKOV ACTOR-CRITIC ALGORITHMS FOR AVERAGE COST

 Actor-critics or adaptive critics are well-studied algorithms within the RL family

(Werbos (1987); Venayagamoorthy, Harley, and Wunsch (2002)). “The actor is an agent

that seeks all possible actions in each state visited, while the critic is a less reactive agent

that updates only when it sees a sensible action from the actor” Gosavi (2014a). Actor-

critics are advantageous in that they can solve the SMDP via simuation without computing

the transition probabilities (Kulkarni et al, 2011). Actor-critics are based on the policy

iteration algorithm rather the value iteration algorithm, which has led to Q-Learning

(Watkins, 1989).

 The remainder of this section discusses the traditional actor-critic algorithm as well

as our proposed new algorithm. Subsection 4.1 present the traditional actor-critic

algorithm, and in Subsection 4.2, the new algorithm is discussed. Subsection 4.3 presents

the step-by-step details of the new algorithm.

4.1. TRADITIONAL ACTOR-CRITIC

 As discussed above, the actor-critic algorithm for the MDP has two main elements:

an actor that selects a policy for each state and a critic that computes the value function for

each policy. For the actor-critic to be applied to an average reward SMDP, a third step must

be added to the algorithm in which the critic also evaluates the average reward of the policy

(Kulkarni et al, 2011). This step is necessary due to the added elements of average reward

and stochastic transition times. Some additional notation that is needed at this point is

defined next:

• 𝑃(𝑖, 𝑎): Actor value for action 𝑎 in state 𝑖

• 𝑉(𝑖): Critic value for state 𝑖

• 𝑞(𝑖, 𝑎): Probability of selecting action 𝑎 in state 𝑖

• 𝜂: A tunable contraction factor which should be in the interval (0,1)

• 𝛼: A step size for the actor update

• 𝛽: A step size for the critic update

• 𝛾: A step size for the average reward update

• 𝜌: Average reward

16

The key updates for the SMDP in the traditional version of the algorithm from Kulkarni et

al (2011) are as follows:

Traditional Actor Update:

• 𝑃(𝑖, 𝑎) ← 𝑃(𝑖, 𝑎) + 𝛼[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗) − 𝑉(𝑖)] (11)

• If 𝑃(𝑖, 𝑎) > 𝑃̅, set 𝑃(𝑖, 𝑎) ← 𝑃̅. If 𝑃(𝑖, 𝑎) < −𝑃̅, set 𝑃(𝑖, 𝑎) ← −𝑃̅. The scalar 𝑃̅ is

a positive number fixed at the start of the algorithm. This update is essentially the

projection that was discussed above in order to keep the values of the actor

bounded.

Critic Update:

𝑉(𝑖) ← (1 − 𝛽)𝑉(𝑖) + 𝛽[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗)] (12)

Average Reward Update:

𝑅 ← 𝑅 + 𝑟(𝑖, 𝑎, 𝑗) (13)

𝑇 ← 𝑇 + 𝑡(𝑖, 𝑎, 𝑗) (14)

𝜌 ← (1 − 𝛾)𝜌 + 𝛾𝑅/𝑇 (15)

Note that the algorithm presented above does contain a tunable contraction factor, η, which

is typically set close to 1 but strictly less than 1 (Kulkarni et al, 2011).

4.2. PROPOSED BOUNDED ACTOR-CRITIC

 Technically, the problem with the traditional actor-critic (Barto, Sutton, and

Anderson (1983); Konda and Borkar (1999); Kulkarni et al. (2011); Lawhead, Gosavi, and

Murray (2017)) is that the actor’s update is not the convex combination that is typically

seen in RL or neural network updating and as such one cannot expect boundedness from

it:

𝑁𝑒𝑤_𝑣𝑎𝑙𝑢𝑒 ← (1 − 𝛼)𝑂𝑙𝑑_𝑣𝑎𝑙𝑢𝑒 + 𝛼(𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘). (16)

Rather, it is of the following form:

𝑁𝑒𝑤_𝑣𝑎𝑙𝑢𝑒 ← 𝑂𝑙𝑑_𝑣𝑎𝑙𝑢𝑒 + 𝛼(𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘). (17)

 The form seen in RL or neural networks uses a step size, 𝛼, to average the old value

with current feedback value. As 𝛼 is decayed with each iteration, the feedback will

contribute less to the averaging of the new value. Because the traditional actor update does

not multiply the old value by (1 − 𝛼), the new value will always be larger than the old

value and theoretically never become bounded.

17

 Due to this problem, the following actor update is proposed in Gosavi (2014a):

𝑃(𝑖, 𝑎) ← (1 − 𝛼)𝑃(𝑖, 𝑎) + 𝛼[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗)]. (18)

 However, the above also encounters a problem in practice that the actor values, i.e.,

P(.,.), still become quite large, although they are bounded. This can cause problems in the

Boltzmann action selection scheme that will be used within the algorithm. In this thesis, a

further refinement of the above is proposed, which is as follows:

𝑃(𝑖, 𝑎) ← (1 − 𝛼)𝑃(𝑖, 𝑎) + 𝛼[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗) − 𝑉(𝑖)]. (19)

 Note the vital difference between the proposed algorithm and the algorithm in

Gosavi (2014a) is the subtraction of the critic value, 𝑉(𝑖). By introducing this value into

the actor update, it was discovered that the actor values still remained bounded, but were

of significantly smaller absolute values than in bounded actor critic of Gosavi (2014a); this

will be shown experimentally in Section 5.1.

 In what follows, the details of the new algorithm are presented in a step-by-step

format.

4.3. STEPS IN ALGORITHM

 Step 1. For all 𝑙, where 𝑙 ∈ 𝑆, and 𝑢 ∈ 𝐴(𝑙), set 𝑉(𝑙) ← 0 and 𝑃(𝑙, 𝑢) ← 0. Set 𝑘,

the number of state changes or iterations, to 0. Set 𝑅, 𝑇, and 𝜌 to 0. The algorithm is run

for 𝑘𝑚𝑎𝑥 iterations, where 𝑘𝑚𝑎𝑥 is chosen to be a sufficiently large number.

 Step 2. Let the current state be 𝑖. Select action 𝑎 with a probability of

𝑞(𝑖, 𝑎) =
𝑒𝑃(𝑖,𝑎)

∑ 𝑒𝑃(𝑖,𝑏)
𝑏∈𝐴(𝑖)

 . (20)

 Step 3. Simulate action 𝑎. Let the next state be 𝑗. Let 𝑟(𝑖, 𝑎, 𝑗) be the immediate

reward earned in going to 𝑗 from 𝑖 under 𝑎 and 𝑡(𝑖, 𝑎, 𝑗) be the time in the same transition.

Set 𝑘 ← 𝑘 + 1 and update 𝑃(𝑖, 𝑎) using a step size, 𝛼:

𝑃(𝑖, 𝑎) ← (1 − 𝛼)𝑃(𝑖, 𝑎) + 𝛼[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗) − 𝑉(𝑖)]. (21)

 Step 4. Update 𝑉 as follows using a step size, 𝛽:

𝑉(𝑖) ← (1 − 𝛽)𝑉(𝑖) + 𝛽[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗)]. (22)

 Step 5. Update 𝑅, 𝑇, and 𝜌 as follows:

𝑅 ← 𝑅 + 𝑟(𝑖, 𝑎, 𝑗) (23)

𝑇 ← 𝑇 + 𝑡(𝑖, 𝑎, 𝑗) (24)

18

𝜌 ← (1 − 𝛾)𝜌 + 𝛾𝑅/𝑇 (25)

 Step 6. If 𝑘 < 𝑘𝑚𝑎𝑥, set 𝑖 ← 𝑗 and then go to Step 2. Otherwise, go to Step 7.

 Step 7. For each 𝑙 ∈ 𝑆, select 𝑑(𝑙) ∈ arg 𝑚𝑎𝑥𝑏∈𝐴(𝑙)𝑃(𝑙, 𝑏). The policy generated by

the algorithm is 𝑑̂. Stop.

 In the above algorithm description, to increase clarity, the subscript, k, has been

suppressed in 𝑉, 𝜌, 𝑃, and also in the step sizes 𝛼, 𝛽, and 𝛾. This iterative process can be

seen pictorially in Figure 4.1.

Figure 4.1 Mechanics of actor-critic algorithm

19

5. NUMERICAL RESULTS

 In this section, the experimental results are presented for the proposed actor-critic

algorithm. Subsections 5.1 and 5.2 present numerical results with the actor-critic algorithm

on small case MDPs and SMDPs, respectively. Section 5.3 presents the airline revenue

management case study and results obtained through benchmarking the actor-critic

algorithm against an industry-standard heuristic.

5.1. SMALL MDP CASES

 The algorithm was run for 4 different discounted reward MDPs consisting of two

states each and two actions allowed in each state. Cases have been taken from

Gosavi(2014a). The data for each case is as follows, where 𝑃𝑎 denotes the TPM for the

action 𝑎 and 𝑅𝑎 denotes the TRM for action 𝑎. Note that the element in the ith column and

jth row of 𝑃𝑎 equals 𝑝(𝑖, 𝑎, 𝑗). Similarly, the element in the ith column and jth row of 𝑅𝑎

equals 𝑟(𝑖, 𝑎, 𝑗).

Case 1:

𝑃1 = [
0.7 0.3
0.4 0.6

] , 𝑃2 = [
0.9 0.1
0.2 0.8

] , 𝑅1 = [
6 −5
7 12

] , 𝑅2 = [
10 17

−14 13
]

 For the remaining cases, only the values that differ from Case 1 are listed. Also, a

discounting factor, 𝜆 = 0.8, was used for all cases.

• Case 2: 𝑟(1,1,2) = 5, 𝑟(2,2,1) = 14;

• Case 3: 𝑟(1,2,1) = 12;

• Case 4: 𝑟(1,1,1) = 16, 𝑟(1,2,1) = 0.

 The algorithm was run for a maximum of 10000 iterations with the following

learning rates: 𝛼 =
log (𝑘+1)

𝑘+1
, 𝛽 =

150

300+𝑘
. The optimal policy for each case was obtained

using Q-value iteration and is denoted as (𝑎1, 𝑎2), where 𝑎1 denotes the optimal action in

state 1 and 𝑎2 denotes the optimal action in state 2.

 Table 5.2 shows the optimal policy, 𝜇∗, and the optimal value function, 𝑉∗(), both

obtained from value iteration. Table 5.2 also shows the value function, 𝑉(), and actor

values, 𝑃(𝑖, 𝑎), obtained from the actor-critic algorithm in Gosavi (2014a). Table 5.2 also

shows the value function, 𝑉(), and actor values, 𝑃(𝑖, 𝑎), obtained from the proposed actor-

20

critic algorithm. It can easily be seen that the value functions produced by the actor-critic

are essential equal to the optimal values produced from value iteration. It needs to be

pointed out that the values for the actor in Table 5.1 which are based on the algorithm in

Gosavi (2014a) have larger absolute values than the ones in Table 5.2, which are from the

proposed algorithm.

 The policy produced by the actor-critic can be derived by examining the actor

values and finding the action that produces the largest values for each state. For example,

in Case 1, 𝑃(1,1) = −8.389 and 𝑃(1,2) = −0.004 meaning that action 2 is better in state

1 because 𝑃(1,2) > 𝑃(1,1). In state 2, 𝑃(2,1) = −0.020 and 𝑃(2,2) = −3.497 meaning

that action 1 is better in state 2 because 𝑃(2,1) > 𝑃(2,2). This produces a policy of (2,1),

which matches the optimal policy produced from value iteration. Using this methodology,

it can be seen that both actor-critic algorithm produces the optimal policy in all 4 cases. By

examining the actor values, 𝑃(𝑖, 𝑎), it can be seen that the proposed algorithm produces

values that are significantly small in all cases.

Table 5.1 Results for Value Iteration and Gosavi (2014a) actor-critic on MDP cases

Case μ* V(1) V(2) V*(1) V*(2) P(1,1) P(1,2) P(2,1) P(2,2)

1 (2,1) 52.93 51.68 53.03 51.86 43.95 53.00 52.07 39.48

2 (2,2) 55.38 61.16 55.77 61.45 50.11 55.81 48.48 61.71

3 (2,1) 60.80 56.59 60.83 56.66 49.32 60.81 56.70 43.08

4 (1,1) 49.90 49.35 48.97 49.36 48.87 38.17 49.03 38.75

Table 5.2 Results for Value Iteration and proposed actor-critic on MDP cases

Case μ* V(1) V(2) V*(1) V*(2) P(1,1) P(1,2) P(2,1) P(2,2)

1 (2,1) 52.93 51.68 53.03 51.86 -8.389 -0.004 -0.020 -3.497

2 (2,2) 55.38 61.16 55.77 61.45 -3.887 -0.029 -2.045 -0.036

3 (2,1) 60.80 56.59 60.83 56.66 -10.730 -0.001 -0.001 -3.552

4 (1,1) 49.90 49.35 48.97 49.36 0.070 -7.744 0.022 -1.605

 Figure 5.1 and Figure 5.2 show the progression of the value function throughout

the first 10000 iterations of the learning phase for V(1) and V(2), respectively for the

proposed actor-critic algorithm. It should be noted the value function is plotted every 100

21

iterations. The red line on each of the graphs indicates the optimal value obtained from

value iteration, and it can be seen that the actor critic algorithm is converging to this line.

Figure 5.1 Values of V(1) in learning phase for MDP Case 1

Figure 5.2 Values of V(2) in learning phase for MDP Case

5.2. SMALL SMDP CASES

 The actor-critic algorithm was run for 4 different average reward SMDP cases

consisting of two states each and two actions allowed in each state. The data for each case

is shown in Table 5.3. A value of 𝜂 = 0.99 was used for all cases.

 The algorithm was run for a maximum of 10000 iterations with the following

learning rates: 𝛼 =
log (𝑘+1)

𝑘+1
, 𝛽 =

5

10+𝑘
. The optimal policy for each case was obtained

using policy iteration and is denoted as (𝑎1, 𝑎2), where 𝑎1 denotes the optimal action in

state 1 and 𝑎2 denotes the optimal action in state 2. Table 5.4 shows the optimal policy, 𝜇∗,

22

the optimal value function, 𝑉∗(𝑖), both obtained from policy iteration. Table 5.4 also shows

the value function, 𝑉(𝑖), and actor values, 𝑃(𝑖, 𝑎) obtained from the actor-critic algorithm.

Note that unlike in the MDP study, the value functions do not match. This is due to the

necessity of setting an arbitrary value function to 0 in policy iteration. Even though the

value functions do not match, it can be seen that the policy found by the actor-critic in each

case matches the optimal policy by using the same method presented in Section 5.1. Figure

5.3 and Figure 5.4 show the plots of the critic values for the two states, respectively, in the

simulation.

Table 5.3 Data for SMDP Cases

Case 𝑝(𝑖, 𝑎, 𝑗) 𝑡(𝑖, 𝑎, 𝑗) 𝑟(𝑖, 𝑎, 𝑗)

 action a 1 2 1 2 1 2

State j
→ 1 2 1 2 1 2 1 2 1 2 1 2

State I
↓

1 1 0.7 0.3 0.9 0.1 1 5 50 75 6 -5 10 17

 2 0.4 0.6 0.2 0.8 120 60 7 2 7 12 -14 13

2 1 0.7 0.3 0.9 0.1 10 5 5 75 6 5 10 17

 2 0.4 0.6 0.2 0.8 120 60 7 20 7 12 14 13

3 1 0.7 0.3 0.9 0.1 10 5 50 75 6 -5 12 17

 2 0.4 0.6 0.2 0.8 12 60 7 20 70 12 6 13

4 1 0.7 0.3 0.9 0.1 10 5 50 75 16 5 80 10

 2 0.4 0.6 0.2 0.8 120 60 7 20 75 120 6 1

Table 5.4 Results for policy iteration and actor-critic on SMDPs

Case μ* V(1) V(2) V*(1) V*(2) P(1,1) P(1,2) P(2,1) P(2,2)

1 (1,2) 33.13 44.06 0.00 6.43 3.832 -3.855 -16.822 2.324

2 (2,2) 51.92 45.73 0.00 -6.71 -1.608 1.006 -28.859 1.786

3 (1,1) 39.85 54.34 0.00 12.09 0.674 -13.192 1.262 -1.979

4 (2,1) 88.92 66.44 0.00 -26.43 -10.115 0.825 -0.907 -6.672

23

Figure 5.3 Values of V(1) in learning phase for SMDP case 1

Figure 5.4 Values of V(2) in learning phase for SMDP case 1

5.3. AIRLINE REVENUE MANAGEMENT CASE STUDY

 In this section, the numerical results produced by the bounded actor-critic algorithm

are presented for the single-leg Airline Revenue Management (ARM) problem, which was

discussed in Section 4. Twenty different cases were studied in which a four-fare-class

system was used for the first ten cases and a six-fare-class system was used for the

following ten cases.

5.3.1. Set Up. The fare structure for each case is given by 𝐹𝑆 = (𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑖 , 𝑏),

where 𝑓𝑖 is the fare of the 𝑖th fare class and 𝑏 is the bumping cost. A lower value of 𝒊 stands

for a lower revenue fare class.

 The booking horizon is assumed to be 100 days long, and for the arrivals, a

homogeneous Poisson process with a rate Λ = 1.4 passengers per day is used; the plane is

24

assumed to have a total capacity of 100 seats. The Poisson process for each fare class is

an independent process whose rate equals rate ΛPr (𝑖), where Pr(𝑖) denotes the probability

that the arrival belongs to class 𝑖. The so-called cancellation probability for each fare class

is essentially the probability with which a traveler in that given fare class cancels the ticket.

When a cancelation occurs, it is scheduled using a uniform distribution between the time

of arrival and the time of flight departure. The value of 𝜃 is determined separately for each

individual case based on careful experimentation to produce the best possible policy. A

value of 0.999999 was used for 𝜂 in the actor-critic algorithm

 After significant experimentation, the following step-sizes were used for the three

updates in the algorithm:

𝛼 =
15000

300000+𝑘
, 𝛽 =

10000

300000+3𝑘
, 𝛾 =

10000

300000+10𝑘
.

5.3.2. Experimental Results. This section presents the results of the bounded

actor-critic algorithm on the airline revenue management problem and compares the result

to that from using the well-known industry heuristic, EMRS-b. The performance metric

used for comparison of results between the actor-critic algorithm and EMSR-b is “average

revenue per day.”

 The algorithm was tested on 10 cases for each of the four-fare-class systems and

the six-fare-class systems. Fares for each case in both systems are shown in Table 5.5, and

input parameters are shown in Table 5.6.

 The learning phase was run for 1000 flights and took at most 130 seconds on a 64-

bit, 2.5 GHz windows operating system in MATLAB. First, the optimal policy is

determined; then the simulator is re-run with the fixed policy (also called frozen policy)

for 8 replications with 200 flights per replication. Finally, the average rewards per day (𝜌)

computed from each of the replications were averaged to compute the actual average

reward generated by the policy returned the algorithm. This result is denoted as 𝜌Actor-critic

and the solution for EMSR-b is donated by 𝜌EMSR-b. A t-test using the 8 different

replications was performed to determine if the results are delivered from the actor critic

differ from those of EMSR-b with 95% confidence in a statistical sense. The algorithms

improvement over EMSR-b is defined as:

𝐼𝑀𝑃 =
𝜌𝐴𝑐𝑡𝑜𝑟−𝑐𝑟𝑖𝑡𝑖𝑐−𝜌𝐸𝑀𝑆𝑅−𝑏

𝜌𝐸𝑀𝑆𝑅−𝑏
× 100 % (26)

25

Table 5.5 Fares in dollars for 4-fare-class and 6-fare-class problems

System Fares (4-fare system) Fares (6-fare system)

1 75, 200, 400, 550 101, 127, 153, 179, 293, 419

2 80, 200, 400, 500 94, 112, 142, 160, 271, 395

3 75, 150, 300, 550 111, 131, 153, 185, 293, 426

4 80, 150, 400, 550 127, 143, 167, 199, 320, 462

5 70, 150, 350, 550 105, 135, 143, 179, 284, 411

6 125, 180, 225, 400 90, 105, 139, 156, 261, 388

7 100, 175, 250, 400 108, 127, 155, 191, 295, 431

8 100, 150, 200, 450 76, 98, 123, 162, 247, 400

9 119, 139, 239, 430 87, 115, 162, 185, 278, 410

10 145, 209, 280, 350 115, 134, 165, 184, 302, 430

Table 5.6 Input Parameters for 4-fare-class and 6-fare-class systems

Parameter 4-fare-class system 6-fare-class system

Arrival Probabilities 0.6, 0.25, 0.09, 0.06 0.3, 0.3, 0.13, 0.13, 0.09, 0.06

Cancellation Probabilities 0.1, 0.2, 0.2, 0.4 0.1, 0.1, 0.1, 0.2, 0.2, 0.4

Cancellation Penalties

Cases 1:5
70, 50, 30, 10 70, 50, 50, 30, 10, 0

Cancellation Penalties

Cases 6:10
100, 90, 60, 40 70, 50, 50, 30, 10, 0

Bumping Penalty 200 250

 The results for the 4-fare-class system and 6-fare-class system are shown in Table

5.7 and Table 5.8, respectively. Figure 5.5 and Figure 5.6 show the average reward per day

comparison between the Actor-Critic and EMSR-b for the 4-fare-class and 6-fare-class

systems, respectively. Table 5.9 and Table 5.10 provide the booking limits returned using

EMSR-b for the 4-fare-class and 6-fare-class systems, respectively, where 𝐵𝐿(𝑖) represent

the booking limit of the 𝑖𝑡ℎ fare class. The optimal policy returned by the actor-critic

26

algorithm for each case in the 4-fare-class systems is shown Table 5.11– Table 5.14 for

fare class 1, 2, 3, and 4, respectively. The optimal policy returned by the actor-critic

algorithm for each case in the 6-fare-class systems is shown Table 5.15−Table 5.20 for fare

class 1 through 6, respectively. As can be seen from the tables, the Actor-critic algorithm

outperforms EMSR-b in a statistically significant manner in each case tested. Figure

5.7−Figure 5.16 show the plots of the average reward for each case in the 4-fare-class

systems in the simulation while Figure 5.17−Figure 5.26 show the same plots for the 6-

fare-class systems.

 Table 5.7 Results for the 4-fare-class systems

Case ρEMSR-b ρActor-critic θ IMP (%)

1 163.79± 0.515 168.01± 1.454 1400 2.58

2 163.53± 0.365 167.52± 0.895 1200 2.44

3 138.56± 0.241 141.81± 1.195 1500 2.35

4 152.06± 0.417 157.83± 0.958 1900 3.80

5 140.24± 0.350 146.33± 0.438 1500 4.34

6 170.18± 0.403 173.81± 0.530 1800 2.13

7 154.68± 0.427 161.42± 0.489 1500 4.36

8 144.55± 0.651 149.20± 0.447 1000 3.22

9 157.01± 0.446 162.24± 0.253 1100 3.34

10 195.25± 0.421 199.16± 0.365 1700 2.00

27

Table 5.8 Results for the 6-Fare-class systems

Case ρEMSR-b ρActor-Critic θ IMP (%)

1 156.86± 0.260 160.28± 0.716 1200 2.18

2 141.16± 0.362 144.03± 0.692 1800 2.03

3 161.08± 0.360 164.68± 0.751 1600 2.23

4 177.89± 0.324 181.01± 0.665 1200 1.75

5 157.09± 0.231 161.06± 0.335 1000 2.53

6 135.55± 0.350 140.50± 0.514 1400 3.65

7 160.84± 0.295 163.01± 0.412 1600 1.35

8 128.02± 0.438 130.63± 0.395 1300 2.04

9 150.41± 0.426 152.84± 0.832 1800 1.62

10 166.01± 0.394 170.11± 0.585 1200 2.47

Figure 5.5 4-fare-class comparison of results for EMSR-b and Actor-Critic

0

25

50

75

100

125

150

175

200

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

R
ev

en
u

e
P

er
 D

ay
 (

$
)

Cases

EMSR-b Actor-Critic

28

Figure 5.6 6-fare-class comparison of results from EMSR-b and Actor-Critic

Table 5.9 Booking limit results for EMSR-b for 4-fare-class system

Case BL(1) BL(2) BL(3) BL(4)

1 68 107 122 129

2 69 108 123 129

3 68 107 122 129

4 69 106 122 129

5 69 106 122 129

6 74 109 121 129

7 72 109 122 129

8 73 108 120 129

9 75 107 121 129

10 75 110 123 129

0

25

50

75

100

125

150

175

200

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

R
ev

en
u

e
P

er
 D

ay
 (

$
)

Cases

EMSR-b Actor-Critic

29

Table 5.10 Booking limit results for EMSR-b for 6-fare-class system

Case BL(1) BL(2) BL(3) BL(4) BL(5) BL(6)

1 25 67 86 103 116 122

2 26 67 86 103 116 122

3 26 68 86 103 116 122

4 27 68 86 103 116 122

5 26 68 85 103 116 122

6 26 66 86 103 116 122

7 26 67 86 103 116 122

8 24 66 85 103 116 122

9 24 66 86 103 116 122

10 27 67 86 103 117 122

Table 5.11 Action selection for Class 1 in 4-fare-class systems

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 r a a a a a a a a a

2 a a a a a a a a a a

3 a a a a a a a a a a

4 a a a a a a a a a a

5 a a a a a a a a a a

6 a a a a a a a a a a

7 a a a a a a a a a a

8 a r r r a a a a a a

9 a r r r r a a a a a

10 a a a a r r r a a a

11 a a a r r a r a a a

12 r a r a a a r a a r

13 r r a a r r r a r

14 r a r a r r

15 r a a a a

16 r r r r r

17 r r a a

18 r r a

19 a

30

Table 5.12 Action selection for Class 2 in 4-fare-class system

Table 5.13 Action selection for Class 3 in 4-fare-class system

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 a a a a a a a a a a

2 a a a a a a a a a a

3 a a a a a a a a a a

4 a a a a a a a a a a

5 a a a a a a a a a a

6 a a a a a a a a a a

7 a a a a a a a a a a

8 a a a a a a a a a a

9 a a a a a a a a a a

10 a a a r a a a a a a

11 a a a a r a a a a a

12 a a a r a a a a a a

13 a a a a a r a a a

14 r a r a a r

15 a a a r a

16 a r r r r

17 r a a r

18 r r r

19

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 a a a a a a a a a a

2 a a a a a a a a a a

3 a a a a a r a a a a

4 a a a a a a a a a a

5 a a a a a a a a a a

6 a a a a a a a a a a

7 a a a a a a a a a a

8 a a a a a a a a a a

9 a a a a a a a a a a

10 a a a a a a a a a a

11 a a a r a a a a a a

12 a a a r a a a a a a

13 a a r a r a a a r

14 a a a a a

15 a a a a a

16 a a a a a

17 a a a a

18 a a a

19

31

Table 5.14 Action selection for Class 4 in 4-fare-class system

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 a a a a a a a a a a

2 a a a a a a a a a a

3 a a a a a a a a a a

4 r a a a a a a a a a

5 a a a a a a a a a a

6 a a a a a a a a a a

7 a a a a a a a a a a

8 a a a a a a a a a a

9 a a a a a a a a a a

10 a a a a a a a a a a

11 a a a a a a a a a a

12 a a a r a a a a a a

13 a a a r a a a a a

14 a a a a a

15 a a a a a

16 a a a a a

17 a a a a

18 r r a

19

32

Table 5.15 Action selection for Class 1 in 6-fare-class system

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 a a a a a a a a a a

2 a a a a a a a a a a

3 a a a a a a a a r a

4 a a a a a a a a r a

5 a a a a a a a a a a

6 a r a a a a a a r a

7 a a a a a a a a a a

8 a r r a r a r a a a

9 a a a a r a a a r a

10 a r r r a r a r r a

11 a r a a r r r r r a

12 a r a a a r r a

13 r a a a a a r a

14 r r a a r r a r

15 r r r r

16 a r a r

17 r r r r

18 a a r

19 r a

20 a r

21 a a

22 r

23 a

24

33

Table 5.16 Action selection for Class 2 in 6-fare-class system

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 a a a a a a a a a a

2 a a a a a a a a a a

3 a a a a a a a a a a

4 a a a r a a a a a a

5 a r a a a r a a a a

6 a a a a a a a a a a

7 a a a a a a a a a a

8 r r a a a a a a a a

9 a r r a a r a r r a

10 r r a a a a a r r a

11 a a r r a r a r r r

12 a r a a r r a a

13 a r a a a a a a

14 r a a a a r a

15 r a a r

16 r r r r

17 r a r r

18 r r r

19 a a

20 a a

21 a a

22 r a

23 a

24 a

34

Table 5.17 Action selection for Class 3 in 6-fare-class system

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 a a a a a a a a a a

2 a a a a a a a r a a

3 a a a a a a a a a a

4 a a a a a a a a a a

5 a a a a a a a a a a

6 a a a a a a a a a a

7 a a a a a a a a a a

8 a a a a a a a a a a

9 a a a a a a a a a a

10 a a a a a a a a a r

11 a r a a a r r a a a

12 a r a a r r a a

13 r a a a r a a a

14 a r a a a r a a

15 r a a a

16 a a a r

17 r r a r

18 a a a

19 r r a

20 a r

21 a a

22 r

23

24

35

Table 5.18 Action selection for Class 4 in 6-fare-class system

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 a a a a a a a a a a

2 a a a a a a a a a a

3 a a a a a a a a a a

4 a a a a a a a a a a

5 a a a a a a a a a a

6 a a a a a a a a a a

7 a a a a a a a a a a

8 a a a a a a a a a a

9 a a a a a a a a r a

10 a a a a a a a a a a

11 a a a a a r a a a a

12 a r a a r r a a

13 a a a a a a a a

14 a a a a a a a r

15 a r a a

16 a r a a

17 a a a r

18 a r a

19 r a r

20 a a

21 a r

22 a

23

24

36

Table 5.19 Action selection for Class 5 in 6-fare-class system

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 a a a a a a a a a a

2 a a a a a a a a a a

3 a a a a a a a a a a

4 a a a a a a a a a a

5 a a a a a a a a a a

6 a a a a a a a r a a

7 a a a a a a a a a a

8 a a a a a a a a a a

9 a a a a a a a a a a

10 a a a a a a a a a a

11 a r a a a a a a a a

12 a a a a r a a a

13 a a a a a r r a

14 a a a a r a a

15 a a a a

16 a a a a

17 a a a

18 a a

19 r r

20 r r

21 a r

22 r a

23 r

24

37

Table 5.20 Action selection for Class 6 in 6-fare-class system

phi ca
se

 1

ca
se

 2

ca
se

 3

ca
se

 4

ca
se

 5

ca
se

 6

ca
se

 7

ca
se

 8

ca
se

 9

ca
se

 1
0

1 a a a a a a a a a a

2 a a a a a a a a a a

3 a a a a a a a a a a

4 a a a a a a a a a a

5 a a a a a a a a a a

6 a a a a a a a a a a

7 a a a a a a a a a a

8 a a a a a a a a a a

9 a a a a a a a a a a

10 a r a a a a a a a a

11 a a a a a a a a a a

12 a a a a a a a a

13 a a a a a a a a

14 a a a a a a

15 a a a a

16 r a a a

17 r a a

18 a a

19 r r

20 a a

21 r a

22 a

23 a

24

38

Figure 5.7 Learning phase graph for Case 1 in 4-fare-class system

Figure 5.8 Learning phase graph for Case 2 in 4-fare-class system

Figure 5.9 Learning phase graph for Case 3 in 4-fare-class system

39

Figure 5.10 Learning phase graph for Case 4 in 4-fare-class system

Figure 5.11 Learning phase graph for Case 5 in 4-fare-class system

Figure 5.12 Learning phase graph for Case 6 in 4-fare-class system

40

Figure 5.13 Learning phase graph for Case 7 in 4-fare-class system

Figure 5.14 Learning phase graph for Case 8 in 4-fare-class system

Figure 5.15 Learning phase graph for Case 9 in 4-fare-class system

41

Figure 5.16 Learning phase graph for Case 10 in 4-fare-class system

Figure 5.17 Learning phase graph for Case 1 in 6-fare-class system

Figure 5.18 Learning phase graph for Case 2 in 6-fare-class system

42

Figure 5.19 Learning phase graph for Case 3 in 6-fare-class system

Figure 5.20 Learning phase graph for Case 4 in 6-fare-class system

Figure 5.21 Learning phase graph for Case 5 in 6-fare-class system

43

Figure 5.22 Learning phase graph for Case 6 in 6-fare-class system

Figure 5.23 Learning phase graph for Case 7 in 6-fare-class system

Figure 5.24 Learning phase graph for Case 8 in 6-fare-class system

44

Figure 5.25 Learning phase graph for Case 9 in 6-fare-class system

Figure 5.26 Learning phase graph for Case 10 in 6-fare-class system

45

6. CONCLUSION

 This thesis proposed a new version of a reinforcement learning algorithm known as

an actor-critic. The new version of the algorithm is designed to overcome a critical

difficulty with the traditional actor-critic, i.e., the need to artificially constrain the actor’s

values. While Gosavi (2014a) proposed an algorithm that constrained the actor’s values,

the algorithm proposed here improves on that algorithm by developing a new version that

provides actor values that have a significantly smaller magnitude.

 The algorithm was tested on (i) small MDPs, (ii) small SMDPs, and (iii) two sets

of large-scale problems from the airline industry. In the experimentation conducted, the

new algorithm was able to outperform the well-known leading airline industry heuristic,

namely EMSR-b, which is known to produce excellent results. The improvement in the

long-run average reward over EMSR-b ranged from 2.00% to 4.36% for the four fare class

systems and from 1.35% to 3.65% for the six fare class systems.

 Future work: This research can be extended to the network airline problem that

operates within the origin-destination model. Also, the proof of convergence using ordinary

differential equations would be another natural extension of this research. The actor-critic

algorithm studied in this work can also be applied to other areas of operations engineering,

such as queuing, manufacturing, and preventative maintenance.

46

BIBLIOGRAPHY

Barto A.G., Sutton R.S., and Anderson C.W. (1983) Neuronlike elements that can solve

difficult learning control problems. IEEE Transactions on Systems, Men and

Cybernetics, 13:835-846.

Bellman R. (1957) Dynamic Programming. Princeton University Press, Princeton, NJ.

Belobaba P.P. (1989) Application of a probabilistic decision model to airlines seat

inventory control. Operations Research 37: 183-197.

Belobaba P. P. (1992) Optimal vs. heuristic methods for nested seat allocation. ORSA/TIMS

Joint National Meeting, San Francisco, CA.

Bertsekas D.P., Tsitsikikilis J.N. (1996) Neurodynamic Programming. Athena Scientific,

Belmont, MA

Buffett S. and Scott N. (2004). An algorithm for procurement in supply-chain management.

In Proceedings of the AAMAS 2004 Workshop on Trading Agent Design and

Analysis.

Chaharsooghi S., Heydari J., Zegordi S. (2008) A reinforcement learning model for supply

chain ordering management: An application to the beer game. Decision Support

Systems 45.

Das T.K., Gosavi A., Mahadevan S., Marchalleck N. (1999) Solving semi-Markov decision

problems using average reward reinforcement learning. Management Science 45

(4), 560–574.

Durham M. J. (1995) The future of SABRE. The Handbook of Airline Economics, D.

Jenkins (ed.), pages 485-491.

Gosavi A. (2004) A reinforcement learning algorithm based on policy iteration for average

reward: Empirical results with yield management and convergence analysis.

Machine Learning, 55(1): 5-29.

Gosavi A. (2007) Adaptive critics for airline revenue management. In Conference

Proceedings of the Production and Operations Management Society, Dallas.

Gosavi A. (2014a) How to Rein in the Volatile Actor: A New Bounded Perspective.

Complex Adaptive Systems, Pub 4. Volume 36, pp. 500-507.

Gosavi A. (2014b) Simulation-Based Optimization: Parametric Optimization Techniques

and Reinforcement Learning, Springer, Second Edition.

47

Gosavi A., Bandla N., Das T.K. (2002) A reinforcement learning approach to a single leg

airline revenue management problem with multiple fare classes and overbooking.

IIE Transactions, 34(9): 729-742.

Gosavi A., Ozkaya E., and Kahraman A. (2007) Simulation optimization for revenue

management of airlines with cancellations and overbooking. OR Spectrum 29:21-

38

Howard R. (1960) Dynamic Programming and Markov Processes. MIT Press, Cambridge,

MA.

Konda V.R. and Borkar V.S. (1999) Actor-critic type learning algorithms for Markov

decision processes. SIAM Journal on Control and Optimization, 38(1):94-123.

Kulkarni K., Gosavi A., Murray S.L., and Grantham K. (2011) Semi-Markov adaptive

critic heuristic with application to airline revenue management, Journal of Control

Theory and Applications, 9(3): 421-430.

Lawhead R., Gosavi A., and Murray S.L. (2017). A bounded actor-critic algorithm for

reinforcement learning with applications in airline revenue management, Intelligent

Systems Center Graduate Research Symposium, Missouri University of Science

and Technology. Rolla, Mo.

Littlewood K. (1972) Forecasting and control of passenger bookings. In Proceedings of the

12th AGIFORS (Airline Group of the International Federation of Operational

Research Societies Symposium), pages 95-117.

McGill J.I. and van Ryzin G.J. (1999) Revenue management: research overview and

prospects. Transportation Science, 33(2):233-256.

Pontrandolfo P., Gosavi A., Okogbaa O.G., Das T.K. (2002) Global supply chain

management: A reinforcement learning approach. International Journal of

Production Research, 40: 1299-1317.

Schouten F. V. D. D. and Vanneste S. (1995). Maintenance optimization of a production

system with buffer capacity. European Journal of Operational Research,

82(2):323–338.

Sennott L. (1999). Stochastic Dynamic Programming and the Control of Queueing

Systems. John Wiley and Sons, New York, USA.

Sutton R.S., Barto A.G. (1999) Reinforcement Learning: An Introduction. The MIT Press,

Cambridge, MA

48

Talluri K., and Van Ryzin G.J. (2004) The Theory and Practice of Revenue Management.

Kluwer Academic, Boston, MA.

Talluri K. and van Ryzin G.J. (2005) An introduction to revenue management. Tutorials in

Operations Research, INFORMS. 142-194.

Venayagamoorthy G., Harley R., and Wunsch D. (2002) Comparison of heuristic dynamic

programming and dual heuristic programming adaptive critics for neuro-control of

a turbogenerator. IEEE Transactions on Neural Networks, 13 (3):764-773.

Wang Y. and Usher J.M. (2004) Application of reinforcement learning for agent-based

production scheduling. Engineering Applications of Artificial Intelligence, 18

(2005): 73-82.

Watkins C. (1989) Learning from delayed rewards, Ph.D. thesis, Kings College,

Cambridge, England 1989.

Werbos P.J. (1987) Building and understanding adaptive systems: A statistical/numerical

approach to factory automation and brain research. IEEE Transactions on Systems,

Man., and Cybernetics, 17:7-20.

49

VITA

 Ryan Lawhead was born on October 20, 1993 in Arkansas. He received his

Bachelor of Science in Petroleum Engineering from Missouri University of Science and

Technology in May 2016. Ryan has worked an internship with both Freeport-McMoRan

Oil & Gas and L’Oréal USA. In January 2016, he joined the Systems Engineering

department at Missouri University of Science and Technology as a dual enrolled student

before becoming a full time graduate student in August 2016.

 He has presented at his research at the INFORMS Annual Meeting 2016 and 2017.

He has also presented a paper at the Intelligent Systems Center Graduate Research

Symposium in 2017. His research interests included revenue management techniques,

reinforcement learning, and simulation-based optimization techniques. Ryan has been a

member of INFORMS. In December 2017, he received his M.S. in Systems Engineering

from the Missouri University of Science and Technology, Rolla, Missouri, USA.

	A bounded actor-critic algorithm for reinforcement learning
	Recommended Citation

	II

