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ABSTRACT 

 This thesis presents a new actor-critic algorithm from the domain of reinforcement 

learning to solve Markov and semi-Markov decision processes (or problems) in the field 

of airline revenue management (ARM). The ARM problem is one of control optimization 

in which a decision-maker must accept or reject a customer based on a requested fare. This 

thesis focuses on the so-called single-leg version of the ARM problem, which can be cast 

as a semi-Markov decision process (SMDP). Large-scale Markov decision processes 

(MDPs) and SMDPs suffer from the curses of dimensionality and modeling, making it 

difficult to create the transition probability matrices (TPMs) necessary to solve them using 

traditional methods such as dynamic and linear programming. This thesis seeks to employ 

an actor-critic algorithm to overcome the challenges found in developing TPMs for large-

scale real-world problems. Unlike traditional actor-critic algorithms, where the values of 

the so-called actor can either become very large or very small, the algorithm developed in 

this thesis has an updating mechanism that keeps the values of the actor’s iterates bounded 

in the limit and significantly smaller in magnitude than previous actor-critic algorithms. 

This allows the algorithm to explore the state space fully and perform better than its 

traditional counterpart. Numerical experiments conducted show encouraging results with 

the new algorithm by delivering optimal results on small case MDPs and SMDPs and 

consistently outperforming an airline industry heuristic, namely EMSR-b, on large-scale 

ARM problems. 
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1. INTRODUCTION 

 Markov Decision Problems or Processes (MDPs) are problems of sequential 

decision making in which Markov chains dictate the system’s dynamics and behavior. In 

every state visited by the system, a decision must be selected from the set of permitted 

actions in that state. The objective considered in this thesis is to maximize a given cost or 

reward function over an infinite period of time, or time horizon; an infinite time horizon is 

chosen when one seeks to observe the system for a long time period and the system settles 

down into a steady state after a long period of time.  

In MDPs, the time of transition from one state to another is the same for every jump 

and is considered to be one unit of time for every transition. MDPs are a special case of 

what is called a Semi-MDP (SMDP). A SMDP has transition time explicitly modeled into 

the objective function as a random variable. SMDPs have applications in numerous fields 

including queuing control (Sennott, 1999), supply chain management (Buffett and Scott, 

2004), and maintenance management (Schouten and Vanneste, 1995). 

 Classical methods of solving both MDPs and SMDPs are dynamic programming 

(DP) and linear programming (LP). DP seeks to solve these problems using so-called 

transition probabilities (TPs). The TP is the probability of transitioning from one state to 

another under a given action permitted in that state. Because TPs are required in DP, the 

latter tends to breakdown when the number of state-action pairs exceeds a few thousand. 

Once a sufficiently large number of state-action pairs are reached, the so-called transition 

probability matrices (TPMs) become too large or complex to compute, especially on large-

scale problems in the real world. 

A system containing too many state-action pairs exhibits the curse of 

dimensionality, while the challenge of large complexity is known as the curse of modeling. 

A system with 𝑛 states and 𝑚 actions would yield a 𝑛 × 𝑛 TPM for each of the 𝑚 actions 

or 𝑛 × 𝑛 × 𝑚 elements. As a result, when n and m are large, it is difficult to store and 

process all the elements of the TPMs, and then the curses of dimensionality and modeling 

set in. LP requires that the number of constraints equals the number of state-actions pairs 

causing it to exhibit the curse of dimensionality as well.  With the need to model more 
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complex problems and the significant complexity involved in defining TPMs, 

Reinforcement Learning (RL) was born.  

 The MDP was developed by Bellman (1957) who also formulated what is now 

known as the Bellman optimality equation that serves as the foundation for the more 

modern Reinforcement Learning (RL) algorithms. RL is a simulation-based technique that 

seeks to solve MDPs and SMDPs when the TPM becomes too large or too complex to 

compute. By utilizing discrete-event simulations of the system, RL allows us to bypass the 

construction of the TPMs and thus avoids the curses of dimensionality and modeling while 

still producing near optimal solutions.  

RL algorithms are typically classified into two major categories: Q-learning 

algorithms and actor critic (adaptive critic) algorithms. Q-learning algorithms are primarily 

based on value iteration while actor-critic algorithms are based on policy iteration. This 

thesis will focus on an algorithm rooted in the latter of the two categories.  

 In this thesis, a new version of the actor-critic algorithm is presented and will be 

applied to a revenue management problem from the airline industry. The objective of the 

actor-critic algorithm in this revenue management problem is to maximize the long-run 

average reward over a given set of flights. This is achieved through exploration of the 

appropriate number of seats to allocate to each fare class for any given origin-destination 

path. The algorithm will be compared to a widely-used industrial heuristic known as 

Expected Marginal Seat Revenue-b (EMSR-b).  

  The main contributions of this thesis are threefold. First, it modifies the algorithms 

from the literature (Kulkarni et al. (2011); Gosavi (2014a)) into one whose actor values not 

only remain bounded but also tend to have small magnitudes, which is numerically very 

efficient, as these values are used in the algorithm as powers of an exponential term when 

selecting actions. Second, the modified algorithm leads to a more thorough exploration of 

the state-action space, which in turn lowers the probability of sub-optimality in practice. 

Third, the new algorithm is tested on a large-scale airline revenue management problem 

with several million states, where it outperforms an industrial-scale heuristic.  

 The remainder of this thesis is organized as follows: Section 2 provides a 

background on MDPs and SMDPs, along with the details of airline revenue management 

and the EMSR-b heuristic. Section 3 reviews the literature on reinforcement learning 
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techniques as well as on airline revenue management. Section 4 provides an in-depth 

discussion on actor-critic algorithms for application in solving the SMDP for average 

reward.  Section 5 describes numerical results on small MDP and SMDP cases 

benchmarked against optimal solutions, an experimental set up, and numerical results for 

large-scale airline revenue management problems.  Section 6 concludes the thesis with 

closing remarks and a discussion of prospective future work in this field.  
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2. PROBLEM DESCRIPTION 

 This section provides a background on Markov and semi-Markov decision 

processes, as well as on the airline revenue management problem considered in this thesis.  

 

2.1. MARKOV DECISION PROCESSES (MDP) 

 The MDP consists of five major elements. These elements are: 

• A decision maker: Also called the agent or controller, the decision maker selects 

the actions that can occur in the system.  

• Policies: The policy is a 𝑛-tuple consisting of the action to be selected in each state 

of the MDP according to the decision maker.  

• Transition probability matrices (TPMs): The TPM is a matrix associated with each 

action that contains the probability of transitions between states in the system.  

• Transition reward matrices (TRMs): The TRM is similar to the TPM but instead of 

the probability, it contains the immediate reward associated with any given 

transition under a specific action. A negative reward is equivalent to a cost.  

• A performance metric (Objective function): The performance metric is a 

quantifiable value(s) that is used to measure the performance of the system. Much 

of the literature on infinite time horizon considers two metrics: the long run average 

reward and the total discounted reward. Long-run average reward is the expected 

revenue per unit time calculated over an infinite time period. Total discounted 

reward is also calculated over an infinite time period but accounts for the time value 

of money. 

 

2.2. SMDP 

 In the SMDP, the goal is to determine the best action to execute in each state when 

the time of transition from one state to another is a random variable, which is also 

considered in the objective function. In this thesis, the long-run average reward objective 

function will be used due to the short time periods involved in airline revenue management. 

First, some notation is required prior to defining long-run average reward. 
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• 𝑆: the finite set of states 

• 𝐴(𝑖): the finite set of actions permitted in state 𝑖 

• 𝜇(𝑖): the action chosen in state 𝑖 when policy μ is pursued, where ∪𝑖∈𝑆 𝐴(𝑖) = 𝐴 

• 𝑟(𝑖, 𝑎, 𝑗): one-step immediate reward of transition from state 𝑖 to 𝑗 under action 𝑎 

• 𝑡(𝑖, 𝑎, 𝑗): time spent in one transition from state 𝑖 to 𝑗 under action 𝑎 

• 𝑝(𝑖, 𝑎, 𝑗): probability associated with the transition from state 𝑖 to 𝑗 under action 𝑎 

 It follows that the expected immediate reward earned in state 𝑖 when action 𝑎 is 

chosen is defined as: 𝑟̅(𝑖, 𝑎) =  ∑ 𝑝(𝑖, 𝑎, 𝑗)𝑟(𝑖, 𝑎, 𝑗)
|𝑆|
𝑗=1 , and the expected transition time is 

defined as 𝑡̅(𝑖, 𝑎)=∑ 𝑝(𝑖, 𝑎, 𝑗)𝑡(𝑖, 𝑎, 𝑗)
|𝑆|
𝑗=1 . Now the long-run average reward can be 

expressed as follows:  

Let 

𝑅(𝑖) = lim𝑘→∞
E[∑ 𝑟̅𝑘

𝑠=1 (𝑥𝑠,𝜇(𝑥𝑠))|𝑥1=𝑖]

𝑘
    (1) 

and 

𝑇(𝑖) = lim𝑘→∞
E[∑ 𝑡̅𝑘

𝑠=1 (𝑥𝑠,𝜇(𝑥𝑠))|𝑥1=𝑖]

𝑘
.     (2) 

Then the long-run average reward of a policy μ in a SMDP, starting at any state 𝑖, is 

𝜌𝜇 =
𝑅(𝑖)

𝑇(𝑖) 
.      (3) 

 

2.3. BELLMAN EQUATION 

 The objective of the average reward SMDP is to find a policy 𝜇 that maximizes the 

reward 𝜌𝜇. Traditionally, this is done using the Bellman optimality equation for SMDPs. 

The traditional Bellman equation for SMDPs under average reward is presented below: 

𝑉(𝑖) = 𝑚𝑎𝑥
𝑎∈𝐴(𝑖)

[𝑟̅(𝑖, 𝑎) − 𝜌∗𝑡̅(𝑖, 𝑎) + ∑ 𝑝(𝑖, 𝑎, 𝑗)𝑉(𝑗)
|𝑆|
𝑗=1 ] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ 𝑆.  (4) 

 The optimal average reward will be denoted by 𝜌∗ throughout this thesis. Equation 

4 above implies that if the solution to vector 𝑉 and the scalar of 𝜌∗ can be found, then the 

following policy, d, is optimal, where 

𝑑(𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝑆

[𝑟̅(𝑖, 𝑎) − 𝜌∗𝑡̅(𝑖, 𝑎) + ∑ 𝑝(𝑖, 𝑎, 𝑗)𝑉(𝑗)
|𝑆|
𝑗=1 ] for all 𝑖 ∈ S.  (5) 

The RL algorithms studied in this thesis will seek to solve the Bellman optimality equation 

presented above while bypassing the transition probabilities. 
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2.4. AIRLINE REVENUE MANAGEMENT 

 This section provides an overview of the airline revenue management (ARM) 

problem as well as presents the industry heuristic typically used to solve this problem. It 

also presents ARM in the context of SMDPs to be used throughout this thesis. 

2.4.1.  Overview. The airline revenue management problem is a well-studied 

resource-allocation or inventory-control problem that started gaining significant attention 

in 1978 with deregulation of the airline industry in the United States. The deregulation gave 

the airlines flexibility to determine their own schedules, routes and fares, as long as they 

followed FAA (Federal Aviation Administration) guidelines. More recently with the 

progress of DP and simulation, “it has become possible to study the problem using near-

optimal or optimal techniques” (Kulkarni et al. , 2011). 

 The airline revenue management problem is essentially an inventory-control 

problem in which the decision maker must decide whether to accept or reject customers as 

they arrive, via a website (McGill and van Ryzin, 1999).  Durham (1995) estimates that a 

reservation system may need to handle up to five thousand potential bookings per second. 

The customer in the main cabin of the economy class (business class or higher classes here 

are not considered here) is generally offered a set of several different fares for a given 

origin-destination plan. Internally, for the airline, each fare is associated to a fare class. 

Different fare classes do not imply that the seats are located in different sections of the 

plane; all seats are available to all fare classes within the cabin. As more customers arrive, 

generally, the lower fare classes are gradually closed down by the airline. This is because 

in general the lower fare classes have the greatest demand and are sold first; however, do 

note that the higher fare classes may offer advantages, and hence some passengers who 

arrive early in the booking horizon may actually buy higher fares even when lower fares 

are still available.  Customers who choose to pay a higher fare, even when lower ones are 

available, typically receive better benefits such as a lower cancellation penalty or the ability 

to board the flight sooner.  

Customers arriving earlier in the booking horizon are more likely to get a lower 

priced ticket. Each airline typically updates its price offerings regularly based on time 

remaining until departure, preferences of the customer, and many other factors.  Prices 
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have to be adjusted in a suitable manner in order for the continued success of an airline 

company. 

 Essentially the problem of setting prices is one of determining the number of seats 

to be allocated to each fare class to ensure a couple of objectives. The first objective is that 

all customers do not purchase the cheapest tickets, which would lead to lower profits. The 

second is to ensure that too many seats are not allocated to higher fare classes, leaving 

empty seats at the time of departure. Further, airline seats are a perishable commodity 

meaning that as soon as a flight departs, any empty seats signify a loss in potential revenue; 

thus, it is necessary to get the arithmetic right in terms of how many seats are sold at each 

fare, prior to flight departure. 

 The revenue management problem can be studied in two forms: single-leg and 

network (Talluri and van Ryzin, 2005). The single-leg version of the problem is the 

problem being studied in this thesis; it involves a direct flight from one location to another 

without any layovers. At the single-leg level, each fare is referred to as a class and the 

problem is one of finding the number of customers allowed to book seats in each fare class. 

The network version consists of layovers and multiple legs in the flight plan. In the network 

version, each itinerary-fare combination is referred to as a product and the problem is one 

of finding the number of customers allowed to book in each given product. Product 

allocation of one leg in the network problem affecting the allocation and availability of one 

or more of the other legs leads to increased complexity of analysis in the network problem 

(Gosavi, 2007).   

 Although customer-classification factors differ from airline to airline, all airlines 

use two primary factors: time of the booking request and passenger itinerary. For the 

following discussion, only 3-fare-classes will be considered, although real-world problems 

can easily have up to ten fare classes: 

• Lowest fare class (LC)—fare class with the lowest ticket price 

• Middle fare class (MC) —fare class with ticket prices in between the lowest and 

highest prices  

• Highest fare class (HC)— fare class with the highest ticket price 

 Time of booking request: Typically, passengers who book earlier in the booking 

horizon get access to lower fare classes and those who arrive later to higher fare classes. If 
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classification were carried out on just this factor, then the assumption could be made that 

the first few customers to book make up the LC while the next set of customers make up 

the MC and the customers to arrive last would make up the HC, but this is not really what 

happens in the real world. This is because of the origin-destination issue and also 

cancellation privileges.   

 Itinerary: To see how an origin-destination based (itinerary based) classification 

works Figure 2.1 must be examined. Consider the following itineraries: 

• Los Angeles- Las Vegas- Denver- Kansas City 

• Seattle- Denver- Kansas City 

• Salt Lake City- Denver- Kansas City 

• Denver- Kansas City 

 

 

Figure 2.1 Hub and Spoke (Origin- Destination) Airline Network Diagram  

Source: https://en.wikipedia.org/wiki/Spoke%E2%80%93hub_distribution_paradigm# 

/media/file:Airline_hub-1995.svg 

 

 Analyzing the fare classes on the single-leg flight from Denver to Kansas City. The 

passengers originating from Denver and flying to Kansas City would be members of the 

HC. Passengers from Salt Lake City or Seattle or Las Vegas to Kansas City would form 

the MC. Passengers from Los Angeles to Kansas City form the LC (Gosavi, 2004).  

 The pricing and seat allocation problem is “further complicated by the effects of 

cancellations, no shows, and overbooking” (Gosavi et al, 2007). Each customer that is 

accepted and purchases a ticket has some probability of canceling their reservation or no 
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showing. Those passengers in the lower fare class typically have a low probability of 

cancellation with a high fee for cancellation, while the higher fare classes have a higher 

probability of cancellation and a low fee. A no-show means that at the time of takeoff the 

customer had not cancelled but failed to show up to board the aircraft. While the airline 

keeps all of the ticket fare for the empty seat, they still experience this as a lost opportunity, 

because they are flying with an empty seat. Hence, airline companies strive to reduce the 

probability of empty seats; of course, it’s a world of cut-throat competition, and every 

opportunity to make revenues will be seized upon the competitors, making it essential for 

every airline to ensure that it loses no opportunity to make revenues in a legal manner. 

These cancellations and no shows are accounted for by overbooking a flight. This 

means that the airline company sells more seats than the total number of seats available on 

the plane. In addition, there are passengers called standby passengers as well. By 

overbooking, they are attempting to fill any empty seats but they also introduce more risk 

into the system. If the number of passengers who show up exceed the capacity, then they 

must pay the passengers who could not get a seat a compensation fee and also find a new 

flight for that passenger.  

2.4.2. EMSR-b. The problem described above can be solved heuristically via the 

so-called Expected Marginal Seat Revenue (EMSR) rule, which is rooted in Littlewood’s 

equation (Littlewood (1972); Kulkarni et al (2011)). It has two versions: EMSR-a and 

EMSR-b. The more widely used version in the airline industry is EMSR-b and will 

therefore be the heuristic used to benchmark the actor-critic algorithm in this thesis. 

EMSR-b is known to be robust and also capable of producing near-optimal solutions 

(Belobaba, 1992). 

Note that 𝑓𝑖 denotes the fare for the 𝑖th class and 𝑓1 < 𝑓2 < 𝑓3 < ⋯ < 𝑓𝑛. Now, 

𝑌̅𝑖 = ∑ 𝑌𝑗
𝑛
𝑗=i        (6) 

will denote the sum of the demands of all fare classes above and including 𝑖, where 𝑌𝑗 

denotes the demand in the jth class. The aggregate revenue for the 𝑖th class is defined as 

follows: 

𝑓𝑖̅ =
∑ 𝑓𝑗

𝑛
𝑗=1 𝚬[𝑌𝑗]

∑ 𝚬[𝑌𝑗]𝑛
𝑗=1

     (7) 

Littlewood’s equation (Littlewood, 1972) is given as: 
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𝑓𝑖̅ = 𝑓𝑖̅+1Pr (𝑌̅𝑖+1 > 𝑃𝑖+1)    (8) 

for 𝑖 = 1,2, … , 𝑛 − 1, where 𝑃𝑖 is the so-called protection level for class 𝑖. The protection 

level is the number of seats to be protected for all higher classes from the lower fare classes. 

For example, 𝑃2 is the number of seats to be protected from class 1 for classes 2, 3, … , 𝑛. 

There is no protection level for class 1, as it is the lowest fare class from which no 

protection is needed. The booking limit for the 𝑖th class that the airline uses is then defined 

as: 

𝐵𝐿𝑖 = max {𝐶 − 𝑃𝑖+1, 0}    (9) 

for 𝑖 = 1,2, … , 𝑛 − 1. The booking limit for the highest fare class 𝑛 should clearly be the 

capacity of the plane if no cancellations occur. However, cancellations can be incorporated 

into the Littlewood’s equation as follows: Replace 𝐶 in the above by 
𝐶

1−𝑝
, where 𝑝 is the 

mean cancellation probability over all fare classes (see Kulkani et al. (2011) for additional 

details). In the above, (1 − 𝑝) is the so-called correction factor. For solving Equation 9, 

one must know the distribution of each random variable 𝑌̅𝑖. 

2.4.3. SMDP in the Context of ARM. The SMDP for solving the Airline Revenue 

Management (ARM) problem will be presented in this section. In reality, the ARM 

problem has a finite horizon, but it can be transformed into one with an infinite time horizon 

in which the booking horizon is continually reset. Using the infinite time horizon makes it 

easy to use the RL algorithm discussed in this thesis that is designed for the infinite time 

horizon. Some notation is required prior to defining the SMDP in context of ARM (which 

is consistent with that of prior literature, e.g., Kulkarni et al. (2011)): 

• 𝑠𝑖: the number of seats sold in fare class 𝑖 

• 𝑛: the number of fare classes 

• 𝑐: class of the current customer  

• 𝑡: the time remaining for the departure of the plane  

• 𝐻: the length of the booking horizon 

• 𝑌𝑖: the demand for the number of customer in class 𝑖 

• 𝐶: the capacity of the plane  

• Λ: Poisson rate of arrival of all customer  
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 The objective is to maximize average reward per unit time. The set of actions for 

this problem contains 2 actions, which are (𝐴𝑐𝑐𝑒𝑝𝑡, 𝑅𝑒𝑗𝑒𝑐𝑡), and the state space is as 

follows: 

(𝑐, 𝑡, 𝑠1, 𝑠2, … , 𝑠𝑛, 𝜓1, 𝜓2, … , 𝜓𝑛) , 

where 𝜓𝑛 is a n-tuple of size 𝑠𝑖 that contains the times of arrival (in the booking horizon) 

of the passengers in the 𝑖th fare class.  

 Due to the size of the state space in this problem, the number of seats sold and 

arrival times must be encoded using basis functions. The following function from Gosavi 

(2004) will be used to transform the state space to one with a manageable size for 

exploration: 

𝜑 = ∑ (𝑠𝑖 × 𝑓𝑖)/𝜃𝑛
i=1      (10) 

where 𝑓𝑖 is the fare rate for the 𝑖th class and 𝜃 is a user-defined scaling value. The value of 

𝜃 must be determined through experimentation (trial and error), and its value will be case 

dependent. This equation actually produces a continuous state space since 𝜑 is a continuous 

variable, but a discrete state space is needed for this algorithm to function. This is handled 

by rounding the value of 𝜑 down to the nearest integer to create a discrete state space.  By 

utilizing this basis function, the state space can now be defined as (𝑐, 𝜑). 
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3. LITERATURE REVIEW   

 Traditional methods of solving MDPs and SMDPs use classical DP algorithms such 

as value iteration (Bellman, 1957) and policy iteration (Howard, 1960). Value iteration is 

an iterative process that begins with setting the value function for all states to an arbitrary 

value and then uses the Bellman optimality equation to update and improve the value 

function. This is repeated until the values calculated on two consecutive iterations fall 

within a predefined threshold value.  

While value iteration explores the state space, policy iteration explores the policy 

space. Beginning with an arbitrary initial policy, policy iteration requires two stages: the 

policy evaluation stage and the policy improvement stage. The Bellman equation for a 

policy is then used to obtain a value function for the current policy. The value function of 

the current policy is then used to find a better policy (Gosavi, 2014b). These two stages 

repeat until the value function obtained cannot yield a better policy.  

Both of these DP methods depend on the TPs, which in large real-world problems 

can be difficult to compute. In the absence of the TPs, DP breaks down and, oftentimes, 

the MDP model is not employed; instead heuristics are used in practice. The root cause for 

this is that as the problems get more complex, the MDP model is harder to construct for 

the reasons stated previously, i.e., the curses of dimensionality and modeling. While the 

benefit of heuristics is that they are simpler to model, most heuristics also provide a lower 

quality solution than models that utilize MDPs. Therefore, if a problem can be cast as an 

MDP without the need for TPs, it follows that a lower level of modeling effort would be 

required while maintaining a high solution quality (Gosavi, 2014b). Reinforcement 

Learning (RL) seeks to do exactly this.  

 The benefit of RL methods is seen in that it does not require TPs, implying that it 

can be used to model problems with much larger state spaces than DP (Bertsekas and 

Tsitsiklis, 1996). RL deals with four main elements: a policy, a reward function, a value 

function, and a simulator of the environment. The policy describes the decision maker’s 

behavior in any given state. The reward function expresses the overall objective of the 

decision maker and guides the decision maker toward an optimal solution. The value 

function indicates the utility of a state-action pair over the time horizon of the simulation. 
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The simulation determines the next state given the current state and the selected action 

(Sutton and Barto, 1999).  

RL techniques have been widely applied to problems in supply chains 

(Pontrandolfo et al. (2002); Chaharsooghi, Heydari, and Zegordi (2008)), manufacturing 

(Wang and Usher, 2004), and preventative maintenance (Das, et al., 1999).  RL typically 

takes two different paths to solving SMDP and MDP problems through simulation: Q 

learning (Watkins, 1989), which follows value iteration, and actor-critics (Barto, Sutton, 

and Anderson (1983); Venayagamoorthy, Harley, and Wunsch (2002)), which follows 

policy iteration.  

 This thesis will deal with the actor-critic or adaptive-critic algorithms within the 

field of RL. Actor-critic algorithms are comprised of two key elements: the actor and the 

critic. “The actor is an agent that seeks all potential actions in each state visited,” while the 

“critic is a less reactive agent that updates only when it sees a sensible action from the 

actor.” (Gosavi, 2014a).  

 Although the convergence of traditional actor-critic algorithms to the optimal 

solution can be proven mathematically, the actor’s values become unbounded in practice. 

Konda and Borkar (1999) explain “the unboundedness phenomenon by constraining the 

actor’s values in their algorithm” (Gosavi, 2014a); this artificial constraining is achieved 

via a projection. Their research seeks to overcome this problem of unboundedness and the 

necessity to artificially constrain the actor’s values. Gosavi (2014a) presents a method of 

reining in the actor value that eliminates the need to artificially constrain the values but 

only considers small case MDPs. This thesis will apply a new version of the actor-critic 

algorithm that is different from the one in Konda and Borkar (1999) and the one in Gosavi 

(2014a) to a problem from the airline industry. Kulkarni et al. (2011) was an extension of 

the MDP algorithm in Konda and Borkar (1999) to SMDPs, but still required the artificial 

projection of Konda and Borkar (1999).  

With the deregulation of the airline industry in 1978, revenue management (RM) 

and optimization techniques began gaining popularity.  By using RM techniques, American 

Airlines estimated that it generated $1.4 billion in additional incremental revenue over a 

three-year period around 1988, and many other airlines reported similar revenue growth 

due to RM practices (Talluri and van Ryzin, 2005).   
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 As discussed in Section 2.3, the airline industry widely uses the EMSR heuristic 

that has two version EMSR-a and EMSR-b.  Both versions are rooted in Littlewood’s 

equation (Littlewood, 1972) and use approximation to condense the problem at each stage 

to two classes: the current class and all classes above that class (Talluri and van Ryzin, 

2005). EMSR-a (Belobaba, 1989) is based on the aggregation of protection levels, while 

EMSR-b aggregates the demand (Belobaba (1992); Talluri and van Ryzin (2004)).  Both 

of these heuristics are known to produce near-optimal results in perfect conditions, but 

have been found to lose reliability once cancellations, no shows, and overbookings are 

considered. To overcome this limitation, RL algorithms can be applied to solve the ARM 

problem.  

 More recently with the advancements in simulation, it has become possible to 

model this problem using RL. While the λ-SMART algorithm (Gosavi, Bandla, and Das, 

2002) and the actor-critic algorithm in Kulkarni et al. (2011) are RL algorithms that have 

been applied to the airline revenue management problem in the past, the actor-critic 

algorithms of the past were unstable and became unbounded in certain situations; further 

the λ-SMART algorithm is based on a finite trajectory, which may not be applicable to all 

RL settings. This thesis considers a new algorithm that provides a more stable and robust 

solution while still outperforming the industry standard, namely the EMSR-b heuristic.  
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4. SEMI-MARKOV ACTOR-CRITIC ALGORITHMS FOR AVERAGE COST  

 Actor-critics or adaptive critics are well-studied algorithms within the RL family 

(Werbos (1987); Venayagamoorthy, Harley, and Wunsch (2002)). “The actor is an agent 

that seeks all possible actions in each state visited, while the critic is a less reactive agent 

that updates only when it sees a sensible action from the actor” Gosavi (2014a). Actor-

critics are advantageous in that they can solve the SMDP via simuation without computing 

the transition probabilities (Kulkarni et al, 2011). Actor-critics are based on the policy 

iteration algorithm rather the value iteration algorithm, which has led to Q-Learning 

(Watkins, 1989). 

 The remainder of this section discusses the traditional actor-critic algorithm as well 

as our proposed new algorithm. Subsection 4.1 present the traditional actor-critic 

algorithm, and in Subsection 4.2, the new algorithm is discussed. Subsection 4.3 presents 

the step-by-step details of the new algorithm.  

 

4.1. TRADITIONAL ACTOR-CRITIC  

 As discussed above, the actor-critic algorithm for the MDP has two main elements: 

an actor that selects a policy for each state and a critic that computes the value function for 

each policy. For the actor-critic to be applied to an average reward SMDP, a third step must 

be added to the algorithm in which the critic also evaluates the average reward of the policy 

(Kulkarni et al, 2011). This step is necessary due to the added elements of average reward 

and stochastic transition times. Some additional notation that is needed at this point is 

defined next: 

• 𝑃(𝑖, 𝑎): Actor value for action 𝑎 in state 𝑖 

• 𝑉(𝑖): Critic value for state 𝑖 

• 𝑞(𝑖, 𝑎): Probability of selecting action 𝑎 in state 𝑖 

• 𝜂: A tunable contraction factor which should be in the interval (0,1) 

• 𝛼: A step size for the actor update 

• 𝛽: A step size for the critic update 

• 𝛾: A step size for the average reward update 

• 𝜌: Average reward 
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The key updates for the SMDP in the traditional version of the algorithm from Kulkarni et 

al (2011) are as follows:  

Traditional Actor Update: 

• 𝑃(𝑖, 𝑎) ← 𝑃(𝑖, 𝑎) + 𝛼[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗) − 𝑉(𝑖)]        (11) 

• If 𝑃(𝑖, 𝑎) > 𝑃̅, set 𝑃(𝑖, 𝑎) ←  𝑃̅. If 𝑃(𝑖, 𝑎) < −𝑃̅, set 𝑃(𝑖, 𝑎) ← −𝑃̅. The scalar 𝑃̅ is 

a positive number fixed at the start of the algorithm. This update is essentially the 

projection that was discussed above in order to keep the values of the actor 

bounded.  

Critic Update: 

𝑉(𝑖) ← (1 − 𝛽)𝑉(𝑖) + 𝛽[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗)]  (12) 

Average Reward Update: 

𝑅 ← 𝑅 + 𝑟(𝑖, 𝑎, 𝑗)     (13) 

𝑇 ← 𝑇 + 𝑡(𝑖, 𝑎, 𝑗)     (14) 

𝜌 ← (1 − 𝛾)𝜌 + 𝛾𝑅/𝑇               (15) 

Note that the algorithm presented above does contain a tunable contraction factor, η, which 

is typically set close to 1 but strictly less than 1 (Kulkarni et al, 2011).  

 

4.2. PROPOSED BOUNDED ACTOR-CRITIC  

 Technically, the problem with the traditional actor-critic (Barto, Sutton, and 

Anderson (1983); Konda and Borkar (1999); Kulkarni et al. (2011); Lawhead, Gosavi, and 

Murray (2017)) is that the actor’s update is not the convex combination that is typically 

seen in RL or neural network updating and as such one cannot expect boundedness from 

it: 

𝑁𝑒𝑤_𝑣𝑎𝑙𝑢𝑒 ← (1 − 𝛼)𝑂𝑙𝑑_𝑣𝑎𝑙𝑢𝑒 + 𝛼(𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘).   (16) 

Rather, it is of the following form: 

𝑁𝑒𝑤_𝑣𝑎𝑙𝑢𝑒 ← 𝑂𝑙𝑑_𝑣𝑎𝑙𝑢𝑒 + 𝛼(𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘).    (17) 

 The form seen in RL or neural networks uses a step size, 𝛼, to average the old value 

with current feedback value. As 𝛼 is decayed with each iteration, the feedback will 

contribute less to the averaging of the new value. Because the traditional actor update does 

not multiply the old value by (1 − 𝛼), the new value will always be larger than the old 

value and theoretically never become bounded. 
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 Due to this problem, the following actor update is proposed in Gosavi (2014a): 

𝑃(𝑖, 𝑎) ← (1 − 𝛼)𝑃(𝑖, 𝑎) + 𝛼[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗)].   (18) 

 However, the above also encounters a problem in practice that the actor values, i.e., 

P(.,.), still become quite large, although they are bounded. This can cause problems in the 

Boltzmann action selection scheme that will be used within the algorithm. In this thesis, a 

further refinement of the above is proposed, which is as follows: 

𝑃(𝑖, 𝑎) ← (1 − 𝛼)𝑃(𝑖, 𝑎) + 𝛼[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗) − 𝑉(𝑖)].  (19) 

 Note the vital difference between the proposed algorithm and the algorithm in 

Gosavi (2014a) is the subtraction of the critic value, 𝑉(𝑖). By introducing this value into 

the actor update, it was discovered that the actor values still remained bounded, but were 

of significantly smaller absolute values than in bounded actor critic of Gosavi (2014a); this 

will be shown experimentally in Section 5.1. 

 In what follows, the details of the new algorithm are presented in a step-by-step 

format.  

 

4.3. STEPS IN ALGORITHM 

 Step 1. For all 𝑙, where 𝑙 ∈ 𝑆, and 𝑢 ∈ 𝐴(𝑙), set 𝑉(𝑙) ← 0 and 𝑃(𝑙, 𝑢) ← 0. Set 𝑘, 

the number of state changes or iterations, to 0. Set 𝑅, 𝑇, and 𝜌 to 0. The algorithm is run 

for 𝑘𝑚𝑎𝑥 iterations, where 𝑘𝑚𝑎𝑥 is chosen to be a sufficiently large number. 

 Step 2. Let the current state be 𝑖. Select action 𝑎 with a probability of  

𝑞(𝑖, 𝑎) =
𝑒𝑃(𝑖,𝑎)

∑ 𝑒𝑃(𝑖,𝑏)
𝑏∈𝐴(𝑖)

 .     (20) 

 Step 3. Simulate action 𝑎. Let the next state be 𝑗. Let 𝑟(𝑖, 𝑎, 𝑗) be the immediate 

reward earned in going to 𝑗 from 𝑖 under 𝑎 and 𝑡(𝑖, 𝑎, 𝑗) be the time in the same transition. 

Set 𝑘 ← 𝑘 + 1 and update 𝑃(𝑖, 𝑎) using a step size, 𝛼: 

𝑃(𝑖, 𝑎) ← (1 − 𝛼)𝑃(𝑖, 𝑎) + 𝛼[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗) − 𝑉(𝑖)]. (21) 

 Step 4. Update 𝑉 as follows using a step size, 𝛽: 

𝑉(𝑖) ← (1 − 𝛽)𝑉(𝑖) + 𝛽[𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑡(𝑖, 𝑎, 𝑗) + 𝜂𝑉(𝑗)].   (22) 

 Step 5. Update 𝑅, 𝑇, and 𝜌 as follows: 

𝑅 ← 𝑅 + 𝑟(𝑖, 𝑎, 𝑗)     (23) 

𝑇 ← 𝑇 + 𝑡(𝑖, 𝑎, 𝑗)     (24) 
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𝜌 ← (1 − 𝛾)𝜌 + 𝛾𝑅/𝑇               (25) 

 Step 6. If 𝑘 < 𝑘𝑚𝑎𝑥, set 𝑖 ← 𝑗 and then go to Step 2. Otherwise, go to Step 7. 

 Step 7. For each 𝑙 ∈ 𝑆, select 𝑑(𝑙) ∈ arg 𝑚𝑎𝑥𝑏∈𝐴(𝑙)𝑃(𝑙, 𝑏). The policy generated by 

the algorithm is 𝑑̂. Stop.  

 In the above algorithm description, to increase clarity, the subscript, k, has been 

suppressed in 𝑉, 𝜌, 𝑃, and also in the step sizes 𝛼, 𝛽, and 𝛾. This iterative process can be 

seen pictorially in Figure 4.1. 

 

 

Figure 4.1 Mechanics of actor-critic algorithm  
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5. NUMERICAL RESULTS 

 In this section, the experimental results are presented for the proposed actor-critic 

algorithm. Subsections 5.1 and 5.2 present numerical results with the actor-critic algorithm 

on small case MDPs and SMDPs, respectively. Section 5.3 presents the airline revenue 

management case study and results obtained through benchmarking the actor-critic 

algorithm against an industry-standard heuristic.  

 

5.1. SMALL MDP CASES 

 The algorithm was run for 4 different discounted reward MDPs consisting of two 

states each and two actions allowed in each state. Cases have been taken from 

Gosavi(2014a). The data for each case is as follows, where 𝑃𝑎 denotes the TPM for the 

action 𝑎 and 𝑅𝑎 denotes the TRM for action 𝑎. Note that the element in the ith column and 

jth row of 𝑃𝑎 equals 𝑝(𝑖, 𝑎, 𝑗). Similarly, the element in the ith column and jth row of 𝑅𝑎 

equals 𝑟(𝑖, 𝑎, 𝑗). 

Case 1: 

𝑃1 = [
0.7 0.3
0.4 0.6

] , 𝑃2 = [
0.9 0.1
0.2 0.8

] , 𝑅1 = [
6 −5
7 12

] , 𝑅2 = [
10 17

−14 13
]  

 For the remaining cases, only the values that differ from Case 1 are listed.  Also, a 

discounting factor, 𝜆 = 0.8, was used for all cases. 

• Case 2: 𝑟(1,1,2) = 5, 𝑟(2,2,1) = 14;  

• Case 3: 𝑟(1,2,1) = 12;  

• Case 4: 𝑟(1,1,1) = 16, 𝑟(1,2,1) = 0.  

 The algorithm was run for a maximum of 10000 iterations with the following 

learning rates: 𝛼 =
log (𝑘+1)

𝑘+1
,   𝛽 =

150

300+𝑘
. The optimal policy for each case was obtained 

using Q-value iteration and is denoted as (𝑎1, 𝑎2), where 𝑎1 denotes the optimal action in 

state 1 and 𝑎2 denotes the optimal action in state 2.  

 Table 5.2 shows the optimal policy, 𝜇∗, and the optimal value function, 𝑉∗(), both 

obtained from value iteration. Table 5.2 also shows the value function, 𝑉(), and actor 

values, 𝑃(𝑖, 𝑎), obtained from the actor-critic algorithm in Gosavi (2014a). Table 5.2 also 

shows the value function, 𝑉(), and actor values, 𝑃(𝑖, 𝑎), obtained from the proposed actor-
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critic algorithm. It can easily be seen that the value functions produced by the actor-critic 

are essential equal to the optimal values produced from value iteration. It needs to be 

pointed out that the values for the actor in Table 5.1 which are based on the algorithm in 

Gosavi (2014a) have larger absolute values than the ones in Table 5.2, which are from the 

proposed algorithm.   

 The policy produced by the actor-critic can be derived by examining the actor 

values and finding the action that produces the largest values for each state. For example, 

in Case 1, 𝑃(1,1) =  −8.389 and 𝑃(1,2) = −0.004 meaning that action 2 is better in state 

1 because 𝑃(1,2)  >  𝑃(1,1). In state 2, 𝑃(2,1) =  −0.020 and 𝑃(2,2) = −3.497 meaning 

that action 1 is better in state 2 because 𝑃(2,1)  >  𝑃(2,2). This produces a policy of (2,1), 

which matches the optimal policy produced from value iteration. Using this methodology, 

it can be seen that both actor-critic algorithm produces the optimal policy in all 4 cases. By 

examining the actor values, 𝑃(𝑖, 𝑎), it can be seen that the proposed algorithm produces 

values that are significantly small in all cases.   

 

Table 5.1 Results for Value Iteration and Gosavi (2014a) actor-critic on MDP cases 

Case  μ* V(1) V(2) V*(1) V*(2) P(1,1) P(1,2) P(2,1) P(2,2) 

1 (2,1) 52.93 51.68 53.03 51.86 43.95 53.00 52.07 39.48 

2 (2,2) 55.38 61.16 55.77 61.45 50.11 55.81 48.48 61.71 

3 (2,1) 60.80 56.59 60.83 56.66 49.32 60.81 56.70 43.08 

4 (1,1) 49.90 49.35 48.97 49.36 48.87 38.17 49.03 38.75 

 

Table 5.2 Results for Value Iteration and proposed actor-critic on MDP cases 

Case  μ* V(1) V(2) V*(1) V*(2) P(1,1) P(1,2) P(2,1) P(2,2) 

1 (2,1) 52.93 51.68 53.03 51.86 -8.389 -0.004 -0.020 -3.497 

2 (2,2) 55.38 61.16 55.77 61.45 -3.887 -0.029 -2.045 -0.036 

3 (2,1) 60.80 56.59 60.83 56.66 -10.730 -0.001 -0.001 -3.552 

4 (1,1) 49.90 49.35 48.97 49.36 0.070 -7.744 0.022 -1.605 

 

 Figure 5.1 and Figure 5.2 show the progression of the value function throughout 

the first 10000 iterations of the learning phase for V(1) and V(2), respectively for the 

proposed actor-critic algorithm. It should be noted the value function is plotted every 100 
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iterations. The red line on each of the graphs indicates the optimal value obtained from 

value iteration, and it can be seen that the actor critic algorithm is converging to this line.  

 

 

Figure 5.1 Values of V(1) in learning phase for MDP Case 1 

 

 

Figure 5.2 Values of V(2) in learning phase for MDP Case 

 

5.2. SMALL SMDP CASES  

 The actor-critic algorithm was run for 4 different average reward SMDP cases 

consisting of two states each and two actions allowed in each state. The data for each case 

is shown in Table 5.3. A value of 𝜂 = 0.99 was used for all cases.  

 The algorithm was run for a maximum of 10000 iterations with the following 

learning rates: 𝛼 =
log (𝑘+1)

𝑘+1
,   𝛽 =

5

10+𝑘
. The optimal policy for each case was obtained 

using policy iteration and is denoted as (𝑎1, 𝑎2), where 𝑎1 denotes the optimal action in 

state 1 and 𝑎2 denotes the optimal action in state 2. Table 5.4 shows the optimal policy, 𝜇∗, 
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the optimal value function, 𝑉∗(𝑖), both obtained from policy iteration. Table 5.4 also shows 

the value function, 𝑉(𝑖), and actor values, 𝑃(𝑖, 𝑎) obtained from the actor-critic algorithm. 

Note that unlike in the MDP study, the value functions do not match. This is due to the 

necessity of setting an arbitrary value function to 0 in policy iteration. Even though the 

value functions do not match, it can be seen that the policy found by the actor-critic in each 

case matches the optimal policy by using the same method presented in Section 5.1. Figure 

5.3 and Figure 5.4 show the plots of the critic values for the two states, respectively, in the 

simulation.  

 

Table 5.3 Data for SMDP Cases  

Case    𝑝(𝑖, 𝑎, 𝑗) 𝑡(𝑖, 𝑎, 𝑗) 𝑟(𝑖, 𝑎, 𝑗) 

  action a 1 2 1 2 1 2 

  
State j 
→ 1 2 1 2 1 2 1 2 1 2 1 2 

  
State I 
↓                         

1 1 0.7 0.3 0.9 0.1 1 5 50 75 6 -5 10 17 

  2 0.4 0.6 0.2 0.8 120 60 7 2 7 12 -14 13 

                            

2 1 0.7 0.3 0.9 0.1 10 5 5 75 6 5 10 17 

  2 0.4 0.6 0.2 0.8 120 60 7 20 7 12 14 13 

                            

3 1 0.7 0.3 0.9 0.1 10 5 50 75 6 -5 12 17 

  2 0.4 0.6 0.2 0.8 12 60 7 20 70 12 6 13 

                            

4 1 0.7 0.3 0.9 0.1 10 5 50 75 16 5 80 10 

  2 0.4 0.6 0.2 0.8 120 60 7 20 75 120 6 1 

 

Table 5.4 Results for policy iteration and actor-critic on SMDPs  

Case  μ* V(1) V(2) V*(1) V*(2) P(1,1) P(1,2) P(2,1) P(2,2) 

1 (1,2) 33.13 44.06 0.00 6.43 3.832 -3.855 -16.822 2.324 

2 (2,2) 51.92 45.73 0.00 -6.71 -1.608 1.006 -28.859 1.786 

3 (1,1) 39.85 54.34 0.00 12.09 0.674 -13.192 1.262 -1.979 

4 (2,1) 88.92 66.44 0.00 -26.43 -10.115 0.825 -0.907 -6.672 
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Figure 5.3 Values of V(1) in learning phase for SMDP case 1 

 

 

Figure 5.4 Values of V(2) in learning phase for SMDP case 1 

 

5.3. AIRLINE REVENUE MANAGEMENT CASE STUDY  

 In this section, the numerical results produced by the bounded actor-critic algorithm 

are presented for the single-leg Airline Revenue Management (ARM) problem, which was 

discussed in Section 4. Twenty different cases were studied in which a four-fare-class 

system was used for the first ten cases and a six-fare-class system was used for the 

following ten cases.  

5.3.1. Set Up. The fare structure for each case is given by 𝐹𝑆 = (𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑖 , 𝑏), 

where 𝑓𝑖 is the fare of the 𝑖th fare class and 𝑏 is the bumping cost. A lower value of 𝒊 stands 

for a lower revenue fare class.  

 The booking horizon is assumed to be 100 days long, and for the arrivals, a 

homogeneous Poisson process with a rate Λ = 1.4 passengers per day is used; the plane is 
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assumed to have a total capacity of 100 seats.  The Poisson process for each fare class is 

an independent process whose rate equals rate ΛPr (𝑖), where Pr(𝑖) denotes   the probability 

that the arrival belongs to class 𝑖. The so-called cancellation probability for each fare class 

is essentially the probability with which a traveler in that given fare class cancels the ticket. 

When a cancelation occurs, it is scheduled using a uniform distribution between the time 

of arrival and the time of flight departure. The value of 𝜃 is determined separately for each 

individual case based on careful experimentation to produce the best possible policy. A 

value of 0.999999 was used for 𝜂 in the actor-critic algorithm  

 After significant experimentation, the following step-sizes were used for the three 

updates in the algorithm: 

𝛼 =
15000

300000+𝑘
,        𝛽 =  

10000

300000+3𝑘
,         𝛾 =

10000

300000+10𝑘
. 

5.3.2. Experimental Results.  This section presents the results of the bounded 

actor-critic algorithm on the airline revenue management problem and compares the result 

to that from using the well-known industry heuristic, EMRS-b. The performance metric 

used for comparison of results between the actor-critic algorithm and EMSR-b is “average 

revenue per day.”  

 The algorithm was tested on 10 cases for each of the four-fare-class systems and 

the six-fare-class systems. Fares for each case in both systems are shown in Table 5.5, and 

input parameters are shown in Table 5.6. 

 The learning phase was run for 1000 flights and took at most 130 seconds on a 64-

bit, 2.5 GHz windows operating system in MATLAB. First, the optimal policy is 

determined; then the simulator is re-run with the fixed policy (also called frozen policy) 

for 8 replications with 200 flights per replication.  Finally, the average rewards per day (𝜌) 

computed from each of the replications were averaged to compute the actual average 

reward generated by the policy returned the algorithm.  This result is denoted as 𝜌Actor-critic 

and the solution for EMSR-b is donated by 𝜌EMSR-b. A t-test using the 8 different 

replications was performed to determine if the results are delivered from the actor critic 

differ from those of EMSR-b with 95% confidence in a statistical sense. The algorithms 

improvement over EMSR-b is defined as: 

𝐼𝑀𝑃 =
𝜌𝐴𝑐𝑡𝑜𝑟−𝑐𝑟𝑖𝑡𝑖𝑐−𝜌𝐸𝑀𝑆𝑅−𝑏

𝜌𝐸𝑀𝑆𝑅−𝑏
× 100 %    (26) 
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Table 5.5 Fares in dollars for 4-fare-class and 6-fare-class problems 

System Fares (4-fare system) Fares (6-fare system) 

1 75, 200, 400, 550 101, 127, 153, 179, 293, 419 

2 80, 200, 400, 500 94, 112, 142, 160, 271, 395 

3 75, 150, 300, 550 111, 131, 153, 185, 293, 426 

4 80, 150, 400, 550 127, 143, 167, 199, 320, 462 

5 70, 150, 350, 550 105, 135, 143, 179, 284, 411 

6 125, 180, 225, 400 90, 105, 139, 156, 261, 388 

7 100, 175, 250, 400 108, 127, 155, 191, 295, 431 

8 100, 150, 200, 450 76, 98, 123, 162, 247, 400 

9 119, 139, 239, 430 87, 115, 162, 185, 278, 410 

10 145, 209, 280, 350 115, 134, 165, 184, 302, 430 

 

Table 5.6 Input Parameters for 4-fare-class and 6-fare-class systems 

Parameter 4-fare-class system 6-fare-class system  

Arrival Probabilities 0.6, 0.25, 0.09, 0.06 0.3, 0.3, 0.13, 0.13, 0.09, 0.06 

Cancellation Probabilities 0.1, 0.2, 0.2, 0.4 0.1, 0.1, 0.1, 0.2, 0.2, 0.4 

Cancellation Penalties  

Cases 1:5 
70, 50, 30, 10 70, 50, 50, 30, 10, 0 

Cancellation Penalties  

Cases 6:10 
100, 90, 60, 40 70, 50, 50, 30, 10, 0 

Bumping Penalty 200 250 

 

 The results for the 4-fare-class system and 6-fare-class system are shown in Table 

5.7 and Table 5.8, respectively. Figure 5.5 and Figure 5.6 show the average reward per day 

comparison between the Actor-Critic and EMSR-b for the 4-fare-class and 6-fare-class 

systems, respectively. Table 5.9 and Table 5.10 provide the booking limits returned using 

EMSR-b for the 4-fare-class and 6-fare-class systems, respectively, where 𝐵𝐿(𝑖) represent 

the booking limit of the 𝑖𝑡ℎ fare class.  The optimal policy returned by the actor-critic 



26 

 

algorithm for each case in the 4-fare-class systems is shown Table 5.11– Table 5.14 for 

fare class 1, 2, 3, and 4, respectively. The optimal policy returned by the actor-critic 

algorithm for each case in the 6-fare-class systems is shown Table 5.15−Table 5.20 for fare 

class 1 through 6, respectively. As can be seen from the tables, the Actor-critic algorithm 

outperforms EMSR-b in a statistically significant manner in each case tested. Figure 

5.7−Figure 5.16 show the plots of the average reward for each case in the 4-fare-class 

systems in the simulation while Figure 5.17−Figure 5.26 show the same plots for the 6-

fare-class systems.  

 

 Table 5.7 Results for the 4-fare-class systems 

Case ρEMSR-b ρActor-critic θ IMP (%) 

1 163.79± 0.515 168.01± 1.454 1400 2.58 

2 163.53± 0.365 167.52± 0.895 1200 2.44 

3 138.56± 0.241 141.81± 1.195 1500 2.35 

4 152.06± 0.417 157.83± 0.958 1900 3.80 

5 140.24± 0.350 146.33± 0.438 1500 4.34 

6 170.18± 0.403 173.81± 0.530 1800 2.13 

7 154.68± 0.427 161.42± 0.489 1500 4.36 

8 144.55± 0.651 149.20± 0.447 1000 3.22 

9 157.01± 0.446 162.24± 0.253 1100 3.34 

10 195.25± 0.421 199.16± 0.365 1700 2.00 
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Table 5.8 Results for the 6-Fare-class systems 

Case ρEMSR-b ρActor-Critic θ IMP (%) 

1 156.86± 0.260 160.28± 0.716 1200 2.18 

2 141.16± 0.362 144.03± 0.692 1800 2.03 

3 161.08± 0.360 164.68± 0.751 1600 2.23 

4 177.89± 0.324 181.01± 0.665 1200 1.75 

5 157.09± 0.231 161.06± 0.335 1000 2.53 

6 135.55± 0.350 140.50± 0.514 1400 3.65 

7 160.84± 0.295 163.01± 0.412 1600 1.35 

8 128.02± 0.438 130.63± 0.395 1300 2.04 

9 150.41± 0.426 152.84± 0.832 1800 1.62 

10 166.01± 0.394 170.11± 0.585 1200 2.47 

 

 

Figure 5.5 4-fare-class comparison of results for EMSR-b and Actor-Critic 
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Figure 5.6 6-fare-class comparison of results from EMSR-b and Actor-Critic 

 

Table 5.9 Booking limit results for EMSR-b for 4-fare-class system 

Case BL(1) BL(2) BL(3) BL(4) 

1 68 107 122 129 

2 69 108 123 129 

3 68 107 122 129 

4 69 106 122 129 

5 69 106 122 129 

6 74 109 121 129 

7 72 109 122 129 

8 73 108 120 129 

9 75 107 121 129 

10 75 110 123 129 
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Table 5.10 Booking limit results for EMSR-b for 6-fare-class system 

Case BL(1) BL(2) BL(3) BL(4) BL(5) BL(6) 

1 25 67 86 103 116 122 

2 26 67 86 103 116 122 

3 26 68 86 103 116 122 

4 27 68 86 103 116 122 

5 26 68 85 103 116 122 

6 26 66 86 103 116 122 

7 26 67 86 103 116 122 

8 24 66 85 103 116 122 

9 24 66 86 103 116 122 

10 27 67 86 103 117 122 

 

Table 5.11 Action selection for Class 1 in 4-fare-class systems 
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Table 5.12 Action selection for Class 2 in 4-fare-class system 

 

 

Table 5.13 Action selection for Class 3 in 4-fare-class system 
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Table 5.14 Action selection for Class 4 in 4-fare-class system 
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Table 5.15 Action selection for Class 1 in 6-fare-class system 
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Table 5.16 Action selection for Class 2 in 6-fare-class system 
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Table 5.17 Action selection for Class 3 in 6-fare-class system 
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Table 5.18 Action selection for Class 4 in 6-fare-class system 
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Table 5.19 Action selection for Class 5 in 6-fare-class system 
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Table 5.20 Action selection for Class 6 in 6-fare-class system 
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Figure 5.7 Learning phase graph for Case 1 in 4-fare-class system 

 

 

Figure 5.8 Learning phase graph for Case 2 in 4-fare-class system 

 

 

Figure 5.9 Learning phase graph for Case 3 in 4-fare-class system 
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Figure 5.10 Learning phase graph for Case 4 in 4-fare-class system 

 

 

Figure 5.11 Learning phase graph for Case 5 in 4-fare-class system 

 

 

Figure 5.12 Learning phase graph for Case 6 in 4-fare-class system 
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Figure 5.13 Learning phase graph for Case 7 in 4-fare-class system 

 

 

Figure 5.14 Learning phase graph for Case 8 in 4-fare-class system 

 

 

Figure 5.15 Learning phase graph for Case 9 in 4-fare-class system 
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Figure 5.16 Learning phase graph for Case 10 in 4-fare-class system 

 

 

Figure 5.17 Learning phase graph for Case 1 in 6-fare-class system 

 

 

Figure 5.18 Learning phase graph for Case 2 in 6-fare-class system 
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Figure 5.19 Learning phase graph for Case 3 in 6-fare-class system 

 

 

Figure 5.20 Learning phase graph for Case 4 in 6-fare-class system 

 

 

Figure 5.21 Learning phase graph for Case 5 in 6-fare-class system 
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Figure 5.22 Learning phase graph for Case 6 in 6-fare-class system 

 

 

Figure 5.23 Learning phase graph for Case 7 in 6-fare-class system 

 

 

Figure 5.24 Learning phase graph for Case 8 in 6-fare-class system 

 

 

 

 



44 

 

 

Figure 5.25 Learning phase graph for Case 9 in 6-fare-class system 

 

 

Figure 5.26 Learning phase graph for Case 10 in 6-fare-class system 
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6. CONCLUSION 

 This thesis proposed a new version of a reinforcement learning algorithm known as 

an actor-critic. The new version of the algorithm is designed to overcome a critical 

difficulty with the traditional actor-critic, i.e., the need to artificially constrain the actor’s 

values. While Gosavi (2014a) proposed an algorithm that constrained the actor’s values, 

the algorithm proposed here improves on that algorithm by developing a new version that 

provides actor values that have a significantly smaller magnitude.  

 The algorithm was tested on (i) small MDPs, (ii) small SMDPs, and (iii) two sets 

of large-scale problems from the airline industry. In the experimentation conducted, the 

new algorithm was able to outperform the well-known leading airline industry heuristic, 

namely EMSR-b, which is known to produce excellent results. The improvement in the 

long-run average reward over EMSR-b ranged from 2.00% to 4.36% for the four fare class 

systems and from 1.35% to 3.65% for the six fare class systems. 

 Future work: This research can be extended to the network airline problem that 

operates within the origin-destination model. Also, the proof of convergence using ordinary 

differential equations would be another natural extension of this research.  The actor-critic 

algorithm studied in this work can also be applied to other areas of operations engineering, 

such as queuing, manufacturing, and preventative maintenance.  
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