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ABSTRACT 

Despite glass’ prevalence in the scientific and engineering community, very little 

research has been conducted attempting to additively manufacture (AM) glass. Even less 

research has been done on optically transparent glass. Glass’ material properties make it 

ineligible for most AM processes if the end result is to be transparent. Even small gas 

inclusions can cause large amounts of scattering. Additively manufacturing transparent 

glass brings the advantages found in other AM processes with the added benefit of having 

optical properties better than those found in polymers. Additively manufacturing glass 

also allows the optical properties of transparent parts to vary arbitrarily. This thesis 

presents the design, manufacture, and control of a system to AM transparent glass. The 

system feeds glass wires, which are opaque in the near infrared, into a melt pool 

maintained by a CO2 laser (10.6µm). The laser beam and melt pool remained fixed as the 

AM part is moved using a motion stage as the glass is deposited layer-by-layer. The 

stages are controlled using a PID controller, and the wire feeders are controlled using a 

PD controller. A spring damper model is also presented to model the deposition process 

along the feed direction, and perpendicular to the feed direction for control purposes. The 

Glass AM process is able to create morphologically accurate glass pieces more 

efficiently, and with fewer filament breakages than the prototype system. The glass 

produced with this system has optical properties as good as cast glass. The Glass AM 

system is also expandable and interchangeable so that more subsystems can be added and 

changed with minimal redesign.   
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1. INTRODUCTION 

1.1. LITERATURE REVIEW AND MOTIVATIONS  

As additive manufacturing (AM) has grown in popularity, its utility has been 

proven time and time again. With its ability to rapidly produce prototypes from Computer 

Aided Design (CAD) models and quickly and cheaply complete small scale production 

runs, it has become a staple of the modern design process. Until recently, most of the 

work done in the AM field has been focused on the AM of structural components.  

The lack of research into transparent materials overlooks a unique opportunity to 

create gradient index (GRIN) optics and transformation optics (TO). The leap to additive 

manufacturing GRIN lenses is the next logical step from polymerization [1]. Current 

methods of producing GRIN optics are time consuming, expensive, and the index profiles 

that are created are extremely limited in both change of index and geometry. AM of 

transparent parts with varying indexed materials would allow arbitrary control of local 

indices of refraction and ultimately the creation of GRIN optics and TO.  

The current state of the art of transparent AM is focused mainly on polymers as 

AM processes exist for polymers. While not necessarily in the pursuit of GRIN and TO 

optics, transparent AM polymer parts have been created using Selective Laser Sintering 

(SLS) [2], Multiphoton Stereolithography (SLM) [3], Multi-jet modeling [4,5], and Fused 

Deposition Modeling (FDM) [6]. Ink jet printing with in-situ UV curing has even been 

used to create gradient index lenses by changing the index of refraction layer-by-layer 

[7]. While these processes produce low-cost, low-power polymer optics, and toys [8,9] 

they are unable to be used in high precision, high-power optics. Plastics have relatively 
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low transmissivity and thermally unstable indices. For high power optics, glasses are 

necessary [10]. 

Surprisingly little work has been done on the AM of glass even less has been done 

on the AM of transparent glass. Of the 7 types of AM processes recognized by the ASTM 

F42 committee, [11] only two of these processes have been used in literature to additively 

manufacture glass. 

Powdered processes have been used to print glasses and ceramics [12-15]. These 

methods have yielded morphologically accurate parts, but the parts that they have 

produced have significant gas inclusions in them. As shown in Pilon et. al., even small 

gas inclusions can cause large scattering of light [16,17]. This scattering effect renders 

powder processes inviable for optical uses. Blown powder processes similar to Laser 

Metal Deposition (LMD) or Electron Beam AM (EBAM) also tend to trap atmospheric 

gasses. Similarly, these processes, too, are unable to create transparent parts.  Klein et al. 

have also pursued a novel powder based process where glass is melted using extreme 

currents in methods deemed “direct spark sintering” and “Lichtenberg sintering”. The 

pieces produced using these methods have large gas inclusions rendering them opaque 

[18]. 

Binder Jetting has been successfully used to 3D print Glass using maltodextrin 

and indexed matched polysaccharide as a binder [19,20]. These binders were burnt out 

during the firing process, but the presence of the binder along with the spacing between 

the frit, created gas inclusions and left the samples at an estimated density of 60% [19]. 

Similarly, Vat photopolymerization and material jetting would also cause gas inclusions 
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when the material binding the frit was burnt off rendering them ineligible as processes 

able to produce transparent glass parts.  

While there has been some success with the extrusion of molten glasses [18], this 

process too seems to be limited to large builds. The literature has shown that powder 

based processes and binder based processes will not be able to produce transparent parts. 

As an alternative to powder and binder processes, wire fed processes were investigated as 

a means to AM transparent glass. Wire fed processes waste less material and are less 

likely to be contaminated than powder based processes. Parts created using wire fed 

processes have mechanical properties comparable to cast parts and, unlike binder based 

processes, are fully dense [21-23]. A large body of literature is present documenting 

optimal parameters for wire fed processes including the wire angle and feed direction 

[24,25]. Height and stability control have been documented [23, 26, 27], and micro scale 

parts have even been produced [28].  

 With metal wire fed processes as the inspiration, a novel glass wire fed process 

was created [29, 30]. This process uses fully dense glass filaments or wires. The glass 

filament is fed into a melt pool maintained by a CO2 laser as a set of stages moves the 

substrate about the fixed focus of the laser. Once one layer has been deposited, the next 

layer is deposited on top of the previous layer creating fully dense transparent glass parts. 

This process has been repeated with soda-lime [29, 30], quartz [31, 32], borosilicate 

glass, flint glass, and alumina. When measured, the optical properties of soda-lime, and 

quartz are as good as cast glasses [29-32].   
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1.2. PROTOTYPE SYSTEM 

The Glass AM prototype system was composed of four systems: the mechanical 

systems, the optical systems, the electrical systems, and the software systems. The 

mechanical systems provide motion to the system, the optical systems monitor, supply 

and manipulate electromagnetic energy inside the system, the electrical systems contain 

the hardware which monitors the prototype system and computes the control software, 

and the software systems contain the user interfaces and control algorithms that govern 

the process. Figure 1.1. shows the prototype system. 

1.2.1. Mechanical Systems.  The mechanical systems consisted of the X and Y 

stages (Thorlabs DDSM100) with a scissor type lab jack Z stage (Thorlabs L490MZ), a 

generic electric strip heater, a custom 3D printed wire feeder, and a bipolar stepper motor 

(Pololu 1208). 

The stages were composed of two direct drive linear axes and one stepper motor 

driven lab scissor jack. The X and Y positions depended upon the linear axes and the Z 

position depended upon the screw jack. The stages had a range of 100mm for the X and 

Y axis with a resolution of 500nm, while Z stage had a range of 50 mm and a resolution 

of 20nm. The stages were capable of a velocity of up to 500mm/s, though depending 

upon the load, there was a risk of overcurrent above speeds of 100mm/s.  The maximum 

acceleration in the X and Y directions was 5000mm/s
2
. The maximum acceleration in the 

Z direction was 0.25 mm/s
2
. Normal operating accelerations were 500mm/s

2
 for the X 

and Y stages, and 0.25mm/s
2
 for the Z stage. 

Attached to the stages was a strip heater. This strip heater acted as a substrate 

heater and helped to alleviate the thermal stresses induced by the AM process. 
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Figure 1.1.  Glass AM Prototype System Without the Prototype Wire Feeder Mounted. 

 

 

 

 

It was powered by a 125V 1A source, and could reach 550°C. Material was fed 

into the melt pool using custom designed 3D-printed thermoplastic wire feeders, shown 

in Figure 1.2. 

These wire feeder bodies consisted of two parts: a top and bottom piece that 

clamp down on glass filaments using 3-D printed wheels with a 0.25mm groove in them. 

The pressure was kept on the filaments by threading two shoulder bolts through two 

springs, and screwing the shoulder bolts into tapped holes in the bottom thermoplastic 

piece. The movement of the wheels was provided by a 10V 0.5A bipolar stepper motor 

with 200 steps per revolution and a holding torque of 14 oz*in (0.099 N*M). 
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Figure 1.2.  A Front and Side View of the Wire Feeding Mechanism. The bottom left 

wheel is powered by a bipolar stepper motor and the top piece is held in place by two 

shoulder bolts which are screwed into tapped holes in the thermoplastic bottom piece. 

The picture on the right shows the wire feeder rotated 90 degrees to show the mounting 

mechanism, the hole through which glass was fed, and the groove in the wheels. 

 

 

 

 

1.2.2. Optical Systems.  The optical systems consisted of two lasers and the 

Ophir 10A-V1.1 power meter. The first laser was a 100 milliwatt Helium-Neon laser (λ0 

= 635nm), and the second, a 100 watt GEM-100 air cooled industrial CO2 laser (λ0 = 

10.5µm). 

The first laser, the Melles Griot 100 milliwatt Helium-Neon was combined with 

the CO2 laser to provide a visual reference for the actual position of the GEM-100 Air 

Cooled Industrial Laser as the CO2 laser is not in the visible spectrum.  Its main purpose 

was for assisting in alignment of the laser and glass pieces and to act as a safety 

mechanism. 

The second laser, the GEM-100 Air Cooled Industrial Laser, was a 100 W laser, 

maintained the melt pool of the Glass AM process by supplying electromagnetic energy. 
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It was controlled using a custom made controller with no read out of the power supplied 

to the laser or by the laser. 

An Ophir 10A-V1.1 power meter was used to measure the power of a laser. As 

the Ophir 10A-V1.1 is a thermopile sensor capable of sensing powers up to 10 Watts, 1% 

of the laser’s power was split from the CO2 laser to be read by the power meter. 

1.2.3. Electrical Systems. The electrical systems were composed of a personal 

computer running LabVIEW 2013, a NI myDAQ, and two TBD001 T-Cube Brushless 

Servo Drivers, and a stepper motor controller (Big Easy Driver Stepper Motor Controller 

RB-Ite-131). The personal computer handled all of the control processes with a 

LabVIEW program and contained the Graphical User Interface (GUI). The NI myDAQ 

acted as a digital output device which signaled the stepper motor controller when to move 

forward a step. The motor stepper controller takes a 5 volt digital A and B phase signal 

and outputs a 10 volt signal to advance the motor. The TBD001 T-Cub Brushless drivers 

controlled the X and Y stages position; an internal controller had the same function for 

the Z stage. 

1.2.4. Software Systems. The prototype Glass AM prototype process were 

controlled using a custom LabVIEW program. The LabVIEW program interfaced with 

the Thorlab stages via the stages proprietary LabVIEW drivers. The Thorlabs controllers 

used a PID to control position, and used a trapezoidal velocity profile for its reference 

generation.  

The stepper motors were controlled by switching on and off the digital lines to the 

stepper motor controller in an open loop fashion. The path planning of the stages and 

motor speed was controlled using a pseudo G-Code that commanded the final position of 
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the stages while estimating the time between the start of the command and when the final 

position was reached before updating the next position. The stages and feeder could also 

be moved in a “jog mode” where the position was updated using by a predetermined 

offset and where the feeder speed was able to be entered manually. 

 

1.3. PROTOTYPE SYSTEM DESIGN FLAWS 

While the prototype system showed that the Glass AM process could be 

automated, and could produce transparent optical quality glass, the morphology of the 

parts was subpar, and there was much room for improvement.  

The wire feeder suffered from several problems. The first problem was that the 

wire feeders were made out of black thermoplastic and tended to melt when operated 

closer than 6cm from the melt pool. This was due to the extremely high temperature of 

the melt pool, measured in some cases at over 1800˚C, and the relatively low melting 

temperature of 3D printed thermoplastic. An example of this is shown in Figure1.3. 

 

 

 

 

 
Figure 1.3. The Bottom Half of a Wire Feeder after Overheating.  
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The distance from the melt pool presented a second problem, while soda-lime 

glass has a high modulus of elasticity (70mpa[33]) and is very stiff, at 6cm a 1mm soda-

lime filament will begin to show significant deflection, just from gravity. The deflection 

of the tip of the filament was even greater once the viscous force of the melt pool was 

exerted on the tip of the filament.  

The wire feeders were also not robust to wire size. The wire feeders were only 

able to feed 0.5 mm and 1 mm wire.  The wire feeder was not able to feed any wire larger 

or smaller due to the feeding channel size, and the size of the groove in the feeding 

wheels respectively.  

The springs that were used to keep the wire feeders together had a spring constant 

far too large for the process, and the amount of force they generated was not able to be 

adjusted. They made feeding a new filament difficult, would tear out the tapped shoulder 

bolts, and crush the glass filaments. This would force the AM process to stop, often times 

mid build, and result in a failed part. 

 The wire feeders also tended to lock up as the force of the wire between the 

wheels exerted a rotational moment against the shoulder bolts that held the tensioning 

springs. This moment made separating the top and bottom pieces difficult when feeding 

in new wires.  

The wire feeders were attached via a single bolt to an optical post. This gave the 

wire feeders an extra degree of rotational freedom that impeded alignment and limited the 

repeatability of the process between process runs. 

The stepper motor also posed a problem. The stepper motor had a resolution of 

1.8° and was run in open loop with a controller that limited the movement to 22.5º per 
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step. This stepper motor fed the wire into the melt pool in large jerky motions as the rotor 

moved from step to step. This limits the amount of control that can be had on the wire 

feeders, which is a severe limitation to the process. 

The 100W GEM-100 CO2 laser’s power had to be tuned by hand by reading the 

output power from the power meter, before the process could be started. This added a 

significant time to the start of each build process. There was also no way to input a 

control signal to the laser. This meant that any change to the laser in the process had to be 

done manually. The laser was also not powerful enough to handle glasses like quartz, and 

ceramics like alumina. 

The ThorLabs stages lacked the resolution, load capacity, and ability to 

implement advanced control techniques. All interfacing with the stages had to be done 

via their driver software which made tuning new controllers difficult. The controllers 

were tuned for a 250 g load, and the stage could handle a maximum load of 900 g. this 

meant that the size of the glass pieces that could be made and the types of heaters that 

could be mounted to the stages were severely limited. 

The strip heater was a simple device, whose temperature lacked any ability to be 

controlled or observed, rendering it to be tuned heuristically for each process by adjusting 

the current supplied to it. While the strip heater is able to reach the annealing point of 

soda-lime glass, it was unable to be controlled or fixed to the stages.  

 

1.4. GLASS AM DESIGN GOALS 

In order to improve upon the prototype system, a set of design goals was created. 

The first goal is to design the wire feeders to operate as close to the melt pool as possible 
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to limit the amount of deflection in the wires. The smaller the deflection of the wires, the 

more accurate the process can be. 

The second goal is to create a wire feeding mechanism that is able to feed wires 

between 2 mm borosilicate and 0.125 mm stripped single mode fiber optic cable. This is 

over a magnitude difference in size, and is important as the available diameter of various 

glass fibers is fairly limited. The system must be able to adapt not only to varying sizes 

but variations within the same wires.  

The third goal is to create a wire feeding mechanism with variable tension springs 

to keep the filaments from breaking mid process. This goal goes hand in hand with a 

fourth goal, to create a system that allows new wires to be fed quickly and easily and 

doesn’t lock up. 

The fifth goal is to allow the wire feeder to be aligned with the laser and another 

wire feeder quickly, easily, and with a high repeatability, while eliminating any extra 

degrees of freedom. 

The sixth goal is to incorporate a higher resolution motor for the wire feeders that 

are both observable and controllable.  

The seventh goal is to incorporate a CO2 laser that is capable of melting quartz 

and alumina, and is both observable and controllable with an analog signal or a PWM 

signal. 

The eighth goal is to incorporate motion stages that have a high resolution and are 

able to be controlled using custom made controllers that can be incorporated into a 

process controller for future controls research. 
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The ninth goal is to incorporate a substrate heater whose temperature is able to be 

controllable and observable, as well as one able to connect directly to the stages. 

The final goal is to create a more user friendly controlling program that cuts down 

the amount of time and setup necessary to create glass pieces. 
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2. SYSTEM OVERVIEW 

The glass additive manufacturing process, like most modern processes, is 

composed of several distinct systems. These systems are split into four categories: the 

mechanical systems, the optical systems, the electrical systems, and the software systems. 

The mechanical systems are composed of the mechanical components that provide 

motion to the Glass AM process. The optics system’s components supply electromagnetic 

energy into the process and observe any electromagnetic phenomena. The electrical 

systems are composed of the various electrical components needed to control the 

mechanical and optical systems. The software and control systems are composed of the 

software and control algorithms, which govern the process.  

 

2.1. MECHANICAL SYSTEMS 

The mechanical components used for Glass AM consist of two different 

subsystems, the wire feeders and the motion stages and build platform.  The wire feeders 

translate the torque provided by servo motors into a linear filament feeding motion. It is 

the feeders that supply the material to the melt pool. The motion stages position the build 

platform where the work piece is created in three dimensional space. In order to keep 

thermal stresses from breaking AM workpieces, a substrate heater is attached to the 

stages and acts as the build platform. 

2.1.1. Wire Feeders. The wire feeder was inspired from two sources, the previous 

iteration of wire feeders shown above in Figure 1.2. and the wire feeding mechanism in a 

TIG welder shown in Figure 2.1.  
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Figure 2.1. Photograph Showing the Clamping Action Used in a TIG Welder Wire 

Feeder.   

 

 

The wire feeders are mechanisms that convert the rotational motion from a 

Yaskawa motors (SGMJV-01A3M61) to a linear motion of glass filaments into a laser 

generated melt pool. The Yaskawa Motors are 100 watt motors with a 20 bit encoder, 

operating at a resolution of 0.0027° degrees which translates into a resolution of 7µm of 

fed wire. This power is translated through anti backlash bevel gears (W.M. Berg, M48N-

1-ABS) with 0.0985 ft. lbs. of preloaded torque to a set of two wheels, of which only one 

is powered. The contact between the two wheels and the wire is maintained through a 0.3 

inch diameter “tensioning” spring, with a 1.4 lbs/in spring constant cut to 0.85 inches 

(McMaster-Carr, 9657K384) and attached via a ¼ x 20 bolt to a lever arm that contains 

Wire Spool 

Hinge  

Variable Tension 
 Spring Closed 

Feeding Wheels 

Wire Guide 

Variable Tension 
 Spring Opened 
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the unpowered wheel. The filament is fed through an exchangeable “wire feeding guide” 

by the mechanism and exits the end of the wire feeder through a pinch point created by a 

compliant spring and a custom made plate with a groove cut into it, which has been 

deemed the “feeder clamp”. A picture of the finished wire feeder is shown in Figure 2.2. 

In order to decrease the amount of deflection in the glass filaments, the new wire 

feeders were designed to get as close to the melt pool as possible, and so were designed 

out of aluminum. Aluminum has a much higher melting point than ABS Thermoplastic, 

and its reflective surface doubles as a radiation shield against the radiative heat from the 

melt pool and substrate heater. As radiation is the dominant mode of heat transfer, this 

does a great deal to limit the transfer of heat from the melt pool to the wire feeder, and 

motor. 

The two sets of wheels found in the prototype wire feeders were abandoned in 

order to get even closer to the melt pool. With two sets of wheels feeding the wire, the 

distance to the melt pool will always be limited by the radius of the front wheels. In order 

to get closer to the melt pool a clamping mechanism was created to replace the front set 

of wheels. This clamping mechanism uses a compliant spring made of 0.004” thick 1095 

spring steel laser cut to size, a ¼ x 20 set screw and an aluminum clamping plate with a 

groove cut in it deemed the “Feeder Clamp”. 

This mechanism allows the wire feeder to clamp down on the filament and 

prevent any transverse movement while allowing the wire to be fed into the melt pool at 

10mm away from the melt pool. The wire feeder clamping mechanism is shown in 

Figure. 2.3. The feeder clamping mechanism, mentioned previously, along with the 
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tensioning spring, and wire guide allow filaments that range in diameter over an order of 

magnitude (2mm to .125mm) to be fed into the melt pool.  

 

 

 
Figure 2.2. New Wire Feeders as Viewed from the Top and Bottom Respectively. 

 

 

The wire feeder clamp is composed of a compliant spring, and an aluminum plate 

with a right angle alignment groove cut into it. The plate is attached to the feeding end of 
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the wire feeder with three bolts and sandwiches the compliant spring between itself and 

the main body of the wire feeder as seen in Figure. 2.3. 

 

 

 
Figure 2.3.  An Exploded View of the Wire Feeder Clamping Mechanism. 

 

 

For coarse adjustments, the aluminum plate, or “wire feeder clamp” was made to 

be easily detachable. Two wire feeder clamps have been made to address two ranges of 

diameters, 2 to 0.75 mm, and 0.75 to 0.125mm. By changing the wire feeder clamp and 

the wire guide, a “T” shaped hollow aluminum piece that supports the wires before they 

enter the wheels, a wide range of filaments can be fed. A picture of the wire guide is 

shown in Figure 2.4., and the feeder clamp groove depth, and wire guide diameter for the 

common range of wire diameters is given in Table 2.1. 
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Figure 2.4.  Isometric View of the Wire Guide. (1) the flanges that allows the wire guide 

to fit inside the milled key slot in the body of the wire feeder. (2) the radius of curvature 

of the bevel matches that of the feeder wheels allowing the wire guide to nearly butt up 

against them. (3) the channel which the wire passes through before being fed into the 

wheels.   

 

 

Table 2.1. The dimensions of the interchangeable parts in the wire feeder needed to feed 

different diameter wires.  

Wire Diameter 0.75-2mm 

Feeder Clamp 

Groove Depth 
0.5 mm 

Wire Guide 

Diameter 
3 mm 

Wire Diameter 0.125-0.75mm 

Feeder Clamp 

Groove Depth 
0.125 mm 

Wire Guide 

Diameter 
1 mm 

 

 

The wire guide and wire feeder clamp are able to handle a wide variety of wire 

diameters because both the compliant spring, in the front of the feeder, and the tensioning 

spring in the back of the feeder are adjustable. The compliant spring is adjusted by 

(1) 

(2) 

(3) 



 

 

19 

tightening and loosening a set screw, and the tensioning spring is adjusted by tightening 

and loosening a ¼ x 20 bolt. 

The new servo motors, Yaskawa (SGMJV-01A3M61), were chosen for their high 

resolution and due to budgetary constraints . The Yaskawa motors were much larger than 

the motors used in the prototype wire feeders. Due to their large size they were not able 

to directly drive the wire feeders without blocking the CO2 laser’s path. To address this, 

the wire feeder’s size was scaled up, and the motors were rotated 90°.  Anti-backlash 

bevel gears were used to translate the torque. The resulting optical path remained 

unobstructed as shown in Figure 2.5. In order to align them, the feeders were attached to 

a Thor labs (QRP02) rotational stage and a Newport (DS25-Z) stage so that the precise 

angle of rotation could be measured and the tips of the wire feeders can be aligned 

precisely. 

2.1.2. Motion Stages and Substrate Heater. The build platform is moved in 

three dimensional space via Aerotech Stages. The X and Y stages are ANT130-160XY 

direct drive stages with a resolution of 10nm and a repeatability of 75nm. The stages 

have a total travel length of 160mm, and a maximum speed of 350mm/s and a maximum 

acceleration of 10m/s
2
. The maximum continuous current for the stages is 2.94Apk. The 

Z stage, an ATS100-150, motor driven, ball screw stage, has a repeatability of ± 0.7um 

and a resolution of 0.5 µm, it has a resolution of 10nm and the maximum continuous 

current for the Z stage is also 2.94Apk.  The stage has a total travel length of 150mm, and 

a maximum velocity of 100mm/s. The Z stage also has a fail-safe brake. The stages are 

shown in Figure 2.6. 
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Figure 2.5.  The Mounted Wire Feeders and the Unobstructed Optical path of the CO2 

Laser. 

 

 

The X and Y stages use linear encoders, and have 5 volt normally open limit 

switches customized by Aerotech. They also have a zeroing “Z signal” at the center of the 

stage. The Z stage uses a rotary encoder that is converted to a linear measurement inside 

of the Aerotech amplifiers. The Z stage also has 5 volt normally open limit switches, but 

as the encoder is a circular encoder, the zeroing “Z signal” of the encoder occurs every 

revolution of the motor. 

The build platform is located on top of a Ceramic Fiber Heater (Watlow 

VF605A06S) heater, controlled via a Watlow EZ-ZONE PM Express Controller 

(PM6C1CA-AAAABAA). The temperature of the heater is measured with an 8 gauge 

type k thermocouple, (Watlow 1409-18).  A steel build platform is attached to the top of 

the heater as glass tends to wet to ceramics. The heater is surrounded by insulation and a 

radiation shield made of reflective sheet metal to keep the stages from heating. The heater 

is connected to the stage using four Alumina Silicate Ceramic rods (McMaster-Carr 
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8479K21) with a 0.25in diameter and 3in length. These ceramic rods in turn are 

connected to a custom made “L” bracket which connects directly to the stages. The heater 

is capable of reaching temperatures of up to 700˚C, near the annealing temperatures of 

most glasses. The build platform is shown in Figure 2.7. 

 

 

 

Figure 2.6. Aerotech Stages used in the Glass AM Process with the Substrate heater 

attached. 

 

 

2.2. OPTICAL SYSTEMS 

The optical systems consists of two lasers, a 125 Watt CO2 (Synrad Evolution 

125, λ0= 10.6 µm ) laser, and a 4.5 mW He-Ne (ThorLabs CPS635F, λ0=635nm) laser, 
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an NM Laser (LS055S3W8-C2) shutter, an optical lens train, a thermopile power meter 

(Ophir 10A –V1.1), and An OceanOptics USB-4000 fiber-coupled spectrometer. The 

lasers and the shutter are water cooled with a Thermo NESLAB M75 Merlin Series 

chiller.  A diagram describing the optical setup is shown in Figure 2.8.  

 

 

  
Figure 2.7. The Substrate Heater with a Soda-Lime Glass Slide Bolted Into Place on the 

Build Platform.  

 

 

The lasers in the system serve two distinct purposes, the first laser, the CO2 Laser, 

provides the energy to generate and maintain the melt pool as most glasses are opaque to 

the long-wave infrared electromagnetic spectrum. The CO2 laser has been shown to melt 

soda-lime [29, 30], borosilicate, fused quartz [31, 32], flint glass, colored art glass, and 

even alumina . The build platform is placed at the focus of the laser making the Full 
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Width Half Maximum (FWHM) diameter of the laser beam at the build platform 200µm.  

The power of the CO2 laser beam is adjusted by hand in an open loop method via a 

Synrad UC-2000 laser controller. The He-Ne laser is combined with the CO2 laser and 

serves as a laser alignment tool, and safety mechanism. As humans cannot see the 

wavelength of 10.6µm, the He-Ne laser is used for alignment by providing a visible 

representation of the CO2 lasers. The laser shutter, an NM Laser shutter (LS055S3W8-

C2), has an aperture diameter of 12mm, and is used to disrupt the CO2 laser beam. It has 

a maximum repetition rate of 5 Hz, and is controlled via a modified G-Code. In order to 

keep the laser as stable as possible, most processes use the laser at a constant power level, 

while the shutter turns off and on to start and stop the process. The shutter is hooked up 

to the emergency stop and initialization Programmable Logic Control (PLC), so that if 

the emergency stop sequence is triggered the laser beam will be interrupted. The shutter 

is also water cooled to ensure that it does not over heat when it interrupts the laser.  

There are several lenses and mirrors that are used by the Glass AM process. These 

lenses serve many purposes, but can generally be described as doing three things: 

combining the CO2 and He-Ne lasers, diverting 1% of the CO2 laser beam to the 

thermopile power meter, and moving the CO2 and He-Ne laser beams so that they are 

focused at the build platform.  

The Ophir 10A-V1.1 power meter is a thermopile power sensor capable of 

reading powers between 20mW and 10 Watts. As it is a thermopile sensor it has a 

relatively slow rise time of 0.8 seconds. The power meter is used to get an in situ reading 

of the CO2 lasers output power. Since it can only handle small power ranges, between 
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20mW and 10 W, 1% of the laser power is diverted from the process and sent to the 

power meter. The power meter is controlled via an Ophir Nova II power meter. 

 

 

 

Figure 2.8. Optical Systems Diagram. (1) Vibration Isolation Table. (2)  CO2 Laser. (3) 

Water Cooled Shutter. (4) He-Ne Laser. (5) Beam Splitters. (6) Power Meter. (7) Mirrors. 

(8) Beam Expander. (9) Collimator. (10) Focuser. (11) Spectrometer. (12) Wire Feeder. 

 

 

The OceanOptics USB-4000 fiber-coupled spectrometer is used to observe the 

melt pool of the process. The spectrometer is mounted 5cm from the melt pool, and 

resolves the visible and near infrared emissions (200-850nm). It has a variable integration 

time between 3.8ms to 10 seconds. It is expected that the spectral data of the melt pool 

will add another source of feedback for a process control as the magnitude of the spectral 

emission is directly related to the temperature of the melt pool. It has also been observed 
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that bubble formation in soda-lime glass is accompanied with large spikes in the spectral 

emissions at unique wavelengths, as shown in Figure 2.9. It is hypothesized that bubble 

formation may be interrupted by adjusting the laser power when the magnitude of these 

peaks reaches a critical point [34]. 

The optical system is also comprised of a water cooling loop. This loop cools the 

CO2 laser, and the shutter. This loop itself is cooled by a Thermo NESLAB M75 Merlin 

Series chiller. The chiller keeps the water in the cooling loop at 20_C ±0.1°C. The Merlin 

M75 water cooler is able to cool expel 7356 BTU/hr. 

 

 

 

Figure 2.9. The Spectral Emission of the Glass AM System at Various Laser Powers, 

with a Constant Scan Speed. The Peak at 589nm is Only Found When Bubbles Are 

Generated.  
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2.3. ELECTRICAL SYSTEMS 

The Glass AM process uses control algorithms and other software to monitor and 

control the manufacturing of parts. This software requires a complex array of electronics 

to govern the system. These electronics include a standard Personal Computer (PC), a 

LabVIEW PXIE Real Time machine, three Aerotech Soloist ( HPE 10-IO-MXH), and 

two Yaskawa Sigma V SGDV Metrolink-III amplifiers, six noise filters, a relay, 5 

magnetic disconnects, a Direct Logic 5 D0-05DR-D Programable Logic Controller 

(PLC), three emergency stop buttons, three fans, a level step converter, breakers, and five 

optical isolators, all of which is contained in a 42x36x16 inch electrical cabinet (Saginaw 

SCE-42H3516LP) , and mounted on a steel panel (Saginaw SCE-42P36). The electrical 

cabinet is cooled by three Orion fans, (0A109AP-11-2TB). The cabinet is shown in 

Figure 2.10. and the wiring diagram for the system is shown in Figure 2.11. 

Three separate computers control the Glass AM process. The first computer, the 

Direct Logic PLC, monitors the emergency stop buttons of the Glass AM process, and 

actuates the relay and magnetic disconnects should any of the emergency stop buttons be 

pressed. The PLC also handles the initial startup sequence, staggering the start of each of 

the magnetic disconnects and relays in order to limit the amount of inrush current the 

entire system draws, as the system is powered solely off of 120 volt, 15 amp A/C power 

source. The other two computers used are a standard PC, desktop machine running 

Windows 7, and a LabVIEW Real Time PXIE-1082 system. This system was selected 

due to its ability to compute complex control signals and manage all of the data 

acquisition through its vast array of inputs and outputs at over 10 kilohertz.  The 

LabVIEW Real Time chassis does all of the actual computations that affect the Glass AM 
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system, but the PC contains the user interface that allows one to interact with the Real 

Time Machine. The PXIE-1082 chassis has eight total expansion slots with a 7 GB/s 

system bandwidth. The glass AM process only uses three of the eight total slots. The first 

slot is the controller, an NI PXIe-8135, with a 2.3 GHz quad-core Intel i7 and 4GB of 

DDR3 Ram. This module is the “brains” of the NI system and, therefore, the glass AM 

process.  

 

 

 

Figure 2.10. Glass AM Electrical Cabinet. (1) Power Supply. (2) Yaskawa Amplifiers. 

(3) Aerotech Amplifiers. (4) Magnetic Disconnects (5) PLC. (6). Noise Filters. (7) 

Optical Isolators. (8) Breakers. (9) PXIe 6612 Pinout Board. (10) PXIe 6673 Pinout 

Board. (11) Shutter Relay. (12) Fans. (13) Yaskawa Pin Outs. (14) Main Disconnect. 
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The second slot is used for an NI PXIe-6356. The NI PXIe-6356 is a DAQ board 

capable of measuring eight 16-bit analog inputs, two 16-bit analogue outputs, 24 digital 

I/O points, and has four 32-bit counter timers. This board is currently unused, but will be 

used in future expansion. 

The third slot of the PXIe-1082 is for the PXIe-6612. The PXIe-6612 specializes 

in encoder signals and pulse width modulation. The PXIe-6612, sometimes called a 

“Counter/Timer board”, has eight 32-bit counters and 40 digital I/O points. This board is 

exclusively used to count the number of pulses that are delivered to it from the encoders 

on the stages and wire feeders, but it does also function as a second digital 

communication board for the proprietary amplifiers. The PXIe have a maximum 

sampling rate of 80 Mhz on the counters. The fourth slot is a second PXIe-6612. This 

board is used mainly for digital communication with the proprietary amplifiers, and the 

shutter. This includes the Aerotech Soloist HPE 10-IO-MXH modified for torque control 

for the Aerotech Stages and the Yaskawa Sigma V amplifiers for the wire feeder motors. 

The final board, the PXI-6733, is a high speed analog output board. This board is 

capable of maintaining eight 12-bit analog outputs. It is through this board that the 

analogue controller command signals are relayed to the proprietary amplifiers and the 

stages and wire feeders are controlled. The electrical signal wiring is shown in Figure 

2.12. 

The Aerotech Soloist amplifiers have two separate voltage supplies, a motor 

supply and a control supply. Both power sources pass through a Schafner (FN2070-10-

06) filter. The motor supply voltage passes through a Fuji Magnetic Disconnect (SC-

E03G-24VDC) which is controlled by the PLC.  
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Figure 2.11. Glass AM Electrical Cabinet Wiring Schematic. 

 

 

 

The amplifier communicates to the LabVIEW system using a custom made 

Auxiliary cable. This cable contains the encoder signals, which pass through a BEI 

optical isolator (EM-DRI-IC-5-TB-28V/V), the enable signal, the limit switch signals, the 

fault signal, and the control signal voltage. The Amplifiers have an encoder resolution of 
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100,000 pulses per mm. This signal is down sampled by a quarter by the amplifier and 

sent to the LabVIEW system. 

The Yaskawa amplifiers (SGDV Mechatrolink-III) also have two separate voltage 

supplies, a motor supply and a control supply. Both sources pass through a Schaffner line 

filter (FN2070-6-07). The motor supply voltage passes through a Fuji Magnetic 

Disconnect, and just like the Aerotech amplifiers, the magnetic disconnects are controlled 

by the PLC. The amplifier communicates to the LabVIEW system using a proprietary pin 

out system. The encoder signals pass through the same type of BEI optical isolators as the 

Aerotech amplifiers before reaching the NI system. The enable signal, fault signal, the 

clear fault signal, and the control signal voltage are also passed to the LabVIEW system 

through this system. 

The amplifiers have a variable encoder resolution between 16 and 262144 pulses 

per revolution. For the glass AM application this number is set to 131072 pulses per 

revolution so that the maximum speed is 12.5 revolutions per second, or 1178 meters per 

second. 

The magnetic disconnects and relay are powered by the DC power supply, it takes 

both the PLC and the DC power supply to work in order for the motor power to reach the 

amplifiers, and the 5 volt actuating signal to open the shutter. An emergency stop can be 

triggered by interrupting the normally closed 24 volts emergency stop signal, or by 

outputting a 5 volt signal from the LabVIEW system into the custom designed level 

stepper, which interrupts the normally closed 12 volt LabVIEW emergency stop signal. 

An electrical diagram of the level stepper is found in Appendix A, along with a complete 

list of signals. 
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Figure 2.12. Glass AM Electrical Signal Wiring. 
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2.4. SOFTWARE SYSTEMS   

The goal for the glass AM process is to be able to create AM parts directly from a 

three dimensional CAD drawing. In order to do this, many different programs must all 

interface with each other. The way the different computers and programs interact is 

outlined in Figure. 2.11. The first step in creating a Glass AM part is to create a 3D CAD 

model of the part that is to be created using a 3D CAD software. After the part has been 

designed, the part is loaded into Slic3r. Slic3r is an open source program which takes 3D 

parts and turns them into G-Code. This G-code will have to be customized as the Glass 

AM process is entirely new. Instead of starting a machine tool and setting its speed, the 

laser’s shutter will have to be opened and the laser’s power level will have to be set. The 

speed of the wire feeders must also be set using G-Code. 

The G-code is then deconstructed by a G-code parser. This parser exists on the NI 

Real Time machine in a non-deterministic loop which cycles every 0.02 seconds. Once 

this G-Code has been parsed out the interpreter sends the relevant information: scan 

speed, feed rate, laser power, etc. to the deterministic control loop, which cycles at 10 

kHz. 

The interpreted data from the G-code is separated and the velocity and 

acceleration vectors and magnitudes are calculated. The designated path is then generated 

point by point by a linear interpolator with constant acceleration. This leads to a Linear 

Segment Polynomial Blend (LSPB) velocity profile. Depending on the G-Code 

command, a straight line is generated, or a circular path is generated. The calculations 

behind the velocity and acceleration vectors, and the point-by-point path generation, are 

included in Appendix B.  
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This point-by-point reference signal is passed to the PI and PID controllers for the 

wire feeders and motion stages. These control loops generate a command voltage which 

is relayed to the various proprietary amplifiers that control the stages and servo motors. 

The encoders connected to the motors and stages, in turn, send back their position in 

encoder counts. 

The NI Real Time system also has a safety subroutine which monitors the speed, 

current, position, and error of the system. If an error is triggered by this subroutine, the 

shutter is closed, and the current sent to the stages and wire feeders is set to 0 amps. The 

motors are disabled and the Z stage’s brake is engaged. More detail about the types of 

errors and calculations of errors are found in Appendix B. 

At the highest level a Direct Logic 5 D0-05DR-D PLC controls the startup of the 

glass additive manufacturing system, and monitors the system for an emergency stop. At 

the startup of the system the PLC staggers the amplifiers start up by half a second to 

make sure the inrush current does not trip any breakers. Once the startup sequence is 

complete, the PLC monitors the Emergency Stop buttons, the DC power supply, and the 

Level Step Converter. If any one of these systems should fail, the PLC disconnects power 

to the amplifier’s motor circuit by shutting off the magnetic disconnect. 
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Figure 2.13.  Software Systems Hierarch Block Diagram. 
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3. SYSTEM CONTROL 

3.1. WIRE FEEDER CONTROLLERS 

An attempt was made to control the wire feeders with a PID controller; however, 

after trying to tune the controller to a step velocity input of 0.5 mm/s, it was found that 

the system was unstable. Upon inspection, the motors were found to have large nonlinear 

cogging forces which tended force the system to go unstable. To verify this, a control 

voltage of 0.19 volts with a 100Hz, 0.01 volt amplitude sine wave was used to excite the 

system. For a linear motor one would expect that a constant voltage would elicit a 

constant velocity once the motor reached steady state, however what was observed was a 

highly variable velocity profile, shown in Figure 3.1. 

The velocity changes drastically as the motor makes a full revolution. This quick 

change in velocity combined with the noise sensitivity to an Euler backwards different 

method derivative, forced the motors to go unstable. The solution to this was to tune the 

controllers using a weak PI controller. The PI controller is able to keep the velocity of the 

Yaskawa motors constant within ± 1mm/s after the transient response dies out. Both of 

the motors were found to respond similarly, and were both tuned to 

 
 

1.7
0.01C s

s
 

 . (1) 

 

This controller is able to keep the velocity centered on the reference input as 

shown in Figure 3.2. 

The position plot of the test shown in Figure 3.2 is shown in Figure 3.3. This 

figure shows that while there is an initial transient response to the reference input, the 

system reaches a steady state response with a steady state error of about 0.12 mm. 
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Figure 3.1.  Velocity Response of a Single Revolution of a Yaskawa Motor to a Constant 

Voltage Input with a 100 Hz Dithering Signal. 

 

 

 

Figure 3.2.  Velocity Response of a Wire Feeder Tuned with a PI controller with the 

gains 0.01 and 1.7 respectively. 
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Figure 3.3. Position Plot of the test shown in Figure 3.2.  

 

 

 

The time constant of the controlled motor is 454 s
-1

 calculated by finding the first 

time the response got within 63.2% of the reference value. The transient response dies out 

after .2 seconds and it has a percent overshoot of 300 %. Due to the large cogging forces 

and the noise induced by the derivative, settling time has little meaning.  

 

3.2.  AEROTECH STAGE CONTROLLERS 

A PID controller was created for each of the Aerotech stages. The controllers 

were tuned by exciting the system with a 0.02mm square wave at a frequency of 0.25 Hz, 

and a ramp function from -4mm to 4mm at a frequency of 0.5Hz. These signals were 
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to handle and the ramp function emulates a constant velocity movement of 4mm/s which 

is at the high end of velocities that the system is expected to perform at. The controllers 

were tuned by hand by increasing the proportional gain until the system went unstable. 

From this point the integral gain was increased until the system started to oscillate. Once 

the system started to oscillate the derivative gain was increased. This process was 

repeated until the maximum occurring error was below 0.05mm. The results from the 

tests are shown for the X stage in Figures 3.4. and 3.5., for the Z stage in Figures 3.6. and 

3.7., and the Y stage in Figures 3.8. and 3.9. The percent overshoot, settling time, steady 

state ramp error, and time constant are discussed in the conclusion. The corresponding 

controllers are, 

 

26
( ) 21 0.2xC s s

s
  

 ,  (2) 

for the X stage, 
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( ) 47 0.21yC s s

s
  

,  (3)  

for the Y stage, and 

 

51
( ) 58 0.2zC s s

s
  

, (4)  

for the Z stage. 

The Y stage was found to be more oscillatory than the X stage, as the Y stage 

aligns with the side of the vibration isolation table which has the smallest moment of 

inertia; this leads it to be less damped than the X and Z stages. This phenomenon is also 

observed in Bode plots taken of the stages. 
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Figure 3.4.  X Stage Response to a Square Wave. 

 

 

 

 
Figure 3.5.  X Stage Response to a Ramp Function. 
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Figure 3.6. Z Stage Response to a Square Wave. 

 

 

 

Figure 3.7.  Z Stage Response to a Ramp Function. 
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Figure 3.8. Y Stage Response to a Square Wave. 

 

 

 

Figure 3.9.  Y Stage Response to a Ramp Function.  
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4. PROCESS MODELING 

Glass at high temperatures is purely viscous, while glass at low temperatures is 

purely elastic in nature. In most case, high temperature glass is a Newtonian fluid except 

when under large shear stresses. When under large shear stresses glass tends to behave in 

a shear thinning manner. It is only near the glass transformation range that glass acts in a 

viscoelastic behavior.  

As shown in Figure 4.1., there are several important viscosities related to 

manufacturing glass. These viscosity points include the melting temperature, where the 

glass is considered fully liquid, the working point, where most glass manufacturing takes 

place, the Littleton Softening Point, the viscosity at which glass is able to support its own 

weight, the annealing point, the point at which internal stresses are “substantially relieved 

in a few minutes”[35], and the strain point, the temperature where annealing no longer 

occurs [35] . 

Two other temperatures are shown, the Dilatometric softening temperature, Td, 

which is defined as “the temperature where the sample reaches a maximum length in a 

length versus temperature curve during heating of a glass.” [35], and the second 

temperature the Glass Transformation Temperature, Tg, which “can be determined from 

measurements of the temperature dependence of either the heat capacity or the thermal 

expansion coefficient during reheating of a glass.” [35] This temperature occurs at 

viscosities around 10
11.3 

Pa*s [35]. 

Most manufacturing of glass takes place near the working point, at 10
3
 Pa*s. A 

viscous mass of liquid, called a gob is formed into shapes from the original melt. As the 

meltpool temperatures of the process have been calculated to be between 1200°C and 
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1500°C[34] the melt pool is assumed to be completely viscous in nature. Due to the small 

mass of the melt pool compared to the mass of the filament, and work piece the mass of 

the melt pool is considered negligible. 

 

 

 

Figure 4.1. Commonly Used Temperatures in Glass Manufacturing for Soda-Lime Glass 

[35]—Reproduced by permission of The Royal Society of Chemistry. 

 

 

The Glass Additive Manufacturing (AM) process feeds a glass wire into a melt 

pool created by a CO2 laser. This wire is deposited onto a substrate of matching material. 

The Glass AM process contains four points that are critical to the modeling of the system. 

The first critical point is the point at which the glass becomes viscous enough to not be 
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affected by the melt pool dynamics. This point is the solidification front, xs, and is 

defined as the point at which the viscosity η, is equal to 1000 Pa-s and the glass is at its 

working point. The second point of interest is the point at which the wire is deflected to 

by the viscosity of the melt pool. This point, xw, is also the point at which the melt pool is 

centered. The third point of interest is the nominal point of the tip of the wire, xN, the 

point at which the glass wire would be if there was no load at its tip. The fourth and final 

point of interest is the leading edge of the melt pool xm. The leading edge of the melt pool 

is dependent upon the mass flow rate, and the viscosity of the melt pool. This process is 

highly dependent upon the velocity of the substrate, v, and the velocity of the wire feeder, 

vw. An illustration of this process is shown in Figure 4.2. 

 

 

 

Figure 4.2. Schematic Detailing the Physics of the Glass AM Process. 
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As glass’ viscosity changes drastically with respect to temperature, the actual 

model of the Glass AM process would need an infinite number of dashpots. As these 

dashpots are all in series, they can be summed up as an equivalent viscosity, ηeq, at a 

given bulk temperature Tb. Similarly the leading edge of the melt pool can be described 

as some equivalent viscosity ηm, at some bulk temperature Tm. The bending of the glass 

wire can be described as a spring with a spring constant K, and the location of the 

solidification front, xs, is described as dependent upon the working temperature, Tw. This 

allows the deposition process to be modeled as a massless spring and damper system 

shown in Figure 4.3.  

 

 

 

Figure 4.3.  Equivalent Massless Spring Damper Model. 
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 The equivalent viscosity is temperature dependent and will need to be discovered 

through experimentation with different process parameters. The spring constant, K, can 

be derived analytically from Euler’s Beam equation for deflection of a cantilever beam 

with a force perpendicular to the tip. For a circular cross sectioned beam with an area 

moment of inertia, I, and a radius, r, such that, 

 

4

4

r
I


  , (5) 

E is the modulus for the glass wire, and l is the length of the glass wire, the spring 

constant, K, is calculated as 

 
3

3EI
K

l
  . (6) 

When the forces are summed around the point xw the system can be represented as a 

single differential equation 

          w m m m w s eq b N wx x T x x T x x K       . (7) 

Taking the Laplace Transform of (7) with zero initial conditions yields 

                  m m w m eq b w s n ws T X s X s s T X s X s X s X s K       . (8) 

Solving (4) for the actual position of the glass wire, Xw(s), yields, 

 

 
   

     
   

     
 

     

m m m

w

eq b m m

eq b s N

eq b m m eq b m m

T X s
X s

s T T K

T X s KX s

s T T K s T T K



 



   


 

 
   

 . (9) 

Taking the Inverse Laplace Transform of (9), 
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

   


 

 

 
 

.  (10) 

 

This means that the position of the glass wire is a first order system with three 

disturbances: a disturbance from the velocity of the leading edge of the melt pool, the 

disturbance from the velocity of the solidification front, and the disturbance from 

nominal position of the wire feeder. 

A similar exercise can be done for the melt pool in the Y direction. As shown in 

Figure 4.4., the Y position of the melt pool is dependent upon three critical points ym, the 

edge of the melt pool closest to the wire feeder, yw, the nominal Y position of the melt 

pool, and yM, the edge of the melt pool furthest from the wire feeder.  

As the wire is relatively stiff in the feed direction so the spring force along the 

feed axis is neglected. A free body diagram can created using only the viscosities of the 

inner, and outer portions of the melt pool ηm, and ηM, which are dependent upon the bulk 

temperatures of the melt pool Tm, and TM, respectively. This diagram is shown in Figure 

4.5.  

Summing up the forces about the point yw, yields 

        w m m m M w M My y T y y T     . (11) 

 
Taking the Laplace Transform and solving (11) for ym yields a static equation that only 

changes with respect to temperature. Solving the Laplace equation and taking the inverse Laplace 

Transform yields  

 

   

 

   
m m M M

w m M

m m M M m m M M

T T
y y y

T T T T

 

   
 

 
 . (12) 
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Figure 4.4.  Rotated View of the Glass AM Deposition Process. 

 

 

 

Figure 4.5.  Equivalent Massless Spring Damper in the Direction Perpendicular to the 

Feeding Direction. 
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5. RESULTS AND ANALYSIS 

Of the 10 design goals set out to accomplish by designing an automated Glass AM 

process, all 10 were met. The first goal was to minimize deflection by designing the wire 

feeders to get within 10mm of the melt pool.  To quantify the bending, the worst case 

scenario of deflection was calculated. The assumptions for the “worst case” bending 

scenario are as follows, the dominating force on the wires is the viscous friction in the 

melt pool. The viscous force can be modeled as a laminar shear of fluid between two 

plates, the viscous force is calculated given that the maximum scanning velocity used in 

operation, u=10mm/s, glass is considered liquid at a viscosity, µ =1000 Pa*s [35], A is 

one half the surface area of a cylinder with a diameter equal to that of the wire being fed, 

and the depth of the melt pool 0.5mm. Given this the force, F, can be calculated as 

 
u

F A
y

 .  (13) 

 

The wire extended from the wire feeder is modeled as cantilever beam where L is 

the length of the beam, 6cm for the old wire feeder, and 10mm for the new wire feeder, 

and I is the area moment of inertia where r is the radius of the wire calculated as 

 
4

4
I r


  . (14) 

For a conservative estimate modulus of elasticity, E, of 50*10
9
 N/M

2
 for glass [33], the 

maximum deflection, vmax, is calculated as 

 
3

max
3

FL
v

EI
   . (15) 

The results from the calculations are shown in Tables 5.1 and 5.2. 
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Table 5.1. The Worst Case Deflection Calculations for the Prototype Wire Feeder. As the 

Wire Feeder Was Only Able to Feed 0.5 mm and 1mm wire the Greyed Out Sections are 

Purely Theoretical.  

Prototype Wire Feeder 6cm standoff distance 

Wire Diameter 

(mm) 

Viscous 

Force (N) 

Area Moment 

of Inertia (m
4
) 

Maximum 

Deflection 

(mm) 

0.125 0.001963495 1.19842E-17 235.9296 

0.5 0.007853982 3.06796E-15 3.6864 

1 0.015707963 4.90874E-14 0.4608 

1.25 0.019634954 1.19842E-13 0.2359296 

1.5 0.023561945 2.48505E-13 0.136533333 

2 0.031415927 7.85398E-13 0.0576 

 

 

Table 5.2. The Worst Case Deflection Calculations for the New Wire Feeder.  

Updated Wire Feeder 10mm standoff distance 

Wire Diameter 

(mm) 

Maximum Deflection 

(mm) 

Percent Decrease in 

deflection 

0.125 1.092266667 21500% 

0.5 0.017066667 21500% 

1 0.002133333 21500% 

1.25 0.001092267 21500% 

1.5 0.000632099 21500% 

2 0.000266667 21500% 

 

 

 

 This shows that the new wire feeders are able to decrease deflection by 2 orders 

of magnitude. While the new wire feeders are able to feed 0.125 mm wire, and the system 

is able to print 0.125 mm wire, the deflection of the wire due to the viscous effects of the 

melt pool causes many parts to fail. No such difficulties have been found with the other 

reported wire diameters. 
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 The third and fourth goals were to have variable tension springs and to create a 

feeding mechanism that limits the amount of wire breakage, both of which were 

accomplished. Previously, the system would break between two or three filaments per 

piece. The resulting design breaks wires so rarely that none have been reported.  

 The fifth goal was to allow the wire feeders to be aligned repeatedly and quickly. 

This was achieved by getting rid of the extra degree of freedom the old wire feeders had, 

and mounting the new wire feeders to a Z stage and a rotational stage.  

 The sixth goal was to use a motor with a higher resolution than the original 

stepper motors. The Yaskawa motors have a resolution of 0.0027° compared to the 

original stepper motors which had a resolution of 1.8° and a functional resolution of 

22.5°. The velocity of the Yaskawa motors does not track the reference well, as seen in 

Section 5. The average velocity it produces is within 2% as seen in Table 5.3. 

 

 

Table 5.3. Average Feeder Velocity Response to a Reference Velocity.  

Yaskawa Controller Response 

Reference 

Velocity (mm/s) 

Average 

Velocity (mm/s) 

Percent 

Difference 

0.5 0.4895 2.10% 

1 0.9948 0.52% 

2 2.0015 0.08% 

5 4.9597 0.81% 

10 10.0393 0.39% 

20 19.9897 0.05% 
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 The seventh goal was to acquire a laser capable of melting quartz and alumina 

that is both controllable and observable. The Synrad 125 CO2 laser meets all of these 

requirements while also being more stable than the air cooled GEM-100. 

 The eighth goal was to incorporate a set of stages that were controllable and 

observable. They also had to have a high resolution, as well as be able to operate under 

the load of the heater and the AM glass pieces. The Aerotech stages met these design 

requirements as they have a resolution of 10nm, and a load capacity of 10kg. The stages, 

when tuned, all had a time constant below 0.003 s
-1

 with zero steady state error.  The 

percent overshoot, settling time and time constants are shown in Table 5.4. The settling 

time, time constants, and percent overshoot, are all acceptable for the current Glass AM 

process. 

 

 

Table 5.4. Aerotech Stage Controller Response. 

Aerotech Controller Response 

 

Time 

Constant (s) 

Over 

Shoot (%) 

Settling 

Time (s) 

Steady State 

Ramp Error 

(µm) 

X stage 0.0027 11.05% 0.011 2.31 

Y stage 0.0027 23.55% 0.030 1.04 

Z stage 0.0025 19.00% 0.007 0.81 

 

 

The ninth goal, replacing the strip heater with a heater that was controllable and 

observable, and able to reach the annealing temperature of quartz was not quite reached. 

The Watlow heater is controllable and observable, but it is not able to reach the annealing 
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temperature of quartz. This has not been observed to be a problem for quartz as quartz 

has a low thermal expansion coefficient [31, 32]. 

The final goal was to create a system that is more user friendly, takes less 

maintenance, and cuts down the amount of setup and production time. This goal has been 

reached. On the porotype system printing a 1D wall took 20 minutes from set up to 

completion. The new system is able to print the same wall in 5 minutes, with a better 

morphology thanks to the path planning software, and the shutter. An example of a wall 

made on the prototype system and a wall made on the new system is shown in Figure 5.1. 

More complex geometries can also be made on the new system, like the pyramid shown 

in Figure 5.2. 

 

 

  

Figure 5.1.  Wall Made with Prototype System and Hand Feeding on the Left, and Two 

Walls Printed on the New Glass AM system on the Right. 
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Figure 5.2.  3D Printed Soda-Lime Glass Pyramid. 
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6. SUMMARY AND CONCLUSION 

This thesis has shown that, while there has been significant advancement in 

additive manufacturing for structural parts, AM of transparent parts has not kept up the 

same pace. This is because it is difficult to make transparent parts, as even small gas 

inclusions can render translucent parts opaque. Even less work has been done on the AM 

of Glass. This is due to the high melting temperature of glass, and because most glass 

AM processes are only able to produce opaque glass that are not fully dense rendering 

them useless for optical purposes. Only two processes exist that are able to produce 

transparent glass parts: an extrusion process which is used to create art pieces, and a 

novel wire fed process. The wire fed process is explained in detail, and the prototype 

system used to fine tune the process is described, the design flaws are expounded upon, 

and new design goals are set. The design process and experimental set up are described in 

detail. The wire feeder's design, in particular, is discussed as the design challenges 

associated with the wire feeder are the leading limitations of the process. These include: 

closeness to the melt pool, wire diameter robustness, and wire breakage. 

A spring damper model of the system is analytically derived by assuming that the 

forces in the melt pool are purely viscous and the mass is negligible. This model consists 

of an input and output, as well as two disturbances, the location of the solidification front, 

and the location of the front of the melt pool. The control scheme was also discussed. The 

stages are controlled using PID controllers with the derivative calculated using a 

backwards difference Euler approximation. The wire feeders are controlled with a weak 

PI controller as the nonlinear dominant cogging forces cause the velocity to change too 

drastically and adding a derivative gain drives the system unstable. 
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The new system has proven to be able to significantly improve the morphology of 

the Glass AM system, and cut the time it takes to manufacture glass pieces to a quarter of 

the previous time it took. The amount of broken wires has decreased to a negligible 

number, and the system has been able to create AM glass with optical properties identical 

to that of cast glass. The creation of the new system has also provided a platform for 

improvement. These improvements include feeding single mode fiber optic cable and 

creating a process controller to keep errors from propagating in the layer-to-layer domain. 
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7. FUTURE WORK AND LIMITATIONS 

The goal of this work was to outline the design and construction of an automated 

system for additively manufacturing glass. Automating the process is the first step to 

creating a system with which optical glasses can be created, but there are many avenues 

for future work that will improve the system further. 

As the printing process is a novel process there is still room for improvement in 

the mechanical systems, electrical systems, and software systems. One such improvement 

is the feeding of the 0.125 mm optical fiber. While the feeders are able to feed the optical 

fiber into the melt pool and deposit tracks of it, 10mm is still too far from the melt pool to 

keep the wire from wondering within a millimeter of the nominal position. To solve this 

problem, the wire feeder will have to reach closer still to the melt pool. A proposed 

solution is to use either a 30 or 31 gauge hypodermic needle attached to a modified feeder 

clamp plate. This should allow the feeder to get within a millimeter of the melt pool and 

restrict the deflection of the wire to a micron. 

The Yaskawa motors, while they have a very high resolution, are velocity 

controlled with relatively weak controllers. This is due to the fact that the motors have 

very large nonlinear cogging forces which act as the dominate force in the wire feeder. In 

order to get a better performance out of the wire feeders, an iterative learning filter can be 

used to create a cogging map. This type of controller is much more complex than a 

standard PID controller and would require running the motors in an absolute mode that 

finds its zero position, like the stages, before the system can enter normal operation 

mode. These motors can also be replaced with motors that are made to handle smaller 
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loads, though this would take a redesign of the feeders, and the electrical cabinet which 

houses the feeder amplifiers 

The Aerotech stages use standard PID controllers where the derivative is 

calculated as an Euler backwards approximation. As seen in Section 5, this provides a 

good base line performance for the stages allowing the stages to drive the error between 

the commanded position and the actual position below 10 microns in 0.1 seconds. 

However this performance can be increased by adding a low pass filter on the derivative 

of the error, as the Euler approximation can be very noisy, and by adding a feed forward 

acceleration gain to the control. 

Furthermore, it has been observed that even with good controllers in the time 

domain, errors can propagate in the layer-to-layer domain as observed by Sammons et al. 

[36]. In order to have a system that is capable of reaching the strict tolerances of optical 

devices, further modeling must be done by exciting the system with a pseudo random 

binary signal. This will allow a layer-to-layer controller to be created in the method 

outlined by Sammons et al. to keep the propagation of layer to layer errors at a minimum. 

This full process controller will work best if it has feedback with which to 

measure the system. For this purpose, the thermopile used to measure the laser power, 

and the spectrometer, used to measure the emittance of the melt pool may be added to the 

controlling program. Similarly, control of the laser power and substrate heater in situ 

would also add another level of controllability to the process.  

There also exists an abundance of research possibilities about the process, which 

may include controlling the cooling rate of glasses to keep glasses from crystalizing, 

observing and predicting melt pool dynamics when glasses are mixed, investigating how 
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cooling rates affect thermally induced stresses using birefringence, predicting and 

minimizing periodic bubble formation, and of course designing GRIN and 

Transformation optics.  

The largest limiting factor of the Glass AM process is the length of filaments 

used. The length of the filaments directly limits the size of continuous glass pieces that 

can be made. For small glass pieces, this is not a problem, as one glass filament contains 

enough material to make one continuous part. In contrast, the process for larger parts 

must be interrupted so new filaments can be loaded into the feeder. The most promising 

solution to this problem is to use single or multi-multimode fiber optic fibers. These 

fibers are sold by the kilometer and are very high optical quality glasses. In order to use 

these fibers the glass must be stripped of its plastic coating. Some experiments have been 

conducted using acetone to remove the coating, but a full scale automated stripping and 

spooling process has not been created.  
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APPENDIX A. 

PATH GENERATION CALCULATIONS 
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In order to calculate the reference signal for a linear motion, the acceleration and 

the velocity vector components must be calculated. The reference velocity, the reference 

acceleration, and the initial and final positions are supplied by the user.  To calculate the 

acceleration vector components and the velocity vector components the position vector, 

p, is calculated from the final position (xf, yf, zf) and the initial position vector (xi, yi, zi) 

such that, 

  ( ), ( ), ( )f i f i f ip x x y y z z     . (16) 

The magnitude of the position vector is then found by taking the l2 norm, 

       2 2 2

f i f i f ip x x y y z z       . (17) 

Using this magnitude, the unit vector is found by dividing each component of (16) by the 

scalar value (17),  

 
     

 ˆ ˆ ˆ, , , ,
f i f i f ix x y y z z

u x y z
p p p

   
  
 
 

. (18) 

The absolute value of each of these vectors is taken. This is done because the 

Linear Segment Polynomial Blend (LSPB) constant acceleration reference generator 

assigns the direction of motion based off of the position vector in later steps. 

  ˆ ˆ ˆ, ,u x y z   (19) 

At this point, the given magnitude of the acceleration or velocity, M, is multiplied 

through all of the individual vector components in (4) resulting in the three vector 

components. 

  , ,x y zM u M M M   . (20) 
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The vector components of the velocity and acceleration are then passed to the 

LSPB reference generator. For a single axis these components are designated as the 

reference velocity Vr, and the reference acceleration Ar. The discrete time step dt, the 

final position Pf and the initial position Pi are also necessary to generate the trajectory. 

The first step to finding the trajectory is to find the number of iterations in the first phase 

I1, the acceleration phase, which is calculated as, 

 
1

r

r

V

A
Ceil I

dt

 
 
  
 
 
 

. (21) 

The Ceil function forces the acceleration phase to fall inside an integer number of 

iterations. From this point the time it takes to complete phase one, T1, can be calculated 

as, 

 1 1I dt T 
. (22) 

Similarly the number of iterations in the second phase I2, the constant velocity phase, can 

be found using, 

 

2

f i

r

P P

V
Ceil I

dt

 
 
 


 
 
 
   , (23) 

and the amount of time to complete the second iteration, T2, can be calculated the same 

way that T1 was calculated in (22) 

 2 2I dt T 
. (24) 
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Since the reference velocity may take a non-integer number of iterations to reach 

the final position, a new slightly adjusted velocity, Vrnew must be calculated which will 

enable the stage to reach the final position in an integer number of iterations 

 2

f i

rnew

P P
V

T




. (25) 

The actual velocity, V2, during phase two, the constant velocity phase, is direction 

dependent on the direction of the position vector and must therefore be calculated as 

  2 sgn( )f i rnewV P P V 
 . (26) 

Similar to the velocity, a slightly adjusted acceleration must be calculated so that 

the acceleration and deceleration phases are able to be completed in an integer number of 

iterations. This new acceleration, Arnew, is calculated as, 

 1

rnew
rnew

V
A

T


 . (27) 

The actual accelerations, A1 and A3, during phases one and three, the acceleration phase 

and deceleration phase, is direction dependent on the direction of the position vector and 

must therefore be calculated as,  

 1 sgn( )f i rnewA P P A 
, (28) 

and  

 3 sgn( )f i rnewA P P A  
. (29) 

So long as 1 2I I , and the iteration, i , 1 1i I  , as LabVIEW indexes at 1, the position 

at any iteration P(i) can be calculated as   

 

2

1 ( )
( )

2
i

At i
P i P 

 . (30) 
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In the case that I1<I2 and
2 11 1I i I    , the position can be calculated as  

 

2

1 1
2 1( ) ( ( ) )

2
i

AT
P i P V t i T   

. (31) 

In the case that I1<I2, and 2 1i I   the position can be calculated as 

 

2 22

3 21 1
2 1 2 3 2

( ( ) )
( ) ( ) ( )

2 2
i

A t i TAT
P i P V T V A T t i


     

. (32) 

When 1 2 1i I I   the final position has been reached. This means that  

 ( ) ( 1)P i P i    (33) 
until a new reference position has been given. 

There is a second case that may occur that is not addressed by the above 

equations. A reference acceleration could be designated by the user that will not be able 

to reach the designated velocity before the system has gone half way to the final point. 

This condition is found when 2 1I I  . The velocity curve of this condition has two 

phases, an acceleration and deceleration phase, which changes at the critical time Tc.  Tc 

occurs when the stage is half way to the final position or, 

 

2

2 2

f ir c
i i

P PA T
P P


  

 . (34) 

Simplifying (34), 

 

2

r c f iA T P P 
 , (35) 

yields 

 
f i

c

r

P P
T

A


 . (36) 

The number of iterations, Ic, it takes to reach this critical time can be calculated as 
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c
c

T
Ceil I

dt

 
 

  . (37) 

Similar to (21) and (23) the number of iterations must be rounded up to the nearest 

integer. The new critical time Tcnew is calculated as 

 cnew cT I dt
 . (38) 

The new acceleration is calculated as 

 
2

f i

cnew

cnew

P P
A

T




 , (39) 

and the acceleration for the first phase Ac1 and the deceleration for phase two Ac2 are 

calculated as  

 1 sgn( )c f i cnewA P P A 
 , (40) 

and 

 2 sgn( )c f i cnewA P P A  
. (41) 

The acceleration phase occurs when ci I   . 

The position reference is calculated using calculus where A(i) is the acceleration 

for any iteration, V(i) is the velocity at any iteration, and P(i) is the position for any given 

iteration.  By integrating 

 1( )A i A
,  (42) 

with an initial velocity of zero the velocity is found to be 

   1( ) ( )V i At i
 . (43) 

Integrating a second time with the initial position, Pi, as the boundary condition the 

position is found to be 
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2

1 ( )
( )

2
i

At i
P i P 

 . (44) 

The acceleration, velocity, and position can be calculated for Ic< i<2Ic as  

 2( )A i A
, (45) 

 

 1 2( ) ( )cV i At A t i 
  , (46) 

and 

 
 

 
22

21
1

( )
( ) ( )

2 2

cc
i c c

A t i tAt
P i P At t i t


    

 . (47) 

If 

 
2 ci I

 , (48) 

 

then  

 ( ) ( 1)P i P i   . (49) 

In order to move in a circular motion, one needs to know the initial position, the 

final position, the velocity, the acceleration and the X and Y offset. Once these things are 

known, the initial and final angles are calculated, and a linear trajectory of the angles is 

calculated as outlined above. Given the X and Y offset, I and J, it is possible to calculate 

the radius of the generated path as, 

 
2 2r I J   . (50) 

The angle between the x axis and the center of the circle, or the initial angle, θi, is 

calculated as  

 

arctan 2i

J

I


 
  

    (51) 

As arctan2 is only defined between [-pi, pi], if  

 
0i 

 , (52) 

then  
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2i i   

 . (53) 

Similarly the final angle θf is calculated as  

 

( )
arctan 2

( )

f i

f

f i

Y J Y

X I X


  
       . (54) 

If 

 
0f 

 , (55) 

then 

 
2f f   

 (56) 

The angular acceleration, α, and the angular velocity, ω, can be calculated given 

the commanded acceleration, a, and the commanded velocity, v, as  

 

a

r
 

   , (57) 

and 

 

v

r
 

. (58) 

Figure A1.1 shows the logic necessary to decide how to calculate the final angle, 

θf, for a circular motion. This calculation is necessary as atan2 is only valid from [-π,π]. 

For instance if θf  was calculated as -5° from the x axis initially, and a clockwise motion 

to 0° was desired, 360° would need to be added to θf to create the desired motion. With 

all edge cases included, there are 6 possible calculations for θf. Figure A1.1 shows a logic 

tree which outlines which θf   to use for a desired movement 
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Figure A1.1. θf calculation logic.  

 

 

θfnew 1,2,3,4,5, and 6 are calculated as 

 

 1fnew f 
 , (59) 

 

 2 2fnew f   
 , (60) 

  

 3fnew f 
 , (61) 

 

 4 2fnew f   
 , (62) 

 

 5fnew f 
, (63) 

 

and 

 

 6 ( 2 ) ( )fnew i f i       
. (64) 
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These new θf’s are then fed into the LSPB, along with the angular velocity, 

angular acceleration, the time step size, and θi. The LSPB returns the iterative angle θ(i) 

and θ(i) is then used to calculate the iterative position X(i) and Y(i) using, 

 

 
( ) sin( ( ))iY i Y J r i   

 (65) 

  

 
( ) cos( ( ))iX i X I r i   

  (66) 
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APPENDIX B. 

ERROR HANDLING 
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There are five possible faults that can occur in the Glass AM system. These faults 

include: an over speed fault, an end of software limit fault, an end of hardware position 

fault, an external error fault, an excessive voltage fault, and an excessive error fault. The 

subroutine that is used to check for these faults is used twice for each stage and motor in 

two different modes. The first mode is used when the stages are homing in velocity 

mode. The subroutine only checks for excessive voltage fault, external error fault, and 

hardware limit faults, as the stages relative position is unknown.  

To generate the over speed fault, the velocity,  vk, must be calculated from the 

current position, xk, the last position, xk+1, and the time step, Δt, using Euler’s backwards 

difference approximation method, 

 1k k
k

x x
v

t





 . (67) 

The error is generated when given a user specified velocity vmax, 

 maxkv v  . (68) 

The end of software limit fault takes a maximum user specified position xmax, and 

a minimum user specified position xmin, and if the current position, xk, is 

 min kx x  , (69) 

or, 

 max kx x  , (70) 

 

The overvoltage (over current) fault is calculated using a low pass filter with a 

user designated settling time. The control signal, uk, is squared to account for negative 

voltages. The maximum allowable time at the maximum continuous current, t, also 

doubles as the low pass’s settling time, which sets the cut off frequency of the filter at 
1

t
 . 
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The time step, Δt, is also needed to calculate the filtered root mean squared value of the 

control, yk, as  

 2

11
.25 .25

k k k

t t
y y u

t t


  
   
 

  (72) 

If the maximum control value, umax, is  

 max.98 ku y  , (73) 

then the over volt fault is activated.  

The last type of fault is the excessive error fault. The error, Ek, is calculated when 

given the reference signal, Rk, and the position, xk,  

 k k kE R x   , (74) 

if 

 

 0.02kE   , (75) 

then the excessive error fault will be triggered. The parameters chosen for each mode of 

operation are shown in Tables 1-3. 

 

 

Table A2.1. User Designated Safety Parameters for the Stages While in Velocity Mode. 

The Greyed Out Areas Are Not Applicable to The System While in Velocity Mode. 

Velocity Mode-Stages 

Error Type 
User Designated 

Parameters 

Over Speed vmax=10 mm/s 

Software Limit 
 

Excessive Error 
 

Over Volt umax=3 v, t=0.3 s 
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Table A2.2. User Designated Safety Parameters for the Wire Feeders While in Velocity 

Mode. The Greyed Out Areas Are Not Applicable to the System While in Velocity Mode. 

Velocity Mode-Wire Feeders 

Error Type 
User Designated 

Parameters 

Over Speed vmax=10 mm/s 

Software Limit 
 

Excessive Error 
 

Over Volt umax=3 v, t=0.3 s 

 

 

 

 

Table A2.3. User Designated Safety Parameters for the Stages While in Position Mode. 

As the Relative Location of the Stages is Known and a Reference Signal is Generated, 

The Software Limit Fault is Applicable as is the Excessive Error Fault. 

Position Mode-Stages 

Error Type User Designated Parameters 

Over Speed vmax=10 mm/s 

Software Limit 

xmax=60 mm, xmin=-60 mm,  

ymax=60 mm, ymin=-60 mm,  

zmax=1 mm, zmin=-150 mm  

Excessive Error 0.02 mm 

Over Volt umax=3 v, t=0.3 s 

 

 



 

 

74 

BIBLIOGRAPHY 

[1] Moore, D. T., 1980, "Gradient-index optics: a review," Applied Optics, 19(7), 

     pp.1035-1038. 

 

[2] Niino, T., and Yamada, H., 2009, "Fabrication of Transparent Parts by  

      Laser Sintering Process-Transparentization of laser sintered plastic parts 

      by infiltrating thermosetting epoxy with tuned refractive index," Journal of the  

      Japan   Society for Precision Engineering, 75(12), pp. 1454-1458. 

 

[3] Marder, S. R., Brédas, J.-L., and Perry, J. W., 2007, "Materials for multiphoton  

     3D microfabrication," Mrs Bulletin, 32(07), pp. 561-565. 

 

[4] Li, Y., Gargiulo, E. P., and Keefe, M., 2000, "Studies in direct tooling using  

     stereolithography," Transactions-American Society of Mechanical Engineers  

     Journal of Manufacturing Science and Engineering, 122(2), pp. 316-322. 

 

[5] Derby, B., 2010, "Inkjet printing of functional and structural materials: fluid property 

      requirements, feature stability, and resolution," Annual Review of Materials   

      Research, 40, pp. 395-414. 

 

[6] Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., and Tan, K. C.,  

      2001, "Mechanical properties and cell cultural response of polycaprolactone scaffolds     

      designed and fabricated via fused deposition modeling," Journal of biomedical   

      materials research, 55(2), pp. 203-216. 

 

[7] Urness, A. C., Moore, E. D., Kamysiak, K. K., Cole, M. C., and McLeod, R. R., 2013,  

     "Liquid deposition photolithography for submicrometer resolution three-dimensional  

     index structuring with large throughput," Light Sci Appl, 2, p. e56. 

 

[8] Brockmeyer, E., Poupyrev, I., and Hudson, S., 2013, "PAPILLON: designing curved  

     display surfaces with printed optics," Proceedings of the 26th annual ACM  

     symposium on User interface software and technology, ACM, St. Andrews, Scotland,  

     United Kingdom, pp. 457-462. 

 

[9] Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I., 2012, "Printed optics: 3D  

     printing of embedded optical elements for interactive devices," Proceedings of the  

     25th annual ACM symposium on User interface software and technology, ACM,  

     Cambridge, Massachusetts, USA, pp. 589-598. 

 

[10] Weber, M. J., 2002, Handbook of optical materials, CRC press. 

 

 

 

 



 

 

75 

[11] Huang, Y., Leu, M. C., Mazumder, J., and Donmez, A., 2015, "Additive  

        Manufacturing: Current State, Future Potential, Gaps and Needs, and   

        Recommendations," Journal of Manufacturing Science and Engineering, 137(1), pp.  

         014001-014001. 

 

[12] Khmyrov, R., Grigoriev, S., Okunkova, A., and Gusarov, A., 2014, "On the  

        possibility of selective laser melting of quartz glass," Physics Procedia, 56, pp. 345- 

        356. 

 

[13] Khmyrov, R. S., Protasov, C. E., Grigoriev, S. N., and Gusarov, A. V., 2015,  

       "Crack-free selective laser melting of silica glass: single beads and monolayers on  

        the substrate of the same material," The International Journal of Advanced  

       Manufacturing Technology, pp. 1-9. 

 

[14] Klocke, F., McClung, A., and Ader, C., "Direct laser sintering of borosilicate glass,"  

       Proc. Solid Freeform Fabrication Symposium Proceedings, Austin, TX, Aug, pp. 3-5. 

 

[15] Luo, J., Pan, H., and Kinzel, E. C., 2014, "Additive Manufacturing of Glass,"  

       Journal of Manufacturing Science and Engineering, 136(6), pp. 061024-061024. 

 

[16] Baillis, D., Pilon, L., Randrianalisoa, H., Gomez, R., and Viskanta, R., 2004,  

        "Measurements of radiation characteristics of fused quartz containing bubbles," J.  

        Opt. Soc. Am. A, 21(1), pp. 149-159. 

 

[17] Pilon, L., and Viskanta, R., 2003, "Radiation characteristics of glass containing gas  

        bubbles," Journal of the American Ceramic Society, 86(8). 

 

[18] Klein, J., Stern, M., Franchin, G., Kayser, M., Inamura, C., Dave, S., Weaver, J. C.,  

        Houk, P., Colombo, P., and Yang, M., 2015, "Additive Manufacturing of Optically  

       Transparent Glass," 3D Printing and Additive Manufacturing, 2(3), pp. 92-105. 

 

[19] Klein, S., Simske, S., Adams, G., Parraman, C., Walters, P., Huson, D., and Hoskins,  

        S., "3D Printing of Transparent Glass," Proc. NIP & Digital Fabrication Conference,  

        Society for Imaging Science and Technology, pp. 336-337. 

 

[20] Marchelli, G., Prabhakar, R., Storti, D., and Ganter, M., 2011, "The guide to glass  

       3D printing: developments, methods, diagnostics and results," Rapid Prototyping  

       Journal, 17(3), pp. 187-194. 

 

[21] Mok, S. H., Bi, G., Folkes, J., Pashby, I., and Segal, J., 2008, "Deposition of Ti– 

        6Al–4V using a high power diode laser and wire, Part II: Investigation on the  

        mechanical properties," Surface and Coatings Technology, 202(19), pp. 4613-4619. 

 

 

 

 



 

 

76 

[22] Martina, F., Mehnen, J., Williams, S. W., Colegrove, P., and Wang, F., 2012,  

        "Investigation of the benefits of plasma deposition for the additive layer  

        manufacture of Ti–6Al–4V," Journal of Materials Processing Technology, 212(6),  

        pp. 1377-1386. 

 

[23] Heralić, A., Christiansson, A.-K., and Lennartson, B., 2012, "Height control of laser  

        metal-wire deposition based on iterative learning control and 3D scanning," Optics    

        and Lasers in Engineering, 50(9), pp. 1230-1241. 

 

[24] Syed, W. U. H., and Li, L., 2005, "Effects of wire feeding direction and location in  

        multiple layer diode laser direct metal deposition," Applied Surface Science, 248(1),  

        pp. 518-524. 

 

[25] Mok, S. H., Bi, G., Folkes, J., and Pashby, I., 2008, "Deposition of Ti–6Al–4V using  

        a high power diode laser and wire, Part I: Investigation on the process  

        characteristics," Surface and Coatings Technology, 202(16), pp. 3933-3939. 

 

[26] Heralić, A., Christiansson, A.-K., Ottosson, M., and Lennartson, B., 2010,  

        "Increased stability in laser metal wire deposition through feedback from optical  

        measurements," Optics and Lasers in Engineering, 48(4), pp. 478-485. 

 

[27] Xiong, J., and Zhang, G., 2014, "Adaptive control of deposited height in GMAW- 

        based layer additive manufacturing," Journal of Materials Processing Technology,  

        214(4), pp. 962-968. 

 

[28] Katou, M., Oh, J., Miyamoto, Y., Matsuura, K., and Kudoh, M., 2007, "Freeform  

        fabrication of titanium metal and intermetallic alloys by three-dimensional micro  

        welding," Materials & design, 28(7), pp. 2093-2098. 

 

[29] Luo, J., Gilbert, L. J., Qu, C., Wilson, J., Bristow, D., Landers, R., and Kinzel, E.,  

        "Wire-Fed Additive Manufacturing of Transparent Glass Parts," Proc. ASME 2015  

        International Manufacturing Science and Engineering Conference, American  

        Society of Mechanical Engineers, pp. V001T002A108-V001T002A108. 

 

[30] Luo, J., Gilbert, L. J., Qu, C., Landers, R., Bristow, D., and Kinzel, E., 2016,  

        "Additive manufacturing of transparent soda-lime glass using a filament-fed  

        process," Submitted to Journal of Manufacturing Science and Engineering.   

 

[31] Luo, J., Gilbert, L., Qu, C., Morrow, B., Bristow, D., Landers, R., Goldstein, J.,  

        Urbas, A., and Kinzel, E., 2015, "Solid freeform fabrication of transparent fused  

        quartz using a filament fed process," Annual International Solid Freeform  

        Fabrication Symposium, D. Bourell, ed., University of Texas, Austin, TX, pp. 122- 

        133. 

 

 

 



 

 

77 

[32] Luo, J., Gilbert, L. J., Bristow, D. A., Landers, R. G., Goldstein, J. T., Urbas, A. M.,  

        and Kinzel, E. C., "Additive manufacturing of glass for optical applications," pp.   

        97380Y-97380Y-97389. 

 

[33] 2016“The Engineering Toolbox: Modulus of Elasticity or Young's Modulus - and  

        Tensile Modulus for some common Materials,” from  

        http://www.engineeringtoolbox.com/young-modulus-d_417.html. 

 

[34] Luo, J., Gilbert, L. J., Peters, C.D., Bristow, D. A., Landers, R. G., Goldstein, J., 

Urbas, A., and Kinzel, E. C., "Bubble formation study in additive manufacturing of 

glass," 2016 SPIE DSS Conference, Baltimore, MD. 

 

[35] Shelby, J. E., Lopes, Maria, 2005, Introduction to glass science and technology,   

        Royal Society of Chemistry. http://dx.doi.org/10.1039/9781847551160. 

 

[36] Sammons, P. M., Bristow, D. A., and Landers, R. G., 2013, "Height dependent laser   

        metal deposition process modeling," Journal of Manufacturing Science and  

        Engineering, 135(5), p. 054501. 

http://www.engineeringtoolbox.com/young-modulus-d_417.html
http://dx.doi.org/10.1039/9781847551160


 

 

78 

VITA 

Luke Gilbert was born November 14, 1991. He graduated from Blue Springs High 

School in 2010, and received his B.S. in Mechanical Engineering, Summa Cum Laude, 

from Missouri University of Science and Technology in 2014. During his graduate 

studies he worked with the Precision Motion Control Laboratory, the Thermal Radiation 

Laboratory, on glass additive manufacturing, and co-authored five conference papers and 

two journal papers. In July 2016 he received his Master of Science degree in Mechanical 

Engineering from Missouri University of Science and Technology. 

  


	Design and fabrication of a system for the additive manufacturing of transparent glass
	Recommended Citation

	II

