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ABSTRACT 

 

Artificial intelligence or machine learning techniques are currently being widely 

applied for solving problems within the field of data analytics. This work presents and 

demonstrates the use of a new machine learning algorithm for solving semi-Markov 

decision processes (SMDPs).  SMDPs are encountered in the domain of Reinforcement 

Learning to solve control problems in discrete-event systems. The new algorithm 

developed here is called iSMART, an acronym for imaging Semi-Markov Average 

Reward Technique. The algorithm uses a constant exploration rate, unlike its precursor R-

SMART, which required exploration decay. The major difference between R-SMART 

and iSMART is that the latter uses, in addition to the regular iterates of R-SMART, a set 

of so-called imaging iterates, which form an image of the regular iterates and allow 

iSMART to avoid exploration decay. The new algorithm is tested extensively on small-

scale SMDPs and on large-scale problems from the domain of Total Productive 

Maintenance (TPM). The algorithm shows encouraging performance on all the cases 

studied.  
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NOMENCLATURE 

Symbol Description   

MDP  Markov Decision Process 

SMDP  Semi-Markov Decision Process 

DP  Dynamic Programming 

RL  Reinforcement Learning 

PM  Preventative Maintenance 

TPM  Total Productive Maintenance  

𝑆  State space associated with decision process 

𝑛  Number of states 

𝑖, 𝑗  Indices for state in the state space S 

𝐴(𝑖)  Action space for state i 

𝑎, 𝑏  An action in the action space 

𝐿  Lower limit of the buffer 

𝑈  Upper limit of the buffer 

𝑘  Number of iterations 

𝛼, 𝛽  Step sizes 

𝐶𝑚  Maintenance cost 

𝐶𝑟  Repair cost  

CSi  The ith maintenance, repair, and profit cost structure  

𝜌  Average reward 

𝜌 ∗  Optimal average reward 



 

 

x 

𝑝(𝑖, 𝑎, 𝑗) The probability of going from state i to j under action a 

𝑟(𝑖, 𝑎, 𝑗) The reward for going from state i to j under action a 

𝑡(𝑖, 𝑎, 𝑗) The time spent in going from state i to j under action a 

𝑄(. , . )  Q-Factor 

𝑅(. , . )             R-Factor 

𝑇(. , . )  T-Factor 



 

 

1. INTRODUCTION 

1.1. MDPS, SMDPS, DP, AND RL 

 

Markov decision processes (MDPs) are problems of sequential decision-making in 

discrete-event systems controlled by the so-called Markov chains. In particular, MDPs seek 

to solve problems of optimal control. Using a controller to specify the action selected in a 

given state of the system, one can optimize system performance via consideration of 

quantifiable performance metrics, e.g., maximizing the net rewards obtained or minimizing 

the net costs incurred from operating the system. Typically, these performance metrics are 

defined in two ways: the average reward, where there is no discounting of money with 

time, and the discounted reward, where the time value of money is taken into account, i.e. 

discounting of money is considered. MDPs can be observed in many real-world 

applications, however, they are limited by the assumption that the so-called transition times 

in the problem should be constant.  

 Semi-Markov decision processes (SMDPs) are more generalized versions of 

MDPs. Unlike MDPs, SMDPs take time into consideration, i.e. the time of transition does 

not have to be constant. Hence, in SMDPs, the time spent in each state is treated as a 

random variable. In SMDPs, the time of transitions is also modeled within the objective 

function. In this thesis, the focus is on infinite time-horizon problems, where one assumes 

that the system will be observed for a very long time and will eventually settle into a steady 

state. Usually, the performance metrics used to study SMDPs are the same as those for 

MDPs: average reward and discounted reward. However, in MDPs time is not taken into 
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consideration in formulating the objective functions; rather, the objective functions are 

formulated in terms of transitions of the underlying Markov chains.  

Both MDPs and SMDPs can be solved using dynamic programing (DP) when the 

number of state-action pairs is small enough, e.g., up to about 200. The two most popular 

methods of DP are: value iteration (Bellman, 1957) and policy iteration (Howard, 1960). 

However, “when the number of state-action pairs is too large,” transition probabilities 

cannot be generated (Ghosh, 2013) or stored in a computer; then DP is no longer a viable 

option for solving these problems. When this is the case, Reinforcement Learning (RL) 

techniques can be used.  

RL is a relatively new simulation-based method for solving MDPs and SMDPs 

underlying the statistical model of the system. An advantage of these RL-based models is 

that they do not require the transition probabilities that must be estimated in the traditional 

DP approach. RL bypasses the tedious process of estimating the transition probabilities, 

but instead needs a discrete-event simulator to generate near-optimal solutions. 

Commercial software such as ARENA and MATLAB can be used to write these programs. 

In this thesis, the case study on which a new RL algorithm is tested is drawn from the 

domain of Total Productive Maintenance (TPM). 

This thesis focusses on the presentation of a new simulation-based Reinforcement 

Learning (Bertsekas and Tsisiklis, 1997; Sutton and Bartow, 1998; Gosavi, 2014a) 

algorithm for solving SMDPs (Puterman, 2005; Bertsekas, 2000). In particular, the 

algorithm developed here is tested on a preventive maintenance problem encountered in 

production-inventory (PI) systems (Das and Sarkar, 2000).   
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Total Productive Maintenance (TPM) was first developed in Japan in the 1970s 

(Ghosh, 2013). Its goal is to deliver higher utilization of machines. This improves the 

availability of production machines, and the frequency of unexpected failures decreases. 

Unexpected failures both increase lead times and the overall operating cost. By using TPM, 

efficient preventive maintenance (PM) schedules can be generated, thus decreasing the 

frequency of unexpected failures, without compromising on the volume of production 

before maintenance is performed. Proper implementation of TPM can lead to the saving of 

millions of dollars over the years (McKone and Weiss, 1997).  

 

1.2. ISMART 

  

 The SMDP under consideration here employs the so-called average reward problem 

in which one seeks to maximize the net profits earned per unit time over an infinitely long 

time horizon. An existing RL algorithm for solving SMDPs under this average reward 

criterion is called R-SMART (Gosavi, 2004), which is known to require decay of the so-

called exploration parameter (or exploration rate). Unless this parameter is decayed 

carefully during the runtime of the algorithm, the latter usually fails to generate the optimal 

or near-optimal solution. Hence, developed this thesis is a new version of the R-SMART 

algorithm, called iSMART, which does not require the decay of this exploration parameter, 

but instead works with a fixed rate of exploration.  

The remainder of the thesis is organized as follows:  2 briefly reviews the literature 

on TPM, production inventory systems, and reinforcement learning techniques, as well as 

provides a background of the research conducted in this work to the reader. Section 3 
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describes in more detail the production inventory systems used in this work. Section 4 in 

detail the reinforcement learning techniques and specifically the iSMART algorithm 

proposed in this work. Section 5 details the numerical results obtained from running the 

iSMART algorithm in the PI simulator. The final Section of this thesis presents closing 

remarks for the work and proposes possible avenues for future work. 
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2. BACKGROUND MATERIAL AND A LITERATURE REVIEW 

In order to explore the research issues surrounding the iSMART algorithm and how 

it uses TPM in production inventory (PI) systems, a brief review of TPM, PI systems, 

MDPs, SMDPs, DP, iSMART’s predecessor, and R-SMART, along with a review of the 

relevant literature, is presented here. 

 

2.1. REINFORCMENT LEARNING 

 

As stated in the first section, problems of sequential decision-making in discrete-

event systems driven by Markov chains can often be modeled by MDPs and SMDPs. MDPs 

and SMDPs are control-optimization problems whose goal is to select the best action in 

each state visited by the system such that a pre-defined “performance metric is optimized 

for the discrete-event system driven by Markov chains” (Gosavi, 2014b). In such settings, 

the system jumps from one state to another, usually in a random manner, and the transitions 

follow the Markovian property (Gosavi, 2014b). In the MDP, when a system visits a state, 

a decision-maker or agent must select an optimal action from the set of multiple actions 

allowed in that state (Ghosh, 2013). For every state-to-state transition there exists a 

transition probability (TP). These TPs constitute an integral part of any MDP model; 

further they are “dependent on the state and action chosen in the state” (Gosavi, 2014b). 

An important feature of the MDP models is that the “probability of transitioning from one 

state to another” does not depend on the number or nature of transitions that have already 

taken place in the system (Gosavi, 2014b).  



 

 

6 

MDPs find numerous applications in operations management, e.g., queuing control 

(Sennott, 1999), supply chain management (Buffett, 2004), maintenance management 

(Schouten and Vanneste, 1995), vehicle routing (Su et al. 2011), revenue management 

(Lautenbacher and Jr, 1999) etc.; see Ghosh (2013) for additional examples. MDPs can be 

used in other areas of operations management too, e.g., finance (Feinberg and Shwartz, 

2002), search algorithms (Amin et al. 2012), and robotic control (Abbeel et al. 2007).  

However, these applications are limited by discrete, equal time periods between events. 

When time is incorporated into the model, as a random variable, the SMDP is a more 

appropriate model than the MDP. 

SMDPs are more generalized versions of MDPs. As stated before, in SMDPs the 

time spent in each state transition is a random variable. Because of this property, the MDP 

becomes a special case of the SMDP; an MDP is thus an SMDP where all state transition 

times are equal. Further, SMDPs use time as an element of the performance metric. 

Performance metrics under which SMDPs are studied include the so-called discounted 

reward and the expected reward under a finite or infinite time horizon. In this work, 

expected reward under an infinite time horizon, also called average reward, will be studied. 

Like MDPs, SMDPs have many real-world applications, including queueing control, 

maintenance management, vehicle routing, etc. 

In the setting considered in this thesis,  when the system is in a given state,  the 

decision-maker choses an action. After a finite amount of time elapses, the system 

transitions to a new state where the decision-maker then selects a new action for the current 

state in which the system finds itself. These transitions usually have a cost or a reward 

associated with them. However, under the SMDP property, the probability of transition 
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from state to state relies only on the current state and the action being chosen in that state; 

increasing the reward or cost associated with these decisions does not affect the probability 

of transitions. This important property is key to using DP (Gosavi, 2014b). It should be 

noted that extensions of DP techniques meant for MDPs are also useful in solving SMDPs. 

The two well-known DP methods include value iteration and policy iteration. Value 

iteration, which is more popular because it is easier to code and understand, is studied in 

this work. 

“DP, developed by Bellman (1957) and Howard (1957), is a field that provides 

algorithms” to solve MDPs/SMDPs (Gosavi, 2014b). This work led to the creation of the 

famous Bellman equation for optimality. Related equations developed by Howard (1957) 

are called the Poisson equation or the Bellman equation for a given policy (Gosavi, 2014b). 

DP methods are effective on problems in which the best decisions can be found 

sequentially. Using the Bellman optimality equation, a number of optimization problems 

useful for solving many real-world problems can be constructed. To apply these DP 

models, one needs 

• The set of possible states visited by the system 

• The set of possible actions allowed in each state 

• TPs for each action 

• The transition reward function for each action 

• The transition time function for each action 

DP is a very useful and effective tool. However, it can be limited by the size of the system. 

It can be effective in systems with relatively few states, e.g. up to 100. However, it begins 

to break down beyond a few states. A system with 1000 states would yield a TP matrix that 
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contains 1000 x 1000 elements. Computers are generally not capable of storing matrices 

exceeding a million elements. Also, creating TPs for real world systems can quickly 

become very tedious. Further, creating the TPs for these systems is often not a 

straightforward process, especially for systems with numerous input random variables. 

Solving MDPs/SMDPs without generating the TPs for the system is clearly hence a 

desirable goal, thereby providing motivation for RL. (Gosavi, 2014b). 

RL, as stated earlier, is a simulation based technique that seeks to solve 

“MDPs/SMDPs when TPs are not available” (Ghosh, 2013) or are not obtainable in 

practice.  The usage of RL techniques allows the study of the effect of actions on the 

system. These simulated results yield net cumulative rewards earned during a state-

transition.  

RL has gained a significant amount of popularity in the artificial intelligence and 

machine learning communities. It has been able to find optimal or near-optimal solutions 

for systems that DP cannot be applied. As stated above, R-SMART, an existing RL 

algorithm for solving average reward SMDPs, is known to converge to near-optimal 

solutions for large-scale systems. However, it requires a so-called exploration rate that 

needs to decay with time. This tuning parameter, i.e., the exploration rate, makes the 

algorithm less than ideal in terms of practical applications.  The iSMART algorithm 

proposed here seeks to alleviate this difficulty by eliminating this tuning parameter 

altogether from the algorithm, instead using a constant exploration rate. The iSMART 

algorithm will be discussed in much greater detail later in the thesis.  
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2.2. TPM  

 

TPM originated from the fields of reliability and maintenance. These closely related 

fields have given birth to many standard engineering practices in numerous industries 

(McKone and Weiss, 1998). TPM takes a structured look at production systems in order to 

make scheduled maintenance a necessary part of the standard practices in production 

systems. TPM’s goal is to improve utilization of production resources (Ghosh, 2013). Thus, 

one major desirable end result of using TPM is to reduce the “frequency of repairs or 

unexpected failures of machines” (Ghosh, 2013); failures worsen lead times for production 

cycles, eventually increases the total operating costs (McKone and Weiss, 1998). 

As stated previously, TPM was first developed by the Japanese manufacturing industry in 

the 1970s. It was introduced to the United States in the late 1980s for a variety of reasons.  

TPM is usually implemented in multiple phases. Many cost-saving decisions can 

be made in the first two phases by taking different approaches to machine maintenance. 

Ultimately, these cost saving decisions focus on the idea of decreasing the mean and 

variance of the production life cycle time.  The lifecycle times can be reduced using a 

variety of strategies proposed in the literature, including “autonomous maintenance 

investment decisions to reduce inventory” (McKone and Weiss, 1997) and “one-time 

investments to improve process quality and reduce set up time” (Porteus, 1986). Also 

important to reducing life cycle costs is determining when to undertake maintenance. This 

decision-making problem can be modeled by Markov decision processes (Marcellus and 

Dada, 1994). McCall (1965) discusses two main maintenance models; policies for systems 

where the failure distributions are known and for systems where the failure distributions 

are unknown.   
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When the distributions are known the models can be broken down into two subsets. 

The first scenario is one where the system fails stochastically and the actual state is 

unknown. This means that maintenance can only happen when repair or inspection is 

scheduled, and uncertainty is due to the inability to predict the exact time of failure. The 

second sub-set presented in McCall (1965) has stochastic system failure, however, the 

actual state is known. This allows for immediate reaction to system failure. The uncertainty 

in this scenario comes from the inability to predict the exact time of failure. When the 

failure distributions are not known, there are many ways to handle the uncertainty. 

Jorgenson and McCall (1963) discusses methods for a variety of such scenarios.  

Basic practices of TPM are often referred to as elements or pillars of TPM. TPM is 

most effective when all of its eight pillars are present to support the practice 

(Sangameshwran and Ranganathan, 2002). By implementing these suggested pillars, as 

recommended by the Japan Institute of Plant Maintenance (JIPM), the following effects 

are often observed: increase in labor productivity, and reduced maintenance costs, 

production stoppages and downtimes (Ahuja and Khamba, 2008). These core TPM 

initiatives classified into the so-called eight pillars are as follows: Autonomous 

Maintenance; Focused Maintenance; Planned Maintenance; Quality Maintenance; 

Education and Training; Office TPM; Development Management; and Safety, Health and 

Environment HSE (Ireland and Dale, 2001; Shamsuddin et al., 2005; Rodrigues and 

Hatakeyama, 2006).  This eight-pillar approach is depicted in Figure 2.1 which also 

provides a visual representation of the central idea.  

As stated before, TPM has been found to be a very cost-effective tool for 

manufacturing operations with the ability to save firms millions of dollars.  However, 
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finding optimal solutions to maintenance problems with very large state spaces can be a 

challenging problem. Reinforcement Learning methods can offer innovative and effective 

ways to solve these large-scale problems. 

 
Figure 2.1: The Eight Pillars of TPM (Ahuja and Khamba, 2008) 

 

 

 

  



 

 

12 

3. TPM AND PRODUCTION INVENTORY SYSTEMS 

In this section, details of the TPM case study related to the PI system are provided. 

Consider the make-to-stock, single machine (Askin and Goldberg, 2002), PI system shown 

in Figure 3.1. This PI system produces a single product unit with the goal of meeting  the 

external demand. Since it is assumed that the system can fail, TPM methods can be used 

to decrease the cost of operation (Das and Sarkar, 1999). Also, the time between failures, 

which is a random variable, is not exponentially distributed; the distribution used in this 

case study is the gamma distribution. This makes it necessary to employ preventative 

maintenance (Lewis 1994) as a vehicle to reduce the downtime of the machine.  

 

 

Figure 3.1: A Schematic Representation of a Single Production Machine System (from 

Gosavi et al, 2002) 

The goal of the SMDP model is to optimize the maintenance schedule for the PI 

system in such a way that minimizes the net average cost of running the system. Indirectly, 
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by minimizing the net average cost of running the system, the frequency of machine 

failures is minimized while the number of production cycles completed before preventive 

maintenance needs to be performed is maximized. In these types of production systems, 

when a manager decides that PM needs to take place, the system must be shut down for 

maintenance.  The time interval after which the system must be shut down for maintenance 

varies from machine to machine and usually acquires a unique value for each machine 

depending on its failure characteristics. When a machine is down for maintenance, 

inventory cannot be produced. When the system is not creating inventory, it may become 

impossible to meet demands. This is why in addition to actual monetary costs, maintenance 

has an unmeasured opportunity cost associated with it. Thus, maintenance must be 

carefully planned so that machines are not over-maintained.  

The so-called production cycle associated with the machine ends after one unit of 

the product has been manufactured. With every consecutive completed production cycle 

that has occurred without any maintenance or repairs, the probability of system failure 

generally increases. In this work, the number of consecutive production cycles completed 

without maintenance is used as a performance metric.  This will be discussed in more detail 

in the results section. 

As stated previously, a major advantage of using RL methods to solve PI system 

problems is the ability to use simulation-based techniques, which can be used on complex 

real-world problems for which analytical models do not exist. To generate the PI system 

simulator, a series of distributions are needed for a variety of different inputs to the model 

including: the production times, the repair times, the maintenance times, the time between 
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demands, and the time between failures. Each of these random variables is customizable 

and allows for a variety of different distributions to be tested relatively easily.  

The production times, the time between failures, and the repair times for this model 

are assumed to belong to the Erlang distribution.  The Erlang distribution is very 

customizable. This distribution allows the user to alter both the shape and scales in such a 

way that allows the model to be very flexible. Having this flexibility is key in creating a 

robust simulation. The Erlang distribution is a two-parameter family of continuous 

probability distributions where the random variable’s value is always greater than or equal 

to 0. The two parameters used in this distribution are the “shapes” (k) and the “rates” (λ). 

Often in place of the ‘rate’, the so-called scale, denoted by (1/ λ), is used. The scale is 

simply the inverse of the rate.  

The time between demands is modeled using the exponential distribution. The 

exponential distribution can be viewed as a special case of the Erlang distribution in which 

the shape parameter (k) is equal to one and the rate is altered to change the values of the 

distribution.  

The Production-Inventory system is of the make-to-stock kind where the unit 

produced after completion of a production cycle is placed in the (finished product) 

inventory buffer. When a demand arrives, the demand is satisfied, and the inventory buffer 

is depleted by one if there the buffer is not empty. However, if there is no inventory in the 

buffer, the demand cannot be satisfied and the opportunity to sell a product is lost. In this 

case study, the assumption is that the demand does not wait until there is inventory to 

satisfy the demand, it simply leaves unsatisfied. There are upper and lower limits associated 

with the inventory buffer; this implies that when the buffer reaches its upper limit, 
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production is stopped and is not started again until the buffer reaches its lower limit. When 

the upper limit is reached, the system goes on “vacation”. This means that the system does 

not continue to create inventory, and is on down time until enough demand has arrived to 

satisfy the condition defined by the lower inventory buffer limit.  

A fixed profit is associated with each demand satisfied. Fixed costs are also 

assigned to maintenance and repair costs. The profit for a demand satisfied and costs 

associated with maintenance and repair are also customizable parameters of the PI system 

simulation.  This allows for multiple cost benefit ratios to be tested.  It is also assumed that 

after the system is maintained or repaired, it delivers the same performance as a totally new 

machine or system.   

The state of the PI system is defined by (𝜑, 𝜔), where 𝜑 denotes the number of 

consecutive production cycles completed without repair or maintenance and 𝜔 denotes the 

number of units in the buffer. After every successful production cycle, a decision must be 

made to either produce a product or maintain the machine. Thus, there are two actions that 

can be taken: either (1) produce or (2) maintain. Production can only be chosen when the 

inventory buffer is below the upper limit (U); otherwise, the system will “go on vacation.” 

The system will stay on vacation until demands arrive and lower the amount of inventory 

in the buffer to its lowest limit (L) at which the production must start.  

The different possible transitions are described next. The system can either progress 

from (𝜑 =  𝑖) to (𝜑 =  𝑖 + 1) by selecting the action of production and successfully 

completing the production cycle, or it can progress from (𝜑 =  𝑖) to (𝜑 =  0) if the machine  
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fails during the production cycle. When the action maintain is chosen, the system will go 

from (𝜑 =  𝑖) to state (𝜑 =  0). When a failure occurs, the system also goes from its current 

state to 𝜑 =  0.  
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4. iSMART ALGORITHM  

In this section, the iSMART algorithm is described in detail. A different version of 

this algorithm appeared in Ghosh (2013). This thesis proposes a new version of iSMART 

that does not employ the contraction factor originally found in Ghosh’s version of iSMART 

(Ghosh, 2013). Although iSMART is a variant of R-SMART (Gosavi, 2004), the new 

algorithm proposed here is expected to behave in a more robust manner in comparison to 

R-SMART. The reason for this is that “the decaying of the so-called exploration rate” 

needed for R-SMART is not needed here; R-SMART’s behavior depends on how well a 

tuning parameter, which determines the exploration rate, is gradually reduced (Ghosh, 

2013). Full exploration essentially allows the algorithm to select every action in each state 

with the same probability. Fixed exploration implies that the probability of selecting an 

action is not changed. Thus, full exploration implies fixed exploration but not vice-versa. 

In simulators, it is often easy to run the algorithm with full or fixed exploration.  

When a tuning parameter of this nature that controls the exploration is introduced 

into a RL algorithm, the algorithm can no longer be considered “fully exploratory”. 

Further, the decaying of the exploration itself typically requires a rule. R-SMART’s 

behavior depends on selecting the right rule for exploration, i.e., the right tuning of this 

exploration rate (parameter). This makes any algorithm with such a tuning parameter less 

robust in terms of its behavior. In fact, if the tuning is not done properly, R-SMART even 

fails to converge to optimal solutions on small problems.  Thus, a major contribution of 

this work is to present a new variant of R-SMART that performs with fixed exploration 
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and still manages to converge to optimal solution (problems with small state-spaces) or 

near-optimal solutions (problems with large state spaces).  

4.1. Q-LEARNING 

 

The iSMART algorithm is considered to be a Q-learning algorithm since it is based 

on value iteration, which is a dynamic programming technique. Value iteration, when used 

to solve average reward SMDPs (and MDPs also), requires a so-called “uniformizing” 

technique that requires transition probabilities (TPs). However, when these TPs are not 

known, RL can be applied because RL works in simulators and does not require the 

transition probabilities. RL algorithms based on value iteration require the so-called Q-

factors, and, in addition to these Q-factors, iSMART needs a dual image of the main Q-

factors, which are stored in two separate sets of iterates. These dual images will be called 

the R- and T-factors in this thesis.  This image (i) is the inspiration behind the suffix in the 

name iSMART. 

As stated before, like any other Q-learning algorithm, iSMART is based on value 

iteration. This allows the Bellman optimality equation to be the underlying foundation for 

determining the optimal solution using Q-learning algorithms. In other words, the solutions 

generated by iSMART are expected to reach those of the Bellman optimality equation, 

which is known to generate the optimal solution (Puterman, 1994). In this thesis the Q-

factor version of the Bellman optimality equation (Bellman, 1957) is needed, as follows in 

Equation (4.1). 
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𝑄(𝑖, 𝑎) =  ∑ 𝑝(𝑖, 𝑎, 𝑗) [𝑟(𝑖, 𝑎, 𝑗) −  𝜌∗𝑡(𝑖, 𝑎, 𝑗) + 𝑚𝑎𝑥
𝑏∈𝒜

𝑄(𝑗, 𝑏)]  |𝑆|
𝑗=1         (4-1) 

for all i ∈ S and a ∈ 𝒜(i). 

Using the above equation, a value iteration update can be derived, which is as 

follows: 

𝑄(𝑖, 𝑎) ←  ∑ 𝑝(𝑖, 𝑎, 𝑗) [𝑟(𝑖, 𝑎, 𝑗) −  𝜌∗𝑡(𝑖, 𝑎, 𝑗) + 𝑚𝑎𝑥
𝑏∈𝒜(𝑖)

𝑄(𝑗, 𝑏)] 
|𝑆|
𝑗=1                      (4-2) 

for all 𝑖 ∈ 𝑆 and 𝑎 ∈ 𝒜(𝑖). 

However, it should be noted that the above equation is difficult to use in practice 

because ρ* is not known from the start. In order to resolve this issue, the following equation 

can be used. For  all 𝑖 ∈ 𝑆 and 𝑎 ∈ 𝒜(𝑖), 

𝑄(𝑖, 𝑎) ←  ∑ 𝑝(𝑖, 𝑎, 𝑗) [𝑟(𝑖, 𝑎, 𝑗) −  �̃�𝑡(𝑖, 𝑎, 𝑗) + 𝑚𝑎𝑥
𝑏∈𝒜(𝑖)

𝑄(𝑗, 𝑏)] 
|𝑆|
𝑗=1 .           (4-3) 

In the above equation, �̃� denotes an estimate of ρ* where �̃� is slowly updated and 

should eventually converge to ρ*. Note that this term, ρ, is an estimate of the current average 

reward. Due to this, iSMART will not only update Q-factors, but it will also need to update 

values of ρ. The update of will take place using the so-called “mirror image” concept 

discussed above.  

The mirror image will constitute of R and T factors that will essentially pursue the 

greedy action stored in the Q-factors, i.e., the first set of iterates. A separate set of R and T 

factors will be used to update on a second time scale, which will use a different step size 

and follow the greedy policy from the first set of iterates. Using this mirror image ensures 

that if (𝑖 ∗, 𝑎 ∗) denotes a distinguished state-action pair frequently visited in the simulator, 
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then 𝑅(𝑖 ∗, 𝑎 ∗)/𝑇(𝑖 ∗, 𝑎 ∗) should converge to ρ* in the limit, i.e., as the number of 

iterations converges to infinity. Note that the following description of the algorithm follows 

that of Ghosh (2013), with a notable difference that the contracting factor η used there is 

eliminated here. Eliminating the contracting factor, i.e., setting η = 1, makes a big 

difference to the computational performance of the algorithm, which was never tested in 

Ghosh (2013) on large-scale problems. The iSMART algorithm was tested on only small-

scale problems in Ghosh (2013).  

4.2. iSMART ALGORITHM  

 

A step-by-step explanation of the iSMART algorithm will now be presented. A 

schematic of the process is provided in Figure 4.1. 

Step 1: Set the number of iterations, k, to 1. Set 𝜌𝑘  =  0, where  𝜌𝑘 is the estimation of the 

optimal average reward in the kth iteration. Set 𝑄𝑘(𝑖, 𝑎), 𝑅𝑘(𝑖, 𝑎), and 𝑇𝑘(𝑖, 𝑎) to 0 for all 

𝑖 ∈ 𝑆 and all 𝑎 ∈ 𝒜(𝑖). Set 𝑘𝑚𝑎𝑥 to a large number that will allow the algorithm to 

successfully explore all states and actions. Set (𝑖 ∗, 𝑎 ∗) to any state-action pair in 

𝑆 ×  𝒜 (preferably a state-action pair that is visited frequently such as (0,1).) 

Step 2: Start the system simulation at an arbitrary state i. Select an action with a probability 

of 
1

|𝒜(𝑖)|
. Note that this probability is the exploration rate that was discussed before. This 

probability is never changed during the course of the algorithm, but may have to be set to 

a value other than 
1

|𝒜(𝑖)|
, depending on the nature of the problem. This will be discussed in 

more detail later in the work. 
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Figure 4.1: Simulation/Algorithm Schematic 

 

Step 3: Simulate action a. Let the next state be denoted by j. Let 𝑟(𝑖, 𝑎, 𝑗) denote the 

immediate reward from state i to state j under action a. Also let 𝑡(𝑖, 𝑎, 𝑗) denote the time 

spent under the same state-action transition.  

Step 4: Update the Q-factor via Equation (4.4). The term α is a step size that should be 

chosen suitably, and must remain positive. In this work, multiple step sizes were tested. 

Only the most effective step size was reported.  

𝑄𝑘+1(𝑖, 𝑎) ← [1 − 𝛼𝑘]𝑄𝑘(𝑖, 𝑎) + 𝛼𝑘 [𝑟(𝑖, 𝑎, 𝑗) − 𝜌𝑘𝑡(𝑖, 𝑎, 𝑗) + 𝑚𝑎𝑥
𝑏∈𝒜(𝑗)

𝑄(𝑗, 𝑏)]                        (4.4)                       

Step 5: Compute µk+1, where µk+1 = arg 𝑚𝑎𝑥𝑎∈𝒜(𝑖)Q
k+1(i, a) for all 𝑖 ∈ 𝑆. 

Step 6: If 𝑎 ∈ arg max𝑎∈𝒜(𝑖)𝑄𝑘+1(𝑖, 𝑎) (i.e., the action selection was a greedy one), update 

Rk(i,a) and Tk(i,a) as follows via Equations (4.5) and (4.6), respectively. The term β is a 

step size that should be chosen suitably, and must remain in the interval (0,1).   

𝑅𝑘+1(𝑖, 𝑎) ← [1 − βk]Rk(𝑖, 𝑎) + β𝑘 [𝑡(𝑖, 𝑎, 𝑗) −  𝑅𝑘(𝑖∗, 𝑎∗) + 𝑚𝑎𝑥
𝑏∈𝒜(𝑗)

𝑅𝑘(𝑗, 𝑏)]                        (4.5)   
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𝑇𝑘+1(𝑖, 𝑎) ← [1 − 𝛽𝑘]𝑇𝑘(𝑖, 𝑎) + 𝛽𝑘 [𝑡(𝑖, 𝑎, 𝑗) − 𝑇𝑘(𝑖∗, 𝑎∗) + 𝑚𝑎𝑥
𝑏∈𝒜(𝑗)

𝑇𝑘(𝑗, 𝑏)]                       (4.6)                              

Step 7: Update ρk+1 using Equation (4.7) as follows: 

𝜌𝑘+1 =  Rk+1(i∗, a∗)/Tk+1(i∗, a∗).           (4.7) 

Step 8: If k < kmax, set 𝑖 ← 𝑗 and k ← k+1 and return to Step 2. Otherwise, continue to Step 

9. 

Step 9: For each  𝑙 ∈ 𝑆, compute 𝑑(𝑙) ∈ arg max𝑎∈𝒜(𝑙)𝑄𝑘(𝑙, 𝑏). The policy returned by 

the algorithm is d, where action in state l is given by 𝑑(𝑙).  
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5. NUMERICAL RESULTS 

In this section, the numerical results produced by iSMART are detailed for (i) a 

small-scale SMDP with only four state-action pairs and (ii) a PM case study discussed in 

the TPM section with a maximum of approximately 30 million state-action pairs. For the 

SMDP small-scale systems, four cases were studied. For the PM case study, thirteen cases 

were investigated. These thirteen cases are classified into “small” time-between-failure 

cases and “large” time-between-failure cases. Data for these thirteen cases that were 

studied were obtained from the literature (Das and Sarkar, 1999). A subset of these results 

were presented in Encapera and Gosavi (2017).   

The rest of this section is organized as follows. Section 5.1 contains details of the 

small-scale SMDP. Section 5.2 describes the numerical results obtained with the small 

time-between-failure cases for the TPM case study, while Section 5.3 describes the same 

for the large time-between failure cases.  

 

5.1. SMALL-SCALE SMDP SYSTEMS 

 

The input data for each of the four small-scale case studied is provided in the 

Subsections 5.1.1 through 5.1.4. In each of these subsections, Pa, TRMa, and TTMa denote 

the transition probability matrix, transition reward matrix, and transition time matrix for 

action a, respectively. Note that 𝑃𝑎 (𝑖, 𝑗) = 𝑝(𝑖, 𝑎, 𝑗), where 𝑃𝑎 (𝑖, 𝑗) denotes the element in 

the ith row and jth column of the matrix 𝑷𝒂. Similarly, 𝑇𝑅𝑀𝑎 (𝑖, 𝑗) = 𝑟(𝑖, 𝑎, 𝑗), where  
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𝑇𝑅𝑀𝑎 (𝑖, 𝑗) denotes the element in the ith row and jth column of the matrix 𝑇𝑅𝑀𝑎; and 

𝑇𝑇𝑀𝑎 (𝑖, 𝑗) = 𝑡(𝑖, 𝑎, 𝑗), where 𝑇𝑇𝑀𝑎 (𝑖, 𝑗) denotes the element in the ith row and jth column 

of the matrix 𝑇𝑇𝑀𝑎. 

5.1.1. System 1. 

  𝑃1 = [
0.7 0.3
0.4 0.6

] 𝑃2 = [
. 9 . 1
. 2 . 8

] 

 𝑇𝑅𝑀1 = [
6 −5
7 12

] 𝑇𝑅𝑀2 = [
10 17

−14 13
] 

𝑇𝑇𝑀1 = [
10 5

120 60
] 𝑇𝑇𝑀2 = [

50 75
7 2

] 

5.1.2. System 2. 

 𝑃1 = [
0.7 0.3
0.4 0.6

] 𝑃2 = [
. 9 . 1
. 2 . 8

] 

𝑇𝑅𝑀1 = [
6 5
7 12

]   𝑇𝑅𝑀2 = [
10 17
14 13

] 

𝑇𝑇𝑀1 = [
10 5

120 60
] 𝑇𝑇𝑀2 = [

5 75
7 20

] 

5.1.3. System 3. 

𝑃1 = [
0.7 0.3
0.4 0.6

] 𝑃2 = [
. 9 . 1
. 2 . 8

] 

𝑇𝑅𝑀1 = [
6 −5

70 12
] 𝑇𝑅𝑀2 = [

12 17
6 13

] 

 𝑇𝑇𝑀1 = [
10 5

120 60
] 𝑇𝑇𝑀2 = [

50 75
7 20

] 

5.1.4. System 4. 

  𝑃1 = [
0.7 0.3
0.4 0.6

]  𝑃2 = [
. 9 . 1
. 2 . 8

] 

 𝑇𝑅𝑀1 = [
16 5
75 120

] 𝑇𝑅𝑀2 = [
80 10
6 1

] 
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 𝑇𝑇𝑀1 = [
10 5

120 60
] 𝑇𝑇𝑀2 = [

50 75
7 20

] 

5.1.5. Numerical Results.   The results of using the new algorithm on simulators 

written in MATLAB and run on a 2.60 GHz Intel Core i7-6700HQ processor on a 64-bit 

Windows operating system.  Table 5.1 highlights the optimal policies for each SMDP 

system. These benchmark optimal polices were determined using policy iteration. Table 

5.1 includes the optimal polices using policy iteration iSMART was able to identify the 

correct optimal policy for all four small systems in the simulators.  

 

 

Table 5.1: Results from Small-scale SMDPs 

 

 

 

5.2. SMALL-SCALE PM RESULTS 

 

The time between demand (TBD) arrivals follows the exponential distribution in 

this thesis, following the original source of data (Das and Sarkar, 1999). This is typical of 

a lot of work in supply chain management, where it has been found that demand size over 

long intervals of time follows the normal distribution. The normal distribution can be 

approximated by the Poisson distribution for the number of arrivals, which implies that the 

SMDP 

system

Optimal 

Policy

1 (1,2)

2 (2,2)

3 (1,1)

4 (2,1)
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time between demand arrivals has to be exponentially distributed. Here µ will denote the 

mean rate of arrival; the mean for the exponential distributed inter-arrival time will be 1/µ. 

It has been shown that when the system experiences increasing failure rates, i.e., as time 

progresses the probability of failure increases, then gamma distributions are good models 

(Lewis, 1994). Due to this fact, the Erlang distribution is often used to model time between 

failures. In the case study used (Das and Sarkar, 1999), the Erlang distribution is used for 

the time between failures and also for the time of production and the repair time. The Erlang 

distribution is one whose pdf resembles that of a hill and is of a general nature that can 

accommodate many distributions that have a double tapering nature. The mean of the 

Erlang distribution (n, λ) is given by n/λ, and the variance is given by n/λ2. By looking at 

the mean time between failures, the classifications for “small” PM cases and “large” PM 

cases can be made. The small cases as seen in Table 5.2 have mean time between failures 

(MTBF) 100 time units or less. If the MTBF is greater than 100, it is considered a large 

case. Here, the maintenance time, or the time it will take to complete maintenance 

activities, will be assumed to follow a uniform distribution (a,b). The inventory limit is 

defined by the upper and lower bounds (L, U). These inputs for the different small and 

large case systems studied are specified in Table 5.2 and Table 5.3 respectively. The cost 

values used for the simulations include the cost of maintenance, cost of repair, and profit 

from a unit sale. Although all values in the following table are positive, the simulation 

treats costs as negative profits. There are three different cost structures used to study the 

effectiveness of the iSMART algorithm. These three cost structures are defined in Table 

5.4. 
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The cost values used for the simulations include the cost of maintenance, cost of 

repair, and profit from a unit sale. Although all values in the following table are positive, 

the simulation treats costs as negative profits. There are three different cost structures used 

to study the effectiveness of the iSMART algorithm. These three cost structures are defined 

in Table 5.4. 

 

Table 5.2: Small-Scale PM Input Parameters 

 

 

Table 5.3: Large-Scale PM Input Parameters 

 

 

System Time Bet. 

Demands 

(1/μ)

Time Bet. 

Failure (n,λ)

Time for 

Production 

(n,λ)

Maint. Time (a,b ) Repair Time 

(n,λ )

Inventory Limits 

(L,U )

1 10 (8,0.08) (8,0.8) (5,20) (2,0.01) (2,3)

2 5 (8,0.08) (8,0.8) (5,20) (2,0.01) (2,3)

3 7 (8,0.08) (8,0.8) (5,20) (2,0.01) (2,3)

4 15 (8,0.08) (8,0.8) (5,20) (2,0.01) (2,3)

5 20 (8,0.08) (8,0.8) (5,20) (2,0.01) (2,3)

6 10 (4,0.1) (8,0.8) (5,20) (2,0.01) (2,3)

7 10 (4,0.08) (8,0.8) (5,20) (2,0.01) (2,3)

8 10 (8,0.08) (4,0.4) (5,20) (2,0.01) (2,3)

9 10 (8,0.08) (8,0.8) (2,10) (2,0.01) (2,3)

10 10 (8,0.08) (8,0.8) (5,20) (1,0.05) (2,3)

System Time Bet. 

Demands 

(1/μ)

Time Bet. 

Failure (n,λ)

Time for 

Production 

(n,λ)

Maint. Time (a,b ) Repair Time 

(n,λ )

Inventory Limits 

(L,U )

11 10 (4,0.01) (8,0.8) (5,20) (2,0.01) (2,3)

12 10 (8,0.008) (8,0.8) (5,20) (2,0.01) (2,3)

13 10 (8,0.08) (4,0.8) (5,20) (2,0.01) (2,3)
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Table 5.4: Cost and Profit Parameters 

 

 

 

The results obtained from the iSMART algorithm are provided in the form of an 

optimal policy and the average reward. The optimal policy for each system is denoted by 

3 integers: (𝑖1, 𝑖2, 𝑖3). This notation implies that if the inventory level is c, the optimal action 

is to produce until the production count is less than 𝑖𝑐  and to maintain when the production 

count equals 𝑖𝑐 for c = 1, 2, and 3. This can be better explained via Figure 5.1 where the y-

axis is the production count at which maintenance should be performed, and the x-axis is 

the inventory level. In this example, the optimal solution would be recorded as (8,6,4). This 

means that when the inventory level is 1, the system should be maintained after 8 

production cycles; if the inventory level is 2, the system should be maintained after 6 

production cycles; when the inventory level is 3, the system should be maintained after 4 

production cycles. The optimal policy description given here and displayed in this work 

omits inventory levels of 0 because when the inventory level is 0, the optimal action will 

always be to produce (Das and Sarkar, 1999).  

 

Cost Structure (CS) CS 1 CS 2 CS 3

Maintanance Cost (Cm) 2 2 1

Repari Cost (Cr) 5 10 10

Unit Profit 1 0.5 100
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Figure 5.1: Optimal Maintenance Policies Based on Production Cycles and Inventory 

Levels Example 

 

 

The so-called exploration rate used in the experimentation is also provided in the 

tables related to the results. The exploration rate is the probability that the production action 

will be selected by the action selector during the simulation. Also critical for the 

algorithm’s success are the so-called step sizes, represented by α and β.  The same step 

sizes are used for both large and small systems, as well as in all three cost structures. These 

step-sizes, α and β, are given by Equations (5-1) and (5-2) respectively.   

 

α = 150/(300+k)        (5-1) 

β = 10/(300+(3*k))       (5-2) 

 

In the above equations, k is the current time point in the simulation. Due to this, these step 

sizes approach zero as the simulation progresses. 
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The optimal policy can be found by inspecting the Q-values (see Step 8 in the 

iSMART algorithm in Section 4 for additional details). The algorithm was implemented in 

the simulator for a duration of 1 million time units for each system; this portion of the 

simulation is called the learning simulation phase. The optimal policy was computed from 

inspecting the Q-values found at the end the of learning simulation phase. The simulator 

was then run again using the optimal policy for 100,000 time units with 8 replications. This 

is called the frozen phase. The learning and frozen phases typically took 45 and 27 seconds, 

respectively, on a 2.60 GHz Intel Core i7-6700HQ processor on a 64-bit Windows 

operating system.  

The upper and lower bounds for 95% confidence intervals (CI) on the mean average 

reward (ρ) are also provided along the mean in the tables that depict the result. The optimal 

policies displayed for each system were obtained using DP (Das and Sarkar, 1999). In the 

small-scale PM systems using cost structure one, the values of ρ were obtained using DP 

(Das and Sarkar, 1999) However, the optimal values of ρ for all other systems and cost 

structures are found using the optimal policies in the frozen phases. This helps eliminate 

simulation error when comparing optimal values  

The exploration rates theoretically should be at 0.5 when there are two actions. 

However, in our experiments, for most of our systems, a higher probability (0.65) was used 

for the production action to ensure that the algorithm thoroughly explored the state-action 

space. In other words, during the simulation trials, these systems should be producing more 

frequently than they are being repaired or being maintained. In the large-scale PM systems, 

as defined earlier, where the mean time between failure (MTBF) is larger than that of the 

others (greater than 100 time units), the exploration rate needed to be adjusted to an even 
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greater probability (0.95). It can be concluded that systems with large MTBF values have 

optimal policies that are in states with large production counts, and without the bias towards 

production, the algorithm would never explore these states, which would cause the 

algorithm to converge to sub-optimal policies. 

To benchmark the effectiveness of iSMART, the R-SMART algorithm was tested 

using a standard decay of the exploration probability of 10/(100 + 𝑘), with a starting 

exploration probability of 0.99. This was done to demonstrate R-SMART’s dependency on 

a decaying exploration rate. However, fine-tuning the exploration can get R-SMART to 

deliver optimal performance. As stated earlier, the advantage of iSMART is that it does  

not require the fine tuning or decay of the exploration rate. Tables: 5.5:7 display the 

simulation results using iSMART and R-SMART for all small-scale cases and large-scale 

cases.   

 

Table 5.5: Results with Small-Scale System using CS1  

 

System Optimal ρ* Optimal Policy iSmart 

Exploration 

Rate

iSmart 

Policy

iSmart Mean (ρ) R- Smart 

Policy

R-Smart 

Exploration 

rate

R-Smart Mean (ρ)

1 0.0296 (6,5,5) 0.65 (6,5,6) 0.0296 ± 0.0015 (5,2,6) 0.99 0.0286 ± 0.0006

2 0.0237 (6,6,5) 0.65 (6,5,4) 0.0234 ± 0.0009 (4,4,4) 0.99 0.0244 ± 0.0006

3 0.0273 (6,5,5) 0.65 (5,5,6) 0.0283 ± 0.0009 (3,5,5) 0.99 0.0261 ± 0.0007

4 0.0267 (6,6,5) 0.65 (5,5,5) 0.0284 ± 0.0005 (4,2,6) 0.99 0.0205 ± 0.0003

5 0.0232 (6,6,6) 0.65 (6,6,4) 0.0232 ± 0.0007 (3,4,6) 0.99 0.0164 ± 0.0004

6 -0.0054 (4,4,4) 0.65 (3,3,6) 0 ± 0.0006 (3,2,3) 0.99 -0.0056 ± 0.0004

7 -0.00011 (4,4,4) 0.65 (4,4,5) -0.0001 ± 0.0007 (4,2,2) 0.99 -0.0005 ± 0.0005

8 0.0287 (6,6,5) 0.65 (5,4,5) 0.0295 ± 0.0006 (4,2,5) 0.99 0.0263 ± 0.0007

9 0.0261 (7,6,5) 0.65 (5,5,8) 0.0266 ± 0.0011 (3,5,12) 0.99 0.0218 ± 0.0004

10 0.0413 (8,8,6) 0.65 (6,6,6) 0.0417 ± 0.0006 (4,5,250) 0.99 0.0253 ± 0.0007
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Table 5.6: Results on Small-Scale Systems using CS2 

 

 

Table 5.7: Results on Small-Scale Systems using CS3   

 

 

 

iSMART’s performance under CS1 was very strong. Figure 5.2 below shows the 

proportion of small-scale MTBF systems studied under CS1 that either outperformed, 

matched, or performed worse than the optimal solutions found using DP for both iSMART 

and R-SMART-derived results.  Under these conditions, iSMART outperformed 50% of 

System Optimal ρ* Optimal Policy iSmart 

Explorati

on Rate

iSmart 

Policy

iSmart Mean (ρ) R- Smart 

Policy

R-Smart 

Explorati

on rate

R-Smart Mean (ρ)

1 -0.0046 ± 0.001 (6,5,5) 0.65 (5,6,7) -0.0035 ± 0.0004 (5,2,6) 0.99 -0.0066 ± 0.0004

2 -0.0108 ± 0.0005 (6,5,5) 0.65 (5,6,7) -0.0105 ± 0.0008 (4,3,12) 0.99 -0.0105 ± 0.0008

3 -0.0076 ± 0.0007 (6,6,5) 0.65 (6,6,6) -0.0076 ± 0.0007 (4,3,5) 0.99 -0.0071 ± 0.0008

4 -0.0022 ± 0.0007 (6,5,5) 0.65 (6,6,7) -0.0015 ± 0.0007 (4,2,3) 0.99 -0.0093 ± 0.0005

5 -0.0002 ± 0.0003 (5,5,5) 0.65 (5,5,6) -0.0002 ± 0.0003 (3,4,4) 0.99 -0.0069 ± 0.0002

6 -0.0335 ± 0.0010 (4,4,4) 0.65 (5,2,3) -0.0338 ± 0.0006 (2,4,250) 0.99 -0.0345 ± 0.0009

7 -0.0290 ± 0.0005 (4,4,4) 0.65 (5,4,4) -0.0290 ± 0.0005 (2,3,3) 0.99 -0.0310 ± 0.0012

8 -0.0047 ± 0.0007 (5,5,5) 0.65 (6,6,7) -0.0044 ± 0.0008 (3,3,10) 0.99 -0.0086 ± 0.0005

9 -0.0034 ± 0.0006 (5,5,5) 0.65 (5,5,5) -0.0034 ± 0.0006 (3,3,5) 0.99 -0.0061 ± 0.0004

10 -0.0055 ± 0.0013 (6,5,5) 0.65 (5,5,5) -0.0055 ± 0.0007 (4,4,7) 0.99 -0.0059 ± 0.0009

System Optimal ρ* Optimal Policy iSmart 

Exploration Rate

iSmart 

Policy

iSmart Mean (ρ) R- Smart 

Policy

R-Smart 

Exploration 

rate

R-Smart Mean 

(ρ)

1 -0.1682 ± 0.0053 (5,5,5) 0.65 (5,5,6) -0.1682 ± 0.0053 (2,3,100) 0.99 -0.194 ± 0.0039

2 -0.2418 ± 0.0045 (5,5,5) 0.65 (5,4,3) -0.243 ± 0.0062 (3,3,2) 0.99 -0.2391± 0.0034

3 -0.2064 ± 0.0030 (5,5,5) 0.65 (5,5,6) -0.2064 ± 0.0030 (3,4,250) 0.99 -0.2045 ± 0.0030

4 -0.1231 ± 0.0031 (5,5,5) 0.65 (5,5,6) -0.1231 ± 0.0031 (4,3,6) 0.99 -0.1331 ± 0.0037

5 -0.0934 ± 0.0029 (5,5,5) 0.65 (4,5,7) -0.0919 ± 0.0043 (2,3,4) 0.99 -0.1608 ± 0.0026

6 -0.3794 ± 0.0053 (3,1,1) 0.65 (2,2,2) -0.3818 ± 0.0057 (1,2,250) 0.99 -0.3790 ± 0.0072

7 -0.3488 ± 0.0113 (3,2,2) 0.65 (2,1,3) -0.3501 ± 0.0046 (1,2,4) 0.99 -0.3522 ± 0.0078

8 -0.1667 ± 0.0048 (5,5,5) 0.65 (4,4,4) -0.1669 ± 0.0034 (3,3,10) 0.99 -0.1758 ± 0.0047

9 -0.1527 ± 0.0087 (5,5,5) 0.65 (5,5,3) -0.1527 ± 0.0087 (2,3,3) 0.99 -0.1525 ± 0.0032

10 -0.2096 ± 0.0064 (4,4,4) 0.65 (4,4,4) -0.2096 ± 0.0064 (4,4,4) 0.99 -0.2096 ± 0.0064
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the small-scale MTBF systems, and statistically matched the optimal solutions on the 

remaining 50% using a 95% confidence interval. Under these conditions, R-SMART did 

not fare nearly as well. R-SMART only statistically outperformed the optimal solution on 

10% of the systems, matched on 10% of the systems, and statistically performed worse on 

the remaining 80% of the systems using CS1.  

 

Figure 5.2: R-Smart and iSMART’s Performance Compared to DP-Optimal Solutions 

CS1 

 

 

Under CS2, iSMART again performed very well. Figure 5.3 below shows the 

proportion of small-scale MTBF systems studied under CS2 that either outperformed, 

matched, or performed worse than the optimal solutions found using DP for both iSMART 

as well as R-SMART-derived results.  Under these conditions, iSMART out performed 

10% of the small-scale MTBF systems, and statistically matched the optimal solutions on  
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the remaining 90% using a 95% confidence interval. R-SMART did not outperform any 

optimal solutions, and statistically matched on only 40% of these systems. R-SMART 

performed statistically worse on the remaining 60% of these systems. 

 

 

Figure 5.3: R-Smart and iSMART’s Performance Compared to DP-Optimal Solutions on 

CS2 

 

 

Under CS3, iSMART performed adequately. Figure 5.4 below shows the proportion 

of small-scale MTBF systems studied under CS3 that either outperformed, matched, or 

performed worse than the optimal solutions found using DP for both iSMART as well as 

R-SMART derived results.  Under these conditions, iSMART statistically matched 100% 

of the optimal solutions using a 95% confidence interval. iSMART likely did not 

outperform any of the optimal solutions because of the little room for improvement CS3 

leaves. In this cost structure, the cost of repair is 100 times greater than the profit earned  
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from filling a demand. R-SMART did not outperform any optimal solutions, and 

statistically matched on only 60% of these systems. R-SMART performed statistically 

worse on the remaining 40% of these systems. 

 

 

Figure 5.4: R-Smart and iSMART’s Performance Compared to Small-Scale MTBF DP 

Optimal Solutions CS3 

 

5.3 LARGE-SCALE PM RESULTS 

 

The full results for the large-scale MTBF systems can be seen in Table 5.8.  

iSMART performed well in these systems. Figure 5.5 below shows the percentage of large-

scale MTBF systems studied under CS1, CS2, and CS3 that either outperformed, matched, 

or performed worse than the optimal solutions found using DP for both the iSMART and 

R-SMART derived results.  Under these conditions, iSMART out performed 11% of the 

large-scale MTBF systems, and statistically matched the optimal solutions on the  
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remaining 89% using a 95% confidence interval. R-SMART did not outperform any 

optimal solutions, and statistically matched on only 56% of these systems. R-SMART 

performed statistically worse on the remaining 44% of these systems. 

   

Table 5.8: Results on Large-Scale Systems for all Cost Structures 

 

 

 

  

Figure 5.5: R-SMART and iSMART’s Performance Compared to DP Optimal Solutions 

 

System Optimal ρ* Optimal Policy iSmart 

Explorati

on Rate

iSmart 

Policy

iSmart Mean (ρ) R- Smart 

Policy

R-Smart 

Explorati

on rate

R-Smart Mean 

(ρ)

CS1-11 0.0616 ± 0.0016 (21,19,13) 0.95 (21,19,8) 0.0616 ± 0.0016 (42,40,39) 0.99 0.0577 ± 0.0005

CS1-12 0.0754 ± 0.0008 (63,59,41) 0.95 (58,57,69) 0.0758 ± 0.0009 (51,42,53) 0.99 0.0763 ± 0.0005

CS1-13 0.0655 ± 0.0006 (11,10,9) 0.95 (12,10,7) 0.0655 ± 0.0013 (9,5,7) 0.99 0.0643 ± 0.0008

CS2-11 0.0235 ± 0.0004 (19,18,15) 0.95 (19,20,22) 0.0235 ± 0.0011 (5,9,14) 0.99 0.0119 ± 0.0003

CS2-12 0.0354 ± 0.0006 (57,54,42) 0.95 (45,47,40) 0.0356 ± 0.0004 (60,57,46) 0.99 0.0356 ± 0.0004

CS2-13 0.0205 ± 0.0003 (11,10,10) 0.95 (10,10,8) 0.0205 ± 0.0008 (6,6,9) 0.99 0.0149 ± 0.0003

CS3-11 -0.0094 ± 0.0042 (15,14,14) 0.95 (14,14,19) -0.0094 ± 0.0038 (5,15,22) 0.99 0.0119 ± 0.0003

CS3-12 0.0565 ± 0.0018 (47,45,35) 0.95 (38,61,52) 0.0570 ± 0.0011 (73,45,54) 0.99 0.0358 ± 0.0004

CS3-13 -0.0762 ± 0.0047 (27,9,9) 0.95 (6,6,8) -0.0638 ± 0.0018 (6,6,7) 0.99 0.0149 ± 0.0003
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6. CONCLUSIONS AND FUTURE WORK 

This thesis proposed a new version of a RL algorithm known as R-SMART. The 

new version is called iSMART, and is based on a Q-factor version of the Bellman 

optimality equation (Bellman, 1957) that also uses a mirror imaging principle and is 

designed to overcome a critical deficiency of R-SMART, i.e., the need for decaying 

exploration. The proposed algorithm works with a fixed exploration rate. In particular, the 

SMART family of algorithms has been used gainfully on problems from the domain of 

TPM. TPM is known to save firms millions of dollars over the years for production firms. 

Without a TPM program, most production firms suffer from excessive downtimes, which 

can result in missing deadlines and increased costs of repairs. Therefore, iSMART was also 

implemented for solving TPM problems in production-inventory systems.  

In the experiments conducted, iSMART was able to generate solutions that were 

statistically more profitable than the “optimal” solutions obtained from DP for 18% of all 

systems tested, and was statistically equivalent to optimal solutions obtained from DP for 

the other 82%.   

Scope for future work: A natural extension of this work would be to increase 

inventory limits on the systems studied to test the algorithm’s ability to handle systems 

with even larger state-action spaces. In future work, mathematical convergence of the 

iSMART algorithm should also be studied. Further, studying non-Poisson arrivals and 

multiple machines will lead to other exciting avenues for future research.  
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