
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2017

Multiple security domain nondeducibility air traffic surveillance Multiple security domain nondeducibility air traffic surveillance

systems systems

Anusha Thudimilla

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Thudimilla, Anusha, "Multiple security domain nondeducibility air traffic surveillance systems" (2017).
Masters Theses. 7725.
https://scholarsmine.mst.edu/masters_theses/7725

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7725?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7725&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY

AIR TRAFFIC SURVEILLANCE SYSTEMS

by

ANUSHA THUDIMILLA

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER SCIENCE

2017

Approved by

Dr. Bruce McMillin, Advisor
Dr. Daniel Tauritz

Dr. Jennifer Leopold

Copyright 2017

ANUSHA THUDIMILLA

All Rights Reserved

iii

ABSTRACT

Traditional security models partition the security universe into two distinct and

completely separate worlds: high and low level. However, this partition is absolute and

complete. The partition of security domains into high and low is too simplistic for more

complex cyber-physical systems (CPS). Absolute divisions are conceptually clean, but they

do not reflect the real world. Security partitions often overlap, frequently provide for the

high level to have complete access to the low level, and aremore complex than an impervious

wall. The traditional models that handle situations where the security domains are complex

or the threat space is ill defined are limited to mutually exclusive worlds. These models

are limited to accepting commands from a single source in a system but the CPS accepts

commands from multiple sources.

This paper utilizesMultiple SecurityDomainNondeducibility (MSDND) as amodel

to determine information flow among multiple partitions, such as those that occur in a CPS.

MSDND is applied to selected aspects of Traffic Collision and Avoidance System (TCAS)

and Automatic Dependent Surveillance-Broadcast (ADS-B) air traffic surveillance systems

under various physical and cyber security vulnerabilities to determine when the actual

operational state can, and cannot be, deduced. It is also used to determine what additional

information inputs and flight physics are needed to determine the actual operational state.

Several failure scenarios violating the integrity of the system are considered with mitigation

using invariants.

iv

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Bruce

McMillin for the continuous support of my Master’s study and research, for his immense

knowledge, motivation, enthusiasm, and patience. His guidance helped me in all the time

of research and writing of this thesis. I could not have imagined having a better advisor and

mentor for my Master’s study.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Daniel Tauritz and Dr. Jennifer Leopold, for their insightful comments and encouragement

and for the inputs they have provided which helped me to widen my research from various

perspectives.

I would like to thank my fellow research students Prakash Rao Dunaka and Uday

Ganesh Kanteti for their inputs, feedback, and cooperation. Without their passionate

participation and input, this project could not have been successfully completed. In addition,

I would like to express my gratitude to some of the staff of the Computer Science department

Dawn Davis and Rhonda Grayson for responding to all my queries.

Also, I would like to thank my friends for accepting nothing less than excellence

from me. Finally, I must express my very profound gratitude to my parents for providing

me with unfailing support and continuous encouragement throughout my years of study and

through the process of researching and writing this thesis. This accomplishment would not

have been possible without them. Thank you.

A very special gratitude goes out to all down at National Institute of Standards

and Technology, Grant Number 60NANB15D236 and with support from the Missouri

S&T Intelligent Systems Center and the US National Science Foundation, Award Number

CNS-1505610 for helping and providing the funding for the work.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . x

NOMENCLATURE . xi

SECTION

1. INTRODUCTION. 1

1.1. CYBER-PHYSICAL SYSTEMS . 2

1.2. NONDEDUCIBILITY AND SECURITY MODELS. 4

1.3. PROVERIF . 5

2. SYSTEM MODEL . 8

2.1. ADVERSARY AND ATTACK MODEL . 8

2.2. TRAFFIC COLLISION AND AVOIDANCE SYSTEM (TCAS). 9

2.3. AUTOMATIC DEPENDENT SURVEILLANCE BROADCAST (ADS-B) . . 10

2.4. PITOT STATIC SYSTEM .. 11

2.5. LIFT RESERVE INDICATOR (LRI) . 13

2.6. INERTIAL NAVIGATION SYSTEM (INS). 14

3. PROBLEM STATEMENT . 16

vi

4. RELATED WORK . 17

5. MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY. 18

5.1. MODAL LOGIC MODEL. 18

5.2. MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY MODEL. 18

5.3. DEFINITION: MULTIPLE SECURITY DOMAIN EXCLUSIVITY 19

5.4. DEFINITION: MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY . 19

5.5. LOCAL INVARIANTS . 20

5.6. DEFINITION: DF FUNCTION . 20

5.7. PROVERIF WITH RESPECT TO MSDND. 20

5.7.1. Reachability Property . 20

5.7.2. Observational Equivalence . 21

6. MODAL LOGIC WITH THE USE OF INVARIANTS . 24

6.1. RADAR TRANSPONDER FAILURE . 24

6.1.1. Scenario 1: Without Invariants . 24

6.1.2. Scenario 2: Using Invariants . 26

6.2. RADAR TRANSPONDER FAILURE AND TCAS . 29

6.2.1. Scenario 1: Without Using Invariants . 30

6.2.2. Scenario 2: Using Invariants . 32

6.3. ALTIMETER FAILURE. 35

6.3.1. Scenario 1: Without Using Invariants . 35

6.3.2. Scenario 2: Using Invariants . 38

6.4. PITOT STATIC SYSTEM FAILURE . 40

6.4.1. Scenario 1: Without Invariants . 41

6.4.2. Scenario 2: Using Invariants . 43

vii

6.5. ADS-B TRANSMITTER FAILURE. 48

6.5.1. Without Invariants . 48

6.5.2. Using Invariants . 50

6.6. ADS-B, INS AND ATTACKER . 53

6.6.1. Scenario 1: Without Using Invariants . 53

6.6.2. Scenario 2: Using Invariants . 55

6.7. ADS-B AND RF INTERFERENCE . 59

6.8. ADS-B AND SATELLITE FAILURE . 61

6.9. TCAS AND ATC CONTROLLER. 64

6.9.1. Scenario 1: Without Using Invariants . 64

6.9.2. Scenario 2: Using Invariants . 67

7. FUTURE WORK . 71

8. CONCLUSION . 73

APPENDICES

A. RADAR TRANSPONDER FAILURE . 74

B. RADAR TRANSPONDER FAILURE AND TCAS . 78

C. ALTIMETER FAILURE . 82

D. PITOT STATIC SYSTEM FAILURE . 85

E. ADS-B TRANSMITTER FAILURE . 89

F. ADS-B, INS AND ATTACKER . 93

G. ADS-B AND RF INTERFERENCE . 100

viii

H. ADS-B AND SATELLITE FAILURE . 104

I. TCAS AND ATC CONTROLLER . 108

BIBLIOGRAPHY . 112

VITA . 118

ix

LIST OF ILLUSTRATIONS

Figure Page

2.1 TCAS II Interacting Entities . 11

2.2 Communication Between Two TCAS Equipped Aircrafts . 12

2.3 ADS-B System . 13

2.4 Pitot Static System [1] . 14

5.1 9-Grid System . 22

6.1 Faulty Radar Transponder . 26

6.2 INS Helps Identify The Faulty Radar Transponder . 29

6.3 TCAS And Faulty Radar Transponder . 32

6.4 ADS-B Helps To Identify The Faulty Radar Transponder . 35

6.5 Faulty Altimeter . 38

6.6 INS Helps To Identify The Faulty Altimeter . 41

6.7 Pitot Static System Failure . 43

6.8 LRI Helps To Identify The Faulty Pitot Static System . 47

6.9 Failure In ADS-B Transmitter . 50

6.10 INS Helps To Identify The Failure In ADS-B transmitter. 53

6.11 Attacker Sends Fake Position Data To Pilot-1 . 56

6.12 TCAS Helps To Identify The Attacker Plane . 59

6.13 RF Interference . 61

6.14 Satellite Failure . 64

6.15 Conflict Between ATC And TCAS Commands . 66

6.16 ADS-B Helps Identify The Incorrect Commands From ATC. 70

x

LIST OF TABLES

Table Page

6.1 Radar Transponder Logical Conditions And States - Without Invariants 25

6.2 Radar Transponder Logical Conditions And States - Using Invariants 28

6.3 Radar And TCAS Logical Conditions And States - Without Invariants 31

6.4 Radar And TCAS Logical Conditions And States - Using Invariants 34

6.5 Altimeter Logical Conditions And States - Without Invariants . 37

6.6 Altimeter Logical Conditions And States - Using Invariants . 39

6.7 Pitot Static System Logical Conditions And States - Without Invariants 42

6.8 Pitot Static System Logical Conditions And States - Using Invariants 45

6.9 ADS-B Logical Conditions And States - Without Invariants . 49

6.10 ADS-B Logical Conditions And States - Using Invariants . 52

6.11 ADS-B And Attacker Logical Conditions And States - Without Invariants 54

6.12 ADS-B And Attacker Logical Conditions And States - Using Invariants 57

6.13 RF Interference Logical Conditions And States - Without Invariants 60

6.14 Satellite Failure Logical Conditions And States - Without Invariants 62

6.15 TCAS And ATC Logical Conditions And States - Without Invariants 65

6.16 TCAS And ATC Logical Conditions And States - Using Invariants 68

6.17 Summary Of The Attack Scenarios . 70

xi

NOMENCLATURE

SYMBOL DESCRIPTION

sx A boolean state variable, x is true or false

W The set of all possible worlds of the system

w A world of interest

R Transition

F Frame

M Model

SD Security Domain

df Tests whether event variable has a defined value

φ A boolean statement that can be evaluated

V i
x A valuation function of boolean x in domain i

p, p1, p2 Pilot

c Controller

t, t1, t2 TCAS reading

r ATC radar

x TCAS transponder

v INS velocity

d INS distance

a Altimeter

ps Pitot static system

L Airspeed value of LRI

δ Altitude of alternate static source

a1, a2 ADS-B-1 and ADS-B-2

i Invariant source

1. INTRODUCTION

The aviation industry is going through a major transformation to meet increasing

air traffic, societal, and business demands. Major transformation examples include the

e-enabled aircraft and next-generation air transport system [2, 3].

The e-enabled aircraft is envisioned as an intelligent nodewith seamlessmobility in a

global network of ground, air, space infrastructures [4, 5, 6, 7]. TheBoeingB787 is a seminal

example which combines the power of integrated information and communications systems

to drive operational efficiency, enhance revenue, and streamline airplanemaintenance. Next-

generation air transport systems are aimed at applying the cyber aspect to infrastructures,

hardware, personnel, and processes.

The increasing safety and security concerns, such as terrorism, deterioratingweather,

wildlife collisions, pilot , system malfunction and ground crew fatigue have become a

major concern for the Federal Aviation Administration (FAA). CPS [8] such as industrial

control systems are examples of such integration where the effects on the physical world

are controlled through the use of smart technologies operated by computers [9]. Air

transportation systems and airplanes are major CPS instantiations, and safety and security

are central requirements for enabling high confidence CPS [10].

Recent FAA regulations indicate that tight cyber-physical integrations, within air-

craft and between aircraft and offboard systems, warrant a surgical consideration of cyber-

physical interactions and potential performance risks from cyber and physical threats [4].

Hence, this paper proposes information flow security analysis of CPS for a foundational

understanding of information flow paths, risks and performance of air traffic surveillance

system’s cyber-physical integrations.

2

1.1. CYBER-PHYSICAL SYSTEMS

Cyber-Physical Systems (CPS) is an emerging vision for next-generation information

systems that boldly transform the way modern society perceives the physical world, lives,

moves, interacts in it, and systems on which human safety and public well being rests.

CPS represent a new generation of systems that integrate computing and communication

capabilities with the dynamics of physical and engineered systems.

CPS are susceptible to vulnerabilities such as defects in the platform, misconfig-

uration of the system, improper network connections and malware. Attackers can take

advantage of vulnerabilities in CPS to take control of the system. With physical manifesta-

tions in the real world, attacks on CPS can cause disruption to physical services or create

a national disaster. As a CPS requires a tight coupling between the physical and cyber

controlling components, it is crucial to ensure that the system is secure for all the cyber and

physical processes. Therefore, protecting the CPS against cyber attacks is of paramount

importance [8].

Traditional security methods can be applied to protect a CPS, such as a critical

infrastructure system, against cyber threats or threats imposed by malicious insiders and

attackers. However, due to the unique characteristics and complexity of a CPS, traditional

security models and approaches are insufficient to address the security challenges of a CPS

[11, 12, 13, 14, 15, 16]. For example, installing security patches or numerous system

updates that require taking the system offline is difficult, not economically justifiable, and

often infeasible. Also, new updates or security patches may create other problems such as

in a case where a nuclear power plant accidentally was shutdown after a software update

[17].

Information flow security in a CPS can lead to particularly complex security par-

titions i.e more than just high and low. Tools that work well with securing the cyber part

of the system rarely work well to keep the physically observable parts of the system from

leaking information. Physically locking the fence around the physical parts of the CPS

3

does not protect from a purely cyber attack. Typical electronic or cryptographic solutions

do not match specific cases closely enough to handle the cyber-physical interfaces as they

are mainly focused on cyber threat prevention and protection. A persistent attacker with

enough time and backing will get in.

A recent, comprehensive survey [18] includes 147 references to publications related

to information-flow security. The bulk of these papers are concerned with defining and

refining variations on noninterference, the fundamental information-flow property that es-

sentially requires that secret information not affect publicly observable behavior of a system.

Many of the remaining papers describe approaches to enforcing information-flow policies

using program analysis techniques. Yet despite this large body of literature and consider-

able, ongoing attention from the research community, information-flow based enforcement

mechanisms have not been widely used.

The real challenge in information-flow security is not in giving better, more precise

definitions of noninterference and related properties for more complicated combinations of

language features and system models. Nor is the real challenge implementing languages

that support information-flow policies; the programming languages Jif [19], and Flow Caml

[20, 21], provide high-level, realistic programming languages with support for sophisticated

information-flow controls. Although there are certainly interesting open questions in both its

theory and implementation, the real challenge for information-flow security is demonstrating

that all of this theory and these language designs are actually useful - the technology needs

to be applied to real problems, or, failing that, understand why such an appealing technology

is not useful in practice.

This thesis examines the current security models in practice for information-flow

technology and tries to identify some of the main obstacles of putting it into practice. It

also introduces a new information flow security model to minimize the shortcomings of the

traditional models. The developed model is used to analyze various components of avionic

systems and present solutions to mitigate the potential problems.

4

1.2. NONDEDUCIBILITY AND SECURITY MODELS

Nondeducibility (ND) was introduced by Sutherland [22] as an attempt to use

modal techniques to model data in a partitioned security system. The possible worlds

(e.g., state collections) of this model are partitioned into two disjoint sets and information

is restricted to one side of the partition or the other [23]. Information that could not be

inferred from the other side of the partition was determined to be Nondeducibility secure.

Overlapping security domains break Sutherland’s Nondeducibility as do information flows,

the correctness of the system cannot be evaluated because of the partitions [24].

A modal technique to model complex security domains, Multiple Security Domain

Model Nondeducibility (MSDND) was introduced. MSDND can model any system where

Sutherland Nondeducibility holds and complex systems where Nondeducibility cannot be

determined. MSDND models CPS well, even when the security domains overlap or the

boundaries are not ideal and leak [24]. Modal logic based models work well for systems

having valuation functions for the states but the complex cyber-physical systems leak in-

formation because the interactions between physical parts of the system can be watched

for changes. By their very nature, CPS are messy from a security domain view point.

Domains overlap, the boundaries are not clean (ideal boundaries cannot leak information),

and outside threats can leak into domains thought to be secure [24].

Computer security tools work best when secure domains are cleanly nested inside

less secure domains like a medieval castle with its outer walls and interior keep. This model

serves us well for most uses, but breaks down when applied to CPS. Because CPS typically

need to secure both data and information flow, the security domain picture gets complicated.

There is a need for tools that can model the cyber and physical components of CPS.

5

1.3. PROVERIF

In recent years, research has strongly shifted from manual proofs to automated

proofs of security. The verification step to ensure that a computer program, a protocol or a

CPS has certain requested properties is a crucial one, and this task should ideally be done by

formal reasoning, rather than by tests and simulations. There are two possible approaches

to protocol verification: the formal model and the computational model. The first model

is in a highly idealized setting and it can be effectively implemented using fully-automated

protocol verifiers. The second approach borrows ideas from complexity theory and requires

much more human intervention in proofs, and it is only recently being automated [25].

These verification techniques allow us to uncover design faults that may remain hidden for

years. In this thesis, Bruno Blanchet’s ProVerif [26, 27, 28] automates the MSDND process

and verifies the correctness of the system with the help of proofs.

ProVerif is a tool for automatically analyzing the security of cryptographic pro-

tocols. Support is provided for, but not limited to, cryptographic primitives including:

symmetric and asymmetric encryption; digital signatures; hash functions; bit-commitment;

and non-interactive zero-knowledge proofs. ProVerif is capable of proving reachability

properties, correspondence assertions, and observational equivalence. These capabilities

are particularly useful to the computer security domain since they permit the analysis of

secrecy and authentication properties. Moreover, emerging properties such as privacy,

traceability, and verifiability can also be considered. Protocol analysis is considered with

respect to an unbounded number of sessions and an unbounded message space. The tool is

also capable of attack reconstruction: when a property cannot be proved, ProVerif tries to

reconstruct an execution trace that falsifies the desired property.

The primary goal of ProVerif is the verification of cryptographic protocols. Cryp-

tographic protocols are concurrent programs which interact using public communication

channels such as the Internet to achieve some security-related objective. These channels are

assumed to be controlled by a very powerful environment which captures an attacker with

6

"Dolev-Yao" capabilities. A second class of models is used by the community of formal

methods, and includes typically the Dolev-Yao model [29] and the Spi-calculus [30]. By

focusing on the protocol layer, these models aim to account for a variety of attacks resulting

from complex interactions between an active attacker and a possibly unbounded number of

parallel sessions. Since the attacker has complete control of the communication channels,

the attacker may: read, modify, delete, and inject messages. The attacker is also able to

manipulate data, for example: compute the ith element of a tuple; and decrypt messages

if it has the necessary keys. The environment also captures the behavior of dishonest

participants; it follows that only honest participants need to be modeled [31]. ProVerif’s

input language allows such cryptographic protocols and associated security objectives to

be encoded in a formal manner, allowing ProVerif to automatically verify claimed secu-

rity properties. Cryptography is assumed to be perfect; that is, the attacker is only able

to perform cryptographic operations when in possession of the required keys. In other

words, it cannot apply any polynomial-time algorithm, but is restricted to apply only the

cryptographic primitives specified by the user. The relationships between cryptographic

primitives are captured using rewrite rules and/or an equational theory.

In this thesis, the deducibility of information flow is verified both manually and

using a tool with respect to individual entities to show evidence of possible attacks. This

thesis uses a combination of statecharts and modal logic to model complex CPS systems

which accept commands from multiple sources. Both statecharts and MSDND are used to

analyse the information flow paths in a Traffic Collision and Avoidance System (TCAS) and

a Automatic Dependent Broadcast - Surveillance (ADS-B) System. This model is extended

to identify the problems and provide feasible solutions in reference to various other avionic

systems. It also provides a practical understanding of how cyber security impacts airplane

functions, in the presence of existing safety, development, and training requirements and

processes. In addition to this, ProVerif is used to automate the MSDND process for the air

traffic surveillance systems using observational equivalence and integrity properties.

7

The remainder of this thesis is organized as follows. Section 2 provides a brief

introduction about the attacker model and the various avionics systems used to model

MSDND. Section 3 motivates the need for cyber physical security of air traffic surveillance

systems. Section 4 presents a brief survey about the contributions made to devise security

proofs for ensuring safety and security for the avionic systems and the associated challenges.

Section 5 proposes an approach for modeling the air traffic surveillance systems usingmodal

logic. Section 6 providesMSDND proofs for various attack scenarios and the ProVerif code

associated with each scenario is present in the Appendices. Section 7 provides possible

future work. Section 8 presents conclusions.

8

2. SYSTEM MODEL

Theworld of air traffic control (ATC) ismoving from uncooperative and independent

(primary surveillance radar, PSR) to cooperative and dependent air traffic surveillance

(secondary surveillance radar, SSR). This paradigm shift holds the promise of reducing the

total cost of deployment and improving the detection accuracy of aircraft.

2.1. ADVERSARY AND ATTACK MODEL

The adversary in this model can send fake data by taking control of the aircraft,

cause a malfunction in one of the aircraft components, include manual errors by the pilot

and include environmental factors while being unnoticed rather than to disable and disrupt

the entire aircraft. Therefore, reconnaissance to know about the system’s operation becomes

important as attack attempts are considered. The failure in implementing the attack can

more easily be detected due to the deterministic and predictable nature of the system.

This thesis assumes that the adversary has an understanding about the air traffic

surveillance systems and has knowledge of the system functions. For example, an attacker

may obtain control over the aircraft cabin by hijacking the plane and compromising one of

the systems. These assumptions are not unreasonable as demonstrated by Stuxnet [32], a

multi-stage attack in which the attackers compromised many other systems before reaching

their target system, and in which the attackers stayed undetected for months conducting

reconnaissance on the target system before they launched their attacks.

9

2.2. TRAFFIC COLLISION AND AVOIDANCE SYSTEM (TCAS)

TCAS was designed to operate in traffic densities of up to 0.3 aircraft per square

nautical mile (nmi); i.e., 24 aircraft within a 5 nmi radius, which was the highest traffic

density envisioned over the next 20 years. The main functions of TCAS are to identify

a potential collision threat, communicate the detected threat to the pilot, and assist in the

resolution of the threat by recommending an avoidance maneuver. This is applied if an

air traffic controller (ATC) fails to maintain separation via clearances. The TCAS is a

beacon-based airborne collision avoidance system that is able to operate in all airspace

without reliance on ground equipment. Figure 2.1 presents how the TCAS interacts with

in-flight and ground equipment.

A TCAS installation can conceptually be divided into two subsystems: surveillance

and control logic. TCAS works by one aircraft interrogating other aircraft transponders.

This way, each TCAS equipped aircraft can locate nearby transponder equipped aircraft,

and potential collisions can be detected. Surveillance of the air traffic environment is

based on air-to-air interrogations broadcast once per second from antennae on the TCAS

aircraft using the same frequency (1030 MHz). Transponders on nearby intruder aircraft

receive these interrogations and send replies at 1090 MHz. Two types of transponders are

currently in use: Mode-C transponders, which do not have unique addressing capability,

andMode-S transponders, which have a unique 24 bit identifier. To trackMode-C intruders,

TCAS transmits "Mode-A, C-only all call" interrogations once per second. All Mode-A,

C equipped aircraft in a region around the TCAS aircraft reply. TCAS sends interrogators

using a four-beam directional antenna with 90 degree beams. In contrast, Mode-S equipped

intruders are tracked with a selective interrogation once per second directed at that specific

intruder by listening the squitter. Note that Mode-S transponders send out spontaneous

signals known as 56-bit squitters. All aircraft with TCAS are equipped with Mode-S

transponders. The TCAS concept makes use of the radar beacon transponders installed on

aircraft to operate with ATC’s ground-based radars. The level of protection provided by

10

TCAS equipment depends on the type of transponder the target aircraft is carrying. It should

be noted that TCAS provides no protection against aircraft that do not have an operating

transponder. Figure 2.2 presents the communication between two aircraft using TCAS.

Without reliance on ground equipment, TCAS is capable of providing resolution

advisories in the vertical dimension (climb, descend) in airspace. TCAS interacts with

the following components: Radio Altimeter, A/C Discretes, Receiver, Transmitter, Mode-S

Transponder and other flight control units [33]. TCAS issues two types of alerts:

• Traffic Advisories (TAs) to assist the pilot in the visual search for the intruder aircraft

and to prepare the pilot for a potential resolution advisory.

• Resolution Advisories (RAs) to recommend maneuvers that will either increase or

maintain the existing vertical separation from an intruder aircraft. When the intruder

aircraft is also fitted with TCAS, both TCAS systems co-ordinate their RAs through

the Mode S data link to ensure that complementary RAs are selected. If the intruder

aircraft is equipped with Mode A transponder only, TCAS provides just the TA. If

the intruder aircraft is equipped with Mode C or Mode S transponder only, TCAS

provides TA and RA to the pilot.

2.3. AUTOMATIC DEPENDENT SURVEILLANCE BROADCAST (ADS-B)

ADS-B is a replacement for (or supplement to) traditional radar based surveillance of

aircraft. ADS-B uses satellite-based navigation systems to determine an aircraft’s precise

location in space. The system then converts the position into a digital code, which is

combined with other information such as the type of aircraft, flight number, speed, and

intent. An ADS-B equipped aircraft broadcasts its information through an omnidirectional

fashion, and any aircraft or ATC facility can receive this information (See Figure 2.3). These

broadcasts are not in response to interrogations, unlike existing transponder technology.

ADS-B transmission occurs at much lower rate than SSR replies. Note that ADS-B cannot

11

Figure 2.1. TCAS II Interacting Entities

replace existing SSRs until all aircraft are equipped with ADS-B equipment to broadcast

state vector information. ADS-B will most likely be mandated in airspace where Mode-C

transponders are currently required [34].

2.4. PITOT STATIC SYSTEM

A pitot-static system is a system of pressure-sensitive instruments that is most often

used in aviation to determine an aircraft’s airspeed, Mach number, altitude, and altitude

trend (See Figure 2.4). A pitot-static system generally consists of a pitot tube, a static

port, and the pitot-static instruments [35]. This equipment is used to measure the forces

acting on a vehicle as a function of the temperature, density, pressure and viscosity of

12

Figure 2.2. Communication Between Two TCAS Equipped Aircrafts

the fluid in which it is operating. Other instruments that might be connected are air data

computers, flight data recorders, altitude encoders, cabin pressurization controllers, and

various airspeed switches [36].

Managing a static system malfunction requires that the pilot know and understand

the airplane’s pitot-static system. If a system malfunction is suspected, the pilot should

confirm it by opening the alternate static source. It is a source of ambient air pressure from

the depressurized area within an aircraft for use when the static vent malfunctions. It is

less accurate, but usable in emergency situations. This should be done while the airplane is

climbing or descending.

13

Figure 2.3. ADS-B System

2.5. LIFT RESERVE INDICATOR (LRI)

An LRI is a system used to measure the amount of lift being produced by a wing

in any given situation, by comparing the static pressure to the dynamic pressure in a probe

mounted in a fixed position under the wing. It is used to maintain a safe margin from a

stalling condition, and used in takeoff, landing, and while maneuvering at any attitude or

angle. When displayed on a simple pressure differential gauge with a modified face, the

pilot knows the amount of lift reserve available at any given moment [37].

The LRI integrates both airspeed and angle of attack in a single readout reliably and

continuously displaying an aircraft’s margin over stall despite the wide range of variables

to which an aircraft is subject. This helps the pilot to maintain proper course in case of

incorrect airspeed readings.

14

Figure 2.4. Pitot Static System [1]

2.6. INERTIAL NAVIGATION SYSTEM (INS)

An INS is a totally self-contained dead reckoning system [38]. Dead reckoning is

the process of calculating current position of the aircraft by using a previously determined

position, or fix, and advancing that position based upon known or estimated speeds over

elapsed time and course. Given its starting position, INS keeps track of all movements in

all directions so it calculates the aircraft’s flight position in relation to that point. To detect

movement, the INS uses three accelerometers: one north-south, one east-west, and one

up-down mounted on a stable platform. The platform is stabilized using three gyros, one

each for pitch, yaw and roll. This way the aircraft’s movement is constantly monitored and

helps the pilot keep the aircraft on course.

Advanced INS use ring laser gyros that are made up of a series of lasers aligned

in the same plane and forming a ring. Interference patterns are generated as the aircraft

accelerates indicating changes in the airplane’s movement.

15

The INS must be initialized on the ramp prior to takeoff. The pilot merely enters

the aircraft’s coordinates and the system performs the calculations since it has an internal

clock calendar. This system computes track, drift angle, cross track error, distance traveled,

distance remaining and flight time remaining for the pilot.

The INS system uses a multitude of invariant data such as measurements provided

by accelerometers and gyroscopes to track the position and orientation of an object relative

to a known starting point, orientation and velocity.

16

3. PROBLEM STATEMENT

Aviation security is at the forefront of society, mostly as a protection against terror-

ism and national security threats in the physical world. The introduction of cyber advances

and tight cyber-physical integration within aircraft, however, raises new aviation security

considerations for threats from and to cyberspace. Cyberspace has well-known vulnerabil-

ities to physical world exploits such as radio jamming and equipment compromise. The

growth of future aviation, hence, heavily weighs on understanding cyber-physical threats

to aircraft, identifying new threats from cyber-physical integration, and managing security

risks. Factors contributing to risk include system malfunction, intruders, mistakes by the

pilots and environmental factors.

The challenges continue to grow as individual systems evolve, operate with greater

autonomy and intelligence, and operate as part of a networked system of systems. A more

concise way to classify cyber and physical assets in aviation and the information flow paths

between these assets, which must be protected against threats and from becoming a threat

is needed. Additionally, a more formal way of representing various attacks and possible

mitigation measures is needed in order to ensure security of the entire system.

Air-to-air, air-to-ground, and satellite-to-air communications were considered to

perform security analysis either from the cyber point of view or the physical point of view.

Certainly a formal method is required to perform security analysis considering the cyber-

physical interactions, looking for the potential risks and changes that have been occurring

in airplane systems, along with the implications of those changes.

This thesis is aimed at addressing the above specified issues by focusing on cyber

and physically enabled attacks by using a model-based approach to identify security risks

and provide mitigation measures.

17

4. RELATED WORK

This work mainly focuses on nondeducibility in multiple security domains involving

commands from multiple sources and applies to cyber physical systems involving complex

interactions between different states of the system.

It is well known in the aviation community that the ATC system, which is currently

being rolled out, called automatic dependent surveillance-broadcast (ADS-B), had not been

developed with security in mind and is susceptible to a number of different radio frequency

(RF) attacks. The problem has recently been widely reported in the press [39, 40, 41, 42]

and at hacker conventions [43, 44, 45]. Academic researchers, too, proved the ease of

compromising the security of ADS-B with current off-the-shelf hard- and software [46].

This broad news exposure led the International Civil Aviation Organization (ICAO) to put

the security of civil aviation on the agenda of the 12th air navigation conference, identifying

"cyber security as a high level impediment to implementation that should be considered as

part of the roadmap development process" and creating a task force to help with the future

coordination of the efforts of involved stakeholders.

Similar work has been carried out in [24] but this work is limited to accepting

commands from a single source and it does not cover all the possible state transitions in the

system. Similar work has been carried out in [47] which usedMSDND tomodel the security

of a chemical plant using BIT logic. The major drawback is the inability to represent the

state transitions and interactions in a concise way and our work covers this by segregating

the system into multiple security domains. These security domains contains multiple states

and the security issues between the state interactions are considered.

18

5. MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY

5.1. MODAL LOGIC MODEL

Formally, a set of worlds W are defined, consisting of distinct worlds, w0,w1,...,wn

where, if m state variables are present, S1,S2,...,Sm then it is possible to have 2m distinct

worlds.

The worlds are connected by a set of transitions, {wRw
′}. Changing any state

variable causes a transition from the current world, w, to another world, w′ where all other

state variables retain their values. Together, the set of worlds and transitions define a frame,

F = {W,R}.

A set of valuation functions are defined, {V}, such that V i
sx (w) returns the value of

state variable sx as seen by an entity i in world w. NOTE: If no valuation function exists to

return the value of a state variable, say si, then the model can never determine the value of

that state variable nor the value of any logical expression dependent upon that state variable.

By combining the valuation functions and the frame, the model can be defined asM= {F,V}

or M = {W,R,V} [24].

5.2. MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY MODEL

Extending existingmodels tomultiple security domains is problematic. An extended

version of theMultiple Security Domains NondeducibilityModel using statecharts and local

invariants present in the CPS was proposed in this thesis. An entity i is defined as any part

of the system capable of independent observation or action.

19

The Event System (ES) can be divided into multiple security domains, SDi, as

viewed by each entity i in the model. These domains may, or may not, overlap with each

other. These multiple security domains conform to the following rules:

∪i∈I SDi = (ES) (5.1)

5.3. DEFINITION: MULTIPLE SECURITY DOMAIN EXCLUSIVITY

There exists some world with multiple states in which at any instance the system

can be in one true state and the others are false.

f (Sa, Sb, Sc,) =


where exactly one of Sa, Sb, Sc, ... is True

otherwise False
(5.2)

5.4. DEFINITION: MULTIPLE SECURITY DOMAIN NONDEDUCIBILITY

There exists some world with multiple states in which at any instance one state is

true and the others are false, but an entity i has no valuation function for those states. In

security domain SDi, the states cannot be evaluated to either true or false.

MSDND(ES) = ∃w ∈ W : w ` �[f (Sa, Sb, Sc,)]

∧[w |= (�V i
Sa(w) ∧ �V

i
Sb (w) ∧ �V

i
Sc (w)......)]

(5.3)

Note: There exists a valuation function if all the state variables return true and there

does not exist a valuation function if any of the state variables returns false.

20

5.5. LOCAL INVARIANTS

An invariant is a quantity that remains unchanged under certain classes of transfor-

mations. Invariants are extremely useful for classifying mathematical objects because they

usually reflect intrinsic properties of the object of study. Local invariants are the invariants

between any pair of attributes of the system.

5.6. DEFINITION: DF FUNCTION

In the axiomatic view, df tests whether an event variable has a defined value [48].

This function contains series of transitions which results in an output

df _ : P(eventX) (5.4)

For example, a label expression which requires a signal a and generates a signal b

in the next step is written as df a/df b
′.

Note: df is different from valuation function which returns the value of a state

variable seen by an entity.

5.7. PROVERIF WITH RESPECT TO MSDND

ProVerif is capable of proving reachability properties, correspondence assertions,

and observational equivalence. In this thesis, reachability property and observational

equivalence are used to prove deducibility.

5.7.1. Reachability Property. Given a system and a property p, reachability model

checking is based on an exhaustive exploration of the reachable state space of the system,

testing whether there exists a state where p holds. The main obstacle to this approach is the

state-explosion problem reflecting the fact that the system’s state space is often prohibitively

21

large to be entirely explored. Abstractions have been proven a useful tool in coping with

state explosion. Model checking using abstractions consists of exploring a abstract state

space rather than the concrete one.

This thesis abstracts the collision region of the TCAS and ADS-B systems into a 9-

grid system inwhich each grid cell is considered to be of same size. Each grid cell is denoted

as XY_Coord_Node_x where x ∈ {1,2,3,4,5,6,7,8,9}. If both planes are in different grid

cells, they are equidistant from each other. For e.g., if the plane-1 is in XY_Coord_Node_1

and plane-2 is in XY_Coord_Node_9, they are equidistant from each other (See Figure 5.1).

If both planes are in the same grid cell, collision is bound to happen. If they are in different

grid cells, the pilots can follow the RAs suggested by the TCAS system and avoid collision.

ProVerif attempts to prove that a state in which the nodes are known to the adversary is

unreachable (that is, it tests the query not attacker(XY_Coord), and this query is true when

the location is not derivable by the adversary). This makes ProVerif suitable for proving

the secrecy of data with respect to MSDND.

If ProVerif’s output is of the form RESULT not attacker:(XY_Coord[]) is true, the

attacker has not been able to obtain the location XY_Coord. The attacker has, however, been

able to obtain the locationXY_Coord as denoted by theRESULTnot attacker:(XY_Coord[])

is false. It follows that when ProVerif is supplied with query attacker(M)., internally

ProVerif attempts to show not attacker(M) and hence RESULT not attacker(M) is true.

means that the secrecy of M is preserved by the protocol.

5.7.2. Observational Equivalence. The MSDND model uses the most general

class of equivalences P ≈ Q where the processes P and Q have the same structure and

differ only in the choice of terms. These equivalences are written in ProVerif by a single

"biprocess" that encodes both P and Q. Such a biprocess uses the construct choice[M,M’]

to represent the terms that differ between P and Q: P uses the first component of the

22

Figure 5.1. 9-Grid System

choice, M, while Q uses the second one, M’. The MSDND model uses a similar approach

to identify whether a state is false or true, considering parallel composition of different

security domains.

In order to correctly understand the results of the observational equivalence property

in ProVerif, it is important to understand the difference between the attack derivation and

the attack trace. The attack derivation is an explanation of the actions that the attacker has

to execute in order to break the security property, in the internal representation of ProVerif.

23

Because this internal representation uses abstractions, the derivation is not always

executable in reality; for instance, it may require the repetition of certain actions that can in

fact never be repeated, for instance because they are not under a replication. In contrast, the

attack trace refers to the semantics of the applied pi calculus, and always corresponds to an

executable trace of the considered process. ProVerif can display three kinds of results:

• RESULT [Query] is true: The query is proved, there is no attack. In this case,

ProVerif displays no attack derivation and no attack trace.

• RESULT [Query] is false: The query is false, ProVerif has discovered an attack

against the desired security property.

• RESULT [Query] cannot be proved: This is a "don’t know" answer. ProVerif could

not prove that the query is true and also could not find an attack that proves that the

query is false. Since the problem of verifying protocols for an unbounded number

of sessions is undecidable, this situation is unavoidable. Still, ProVerif gives some

additional information that can be useful in order to determine whether the query is

true. In particular, ProVerif displays an attack derivation. By manually inspecting

the derivation, it is sometimes possible to reconstruct an attack. For observational

equivalence properties, it may also display an attack trace, even if this trace does not

prove that the observational equivalence does not hold.

24

6. MODAL LOGIC WITH THE USE OF INVARIANTS

This section presents an overview of the vulnerabilities associated with air traffic

surveillance systems. In order to do this, the scenarios are divided into two parts: 1)

identifying the compromised system or a malfunctioning system. 2) using the invariants

associated with air traffic surveillance systems and applying those invariants to theMSDND

model which helps in identifying the vulnerabilities associated with the system.

6.1. RADAR TRANSPONDER FAILURE

This section presents two different scenarios to check if the compromised radar

transponder can be identified by the pilot.

6.1.1. Scenario 1: Without Invariants. In case of a failure in the radar transpon-

der, the MSDND model yields Nondeducibility, thereby stopping critical information flow

to the pilot and the ATC controller.

Proof: Let us consider the possibility of failure in the radar transponder of the

aircraft (See Figure 6.1). The ATC controller receives incorrect information about the

aircraft identification. This could lead to improper communication between the ATC

controller and the pilot. The controller and the pilot cannot distinguish the source of

incorrect information.

Table 6.1 presents the set of logical conditions, ϕi, p, c, t, r, x that can be evaluated

to determine the interactions between the aircraft and the ATC.

Once the flight information is retrieved, the ATC controller and the pilot can observe

that there is a mismatch between the flight data and ATC data. The ATC controller and the

pilot cannot distinguish whether there is a failure in the aircraft transponder or the radar

system of ATC. The pilot can sense the position of the aircraft from the altitude reading,

but cannot evaluate the source of incorrect information being sent to the ATC and TCAS.

25

Table 6.1. Radar Transponder Logical Conditions And States - Without Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 Interrogations Initiation of transmission of interrogations from

ATC.
ϕ2 Replies Initiation of transmission of replies from XPDR.
ϕ3 TCAS Data TCAS System knows the position of the plane.
ϕ4 Radar Data ATCRadar System knows the location of the plane.
ϕ5 Communication Initiation of communication between pilot and con-

troller based on TCASData and Radar Data respec-
tively.

Sp p = T p = ¬ϕ3 ∧ ¬ϕ5
∼df(TCAS data) ∧ ∼df(communication)
Output = TA or RA

Sc c = T c = ¬ϕ4 ∧ ¬ϕ5
∼df(Radar) ∧ ∼df(communication)
Output = Flight Location

St t = T t = ¬ϕ2 ∧ ¬ϕ3
∼df(replies) ∧ ∼df(TCAS data)
Output = Position

Sr r = T r = ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ4
df(interrogations)∧∼df(replies)∧∼df(Radar data)
Output = Display

Sx x = T x = ϕ1 ∧ ¬ϕ2
df(interrogations) ∧ ∼df(replies)

The two security domains in this scenario are SDP {pilot domain} and SDC {ATC

controller domain}. By combining the valuation functions in SDP and SDC ,

Sp = ¬ϕ3 ∧ ¬ϕ5 ⇒ �V P
∼t (6.1)

Since the information received from the pilot domain is faulty, the pilot cannot

valuate for correctness of the TCAS data in that domain.

Sc = ¬ϕ4 ∧ ¬ϕ5 ⇒ �VC
t (6.2)

26

Since the information received from the pilot domain is faulty, the ATC controller

cannot valuate for correctness of the TCAS data in that domain.

By combining Equation 6.1 and Equation 6.2,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sp, Sc)] ∧ [w |= (�V P
∼t ∧ �V

C
t] (6.3)

Figure 6.1. Faulty Radar Transponder

Therefore, from physical observation the ATC controller can deduce that something

is going wrong but cannot deduce the source that is sending incorrect information to the

TCAS and ATC radar.

Hence, the system is Nondeducible secure to the pilot and the ATC controller as

they can deduce that something is going wrong, but cannot deduce the entity responsible

for transmitting incorrect data.

6.1.2. Scenario 2: Using Invariants. In case of radar transponder compromise,

the MSDND model yields deducibility, thereby allowing critical information flow to the

pilot and the ATC controller.

27

Proof: The above mentioned scenario can be made deducible to the pilot and ATC

controller by relying on alternate information flow path from INS, which helps in identifying

the compromised system (See Figure 6.2). Hence, the pilot and the ATC controller can

deduce the source of incorrect information based on the invariant data computed by INS.

In case of failure in the radar transponder, the pilot can make use of the INS system.

The velocity is calculated using

v = v0 + at (6.4)

where, v0 is the initial velocity, v is the final velocity, a is the acceleration and t is

the time between observations.

Using the final velocity from Equation 6.4, the distance travelled by the aircraft can

be calculated using

d = v ∗ t (6.5)

where, d is the distance travelled, v is the velocity and t is the time.

Note: In Table 6.2, d is the distance travelled by the plane projected on the INS

system.

Table 6.2 presents the set of logical conditions, ϕi, p, c, t, r, x, i that can be evaluated

to determine the interactions between the aircraft and the ATC. The two security domains in

this scenario are SDT {TCAS domain} and SDI {INS domain}. By combining the valuation

functions in SDT and SDI with respect to invariants from Equation 6.4 and Equation 6.5 in

the pilot’s domain,

St = ¬ϕ2 ∧ ¬ϕ3 ⇒ �V P
∼i (6.6)

Since the information received from the pilot domain is faulty, the pilot cannot

valuate for correctness of the TCAS data in that domain.

Si = ϕ6 ∧ ϕ7 ⇒ �V P
i (6.7)

28

Table 6.2. Radar Transponder Logical Conditions And States - Using Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 Interrogations Initiation of transmission of interrogations from

ATC.
ϕ2 Replies Initiation of transmission of replies from XPDR.
ϕ3 TCAS Data TCAS System knows the position of the plane.
ϕ4 Radar Data ATCRadar System knows the location of the plane.
ϕ5 Communication Correct communication between pilot and con-

troller based on TCAS Data and Radar Data re-
spectively.

ϕ6 d Pilot checks the position of the plane using INS and
verifies it with the TCAS data.

ϕ7 Verification Pilot and the controller checks and verifies the po-
sition of the respective aircraft and verifies it with
the position data displayed.

Sp p = T p = ¬ϕ3 ∧ ¬ϕ5 ∧ ϕ6 ∧ ϕ7
∼df(TCAS data) ∧ ∼df(communication) ∧ df(d) ∧
df(Verification)
Output = TA or RA

Sc c = T c = ¬ϕ4 ∧ ¬ϕ5 ∧ ϕ7
∼df(Radar) ∧ ∼df(communication) ∧

df(Verification)
Output = Flight Location

St t = T t = ¬ϕ2 ∧ ¬ϕ3
∼df(replies) ∧ ∼df(TCAS data)
Output = Position

Sr r = T r = ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ4
df(interrogations)∧∼df(replies)∧∼df(Radar data)
Output = Display

Sx x = T x = ϕ1 ∧ ¬ϕ2
df(interrogations) ∧ ∼df(replies)

Si i = T i = ϕ6 ∧ ϕ7
df(d) ∧ ∼df(Verification)

Since the information received from the pilot domain is faulty, the ATC controller

cannot valuate for correctness of the TCAS data in that domain.

29

By combining Equation 6.6 and Equation 6.7,

MSDND(ES) = ∃w ∈ W : [w ` � f (St, Si)] ∧ [w |= (�V P
∼i ∧ ∃V P

i] (6.8)

Figure 6.2. INS Helps Identify The Faulty Radar Transponder

Hence, the system is not Nondeducible secure to the pilot and the ATC controller as

they can deduce that TCAS system is responsible for transmitting incorrect data.

The ProVerif code in APPENDIX A proves that this attack is not Nondeducible

secure when INS is used as an alternate information flow path. As can be interpreted from

"RESULT not attacker(XY_Coord[]) is false", the TCAS process is compromised.

6.2. RADAR TRANSPONDER FAILURE AND TCAS

This section presents two different scenarios to check if the compromised radar

transponder can be identified by the pilot using TCAS.

30

6.2.1. Scenario 1: Without Using Invariants. In case of radar transponder com-

promise of plane-1, the MSDND model yields Nondeducibility, thereby stopping critical

information flow to the pilots and the ATC Controller.

Proof: It is a known fact that most of the world is not covered by radar. Part of that

is a technical challenge. The air traffic system runs on ground-based radar, and most of the

world is covered in water. Ground stations are not available in the ocean. For that reason,

once the flight is more than a few miles off the coast, it is going to be out of radar range and

this is called no-radar zone.

In this case, the ATC controller cannot receive information about the aircraft’s

identification. This could lead to miscommunication between both the pilots in case of any

failure. Let us consider the possibility of malfunction of the TCAS-1 system. This leads to

the display of incorrect data on the TCAS system and the pilots cannot distinguish which

TCAS system is faulty. But the controller cannot identify the plane with a faulty TCAS

system from the radar data and cannot provide necessary maneuvers to avoid collision by

directing the pilots in correct directions (See Figure 6.3).

Table 6.3 presents the set of logical conditions, ϕi, p1, p2, c, t1, t2, r that can be

evaluated to determine the interactions between the planes and the ATC.

In case the plane is in a no-radar zone, once the flight information is retrieved, pilots

communicate with each other in case of close proximity to avoid collision. If the TCAS

system of pilot-1 presents wrong information due to technical failure, the pilots cannot

distinguish which plane is presenting wrong information.

The two security domains in this scenario are SDP {pilot domain} and SDC {ATC

controller domain}. By combining the valuation functions in SDP and SDC ,

Sp = ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ4 ∧ ϕ5 ∧ ¬ϕ7 ⇒ �V P
∼t (6.9)

31

Table 6.3. Radar And TCAS Logical Conditions And States - Without Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 Interrogations Correct transmission of interrogations from ATC.
ϕ2 Reply-1 Correct transmission of replies from XPDR-1.
ϕ3 Reply-2 Correct transmission of replies from XPDR-2.
ϕ4 TCAS-1 Data TCAS-1 knows the position of the plane-1 and plane-2.
ϕ5 TCAS-2 Data TCAS-2 knows the position of the plane-1 and plane-2.
ϕ6 Radar Data ATC Radar System knows the location of the plane-1 and

plane-2.
ϕ7 Communication Correct communication between pilot-1, pilot-2 and the

Controller from TCAS Data and Radar Data.
Sp1 p1 = T p1 = ¬ϕ2 ∧ ¬ϕ4 ∧ ¬ϕ7

∼df(Reply-1) ∧ ∼df(TCAS-1 data) ∧

∼df(communication)
Output = TA or RA

Sp2 p2 = T p2 = ϕ3 ∧ ϕ5 ∧ ¬ϕ7
df(Reply-2) ∧ df(TCAS-2 data) ∧ ∼df(communication)
Output = TA or RA

Sc c = T c = ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ6 ∧ ¬ϕ7
∼df(Reply-1) ∧ df(Reply-2) ∧ ∼df(Radar Data) ∧
∼df(communication)
Output = Flight Location

St1 t1 = T t1 = ¬ϕ2 ∧ ¬ϕ4
∼df(Reply-1) ∧ ∼df(TCAS-1 data)
Output = Position

St2 t2 = T t2 = ϕ3 ∧ ϕ5
df(Reply-2) ∧ df(TCAS-2 data)
Output = Position

Sr r = T r = ϕ1 ∧ ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ6
df(Interrogations) ∧ ∼df(Reply-1) ∧ df(Reply-2) ∧
∼df(Radar data)
Output = Display

Since the information received from the pilot’s domain is faulty, the pilots cannot valuate

for correctness of the TCAS data in that domain.

Sc = ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ6 ∧ ¬ϕ7 ⇒ ∃VC
t (6.10)

32

Since the information received from the pilot domain is faulty, the ATC controller

cannot valuate for correctness of the TCAS data in that domain.

By combining Equation 6.9 and Equation 6.10,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sp, Sc)] ∧ [w |= (�V P
∼t ∧ ∃VC

t] (6.11)

Figure 6.3. TCAS And Faulty Radar Transponder

Hence, the system is Nondeducible to the pilots and not Nondeducible to the Con-

troller as he can deduce that something is going wrong and can determine which entity

is responsible for displaying the incorrect data. This situation gives rise to dangerous

situations as the pilots believe in the false data and might result in a collision of the planes.

6.2.2. Scenario 2: Using Invariants. In case of radar transponder compromise of

plane-1, but using INS, the MSDND model yields deducibility, thereby allowing critical

information flow to the pilots and the ATC Controller.

33

Proof: The above mentioned scenario can be made deducible to the pilots and ATC

controller by relying on alternate information flow path from INS, which helps in identifying

the compromised system. Hence, the pilot and the ATC controller can deduce the source

of incorrect information based on the invariant data computed by INS (See Figure 6.4).

In case of failure in the radar transponder, the pilot can make use of the INS system.

The velocity is calculated using Equation 6.4.

Using the final velocity, distance travelled by the aircraft is calculated using Equa-

tion 6.5.

Note: In Table 6.4, d is the distance travelled by the plane projected on INS system.

Table 6.4 presents the set of logical conditions, ϕi, p1, p2, c, t1, t2, r, i1, i2 that can be

evaluated to determine the interactions between the planes and the ATC.

The two security domains in this scenario are SDT {TCAS domain} and SDI {INS

domain}. By combining the valuation functions in SDT and SDI with respect to invariants

from Equation 6.4 and Equation 6.5 in pilot-1 domain,

St = ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ4 ∧ ϕ5 ⇒ �V P
∼i (6.12)

Since the information received from the TCAS domain is faulty, the pilot cannot valuate for

correctness of the TCAS data in that domain.

Si = ϕ8 ∧ ϕ9 ∧ ϕ10 ⇒ ∃V P
i (6.13)

Since the information received from the INS domain is not faulty, the pilot can valuate for

correctness of the TCAS data in that domain.

By combining Equation 6.12 and Equation 6.13,

MSDND(ES) = ∃w ∈ W : [w ` � f (St, Si)] ∧ [w |= (�V P
∼i ∧ ∃V P

i] (6.14)

34

Table 6.4. Radar And TCAS Logical Conditions And States - Using Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 Interrogations Correct transmission of interrogations from ATC.
ϕ2 Reply-1 Correct transmission of replies from XPDR-1.
ϕ3 Reply-2 Correct transmission of replies from XPDR-2.
ϕ4 TCAS-1 Data TCAS-1 knows the position of the plane-2.
ϕ5 TCAS-2 Data TCAS-2 knows the position of the plane-1.
ϕ6 Radar Data ATC Radar System knows the location of the plane-1 and

plane-2.
ϕ7 Communication Correct communication between pilot-1, pilot-2 and the

Controller from TCAS Data and Radar Data.
ϕ8 d1 Pilot-1 checks the position of the plane using INS and

verifies it with the TCAS data.
ϕ9 d2 Pilot-2 checks the position of the plane using INS and

verifies it with the TCAS data.
ϕ10 Verification Pilot-1, pilot-2 and the controller checks and verifies the

INS position data with respect to TCAS position data.
Sp1 p1 = T p1 = ¬ϕ2 ∧ ¬ϕ4 ∧ ¬ϕ7

∼df(Reply-1) ∧ ∼df(TCAS-1 data) ∧

∼df(communication)
Output = TA or RA

Sp2 p2 = T p2 = ϕ3 ∧ ϕ5 ∧ ¬ϕ7
df(Reply-2) ∧ df(TCAS-2 data) ∧ ∼df(communication)
Output = TA or RA

Sc c = T c = ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ6 ∧ ¬ϕ7
∼df(Reply-1) ∧ df(Reply-2) ∧ ∼df(Radar Data) ∧
∼df(communication)
Output = Flight Location

St1 t1 = T t1 = ¬ϕ2 ∧ ¬ϕ4
∼df(Reply-1) ∧ ∼df(TCAS-1 data)
Output = Position

St2 t2 = T t2 = ϕ3 ∧ ϕ5
df(Reply-2) ∧ df(TCAS-2 data)
Output = Position

Sr r = T r = ϕ1 ∧ ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ6
df(Interrogations) ∧ ∼df(Reply-1) ∧ df(Reply-2) ∧
∼df(Radar data)
Output = Display

Si1 i1 = T i1 = ϕ8 ∧ ϕ10
df(d1) ∧ df(Verification)

Si2 i2 = T i2 = ϕ9 ∧ ϕ10
df(d1) ∧ df(Verification)

35

Figure 6.4. ADS-B Helps To Identify The Faulty Radar Transponder

Hence, the system is not Nondeducible secure to the pilots and the ATC controller

as they can deduce that TCAS system is responsible for transmitting incorrect data.

The ProVerif code in APPENDIX B proves that this attack is not Nondeducible

secure when INS is used as an alternate information flow path. As can be interpreted from

"RESULT not attacker(XY_Coord[]) is false", the TCAS-1 process is compromised.

6.3. ALTIMETER FAILURE

This section presents two different scenarios to check if the compromised altimeter

can be identified by the pilot.

6.3.1. Scenario 1: Without Using Invariants. In case of a failure in the altimeter,

the MSDND model yields Nondeducibility, thereby stopping critical information flow to

the pilot.

36

Proof: Let us consider the possibility of failure in the altimeter of the aircraft. The

TCAS system shows an incorrect reading about the flight position to the pilot but the ATC

controller receives correct information about the flight. This could lead to miscommunica-

tion between the ATC controller and the pilot, but the controller can distinguish that there

is some problem with the data from the aircraft. Hence, the controller can deduce that

something is going wrong, but cannot distinguish the source of incorrect information (See

Figure 6.5).

Table 6.5 presents the set of logical conditions, ϕi, p, c, a, t, r, x that can be evaluated

to determine the interactions between aircraft and ATC.

Once the flight information is retrieved, the controller and the pilot can observe that

there is a mismatch between the TCAS altitude reading and ATC data. The controller and

the pilot cannot distinguish whether there is a failure in the TCAS system or the altimeter.

The pilot can sense the position of the aircraft due to the cyber-physical nature of the plane,

but cannot evaluate what is causing the incorrect information being sent to the TCAS.

The two security domains in this scenario are SDP {pilot domain} and SDC {ATC

controller domain}. By combining the valuation functions in SDP and SDC ,

Sp = ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ4 ∧ ϕ5 ∧ ¬ϕ7 ⇒ �V P
∼a (6.15)

Since the information received from the pilot’s domain is faulty, the pilots cannot

valuate for correctness of the TCAS data in that domain.

Sc = ¬ϕ2 ∧ ϕ3 ∧ ¬ϕ6 ∧ ¬ϕ7 ⇒ �VC
a (6.16)

Since the information received from the pilot domain is faulty, the ATC controller

cannot valuate for correctness of the TCAS data in that domain.

37

Table 6.5. Altimeter Logical Conditions And States - Without Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 Interrogations Initiation of transmission of interrogations from

ATC.
ϕ2 Replies Initiation of transmission of replies from XPDR.
ϕ3 Altimeter Data Altimeter knows the position of the plane.
ϕ4 TCAS Data TCAS System knows the position of the plane.
ϕ5 Radar Data ATCRadar System knows the location of the plane.
ϕ6 Communication Initiation of communication between pilot and con-

troller from TCAS Data and Radar Data respec-
tively.

Sp p = T p = ¬ϕ3 ∧ ¬ϕ4 ∧ ¬ϕ6
∼df(Altimeter Data) ∧ ∼df(TCAS Data) ∧
∼df(Communication)
Output = TA or RA

Sc c = T c = ¬ϕ5 ∧ ¬ϕ6
∼df(Radar Data) ∧ ∼df(Communication)
Output = Flight Location

Sa a = T a = ¬ϕ3 ∧ ¬ϕ6
∼df(Altimeter Data) ∧ ∼df(Communication)
Output = Flight Location

St t = T t = ¬ϕ3 ∧ ¬ϕ4
∼df(Replies) ∧ ∼df(TCAS data)
Output = Position

Sr r = T r = ϕ1 ∧ ¬ϕ5
df(Interrogations) ∧ ∼df(Radar data)
Output = Display

Sx x = T x = ϕ1 ∧ ¬ϕ2
df() ∧ ∼df(Replies)

By combining Equation 6.15 and Equation 6.16,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sp, Sc)] ∧ [w |= (�V P
∼a ∧ �V

C
a] (6.17)

38

Figure 6.5. Faulty Altimeter

Therefore, from physical observation the controller can deduce that something is

going wrong, but cannot deduce the source that is sending incorrect information to the

TCAS, Altimeter and ATC radar.

Hence, the system is Nondeducible secure to the ATC controller and the pilot as

they cannot deduce the source which is responsible for transmitting incorrect data.

6.3.2. Scenario 2: Using Invariants. In case of altimeter compromise, but using

INS the MSDND model yields Nondeducibility, thereby allowing critical information flow

to the pilot and the controller.

Proof: The above mentioned scenario can be made deducible to the pilot by relying

on an alternate system; i.e., INS which helps in figuring out the compromised system.

Hence, the pilot can deduce the source of incorrect information based on the invariant data

computed by the INS (See Figure 6.6).

In case of failure in the altimeter, the pilot can make use of the INS system. The

velocity is calculated using Equation 6.4. Using the final velocity, distance travelled by the

aircraft is calculated using Equation 6.5.

39

Table 6.6 presents the set of logical conditions, ϕi, p, c, a, t, r, i that can be evaluated

to determine the interactions between the pilot and ATC controller.

Note: In Table 6.6, d is the distance travelled by the plane projected on INS system.

Table 6.6. Altimeter Logical Conditions And States - Using Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 Interrogations Initiation of transmission of interrogations from ATC.
ϕ2 Replies Initiation of transmission of replies from XPDR.
ϕ3 Altimeter Data Altimeter knows the position of the plane.
ϕ4 TCAS Data TCAS System knows the position of the plane.
ϕ5 Radar Data ATC Radar System knows the location of the plane.
ϕ6 Communication Initiation of communication between pilot and con-

troller from TCAS Data and Radar Data respectively.
ϕ7 d Pilot checks the position of the plane using INS and

verifies it with the TCAS data.
ϕ8 Verification Pilot and the controller checks and verifies the INS

position data with respect to TCAS position data.
Sp p = T p = ¬ϕ3 ∧ ¬ϕ4 ∧ ¬ϕ6 ∧ ϕ7 ∧ ϕ8

∼df(Altimeter Data) ∧ ∼df(TCAS Data) ∧

∼df(Communication) ∧ df(d) ∧ df(Verification)
Output = TA or RA

Sc c = T c = ¬ϕ5 ∧ ¬ϕ6 ∧ ϕ8
∼df(Radar Data) ∧ ∼df(Communication)
Output = Flight Location

Sa a = T a = ¬ϕ3 ∧ ¬ϕ6
∼df(Altimeter Data) ∧ ∼df(Communication)
Output = Flight Location

St t = T t = ¬ϕ3 ∧ ¬ϕ4
∼df(Replies) ∧ ∼df(TCAS data)
Output = Position

Sr r = T r = ϕ1 ∧ ¬ϕ5
df(Interrogations) ∧ ∼df(Radar data)
Output = Display

Si i = T i = ϕ7 ∧ ϕ8
df(d) ∧ df(Verification)

40

The two security domains in this scenario are SDA {Altimeter Domain} and SDI

{INS Domain}. By combining the valuation functions in SDA and SDI with respect to

invariants from Equation 6.4 and Equation 6.5 in pilot’s domain,

Sa = ¬ϕ5 ∧ ϕ6 ∧ ϕ8 ⇒ �V P
∼i (6.18)

Since the information received from the altimeter domain is faulty, the pilot cannot valuate

for correctness of the position data in that domain.

Si = ¬ϕ3 ∧ ¬ϕ4 ∧ ¬ϕ6 ∧ ϕ7 ∧ ϕ8 ⇒ ∃V P
i (6.19)

Using the invariants, the information received from INS domain is not faulty and the pilot

can valuate for correctness of the position data in that domain.

By combining Equation 6.18 and Equation 6.19,

MSDND(ES) = ∃w ∈ W : [w ` � f (sa, si)] ∧ [w |= (�V P
∼i ∧ ∃V P

i] (6.20)

Hence, the system is not Nondeducible secure to the pilot and the controller as they

can deduce that altimeter is presenting incorrect information.

The ProVerif code in APPENDIX C proves that this attack is not Nondeducible

secure when INS is used as an alternate information flow path. As can be interpreted from

"RESULT not attacker(Accept[]) is false", the altimeter process is compromised.

6.4. PITOT STATIC SYSTEM FAILURE

This section presents two different scenarios to check if the compromised pitot static

system can be identified by the pilot.

41

Figure 6.6. INS Helps To Identify The Faulty Altimeter

6.4.1. Scenario 1: Without Invariants. In case of a pitot static system compro-

mise, theMSDNDmodel yields Nondeducibility, thereby stopping critical information flow

to the pilot.

Proof: Let us consider the possibility of failure in the altimeter of the pitot static

system. Errors in pitot-static system altimeter readings can be extremely dangerous as the

information obtained from the pitot static system, such as altitude, is potentially safety-

critical. Several commercial airline disasters have been traced to a failure of the pitot-static

system (See Figure 6.7).

Table 6.7 presents the set of logical conditions, ϕi, p, t, ps that can be evaluated to

determine the interactions between the pilot and ATC controller.

Consider the scenario in which the air data computer presents a discrepancy in

the readings of the air speed. Airspeed is probably the most important single piece of

information the pilot needs. Virtually every phase of flight is conducted at a prescribed

airspeed or range of airspeeds.

42

Table 6.7. Pitot Static System Logical Conditions And States - Without Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 Invariant Data Initiation of transmission of pressure, speed, altitude and

temperature from the sensors.
ϕ2 Altimeter Data Initiation of transmission of altitude reading to the TCAS

system.
ϕ3 Airspeed Data Initiation of transmission of airspeed data to the pitot system.
ϕ4 TCAS Data TCAS System knows the position of the plane and the alti-

tude data.
ϕ5 Pitot Data Pilot could see the air speed, altitude readings on the Pitot

static system.
ϕ6 Verification Pilot checks for consistency of the data by verifying other

systems using the available data.
ϕ7 Failure Abnormal Function.
Sp p = T p = ¬ϕ3 ∧ ϕ4 ∧ ¬ϕ5 ∧ ϕ6 ∧ ϕ7

∼df(Airspeed data) ∧ df(TCAS data) ∧ ∼df(Pitot data) ∧
df(Verification)
Output = TA/RA and Pitot readings

St t = T t = ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ4 ∧ ϕ6 ∧ ϕ7
∼df(Invariant Data) ∧ ∼df(Altimeter Data) ∧ ∼df(TCAS
Data) ∧ df(Verification)
Output = Altitude

Sps ps = T ps = ¬ϕ1 ∧ ¬ϕ3 ∧ ¬ϕ5
∼df(Invariant Data) ∧ ∼df(Airspeed data) ∧ ∼df(Pitot data)
Output = Pitot Data

The two security domains in this scenario are SDT {TCAS domain} and SDPS {pitot

static system domain}. By combining the valuation functions in SDPS and SDT ,

Sps = ¬ϕ1 ∧ ¬ϕ3 ∧ ¬ϕ5 ⇒ �V PS
∼p (6.21)

43

Since the information received from the pitot static system domain is faulty, the pilot

cannot valuate for correctness of the altimeter data in that domain.

St = ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ4 ⇒ �VT
∼p (6.22)

Since the information received from the TCAS domain is faulty, the pilot cannot

valuate for correctness of the altimeter data in that domain.

By combining Equation 6.21 and Equation 6.22,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sps, St)] ∧ [w |= (�V PS
∼p ∧ �V

T
p] (6.23)

Figure 6.7. Pitot Static System Failure

Therefore, the pilot cannot deduce if the TCAS system is faulty or the pitot static

system is faulty and identify the system that is compromised.

Hence, the system is Nondeducible secure to the pilot as he cannot deduce actual

altimeter reading of the plane when there is a mismatch between the readings of TCAS and

pitot static system.

6.4.2. Scenario 2: Using Invariants. By adding invariants, the MSDND model

yields deducibility, thereby allowing critical information flow to the pilot when the pitot

static system is compromised.

44

Proof: In order to make the system deducible to the pilot, invariants are used to

express the correctness of the system. In case of failure in the pitot tube, there is a possibility

to verify the correctness of the entire system by using other sources such as the Lift Reserve

Indicator (LRI) or alternate static source (See Figure 6.8).

The lift of an aircraft is calculated using the formula below.

L = (1/2)dv2sCL (6.24)

where, d is the density of the air, v is velocity of aircraft, s is the area of wing, CL is the

coefficient of lift.

In compressible subsonic flow the total pressure pt is

Pt = Ps

[
1 +

γ − 1
γ

.
ρδ2

2ps

] γ−1
γ

(6.25)

where, γ = specific heat ratio of air (= 1.4), V = true airspeed and ρ = free-stream

air density.

From the above formula, true air speed can be calculated with the help of static

pressure by the alternate static system and this ensures that the system is not compromised

in such a case.

By considering the above possibilities, the correctness of the system can be verified

in case of a failure in the pitot static system by relying on the data from alternate static

source and LRI.

Table 6.8 presents the set of logical conditions, ϕi, p, i, ps, t that can be evaluated to

determine the interactions between the pilot, TCAS and pitot static systems.

45

Table 6.8. Pitot Static System Logical Conditions And States - Using Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 Pitot Data Initiation of transmission of pressure, speed, altitude and

temperature from the pitot tube and static ports.
ϕ2 Altimeter Data Initiation of transmission of altitude reading to the TCAS

system.
ϕ3 Vertical Speed In-

dicator Data
Initiation of transmission of vertical speed to the pitot
system.

ϕ4 Airspeed Data Initiation of transmission of airspeed data to the pitot
system.

ϕ5 Altitude Data Initiation of transmission of altitude data to the TCAS
system from XPDR.

ϕ6 TCAS Altitude TCAS System knows the position of the plane and the
altitude data.

ϕ7 L Pilot knows correct airspeed value of the aircraft from
the LRI system.

ϕ8 δ Pilot knows correct altitude of the aircraft from the alter-
nate static source system.

ϕ9 Verification Pilot checks for consistency of the data by verifying in-
variant data from LRI and alternate static source.

Sp p = T p = ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3 ∧ ¬ϕ4 ∧ ϕ6 ∧ ϕ7∧
¬ϕ8 ∧ ϕ9
∼df(Pitot Data) ∧ ∼df(Altimeter Data) ∧ ∼ df(Vertical
Speed Indicator Data) ∧ ∼ df(Airspeed Data) ∧ df(TCAS
Altitude) ∧ df(L) ∧ df(V) ∧ df(Verification)
Output = TA/RA and Pitot readings

Si i = T i = ϕ7 ∧ ϕ8 ∧ ϕ9
df(L) ∧ df(V) ∧ df(Verification)
Output = Altitude

Sps ps = T ps = ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3 ∧ ¬ϕ4 ∧ ¬ϕ8
∼ df(Pitot Data) ∧ ∼ df(Altimeter Data) ∧ ∼ df(Vertical
Speed Indicator Data) ∧ ∼ df(Airspeed Data)
Output = Pitot Data

St t = T t = ϕ5 ∧ ϕ6
df(Altitude Data) ∧ df(TCAS Altitude)
Output = TA/RA

46

In order to verify the correctness of the airspeed data, two security domains SDP

{Pitot Static System} and SDL {LRI System} are considered. By combining the valuation

functions in SDP and SDL with respect to invariants from Equation 6.24,

Sps = ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3 ∧ ¬ϕ4 ⇒ �V P
∼i (6.26)

As before, the information received from the pitot static system domain is faulty and

could not valuate for correctness of the airspeed data in that domain.

Si = ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ9 ⇒ ∃V P
i (6.27)

Using the invariants from Equation 6.24, solving for L, the information received

from the LRI domain is not faulty and the correctness of airspeed can be valuated in that

domain.

By combining Equation 6.26 and Equation 6.27,

MSDND(ES) = ∃w ∈ W : [w ` � f (sps, si)] ∧ [w |= (�V P
∼i ∧ ∃V P

i] (6.28)

Therefore, the system is not Nondeducible secure to the pilot. The pilot can de-

termine that the pitot static system is displaying incorrect airspeed data when there is a

mismatch between the altitude reading of pitot static system and the TCAS system by using

the data from LRI system.

In order to verify the correctness of altitude data, two security domains SDPS {Pitot

Static System} and SDAS {Alternate Static Source System} are considered. By combining

the valuation functions in SDPS and SDAS with respect to invariants from Equation 6.25,

Sps = ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ3 ∧ ¬ϕ4 ⇒ �V P
∼i (6.29)

47

As before, the information received from the pitot static system domain is faulty and

could not valuate for correctness of the altitude data in that domain.

Sas = ϕ7 ∧ ϕ8 ∧ ϕ9 ⇒ ∃V P
i (6.30)

Using the invariants from Equation 6.25, solving for δ, the information received

from the Alternate Static Source domain is not faulty and could valuate for correctness of

the altitude data in that domain.

By combining Equation 6.29 and Equation 6.30,

MSDND(ES) = ∃w ∈ W : [w ` � f (sps, sas)] ∧ [w |= (�V P
∼i ∧ ∃V P

i] (6.31)

Figure 6.8. LRI Helps To Identify The Faulty Pitot Static System

Hence, the system is not Nondeducible secure to the pilot. The pilot can determine

that the pitot static system is displaying incorrect data when there is a mismatch between the

altitude reading of pitot static system and the TCAS system by using the data from alternate

static source system.

Similarly, if there is a problem with the TCAS system, the pitot static system can

be used as the reference and rely on the data from alternate static source to verify the

correctness of the altitude displayed on the TCAS system.

48

The ProVerif code in APPENDIX D proves that this attack is not Nondeducible

secure by using the alternate static source as an alternate information flow path to prove

observational equivalence. As can be interpreted from "RESULTObservational equivalence

is true (bad not derivable)", the attack can be deduced by pilot-1.

6.5. ADS-B TRANSMITTER FAILURE

This section presents two different scenarios to check if the compromised ADS-B

transmitter can be identified by the pilot.

6.5.1. Without Invariants. In case of an ADS-B transmitter compromise, the

MSDND model yields Nondeducibility, thereby stopping critical information flow to the

pilot.

Proof: Consider a scenario inwhich two aircraft, Plane-1 and Plane-2 are 10 nautical

miles (nmi) apart from each other. If there is a compromise in the ADS-B transmitter of the

Plane-1, the position information of Plane-1 received by Plane-2 is incorrect and the same

is displayed to the pilot in Plane-2. This could lead to improper communication between

both the pilots. Hence, the pilots can deduce that something is going wrong but cannot

distinguish which information is correct (See Figure 6.9).

Table 6.9 presents the set of logical conditions, ϕi, p1, p2, a1, a2 that can be evaluated

to determine the interactions between pilot-1 and pilot-2.

Once the flight position is retrieved, pilots can observe that there is a mismatch

between the ADS-B position data. The pilot-1 cannot distinguish whether there is a failure

in the ADS-B-1 system or the ADS-B-2 system.

The two security domains in this scenario are SDP1 {pilot-1 Domain} and SDP2

{pilot-2 Domain}. By combining the valuation functions in SDP1 and SDP2,

Sp1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5 ∧ ¬ϕ7 ⇒ �V P1
∼a1 (6.32)

49

Table 6.9. ADS-B Logical Conditions And States - Without Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 ADS-B Out1 Initiation of transmission of position data from Plane 1.
ϕ2 ADS-B Out2 Initiation of transmission of position data from Plane 2.
ϕ3 ADS-B In1 Reception of position data from Plane 2.
ϕ4 ADS-B In2 Reception of position data from Plane 1.
ϕ5 Display1 Pilot-1 sees the position of the Plane-2.
ϕ6 Display2 Pilot-2 sees the position of the Plane-1.
ϕ7 Communication Correct communication between pilots from Plane-1 and

Plane-2 based on the ADS-B data from both the aircraft.
Sp1 p1 = T p1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5 ∧ ¬ϕ7

∼df(ADS-B Out1)∧ df(ADS-B In1)∧ ∼df(Display1)∧
∼df(communication)
Output = Position of Plane-2

Sp2 p2 = T p2 = ϕ2 ∧ ¬ϕ4 ∧ ϕ6 ∧ ¬ϕ7
df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ df(Display2)∧
∼df(communication)
Output = Position of Plane-1

Sa1 a1 = T a1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5
∼df(ADS-B Out1)∧ df(ADS-B In1)∧ ∼df(Display1)
Output = Position of Plane-2

Sa2 a2 = T a2 = ϕ2 ∧ ¬ϕ4 ∧ ϕ6
df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ df(Display2)
Output = Position of Plane-1

Since the information received from the pilot-1 domain is faulty, pilot-1 cannot

valuate for correctness of the position data in that domain.

Sp2 = ¬ϕ4 ∧ ϕ6 ∧ ¬ϕ7 ⇒ �V P2
a1 (6.33)

Since the information received from the pilot-2 domain is faulty, pilot-2 cannot

valuate for correctness of the position data in that domain.

50

By combining Equation 6.32 and Equation 6.33,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sp1, Sp2)] ∧ [w |= (�V P1
∼a1 ∧ �V

P2
a1] (6.34)

Therefore, the pilots from both the aircraft cannot deduce the faulty ADS-B system

and identify the system that is compromised.

Hence, the system is Nondeducible secure to the pilots as they cannot deduce the

actual true position of plane-2.

Figure 6.9. Failure In ADS-B Transmitter

6.5.2. Using Invariants. In case of ADS-B transmitter compromise, but using

INS, the MSDND model yields deducibility thereby allowing critical information flow to

the pilot.

Proof: The above mentioned scenario can be made deducible to the pilot by relying

on an alternate system; i.e., INS which helps in figuring out the compromised system.

Hence, the pilots can deduce the source of incorrect information based on the invariant data

computed by the INS (See Figure 6.10).

In case of failure in the ADS-B transmitter, the pilot can make use of the INS system.

The velocity is calculated using Equation 6.4.

51

Using the final velocity, distance travelled by the aircraft can be calculated using

Equation 6.5.

Note: In Table 6.10, d1 is the distance of plane-1 projected on INS-1 system and d2

is the distance travelled by plane-2 projected on INS-2 system over the same time interval.

Table 6.10 presents the set of logical conditions, ϕi, p1, p2, a1, a2, d1, d2, i1, i2 that

can be evaluated to determine the interactions between the pilot-1 and pilot-2.

The two security domains in this scenario are SDA {ADS-BDomain} and SDI {INS

Domain}. By combining the valuation functions in SDA and SDI with respect to invariants

from Equation 6.4 and Equation 6.5 in pilot’s domain,

Sa1 ∧ Sa2 = ¬ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ¬ϕ4 ∧ ¬ϕ5 ∧ ϕ6 ⇒ �V P1
∼i (6.35)

Since the information received from the ADS-B domain is faulty, the pilot cannot

valuate for correctness of the position data in that domain.

Si1 ∧ Si2 = ϕ8 ∧ ϕ9 ∧ ϕ10 ⇒ ∃V P1
i (6.36)

Using the invariants, the information received from INS domain is not faulty and

the pilot can valuate for correctness of the position data in that domain.

By combining Equation 6.35 and Equation 6.36,

MSDND(ES) = ∃w ∈ W : [w ` � f (sa1, si1)] ∧ [w |= (�V P1
∼i ∧ ∃V P1

i] (6.37)

Hence, the system is not Nondeducible secure to pilot-1 and he can deduce that

ADS-B is presenting incorrect information.

52

Table 6.10. ADS-B Logical Conditions And States - Using Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 ADS-B Out1 Initiation of transmission of position data from Plane 1.
ϕ2 ADS-B Out2 Initiation of transmission of position data from Plane 2.
ϕ3 ADS-B In1 Reception of position data from Plane 2.
ϕ4 ADS-B In2 Reception of position data from Plane 1.
ϕ5 Display1 Pilot-1 sees the position of the Plane-2.
ϕ6 Display2 Pilot-2 sees the position of the Plane-1.
ϕ7 Communication Correct communication between pilots from Plane-1 and

Plane-2 based on the ADS-B data from both the aircraft.
ϕ8 d1 Pilot-1 checks the position of the plane-1 and verifies it with

the ADS-B data.
ϕ9 d2 Pilot-2 checks the position of the plane-2 and verifies it with

the ADS-B data.
ϕ10 Verification Pilot-1 and Pilot-2 checks and verifies the position of the

respective aircraft and verifies it with the position data dis-
played.

Sp1 p1 = T p1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5 ∧ ¬ϕ7 ∧ ϕ8 ∧ ϕ10
∼df(ADS-B Out1)∧ df(ADS-B In1)∧ ∼df(Display1)∧
∼df(communication) ∧ df(d1) ∧ df(Verification)
Output = Position of Plane-2

Sp2 p2 = T p2 = ϕ2 ∧ ¬ϕ4 ∧ ϕ6 ∧ ¬ϕ7 ∧ ϕ8 ∧ ϕ9 ∧ ϕ10
df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ df(Display2)∧
∼df(communication) ∧ df(d2) ∧ df(Verification)
Output = Position of Plane-1

Sa1 a1 = T a1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5
∼df(ADS-B Out1)∧ df(ADS-B In1)∧ ∼df(Display1)
Output = Position of Plane-2

Sa2 a2 = T a2 = ϕ2 ∧ ¬ϕ4 ∧ ϕ6
df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ df(Display2)
Output = Position of Plane-1

Si1 i1 = T i1 = ϕ8 ∧ ϕ10
df(d1) ∧ df(Verification)
Output = Position of Plane-1

Si2 i2 = T i2 = ϕ9 ∧ ϕ10
df(d2) ∧ df(Verification)
Output = Position of Plane-2

53

The ProVerif code in APPENDIX E proves that this attack is not Nondeducible

secure by using INS as an alternate information flow to prove observational equivalence.

As can be interpreted from "RESULTObservational equivalence is true (bad not derivable)",

the attack can be deduced by the pilots.

Figure 6.10. INS Helps To Identify The Failure In ADS-B transmitter

6.6. ADS-B, INS AND ATTACKER

This section presents two different scenarios to check if the attacker plane can be

identified by the pilot using INS and ADS-B systems.

6.6.1. Scenario 1: Without Using Invariants. In case of an attacker sending fake

signals, the MSDND model yields Nondeducibility, thereby stopping critical information

flow to the pilot.

Proof: Consider a scenario in which two aircraft, Plane-1 and Plane-2 are 10nmi

apart from each other. If pilot-2 sends fake position data to Plane-1, the position information

received by Plane-1 is incorrect. This could lead to improper communication between both

the pilots. Hence, pilot-1 can deduce that something is going wrong from the ADS-B data

and INS data, but cannot distinguish which information is correct (See Figure 6.11).

Table 6.11 presents the set of logical conditions, ϕi, p1, p2, a1, a2, i1, i2 that can be

evaluated to determine the interactions between pilot-1 and pilot-2.

54

Table 6.11. ADS-B And Attacker Logical Conditions And States - Without Invariants

ϕ j States Functions
ϕ0 Normal Plane functions normally.
ϕ1 ADS-B Out1 Initiation of transmission of position data from Plane 1.
ϕ2 ADS-B Out2 Initiation of transmission of position data from Plane 2.
ϕ3 ADS-B In1 Reception of position data from Plane 2.
ϕ4 ADS-B In2 Reception of position data from Plane 1.
ϕ5 Display1 Pilot-1 sees the position of the Plane-2.
ϕ6 Display2 Pilot-2 sees the position of the Plane-1.
ϕ7 d1 Pilot-1 checks the INS position of the plane-1 and verifies it

with the ADS-B data.
ϕ8 d2 Pilot-2 checks the INS position of the plane-2 and verifies it

with the ADS-B data.
ϕ7 Verification Pilot-1 and Pilot-2 checks and verifies the position of the

respective aircraft and verifies it with the position data dis-
played.

Sp1 p1 = T p1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5 ∧ ¬ϕ7
∼df(ADS-B Out1)∧ df(ADS-B In1)∧ ∼df(Display1)∧
∼df(communication)
Output = Position of Plane-2

Sp2 p2 = T p2 = ϕ2 ∧ ¬ϕ4 ∧ ϕ6 ∧ ¬ϕ7
df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ df(Display2)∧
∼df(communication)
Output = Position of Plane-1

Sa1 a1 = T a1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5
∼df(ADS-B Out1)∧ df(ADS-B In1)∧ ∼df(Display1)
Output = Position of Plane-2

Sa2 a2 = T a2 = ϕ2 ∧ ¬ϕ4 ∧ ϕ6
df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ df(Display2)
Output = Position of Plane-1

Si1 i1 = T i1 = ϕ8 ∧ ϕ10
df(d1) ∧ df(Verification)
Output = Position of Plane-1

Si2 i2 = T i2 = ϕ9 ∧ ϕ10
∼df(d2) ∧ df(Verification)
Output = Position of Plane-2

Once the flight position is retrieved, pilot-1 trusts the information sent by Plane-2.

Pilot-1 observes that there is a mismatch between the ADS-B position data and the INS-data.

55

Pilot-1 cannot distinguish whether there is a failure in the ADS-B-1 system or the

INS system.

The two security domains in this scenario are SDP1 {pilot-1 Domain} and SDP2

{pilot-2 Domain}. By combining the valuation functions in SDP1 and SDP2,

Sp1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5 ∧ ¬ϕ7 ⇒ �V P1
∼a1 (6.38)

Since the information received from the pilot-1 domain is faulty, pilot-1 cannot

valuate for correctness of the position data in that domain.

Sp2 = ¬ϕ4 ∧ ϕ6 ∧ ¬ϕ7 ⇒ �V P2
a1 (6.39)

Since the information received from the pilot-2 domain is faulty, pilot-2 cannot

valuate for correctness of the position data in that domain.

By combining Equation 6.38 and Equation 6.39,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sp1, Sp2)] ∧ [w |= (�V P1
∼a1 ∧ �V

P2
a1] (6.40)

Therefore, pilot-1 cannot deduce that pilot-2 is sending fake signals and identify the

system that is compromised.

Hence, the system is Nondeducible secure to pilot-1 as he/she cannot deduce the

actual true position of plane-2.

6.6.2. Scenario 2: Using Invariants. In case of an attacker sending fake signals,

but using TCAS, the MSDND model yields deducibility thereby allowing critical informa-

tion flow to the pilot.

56

Figure 6.11. Attacker Sends Fake Position Data To Pilot-1

Proof: The above mentioned scenario can be made deducible to pilot-1 by relying

on an alternate system; i.e., TCAS which helps in figuring out the compromised system.

Hence, pilot-1 can deduce the source of incorrect information based on the invariant data

computed by TCAS.

Consider a scenario in which two aircraft, Plane-1 and Plane-2 are 10nmi apart

from each other. If pilot-2 sends fake position data to Plane-1, the position information

received by Plane-1 is incorrect. This could lead to improper communication between both

the pilots. Hence, pilot-1 can deduce that something is going wrong from the ADS-B data

and INS data, but cannot distinguish which information is correct (See Figure 6.12).

Table 6.12 presents the set of logical conditions, ϕi, p1, p2, a1, a2, t that can be

evaluated to determine the interactions between pilot-1 and pilot-2.

Once the flight position is retrieved from TCAS-1, pilot-1 does not trust the in-

formation sent by Plane-2. Pilot-1 relies on the TCAS data and follows the RA given by

TCAS-1 system.

TCAS computes the closure rate of each target within surveillance range based on

the surveillance reports (slant range, bearing and altitude) provided each second, in order to

determine the time in seconds to Closest Point of Approach (CPA), and the horizontal miss

distance at CPA. If the target aircraft is equipped with an altitude-coding transponder, the

57

Table 6.12. ADS-B And Attacker Logical Conditions And States - Using Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 ADS-B Out1 Initiation of transmission of position data from Plane 1.
ϕ2 ADS-B Out2 Initiation of transmission of position data from Plane 2.
ϕ3 ADS-B In1 Reception of position data from Plane 2.
ϕ4 ADS-B In2 Reception of position data from Plane 1.
ϕ5 Display1 Pilot-1 sees the position of the Plane-2.
ϕ6 Display2 Pilot-2 sees the position of the Plane-1.
ϕ7 TCAS-1 TCAS system knows the position of plane-1 and plane-2.
ϕ8 Displayt Pilot-1 checks the TCAS position of the plane-2 and follows

the RA given by TCAS.
Sp1 p1 = T p1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5 ∧ ϕ7 ∧ ϕ8

∼df(ADS-B Out1)∧ df(ADS-B In1)∧ ∼df(Display1)∧
∼df(communication)
Output = Position of Plane-2

Sp2 p2 = T p2 = ϕ2 ∧ ¬ϕ4 ∧ ϕ6 ∧ ¬ϕ7
df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ df(Display2)∧
∼df(communication)
Output = Position of Plane-1

Sa1 a1 = T a1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5
∼df(ADS-B Out1)∧ df(ADS-B In1)∧ ∼df(Display1)
Output = Position of Plane-2

Sa2 a2 = T a2 = ϕ2 ∧ ¬ϕ4 ∧ ϕ6
df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ df(Display2)
Output = Position of Plane-1

Si i = T t = ϕ7 ∧ ϕ8
df(TCAS-1) ∧ df(Displayt)

Output = Position of Plane-1 and Plane-2

TCAS calculates the altitude of the target at CPA. The intruder’s vertical speed is obtained

by measuring the time it takes to cross successive 100-foot or 25- foot altitude increments,

which depends upon the type of altitude coding transponder. The TCAS system uses the

data from its own aircraft pressure altimeter, either directly from the altitude encoder or

Air Data Computer (ADC). In this way, it determines its own aircraft altitude, vertical rate,

58

and the relative altitude of each target. The outputs from the TCAS tracking algorithm

(target range, horizontal miss distance at CPA, closure rate and relative altitude of the target

aircraft) are supplied to the traffic advisory and threat detection algorithms.

The two security domains in this scenario are SDP1 {pilot-1 Domain} and SDP2

{pilot-2 Domain}. By combining the valuation functions in SDP1 and SDP2 with respect

to invariants in them from TCAS domain,

Sp1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5 ∧ ϕ7 ∧ ϕ8 ⇒ ∃V P1
i (6.41)

Since the information received from the TCAS-1 domain is not faulty, pilot-1 can

valuate for correctness of the position data in that domain.

Sp2 = ¬ϕ4 ∧ ϕ6 ∧ ¬ϕ7 ⇒ �V P1
∼i (6.42)

Since the information received from the pilot-2 domain is faulty, pilot-1 cannot

valuate for correctness of the position data in that domain.

By combining Equation 6.41 and Equation 6.42,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sp1, Sp2)] ∧ [w |= (∃V P1
i ∧ �V

P1
i] (6.43)

Therefore, pilot-1 can deduce that pilot-2 is sending fake position data and identify

the system that is compromised.

Hence, the system is not Nondeducible secure to pilot-1 as he cannot deduce the

actual true position of plane-2.

59

Figure 6.12. TCAS Helps To Identify The Attacker Plane

The ProVerif code in APPENDIX F proves that this attack is not Nondeducible

secure when the TCAS system is used as an alternate information flow path. As can be

interpreted from "RESULT not attacker(XY_Coord_Node_1[]) is false", the attacker plane

is present in coordinate 1.

6.7. ADS-B AND RF INTERFERENCE

In case of RF interference, the MSDND model yields Nondeducibility, thereby

stopping critical information flow to the pilots.

Proof: Consider a scenario in which two aircraft, Plane-1 and Plane-2 are 10nmi

apart from each other. The pilots communicate with each other on 1090ES band. In case

of an RF interference, the communication path between both the planes is disrupted and

incorrect information is transmitted to both the pilots. Hence, the pilots cannot deduce that

something is going wrong and this could lead to a potential collision (See Figure 6.13).

Table 6.13 presents the set of logical conditions, ϕi, p1, p2, a1, a2 that can be evalu-

ated to determine the interactions between pilot-1 and pilot-2.

60

Table 6.13. RF Interference Logical Conditions And States - Without Invariants

ϕ j States Functions
ϕ0 Normal Plane functions normally.
ϕ1 ADS-B Out1 Initiation of transmission of position data from Plane 1.
ϕ2 ADS-B Out2 Initiation of transmission of position data from Plane 2.
ϕ3 RF Interference RF Interference caused by the attacker.
ϕ4 ADS-B In1 Reception of position data from Plane 2.
ϕ5 ADS-B In2 Reception of position data from Plane 1.
ϕ6 Display1 Pilot-1 sees the position of the Plane-2.
ϕ7 Display2 Pilot-2 sees the position of the Plane-1.
ϕ8 Communication Incorrect communication between pilots from Plane-1 and

Plane-2 based on the received ADS-B data.
Sp1 p1 = T p1 = ϕ1 ∧ ¬ϕ3 ∧ ¬ϕ4 ∧ ¬ϕ6 ∧ ¬ϕ8

df(ADS-B Out1)∧ ∼df(RF Interference) ∧ ∼df(ADS-B
In1)∧ ∼df(Display1)∧ ∼df(communication)
Output = Position of Plane-2

Sp2 p2 = T p2 = ϕ2 ∧ ¬ϕ3 ∧ ¬ϕ5 ∧ ¬ϕ7 ∧ ¬ϕ8
df(ADS-B Out2)∧ ∼df(RF Interference) ∧ ∼df(ADS-B
In2)∧ ∼df(Display2)∧ ∼df(communication)
Output = Position of Plane-1

Sa1 a1 = T a1 = ¬ϕ1 ∧ ϕ3 ∧ ¬ϕ5
∼df(ADS-B Out1)∧ df(ADS-B In1)∧ ∼df(Display1)
Output = Position of Plane-2

Sa2 a2 = T a2 = ϕ2 ∧ ¬ϕ4 ∧ ϕ6
df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ df(Display2)
Output = Position of Plane-1

The two security domains in this scenario are SDA {ADS-BDomain} and SDI {INS

Domain}. By combining the valuation functions in SDA and SDI with respect to invariants

in them from pilot’s domain,

Sa1 ∧ Sa2 = ¬ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ¬ϕ4 ∧ ¬ϕ5 ∧ ϕ6 ⇒ �V P1
∼i (6.44)

61

Since the information received from the ADS-B domain is faulty, the pilot cannot

valuate for correctness of the position data in that domain.

Si1 ∧ Si2 = ϕ8 ∧ ϕ9 ∧ ϕ10 ⇒ ∃V P1
i (6.45)

By combining Equation 6.44 and Equation 6.45,

MSDND(ES) = ∃w ∈ W : [w ` � f (sa1, si1)] ∧ [w |= (�V P1
∼i ∧ ∃V P1

i] (6.46)

Figure 6.13. RF Interference

Hence, the system is not Nondeducible secure to pilot-1 and he/she can deduce that

ADS-B is presenting incorrect information.

The ProVerif code in APPENDIX G proves that this attack is Nondeducible secure

as there is no alternate information flow to prove observational equivalence. As can be

interpreted from "RESULT Observational equivalence cannot be proved (bad derivable)",

the attack cannot be deduced by the pilots.

6.8. ADS-B AND SATELLITE FAILURE

In case of satellite (GNSS) failure, the MSDND model yields Nondeducibility,

thereby stopping critical information flow to the pilots.

62

Proof: Consider a scenario in which two aircraft, Plane-1 and Plane-2 are 10nmi

apart from each other. GNSS is responsible for sending the position data to the planes and

the planes communicate with each other. In case of GNSS failure, the position information

retrieved by both the planes is incorrect and the pilots communicate with each other based

on this information. Hence, the pilots cannot deduce that something is going wrong and

this could lead to a potential collision (See Figure 6.14).

Table 6.14 presents the set of logical conditions, ϕi, p1, p2, a1, a2 that can be evalu-

ated to determine the interactions between pilot-1 and pilot-2.

Table 6.14. Satellite Failure Logical Conditions And States - Without Invariants

ϕi States Functions
ϕ0 Normal Plane functions normally.
ϕ1 GNSS Initiation of transmission of position data to plane-1 and

plane-2.
ϕ2 ADS-B Out1 Initiation of transmission of position data from Plane-1.
ϕ3 ADS-B Out2 Initiation of transmission of position data from Plane-2.
ϕ4 ADS-B In1 Reception of position data from Plane 2.
ϕ5 ADS-B In2 Reception of position data from Plane 1.
ϕ6 Display1 Pilot-1 sees the position of the Plane-2.
ϕ7 Display2 Pilot-2 sees the position of the Plane-1.
ϕ8 Communication Incorrect communication between pilots from Plane-1 and

Plane-2 based on the received ADS-B data.
Sp1 p1 = T p1 = ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ4 ∧ ¬ϕ6 ∧ ¬ϕ8

∼df(GNSS) ∧ ∼df(ADS-B Out1)∧ ∼df(ADS-B In1)∧
∼df(Display1)∧ ∼df(communication)
Output = Position of Plane-2

Sp2 p2 = T p2 = ¬ϕ1 ∧ ¬ϕ3 ∧ ¬ϕ5 ∧ ¬ϕ7 ∧ ¬ϕ8
∼df(GNSS) ∧ ∼df(ADS-B Out2)∧ ∼df(ADS-B In2)∧
∼df(Display2)∧ ∼df(communication)
Output = Position of Plane-1

Sa1 a1 = T a1 = ¬ϕ2 ∧ ¬ϕ4 ∧ ¬ϕ6
∼df(ADS-B Out1)∧ ∼df(ADS-B In1)∧ ∼df(Display1)
Output = Position of Plane-2

Sa2 a2 = T a2 = ¬ϕ3 ∧ ¬ϕ5 ∧ ¬ϕ7
∼df(ADS-B Out2)∧ ∼df(ADS-B In2)∧ ∼df(Display2)
Output = Position of Plane-1

63

Once the flight position is retrieved, pilot-1 trusts the information sent by Plane-2

and vice-versa. Pilot-1 and pilot-2 cannot identify the problem until they are too close

which eventually leads to breakdown in the separation.

The two security domains in this scenario are SDP1 {pilot-1 Domain} and SDP2

{pilot-2 Domain}. By combining the valuation functions in SDP1 and SDP2,

Sp1 = ¬ϕ1 ∧ ¬ϕ2 ∧ ¬ϕ4 ∧ ¬ϕ6 ∧ ¬ϕ8 ⇒ �V P1
∼a2 (6.47)

Since the information received from the pilot-2 domain is faulty, pilot-1 cannot

valuate for correctness of the position data in that domain.

Sp2 = ¬ϕ1 ∧ ¬ϕ3 ∧ ¬ϕ5 ∧ ¬ϕ7 ∧ ¬ϕ8 ⇒ �V P2
∼a1 (6.48)

Since the information received from the pilot-1 domain is faulty, pilot-2 cannot

valuate for correctness of the position data in that domain.

By combining Equation 6.47 and Equation 6.48,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sp1, Sp2)] ∧ [w |= (�V P1
∼a2 ∧ �V

P2
∼a1] (6.49)

Therefore, the pilots from both the aircraft cannot deduce that satellite failure is

causing the transmission of incorrect information.

Hence, the system is Nondeducible secure to the pilots as they cannot deduce actual

true position of the planes.

The ProVerif code in APPENDIX H proves that this attack is Nondeducible secure

as there is no alternate information flow to prove observational equivalence. As can be

interpreted from "RESULT Observational equivalence cannot be proved (bad derivable)",

the attack cannot be deduced by the pilots.

64

Figure 6.14. Satellite Failure

6.9. TCAS AND ATC CONTROLLER

This section presents two different scenarios to check if the incorrect commands

from ATC can be identified by the pilot.

6.9.1. Scenario 1: Without Using Invariants. In case of incorrect commands

from the ATC controller, the MSDND model yields Nondeducibility, thereby stopping

critical information flow to the pilots.

Proof: Consider a scenario in which two aircraft, Plane-1 and Plane-2 are 10nmi

apart from each other. The TCAS system sends climb RA to plane-1 and descend RA

to plane-2. Due to delay in the reception of data from the both the planes, ATC instructs

plane-2 to descend which induces pilot-2 to manoeuvre, overriding the initial RAs. Notably,

reversing the on going RA is not feasible while aircraft are manoeuvring in the vertical

dimension and are at co-altitude. This can lead to delaying the decision to reverse if both

aircraft are climbing or descending at similar vertical speeds which eventually leads to

collision (See Figure 6.15).

Table 6.15 presents the set of logical conditions, ϕi, p1, p2, c that can be evaluated

to determine the interactions between pilot-1 and pilot-2.

65

Table 6.15. TCAS And ATC Logical Conditions And States - Without Invariants

ϕ j States Functions
ϕ0 Normal Plane functions normally.
ϕ1 TCAS-1 Initiation of transmission of "descend RA" to plane-1.
ϕ2 TCAS-2 Initiation of transmission of "climb RA" to Plane-2.
ϕ3 Display1 Pilot-1 sees the position of the Plane-2 .
ϕ4 Display2 Pilot-2 sees the position of the Plane-1.
ϕ5 ATC Command Initiation of transmission of "descend RA" to Plane-2.
ϕ6 Pilot-2 Pilot-2 follows the ATC instruction and descends.
ϕ7 Communication Incorrect communication between pilots from Plane-1 and

Plane-2 based on the received RA’s.
Sp1 p1 = T p1 = ϕ1 ∧ ϕ3 ∧ ¬ϕ7

df(TCAS-1) ∧ df(Display1)∧ ∼df(communication)
Output = Position of Plane-2

Sp2 p2 = T p2 = ϕ2 ∧ ϕ4 ∧ ¬ϕ5 ∧ ¬ϕ6 ∧ ¬ϕ7
df(TCAS-2) ∧ df(Display2)∧ ∼df(ATC Command) ∧
∼df(Pilot-2) ∧ ∼df(communication)
Output = Position of Plane-1

Sc c = T c = ϕ1 ∧ ϕ2 ∧ ¬ϕ5 ∧ ¬ϕ7
df(TCAS-1) ∧ df(TCAS-2) ∧ ∼df(ATC Command) ∧
∼df(Communication)
Output = Position of Plane-1 and Plane-2

Once the flight position is retrieved, pilot-1 trusts the information sent by Plane-2

and ATC controller and vice-versa. Pilot-1 and pilot-2 cannot identify the problem until

they are too close which eventually leads to breakdown in the separation.

The two security domains in this scenario are SDP1 {pilot-1 Domain} and SDP2

{pilot-2 Domain}. By combining the valuation functions in SDP1 and SDP2,

Sp1 = ϕ1 ∧ ϕ3 ∧ ¬ϕ7 ⇒ �V P1
c (6.50)

66

Since the information received from the pilot-2 domain is faulty, pilot-1 cannot

valuate for correctness of the position data in that domain.

Sp2 = ϕ2 ∧ ϕ4 ∧ ¬ϕ5 ∧ ¬ϕ6 ∧ ¬ϕ7 ⇒ �V P2
∼c (6.51)

Since the information received from the pilot-1 domain is faulty, pilot-2 cannot

valuate for correctness of the position data in that domain.

By combining Equation 6.50 and Equation 6.51,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sp1, Sp2)] ∧ [w |= (�V P1
c ∧ �V

P2
∼c] (6.52)

Figure 6.15. Conflict Between ATC And TCAS Commands

Therefore, the pilots from both the aircraft cannot deduce whether TCAS-2 is faulty

or the ATC controller instructed wrong commands.

67

Hence, the system is Nondeducible secure to the pilots as they cannot deduce the

correctness of ATC commands.

6.9.2. Scenario 2: Using Invariants. In case of incorrect commands from theATC

controller, but using ADS-B system, the MSDND model yields Nondeducibility, thereby

allowing critical information flow to the pilots.

Proof: The above mentioned scenario can be avoided by relying on alternate in-

formation flow path. ADS-B system can serve as this alternate source to provide position

data. This helps the pilots to verify the position when they are on the same flight level and

in close proximity (See Figure 6.16).

Table 6.16 presents the set of logical conditions, ϕi, p1, p2, c, a1, a2 that can be

evaluated to determine the interactions between pilot-1 and pilot-2.

Once the flight position is retrieved, pilot-1 trusts the information sent by Plane-2

and ATC controller and vice-versa. When both the pilots verify the TCAS position data and

ADS-B position data, pilot-1 can deduce that ATC has given incorrect commands. Thus,

the pilots can avoid collision by relying on the ADS-B data.

For each aircraft being tracked, the receiver calculates how long the satellite signal

took to reach it, as follows:

Propagation Time = Time Signal Reached Receiver - Time Signal Left Satellite

Pt = Rt − Lt (6.53)

Multiplying this propagation time by the speed of light gives the distance to the

satellite.

Sd = Pt ∗ Sl (6.54)

68

Table 6.16. TCAS And ATC Logical Conditions And States - Using Invariants

ϕ j States Functions
ϕ0 Normal Plane functions normally.
ϕ1 TCAS-1 Initiation of transmission of "descend RA" to plane-1.
ϕ2 TCAS-2 Initiation of transmission of "climb RA" to Plane-2.
ϕ3 Display1 Pilot-1 sees the position of the Plane-2 .
ϕ4 Display2 Pilot-2 sees the position of the Plane-1.
ϕ5 ATC Command Initiation of transmission of "descend RA" to Plane-2.
ϕ6 Pilot-2 Pilot-2 follows the ATC instruction and descends.
ϕ7 Communication Incorrect communication between pilots from Plane-1 and

Plane-2 based on the received RA’s.
ϕ8 ADS-B-1 Initiation of transmission of position data to Plane-2.
ϕ9 ADS-B-2 Initiation of transmission of position data to Plane-1.
ϕ10 Verification Pilot-1 and Pilot-2 check and verify the position of the respec-

tive aircraft and verify it with the position data displayed.
Sp1 p1 = T p1 = ϕ1 ∧ ϕ3 ∧ ¬ϕ7 ∧ ϕ8 ∧ ϕ10

df(TCAS-1) ∧ df(Display1)∧ ∼df(Communication) ∧
df(ADS-B-1) ∧ df(Verification)
Output = Position of Plane-2

Sp2 p2 = T p2 = ϕ2 ∧ ϕ4 ∧ ¬ϕ5 ∧ ¬ϕ6 ∧ ¬ϕ7 ∧ ϕ9 ∧ ϕ10
df(TCAS-2) ∧ df(Display2)∧ ∼df(ATC Command) ∧
∼df(Pilot-2) ∧ ∼df(Communication) ∧ df(ADS-B-2) ∧
df(Verification)
Output = Position of Plane-1

Sc c = T c = ϕ1 ∧ ϕ2 ∧ ¬ϕ5 ∧ ¬ϕ7
df(TCAS-1) ∧ df(TCAS-2) ∧ ∼df(ATC Command) ∧
∼df(Communication) ∧ df(Verification)
Output = Position of Plane-1 and Plane-2

Sa1 a1 = T a1 = ϕ8
df(ADS-B-1)
Output = Position of Plane-2

Sa2 a2 = T a2 = ϕ9
df(ADS-B-2)
Output = Position of Plane-1

For each satellite being tracked, the receiver now knows where the satellite was at

the time of transmission and it has determined the distance to the satellite when it was there.

Using trilateration, a method of geometrically determining the position of an object, in a

manner similar to triangulation, the receiver calculates its position.

69

The two security domains in this scenario are SDC {controller Domain} and SDP

{pilot-1 and pilot-2 Domain}. By combining the valuation functions in SDC and SDP with

respect to the invariants from ADS-B domain with respect to invariants from Equation 6.53

and Equation 6.54 in ADS-B domain,

Sc = ϕ1 ∧ ϕ2 ∧ ¬ϕ5 ∧ ¬ϕ7 ⇒ �VC
∼i (6.55)

Since the information received from the controller domain is faulty, the pilots cannot

valuate for correctness of the position data in that domain.

Sp = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ¬ϕ5 ∧ ¬ϕ6 ∧ ¬ϕ7 ∧ ϕ8 ∧ ϕ9 ∧ ϕ10 ⇒ ∃V P
i (6.56)

Since the information received from the pilot-1 and pilot-2 domain is not faulty, the

pilots can valuate for correctness of the position data in that domain.

By combining Equation 6.55 and Equation 6.56,

MSDND(ES) = ∃w ∈ W : [w ` � f (Sc, Sp)] ∧ [w |= (�VC
∼i ∧ ∃V P

i)] (6.57)

Therefore, the pilots can deduce that ATC controller instructed with wrong com-

mands and pilots can follow the initial RAs issued by the TCAS system.

Hence, the system is not Nondeducible secure to the pilots as they can deduce the

correctness of ATC commands.

The ProVerif code inAPPENDIX I proves that this attack is not Nondeducible secure

when ADS-B is used as an alternate information flow path. As can be interpreted from

"RESULT not attacker(XY_Coord[]) is false", the TCAS is sending incorrect commands.

Table 6.17 presents the summary of attack scenarios and the corresponding invariants

source used to identify the attack.

70

Figure 6.16. ADS-B Helps Identify The Incorrect Commands From ATC

Table 6.17. Summary Of The Attack Scenarios

Scenario MSDND Secure Invariants Source
Radar Transponder Failure No INS, ADS-B
Radar Transponder Failure and TCAS No INS, ADS-B
Altimeter Failure No INS, ADS-B
Pitot Static System Failure No Alternate static source, LRI
ADS-B Transmitter Failure No INS
ADS-B, INS and Attacker No TCAS
ADS-B and RF Interference Yes NA
ADS-B and Satellite Failure Yes NA
TCAS and ATC Controller No ADS-B

71

7. FUTURE WORK

The introduction of an automated, decentralized airspace system and the aircraft

flying in that airspace system, leads to some unique CPS challenges and open problems.

The air traffic control network will be used by manned and unmanned air vehicles in the

shared airspace and additionally be used for distribution of large volumes of potentially non-

safety critical data, e.g., traffic information and updates from ground systems. Furthermore,

with growth of programs such as "fly-by-wireless" [10], an on-board wireless network

communicates advisory and eventually time-critical data, will be increasingly an option for

aviation. This results in a complex system with a huge number of information flow paths

between various systems in the aircraft. The MSDND model must exhibit deducibility for

time critical operations under above specified conditions, e.g., in terms of deducing the

attack when the traffic is high. Hence the performance of MSDND in mixed traffic loads

must be studied for future aircraft. Furthermore, risks from tight cyber-physical integration

must be assessed for their potential impact on physical behavior and performance gains of

future aircraft and airspace systems.

A strategic and generalized way to partition the security domains is needed. While

in this thesis, the assignment of security domains to physical domains seems natural, it is

expected that this will not always be the case. A formal proof is needed that quantifies the

security domains and assesses the number of information flow paths that can be corrupted

and still maintain deducibility. In the future, systems, equipment and components will

have their own intelligence and communication abilities, which makes the cyber-physical

interactions more complex. Focus can be laid on building a fully automated tool to automate

the MSDND analysis by partitioning the CPS into security domains, devise attack scenarios

and provide alternatives to overcome bottlenecks in the overall system.

72

There are technical challenges associated with tightening the cyber-physical inte-

gration within aircraft and between aircraft and off-board systems. Most aviation standards

do not yet cover cyber-physical threats. Several aviation regulatory agencies have started

creating regulations (e.g., Special Conditions) to address cyber security (e.g., network se-

curity) and physical security (e.g., onboard RF interference) concerns [10]. Physical risks

from bad weather, icing, winds, solar flares, can also impact cyber performance (e.g., GPS

outage due to solar flares).

Future work also includes extending the MSDND model to include entire aviation

systems, as well as identifying and assessing aviation cyber-physical risks.

73

8. CONCLUSION

Viewing the security domains as single high and low domains is not adequate as it

does not cover all the possible combinations of the states. The MSDND model is used to

analyze the information flow paths in complex CPS and this model is applied to a specific

CPS, air traffic surveillance systems, with quick response times. This model fits the complex

CPS better compared to other models, because it considers all the possible combinations

of states and applies MSDND to check for the deducibility. The MSDND model shows

where the vulnerabilities lie and shows where additional inputs or invariants are needed to

mitigate the vulnerabilities.

This thesis considers possible attacks and malfunctions in the air traffic surveillance

systems. The benefits of tightening the cyber-physical interactions of airborne computer

systems, however, is at the cost of exposure to potential vulnerabilities. The thesis noted that

the CPS can be partitioned into multiple overlapping security domains and the information

flow paths between these domains can be fundamentally viewed as a security function

for mitigating vulnerability exposure, but these information flow paths are also subject to

failure and intentional disruption. A system sending information to other systems has to

be evaluated for effectiveness, including failure impact and required reliability. This thesis

is aimed at evaluating the security domains and the associated paths, using various attack

scenarios to identify the attack. Given an attack scenario and the source of the attack,

MSDNDmakes use of the invariants present in the system to provide an alternative to avoid

the attack.

This thesis provided a CPS vision for future aviation information systems of aircraft.

The presented MSDND analysis offers new insights on the security analysis of aircraft

and airspace systems as well as the impact of these risks on the emerging cyber-physical

interactions in aerospace.

APPENDIX A

RADAR TRANSPONDER FAILURE

75

CODE:

(∗ De f i n i ng use r −d e f i n e d d a t a t ype as Coo r d i n a t e s ∗)

t yp e Coord .

(∗ Va r i a b l e s , Names and Types ∗)

(∗ Making channe l c p r i v a t e f o r s e c u r e t r a n s f e r o f d a t a ∗)

f r e e c : c h anne l [p r i v a t e] .

f r e e ch : ch anne l .

f r e e Accept : b i t s t r i n g [p r i v a t e] .

f r e e Reques t : b i t s t r i n g [p r i v a t e] .

f r e e XY_Coord : Coord .

(∗ que ry t o s e e i f a t t a c k e r can o b t a i n any of t h e messages ∗)

que ry a t t a c k e r (Accept) .

que ry a t t a c k e r (Reques t) .

que ry a t t a c k e r (XY_Coord) .

(∗ P r o c e s s 1 a t ATC ∗)

l e t ATC=

(∗ Reques t s e n t t o on ly F l i g h t A∗)

ou t (ch , Reques t) ;

(∗ Coo r d i n a t e s a r e r e c e i v e d from F l i g h t A, and a r e s t o r e d

i n XY_Location ∗)

i n (c , XY_Location : Coord) ;

i f XY_Location = XY_Coord t h en

76

(∗ Coo r d i n a t e s a r e a c c e p t e d ∗)

ou t (c , Accept) .

(∗ P r o c e s s 2 a t F l i g h t A TCAS∗)

l e t TCAS_FlightA=

(∗ Reques t i s t a k en by F l i g h t A ∗)

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

(∗ Coo r d i n a t e s a r e s e n t a s r e s p on s e ∗)

ou t (ch , XY_Coord) .

(∗ P a r a l l e l Compos i t ion o f ATC and F l i g h t A TCAS p r o c e s s e s ∗)

p r o c e s s

((! ATC) | (! TCAS_FlightA))

OUTPUT:

−− Query no t a t t a c k e r (XY_Coord [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord [])

goa l r e a c h a b l e : a t t a c k e r (XY_Coord [])

RESULT no t a t t a c k e r (XY_Coord []) i s f a l s e .

−− Query no t a t t a c k e r (Reques t [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Reques t [])

goa l r e a c h a b l e : a t t a c k e r (Reques t [])

RESULT no t a t t a c k e r (Reques t []) i s f a l s e .

−− Query no t a t t a c k e r (Accept [])

77

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Accept [])

RESULT no t a t t a c k e r (Accept []) i s t r u e .

APPENDIX B

RADAR TRANSPONDER FAILURE AND TCAS

79

CODE:

(∗ De f i n i ng use r −d e f i n e d d a t a t ype as Coo r d i n a t e s ∗)

t yp e Coord .

(∗ Va r i a b l e s , Names and Types ∗)

(∗ Making channe l c p r i v a t e f o r s e c u r e t r a n s f e r o f d a t a ∗)

f r e e c : c h anne l [p r i v a t e] .

f r e e ch : ch anne l .

f r e e Accept : b i t s t r i n g [p r i v a t e] .

f r e e Reques t : b i t s t r i n g [p r i v a t e] .

f r e e XY_Coord : Coord .

(∗ que ry t o s e e i f a t t a c k e r can o b t a i n any of t h e messages ∗)

que ry a t t a c k e r (Accept) .

que ry a t t a c k e r (Reques t) .

que ry a t t a c k e r (XY_Coord) .

(∗ P r o c e s s 1 a t ATC ∗)

l e t ATC=

(∗ Reques t s e n t t o on ly F l i g h t A∗)

ou t (ch , Reques t) ;

(∗ Coo r d i n a t e s a r e r e c e i v e d from F l i g h t A, and a r e

s t o r e d i n XY_Location ∗)

i n (c , XY_Location : Coord) ;

i f XY_Location = XY_Coord t h en

80

(∗ Coo r d i n a t e s a r e a c c e p t e d ∗)

ou t (c , Accept) .

(∗ P r o c e s s 2 a t F l i g h t A TCAS∗)

l e t TCAS_FlightA=

(∗ Reques t i s t a k en by F l i g h t A ∗)

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

(∗ Coo r d i n a t e s a r e s e n t a s r e s p on s e ∗)

ou t (ch , XY_Coord) .

(∗ P r o c e s s 3 a t F l i g h t B TCAS∗)

l e t TCAS_FlightB=

(∗ Reques t i s t a k en by F l i g h t B ∗)

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

(∗ Coo r d i n a t e s a r e s e n t a s r e s p on s e ∗)

ou t (ch , XY_Coord) .

p r o c e s s

((! ATC) | (! TCAS_FlightA) | (! TCAS_FlightB))

OUTPUT:

−− Query no t a t t a c k e r (XY_Coord [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord [])

goa l r e a c h a b l e : a t t a c k e r (XY_Coord [])

81

RESULT no t a t t a c k e r (XY_Coord []) i s f a l s e .

−− Query no t a t t a c k e r (Reques t [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Reques t [])

goa l r e a c h a b l e : a t t a c k e r (Reques t [])

RESULT no t a t t a c k e r (Reques t []) i s f a l s e .

−− Query no t a t t a c k e r (Accept [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Accept [])

RESULT no t a t t a c k e r (Accept []) i s t r u e .

APPENDIX C

ALTIMETER FAILURE

83

CODE:

(∗ De f i n i ng use r −d e f i n e d d a t a t ype as Coo r d i n a t e s ∗)

t yp e Coord .

(∗ Va r i a b l e s , Names and Types ∗)

(∗ Making channe l c p r i v a t e f o r s e c u r e t r a n s f e r o f d a t a ∗)

f r e e c : c h anne l [p r i v a t e] .

f r e e ch : ch anne l .

f r e e Accept : b i t s t r i n g [p r i v a t e] .

f r e e Reques t : b i t s t r i n g [p r i v a t e] .

f r e e XY_Coord : Coord [p r i v a t e] .

(∗ que ry t o s e e i f a t t a c k e r can o b t a i n any of t h e messages ∗)

que ry a t t a c k e r (Accept) .

que ry a t t a c k e r (Reques t) .

que ry a t t a c k e r (XY_Coord) .

(∗ TCAS A l t im e t e r p r o c e s s 1 a t F l i gh tA ∗)

l e t TCAS_Alt i_Fl ightA=

(∗ Reques t s e n t t o on ly F l i g h t B∗)

ou t (c , Reques t) ;

(∗ Coo r d i n a t e s r e c e i v e d from F l i g h t B∗)

i n (c , XY_Location : Coord) ;

i f XY_Location = XY_Coord t h en

(∗ Coo r d i n a t e s a r e a c c e p t e d ∗)

ou t (ch , Accept) .

84

(∗ TCAS p r o c e s s 2 a t F l i g h t B ∗)

l e t TCAS_FlightB=

(∗ Reques t i s t a k en by F l i g h t B ∗)

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

(∗ Coo r d i n a t e s a r e s e n t a s r e s p on s e ∗)

ou t (c , XY_Coord) .

p r o c e s s

((! TCAS_Alt i_Fl ightA) | (! TCAS_FlightB))

OUTPUT:

−− Query no t a t t a c k e r (XY_Coord [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord [])

RESULT no t a t t a c k e r (XY_Coord []) i s t r u e .

−− Query no t a t t a c k e r (Reques t [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Reques t [])

RESULT no t a t t a c k e r (Reques t []) i s t r u e .

−− Query no t a t t a c k e r (Accept [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Accept [])

goa l r e a c h a b l e : a t t a c k e r (Accept [])

RESULT no t a t t a c k e r (Accept []) i s f a l s e .

APPENDIX D

PITOT STATIC SYSTEM FAILURE

86

CODE:

t y p e ne tVa lue .

t yp e P .

(∗ Va r i a b l e s , Names and Types ∗)

f r e e c : c h anne l .

f r e e c_phy : ch anne l [p r i v a t e] .

f r e e ch : ch anne l [p r i v a t e] .

f r e e S t a t u s : b i t s t r i n g . f r e e Reques t : b i t s t r i n g .

f r e e Response : b i t s t r i n g [p r i v a t e] .

f r e e S e l e c t : b i t s t r i n g [p r i v a t e] .

f r e e Sa fe : b i t s t r i n g [p r i v a t e] .

f r e e Unsafe : b i t s t r i n g [p r i v a t e] . f r e e Se t : b i t s t r i n g [p r i v a t e] .

f r e e p1 , p2 : P [p r i v a t e] .

f r e e p3 : P . f r e e d e l t a 1 , d e l t a 2 , d e l t a 3 : n e tVa l ue [p r i v a t e] .

(∗ I n v a r i a n t p r o c e s s ∗)

fun Inv (P) : n e tVa lue . r educ f o r a l l p : P ,

v a l u e : n e tVa l ue ; pos (Inv (p) , v a l u e)= va l u e .

(∗ P i t o t S t a t i c System p r o c e s s ∗)

l e t P i t o t =

ou t (c , Reques t) ;

i n (ch , x_Response : b i t s t r i n g) ;

i f x_Response = Response t h en

ou t (ch , c ho i c e [Safe , Unsafe]) ;

i n (ch , x_Safe : b i t s t r i n g) ;

87

i f x_Safe = Sa fe t h en

ou t (c_phy , Inv (p1)) ;

i f x_Safe = Unsafe t h en

ou t (c , Inv (p1)) ;

l e t y=pos (Inv (p1) , d e l t a 1) i n

ou t (ch , Se t) .

(∗ TCAS System p r o c e s s ∗)

l e t TCAS =

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (ch , Response) ;

i n (ch , x _S e l e c t : b i t s t r i n g) ;

i f x _S e l e c t = S e l e c t t h en

ou t (ch , Sa fe) ;

ou t (c_phy , Inv (p2)) ;

l e t y=pos (Inv (p2) , d e l t a 2) i n

ou t (ch , Se t) .

(∗ A l t e r n a t e S t a t i c Source p r o c e s s ∗)

l e t A l t e r n a t e =

ou t (c , S t a t u s) ;

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (ch , Response) ;

i n (ch , x _S e l e c t : b i t s t r i n g) ;

i f x _S e l e c t = S e l e c t t h en

88

ou t (ch , Sa fe) ;

ou t (c_phy , Inv (p3)) ;

l e t y=pos (Inv (p3) , d e l t a 3) i n

ou t (ch , Se t) .

p r o c e s s ((! TCAS) | (! A l t e r n a t e))

OUTPUT:

−− Ob s e r v a t i o n a l e q u i v a l e n c e

Comple t ing . . .

RESULT Ob s e r v a t i o n a l e q u i v a l e n c e i s t r u e (bad no t d e r i v a b l e) .

APPENDIX E

ADS-B TRANSMITTER FAILURE

90

CODE:

t y p e ne tVa lue .

t yp e P .

(∗ Va r i a b l e s , Names and Types ∗)

f r e e c : c h anne l .

f r e e c_phy : ch anne l [p r i v a t e] .

f r e e ch : ch anne l [p r i v a t e] .

f r e e S t a t u s : b i t s t r i n g . f r e e Reques t : b i t s t r i n g .

f r e e Response : b i t s t r i n g [p r i v a t e] .

f r e e S e l e c t : b i t s t r i n g [p r i v a t e] .

f r e e Sa fe : b i t s t r i n g [p r i v a t e] .

f r e e Unsafe : b i t s t r i n g [p r i v a t e] . f r e e Se t : b i t s t r i n g [p r i v a t e] .

f r e e p1 , p2 : P [p r i v a t e] .

f r e e p3 : P . f r e e d e l t a 1 , d e l t a 2 , d e l t a 3 : n e tVa l ue [p r i v a t e] .

(∗ I n v a r i a n t p r o c e s s ∗)

fun Inv (P) : n e tVa lue . r educ f o r a l l p : P , v a l u e : n e tVa lue ;

pos (Inv (p) , v a l u e)= va l u e .

(∗ A i r c r a f t 1 p r o c e s s ∗)

l e t A i r c r a f t _ 1 =

ou t (c , S t a t u s) ;

ou t (c , Reques t) ;

i n (ch , x_Response : b i t s t r i n g) ;

91

i f x_Response = Response t h en

ou t (ch , c ho i c e [Safe , Unsafe]) ;

i n (ch , x_Safe : b i t s t r i n g) ;

i f x_Safe = Sa fe t h en ou t (c_phy , Inv (p1)) ;

i f x_Safe = Unsafe t h en

ou t (c , Inv (p1)) ;

l e t y=pos (Inv (p1) , d e l t a 1) i n

ou t (ch , Se t) .

(∗ A i r c r a f t 2 p r o c e s s ∗)

l e t A i r c r a f t _ 2 =

ou t (c , S t a t u s) ;

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (ch , Response) ;

i n (ch , x _S e l e c t : b i t s t r i n g) ;

i f x _S e l e c t = S e l e c t t h en

ou t (ch , Sa fe) ;

ou t (c_phy , Inv (p2)) ;

l e t y=pos (Inv (p2) , d e l t a 2) i n

ou t (ch , Se t) .

(∗ A i r c r a f t 3 p r o c e s s ∗)

l e t A i r c r a f t _ 3 =

ou t (c , S t a t u s) ;

92

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (ch , Response) ;

i n (ch , x _S e l e c t : b i t s t r i n g) ;

i f x _S e l e c t = S e l e c t t h en

ou t (ch , Unsafe) ;

ou t (c_phy , Inv (p3)) ;

l e t y=pos (Inv (p3) , d e l t a 3) i n

ou t (ch , Se t) .

p r o c e s s ((! A i r c r a f t _ 2) | (! A i r c r a f t _ 3))

OUTPUT:

−− Ob s e r v a t i o n a l e q u i v a l e n c e

Comple t ing . . .

RESULT Ob s e r v a t i o n a l e q u i v a l e n c e i s t r u e (bad no t d e r i v a b l e) .

APPENDIX F

ADS-B, INS AND ATTACKER

94

CODE:

(∗ De f i n i ng use r −d e f i n e d d a t a t ype as Coo r d i n a t e s ∗)

t yp e Coord .

(∗ Va r i a b l e s , Names and Types ∗)

(∗ Making channe l c p r i v a t e f o r s e c u r e t r a n s f e r o f d a t a ∗)

f r e e c : c h anne l [p r i v a t e] .

f r e e Accept : b i t s t r i n g [p r i v a t e] .

f r e e Reques t : b i t s t r i n g [p r i v a t e] .

f r e e XY_Coord_Node_1 : Coord .

f r e e XY_Coord_Node_2 : Coord [p r i v a t e] .

f r e e XY_Coord_Node_3 : Coord [p r i v a t e] .

f r e e XY_Coord_Node_4 : Coord [p r i v a t e] .

f r e e XY_Coord_Node_5 : Coord [p r i v a t e] .

f r e e XY_Coord_Node_6 : Coord [p r i v a t e] .

f r e e XY_Coord_Node_7 : Coord [p r i v a t e] .

f r e e XY_Coord_Node_8 : Coord [p r i v a t e] .

f r e e XY_Coord_Node_9 : Coord [p r i v a t e] .

(∗ que ry t o s e e i f a t t a c k e r can o b t a i n any of t h e messages ∗)

que ry a t t a c k e r (Accept) .

que ry a t t a c k e r (Reques t) .

que ry a t t a c k e r (XY_Coord_Node_1) .

que ry a t t a c k e r (XY_Coord_Node_2) .

que ry a t t a c k e r (XY_Coord_Node_3) .

95

query a t t a c k e r (XY_Coord_Node_4) .

que ry a t t a c k e r (XY_Coord_Node_5) .

que ry a t t a c k e r (XY_Coord_Node_6) .

que ry a t t a c k e r (XY_Coord_Node_7) .

que ry a t t a c k e r (XY_Coord_Node_8) .

que ry a t t a c k e r (XY_Coord_Node_9) .

(∗ Comm p ro c e s s 1 a t F l i gh tA ∗)

l e t Comm_FlightA=

(∗ Reques t s e n t t o on ly F l i g h t B∗)

ou t (c , Reques t) ;

i n (c , XY_Location : Coord) ;

i f XY_Location = XY_Coord_Node_1 | | XY_Location =

XY_Coord_Node_2 | | XY_Location = XY_Coord_Node_3 | |

XY_Location = XY_Coord_Node_4 | | XY_Location =

XY_Coord_Node_5 | | XY_Location = XY_Coord_Node_6 | |

XY_Location = XY_Coord_Node_7 | | XY_Location =

XY_Coord_Node_8 | | XY_Location = XY_Coord_Node_9 t h en

ou t (c , Accept) .

(∗ P r o c e s s 2 a t Node_1 ∗)

l e t Quad_Node_1=

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (c , XY_Coord_Node_1) .

(∗ p r o c e s s 2 a t Node_2 ∗)

96

l e t Quad_Node_2=

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (c , XY_Coord_Node_2) .

(∗ p r o c e s s 2 a t Node_3 ∗)

l e t Quad_Node_3=

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (c , XY_Coord_Node_3) .

(∗ p r o c e s s 2 a t Node_4 ∗)

l e t Quad_Node_4=

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (c , XY_Coord_Node_4) .

(∗ p r o c e s s 2 a t Node_5 ∗)

l e t Quad_Node_5=

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (c , XY_Coord_Node_5) .

(∗ p r o c e s s 2 a t Node_6 ∗)

l e t Quad_Node_6=

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

97

ou t (c , XY_Coord_Node_6) .

(∗ p r o c e s s 2 a t Node_7 ∗)

l e t Quad_Node_7=

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (c , XY_Coord_Node_7) .

(∗ p r o c e s s 2 a t Node_8 ∗)

l e t Quad_Node_8=

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (c , XY_Coord_Node_8) .

(∗ p r o c e s s 2 a t Node_9 ∗)

l e t Quad_Node_9=

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (c , XY_Coord_Node_9) .

p r o c e s s

((! Comm_FlightA) |

(! Quad_Node_1) | (! Quad_Node_2) | (! Quad_Node_3) |

(! Quad_Node_4) | (! Quad_Node_5) | (! Quad_Node_6) |

(! Quad_Node_7) | (! Quad_Node_8) | (! Quad_Node_9))

98

OUTPUT:

−− Query no t a t t a c k e r (XY_Coord_Node_9 [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord_Node_9 [])

RESULT no t a t t a c k e r (XY_Coord_Node_9 []) i s t r u e .

−− Query no t a t t a c k e r (XY_Coord_Node_8 [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord_Node_8 [])

RESULT no t a t t a c k e r (XY_Coord_Node_8 []) i s t r u e .

−− Query no t a t t a c k e r (XY_Coord_Node_7 [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord_Node_7 [])

RESULT no t a t t a c k e r (XY_Coord_Node_7 []) i s t r u e .

−− Query no t a t t a c k e r (XY_Coord_Node_6 [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord_Node_6 [])

RESULT no t a t t a c k e r (XY_Coord_Node_6 []) i s t r u e .

−− Query no t a t t a c k e r (XY_Coord_Node_5 [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord_Node_5 [])

RESULT no t a t t a c k e r (XY_Coord_Node_5 []) i s t r u e .

−− Query no t a t t a c k e r (XY_Coord_Node_4 [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord_Node_4 [])

RESULT no t a t t a c k e r (XY_Coord_Node_4 []) i s t r u e .

−− Query no t a t t a c k e r (XY_Coord_Node_3 [])

99

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord_Node_3 [])

RESULT no t a t t a c k e r (XY_Coord_Node_3 []) i s t r u e .

−− Query no t a t t a c k e r (XY_Coord_Node_2 [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord_Node_2 [])

RESULT no t a t t a c k e r (XY_Coord_Node_2 []) i s t r u e .

−− Query no t a t t a c k e r (XY_Coord_Node_1 [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord_Node_1 [])

goa l r e a c h a b l e : a t t a c k e r (XY_Coord_Node_1 [])

RESULT no t a t t a c k e r (XY_Coord_Node_1 []) i s f a l s e .

−− Query no t a t t a c k e r (Reques t [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Reques t [])

RESULT no t a t t a c k e r (Reques t []) i s t r u e .

−− Query no t a t t a c k e r (Accept [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Accept [])

RESULT no t a t t a c k e r (Accept []) i s t r u e .

APPENDIX G

ADS-B AND RF INTERFERENCE

101

CODE:

t y p e ne tVa lue .

t yp e P .

(∗ Va r i a b l e s , Names and Types ∗)

f r e e c : c h anne l .

f r e e c_phy : ch anne l [p r i v a t e] .

f r e e ch : ch anne l [p r i v a t e] .

f r e e S t a t u s : b i t s t r i n g .

f r e e Reques t : b i t s t r i n g .

f r e e Response : b i t s t r i n g [p r i v a t e] .

f r e e S e l e c t : b i t s t r i n g [p r i v a t e] .

f r e e Sa fe : b i t s t r i n g [p r i v a t e] .

f r e e Unsafe : b i t s t r i n g [p r i v a t e] .

f r e e Se t : b i t s t r i n g [p r i v a t e] .

f r e e p1 , p2 : P [p r i v a t e] .

f r e e d e l t a 1 , d e l t a 2 : n e tVa lu e [p r i v a t e] .

(∗ I n v a r i a n t p r o c e s s ∗)

fun Inv (P) : n e tVa lue . r educ f o r a l l p : P ,

v a l u e : n e tVa l ue ; pos (Inv (p) , v a l u e)= va l u e .

(∗ A i r c r a f t 1 p r o c e s s ∗)

l e t A i r c r a f t _ 1 =

ou t (c , S t a t u s) ;

ou t (c , Reques t) ;

102

i n (ch , x_Response : b i t s t r i n g) ;

i f x_Response = Response t h en

ou t (ch , c ho i c e [Safe , Unsafe]) ;

i n (ch , x_Safe : b i t s t r i n g) ;

i f x_Safe = Sa fe t h en ou t (c_phy , Inv (p1)) ;

i f x_Safe = Unsafe t h en

ou t (c , Inv (p1)) ;

l e t y=pos (Inv (p1) , d e l t a 1) i n

ou t (ch , Se t) .

(∗ A i r c r a f t 2 p r o c e s s ∗)

l e t A i r c r a f t _ 2 =

ou t (c , S t a t u s) ;

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

ou t (ch , Response) ;

i n (ch , x _S e l e c t : b i t s t r i n g) ;

i f x _S e l e c t = S e l e c t t h en

ou t (ch , Sa fe) ;

ou t (c_phy , Inv (p2)) ;

l e t y=pos (Inv (p2) , d e l t a 2) i n

ou t (ch , Se t) .

p r o c e s s ((! A i r c r a f t _ 2) | (! A i r c r a f t _ 1))

OUTPUT:

−− Ob s e r v a t i o n a l e q u i v a l e n c e

103

Te rm in a t i o n warn ing : v_237 <> v_238 && a t t a c k e r 2 (v_236 , v_237)

&& a t t a c k e r 2 (v_236 , v_238) −> bad

S e l e c t i n g 0

Te rm in a t i o n warn ing : v_240 <> v_241 && a t t a c k e r 2 (v_240 , v_239)

&& a t t a c k e r 2 (v_241 , v_239) −> bad

S e l e c t i n g 0

Comple t ing . . .

T e rm in a t i o n warn ing : v_237 <> v_238 && a t t a c k e r 2 (v_236 , v_237)

&& a t t a c k e r 2 (v_236 , v_238) −> bad

S e l e c t i n g 0

Te rm in a t i o n warn ing : v_240 <> v_241 && a t t a c k e r 2 (v_240 , v_239)

&& a t t a c k e r 2 (v_241 , v_239) −> bad

S e l e c t i n g 0

goa l r e a c h a b l e : bad

RESULT Ob s e r v a t i o n a l e q u i v a l e n c e canno t be proved

(bad d e r i v a b l e) .

Looking f o r s i m p l i f i e d p r o c e s s e s . . .

No s i m p l i f i e d p r o c e s s found

APPENDIX H

ADS-B AND SATELLITE FAILURE

105

CODE:

t y p e ne tVa lue .

t yp e P .

(∗ Va r i a b l e s , Names and Types ∗)

f r e e c : c h anne l .

f r e e c_phy : ch anne l [p r i v a t e] .

f r e e ch : ch anne l [p r i v a t e] .

f r e e S t a t u s : b i t s t r i n g . f r e e Reques t : b i t s t r i n g .

f r e e Response : b i t s t r i n g [p r i v a t e] .

f r e e P o s i t i o n 1 : b i t s t r i n g [p r i v a t e] .

f r e e P o s i t i o n 2 : b i t s t r i n g [p r i v a t e] .

f r e e S e l e c t : b i t s t r i n g [p r i v a t e] .

f r e e Sa fe : b i t s t r i n g [p r i v a t e] .

f r e e Unsafe : b i t s t r i n g [p r i v a t e] .

f r e e Se t : b i t s t r i n g [p r i v a t e] .

f r e e p1 , p2 : P [p r i v a t e] .

f r e e d e l t a 1 , d e l t a 2 : n e tVa lu e [p r i v a t e] .

(∗ I n v a r i a n t p r o c e s s ∗)

fun Inv (P) : n e tVa lue . r educ f o r a l l p : P ,

v a l u e : n e tVa l ue ; pos (Inv (p) , v a l u e)= va l u e .

(∗ S a t e l l i t e p r o c e s s ∗)

l e t S a t e l l i t e =

ou t (c , S t a t u s) ;

106

ou t (ch , P o s i t i o n 1) ;

ou t (ch , P o s i t i o n 2) .

(∗ A i r c r a f t 1 p r o c e s s ∗)

l e t A i r c r a f t _ 1 =

ou t (c , S t a t u s) ;

ou t (c , Reques t) ;

i n (ch , x_Response : b i t s t r i n g) ;

i f x_Response = P o s i t i o n 1 t h en

ou t (ch , c ho i c e [Safe , Unsafe]) ;

i n (ch , x_Safe : b i t s t r i n g) ;

i f x_Safe = Sa fe t h en

ou t (c_phy , Inv (p1)) ;

i f x_Safe = Unsafe t h en

ou t (c , Inv (p1)) ;

l e t y=pos (Inv (p1) , d e l t a 1) i n

ou t (ch , Se t) .

(∗ A i r c r a f t 2 p r o c e s s ∗)

l e t A i r c r a f t _ 2 =

ou t (c , S t a t u s) ;

ou t (c , Reques t) ;

i n (c , x_Response : b i t s t r i n g) ;

i f x_Response= P o s i t i o n 2 t h en

ou t (ch , c ho i c e [Safe , Unsafe]) ;

i n (ch , x_Safe : b i t s t r i n g) ;

i f x_Safe = Sa fe t h en

107

ou t (c_phy , Inv (p2)) ;

i f x_Safe = Unsafe t h en

ou t (c , Inv (p2)) ;

l e t y=pos (Inv (p2) , d e l t a 2) i n

ou t (ch , Se t) .

p r o c e s s ((! S a t e l l i t e) | (! A i r c r a f t _ 2) | (! A i r c r a f t _ 1))

OUTPUT:

−− Ob s e r v a t i o n a l e q u i v a l e n c e

Te rm in a t i o n warn ing : v_239 <> v_240 && a t t a c k e r 2 (v_238 , v_239)

&& a t t a c k e r 2 (v_238 , v_240) −> bad

S e l e c t i n g 0

Te rm in a t i o n warn ing : v_242 <> v_243 && a t t a c k e r 2 (v_242 , v_241)

&& a t t a c k e r 2 (v_243 , v_241) −> bad

S e l e c t i n g 0

Comple t ing . . .

T e rm in a t i o n warn ing : v_239 <> v_240 && a t t a c k e r 2 (v_238 , v_239)

&& a t t a c k e r 2 (v_238 , v_240) −> bad

S e l e c t i n g 0

Te rm in a t i o n warn ing : v_242 <> v_243 && a t t a c k e r 2 (v_242 , v_241)

&& a t t a c k e r 2 (v_243 , v_241) −> bad

S e l e c t i n g 0

goa l r e a c h a b l e : bad

Could no t f i n d a t r a c e c o r r e s p o n d i n g t o t h i s d e r i v a t i o n .

RESULT Ob s e r v a t i o n a l e q u i v a l e n c e canno t be proved

(bad d e r i v a b l e) .

APPENDIX I

TCAS AND ATC CONTROLLER

109

CODE:

(∗ De f i n i ng use r −d e f i n e d d a t a t ype as Coo r d i n a t e s ∗)

t yp e Coord .

(∗ Va r i a b l e s , Names and Types ∗)

(∗ Making channe l c p r i v a t e f o r s e c u r e t r a n s f e r o f d a t a ∗)

f r e e c : c h anne l [p r i v a t e] .

f r e e ch : ch anne l .

f r e e Accept : b i t s t r i n g [p r i v a t e] .

f r e e Reques t : b i t s t r i n g [p r i v a t e] .

f r e e XY_Coord : Coord .

(∗ que ry t o s e e i f a t t a c k e r can o b t a i n any of t h e messages ∗)

que ry a t t a c k e r (Accept) .

que ry a t t a c k e r (Reques t) .

que ry a t t a c k e r (XY_Coord) .

(∗ P r o c e s s 1 a t ATC ∗)

l e t ATC=

(∗ Reques t s e n t t o on ly F l i g h t A∗)

ou t (ch , Reques t) ;

(∗ Coo r d i n a t e s a r e r e c e i v e d from F l i g h t A, and a r e

s t o r e d i n XY_Location ∗)

i n (c , XY_Location : Coord) ;

i f XY_Location = XY_Coord t h en

(∗ Coo r d i n a t e s a r e a c c e p t e d ∗)

110

ou t (c , Accept) .

(∗ P r o c e s s 2 a t F l i g h t A TCAS∗)

l e t TCAS_FlightA=

(∗ Reques t i s t a k en by F l i g h t A ∗)

i n (c , x_Reques t : b i t s t r i n g) ;

i f x_Reques t=Reques t t h en

(∗ Coo r d i n a t e s a r e s e n t a s r e s p on s e ∗)

ou t (ch , XY_Coord) .

p r o c e s s

((! ATC) | (! TCAS_FlightA))

OUTPUT:

−− Query no t a t t a c k e r (XY_Coord [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (XY_Coord [])

goa l r e a c h a b l e : a t t a c k e r (XY_Coord [])

RESULT no t a t t a c k e r (XY_Coord []) i s f a l s e .

−− Query no t a t t a c k e r (Reques t [])

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Reques t [])

goa l r e a c h a b l e : a t t a c k e r (Reques t [])

RESULT no t a t t a c k e r (Reques t []) i s f a l s e .

−− Query no t a t t a c k e r (Accept [])

111

Comple t ing . . .

S t a r t i n g que ry no t a t t a c k e r (Accept [])

RESULT no t a t t a c k e r (Accept []) i s t r u e .

112

BIBLIOGRAPHY

[1] FA FAA. Pilot’s Handbook of Aeronautical Knowledge. Washington: Government

Printing Office, 2009.

[2] J Wiley. FAA test challenges in the 21st century. ITEA Journal, 29:117–119, 2008.

[3] Sudhakar Shetty. System of systems design for worldwide commercial aircraft net-

works. Proceedings of ICAS, International Council of the Aeronautical Sciences, 8

(1):2008, 2008.

[4] Krishna Sampigethaya and Radha Poovendran. Aviation cyber–physical systems:

Foundations for future aircraft and air transport. Proceedings of the IEEE, 101(8):

1834–1855, 2013.

[5] Krishna Sampigethaya, Radha Poovendran, and Linda Bushnell. Secure operation,

control, and maintenance of future e-enabled airplanes. Proceedings of the IEEE, 96

(12):1992–2007, 2008.

[6] Chris A Wargo and Chris Dhas. Security consideratiolis for the e-enabled aircraft.

In Aerospace Conference, 2003. Proceedings. 2003 IEEE, volume 4, pages 4_1533–

4_1550. IEEE, 2003.

[7] Krishna Sampigethaya, Radha Poovendran, Sudhakar Shetty, Terry Davis, and Chuck

Royalty. Future e-enabled aircraft communications and security: The next 20 years

and beyond. Proceedings of the IEEE, 99(11):2040–2055, 2011.

[8] A. Nourian and S. Madnick. A Systems Theoretic Approach to the Security Threats in

Cyber Physical Systems Applied to Stuxnet. IEEE Transactions on Dependable and

Secure Computing, PP(99):1–1, 2015. ISSN 1545-5971.

113

[9] Radha Poovendran, Krishna Sampigethaya, Sandeep Kumar S Gupta, Insup Lee,

K Venkatesh Prasad, David Corman, and James L Paunicka. Special issue on cyber-

physical systems [scanning the issue]. Proceedings of the IEEE, 100(1):6–12, 2012.

[10] Chuck Royalty. Cyber Security for Aeronautical Networked Platforms-What does it

mean to me in commercial aviation design? In Infotech@ Aerospace, 2012.

[11] Alvaro A Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun Huang, Chi-Yen Huang,

and Shankar Sastry. Attacks against process control systems: risk assessment, de-

tection, and response. In Proceedings of the 6th ACM symposium on information,

computer and communications security, pages 355–366. ACM, 2011.

[12] Alvaro A Cárdenas, Saurabh Amin, and Shankar Sastry. Research Challenges for the

Security of Control Systems. In HotSec, 2008.

[13] Vinay M Igure, Sean A Laughter, and Ronald D Williams. Security issues in SCADA

networks. Computers & Security, 25(7):498–506, 2006.

[14] E. Johansson, T. Sommestad, and M. Ekstedt. Issues of cyber security in SCADA-

systems - On the importance of awareness. In CIRED 2009 - 20th International

Conference and Exhibition on Electricity Distribution - Part 1, pages 1–4, June 2009.

doi: 10.1049/cp.2009.1099.

[15] Henrik Christiansson and Eric Luiijf. Creating a european scada security testbed.

In International Conference on Critical Infrastructure Protection, pages 237–247.

Springer, 2007.

[16] Himanshu Khurana, Mark Hadley, Ning Lu, and Deborah A Frincke. Smart-grid

security issues. IEEE Security & Privacy, 8(1), 2010.

[17] Brian Krebs. Cyber incident blamed for nuclear power plant shutdown. Washington

Post, June, 5:2008, 2008.

114

[18] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security.

IEEE Journal on selected areas in communications, 21(1):5–19, 2003.

[19] Andrew C Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel

Nystrom. Jif: Java information flow. Software release. Located at http://www. cs.

cornell. edu/jif, 2005, 2001. [Online: date accessed 20-May-2017].

[20] Vincent Simonet and Inria Rocquencourt. Flow Caml in a nutshell. In Proceedings of

the first APPSEM-II workshop, pages 152–165. Nottingham, United Kingdom, 2003.

[21] François Pottier and Vincent Simonet. Information flow inference for ML. ACM

Transactions on Programming Languages and Systems (TOPLAS), 25(1):117–158,

2003.

[22] David Sutherland. A model of Information. In Proc. 9th National Computer Security

Conference, pages 175–183. DTIC Document, 1986.

[23] John McLean. Security Models and Information Flow. In Research in Security and

Privacy, 1990. Proceedings., 1990 IEEE Computer Society Symposium on, pages

180–187. IEEE, 1990.

[24] G. Howser and B. McMillin. A Multiple Security Domain Model of a Drive-by-Wire

System. In 2013 IEEE 37th Annual Computer Software and Applications Conference,

pages 369–374, July 2013. doi: 10.1109/COMPSAC.2013.62.

[25] Bruno Blanchet. Vérification automatique de protocoles cryptographiques: mod-

ele formel et modele calculatoire. Mémoire d’habilitationa diriger des recherches,

Université Paris-Dauphine, 2008.

[26] Martín Abadi and Bruno Blanchet. Analyzing security protocols with secrecy types

and logic programs. Journal of the ACM (JACM), 52:102–146, 2005.

115

[27] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communi-

cation. In ACM Sigplan Notices, volume 36, pages 104–115. ACM, 2001.

[28] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In

Proceedings. 14th IEEE Computer Security Foundations Workshop, 2001., pages 82–

96, 2001. doi: 10.1109/CSFW.2001.930138.

[29] Danny Dolev and Andrew Yao. On the security of public key protocols. IEEE

Transactions on information theory, 29(2):198–208, 1983.

[30] Martín Abadi and Andrew D Gordon. A calculus for cryptographic protocols: The spi

calculus. InProceedings of the 4th ACMconference onComputer and communications

security, pages 36–47. ACM, 1997.

[31] Bruno Blanchet. ProVerif automatic cryptographic protocol verifier user manual.

CNRS, Departement dInformatique, Ecole Normale Superieure, Paris, 2005.

[32] Chien-Ying Chen, AmirEmad Ghassami, Sibin Mohan, Negar Kiyavash, Rakesh B.

Bobba, Rodolfo Pellizzoni, and Man-Ki Yoon. A Reconnaissance Attack Mecha-

nism for Fixed-Priority Real-Time Systems. CoRR, abs/1705.02561, 2017. URL

http://arxiv.org/abs/1705.02561.

[33] Joseph Watson. Aerospace Navigation Systems. John Wiley & Sons, 2016.

[34] Pangun Park and Claire Tomlin. Investigating Communication Infrastructure of Next

Generation Air Traffic Management. In Proceedings of the 2012 IEEE/ACM Third

International Conference on Cyber-Physical Systems, pages 35–44. IEEE Computer

Society, 2012.

[35] Jeppesen Sanderson. Guided Flight Discovery: Private Pilot. Pat Willits, 2004.

[36] David Evans. Safety: Maintenance Snafu with Static Ports. Avionics Magazine.

Retrieved, pages 04–25, 2008.

116

[37] Sonex Foundation. Sonex Builders & Pilots Foundation.

http://www.sonexfoundation.com/Lift_Reserve_Indicator.html, 2016.

[Online: date accessed 20-May-2017].

[38] National Aeronautics and Space Administration. Aviation Navigation.

http://virtualskies.arc.nasa.gov/navigation/4.html. [Online: date ac-

cessed 20-May-2017].

[39] Paul Marks. Air traffic system vulnerable to cyber attack. New Scientist, 211(2829):

22–23, 2011.

[40] H Kelly. Researcher: New air traffic control system is hackable. Cable News Network

(CNN), Jul, 2012.

[41] A Greenberg. Next-gen air traffic control vulnerable to hackers spoofing planes out of

thin air. Forbes Magazine. Retrieved September, 10, 2012.

[42] K Zetter. Air traffic controllers pick the wrong week to quit using radar. Wired, July,

2012.

[43] Andrei Costin and Aurélien Francillon. Ghost in the Air (Traffic): On insecurity of

ADS-B protocol and practical attacks on ADS-B devices. Black Hat USA, pages 1–12,

2012.

[44] Brad Haines. Hacker+ airplanes= no good can come of this. Confidence X, 2012.

[45] Righter Kunkel. Air traffic control insecurity 2.0. Proc. DefCon, 18, 2010.

[46] Matthias Schäfer, Vincent Lenders, and Ivan Martinovic. Experimental analysis of

attacks on next generation air traffic communication. In International Conference on

Applied Cryptography and Network Security, pages 253–271. Springer, 2013.

117

[47] P. R. Dunaka and B. McMillin. Cyber-Physical Security of a Chemical Plant. In

2017 IEEE 18th International Symposium on High Assurance Systems Engineering

(HASE), pages 33–40, Jan 2017. doi: 10.1109/HASE.2017.23.

[48] Robert Büssow, Robert Geisler, Wolfgang Grieskamp, and Marcus Klar. The µSZ

Notation–Version 1.0. 1997.

118

VITA

Anusha Thudimilla was born in Hyderabad, India. She earned a Bachelors of

Technology from Mahaveer Institute of Science and Technology, JNTU-H majoring in

"Information Technology" in May 2012. She then worked with Thomson Reuters as an

Associate Developer in Hyderabad, India from September 2012 to September 2013. Her

work was mainly focused on creating web pages using front-end technologies. She later

worked with Infosys Limited as a Systems Engineer for the Citi Bank client in chennai,

India from September 2013 to June 2015. Her work was mainly focused on developing and

maintaining COBOL and java applications.

She received her Master’s degree in Computer Science from Missouri University of

Science and Technology in December of 2017. While there she greatly enjoyed her work

as a research assistant to Dr. Bruce McMillin for two years. Anusha presented her research

work at scientific meetings and participated in conferences discussing challenges in high

performance computing. This was possible as a result of her securing competitive funding

from the National Science Foundation. Anusha earned 1st prize at 18th IEEE International

Symposium on High Assurance Systems Engineering (HASE) 2017 under student paper

presentation competition. She also won 3rd place at 16th Annual CS Awards Banquet and

Research Poster Showcase held by Missouri S&T Computer Science department.

	Multiple security domain nondeducibility air traffic surveillance systems
	Recommended Citation

	tmp.1517861532.pdf.Aabu9

