
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2017

Analysis of outsourcing data to the cloud using autonomous key Analysis of outsourcing data to the cloud using autonomous key

generation generation

Mortada Abdulwahed Aman

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Aman, Mortada Abdulwahed, "Analysis of outsourcing data to the cloud using autonomous key
generation" (2017). Masters Theses. 7713.
https://scholarsmine.mst.edu/masters_theses/7713

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7713?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ANALYSIS OF OUTSOURCING DATA TO THE CLOUD USING

AUTONOMOUS KEY GENERATION

by

MORTADA ABDULWAHED AMAN

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

2017

Approved by

Dr. Egemen K. Çetinkaya, Advisor
Dr. Maciej J. Zawodniok
Dr. Sanjay K. Madria

Copyright 2017

MORTADA ABDULWAHED AMAN

All Rights Reserved

iii

ABSTRACT

Cloud computing, a technology that enables users to store and manage their data at

a low cost and high availability, has been emerging for the past few decades because of the

many services it provides. One of the many services cloud computing provides to its users

is data storage. The majority of the users of this service are still concerned to outsource

their data due to the integrity and confidentiality issues, as well as performance and cost

issues, that come along with it. These issues make it necessary to encrypt data prior to

outsourcing it to the cloud. However, encrypting data prior to outsourcing makes searching

the data obsolete, lowering the functionality of the cloud. Most existing cloud storage

schemes often prioritize security over performance and functionality, or vice versa. In this

thesis, the cloud storage service is explored, and the aspects of security, performance, and

functionality are analyzed in order to investigate the trade-offs of the service. DSB-SEIS,

a scheme with encryption intensity selection, an autonomous key generation algorithm

that allows users to control the encryption intensity of their files, as well as other features

is developed in order to find a balance between performance, security, and functionality.

The features that DSB-SEIS contains are deduplication, assured deletion, and searchable

encryption. The effect of encryption intensity selection on encryption, decryption, and key

generation is explored, and the performance and security of DSB-SEIS are evaluated. The

MapReduce framework is also used to investigate the DSB-SEIS algorithm performance

with big data. Analysis demonstrates that the encryption intensity selection algorithm

generates a manageable number of encryption keys based on the confidentiality of data

while not adding significant overhead on encryption or decryption.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Egemen K. Çetinkaya, Dr. Sanjay K. Madria, and Dr.

Maciej J. Zawodniok for their feedback and continuous help with this work. Furthermore,

I thank the CoNetS research group for listening and giving feedback to the ideas presented

in this document.

This thesis work was supported by the Department of Electrical and Computer

Engineering atMissouriUniversity of Science andTechnology by providing funding through

a graduate teaching and research assistantship.

I would like to thank Missouri University of Science and Technology’s IT database

team and Perry Koob for extensive help with providing required equipment and support

during the experimentation phase of this thesis. I would also like the doctoral student,

Katrina Ward for supporting the ideas presented in this work.

Finally, I would like to thank ACM, NSF/CANSec, and NSF/Raytheon BBN Tech-

nologies for providing travel grants to attend DCC 2016, CANSec 2016, and GENI-NICE

2016, respectively.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . ix

SECTION

1. INTRODUCTION AND MOTIVATION . 1

1.1. CONTRIBUTIONS . 5

1.2. PUBLICATIONS . 6

1.3. ORGANIZATION OF THESIS . 7

2. BACKGROUND AND RELATED WORK . 8

2.1. PRELIMINARIES . 8

2.1.1. Cryptography . 8

2.1.2. Deduplication . 9

2.1.3. Searchable Encryption . 9

2.2. CLOUD STORAGE SERVICE . 9

2.3. DEDUPLICATION . 14

2.4. SEARCHING ENCRYPTED DATA . 15

2.5. MAPREDUCE . 18

2.6. CLOUDLAB TESTBED . 19

vi

3. ARCHITECTURE . 20

3.1. WORKFLOW .. 20

3.2. ENCRYPTION INTENSITY SELECTION . 23

3.2.1. Low Intensity . 24

3.2.2. Medium Intensity . 24

3.2.3. High Intensity. 25

3.3. DEDUPLICATION . 25

3.4. ASSURED DELETION . 27

3.5. SEARCHING ENCRYPTED DATA . 28

3.5.1. Keyword Search in Encrypted Index . 29

3.5.2. Duplicate Checking of Encrypted Data . 30

3.6. MAPREDUCE APPLICATIONS . 30

3.6.1. Indexing . 31

3.6.2. Index Search . 32

3.6.3. Disk Search . 34

4. RESULTS . 36

4.1. WIKIMEDIA DUMP . 37

4.2. DEDUPLICATION PERFORMANCE . 39

4.3. KEY GENERATION ANALYSIS . 39

4.4. ENCRYPTION PERFORMANCE . 41

4.5. DECRYPTION PERFORMANCE . 42

4.6. INDEXING PERFORMANCE. 44

4.7. SEARCH PERFORMANCE . 44

4.7.1. Index Search . 44

4.7.2. Disk Search . 46

4.8. MAPREDUCE APPLICATIONS . 47

vii

4.8.1. Indexing Performance . 47

4.8.2. Index Search Performance . 49

4.8.3. Disk Search Performance . 51

5. CONCLUSIONS . 53

6. FUTURE WORK . 56

APPENDIX . 58

REFERENCES . 220

VITA . 227

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1 DSB-SEIS architecture. 21

3.2 Client application flowchart. 21

3.3 Cloud application flowchart. 22

3.4 Encryption intensity selection example . 25

3.5 MapReduce indexing application workflow. 31

3.6 MapReduce index search application workflow . 33

3.7 MapReduce disk search application workflow . 34

4.1 WikiMedia word distribution . 37

4.2 Deduplication overhead . 38

4.3 Size of data . 38

4.4 Key generation . 40

4.5 Encryption performance . 41

4.6 Decryption performance . 43

4.7 Index performance . 43

4.8 Index search performance . 45

4.9 Search hits . 45

4.10 Disk search performance. 46

4.11 MapReduce indexing performance . 48

4.12 MapReduce index search performance . 49

4.13 Index search hits . 50

4.14 MapReduce disk search performance . 51

ix

LIST OF TABLES

Table Page

2.1 Comparison of cloud storage schemes . 10

4.1 Testing variables. 36

1. INTRODUCTION AND MOTIVATION

Cloud computing is a service widely used due to the many features it provides to

its users. Data storage and computation are two important examples of services that can

be provided to users through cloud computing [1, 2, 3, 4, 5, 6]. The cloud services can

reduce the amount of money spent on personal computing power and maintenance. For this

reason, many individuals and enterprises turn to cloud computing for their data storage and

computation needs such as data storage.

However, outsourcing data to the cloud concerns a majority of cloud’s customers:

How secure is the data stored on the cloud? How long does the transmission take? How

much control does the customer have on their data? To solve the issue of data security

(confidentiality and integrity), users tend to encrypt their data prior to outsourcing to the

cloud. Even though encryption provides confidentiality for data, it also limits the capabilities

of the cloud. Since the data is encrypted, the cloud cannot compute this data, and therefore

the utility of the service is diminished.

Recently, attacks launched by adversaries have been getting stealthier and more

complex, which increases the necessity of a more secure storage scheme that eliminates

some of the current issues in data storage. Some examples of attacks directed towards cloud

storage are hash value manipulation attacks and stolen host ID attacks [7]. These attacks

aim to either steal, modify, or forge the client’s data.

To explain some of these attacks, previous attacks of one of the most popular

cloud storage providers, Dropbox, are analyzed [7]. Dropbox can be used to outsource

data and gain access to it later on from any device that is connected to the Internet. A

client application is installed on the personal device that synchronizes all changes to the

data automatically. Data across multiple computers owned by the same user can also be

synchronized. When the client application adds a file to the local Dropbox folder located

2

on the personal device, it splits the file into chunks up to 4 MB. A hash is then calculated

from each chunk and sent to the Dropbox servers where it is compared to the hashes of

the data stored there. If the chunk exists on the server, the user is granted access to it. If

the calculated hash is not found, the server requests the chunk to be transmitted. After the

chunk is sent, Dropbox calculates the hash on its cloud servers to compare it to the hash

sent from the client application for validation. This process is referred to as deduplication.

Dropbox’s scheme is believed to have been changed since the attacks were discovered so that

the deduplication is not performed across all users globally [8]. Although if deduplication

remained global, unauthorized users could get access to data.

An attacker could gain unauthorized access to files by manipulating the hash value

calculated for chunks by the client application. One way the calculated hash value can

be manipulated is by altering the cryptography libraries and replacing the default libraries

shipped with the Dropbox client application. If the hash is found on the cloud servers once

it is manipulated and sent to the cloud, the attacker gains unauthorized access to files or

chunks on the cloud even if the attacker does not own any of the files. On the other hand, if

the server does not find a match for the hash, the chunks will be sent to the Dropbox servers,

where they will be hashed and compared to the manipulated hash sent previously. Since

they will not match, an error will be detected and the file will not be stored. However, this

will not affect the attacker in any way. This attack is called the hash value manipulation

attack. This attack is undetectable by the data owner or the server since Dropbox does not

validate ownership of data or notify the user when another user gains access to their data.

During the installation of Dropbox on a device, it creates a host ID for that computer

and links it to the owner’s Dropbox account. If an attacker steals the host ID of a different

Dropbox account, he can simply replace his own host ID with the stolen one and download

the victim’s files. This is referred to as stolen host ID attack [7].

3

The previousDropbox example is but one scenario tomany issues facing outsourcing

data on the cloud, although Dropbox has changed its algorithms to avoid some of the attacks

in the previous example. Many research papers have been written on the issues of the

cloud [2, 3, 4, 9, 10]. This work is focused on investigating three main issues: security of

data, performance of the service, and functionality of data stored on the cloud. The main

features investigated with this work are data integrity and confidentiality during transit and

rest, assured deletion, encryption intensity selection, deduplication of data, and searching

encrypted data.

Data confidentiality is one of the issues that many research papers discuss due to

the significant damage it can have on cloud customers. For instance, if a hospital’s health

records were to be revealed on the cloud, many patients’ privacy would also be exploited.

Therefore, confidentiality of data must be retained during transit and rest. This means that

the data must be encrypted while being transmitted from the customer to the cloud, as well

as while it is stored on the cloud. Returning to the previous example, Dropbox secures the

transmission of data using SSL and encrypts the data with an AES key once it reaches its

servers. The problem with this scenario is that the encryption and storage are done at the

same place. Additionally, the keys are also generated on the cloud. This raises the question

of how secure this encryption really is. To solve this issue, customers encrypt their data

prior to outsourcing it to the cloud, but the pre-encryption of data can significantly limit

the functionality of this data because the cloud will not be able to compute the encrypted

data. Also, how secure is this encryption anyway? If the customer generates one key and

encrypts all of their files with the same key, then breaking that key will reveal all of the data.

On the other hand, if the customer generates a key for each file, even though this increases

the complexity of revealing the data, it also makes key management a lot more complex.

For this reason, a feature called encryption intensity selection [11, 12] is proposed, where

4

keys are generated dynamically based on the confidentiality of each file. The features are

compared to the main two methods used in the service: using a single key to encrypt all

data, and using a separate key to encrypt each file.

In addition to encryption intensity selection that generates keys autonomously to

pre-encrypt data, a feature is proposed to increase the functionality of the encrypted data:

searching encrypted data. This feature will allow documents that contain a certain word

to be found, as well as check if a piece of data exists on the cloud. For example, a

hospital outsources their files that contain billing information, patient health records, and

appointment schedules to a cloud. This hospital might later want to retrieve only the files

that contain a patient’s health records. If the files are encrypted on the cloud, the hospital

will have to retrieve all of their data, decrypt them, and find the ones they are seeking. For

this reason, searchable encryption is implemented, where an encrypted index is generated

from all documents and outsourced to the cloud to be searched later on. Another use for

searchable encryption in this scheme is to check if a piece of data exists on the cloud.

Similar to the Dropbox example, one should be able to check if a chunk of data exists on

the cloud. Although since this data is pre-encrypted, it will be unintelligible if an attacker

gains unauthorized access to this data. This work analyzes searching encrypted data and

how encryption intensity selection affects this feature.

The performance and cost of outsourcing data to the cloud is another concern of

cloud customers. How longwill the client machine take to prepare the data for transmission?

How long will it take to encrypt the data? How much bandwidth will it take to transmit

the data to the cloud? How much will it cost to store data on the cloud? Is there a way

to reduce the costs of this service? The highest cost of the service is the transmission of

data. To reduce some of this cost, deduplication of redundant data before transmission

is proposed [11, 12]. Eliminating redundant data can reduce the size of the data to be

outsourced significantly. A simple deduplication scheme in this work is implemented to

analyze its performance and how other features and attributes affect its performance. Its

5

overhead versus the amount of data it eliminates is analyzed, and additional features are

implemented that enhance the performance of deduplication by implementing multi-aspect

awareness, a feature that looks into different aspects of files while deduplicating [13, 14].

Keeping all of the issues discussed above, this work investigates the security, per-

formance, and functionality of the cloud storage service. In order to do so, a cloud storage

scheme is implemented to investigate the trade-offs between security, performance, and

functionality for outsourcing data to the cloud. This scheme is called DSB-SEIS, a dedupli-

cating secure backup scheme with encryption intensity selection. All the features discussed

above are implemented in DSB-SEIS, and each feature is analyzed, as well as the trade-off of

encryption intensity selection. The security and performance of the scheme, as well as the

storage service, are investigated in this work. Additionally, MapReduce framework in the

data storage service is explored. Three MapReduce applications are developed: indexing,

index search, and disk search applications. The three algorithms evaluate the performance

when a larger scale of data is used. The WikiMedia dump [15] is used as input for all

applications in this thesis work.

Preliminary results for this work were generated using the CloudLab [16] infras-

tructure. A cloud was created on CloudLab using OpenStack [17]. As for the final results, a

local cloud created by the Missouri University of Science and Technology (Missouri S&T)

database team was used. The reason for switching to a local cloud was to simplify the setup

step.

1.1. CONTRIBUTIONS

The contributions of this work are summarized as follows:

• The trade-offs of cloud storage service are discussed and analyzed.

• An autonomous encryption key generation algorithm, encryption intensity selection,

based on confidentiality of data is developed.

6

• DSB-SEIS, a working cloud-based storage scheme is implemented in Java.

• DSB-SEIS includes features such as deduplication, assured deletion, searching en-

crypted data, and encryption intensity selection to balance the trade-off between

security, performance, and functionality.

• MapReduce applications of indexing, and searching encrypted data are developed to

investigate performance of Hadoop MapReduce in cloud data storage.

• The implementation of DSB-SEIS is evaluated, and the performance of the scheme,

and overall, the storage service is analyzed.

1.2. PUBLICATIONS

This thesis work allowed for the following publications:

• Mortada A. Aman and Egemen K. Çetinkaya, “Towards Cloud Security Improvement

with Encryption Intensity Selection,” in Proceedings of the 13th IEEE/IFIP Interna-

tional Conference on the Design of Reliable Communication Networks (DRCN), pp.

55–61. Munich, March 2017. (Best Student Paper Award).

• Mortada A. Aman and EgemenK. Çetinkaya, “A Secure Backup Systemwith Encryp-

tion Intensity Selection and Deduplication,” in The Network Innovators Community

Event (GENI NICE) Poster Session, Irvine, CA, December 2016.

• Mortada A. Aman and Egemen K. Çetinkaya, “A Secure Backup System with En-

cryption Intensity Selection and Deduplication,” in 10th Central Area Networking

and Security Workshop (CANSec) Poster Session, St. Louis, MO, October 2016.

• Mortada A. Aman and Egemen K. Çetinkaya, “DSB-SEIS: A Deduplicating Secure

Backup System with Encryption Intensity Selection,” in Proceedings of the 4th ACM

PODC Workshop on Distributed Cloud Computing (DCC), Chicago, IL, July 2016.

7

1.3. ORGANIZATION OF THESIS

The rest of this thesis is organized as follows. In Section 2, the preliminary knowl-

edge needed for this work including deduplication, searching on encrypted data, MapRe-

duce, and the CloudLab testbed is explained. Additionally, a list of related work in the

cloud storage service is presented. In Section 3, the architecture of the DSB-SEIS scheme

and all of its features are explained in detail. In Section 4, the results for the DSB-SEIS

scheme are shown and evaluated. In Section 5, final thoughts and a conclusive analysis are

presented. Finally, possible solutions to issues of the cloud storage service are proposed in

Section 6.

8

2. BACKGROUND AND RELATED WORK

Preliminary concepts for this work are introduced in this section, and related work

used to motivate the ideas is presented. The preliminaries include cryptography, dedu-

plication, and searchable encryption. Additionally, the related work is divided into the

following sections: work on the cloud storage service, deduplication, searching encrypted

data, MapReduce, and CloudLab testbed. Each of the sections is listed here to show existing

work and explain technologies used in this work.

2.1. PRELIMINARIES

This section explains necessary preliminary knowledge including cryptography,

deduplication, and searchable encryption.

2.1.1. Cryptography. Cryptography is the study of secure information by changing

the true meaning of a message to a seemingly arbitrary, unintelligible message. In the

computing field, this can be done with methods such as encryption and hashing. Encryption

and hashing differ such that encryption can be reversed to retrieve the original message,

while hashing is a one-way function that cannot be reversed. Both encryption and hashing

are used in data storage schemes. Encryption is used to keep data unintelligible on the

server; hashing is used in deduplication, which is explained in the next subsection, and

to check the integrity of data. The encryption algorithm used in data storage needs to

be relatively secure to maintain an acceptable level of security. The security provided by

encryption can be measured by the key size, block size, number of keys, and the algorithm

used. As for hashing, the security of the algorithm depends on the probability of producing

a hash collision. This means that the algorithm should have minimum to no chance of

producing the same hash for two different messages.

9

2.1.2. Deduplication. Deduplication is defined as the elimination of redundant

data. It is often done prior to transmitting data through a network to reduce the size of data,

and therefore reduces the time taken to transmit the data. Deduplication is the opposite of

replication, which makes multiple copies of data and distributes them to other nodes of the

cloud. In most deduplication schemes, a hash algorithm is used to identify duplicates. For

instance, hashes for two files are computed, A and B. If the hash of A is equal to the hash of

B, then B is a duplicate of A. Some of the most used hash algorithms in deduplication are

MD5, SHA, and Rabin Fingerprints [18?]. Additionally, a lot of research has been done

to improve the efficiency and accuracy of deduplication [13, 14, 19, 20, 21].

2.1.3. Searchable Encryption. Searchable encryption adds the functionality of

searching for a piece of data while encrypted. That means that no point of time during

the search is data decrypted. This feature allows the user to search for a word contained

in documents. An encrypted index can be generated from documents and then sent to the

cloud. The cloud can then search the encrypted index to find requested data and return

it to the client. Searchable encryption can be used to enable secure deduplication as well

by allowing the search of chunks of data (instead of a word) on disk (instead of an index).

Similar to searching an index for a word, the disk is encrypted to make the search secure.

2.2. CLOUD STORAGE SERVICE

In this section, existing cloud storage services and the features they provide are

analyzed and compared to DSB-SEIS. In Table 2.1, some of the most popular storage

service providers are listed, and their security, performance, and functionality features are

compared.

10

Ta
bl
e
2.
1.

Co
m
pa
ris

on
of

cl
ou

d
sto

ra
ge

sc
he
m
es

Se
rv

ic
e

pr
ov

id
er

En
cr

yp
te

d
tr

an
sm

iss
io

n
En

cr
yp

te
d

st
or

ag
e

En
cr

yp
tio

n
ke

ys
lo

ca
tio

n
En

cr
yp

tio
n

al
go

ri
th

m

En
cr

yp
tio

n
in

te
ns

ity
se

le
ct

io
n

Se
ar

ch
on

en
cr

yp
te

d
da

ta

A
ss

ur
ed

de
le

tio
n

D
ed

up
lic

at
io

n

D
ro

pb
ox

[2
2]

ye
s

ye
s

cl
ou
d

A
ES

-2
56

no
no

no
se
rv
er
-s
id
e

G
oo

gl
e

D
ri

ve
[2
3]

ye
s

ye
s

cl
ou
d

A
ES

no
no

no
fil
es

w
ith

th
e

sa
m
e
na
m
e

Sp
id

er
O

ak
O

N
E
[2
4]

ye
s

ye
s

cl
ie
nt

m
ac
hi
ne

A
ES

-2
56

no
no

no
ye
s

A
m

az
on

S3
[2
5]

ye
s

ye
s

cl
ou
d
or

cl
ie
nt

m
ac
hi
ne

A
ES

no
no

no
ye
s

Bo
x
[2
6]

ye
s

ye
s

se
pa
ra
te

cl
ou
d

A
ES

-2
56

no
no

no
no

iC
lo

ud
[2
7]

ye
s

ye
s

cl
ou
d

A
ES

no
no

no
no

M
ic

ro
so

ft
C

lo
ud

[2
8]

ye
s

ye
s

cl
ou
d

A
ES

-2
56

no
no

no
no

C
um

ul
us

[2
9]

ye
s

ye
s

cl
ie
nt

m
ac
hi
ne

gz
ip
,b
zi
p2
,

&
gp
g

no
no

no
lo
ca
l

Ba
cu

la
[3
0]

ye
s

ye
s

cl
ie
nt

m
ac
hi
ne

A
ES

,
bl
ow

fis
h
&

RS
A

no
no

no
pr
ev
io
us
ly

ba
ck
ed
-u
p
fil
es

Fa
de

Ve
rs

io
n
[3
1]

ye
s

ye
s

tru
ste

d
th
ird

-p
ar
ty

A
ES

no
no

ye
s

ye
s

D
SB

-S
EI

S
[1
1]

ye
s

ye
s

cl
ie
nt

m
ac
hi
ne

A
ES

-2
56

ye
s

ye
s

ye
s

lo
ca
la
nd

se
cu
re

se
rv
er
-s
id
e

11

Some of the most popular storage service providers in the industry are Drop-

box [22], Google Drive [23], SpiderOak [24], Amazon Web Services [25], Box [26],

Apple iCloud [27], and Microsoft Cloud [28]. In addition, some schemes can be manually

installed on any platform-as-a-service (Paas) cloud and used as a service. In this thesis,

three schemes that can be installed manually are looked at: Cumulus [29], Bacula [30],

and FadeVersion [31]. All of these schemes aim to achieve one main goal: securely store

the user’s data on the cloud until a user requests to view, retrieve, or delete it. All of these

schemes and how they relate to DSB-SEIS will be discussed in this section.

The previous section presented an example of how attackers could exploit the Drop-

box algorithm to access data they are not authorized to. Since then, customers have

complained about this issue, which Dropbox has solved by disabling global deduplication

across all users. Dropbox uses 128-bit SSL/TLS to achieve secure encrypted transmission

of data. Once the data is stored on the server, it uses a single 256-bit key to encrypt data

at rest. The encryption keys are generated and stored on the cloud, which can be exploited

easily because both the data and keys are stored on the same cloud. Dropbox does not

provide any control of the encryption algorithm since it is programmed to use one 256-bit

AES key. Searching encrypted data is not possible on Dropbox. The cloud will have to

decrypt the data in order to search it. Dropbox does not provide assured deletion, either.

An experiment is conducted to observe how long a file is stored on Dropbox after a delete

request is sent [7, 22]. It was found that the files remained on Dropbox six months after

the delete request. This means that the data could still be stolen after the user decides

to discontinue service. Finally, Dropbox still provides deduplication, but within the same

user’s data.

Google Drive is another big provider of the storage service. Google Drive uses

256-bit SSL/TLS [23, 32, 33] to secure data in transit. Once the data reaches the cloud, it is

encrypted with a 128-bit AES key [?] and stored on the cloud. Similar to Dropbox, the keys

are generated and stored on the cloud. Google Drive does not provide encryption intensity

12

selection, searching encrypted data, or assured deletion. Google Drive’s deduplication

differs from all other kinds of deduplication. Google Drive looks at the name of files, and

if it finds a match from the files previously stored by the same user, Google Drive finds the

difference between the previously uploaded version and the new version and uploads the

difference to the cloud. Users can then view both versions.

SpiderOak One could possibly be one of the most secure storage service providers.

It uses a combination of 2048-bit RSA and 256-bit AES layered encryption to secure

transmission and storage [24? ?]. The encryption is done on the client machine prior to

transmitting the data. This means that once the data leaves the client machine, the data is

unintelligible. The encryption keys are stored on the client machine and never sent to the

cloud. Hence, if an attacker gains access to the cloud, the data will still be secure since the

keys are not stored in the same place. The drawback to this is that the functionality of data

is nonexistent because any computation of the data requires decryption and therefore will

require the user to retrieve the data. SpiderOak One does not provide encryption intensity

selection, searching encrypted data, assured deletion, or deduplication.

Amazon S3 is used by many enterprises for data storage and computation, although

it is by no means perfect [25]. Amazon S3 secures data in transit using SSL-encrypted

endpoints using HTTPS [34]. To secure data at rest, Amazon offers some options. The

customer can choose server-side encryption that uses a 256-bit AES key generated and stored

on the cloud, or provide their own keys that will be used to encrypt the data on the cloud

and then discarded after use. Amazon also allows client-side encryption by generating any

kind of encryption key, symmetric or asymmetric, on the client machine and never sending

the key to the cloud. There is a trade-off for both server-side and client-side encryption.

Choosing server-side encryption reduces the security of data, similar toDropbox andGoogle

Drive, while choosing client-side encryption reduces functionality, similar to SpiderOak

One. Amazon provides some control over the encryption of data, but it does not allow

the user to select the intensity of encryption unless they choose to client-side encryption.

13

Amazon does not support assured deletion or searching encrypted data. Amazon offers

StorReduce, an on-cloud block-level deduplication software that deduplicates data before

migrating it to the cloud. This service is extra and not provided to all customers.

Box provides both encrypted transmission and storage [26]. Transmission is en-

crypted using TLS, while data at rest is encrypted using a 256-bit AES key that is then

encrypted using another 256-bit AES key [?]. Box also partnered with Amazon Web

Services to use their key management services (KWS) and provide layered encryption.

The keys are generated and stored on an Amazon cloud separate from the data. Box does

not allow encryption intensity selection, searching encrypted data, assured deletion, or

deduplication.

Apple iCloud also provides encrypted transmission and storage [27]. Data in transit

is encrypted using SSL, and data at rest is encrypted using a 128-bit AES key and stored on

the cloud along with the data. Apple iCloud does not provide encryption intensity selection,

searching encrypted data, assured deletion, or deduplication.

Microsoft Cloud provides security of data in transit by using TLS/SSL [28]. Data at

rest is encrypted using a 256-bit AES key and stored on the cloud with the data. Microsoft

Cloud does not provide encryption intensity selection, searching encrypted data, assured

deletion, or deduplication.

Cumulus is developed to be installed on any thin cloud (providing minimal interface

of get, put, delete, and list) that provides storage service [29]. Cumulus encrypts the data

using compression algorithms .gzip, .bzip2, or .gpg prior to uploading it to the cloud in

order to secure the data in transit and at rest. The encryption keys are stored on the client

machine. Cumulus does not provide encryption intensity selection, searching encrypted

data, or assured deletion. Cumulus provides deduplication of local data on a user machine,

but not across multiple users.

14

Bacula is a network client/server application that is developed to enable the user to

store their data on any server [30]. Bacula uses TLS to encrypt during transmission. It also

offers a layered encryption approach to encrypt data prior to transmitting it. It first generates

an RSA asymmetric key to encrypt the AES session keys, which are used to encrypt the

data. Bacula gives the option of choosing the key size of the session keys but does not

offer encryption intensity selection. It does not offer searching encrypted data or assured

deletion. The deduplication offered by Bacula eliminates the non-modified, previously-sent

files. If a file is modified after it has been stored, the difference is calculated and sent to the

cloud.

FadeVersion serves as a secure cloud storage service that adds a security layer to

existing cloud storage services [31]. It is an extension from Cumulus that aims to add

additional performance and security features. Its main goal is to make assured deletion

and version-control compatible. The data is encrypted using a layered encryption approach

using theAES algorithm. FadeVersion generates a data key for each file and encrypts the data

using these keys. The data keys are then encrypted using policy-based keys called control

keys that define how each file is accessed. The encryption keys are stored and managed by

a third-party key management system. FadeVersion does not provide encryption intensity

selection or searching encrypted data, although it does provide assured deletion by deleting

the control keys once a policy is revoked, making the data unrecoverable. It also provides

deduplication of data by only transmitting one copy of the same object and creating pointers

to that object once a duplicate is found.

2.3. DEDUPLICATION

The following schemes improve the deduplication efficiency of cloud data stor-

age systems, thereby improving the service’s performance. AA-Dedupe [14] proposes an

application-aware local deduplication scheme that would use multiple methods of dedupli-

cation based on file size and application type. Local deduplication means that the source of

15

the data is deduplicated, as opposed to where the data is stored. Its main goal is to improve

the efficiency and throughput of deduplication. It uses chunk-based deduplication and takes

many attributes such as chunk size and hash function into account, making the deduplication

dynamic based on the type of application (.rar, .mp3, .txt, etc.) and file size. SAM [13] is an

extension of AA-Dedupe that combines file-level deduplication and chunk-level deduplica-

tion to achieve better deduplication efficiency and throughput. Similar to AA-Dedupe, SAM

exploits file semantics such as file size, application type, and modification timestamp. SAM

also combines deduplication across multiple users, as well as within the same user. CABD-

edupe [19] attempts to boost the deduplication performance by scanning only for modified

and new files to store or restore. CABDedupe is unique in that it deduplicates both store

and restore operations, which reduces the size of data on both the incoming and outgoing

channels of the user and the cloud. A single-server scheme for secure deduplication across

multiple users is presented [20]. It uses additively homomorphic encryption to enable the

search for a piece of data. It also uses the password-authenticated key exchange (PAKE) to

enable users to share keys. In this scheme, the application-awareness feature proposed in

AA-Dedupe and the file semantic aspect introduced in SAM are utilized, and deduplication

on both store and restore are deployed, similar to CABDedupe. This research also utilizes

searchable encryption to achieve secure cloud-side duplicate checks. The deduplication

algorithm used in this thesis work is simple and minimal in its functionality. Deduplication

in this scheme, as well as in the previously mentioned work, is classified as archival storage

deduplication [21].

2.4. SEARCHING ENCRYPTED DATA

Related work presents twomajor ways of searching encrypted data: general-purpose

schemes (such as fully-homomorphic encryption [FHE] or oblivious RAMs [ORAMs]), and

special-purpose schemes (such as searchable symmetric encryption, SSE). A study finds

16

that even though general-purpose solutions such as FHE and ORAMs are more general in

their use, they can be expensive [35]. SSE provides the best trade-off between security,

performance, and functionality.

A hybrid cloud approach for secure and authorized deduplication that uses con-

vergent encryption is presented [36]. Even though the scheme achieves what the authors

aimed for, the scheme has two main weaknesses. First, the use of convergent encryption

makes this scheme less secure than what one hopes for because the data is encrypted with

its own contents. Second, the need for a hybrid cloud can be impractical in many cases.

Another scheme that uses additively homomorphic encryption and password-authenticated

key exchange to enable secure deduplication is presented [20].

Controlling data in the cloud without losing computation is discussed [37]. The

paper also proposes some possible methods of controlling data. The authors present current

issues with the cloud and what makes customers afraid of using its services to their full

potential. The authors also explain how computation-supporting encryption can be used

to improve the advantages of cloud computing and make these services more appealing to

users.

The following schemes are general-purpose and use public-key encryption to achieve

keyword search encrypted data. A scheme that uses hidden vector encryption in order

to achieve conjunctive, subset, and range queries on encrypted data is presented [38].

Additionally, a scheme that can provide sum and average queries using homomorphic

encryption is constructed [39]. The authors claim that the performance is comparable with

traditional encryption schemes, although this could be improved by replacing homomorphic

encryption with searchable symmetric encryption.

A scheme that uses homomorphic encryption algorithm to run queries on the en-

crypted data after user authentication is developed [40]. The author also explores autho-

rization and collusion issues. Most schemes that utilize homomorphic encryption can be

expensive and thus can be improved by utilizing SSE.

17

The following schemes propose searchable symmetric encryption (SSE) schemes

to provide different functionalities. A new kind of attack on SSE schemes, called the

adaptive chosen keyword attack IND-CKA, is defined [41]. This attack takes advantage

of the access pattern of the keyword searches and attempts to figure out what words are

contained in the respective files. Additionally, the author develops a scheme that can defend

against IND-CKA and IND2-CKA that uses bloom filters and pseudo-random functions,

although this scheme has the drawback of generating false positives. Later on, improved

definitions and efficient constructions of SSE schemes are defined [42]. The authors revisit

the IND2-CKA introduced previously and attempt to provide security for the user queries

on top of the IND2-CKA security. They also define the nonadaptive and adaptive attacker

models and mention that all previous work falls within the nonadaptive settings. They

continue to construct two schemes to tackle the adaptive and nonadaptive settings. It is

worth mentioning that to solve the adaptive attacker model, their scheme requires higher

communication overhead and more storage at the server. They also add the ability to

use SSE across multiple users, where one user can own the data and generate trapdoors

for other users to search the data. The drawback to this scheme is that the search time

is sequential and not dynamic. Furthermore, security definitions for ciphers that permit

length-preserving encryption of a data stream with only a single pass through the data are

explained [43]. They provide two implementations: HCBC1 and HCBC2. A scheme that

solves the sequential SSE problems and parallelizes the keyword search encrypted data is

presented [35]. The authors offer three main properties with their SSE construction: CKA

security, no info leakage on updates, and the ability to implement their scheme efficiently

in external memory. They use a red-black tree-based data structure to find the desired

keyword in the encrypted data. This implementation also offers dynamic keyword search

and secure data updates, although this scheme can be extended to reduce the size of the

tree, perform the searches in external memory, and verify the results of the search. A

parallelizable and authenticated scheme for online ciphers is proposed [44]. The authors

18

conclude that it is about five times faster than previous work. However, the scheme does

not achieve functionality of the keyword search desired. A highly-scalable SSE scheme that

supports Boolean queries is constructed [45]. The scheme provides a realistic and practical

trade-off between performance and privacy by efficiently supporting very large databases.

A scheme that supports ranked search for multiple keywords is introduced [46]. It also

preserves the privacy of the search by limiting information leakage. However, the scheme

uses inner product similarity coordinate matching, which can be expensive. A dynamic SSE

scheme in very large databases is introduced [47]. The scheme is dynamic in the sense that

the data is updatable after encryption, parallel, and tackles the adaptive and nonadaptive

attacker settings. It also offers a small index size and short search time. An implementation

that enables sub-string search while data is encrypted is introduced [48]. The authors

develop an SSE algorithm called queryable encryption. They use suffix trees and achieve

asymptotic efficiency comparable to unencrypted suffix trees. The scheme defines what will

be leaked prior to the implementation to make it relatively secure. An efficient SSE scheme

that supports multiple kinds of searches of encrypted data is proposed [49]. The searches

offered from their scheme are the wild-card search, similarity search, fuzzy-keyword search,

and disjunctive keyword search. Their scheme supports dynamic operations such as addition

and removal of data. This scheme is secure against nonadaptive chosen keyword attacks but

not adaptive keyword attacks. A memory-leakage-resilient SSE scheme is introduced [50].

The authors mention that attackers can often obtain some or even all secret keys from fast

side-channel attacks. They investigate SSE methods to prevent this leakage.

2.5. MAPREDUCE

MapReduce is a model for distributed processing of large data across multiple nodes

or clusters. It aims to simplify the development of distributed applications and enable big-

data management [51, 52, 53, 54]. In order to use MapReduce, two functions need to be

developed: a map and a reduce function. Once these functions are developed, the model

19

automatically parallelizes the processing and computation across the nodes or clusters. The

model also handles node failures automatically and ensure task completion. If a node fails,

the master node detects this failure and reassigns that node’s responsibilities to a different

node. A related work evaluated the scalability and efficiency of indexing strategies using

MapReduce [55]. This paper shows that the most efficient algorithm for indexing using

MapReduce is the per-posting algorithm. Although, in this work, the per-token algorithm

is used for simplicity.

2.6. CLOUDLAB TESTBED

CloudLab is a scientific instrument that allows researchers and students to create

their own clouds free of charge. It is built to minimize the impact of experiments interfering

with each other. Hence, the hardware is isolated asmuch as possible to ensure the confidence

and validity of tests. At the core, CloudLab is distributed across three main locations: Utah

(University of Utah), Wisconsin (University of Wisconsin-Madison), and South Carolina

(Clemson University). The three sites provide diversity for all kinds of research related to

the cloud. They communicate with each other through IP and layer-two links such as the

SDN-based 100 Gbps network.

The software provided by CloudLab is also diverse and flexible enough to allow for

different cloud stack deployments. The user must first create a profile and a description for

the hardware and software aspects of the cloud, and then proceed to gain full control of the

resources [56, 57]. The preliminary results of this project were generated on the CloudLab

testbed [11].

20

3. ARCHITECTURE

This section explains how DSB-SEIS functions in detail, including all the features

proposed previously. Shown first is the overall architecture of the scheme and the work flow

of both the client and the cloud. DSB-SEIS’s features, encryption intensity selection, dedu-

plication, assured deletion, and searching encrypted data, are then explained. Furthermore,

MapReduce applications were developed for indexing, searching the index, and searching

the disk to evaluate how the algorithms of DSB-SEIS perform with a larger scale of data

using Hadoop MapReduce. The explanation for the MapReduce applications are explained

at the end of this section. The cloud model considered in this work is an honest-but-curious

cloud. This mean that the cloud will perform all computation requests, but might read the

information while doing so.

3.1. WORKFLOW

Figure 3.1 shows the overall architecture of DSB-SEIS. On the left side, users request

store, restore, and search from DSB-SEIS’s client application. The scenario here is that all

users have DSB-SEIS installed on their machines. The client then connects to the cloud

application, which will then fulfill the request and send back the requested data to the client.

The assumption here is that the users share their encryption keys if they would like to share

data. The reason for this assumption is that sharing and mobility is limited since the scheme

retains all encryption keys on the client machine and never allows for decryption outside

this machine. Evaluation of shared schemes is considered part of the future work.

User 3 in Figure 3.1 requests data to be stored on the cloud. DSB-SEIS will then

scan the user’s filesystem for data, extract text from documents and file names, generate an

encrypted inverted index, split the data into a fixed-size chunks, encrypt the data using the

keys assigned by the encryption intensity selection feature, transmit the data to the cloud,

21

User 1

User 2

User 3

Clients Cloud

Encrypted data

Encrypted data

Encryption keys

Store request

Restore request
Decryption keys

Search request
Encryption keys

DSB-SEIS

Java

Store / restore

File encryption

Deduplication

Search-token
generation

Assured deletion

Disk

Java
Receive files

Process store / restore request
Search encrypted data

Inverted index

Encrypted files Encrypted keywords

Search results

Decrypted data

Figure 3.1. DSB-SEIS architecture

User
Request

Scan Filesystem
Local

deduplication
Extract text

Create
encrypted index

Split data into
chunks

Encrypt data
Transmit data to

the cloud
Store metadata

locally

Find chunks of
requested data

Find chunks of
requested data

Generate search
token

Retrieve
data

Delete
data

Search
Request chunks

delete from cloud

Send token to the
cloud

Decrypt the
chunks

Receive search
results

Delete key locally

Request chunks
from cloud

High
Intensity?

Yes

No

Figure 3.2. Client application flowchart

22

Receive
command

Receive data
Receive search

token

Find requested
data

Receive
requested chunks

Store data on
disk

Find and delete
chunks

Return data

Search encrypted
data

Return search
results

Figure 3.3. Cloud application flowchart

and finally store the metadata of all files sent on the client machine. This process is shown

as a flow chart in Figure 3.2. After this is done, the client application then waits for a

request from the user. The user can request to retrieve data from the cloud, search over

encrypted data, or assuredly delete data. User 2 in Figure 3.1 requests to retrieve data

from the cloud. The respective encrypted chunks of data is requested to be retrieved from

the cloud, decrypted using the correct keys, and then given back to the user. User 1 in

Figure 3.1 requests to search over the encrypted data. DSB-SEIS allows two kinds of search

on the cloud: keyword search on the encrypted inverted index stored on disk, and duplicate

checks on the encrypted chunks of data stored on disk. Both kinds of search follow a similar

procedure: A search token is generated from the data to be searched for by encrypting

and then hashing the data. The search token is then sent to the cloud, and the results are

returned and decrypted. In order to find data stored on the cloud, the user must use the

same key to generate the search token as the key used to encrypt the data initially. Hence,

if a search token is generated for data using key B after the same data was encrypted with

23

key A and sent to the cloud, then the cloud will not return any results. Another feature not

shown in Figure 3.1 is assured deletion. If assured deletion is requested and the respective

chunks of data on the cloud are found to be deleted, then the key is deleted locally only if

the encryption intensity of the data is set to the high intensity level.

Figure 3.3 shows the work flow of the cloud. The cloud waits for a request from

the client, and once a command is received, it proceeds to perform the task requested. If a

store request is received, the cloud receives the data and stores it on its disk. Alternatively,

if a restore request is received, the cloud finds the data and returns it to the client. The

cloud finds data and deletes it from its storage disk if a delete request is received. Finally, if

the client requests to search the data, it proceeds to scan the inverted index or storage disk

depending on the kind of search request (keyword or data).

3.2. ENCRYPTION INTENSITY SELECTION

The encryption intensity selection in DSB-SEIS is implemented to reduce the

amount of encryption keys produced from the filesystem and increase security for con-

fidential data. In other works, two main scenarios are used: one key is generated for all

the files, or one key for each file in the filesystem. This feature is proposed to dynamically

generate keys based on the confidentiality of a file. The higher the confidentiality, the higher

the encryption intensity assigned to it.

The way this feature works is as follows. Two lists of keywords are assigned, one

for the medium encryption intensity and another for the high encryption intensity. The

user can add keywords to these lists to choose encryption intensity dynamically. While

DSB-SEIS scans the file system for data, it uses the two lists to look for the keywords in

the file names. An example is shown in Figure 1. If the medium keyword list contains

“grades,” and the high keyword list contains “health.” A file system that contains the files

“hello.txt,” “groceries.zip,” “FS16_grades.pdf,” “SP16_grade.pdf,” “health_records.txt,”

and “health_doctors.pdf” is scanned. The intensities assigned to these files respectively are

24

Algorithm 1: Encryption intensity algorithm
1 Initialize two lists of words;

Input: encryption keywords for medium intensity;
encryption keywords for high intensity;

2 foreach file scanned in filesystem;
3 do
4 if file path or name contains a keyword from medium intensity list;
5 then
6 assign the file medium encryption intensity;
7 else
8 if file path or name contains a keyword from high intensity list;
9 then

10 assign the file high encryption intesity;
11 else
12 assign the file low encryption entensity;

low, low, medium, medium, high, and high. A total of three encryption keys are generated

and used. The first two files did not contain any of the keywords and therefore assigned

the low intensity by default, the next two contained the keyword “grades”, and last two

contained the keyword “health.” This algorithm is shown in Algorithm 1. The differences

between the three intensity levels are as follows:

3.2.1. Low Intensity. This intensity level provides the minimum security to data.

One AES key of size 128 bits is used to encrypt all data assigned to this intensity. After

data in a file system is scanned, all data is assigned to this intensity by default until the user

specifies the encryption intensity.

3.2.2. Medium Intensity. The medium intensity provides slightly more complex

security to data by generating an AES key of size 256 bits and encrypting all data assigned

to this level using this key. Unlike the low intensity level, this intensity level is not selected

by default. The user needs to select the data to be encrypted with this intensity; this is either

done manually or using the keyword lists mentioned previously.

25

hello.txt groceries.zip

SP16_grades.pdf

health_records.txt health_doctors.pdf

grades

health

Medium intensity
keywords

High intensity
keywords

Lo
w

M
ed

iu
m

H
igh

FS16_grades.pdf

Figure 3.4. Encryption intensity selection example

3.2.3. High Intensity. Using the list of keywords for this intensity, an AES key of

size 256 bits is generated for each file containing one or more keywords in its name. This

provides further encryption complexity by using different keys for most confidential data

and is therefore the highest encryption intensity in the scheme. This also allows for better

key management due to the lesser amount of keys generated dynamically. It is important to

mention that the protocols used for encryption in this work (AES) can be substituted with

any other protocol. The protocols in this work are used to show applicability of the dynamic

key generation algorithm.

3.3. DEDUPLICATION

Deduplication is proposed in this scheme in order to provide a better use of network

bandwidth and lower the cost of data storage and transmission to and from the cloud. The

deduplication algorithm uses the multi-aspect awareness feature that takes into account

file semantics and application type, although it remains simple and basic. The aim is

26

Algorithm 2: Deduplication algorithm
1 if no previous scanned files;
2 then
3 initialize an empty list of files to be stored on the cloud;
4 else
5 read the previously scanned list of files;
6 foreach file in filesystem;
7 do
8 foreach file in list of files;
9 do

10 if file sizes are equal AND files are of the same application type;
11 then
12 if file names are equal OR file modification date are equal;
13 then
14 the files are duplicates;
15 else
16 if file hashes are equal;
17 then
18 the files are duplicates;

19 if file is previously scanned;
20 then
21 if file modification date is more recent AND hash is not equal;
22 then
23 file is modified;

24 if file is not a duplicate OR file is modified;
25 then
26 add file to the list to be stored;

27

not to enhance the efficiency of the deduplication algorithm itself, but only for the basic

functionality of removing redundant data. The algorithm used is shown in Algorithm 2. The

initial step to the algorithm is to read the metadata of previously scanned files, if any. The

filesystem is scanned for files. The scanned files are then compared with previously scanned

files. The application and file-semantic awareness are first used to check for duplicates.

Application awareness checks if the two files are of the same application (e.g., txt), while file

semantic awareness checks the size, name, and modification date of the files. If the multi-

aspect awareness fails to detect a duplicate, the files are hashed and compared. Additionally,

the application checks for modified files and file updates. The modification date and the

hash are checked for modification. Finally, the modified files and non-duplicates are added

to the list of files to be stored on the cloud. The deduplication algorithm can be improved

to achieve better efficiency and accuracy. This is considered for future work.

3.4. ASSURED DELETION

Assured deletion is implemented in this scheme to ensure safe deletion of confiden-

tial data. This feature is enabled along with encryption intensity selection. Since different

keys are generated for confidential data (high intensity), the encryption keys of data can be

simply removed for the data to be assuredly deleted. Since the low and medium encryption

intensities use one key for all encrypted data, data encrypted using these intensities cannot

be assuredly deleted. However, assured deletion of most confidential data is essential since

leakage of this data will have the most impact. Moreover, leakage of less confidential data

after deletion requests has much less impact on the user.

This algorithm is not based on policies and is left completely to the user to select

when to assuredly delete a file. The algorithm used for assured deletion is shown in

Algorithm 3. After the file system has been scanned and data is sent to the cloud, the user

can select a file to be assuredly deleted. DSB-SEIS finds all the chunks of data from the

file and requests data to be deleted from the cloud. If the file was encrypted with its own

28

encryption key (hence high intensity level) the key is deleted along with the file’s metadata.

This way, even if the cloud retains the data on its servers, the data is unintelligible and

cannot be read because it cannot be decrypted.

Algorithm 3: Assured deletion algorithm
1 select file to be deleted;
2 find chunks of data that make the file;
3 foreach chunk do
4 send delete request to the cloud;
5 if file encrypted using high intensity then
6 delete the encryption key;
7 remove file’s metadata;

3.5. SEARCHING ENCRYPTED DATA

Storing encrypted data on clouds normally limits the functionality of the data.

Hence, the data is useless unless restored and decrypted first, which limits the functionality

of storage schemes that encrypt data before sending it to the cloud. For instance, if a

user encrypts data, stores it on the cloud, and later would like to retrieve only the files

related to their health records without searchable encryption, the user must restore all of

the data, decrypt it, and then search. This can be costly and time-consuming. A Searchable

Symmetric Encryption (SSE) scheme is implemented inDSB-SEIS that creates an encrypted

index for all documents backed up to enable keyword search. Chunk-based duplicate checks

is enabled on the cloud using the same SSE scheme. The main features of SSE are the

following:

• Key generation: use a secret to generate a private symmetric key

• Generate index: extract the text from documents and file names, then generate an

index

29

• Encryption: use the key generated from the previous property to encrypt the data and

generate ciphertext and an encrypted index

• Generate search token: encrypt and then hash the data to generate a token that can be

used to search for the data

• Search: use the search token generated previously to search for the data by comparing

the token to the hash of the encrypted data

• Decrypt: use the same key generated previously to decrypt the ciphertext to retrieve

the plaintext

Both features of the SSE scheme are explained in the following sections.

3.5.1. Keyword Search in Encrypted Index. The SSE properties are used to

extract all text from documents and file names. An index that references all words to

their respective files is then created. Stop words are removed to only maintain important

keywords. Additionally, the same word is only added once to the index. Hence, if a word is

repeated multiple times in the same document, it is only referenced to that document once.

If it occurs in multiple documents, it is referenced twice, once for each file.

After generating the index, the file pointers and the words are encrypted and hashed.

A new key of size 128 bits is generated to encrypt the index to reduce the complexity of

encrypting words contained in different files. The encrypted index is then sent to the cloud

to be searched later on. The index is stored on disk and read into memory line by line. The

assumption here is that each line can be read into memory. Otherwise, the search fails.

Once the index is stored on the cloud, the generated search token property can be

used for any word, and sent to the cloud to be searched in the index. The search allows for

Boolean expressions to be searched as well. After the search is completed on the cloud, the

encrypted file pointers will be returned to the client. The client will decrypt the file pointers

to find what files contained the word searched.

30

3.5.2. Duplicate Checking of Encrypted Data. This feature can be used to check if

a copy of the data already exists on the cloud and therefore avoids duplicates (deduplication).

Additionally, this feature can be used to check if the data has been modified legitimately

or maliciously. If the user has modified the file between the time of storage and duplicate

check, then some chunks of data are expected to be different than what is on the cloud. If

so, only the modified chunks can be replaced. However, if no changes were made to the file

and the cloud fails to find a match, the chunks were maliciously modified.

Similar to searching for keywords, the SSE properties are used to enable this feature.

Once the data is encrypted and sent to the cloud, a search token can be generated for the

data to be searched by encrypting it and computing the hash. The token can be sent to the

cloud to be searched. The cloud hashes all of the encrypted chunks of data sent by the user

and stored on its disk and compares them to the token sent by the client. Once the search

is complete, the cloud returns the result of the search (either found or not found). The user

then decides what needs to be done. If the data has not been modified, no further action

is needed. If the data has been modified legitimately, the data can be updated by replacing

the modified chunks. If the data has been modified maliciously, the data can be assuredly

deleted and completely replaced with a legitimate copy.

3.6. MAPREDUCE APPLICATIONS

In order to test performance of DSB-SEIS with a larger scale of data, three MapRe-

duce applications are developed: document index application, index search application,

and disk search application. The WikiMedia dump is acquired [15] and used as input for

the MapReduce Applications. The main files used in these experiments are the abstract

and article page files. Overall, these applications are only used to evaluate the algorithms

used in this thesis work with big data and are not included with the automated DSB-SEIS

application (client and cloud applications).

31

WikiMedia Dump
XML Documents

Input

.

.

.

Split

A: Page 1
A: Page 2
B: Page 2
C: Page 1
D: Page 1
D: Page 2

A: Page 3
B: Page 4
E: Page 3
E: Page 4
F: Page 3

.

.

.

G: Page N

Map

Page 1

Page 2

Page 3

Page 4

Page N

Reduce

A: Page 1
A: Page 2
A: Page 3
B: Page 2
B: Page 4

C: Page 1
D: Page1
D: Page 2

E: Page 3
E: Page 4
F: Page 3

G: Page N

Partition &
Sort

A: Page 1,
Page 2,
Page 3

B: Page 2,
Page 4

C: Page 1
D: Page 1,

Page 2
E: Page 3,

Page 4
F: Page 3

.

.

.

G: Page N

A: Page 1,
Page 2,
Page 3

B: Page 2,
Page 4

C: Page 1
D: Page 1,

Page 2
E: Page 3,

Page 4
F: Page 3
G: Page N

Output

Encrypted

Figure 3.5. MapReduce indexing application workflow

3.6.1. Indexing. Figure 3.5 shows the work flow of the MapReduce index applica-

tion. MapReduce requires two main interfaces to be implemented: mapper and reducer. In

addition, developers are allowed to implement an interface for splitting the input since the

input is too large to be read into memory at the same time. By default, MapReduce reads

documents line by line and feeds them into the mapper. In the case of this experiment, an

input split interface is developed to read one article document at a time. The reason for this

is that the WikiMedia dump is in XML structure that contains many documents within it.

Each document must be passed whole to the mapper. Since the documents are separated

by tags and not newline characters, a custom input split interface must be developed. Once

the input split passes a document, the mapper proceeds to extract text from each document,

append the name of the page to the word, and pass the key value pair to the next phase.

Stopwords are also removed from the text in the mapper. During this phase, memory ends

32

up running out and data is spilled to disk until it is ready to be processed again. In Figure 3.5,

words are represented using letters such as A, B, and C, and documents are represented

with page numbers such as page 1, page 2, and page 3.

Once the map phase is over, data is then read from disk, partitioned, and sorted

to be passed to different reducers. This is done by hashing each word passed from the

mapper, then these hashes are assigned to reducers and key value pairs are passed to the

corresponding reducers. In the reducer phase, all data is encrypted using an encryption

key, AES128, and passed to the output writer where the index is created. As the amount of

data input increases, there will eventually be some entries that do not fit in memory since

some words will occur in numerous documents that will exceed the size of memory. For

this reason, a custom streaming output writer is developed. This output writer receives

the encrypted values from the reducers and streams it to disk without having to store it in

memory. This eliminates the possibility of running out of memory at the reducer step, which

means that this algorithm can handle large amounts of data with no memory issues. It is

important to mention that each reducer will write a chunk of the index. This means that the

higher number of reducers used will split the index into more chunks. However, increasing

the number of reducers is necessary as the size of data increases since some reducers might

be overwhelmed and produce longer processing time. An assumption for this application

is that it is run on secure resources such as a private cloud or private machines. The reason

for this assumption is that the application needs access to the encryption key to generate an

encrypted index.

3.6.2. Index Search. After the indexing application is complete and the index

chunks are written to disk, its output is used as input for the keyword search application to

find what documents contain certain words. Figure 3.6 shows the work flow of the index

keyword search application. However, the index is split into chunks equal to the number

of reducers of the index application. Each line in the index represents an entry for a word.

Therefore, the default input split is used to read one line at a time. Each line is passed to

33

Input Split

<AND,
[Page 1,
Page 2,

Page 3]>

<AND,
[Page 1]>

<OR,
[Page 1,
Page 2]>

.

.

.

Map

Line 1
A: Page 1, Page 2, Page 3

Line 2
B: Page 2, Page 4

Line 3
C: Page 1

Line 4
D: Page 1, Page 2

Line N
N: Page N

Reduce

<AND,
[Page 1]>

<AND,
[Page 1,
Page 2,

Page 3]>

<OR,
[Page 1,
Page 2]>

<NOT,
[Page 3]>

Partition &
Sort

Combine

<2,
[Page 1,
Page 2]>

<AND,
[Page 1,
Page 2,

Page 3]>

<AND,
[Page 1]>

<OR,
[Page 1,
Page 2]>

<NOT,
[Page 3]>

Output

.

.

.

Encrypted
Encrypted

A: Page 1,
Page 2,
Page 3

B: Page 2,
Page 4

C: Page 1
D: Page 1,

Page 2
E: Page 3,

Page 4
F: Page 3
G: Page N

Encrypted

.

.

.

Search for queries(A AND C AND NOT F) OR D
Encrypted

Combine Boolean
expressions

Encrypted

2
 resu

lts:
Page 1

, Page 2

<NOT,
[Page 3]>

Figure 3.6. MapReduce index search application workflow

a mapper where the words searched for are found and passed to the next phase. Boolean

expressions are also supported with this application. The Boolean operation the word is

involved in is appended to the result of the entry before being passed to the the next phase.

For example, in Figure 3.6, the search operation is (A and C and not F) or D. Since A and

C are in an and operation, and is appended to the two entries. Additionally, F is in a not

operation, and D is in a or operation. An optional combiner is implemented as the next

phase to combine the Boolean operations. This means that the and, not, and or operations

will be performed where appropriate in this step. Once combiner passes its value to the next

phase, the data is sorted and sent to the reducer. It is important to use only one reducer for

this application in order to acquire correct results since the data needs to be in one container

to perform the Boolean operations correctly. This is not an issue for most cases since the

data searched for will usually not be very large due to the filtering done in the mapper.

Hence, only the words searched for are passed to this step. However, once entries are too

large to hold in memory, the reducer resorts to write values to disk until they are ready to

34

Input

<Chunk 1,
H1>

<Chunk 2,
H2>

<Chunk 3,
H3>

.

.

.

<Chunk
N, HN>

Map Reduce

Null

<Chunk 3,
True>

.

.

.

Null

Output

Encrypted

Chunk
1

Chunk
2

Chunk
3

Chunk
N

.

.

.

Hash chunks Compare hashes

Found chunk 3

Figure 3.7. MapReduce disk search application workflow

be read again, which can create large overhead and make the application very unstable and

unpredictable due to disk I/O overhead. The reducer combines the final computation for

the Boolean expressions and writes the final results to disk. This application can be run on

a public cloud without sacrificing security since the data is encrypted at any point.

3.6.3. Disk Search. An assumption for this application is that the client already

chunked, encrypted, and sent the data to the cloud prior to running this application. It can

be run on a public cloud since the disk is contained of encrypted chunks of data with the size

of a specific chunk size or smaller. Figure 3.7 shows the work flow of this application. A

custom input split is implemented to read whole chunks and pass them to the mappers since

the data is split previously and does not need to be split any further. This also simplifies

the hashing of chunks at the map phase. In the map phase, the chunks are hashes and

then appended to the chunk identifier to create a key value pair. These key value pairs are

then passed to reducer where the hashes of the chunks on disk are compared to the chunks

searched for. The partition and sort phase is omitted since it does not make much of a

35

difference in this application. However, similar to the previous applications, the mapper

could write data to disk once it runs out of memory. The final result is written to disk

after the reducer finishes its computation to display what chunks were found. In Figure 3.7,

chunk 3 was searched for and found on disk.

36

4. RESULTS

To test and evaluate DSB-SEIS, the WikiMedia dump is retrieved [15] and used

as the filesystem. Additionally, two virtual machines are created by the Missouri S&T

database team for the purpose of testing DSB-SEIS. One of the virtual machines is used

as a client, and the other as the cloud. The two machines contain the following resources:

Red Hat 4.4.7 running on Linux 2.6.32 operating system, 8 GB of RAM, and 100 GB of

storage capacity. The two differ in the CPU; the client machine uses an Intel Xeon E5-2680

v2 running at 2.8 GHz frequency, and the cloud machine runs an Intel Xeon E5-2650 v3

running at 2.3 GHz. Both processors contain 25 MB of cache memory. The client machine

connects to the cloud machine in order to run the tests. Both machines are located in

Rolla, MO. In the following sections, different metrics of DSB-SEIS are evaluated. The

preliminary results for this work are run on the CloudLab testbed [16]. The variables used

for testing in this work are shown in Table 4.1. The chunk size is varied to show the effects

chunking adds on encryption, decryption, and search. To show the overhead of encryption

intensity selection on encryption and decryption, the encryption intensity is varied. For

MapReduce applications, the number of reducers is varied. All data points shown in this

section are averages of five runs with the 95th percentile confidence interval.

Table 4.1. Testing variables

Variable Values
Chunk size 4 MB, 20 MB, 50 MB, 500 MB

Encryption intensity low, medium, high, dynamic
Number of reducers 10, 25, 50, 100

37

 0

 2x107

 4x107

 6x107

 8x107

 1x108

 1.2x108

 1.4x108

 1.6x108

 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

in
de

x
si

ze
 [

w
or

ds
]

disk size [documents]

Figure 4.1. WikiMedia word distribution

4.1. WIKIMEDIA DUMP

The latest WikiMedia dump [15] is used as the filesystem for the experiments in

this thesis work. The dump consists of all current and archived article data on WikiMedia

including abstracts, hyperlinks, body text, and metadata. The dump decompresses to more

than five terabytes of data in XML format. Due to space limitations in machines used in this

work, these experiments only use a portion of the abstract and body text from the dump. It

is important to note that the abstract files are much smaller than the body text files because

the abstracts are usually much shorter than the body. This can be seen in Figure 4.1, where

the incline starts increasing around five million documents. This point is also the end of the

abstract files and start of the body text files.

38

 0

 50

 100

 150

 200

 250

 300

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107 1.6x107

sc
an

 ti
m

e
[s

]

disk size [kB]

with deduplication
without deduplication

Figure 4.2. Deduplication overhead

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 1.6x107

 1.8x107

 0 5 10 15 20 25 30 35 40

di
sk

 s
iz

e
 [

kB
]

number of files

with deduplication
without deduplication

Figure 4.3. Size of data

39

4.2. DEDUPLICATION PERFORMANCE

In this section, the deduplication overhead is analyzed using two metrics: scan time

(time taken to generate a list of files to be sent to the cloud), and the size of data to be

transmitted. Figure 4.2 shows the deduplication overhead in scan time. It is important

to mention that 42 files were used from the WikiMedia dump including 27 abstract files,

seven body text files, and some duplicates. The size difference between abstract files and

article files is noticeable in Figure 4.2 at the 6 GB mark, where the size of each file added

increases. Scanning the filesystem without deduplication took less than one second across

for all files. It is important to note that scan time without deduplication did increase slightly

as the size of data increased. However, the incline was so small that the curve appears as

a straight line. When deduplication was added, a somewhat linear overhead to the scan

time increased to up to around 270 seconds. At first glance, this might be considered a

significant increase. However, when considering the amount of redundant data removed

from the filesystem, deduplication could still reduce the cost of the service by having less

data to handle in the tasks that follow, such as transmission to and from the cloud, indexing,

and searching. Figure 4.3 shows the size of data with and without deduplication with each

file added. Size of data with deduplication is less than without deduplication by about 2

GB as shown in Figure 4.3. The advantage heavily depends on the amount of redundant

data in the filesystem. If there is little to no redundancy in the filesystem, the overhead of

deduplication will be larger than the advantage.

4.3. KEY GENERATION ANALYSIS

Key management is very important to avoid data leaks. If a key were to be lost,

stolen, or broken, data could be stolen. To make key management easier, the number of

keys should be reduced. On the other hand, if a single key is used to encrypt all files in a

filesystem containing confidential data, breaking this key means a leak of all data on that

40

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

nu
m

be
r

of
 k

ey
s

number of files

high intensity
medium intensity

low intensity
dynamic intensity

Figure 4.4. Key generation

filesystem. For this reason, the autonomous key generation algorithm proposed in this thesis

work is evaluated in this section. Figure 4.4 shows the number of keys generated when all

files are assigned to the low, medium, high, and dynamic intensity levels. To make the plot

easier to understand, the number of keys in the medium intensity level is set to two since the

low intensity key is generated by default even though only the medium intensity key is used

to encrypt data. The number of keys generated using the low and medium intensities remain

consistent across the plot. When the high intensity is used for all files, a key is generated

for each additional file. The number of keys in this case increased linearly. This means

that if the filesystem contains a million files, there would be one million keys to manage.

Key management can get out of hand easily. In the case of dynamic intensity, the keywords

"medium" and "high" were assigned to random files in the filesystem and then passed to the

autonomous key generation algorithm. The number of keys increased as the confidential

files are added. This reduces the number of encryption keys to be managed when compared

to the high intensity while separating the encryption of confidential files. The number

41

 0

 100

 200

 300

 400

 500

 600

 700

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

en
cr

yp
tio

n
tim

e
[s

]

disk size [kB]

high intensity
medium intensity

low intensity
dynamic intensity

(a) 4 MB chunk size

 0

 100

 200

 300

 400

 500

 600

 700

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

en
cr

yp
tio

n
tim

e
[s

]

disk size [kB]

high intensity
medium intensity

low intensity
dynamic intensity

(b) 20 MB chunk size

 0

 100

 200

 300

 400

 500

 600

 700

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

en
cr

yp
tio

n
tim

e
[s

]

disk size [kB]

high intensity
medium intensity

low intensity
dynamic intensity

(c) 50 MB chunk size

 0

 100

 200

 300

 400

 500

 600

 700

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

en
cr

yp
tio

n
tim

e
[s

]

disk size [kB]

high intensity
medium intensity

low intensity
dynamic intensity

(d) 500 MB chunk size

Figure 4.5. Encryption performance

of keys generated highly depends on the number of confidential files in the filesystem.

The worst case scenario for the dynamic intensity is when all files in the filesystem are

confidential. In this case, the number of keys would be equal to the number of files, similar

to the high intensity. Another case to consider is when all files are non-confidential. The

number of keys would be equal to one, similar to the low intensity.

4.4. ENCRYPTION PERFORMANCE

Alongside key generation, the encryption performance is inspected to evaluate the

four intensities and observe any overhead added to encryption. Figure 4.5 shows the time

taken to encrypt the same files from the key generation section using their assigned keys.

Note that the files are chunked prior to encryption. The time taken to chunk the files is

included in the encryption time. To inspect the effect of chunk size on encryption, four

42

chunk sizes are used: 4 MB, 20 MB, 50 MB, and 500 MB. When comparing the encryption

performance of the four chunk sizes, no significant overhead is observed for any of the

intensities. However, it is observed that a larger chunk size takes slightly longer. On the

other hand, the encryption intensity effects are inspected. As expected, the low intensity

generally takes the least time, because a smaller key is used. However, the difference

between this intensity and the others is not significant. When comparing all four intensities,

the performance falls in the same range. This means that dynamic intensity selection does

not add significant overhead to encryption. In addition, it makes the number of keys more

manageable.

4.5. DECRYPTION PERFORMANCE

To retrieve the data to its original form, it must be decrypted. The decryption

performance is evaluated in the sameway encryption is. The respective chunks are decrypted

and thenmerged in the correct order to recreate the file. The chunkmerge time is included in

the decryption time shown in Figure 4.6. The four chunk sizes are used once again: 4 MB,

20 MB, 50 MB, and 500 MB. Similar to encryption, the chunk size does not add significant

overhead. Larger chunk size takes slightly longer than smaller size. The low intensity

generally shows the least decryption time similar to encryption; however, the difference is

not significant. The decryption performance of all intensities falls in the same range. This

means that dynamic intensity selection does not add significant overhead to decryption.

The most important metric for both encryption and decryption is size of data processed. It

is also observed that decryption takes slightly longer than encryption due to the decryption

sequential nature.

43

 0

 100

 200

 300

 400

 500

 600

 700

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

de
cr

yp
tio

n
tim

e
[s

]

disk size [kB]

high intensity
medium intensity

low intensity
dynamic intensity

(a) 4 MB chunk size

 0

 100

 200

 300

 400

 500

 600

 700

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

de
cr

yp
tio

n
tim

e
[s

]

disk size [kB]

high intensity
medium intensity

low intensity
dynamic intensity

(b) 20 MB chunk size

 0

 100

 200

 300

 400

 500

 600

 700

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

de
cr

yp
tio

n
tim

e
[s

]

disk size [kB]

high intensity
medium intensity

low intensity
dynamic intensity

(c) 50 MB chunk size

 0

 100

 200

 300

 400

 500

 600

 700

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

de
cr

yp
tio

n
tim

e
[s

]

disk size [kB]

high intensity
medium intensity

low intensity
dynamic intensity

(d) 500 MB chunk size

Figure 4.6. Decryption performance

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50000 100000 150000 200000 250000 300000 350000

in
de

x
tim

e
[s

]

disk size [documents]

Figure 4.7. Index performance

44

4.6. INDEXING PERFORMANCE

Figure 4.7 shows the performance of the indexing algorithm as the number of

documents increases. It is observed that the time taken to create an encrypted index grows

exponentially as the size of data increases. This is due to the time taken to scan the index

as new entries added to the index to avoid duplication. As the size of index increases in

memory, the time taken to scan the index increases aswell, creating the exponential behavior.

The data points shown on the figure include time taken to extract text, encrypt words and

document pointers, and write index on disk. The drawback of this indexing algorithm is

that the index must be stored in memory while creating the index. Once memory runs out,

no more data can be indexed until data in memory is spilled to disk. Additionally, since the

curve grows exponentially, the cost of the algorithm can become expensive quickly.

4.7. SEARCH PERFORMANCE

The performance of searching for data on disk or an index is inspected and evaluated.

Searching on encrypted data requires the client to create a search token by encrypting and

then hashing the data to be searched. In addition, the results found from the search must be

decrypted to acquire useful information. The time taken to generate a search token, search

disk or index, transmit data through a network, and decrypt the results are included in the

respective plots in the following sections.

4.7.1. Index Search. After transmitting the index to the cloud, the index is stored

on disk to be searched. The client creates search tokens of words and sends them to the

cloud along with Boolean operations to return the documents that contain these keywords.

The search operation in this work is “fat” and “cat.” Figure 4.8 shows the performance of

this search. The data points shown in Figure 4.8 include the time taken to generate a search

token, transmit the index, search, and decrypt results. It is observed that the search time

grows linearly as the size of the index increases. This is expected, as the time taken to read

45

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 50000 100000 150000 200000 250000 300000 350000

se
ar

ch
 ti

m
e

[s
]

disk size [documents]

Figure 4.8. Index search performance

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50000 100000 150000 200000 250000 300000 350000

se
ar

ch
 r

es
ul

ts
 [

hi
ts

]

disk size [documents]

Figure 4.9. Search hits

46

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

se
ar

ch
 ti

m
e

[s
]

disk size [kB]

4 MB chunk size
20 MB chunk size
50 MB chunk size

500 MB chunk size

Figure 4.10. Disk search performance

the index from disk grows. However, as the size of the index grows, the confidence intervals

become larger as well. Themain reason for this error is the overhead accessing the disk adds.

The confidence intervals can be decreased by storing the index in memory. However, this

limits the maximum size of the index. Another solution is to use a different data structure,

such as tree structure, to save the index. The security of the indexing algorithm can be

improved by adding randomization. However, this can increase the complexity of storing

the index, and decrease the performance due to adding randomization when creating the

index, and remove the randomization when decrypting the results. Overall, the encrypted

index search eliminates the cost of retrieving and decrypting data in order to search.

4.7.2. Disk Search. Searching the cloud disk for a chunk or a piece of data can

significantly reduce the cost of finding the required data by not having to retrieve and

decrypt all data from the cloud. Figure 4.10 shows the disk search performance, including

the time taken to generate a search token from the data, transmit the token and results, and

decrypt results. Four chunk sizes are used to show the effect of chunk size on the search

47

performance because a larger chunk size will take longer to encrypt. It is observed from

the plot that the difference found from larger chunk size is minimal and insignificant for

the most part. However, a larger chunk size takes a slightly shorter to complete. Initially,

it was believed that a smaller chunk size would add a much larger overhead to the search.

However, this is not the outcome shown in the figure. It is believed that explanation for this

is that the disk is accessed only once at the same time to find the required data. Therefore,

disk I/O is not overloaded, which leads to searching all data on disk at about the same time

for all chunk sizes.

4.8. MAPREDUCE APPLICATIONS

To test the MapReduce applications, the Missouri S&T database team set up a

four-node cluster and a single node machine containing Hadoop. The index and index

search applications are run on the cluster, and the disk search application is run the single

node machine to evaluate the algorithms using a larger scale of data. Originally, all three

applications were supposed to be run on both the cluster and the single node to compare

performance. Due to time limitation, it is decided to compare performance with different

cluster sizes as future work. The WikiMedia dump is used once again, but in this case,

more data is able to be processed. The cluster machines contain the following resources:

Red Hat 4.4.7 running on Linux 2.6.32, 8 GB of RAM, 490 GB of storage space. Two of

the cluster machines run an Intel Xeon E5-2680 v2 at 2.8 GHz frequency, and the other two

run an Intel Xeon E5-2683 v3 at 2.0 GHz frequency. The single node machine contains the

same operating system and amount of RAM, but it contained an Intel Xeon E5-2680 v2 at

2.8 GHz frequency, and 1.4 TB of storage space.

4.8.1. Indexing Performance. For the index application, four numbers of reducers

are used to evaluate the indexing algorithm and observe the performance: 10 reducers,

25 reducers, 50 reducers, and 100 reducers. Figure 4.11 shows the performance of the

MapReduce indexing application using the four reducer values. In the case of 100 reducers,

48

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

in
de

xi
ng

 ti
m

e
[s

]

disk size [documents]

10 reducers
25 reducers
50 reducers

100 reducers

Figure 4.11. MapReduce indexing performance

the index time remains consistent and increases linearly as the size of data increases. As

for the 50 reducers, the index time increases linearly as the size of data increases until it

reaches the 12 million documents mark. At this point, the performance starts to be unstable

and unpredictable. It is observed that the time taken for the reducers to finish is much

longer than the other phases. The time taken for the reducers to finish is also unstable, while

the other phases remains somewhat stable. This means that the reducers are overwhelmed

with data, and the sort function is assigning uneven amounts of data to different reducers,

resulting in unstable behavior. This can be seen again at the unstable points for the 25

and 10 reducers. The unstable behavior can ultimately result in failure of execution if the

reducers cannot handle the amount of data. This can be seen at the 8 million document

point for the 10 reducer curve, and 12 million document for the 25 reducer curve. At these

points, the reducers can no longer handle the large uneven amount of data and eventually

fail. It is important to mention that the algorithm used in this work contains a streaming

output for the reducer to eliminate the issue of running out of memory. This means that if

49

 0

 500

 1000

 1500

 2000

 2500

 0 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

se
ar

ch
 ti

m
e

[s
]

disk size [documents]

10 index chunks
25 index chunks
50 index chunks

100 index chunks

Figure 4.12. MapReduce index search performance

the data is evenly distributed, all reducers should finish around the same time. However, if

that is not the case, the bottleneck of the application will be the reducer that is overwhelmed

with data. On the other hand, when considering the performance of a lesser amount of

data, it is observed that a smaller number of reducers performed slightly better. This means

that selecting an optimal number of reducers is crucial to obtain the best performance. The

number of reducers should be selected based on the size of data to be processed. Compared

with Figure 4.7, it be observed that MapReduce can enhance the performance of generating

an encrypted index, assuming that the number of reducers is set optimally.

4.8.2. Index Search Performance. After the index application has finished, the

index is written to disk in chunks equal to the number of reducers used in the index

application. Hence, if 100 reducers are used, the index is split into 100 chunks. The output

of the index application is used as input for the search application, resulting in four values

for the number of index chunks: 10, 25, 50, and 100 chunks. Since the 25 and 10 reducer

curves failed in the previous application at 8 and 12 million document, respectively, no

50

 0

 20000

 40000

 60000

 80000

 100000

 120000

 2x106 4x106 6x106 8x106 1x107 1.2x107 1.4x107

se
ar

ch
 r

es
ul

t [
hi

ts
]

disk size [documents]

Figure 4.13. Index search hits

search data is obtained for the points past these points. The search operation for this search

is “fat” and “cat”. Figure 4.12 shows the performance of index search using the three metrics.

All curves act similarly until the 10 million document mark, where the performance became

unstable. Prior to this point, the search time remains consistent and increases linearly for

all four curves. The lesser number of index chunks perform slightly better due to the lesser

disk I/O overhead. An important thing to observe is that the number of index chunks does

not affect the unstable point for the curves. After further investigation of this problem, it

is observed that this is highly related to the amount of data searched for. For example,

when searching for a word that occurs in a large number of documents, the size of this

entry in the index will be large as well. Hence, if the size of the entry is larger than the

size of main memory, MapReduce will resort to accessing the disk to temporarily store

this data until needed once again. MapReduce will have to access the disk again once the

data is needed for processing. This will continue to happen until MapReduce is finished

executing the Boolean operations and the search overall. The number of disk accesses

51

 0

 10000

 20000

 30000

 40000

 50000

 60000

 1x107 2x107 3x107 4x107 5x107 6x107 7x107 8x107

se
ar

ch
 ti

m
e

[s
]

disk size [kB]

4 MB chunk size
20 MB chunk size
50 MB chunk size

Figure 4.14. MapReduce disk search performance

needed by MapReduce is not consistent, which creates the unstable behavior in the curves.

Figure 4.13 shows the number of hits found by the search application. MapReduce can

perform as well or worse depending on the overhead of disk I/O, memory size, and index

size when compared with Figure 4.8.

4.8.3. Disk Search Performance. To check if a chunk of data exists on the cloud

disk, it is assumed that the disk contains encrypted chunks of data prior to running this

application. The chunks could be encrypted using any intensity and can be equal to or

less than the chunk size. Three chunk sizes used to evaluate this application are 4 MB,

20 MB, and 50 MB. Figure 4.14 shows the performance of disk search using MapReduce.

At first glance, it is observed that the chunk size creates a large difference in performance

using MapReduce. The 50 MB chunk size performed the best, while the 4 MB chunk

size performed the worst. When compared to the other disk search application that does

not use MapReduce, a large difference in performance is observed. The non-MapReduce

application is not affected by chunk size, while the MapReduce application is. After

52

investigation, it is found that using the custom input format that reads whole chunks as input

creates this overhead. Since a smaller chunk size generates a larger number of chunks, the

input format assigns a single mapper for each chunk, resulting in a larger number of mappers

to complete. This adds overhead to the performance, making smaller chunk sizes perform

worse. Hence, disk search using MapReduce works best with a larger chunk size. The

performance can be improved if the input of the application is changed to a list of hashes

instead of chunks stored on disk. This would eliminate the overhead of creating a single

mapper for each chunk by replacing the input with one large file containing the hashes of the

chunks. However, this would require the cloud to compute the hashes regularly to ensure

that the list is up-to-date.

53

5. CONCLUSIONS

Cloud computing provides many great services to users that can reduce the cost

of purchasing and maintaining resources. Some of the great services provided by cloud

computing is data storage and computation. Along with the benefits of these services come

some issues that worry most users. Cost of the service, security of data, and functionality

of stored data are some of these issues. Users often resort to encrypting data prior to

outsourcing it to the cloud. Although this increases the security of data, it also limits the

functionality of the cloud by not allowing for computation since the data is encrypted and

unintelligible. Additionally, this encryption is often constricted by not allowing the user

to control the key generation. In this thesis work, the service of data storage is analyzed

and evaluated by developing a functional scheme called DSB-SEIS that allows users to

autonomously generate encryption keys for confidential data to separate the encryption

from less confidential data. The scheme also utilizes searchable symmetric encryption

to allow for searching encrypted data without having to retrieve or decrypt data. The

scheme also contains features widely used by service providers, such as deduplication, to

evaluate the service. The algorithms used in this scheme are also developed as MapReduce

applications to evaluate the performance of the algorithms with larger scale of data.

To evaluate DSB-SEIS, the WikiMedia dump is used to generate results to evaluate

features in the scheme, including deduplication, number of keys generated, encryption,

decryption, indexing, and searching. The indexing and searching features are also evaluated

using MapReduce. Deduplication adds overhead related to the size of data to scan time

due to the time needed to hash data and compare multiple aspects of the files. However,

assuming that duplicate data exists in the filesystem, deduplication reduces the amount

of data to be transmitted and processed, which could ultimately reduce the cost of the

service. Although if no duplicates exist, the drawback of deduplication exceeds its benefit.

54

The number of keys generated by the autonomous key generation, encryption intensity

selection, is more manageable. This feature generated keys for more confidential files

and separated the encryption from less-confidential data. This feature does not add much

overhead to encryption or decryption. However, no noticeable overhead is added by using

a single key for each file, either. Therefore, the main advantage of encryption intensity

selection is generating a more manageable number of keys. Chunking data to different sizes

also does not add much overhead to encryption or decryption. Indexing performance is

observed to become expensive quickly. This performance can be enhanced by using the

MapReduce application developed in this work. Searching the index is observed to take

longer linearly as the size of data increases. Searching the disk for a chunk of data works

successfully with encryption intensity selection. Chunking data to different sizes does not

add noticeable overhead to searching the disk. However, when this algorithm is tested with

MapReduce, it is observed that a larger chunk size results in higher performance due to

the lesser number of mappers created by the chunks. The indexing algorithm is also tested

using MapReduce. It is observed that when an insufficient number of reducers is used,

the reducers are overwhelmed and the performance becomes unstable and eventually fails.

Therefore, selecting a sufficient number of reducers is essential for higher performance.

After the indexing application is complete, the output is used as input for the index search

application. It is found that the performance of this search becomes unstable when the size

of the results exceeds the size of memory, resulting in high disk I/O overhead.

The service of data storage on the cloud is beneficial to customers when resource

purchase and maintenance is a concern. However, to keep the cost at a minimum, the trade-

offs of features used in the service must be considered. Deduplication works best when

duplicate data exists in the filesystem. Encryption intensity selection has a good potential

to generate a manageable amount of keys while increasing the security of confidential data,

with no noticeable overhead. Indexing and searching for keywords eliminates the need for

retrieving and decrypting data in order to search. Searching the disk has the advantage of

55

enabling the user to check if a chunk of data exists on the cloud without having to decrypt

or retrieve data. Finally, MapReduce has the potential of processing a larger scale of data

if the number of reducers is selected optimally. Additionally, searching an index using

MapReduce can be improved by splitting the index to prevent entries from exceeding the

size of memory.

56

6. FUTURE WORK

In this section, drawbacks of the thesis work are discussed, and future work to

tackle these drawback are proposed. First of all, DSB-SEIS does not allow for mobility

of data. Since the encryption keys are stored on the client machine at all times, encrypted

data cannot be retrieved and decrypted on any other machine, and therefore the mobility

of data is highly constricted. A possible solution for this is to allow for password-based

key generation. If a password is used to generate encryption keys in each intensity level,

the keys can be recreated on different machines, therefore allowing the decryption of data

on trusted machines that have DSB-SEIS installed. However, this can be less secure than

generating completely random keys due to the possibility of having the passwords stolen.

This also add the complexity of memorizing the passwords needed to generate the required

key, which makes it much easier to lose keys by forgetting passwords. Another possible

solution to this drawback is to enable transmitting keys from machine to machine through

a secure channel. This can also solve another drawback of DSB-SEIS, data sharing across

multiple users. Since encryption intensity selection generates different keys for confidential

data, these keys can be shared with other authorized users to enable data sharing. For

instance, if a group in a company is working on a project that needs everyone to retrieve

the data, a key can be generated using autonomous key generation and then shared securely

with the rest of the group. These solutions will be analyzed in future work.

Additionally, adding randomization to the encrypted index algorithm is considered

for future work. Currently, encrypted indexes generated by DSB-SEIS do not add random-

ization to entries. This means that the document pointers will be exactly the same across

the index. This also means that if the index is split into chunks, encrypting the same word

will generate the same output. This enables attackers to launch attacks such as adaptive

chosen keyword attacks [58, 59] to gain unauthorized information about data. To avoid

57

these attacks, randomization must be added to words and document pointers to make the

encrypted data appear completely random. However, this requires the randomization to be

saved on disk in order to retrieve the original data. Other index data structures effects on

performance, such as trees, can also be investigated as part of future work.

In future work, MapReduce applications developed in this work are further inves-

tigated and analyzed. The indexing application performance is tested with an even larger

scale of data extending to terabytes to find its capabilities of handling big data. The index

search application is tested after splitting entries in the index that do not fit in memory and

adding randomization to the index. The disk search application is tested after changing

the input from chunks of data stored on disk to a list of hashes of chunks generated prior

to launching the application. Performance of applications are tested with different cluster

sizes as part of future work as well.

58

APPENDIX

DSB-SEIS CODE

DSBSEIS.java contains the driver code for the client application of DSB-SEIS. It

displays the menu to the user, reads input, and executes the requested command. Dedupli-

cation.java contains functions to find duplication in a filesystem. KeywordDictionary.java

contains a custom implementation of a hash map that is used for an index. Cryptography

functions such as hashing, encryption, and decryption functions are defined in Cryptog-

raphy.java. ProcessedFile.java contains a custom class that stores information about files

processed in DSB-SEIS. Receiver.java contains functions that read data from a connected

socket. Scanner.java contains functions that scan a directory for files and generate a list

of files to be processed. Utilities.java contains supporting functions for the application.

Page.java is a class defined for the documents extracted from WikiMedia XML files. Ab-

stractHandler.java and PageHandler.java contain implementations of classes that handle

the extraction of WikiMedia abstracts and body text documents. PageProcessor.java con-

tains an interface to process and store the documents extracted from the WikiMedia XML

files. DSB-SEIServer.java is the implementation of the cloud application for DSB-SEIS.

XMLInput.java is the driver for the Hadoop MapReduce Indexing application. TextAr-

rayWritable.java is class implementation that allows Hadoop MapReduce to pass arrays

as values between interfaces. XMLInputFormat.java is an implementation of a custom

input format for Hadoop MapReduce that reads XML files. XMLMapper.java is an imple-

mentation of a mapper for the indexing application. XMLReducer.java is the reducer for

the indexing application. StreamingTextOutputFormat.java is a custom output format that

streams the index to disk without having to save it in memory. HadoopSearchIndex.java is

the driver class for the Hadoop MapReduce index search application. HadoopSearchMap-

59

per.java is the mapper for the index search application. HadoopSearchCombiner.java is the

combiner for the index search application. HadoopSearchReducer.java is the reducer for the

index search application. HashFiles.java is the driver class for the Hadoop MapReduce disk

search application. WholeFileInputFormat.java is a custom input format to read and pass

a whole file as input. HashFilesMapper.java is the mapper for the disk search application.

HashFilesReducer.java is the reducer for the disk search application.

/*

* DSBSEIS.java

*/

package dsbseis;

import java.io.BufferedReader;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.PrintWriter;

import java.net.Socket;

import java.nio.ByteBuffer;

import java.text.ParseException;

import java.util.ArrayList;

import java.util.List;

public class DSBSEIS {

// client application driver function

60

public static void main(String[] args) throws IOException,

ParseException, Exception {

int CHUNKSIZE = 1024 * 1024;

Scanner scanner = new Scanner();

int choice, choice2;

Sender sender = new Sender();

Socket sock = sender.Connect();

DataInputStream inChannel = new DataInputStream(sock.

getInputStream());

DataOutputStream outChannel = new DataOutputStream(sock.

getOutputStream());

Receiver receiver = new Receiver();

BufferedReader buffer = new BufferedReader(new

InputStreamReader(System.in));

String keyword;

String tok;

do {

System.out.println("_________________________ DSB-SEIS

_____________________________");

System.out.println("Please choose an option: ");

System.out.println("\t 1. Scan a directory for files to

backed up");

System.out.println("\t 2. Select encryption intensity for

files");

System.out.println("\t 3. Start backup");

61

System.out.println("\t 4. Parse text from files and send

to the cloud");

System.out.println("\t 5. Request a keyword search from

the cloud");

System.out.println("\t 6. Request a file duplicate check")

;

System.out.println("\t 7. Restore a specific or all files

");

System.out.println("\t 8. Request a file to be deleted");

System.out.println("\t 9. Exit");

choice = Integer.parseInt(buffer.readLine());

switch (choice) {

case 1:

System.out.print("Please enter the directory you

would like to scan: \n");

String path = buffer.readLine();

System.out.print("\n_________________ " + path + "

______________\n\n");

scanner.ScanDirectory(path);

break;

case 2:

System.out.println("1. Automatic selection using

keywords");

System.out.println("2. Specify an intensity for

individual files");

choice2 = Integer.parseInt(buffer.readLine());

62

switch (choice2) {

case 1:

System.out.println("1. Medium Intensity");

System.out.println("2. High Intensity");

choice2 = Integer.parseInt(buffer.readLine()

);

switch (choice2) {

case 1:

System.out.println("Please enter a

keyword you would like to be added

to the medium intensity");

keyword = buffer.readLine();

scanner.SetIntensityKeywords(keyword,

2);

break;

case 2:

System.out.println("Please enter a

keyword you would like to be added

to the high intensity");

keyword = buffer.readLine();

scanner.SetIntensityKeywords(keyword,

3);

break;

}

break;

case 2:

63

System.out.println("Select the file you

would like to intensify: ");

for(int i = 1; i <= scanner.files.size(); i

++) {

System.out.println("\t" + i + ". " +

scanner.files.get(i-1).Name);

}

int selection = Integer.parseInt(buffer.

readLine());

if(selection > scanner.files.size() ||

selection <= 0)

System.out.println("Incorrect input");

else {

System.out.println("Choose a intensity: (

Low - 1, Medium - 2, High - 3)");

int selection2 = Integer.parseInt(buffer.

readLine());

if(selection2 > 3 || selection2 <= 0) {

System.out.println("Incorrect input")

;

}

else

scanner.files.get(selection - 1).

chooseKey(selection2);

}

break;

default:

64

System.out.println("ERROR: INCORRECT OPTION

");

break;

}

break;

case 3:

int currentFile = 0;

System.out.println("--- Backing up " + scanner.

files.size() + " files ---");

for (ProcessedFile file : scanner.files) {

if ((file.filePath == null))

continue;

file.setChunks(Utilities.ChunkFile(file.filePath

, CHUNKSIZE));

file.setNumChunks(file.chunks.length);

List<String> encryptedChunks = new ArrayList<>()

;

for (String chunk : file.chunks) {

encryptedChunks.add(Cryptography.encryptFile

("Data/" + chunk, file.EncryptionKey));

}

String[] chunks = new String[encryptedChunks.

size()];

chunks = encryptedChunks.toArray(chunks);

file.setChunks(chunks);

for(String chunk : file.chunks) {

65

sender.SendFile("Encrypted/" + chunk,

outChannel, 1);

}

Utilities.progressBar(currentFile++, scanner.

files.size());

}

scanner.writeFiles();

break;

case 4:

KeywordDictionary dic = new KeywordDictionary();

int currentFileWord = 0;

String[] contents;

for (ProcessedFile file : scanner.files) {

contents = Utilities.ExtractWords(file.filePath)

;

String fileName = Utilities.BytesToString(

Cryptography.encryptString(file.Name, "Keys/

Level1key.dat"));

for(String k : contents) {

tok = Utilities.BytesToString(Cryptography.

GenerateStringToken(k, "Keys/Level1key.

dat"));

dic.Add(tok, fileName);

}

Utilities.progressBar(currentFileWord++, scanner

.files.size());

}

66

try(PrintWriter buffWriter = new PrintWriter(new

FileWriter("index/index", false))){

for(String key : dic.words.keySet()) {

buffWriter.print(key + ",");

for(String val : dic.words.get(key)) {

buffWriter.print(val + ",");

}

buffWriter.println();

}

dic.words.clear();

}

System.out.println("Transmitting keywords");

byte[] com = ByteBuffer.allocate(4).putInt(2).array

();

outChannel.write(com, 0, 4);

sender.SendFile("index/index", outChannel, 1);

break;

case 5:

System.out.println("Please enter the word to search

for: ");

String query = buffer.readLine();

int type = 1;

String[] words = query.split("/s+");

com = ByteBuffer.allocate(4).putInt(3).array();

outChannel.write(com, 0, 4);

com = ByteBuffer.allocate(4).putInt(words.length).

array();

67

outChannel.write(com, 0, 4);

for(String word : words) {

if(word.startsWith("!")) {

type = 1;

word = word.replaceAll("!", "").toLowerCase

();

}

else if(word.startsWith("|")){

type = 2;

word = word.replaceAll("/|", "").toLowerCase

();

System.out.println(word);

}

else { type = 3;

word = word.toLowerCase();

}

tok = Utilities.BytesToString(Cryptography.

GenerateStringToken(word, "Keys/Level1key.dat

"));

outChannel.writeInt(type);

sender.SendString(tok, outChannel);

}

int numFile = receiver.ReceiveInt(inChannel);

System.out.println("Results: " + numFile);

byte[][] found = new byte[numFile][];

for (int i = 0; i < numFile; i++) {

found[i] = receiver.ReceiveBytes(inChannel);

68

System.out.println("Encrypted file name received

from the cloud: " + new String(found[i], "

UTF-8"));

}

for (byte[] res : found) {

byte[] temp = Utilities.StringToBytes(Utilities.

BytesToASCII(res));

System.out.println(Cryptography.decryptString(

temp, "Keys/Level1key.dat"));

}

break;

case 6:

System.out.println("Enter the name of the file you

would like to check if it exists on the cloud:

");

String fToC = buffer.readLine();

String[] chuns = scanner.findFile(fToC).chunks;

byte[] hash;

for (String chu : chuns) {

hash = Cryptography.hashFile("Encrypted/" + chu,

"SHA-256");

com = ByteBuffer.allocate(4).putInt(4).array();

outChannel.write(com, 0, 4);

sender.SendBytes(hash, outChannel);

int dup = receiver.ReceiveInt(inChannel);

if (dup == 1) {

69

System.out.println("The chunk " + chu + "

exists on the cloud");

}

else {

System.out.println("The chunk" + chu + "

does not exist on the cloud");

}

}

break;

case 7:

System.out.println("Enter the name of the file you

would like to retrieve: ");

String fToR = buffer.readLine();

ProcessedFile file = scanner.findFile(fToR);

String[] chunks = file.chunks;

for(String ch : chunks) {

com = ByteBuffer.allocate(4).putInt(5).array();

outChannel.write(com, 0, 4);

sender.SendString(ch, outChannel);

receiver.ReceiveFile(inChannel);

Cryptography.decryptFile("DSBase/" + ch, "Keys/

Level1key.dat");

}

Utilities.GroupFileChunks(chunks, fToR + "encrypted

");

break;

case 8:

70

System.out.println("Enter the name of the file you

would like to delete: ");

String fToD = buffer.readLine();

String[] fs = scanner.AssuredDeletion(fToD);

for (String f : fs) {

com = ByteBuffer.allocate(4).putInt(6).array();

outChannel.write(com, 0, 4);

sender.SendString(f, outChannel);

}

break;

case 9:

sender.Shutdown(sock);

System.out.println("Thank you for using DSB-SEIS");

break;

default:

System.out.println("Error: The option selected is

not valid");

break;

}

} while (choice != 9);

}

}

/*

* Deduplication.java

*/

package dsbseis;

71

import java.util.Date;

public class Deduplication {

// detects duplicates

public static boolean IsDuplicate(String name1, String name2,

long size1, long size2, Date date1, Date date2, String hash1,

String hash2) {

if ((CompareFileName(name1, name2) && CompareSize(size1,

size2)) ||

(CompareSize(size1, size2) && CompareDateOfModification(

date1, date2)))

return true;

else return CompareHash(hash1, hash2);

}

public static boolean CompareFileName(String filename1, String

filename2) {

return filename1 == null ? filename2 == null : filename1.

equals(filename2);

}

public static boolean CompareSize(long size1, long size2) {

return size1 == size2;

}

public static boolean CompareDateOfModification(Date date1, Date

date2) {

72

return date1.compareTo(date2) == 0;

}

public static boolean CompareHash(String hash1, String hash2){

return hash1 == null ? hash2 == null : hash1.equals(hash2);

}

}

/*

* KeywordDictionary.java

*/

package dsbseis;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

public class KeywordDictionary {

// map to store index in memory

public Map<String, List<String>> words = new HashMap<>();

// scans the index to avoid duplicates

public void Add(String key, String value) {

if(words.containsKey(key)) {

if (!words.get(key).contains(value)) {

words.get(key).add(value);

}

73

}

else {

List<String> files = new ArrayList<>();

files.add(value);

words.put(key, files);

}

}

}

/*

* Cryptography.java

*/

package dsbseis;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.UnsupportedEncodingException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.security.NoSuchProviderException;

import java.security.SecureRandom;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.crypto.Cipher;

import javax.crypto.CipherInputStream;

74

import javax.crypto.KeyGenerator;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.SecretKey;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

import org.apache.commons.lang.RandomStringUtils;

// cryptography functions

public class Cryptography {

// constructor for cryptography class

public Cryptography() throws IOException,

UnsupportedEncodingException, NoSuchAlgorithmException{

generateKey(1);

generateKey(2);

}

// test function that encypts and decrypts a string

public void test() {

String plaintext = "Hello There";

String KeyPath = "Keys/Level1key.dat";

try {

byte[] cipher = encryptString(plaintext, KeyPath);

System.out.print("cipher: ");

for (int i=0; i<cipher.length; i++)

System.out.print(new Integer(cipher[i])+":");

System.out.println("");

System.out.println("decrypt: " + decryptString(cipher,

KeyPath));

75

} catch (Exception e) {

System.err.println(e.getMessage());

}

}

// returns a cipher java object for AES

public Cipher getCipher(){

try {

return Cipher.getInstance("AES/CBC/PKCS5PADDING", "SunJCE

");

} catch (NoSuchAlgorithmException | NoSuchProviderException |

NoSuchPaddingException ex) {

Logger.getLogger(Cryptography.class.getName()).log(Level.

SEVERE, null, ex);

}

return null;

}

// encrypts a file and using an AES key stored on disk

public static String encryptFile(String path, String keyPath)

throws FileNotFoundException, IOException {

String encryptedName = RandomStringUtils.randomAlphanumeric

(8) + "." + RandomStringUtils.randomAlphanumeric(3);

File directory = new File("Encrypted/");

directory.mkdir();

byte[] buffer = new byte[1048576];

int readBytes = 0;

76

try (FileInputStream stream = new FileInputStream(path);

FileOutputStream outStream = new FileOutputStream("

Encrypted/" + encryptedName);){

SecretKey KEY = readKey(keyPath);

IvParameterSpec IV = readIV(keyPath);

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING")

;

cipher.init(Cipher.ENCRYPT_MODE, KEY, IV);

while((readBytes = stream.read(buffer)) > 0)

{

byte[] encBuffer = new byte[readBytes];

System.arraycopy(buffer, 0, encBuffer, 0, readBytes);

byte[] tmp = cipher.update(encBuffer);

outStream.write(tmp);

}

byte[] finalBuffer = cipher.doFinal();

if(finalBuffer != null)

outStream.write(finalBuffer);

outStream.flush();

} catch(Exception e) {

System.err.println(e.getMessage());

}

return encryptedName;

}

// decrypts a file using an AES key stored on disk

77

public static void decryptFile(String path, String KeyPath)

throws FileNotFoundException, IOException {

byte[] buffer = new byte[1048576];

int readBytes = 0;

try(FileInputStream stream = new FileInputStream(path);

FileOutputStream outStream = new FileOutputStream("

decrypted/" + new File(path).getName());) {

SecretKey KEY = readKey(KeyPath);

IvParameterSpec IV = readIV(KeyPath);

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING")

;

cipher.init(Cipher.DECRYPT_MODE, KEY, IV);

try(CipherInputStream cin = new CipherInputStream(stream,

cipher)){

while((readBytes = cin.read(buffer)) > 0) {

byte[] encBuffer = new byte[readBytes];

System.arraycopy(buffer, 0, encBuffer, 0, readBytes

);

outStream.write(encBuffer);

}

outStream.flush();

}

} catch(Exception e) {

System.err.println(e.getMessage());

}

}

78

// hashes a file stored on disk

public static byte[] hashFile(String filePath, String Algorithm)

throws NoSuchAlgorithmException, IOException

{

MessageDigest md = MessageDigest.getInstance(Algorithm);

byte[] checksum = new byte[1024];

int read = 0;

try (FileInputStream stream = new FileInputStream(filePath))

{

while((read = stream.read(checksum)) != -1){

md.update(checksum, 0, read);

}

byte[] checksumFinal = md.digest();

return checksumFinal;

}

}

// hashes a byte array

public static byte[] hashBytes(byte[] data) throws

NoSuchAlgorithmException {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

byte[] hash = digest.digest(data);

return hash;

}

// encrypts a string using a key stored on disk

public static byte[] encryptString(String plain, String KeyPath){

79

try {

SecretKey KEY = readKey(KeyPath);

IvParameterSpec IV = readIV(KeyPath);

byte[] cipher = encrypt(plain.getBytes(), KEY, IV);

return cipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return null;

}

// decrypts a string using a key stored on disk

public static String decryptString(byte[] cipher, String KeyPath)

{

try {

SecretKey KEY = readKey(KeyPath);

IvParameterSpec IV = readIV(KeyPath);

byte[] decrypted = decrypt(cipher, KEY, IV);

String decipher = new String(decrypted);

return decipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return "";

}

// generates a key for encryption intensity selection

80

public static void generateKey(int Intensity) throws

UnsupportedEncodingException, NoSuchAlgorithmException,

IOException

{

int keySize = 128;

String keyPath = "";

switch (Intensity) {

case 1:

keySize = 128;

keyPath = "Keys/Level1key.dat";

break;

case 2:

keySize = 256;

keyPath = "Keys/Level2key.dat";

break;

case 3:

keySize = 256;

keyPath = "Keys/" + "Level3key.dat";

break;

default:

break;

}

KeyGenerator keyGen = KeyGenerator.getInstance("AES");

keyGen.init(keySize);

byte[] IV = generateIV();

saveKey(keyPath, keyGen.generateKey(), IV);

}

81

// generate a level 3 key for encryption intensity selection

public static void generateKey(int Intensity, String

fileToBeEncrypted) throws UnsupportedEncodingException,

NoSuchAlgorithmException, IOException

{

int keySize = 128;

String keyPath = "";

switch (Intensity) {

case 1:

keySize = 128;

keyPath = "Keys/Level1key.dat";

break;

case 2:

keySize = 256;

keyPath = "Keys/Level2key.dat";

break;

case 3:

keySize = 256;

keyPath = "Keys/" + fileToBeEncrypted + "Level3key.dat

";

break;

default:

break;

}

KeyGenerator keyGen = KeyGenerator.getInstance("AES");

keyGen.init(keySize);

82

byte[] IV = generateIV();

saveKey(keyPath, keyGen.generateKey(), IV);

}

// generate an initialization vector in memory

private static byte[] generateIV() {

byte[] b = new byte[16];

new SecureRandom().nextBytes(b);

return b;

}

// read a key from disk

public static SecretKey readKey(String path) throws

FileNotFoundException, IOException{

SecretKey KEY;

int keySize = (int)new File(path).length()- 16;

try (FileInputStream stream = new FileInputStream(path)){

byte[] key = new byte[keySize];

stream.read(key, 0, keySize);

KEY = new SecretKeySpec(key, 0, keySize, "AES");

}

return KEY;

}

// reads an initialization vector from disk

public static IvParameterSpec readIV(String path) throws

FileNotFoundException, IOException{

IvParameterSpec IV;

83

int keySize = (int)new File(path).length()- 16;

try (FileInputStream stream = new FileInputStream(path)) {

byte[] iv = new byte[16];

stream.read(new byte[keySize], 0, keySize);

stream.read(iv, 0, 16);

IV = new IvParameterSpec(iv);

}

return IV;

}

// saves a key to disk

public static void saveKey(String path, SecretKey key, byte[] IV)

throws IOException {

FileOutputStream stream = new FileOutputStream(path);

try {

stream.write(key.getEncoded());

stream.write(IV);

} finally {

stream.close();

}

}

// encrypts byte array with key in memory

private static byte[] encrypt(byte[] plainText, SecretKey Key,

IvParameterSpec iv) throws Exception {

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.ENCRYPT_MODE, Key, iv);

84

return cipher.doFinal(plainText);

}

// decrypts byte array with key in memory

private static byte[] decrypt(byte[] cipherText, SecretKey Key,

IvParameterSpec iv) throws Exception{

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.DECRYPT_MODE, Key , iv);

return cipher.doFinal(cipherText);

}

// generates a search token from byte array using a key stored on

disk

public static byte[] GenerateToken(byte[] keyword, String KeyPath

) throws Exception {

SecretKey KEY = readKey(KeyPath);

IvParameterSpec IV = readIV(KeyPath);

byte[] EncBytes = encrypt(keyword, KEY, IV);

return hashBytes(EncBytes);

}

// generates a search token from string using a key stored on

disk

public static byte[] GenerateStringToken(String keyword, String

KeyPath) throws UnsupportedEncodingException, Exception

{

byte[] keywordBytes = keyword.getBytes("US-ASCII");

85

return GenerateToken(keywordBytes, KeyPath);

}

}

/*

* ProcessedFile.java

*/

package dsbseis;

import java.io.File;

import java.io.IOException;

import java.security.NoSuchAlgorithmException;

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Date;

import java.util.List;

// data structure to store metadata of a file

public class ProcessedFile {

public String Name;

public String Hash;

public long Size;

public Date ModTime;

public String EncryptionKey;

public int chunkNum;

86

public String filePath;

public String[] chunks;

public List<String> keywords = new ArrayList<>();

public void setName(String name) {

Name = name;

}

public void setHash(String hash) {

Hash = hash;

}

public void setSize(String size) {

Size = Long.parseLong(size);

}

public void setDate(String time) throws ParseException {

ModTime = new SimpleDateFormat("EEE MMM dd HH:mm:ss zzz yyyy

").parse(time);

}

public void setDate(long time) {

ModTime = new Date(time);

}

public void setKey(String key) {

EncryptionKey = key;

87

}

public void setNumChunks(String number) {

chunkNum = Integer.parseInt(number);

}

public void setNumChunks(int number) {

chunkNum = number;

}

public void setChunks(String[] c) {

chunks = c;

}

public void setPath(String path) {

filePath = path;

}

public void chooseKey(int intensity) throws

NoSuchAlgorithmException, IOException {

switch(intensity)

{

case 1:

if(new File("Keys/Level1key.dat").exists()) {

EncryptionKey = "Keys/Level1key.dat";

}

else {

88

Cryptography.generateKey(1);

EncryptionKey = "Keys/Level1key.dat";

}

break;

case 2:

if (new File("Keys/Level2key.dat").exists()) {

EncryptionKey = "Keys/Level2key.dat";

}

else {

Cryptography.generateKey(2);

EncryptionKey = "Keys/Level2key.dat";

}

break;

case 3:

if (new File("Keys/" + Name + "Level3key.dat").exists()

) {

EncryptionKey = "Keys/" + Name + "Level3key.dat";

}

else {

Cryptography.generateKey(3, Name);

EncryptionKey = "Keys/" + Name + "Level3key.dat";

}

break;

}

}

public void setKeywords(String[] words) {

89

keywords.addAll(Arrays.asList(words));

}

}

/*

* Receiver.java

*/

package dsbseis;

import java.io.DataInputStream;

import java.io.File;

import java.io.FileOutputStream;

import java.io.IOException;

import java.nio.ByteBuffer;

// receives data through a socket

public class Receiver {

// integer

public int ReceiveInt(DataInputStream netStream) throws

IOException {

byte[] array = new byte[4];

netStream.read(array, 0, 4);

int i = ByteBuffer.wrap(array).getInt();

return i;

}

// long integer

90

public long ReceiveLong(DataInputStream netStream) throws

IOException {

byte[] array = new byte[8];

netStream.read(array, 0, 8);

long l = ByteBuffer.wrap(array).getLong();

return l;

}

// byte array

public byte[] ReceiveBytes(DataInputStream netStream) throws

IOException {

byte[] h;

int length = ReceiveInt(netStream);

h = new byte[length];

netStream.read(h, 0, length);

return h;

}

// string

public String ReceiveString(DataInputStream netStream) throws

IOException {

String s;

int length = ReceiveInt(netStream);

byte[] sBytes = new byte[length];

netStream.read(sBytes, 0, length);

s = Utilities.BytesToASCII(sBytes);

91

return s;

}

// file

public String ReceiveFile(DataInputStream netStream) throws

IOException {

int length = ReceiveInt(netStream);

byte[] filenamebytes = new byte[length];

netStream.read(filenamebytes, 0, length);

String filename = new String(filenamebytes);

System.out.println("Receiving " + filename);

long fileSize = ReceiveLong(netStream);

new File("DSBase/").mkdirs();

try (FileOutputStream output = new FileOutputStream("DSBase/"

+ filename)) {

byte[] buffer = new byte[1024];

// Read the incoming stream

int bytesRead;

long totalBytes = 0;

while (totalBytes != fileSize) {

int remaining = 1024;

if((fileSize - totalBytes) < 1024)

{

remaining = (int)(fileSize - totalBytes);

}

bytesRead = netStream.read(buffer, 0, remaining);

92

output.write(buffer, 0, bytesRead);

totalBytes += bytesRead;

Utilities.progressBar(totalBytes, fileSize);

}

output.close();

}

catch(Exception ex) {

System.out.println(ex.getMessage());

}

return filename;

}

}

/*

* Scanner.java

*/

package dsbseis;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.nio.file.DirectoryStream;

import java.nio.file.Files;

import java.nio.file.Path;

import java.security.NoSuchAlgorithmException;

93

import java.text.ParseException;

import java.util.ArrayList;

import java.util.Date;

import java.util.List;

public class Scanner {

// functions that scan disk to process files

public List<ProcessedFile> files;

// lists of keywords of intensity keywords

public List<String> mediumKeywords;

public List<String> highKeywords;

// constructor that reads previosuly stored metadata

public Scanner() throws IOException, ParseException {

files = new ArrayList<>();

mediumKeywords = new ArrayList<>();

highKeywords = new ArrayList<>();

if(new File("files.csv").exists()) {

try(BufferedReader reader = new BufferedReader(new

FileReader("files.csv"))) {

String line;

while((line = reader.readLine()) != null) {

String[] values = line.split (",");

ProcessedFile newFile = new ProcessedFile();

94

newFile.setName(values[0]);

newFile.setDate(values[1]);

newFile.setSize(values[2]);

newFile.setHash(values[3]);

newFile.setKey(values[4]);

newFile.setNumChunks(values[5]);

List<String> chunks = new ArrayList<>();

for(int i = 0; i < newFile.chunkNum; i++) {

chunks.add(values[6 + i]);

}

String[] chunksArray = new String[newFile.chunkNum

];

chunksArray = chunks.toArray(chunksArray);

newFile.setChunks(chunksArray);

files.add(newFile);

}

}

}

}

// scans a path and generates a list of files

static String[] ScanPath(Path directory) throws IOException {

String[] res;

List<String> files = new ArrayList<>();

try (DirectoryStream<Path> ds = Files.newDirectoryStream(

directory)) {

for (Path child : ds) {

95

if (!Files.isDirectory(child)) {

files.add(child.toAbsolutePath().toString());

}

}

}

res = new String[files.size()];

res = files.toArray(res);

return res;

}

// scans a directory with deduplication and stores the metadata

in memory

public void ScanDirectory(String path) {

try {

for (String file : new File(path).list()) {

File f = new File(path + "/" + file);

if(f.isDirectory()){ ScanDirectory(f.toString());}

else {

boolean duplicate = false;

byte[] hashToCompare = Cryptography.hashFile(path +

"/" + file, "SHA-256");

if (files.size() > 0) {

for (int i = 0; i < files.size(); i++) {

ProcessedFile temp = files.get(i);

96

duplicate = Deduplication.IsDuplicate(f.

getName(), temp.Name, f.length(), temp.

Size, new Date(f.lastModified()), temp.

ModTime, Utilities.BytesToString(

hashToCompare), temp.Hash);

if (Deduplication.CompareFileName(f.getName

(), temp.Name) && (new Date(f.

lastModified()).compareTo(temp.ModTime) >

0 && !Deduplication.CompareHash(

Utilities.BytesToString(hashToCompare),

temp.Hash))) {

files.remove(i);

duplicate = false;

}

if (duplicate == true) {

files.get(i).setPath(f.getCanonicalPath()

);

break;

}

}

}

if (duplicate == false) {

ProcessedFile newFile = new ProcessedFile();

newFile.setName(f.getName()

);

97

newFile.setHash(Utilities.

BytesToString(

hashToCompare));

newFile.setSize(String.

valueOf(f.length()));

newFile.setDate(f.

lastModified());

boolean notDefault = false;

for(String keyword : mediumKeywords) {

if (file.contains(keyword)) {

newFile.chooseKey(2);

notDefault = true;

}

}

for(String keyword : highKeywords) {

if(file.contains(keyword)) {

newFile.chooseKey(3);

notDefault = true;

}

}

if(notDefault == false) {

newFile.chooseKey(1);

}

newFile.setPath(path + "/" + file);

files.add(newFile);

}

}

98

}

}

catch(IOException | NoSuchAlgorithmException ex) {

System.out.println(ex.getMessage());

}

}

// scans directory without deduplication and stores metadata in

memory

public void ScanDirectoryND(String Path) throws

NoSuchAlgorithmException, IOException, ParseException {

for (String file : new File(Path).list()) {

File f = new File(Path + "/" + file);

if(f.isDirectory()){ ScanDirectoryND(f.toString());}

else {

File Info = new File(Path + "/" + file);

ProcessedFile newFile = new ProcessedFile();

newFile.setName(Info.getName());

newFile.setSize(String.valueOf(Info.length()));

newFile.setDate(Info.lastModified());

boolean notDefault = false;

for (String keyword : mediumKeywords) {

if (file.contains(keyword)) {

newFile.chooseKey(2);

notDefault = true;

}

}

99

for (String keyword : highKeywords) {

if (file.contains(keyword)) {

newFile.chooseKey(3);

notDefault = true;

}

}

if (notDefault == false) {

newFile.chooseKey(1);

}

newFile.setPath(file);

files.add(newFile);

}

}

}

// sets the keywords in the lists

public void SetIntensityKeywords(String keyword, int intensity)

throws NoSuchAlgorithmException, IOException{

if (intensity == 2) {

mediumKeywords.add(keyword);

}

else if (intensity == 3) {

highKeywords.add(keyword);

}

for (ProcessedFile f : files) {

boolean notDefault = false;

for (String word : mediumKeywords) {

100

if (f.Name.contains(word)) {

f.chooseKey(2);

notDefault = true;

}

}

for (String word : highKeywords) {

if (f.Name.contains(word)) {

f.chooseKey(3);

notDefault = true;

}

}

if (notDefault == false) {

f.chooseKey(1);

}

}

}

// writes metadata of files to disk

public void writeFiles() throws IOException {

try (BufferedWriter writer = new BufferedWriter(new

FileWriter("files.csv", true))) {

ProcessedFile[] fi = new ProcessedFile[files.size()];

fi = files.toArray(fi);

for (ProcessedFile file : fi) {

writer.write(file.Name + ’,’);

writer.write(file.ModTime.toString() + ’,’);

writer.write(String.valueOf(file.Size) + ’,’);

101

writer.write(file.Hash + ’,’);

writer.write(file.EncryptionKey + ’,’);

writer.write(String.valueOf(file.chunkNum) + ’,’);

for(String chunk : file.chunks) {

writer.write(chunk + ’,’);

}

writer.write("\n");

}

}

}

// assuredly delete a file

public String[] AssuredDeletion(String file) {

String[] chunks = null;

for (ProcessedFile f : files) {

if(f.Name == null ? file == null : f.Name.equals(file)) {

if (f.EncryptionKey.contains("Level3key.dat")) {

new File(f.EncryptionKey).delete();

}

chunks = f.chunks;

files.remove(f);

break;

}

}

return chunks;

}

102

public ProcessedFile findFile(String file) {

ProcessedFile found = null;

for (ProcessedFile f : files) {

if (f.Name == null ? file == null : f.Name.equals(file)) {

found = f;

}

}

return found;

}

}

/*

* Utilities.java

*/

package dsbseis;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.IOException;

import java.io.PrintWriter;

import java.io.UnsupportedEncodingException;

import java.util.ArrayList;

import java.util.Arrays;

import org.apache.commons.codec.binary.Base64;

103

import java.util.List;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.SAXParserFactory;

import org.apache.commons.io.FilenameUtils;

import org.xml.sax.SAXException;

public class Utilities {

// list of stop words to eliminate from documents

private static final ArrayList<String> stopwords = new ArrayList

<>(Arrays.asList(

"a", "as", "able", "about", "above", "according", "

accordingly", "across", "actually", "after",

"afterwards", "again", "against", "aint", "all", "allow

", "allows", "almost", "alone", "along",

"already", "also", "although", "always", "am", "among",

"amongst", "an", "and", "another", "any",

"anybody", "anyhow", "anyone", "anything", "anyway", "

anyways", "anywhere", "apart", "appear",

"appreciate", "appropriate", "are", "arent", "around",

"as", "aside", "ask", "asking", "associated",

"at", "available", "away", "awfully", "be", "became", "

because", "become", "becomes", "becoming", "been",

104

"before", "beforehand", "behind", "being", "believe", "

below", "beside", "besides", "best", "better", "

between",

"beyond", "both", "brief", "but", "by", "cmon", "cs", "

came", "can", "cant", "cannot", "cant", "cause", "

causes",

"certain", "certainly", "changes", "clearly", "co", "

com", "come", "comes", "concerning", "consequently

",

"consider", "considering", "contain", "containing", "

contains", "corresponding", "could", "couldnt", "

course",

"currently", "definitely", "described", "despite", "did

", "didnt", "different", "do", "does", "doesnt", "

doing",

"dont", "done", "down", "downwards", "during", "each",

"edu", "eg", "eight", "either", "else", "elsewhere

",

"enough", "entirely", "especially", "et", "etc", "even

", "ever", "every", "everybody", "everyone", "

everything",

"everywhere", "ex", "exactly", "example", "except", "

far", "few", "ff", "fifth", "first", "five", "

followed", "following",

"follows", "for", "former", "formerly", "forth", "four

", "from", "further", "furthermore", "get", "gets",

"getting", "given",

105

"gives", "go", "goes", "going", "gone", "got", "gotten

", "greetings", "had", "hadnt", "happens", "hardly

", "has", "hasnt",

"have", "havent", "having", "he", "hes", "hello", "help

", "hence", "her", "here", "heres", "hereafter", "

hereby", "herein",

"hereupon", "hers", "herself", "hi", "him", "himself",

"his", "hither", "hopefully", "how", "howbeit", "

however", "i", "id",

"ill", "im", "ive", "ie", "if", "ignored", "immediate",

"in", "inasmuch", "inc", "indeed", "indicate", "

indicated", "indicates",

"inner", "insofar", "instead", "into", "inward", "is",

"isnt", "it", "itd", "itll", "its", "its", "itself

", "just", "keep",

"keeps", "kept", "know", "knows", "known", "last", "

lately", "later", "latter", "latterly", "least", "

less", "lest", "let",

"lets", "like", "liked", "likely", "little", "look", "

looking", "looks", "ltd", "mainly", "many", "may",

"maybe", "me", "mean",

"meanwhile", "merely", "might", "more", "moreover", "

most", "mostly", "much", "must", "my", "myself", "

name", "namely",

"nd", "near", "nearly", "necessary", "need", "needs", "

neither", "never", "nevertheless", "new", "next", "

nine", "no",

106

"nobody", "non", "none", "noone", "nor", "normally", "

not", "nothing", "novel", "now", "nowhere", "

obviously", "of",

"off", "often", "oh", "ok", "okay", "old", "on", "once

", "one", "ones", "only", "onto", "or", "other", "

others", "otherwise",

"ought", "our", "ours", "ourselves", "out", "outside",

"over", "overall", "own", "particular", "

particularly", "per",

"perhaps", "placed", "please", "plus", "possible", "

presumably", "probably", "provides", "que", "quite

", "qv",

"rather", "rd", "re", "really", "reasonably", "

regarding", "regardless", "regards", "relatively",

"respectively",

"right", "said", "same", "saw", "say", "saying", "says

", "second", "secondly", "see", "seeing", "seem", "

seemed",

"seeming", "seems", "seen", "self", "selves", "sensible

", "sent", "serious", "seriously", "seven", "

several", "shall",

"she", "should", "shouldnt", "since", "six", "so", "

some", "somebody", "somehow", "someone", "something

", "sometime",

"sometimes", "somewhat", "somewhere", "soon", "sorry",

"specified", "specify", "specifying", "still", "sub

", "such",

107

"sup", "sure", "ts", "take", "taken", "tell", "tends",

"th", "than", "thank", "thanks", "thanx", "that", "

thats",

"thats", "the", "their", "theirs", "them", "themselves

", "then", "thence", "there", "theres", "thereafter

", "thereby",

"therefore", "therein", "theres", "thereupon", "these",

"they", "theyd", "theyll", "theyre", "theyve", "

think", "third",

"this", "thorough", "thoroughly", "those", "though", "

three", "through", "throughout", "thru", "thus", "

to", "together",

"too", "took", "toward", "towards", "tried", "tries", "

truly", "try", "trying", "twice", "two", "un", "

under",

"unfortunately", "unless", "unlikely", "until", "unto",

"up", "upon", "us", "use", "used", "useful", "uses

", "using",

"usually", "value", "various", "very", "via", "viz", "

vs", "want", "wants", "was", "wasnt", "way", "we",

"wed", "well",

"were", "weve", "welcome", "well", "went", "were", "

werent", "what", "whats", "whatever", "when", "

whence", "whenever",

"where", "wheres", "whereafter", "whereas", "whereby",

"wherein", "whereupon", "wherever", "whether", "

which", "while",

108

"whither", "who", "whos", "whoever", "whole", "whom", "

whose", "why", "will", "willing", "wish", "with", "

within",

"without", "wont", "wonder", "would", "would", "wouldnt

", "yes", "yet", "you", "youd", "youll", "youre", "

youve",

"your", "yours", "yourself", "yourselves", "zero"));

// displays progress of application

public static void progressBar(int current, int total) {

float progress = ((float)current/total) * 100;

String progressBar = "| | " + (int) progress + "%\r";

if(progress > 5 && progress < 10) {

progressBar = "|= | " + (int) progress + "%\r";

}

else if(progress > 10 && progress < 15) {

progressBar = "|== | " + (int) progress + "%\r";

}

else if(progress > 15 && progress < 20) {

progressBar = "|=== | " + (int) progress + "%\r";

}

else if(progress > 20 && progress < 25) {

progressBar = "|==== | " + (int) progress + "%\r";

}

else if(progress > 25 && progress < 30) {

progressBar = "|===== | " + (int) progress + "%\r";

}

109

else if(progress > 30 && progress < 35) {

progressBar = "|====== | " + (int) progress + "%\r";

}

else if(progress > 35 && progress < 40) {

progressBar = "|======= | " + (int) progress + "%\r";

}

else if(progress > 40 && progress < 45) {

progressBar = "|======== | " + (int) progress + "%\r";

}

else if(progress > 45 && progress < 50) {

progressBar = "|========= | " + (int) progress + "%\r";

}

else if(progress > 50 && progress < 55) {

progressBar = "|========== | " + (int) progress + "%\r";

}

else if(progress > 55 && progress < 60) {

progressBar = "|=========== | " + (int) progress + "%\r";

}

else if(progress > 60 && progress < 65) {

progressBar = "|============ | " + (int) progress + "%\r";

}

else if(progress > 65 && progress < 70) {

progressBar = "|============= | " + (int) progress + "%\r

";

}

else if(progress > 70 && progress < 75) {

110

progressBar = "|============== | " + (int) progress + "%\r

";

}

else if(progress > 75 && progress < 80) {

progressBar = "|=============== | " + (int) progress + "%\

r";

}

else if(progress > 80 && progress < 85) {

progressBar = "|================ | " + (int) progress +

"%\r";

}

else if(progress > 85 && progress < 90) {

progressBar = "|================= | " + (int) progress +

"%\r";

}

else if(progress > 90 && progress < 95) {

progressBar = "|================== | " + (int) progress +

"%\r";

}

else if(progress > 95 && progress < 100) {

progressBar = "|=================== | " + (int) progress +

"%\r";

}

else if(progress == 100) {

progressBar = "|====================| " + (int) progress +

"%\n";

}

111

System.out.print(progressBar);

}

public static void progressBar(long current, long total) {

float progress = ((float)current/total) * 100;

String progressBar = "| | " + (int) progress + "%\r";

if(progress > 5 && progress < 10) {

progressBar = "|= | " + (int) progress + "%\r";

}

else if(progress > 10 && progress < 15) {

progressBar = "|== | " + (int) progress + "%\r";

}

else if(progress > 15 && progress < 20) {

progressBar = "|=== | " + (int) progress + "%\r";

}

else if(progress > 20 && progress < 25) {

progressBar = "|==== | " + (int) progress + "%\r";

}

else if(progress > 25 && progress < 30) {

progressBar = "|===== | " + (int) progress + "%\r";

}

else if(progress > 30 && progress < 35) {

progressBar = "|====== | " + (int) progress + "%\r";

}

else if(progress > 35 && progress < 40) {

progressBar = "|======= | " + (int) progress + "%\r";

}

112

else if(progress > 40 && progress < 45) {

progressBar = "|======== | " + (int) progress + "%\r";

}

else if(progress > 45 && progress < 50) {

progressBar = "|========= | " + (int) progress + "%\r";

}

else if(progress > 50 && progress < 55) {

progressBar = "|========== | " + (int) progress + "%\r";

}

else if(progress > 55 && progress < 60) {

progressBar = "|=========== | " + (int) progress + "%\r";

}

else if(progress > 60 && progress < 65) {

progressBar = "|============ | " + (int) progress + "%\r";

}

else if(progress > 65 && progress < 70) {

progressBar = "|============= | " + (int) progress + "%\r

";

}

else if(progress > 70 && progress < 75) {

progressBar = "|============== | " + (int) progress + "%\r

";

}

else if(progress > 75 && progress < 80) {

progressBar = "|=============== | " + (int) progress + "%\

r";

}

113

else if(progress > 80 && progress < 85) {

progressBar = "|================ | " + (int) progress +

"%\r";

}

else if(progress > 85 && progress < 90) {

progressBar = "|================= | " + (int) progress +

"%\r";

}

else if(progress > 90 && progress < 95) {

progressBar = "|================== | " + (int) progress +

"%\r";

}

else if(progress > 95 && progress < 100) {

progressBar = "|=================== | " + (int) progress +

"%\r";

}

else if(progress == 100) {

progressBar = "|====================| " + (int) progress +

"%\n";

}

System.out.print(progressBar);

}

// safely converts byte array to a string

public static String BytesToString(byte[] bytes) {

return new String(Base64.encodeBase64(bytes));

}

114

// safely converts a string to a byte array

public static byte[] StringToBytes(String s) {

return Base64.decodeBase64(s);

}

// converts string to byte array

public static byte[] ASCIItoBytes(String s) throws

UnsupportedEncodingException {

return s.getBytes("US-ASCII");

}

// converts a byte array to a string

public static String BytesToASCII(byte[] b) throws

UnsupportedEncodingException {

return new String(b, "US-ASCII");

}

// extract words from a document

public static String[] ExtractWords(String file) throws

IOException, SAXException, ParserConfigurationException {

String line;

List<String> words = new ArrayList<>();

if(FilenameUtils.getExtension(file).equals("txt")) {

try (BufferedReader reader = new BufferedReader(new

FileReader(file))) {

while ((line = reader.readLine()) != null) {

115

String[] items = TokenizeWords(line);

for (String item : items) {

if (item.length() <= 1)

continue;

if (!words.contains(item) && !stopwords.contains

(item)) {

words.add(item);

}

}

}

}

}

String[] res = new String[words.size()];

res = words.toArray(res);

return res;

}

// extract documents from XML container to disk

public static void ExtractXMLDocs(String file) throws

SAXException, ParserConfigurationException, IOException {

SAXParser parser = SAXParserFactory.newInstance().

newSAXParser();

if(file.contains("abstract")){

AbstractHandler handler = new AbstractHandler(new

PageProcessor() {

@Override

public void process(Page page){

116

String title = page.Title.replaceAll("\\s+", "_").

replaceAll("/", "_");

try (PrintWriter buffWriter = new PrintWriter(new

FileWriter("disk/" + title + ".txt", true))){

buffWriter.println(page.Text);

} catch (IOException ex) {

Logger.getLogger(Utilities.class.getName()).log(

Level.SEVERE, null, ex);

}

}

});

parser.parse(file, handler);

}

else if(file.contains("page")) {

PageHandler handler = new PageHandler(new PageProcessor()

{

@Override

public void process(Page page){

String title = page.Title.replaceAll("\\s+", "_").

replaceAll("/", "_");

try (PrintWriter buffWriter = new PrintWriter(new

FileWriter("disk/" + title + ".txt", true))){

buffWriter.println(page.Text);

} catch (IOException ex) {

Logger.getLogger(Utilities.class.getName()).log(

Level.SEVERE, null, ex);

}

117

}

});

parser.parse(file, handler);

}

}

// tokenize words

public static String[] TokenizeWords(String s) {

if (s != null) {

String filtered = s.toLowerCase().replaceAll("[^a-z\\s]",

"");

String[] tokenized = filtered.split("\\s+");

return tokenized;

}

else

return null;

}

public static String stripIllegalPathCharacters(String path) {

return path.replaceAll("[^a-zA-Z0-9_/-/.]", "");

}

// chunk a file on disk

public static String[] ChunkFile(String path, int chunkSize)

throws IOException {

final int BUFFER_SIZE = 20 * 1024;

byte[] buffer = new byte[BUFFER_SIZE];

118

int index = 0;

long position = 0;

long size = new File(path).length();

List<String> chunks = new ArrayList<>();

try (FileInputStream fis = new FileInputStream(path)) {

while(position < size) {

new File("Data/").mkdir();

try (FileOutputStream output = new FileOutputStream("

Data/" + FilenameUtils.getName(path) + "_" + index

+ ".chk")) {

chunks.add(FilenameUtils.getName(path) + "_" +

index + ".chk");

int remaining = chunkSize;

int bytesRead;

while(remaining > 0 && (bytesRead = fis.read(buffer

, 0, Math.min(remaining, BUFFER_SIZE))) > 0) {

output.write(buffer, 0, bytesRead);

remaining -= bytesRead;

position += bytesRead;

}

}

index++;

}

}

String[] res = new String[chunks.size()];

res = chunks.toArray(res);

return res;

119

}

// group chunks together

public static void GroupFileChunks(String[] chunkList, String

fileName){

try {

new File("Files/").mkdir();

try (FileOutputStream output = new FileOutputStream("Files

/" + new File(fileName).getName().replace("encrypted",

""))){

for(String chunk : chunkList) {

int bytesRead = 0;

byte[] buffer = new byte[1024];

try (FileInputStream input = new FileInputStream("

decrypted/" + chunk)) {

while((bytesRead = input.read(buffer, 0, buffer.

length)) > 0) {

output.write(buffer, 0, bytesRead);

}

}

}

}

}

catch (Exception ex) {

System.out.println(ex.getMessage());

}

}

120

}

/*

* Page.java

*/

package dsbseis;

// data structure to store a page in memory

public class Page {

public String Title = "";

public String Text = "";

public Page() {

Title = "";

Text = "";

}

}

/*

* AbstractHandler.java

*/

package dsbseis;

import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

// handler of xml abstract documents

public class AbstractHandler extends DefaultHandler {

121

private boolean bTitle = false, newPage = true, bAbstract = false

, bLinks = false;

Page page;

private final PageProcessor processor;

public AbstractHandler(PageProcessor processor) {

this.processor = processor;

}

@Override

public void startElement(String uri, String localName, String

qName, Attributes attributes) throws SAXException {

if(qName.equals("doc")) {

newPage = false;

page = new Page();

}

else if(qName.equals("title")){

bTitle = true;

}

else if(qName.equals("abstract")) {

bAbstract = true;

}

else if(qName.equals("anchor")) {

bLinks = true;

}

}

122

@Override

public void endElement(String uri, String localName, String qName

) throws SAXException {

if(!newPage) {

if (qName.equals("doc")) {

newPage = true;

processor.process(page);

page = null;

}

else if(qName.equals("title")){

bTitle = false;

}

else if(qName.equals("abstract")) {

bAbstract = false;

}

else if(qName.equals("anchor")) {

bLinks = false;

}

}

}

@Override

public void characters(char ch[], int start, int length) throws

SAXException {

if(bTitle){

page.Title = new String(ch, start, length);

}

123

else if(bAbstract) {

page.Text += new String(ch, start, length);

}

else if(bLinks) {

page.Text += " " + new String(ch, start, length);

}

}

}

/*

* PageHandler.java

*/

package dsbseis;

import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

// handles body text documentsfrom xml containers

public class PageHandler extends DefaultHandler {

private boolean newPage = true, bTitle = false, bComment = false,

bText = false;

private Page page;

private final PageProcessor processor;

public PageHandler(PageProcessor processor) {

this.processor = processor;

}

124

@Override

public void startElement(String uri, String localName, String

qName, Attributes attributes) throws SAXException {

if(qName.equals("page")) {

newPage = false;

page = new Page();

}

else if(qName.equals("title")){

bTitle = true;

}

else if(qName.equals("comment")) {

bComment = true;

}

else if(qName.equals("text")) {

bText = true;

}

}

@Override

public void endElement(String uri, String localName, String qName

) throws SAXException {

if(!newPage) {

if(qName.equals("page")) {

newPage = true;

processor.process(page);

page = null;

125

}

else if(qName.equals("title")){

bTitle = false;

}

else if(qName.equals("comment")) {

bComment = false;

}

else if(qName.equals("text")) {

bText = false;

}

}

}

@Override

public void characters(char ch[], int start, int length) throws

SAXException {

if(bTitle){

page.Title += new String(ch, start, length);

}

else if(bComment) {

page.Text += new String(ch, start, length);

}

else if(bText) {

page.Text += new String(ch, start, length);

}

}

}

126

/*

* PageProcessor.jar

*/

package dsbseis;

// interface to process pages

public interface PageProcessor {

void process(Page page);

}

/*

* DSB-SEIServer.java

*/

package dsb.seiserver;

import java.io.BufferedReader;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.EOFException;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io.IOException;

import java.io.PrintWriter;

import java.net.ServerSocket;

import java.net.Socket;

127

import java.net.SocketException;

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import java.nio.file.DirectoryStream;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.Paths;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collection;

import java.util.HashMap;

import java.util.HashSet;

import java.util.List;

import java.util.Map;

import java.util.Set;

import java.util.logging.Level;

import java.util.logging.Logger;

public class DSBSEIServer {

// index data structure in memory

static HashMap<String, List<String>> keywords = new HashMap<>();

// handle requests from client

128

public static void main(String[] args) throws IOException,

NoSuchAlgorithmException {

int Port = 2390;

ReadIndex("HSHDS");

while(true){

System.out.println("waiting on connection...");

try (ServerSocket listener = new ServerSocket(Port);

Socket client = listener.accept();) {

try (DataInputStream netStream = new DataInputStream(

client.getInputStream()); DataOutputStream out =

new DataOutputStream(client.getOutputStream())){

while(!client.isClosed()){

System.out.println("Waiting on command");

try {

byte[] array = new byte[4];

netStream.read(array, 0, 4);

int command = ByteBuffer.wrap(array).getInt

();

System.out.println("Received command: " +

command);

// Process the commands

switch(command) {

// if == 1: receive files

case 1:

readFile(netStream);

break;

// if == 2: receive keywords

129

case 2:

netStream.readInt();

readIndexFile(netStream);

break;

// // if == 3: search for a keyword

case 3:

// receive the token

int numQueries = netStream.readInt();

Map<String, Integer> Queries = new

HashMap<>();

List<List<String>> andRes = new

ArrayList<>();

List<List<String>> orRes = new

ArrayList<>();

List<List<String>> notRes = new

ArrayList<>();

List<String> result = new ArrayList

<>();

for(int i = 0; i < numQueries; i++) {

int type = netStream.readInt();

int len = netStream.readInt();

byte[] token = new byte[len];

netStream.read(token, 0, len);

Queries.put(new String(token),

type);

}

System.out.print("Searching..");

130

for(String tok : Queries.keySet()){

if(null != Queries.get(tok)) {

switch (Queries.get(tok)) {

// Not query

case 1:

notRes.add(searchIndex(

tok));

break;

// Or query

case 2:

orRes.add(searchIndex(

tok));

break;

// And Query

case 3:

andRes.add(searchIndex(

tok));

break;

default:

break;

}

}

}

if(!andRes.isEmpty()) {

for(List<String> aR : andRes) {

if(aR != null){

if(result.isEmpty()){

131

result.addAll(aR);

}

else {

result = intersection(

result, aR);

}

}

else {

result = new ArrayList<>();

break;

}

}

}

if(!notRes.isEmpty()) {

for(List<String> nR : notRes) {

if(nR != null)

result = difference(result,

nR);

}

}

if(!orRes.isEmpty()) {

for(List<String> oR : orRes) {

if(oR != null){

System.out.println(oR.

toString());

result = union(result, oR);

}

132

}

}

if(result == null)

out.writeInt(0);

// return found

else {

int size = result.size();

byte[] sizeBytes = ByteBuffer.

allocate(4).order(ByteOrder.

BIG_ENDIAN).putInt(size).array

();

System.out.println(ByteBuffer.wrap

(sizeBytes).order(ByteOrder.

BIG_ENDIAN).getInt());

out.write(sizeBytes);

for (String f : result) {

byte[] tmp = f.getBytes("US-

ASCII");

int length = tmp.length;

sizeBytes = ByteBuffer.allocate

(4).order(ByteOrder.

BIG_ENDIAN).putInt(length).

array();

out.write(sizeBytes);

out.write(tmp);

}

133

}

out.flush();

break;

// if == 4: search for a chunk

case 4:

// receive a token

int len2 = netStream.readInt();

byte[] token2 = new byte[len2];

netStream.read(token2, 0, len2);

// get a list of files

List<File> files = ScanDirectory(

Paths.get("DSBase/"));

// hash each one

byte[] hash;

int exists = 0;

MessageDigest SHA256 = MessageDigest.

getInstance("SHA-256");

System.out.println("Searching...");

int currentFile = 0;

for(File f : files)

{

hash = hashFile(SHA256, f);

if(Arrays.equals(hash, token2)) {

exists = 1;

}

progressBar(currentFile++, files.

size());

134

}

byte[] existsBytes = ByteBuffer.

allocate(4).order(ByteOrder.

BIG_ENDIAN).putInt(exists).array()

;

out.write(existsBytes);

out.flush();

// return true if found and false if

not

break;

// if == 5: send back a file

case 5:

int length2 = netStream.readInt();

byte[] filenamebytes2 = new byte[

length2];

netStream.read(filenamebytes2, 0,

length2);

String filename2 = new String(

filenamebytes2);

System.out.println("Sending back " +

filename2);

byte[] bytes = new byte[1024];

try (FileInputStream input = new

FileInputStream("DSBase\\" +

filename2))

{

135

byte[] length2Bytes = ByteBuffer.

allocate(4).order(ByteOrder.

BIG_ENDIAN).putInt(length2).

array();

out.write(length2Bytes);

out.write(filenamebytes2);

long fileSize = (new File("DSBase

\\" + filename2).length());

out.writeLong(fileSize);

int bytesSent;

long totalSent = 0;

while ((bytesSent = input.read(

bytes)) > 0) {

out.write(bytes, 0, bytesSent);

totalSent += bytesSent;

progressBar(totalSent, fileSize

);

}

}

break;

// if == 6: delete a file

case 6:

int length3 = netStream.readInt();

byte[] filenamebytes3 = new byte[

length3];

netStream.read(filenamebytes3, 0,

length3);

136

String filename3 = new String(

filenamebytes3);

File f = new File(filename3);

boolean deleted = f.delete();

if(deleted) {

System.out.println("Deleted " +

filename3);

}

break;

case 7:

int currentDelete = 0;

if((new File("DSBase/")).exists()) {

File[] toBeDeleted = (new File("

DSBase/")).listFiles();

for (File file: toBeDeleted) {

file.delete();

progressBar(currentDelete++,

toBeDeleted.length);

}

}

keywords = new HashMap<>();

break;

default:

System.out.println("Wrong Command");

System.exit(1);

break;

}

137

}

catch(SocketException | EOFException e) {

client.close();

System.out.println("\tConection closed...");

}

}

} catch (IOException ex) {

Logger.getLogger(DSBSEIServer.class.getName()).log(

Level.SEVERE, null, ex);

}

}

}

}

public static void progressBar(int current, int total)

{

float progress = ((float)current/total) * 100;

String progressBar = "| | " + (int) progress + "%\r";

if(progress > 5 && progress < 10) {

progressBar = "|= | " + (int) progress + "%\r";

}

else if(progress > 10 && progress < 15)

{

progressBar = "|== | " + (int) progress + "%\r";

}

else if(progress > 15 && progress <20)

{

138

progressBar = "|=== | " + (int) progress + "%\r";

}

else if(progress > 20 && progress < 25)

{

progressBar = "|==== | " + (int) progress + "%\r";

}

else if(progress > 25 && progress < 30)

{

progressBar = "|===== | " + (int) progress + "%\r";

}

else if(progress > 30 && progress < 35)

{

progressBar = "|====== | " + (int) progress + "%\r";

}

else if(progress > 35 && progress < 40)

{

progressBar = "|======= | " + (int) progress + "%\r";

}

else if(progress > 40 && progress < 45)

{

progressBar = "|======== | " + (int) progress + "%\r";

}

else if(progress > 45 && progress < 50)

{

progressBar = "|========= | " + (int) progress + "%\r";

}

else if(progress > 50 && progress < 55)

139

{

progressBar = "|========== | " + (int) progress + "%\r";

}

else if(progress > 55 && progress < 60)

{

progressBar = "|=========== | " + (int) progress + "%\r";

}

else if(progress > 60 && progress < 65)

{

progressBar = "|============ | " + (int) progress + "%\r";

}

else if(progress > 65 && progress < 70)

{

progressBar = "|============= | " + (int) progress + "%\r

";

}

else if(progress > 70 && progress < 75)

{

progressBar = "|============== | " + (int) progress + "%\r

";

}

else if(progress > 75 && progress < 80)

{

progressBar = "|=============== | " + (int) progress + "%\

r";

}

else if(progress > 80 && progress < 85)

140

{

progressBar = "|================ | " + (int) progress +

"%\r";

}

else if(progress > 85 && progress < 90)

{

progressBar = "|================= | " + (int) progress +

"%\r";

}

else if(progress > 90 && progress < 95)

{

progressBar = "|================== | " + (int) progress +

"%\r";

}

else if(progress > 95 && progress < 100)

{

progressBar = "|=================== | " + (int) progress +

"%\r";

}

else if(progress == 100)

{

progressBar = "|====================| " + (int) progress +

"%\n";

}

System.out.print(progressBar);

}

141

public static void progressBar(long current, long total) {

float progress = ((float)current/total) * 100;

String progressBar = "| | " + (int) progress + "%\r";

if(progress > 5 && progress < 10) {

progressBar = "|= | " + (int) progress + "%\r";

}

else if(progress > 10 && progress < 15) {

progressBar = "|== | " + (int) progress + "%\r";

}

else if(progress > 15 && progress <20) {

progressBar = "|=== | " + (int) progress + "%\r";

}

else if(progress > 20 && progress < 25) {

progressBar = "|==== | " + (int) progress + "%\r";

}

else if(progress > 25 && progress < 30) {

progressBar = "|===== | " + (int) progress + "%\r";

}

else if(progress > 30 && progress < 35) {

progressBar = "|====== | " + (int) progress + "%\r";

}

else if(progress > 35 && progress < 40) {

progressBar = "|======= | " + (int) progress + "%\r";

}

else if(progress > 40 && progress < 45) {

progressBar = "|======== | " + (int) progress + "%\r";

}

142

else if(progress > 45 && progress < 50) {

progressBar = "|========= | " + (int) progress + "%\r";

}

else if(progress > 50 && progress < 55) {

progressBar = "|========== | " + (int) progress + "%\r";

}

else if(progress > 55 && progress < 60) {

progressBar = "|=========== | " + (int) progress + "%\r";

}

else if(progress > 60 && progress < 65) {

progressBar = "|============ | " + (int) progress + "%\r";

}

else if(progress > 65 && progress < 70) {

progressBar = "|============= | " + (int) progress + "%\r

";

}

else if(progress > 70 && progress < 75) {

progressBar = "|============== | " + (int) progress + "%\r

";

}

else if(progress > 75 && progress < 80) {

progressBar = "|=============== | " + (int) progress + "%\

r";

}

else if(progress > 80 && progress < 85) {

progressBar = "|================ | " + (int) progress +

"%\r";

143

}

else if(progress > 85 && progress < 90) {

progressBar = "|================= | " + (int) progress +

"%\r";

}

else if(progress > 90 && progress < 95) {

progressBar = "|================== | " + (int) progress +

"%\r";

}

else if(progress > 95 && progress < 100) {

progressBar = "|=================== | " + (int) progress +

"%\r";

}

else if(progress == 100) {

progressBar = "|====================| " + (int) progress +

"%\n";

}

System.out.print(progressBar);

}

public static List<String> searchIndex(String token) throws

FileNotFoundException, IOException {

List<String> res = new ArrayList<>();

File[] indexes = new File("index/").listFiles();

String line;

String[] l;

for(File index : indexes){

144

try(BufferedReader br = new BufferedReader(new FileReader(

index.getAbsolutePath()))){

while((line = br.readLine())!= null) {

l = line.split(",");

if(token.equals(l[0])){

for(int i = 1; i < l.length; i++) {

res.add(l[i]);

}

}

}

}

}

return res;

}

public static String readIndexFile(DataInputStream netStream)

throws IOException {

byte[] array = new byte[4];

netStream.read(array, 0, 4);

int length = ByteBuffer.wrap(array).getInt();

byte[] filenamebytes = new byte[length];

netStream.read(filenamebytes, 0, length);

String filename = new String(filenamebytes);

System.out.println("Receiving " + filename);

long fileSize = netStream.readLong();

new File("index/").mkdirs();

145

try (FileOutputStream output = new FileOutputStream("index/"

+ filename)) {

byte[] buffer = new byte[1024];

// Read the incoming stream

int bytesRead;

long totalBytes = 0;

while (totalBytes != fileSize) {

int remaining = 1024;

if((fileSize - totalBytes) < 1024) {

remaining = (int)(fileSize - totalBytes);

}

bytesRead = netStream.read(buffer, 0, remaining);

output.write(buffer, 0, bytesRead);

totalBytes += bytesRead;

progressBar(totalBytes, fileSize);

}

}

catch(Exception ex) {

System.out.println(ex.getMessage());

}

return filename;

}

public static String readFile(DataInputStream netStream) throws

IOException {

byte[] array = new byte[4];

netStream.read(array, 0, 4);

146

int length = ByteBuffer.wrap(array).getInt();

byte[] filenamebytes = new byte[length];

netStream.read(filenamebytes, 0, length);

String filename = new String(filenamebytes);

System.out.println("Receiving " + filename);

array = new byte[8];

netStream.read(array, 0, 8);

long fileSize = ByteBuffer.wrap(array).getLong();

new File("DSBase/").mkdirs();

try (FileOutputStream output = new FileOutputStream("DSBase/"

+ filename)) {

byte[] buffer = new byte[1024];

// Read the incoming stream

int bytesRead;

long totalBytes = 0;

while (totalBytes != fileSize) {

int remaining = 1024;

if((fileSize - totalBytes) < 1024) {

remaining = (int)(fileSize - totalBytes);

}

bytesRead = netStream.read(buffer, 0, remaining);

output.write(buffer, 0, bytesRead);

totalBytes += bytesRead;

progressBar(totalBytes, fileSize);

}

}

catch(Exception ex) {

147

System.out.println(ex.getMessage());

}

return filename;

}

public static String readString(DataInputStream netStream) throws

IOException {

int length = netStream.readInt();

byte[] tokenbytes = new byte[length];

netStream.read(tokenbytes, 0, length);

String token = new String(tokenbytes);

return token;

}

private static byte[] hashFile(MessageDigest digest, File file)

throws IOException {

//Get file input stream for reading the file content

try (FileInputStream fis = new FileInputStream(file)) {

//Create byte array to read data in chunks

byte[] byteArray = new byte[1024];

int bytesCount;

//Read file data and update in message digest

while ((bytesCount = fis.read(byteArray)) != -1) {

digest.update(byteArray, 0, bytesCount);

}

}

148

return digest.digest();

}

static List<File> ScanDirectory(Path directory) throws

IOException {

List<File> files = new ArrayList<>();

try (DirectoryStream<Path> ds = Files.newDirectoryStream(

directory)) {

for (Path child : ds) {

if (!Files.isDirectory(child)) {

files.add(child.toFile());

}

}

}

return files;

}

public static <T> List<T> difference(Collection<T> A, Collection<

T> B) {

List<T> diff = new ArrayList<>(A);

diff.removeAll(B);

return diff;

}

public static <T> List<T> union(Collection<T> list1, Collection<T

> list2) {

149

Set<T> set = new HashSet<>();

set.addAll(list1);

set.addAll(list2);

return new ArrayList<>(set);

}

public static <T> List<T> intersection(Collection<T> list1,

Collection<T> list2) {

List<T> list = new ArrayList<>();

for (T t : list1) {

if(list2.contains(t)) {

list.add(t);

}

}

return list;

}

public static void ReadIndex(String IndexPath) throws IOException

{

BufferedReader buf;

String line;

String[] splitLine;

String[] content;

List<String> fi = new ArrayList<>();

150

if(new File(IndexPath).exists()) {

buf = new BufferedReader(new FileReader(IndexPath));

line = buf.readLine();

while(line != null){

splitLine = line.split(":");

content = splitLine[1].split(",");

fi.addAll(Arrays.asList(content));

keywords.put(splitLine[0], fi);

line = buf.readLine();

fi = new ArrayList<>();

}

buf.close();

}

}

// Saves the index into a a file on disk

public static void saveOnDisk() {

String indexSegment = "HSHDS";

try (PrintWriter writer = new PrintWriter(indexSegment, "UTF

-8")) {

int i;

for(String k : keywords.keySet()) {

writer.print(k + ":");

i = 0;

for(String v : keywords.get(k)) {

writer.print(i == 0 ? v : "," + v);

if(i == 0)

151

i++;

}

writer.println();

}

} catch (IOException e) {

System.out.println(e.getMessage());

}

}

}

/*

* XMLInput.java

*/

package xmlinput;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.UnsupportedEncodingException;

import java.net.URI;

import java.net.URISyntaxException;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.crypto.KeyGenerator;

import javax.crypto.SecretKey;

152

import javax.crypto.spec.IvParameterSpec;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.fs.FSDataOutputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

public class XMLInput {

public enum OUTPUT_COUNTER {

OUTPUT_RECORDS_COUNTER

};

static SecretKey KEY;

static IvParameterSpec IV;

// driver of MapReduce indexing application

public static void main(String[] args) throws URISyntaxException,

NoSuchAlgorithmException {

try {

Runtime rt = Runtime.getRuntime();

Process proc;

Configuration conf = new Configuration();

String line;

153

String[] Args = new GenericOptionsParser(conf, args).

getRemainingArgs();

FileSystem fs = FileSystem.get(conf);

int numReduce = Integer.parseInt(Args[0]);

// Other docs

conf.set("START_TAG_KEY", "<page>");

conf.set("END_TAG_KEY", "</page>");

//Abstracts

conf.set("START_TAG_KEY2", "<doc>");

conf.set("END_TAG_KEY2", "</doc>");

conf.set("mapreduce.map.output.compress", "true");

conf.set("mapred.map.output.compress.codec", "org.apache.

hadoop.io.compress.SnappyCodec");

conf.set("mapreduce.output.fileoutputformat.compress", "

false");

try {

if(! fs.exists(new Path("key.dat"))) {

System.out.println("generating a key");

KEY = generateKey(128, "AES");

byte[] iv = generateIV();

IV = new IvParameterSpec(iv);

saveKey(KEY, iv, "key.dat", fs);

}

} catch (NoSuchAlgorithmException ex) {

154

Logger.getLogger(XMLInput.class.getName()).log(Level.

SEVERE, null, ex);

}

Job job = Job.getInstance(conf);

job.setJobName("XML Parser");

job.addCacheFile(new URI("key.dat#key"));

job.setJarByClass(XMLInput.class);

job.setMapperClass(XMLMapper.class);

job.setReducerClass(XMLReducer.class);

job.setNumReduceTasks(numReduce);

job.setInputFormatClass(XMLInputFormat.class);

job.setOutputFormatClass(StreamingTextOutputFormat.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(Text.class);

FileInputFormat.addInputPath(job, new Path(Args[1]));

FileOutputFormat.setOutputPath(job, new Path(Args[2]));

job.waitForCompletion(false);

System.out.print(job.getCounters().findCounter("org.apache

.hadoop.mapreduce.TaskCounter", "MAP_INPUT_RECORDS").

getValue() + ",");

System.out.print(numReduce + "," + (job.getFinishTime() -

job.getStartTime())/1000 + ",");

155

proc = rt.exec("hdfs dfs -du -s /wikiIndexTest");

BufferedReader reader = new BufferedReader(new

InputStreamReader(proc.getInputStream()));

while ((line = reader.readLine())!= null) {

System.out.print(line.split("\\s+")[0] + ",");

}

proc.waitFor();

System.out.print(job.getCounters().findCounter("xmlinput.

XMLInput$OUTPUT_COUNTER", "OUTPUT_RECORDS_COUNTER").

getValue() + ",");

System.exit(1);

} catch (IOException | IllegalStateException |

IllegalArgumentException | InterruptedException |

ClassNotFoundException e) {

System.out.println(e.getMessage());

}

}

private static SecretKey generateKey(int size, String Algorithm)

throws UnsupportedEncodingException, NoSuchAlgorithmException

{

KeyGenerator keyGen = KeyGenerator.getInstance(Algorithm);

keyGen.init(size);

return keyGen.generateKey();

}

private static byte[] generateIV() {

156

byte[] b = new byte[16];

new SecureRandom().nextBytes(b);

return b;

}

public static void saveKey(SecretKey key, byte[] IV, String path,

FileSystem fs) throws IOException {

FSDataOutputStream stream = fs.create(new Path(path));

try {

stream.write(key.getEncoded());

stream.write(IV);

} finally {

stream.close();

}

}

}

/*

* TextArrayWritable.java

*/

package xmlinput;

import org.apache.hadoop.io.ArrayWritable;

import org.apache.hadoop.io.Text;

// enables mapreduce to store arrays as a writable object

public class TextArrayWritable extends ArrayWritable {

public TextArrayWritable() {

157

super(Text.class);

}

public TextArrayWritable(Text[] values) {

super(Text.class, values);

}

@Override

public Text[] get() {

return (Text[]) super.get();

}

@Override

public String toString() {

Text[] values = get();

String s = "";

for(int i = 0; i < values.length; i++){

s += values[i];

if(i != (values.length - 1))

s += " ";

}

return s;

}

}

/*

* XMLInputFormat.java

*/

158

package xmlinput;

import com.google.common.base.Charsets;

import com.google.common.io.Closeables;

import java.io.IOException;

import java.util.logging.Level;

import java.util.logging.Logger;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.DataOutputBuffer;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.InputSplit;

import org.apache.hadoop.mapreduce.RecordReader;

import org.apache.hadoop.mapreduce.TaskAttemptContext;

import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

// custom input format to read documents from XML container

public class XMLInputFormat extends TextInputFormat {

@Override

public RecordReader<LongWritable, Text> createRecordReader(

InputSplit split, TaskAttemptContext context) {

try {

159

return new XmlRecordReader((FileSplit) split, context.

getConfiguration());

} catch (IOException ex) {

Logger.getLogger(XMLInputFormat.class.getName()).log(Level

.SEVERE, null, ex);

return null;

}

}

public static class XmlRecordReader extends RecordReader<

LongWritable, Text> {

private byte[] startTag;

private byte[] endTag;

private long start;

private long end;

private FSDataInputStream fsin;

private final DataOutputBuffer buffer = new DataOutputBuffer

();

private final LongWritable key = new LongWritable();

private final Text value = new Text();

private Logger logger = Logger.getLogger(XmlRecordReader.

class.getName());

public XmlRecordReader(FileSplit split, Configuration conf)

throws IOException {

String name = split.getPath().getName();

if(name.contains("pages")) {

160

startTag = conf.get("START_TAG_KEY").getBytes(Charsets.

UTF_8);

endTag = conf.get("END_TAG_KEY").getBytes(Charsets.

UTF_8);

}

else if(name.contains("abstract")){

startTag = conf.get("START_TAG_KEY2").getBytes(Charsets

.UTF_8);

endTag = conf.get("END_TAG_KEY2").getBytes(Charsets.

UTF_8);

}

}

@Override

public void initialize(InputSplit is, TaskAttemptContext tac)

throws IOException, InterruptedException {

FileSplit fileSplit = (FileSplit) is;

start = fileSplit.getStart();

end = start + fileSplit.getLength();

Path file = fileSplit.getPath();

FileSystem fs = file.getFileSystem(tac.getConfiguration())

;

fsin = fs.open(fileSplit.getPath());

fsin.seek(start);

}

161

@Override

public boolean nextKeyValue() throws IOException,

InterruptedException {

if (fsin.getPos() < end) {

if (readUntilMatch(startTag, false)) {

try {

buffer.write(startTag);

if (readUntilMatch(endTag, true)) {

value.set(buffer.getData(), 0, buffer.

getLength());

key.set(fsin.getPos());

return true;

}

} finally {

buffer.reset();

}

}

}

return false;

}

@Override

public LongWritable getCurrentKey() throws IOException,

InterruptedException {

162

return key;

}

@Override

public Text getCurrentValue() throws IOException,

InterruptedException {

return value;

}

@Override

public float getProgress() throws IOException,

InterruptedException {

return (fsin.getPos() - start) / (float) (end - start);

}

@Override

public void close() throws IOException {

Closeables.close(fsin, true);

}

private boolean readUntilMatch(byte[] match, boolean

withinBlock)

throws IOException {

int i = 0;

while (true) {

int b = fsin.read();

163

if (b == -1)

return false;

if (withinBlock)

buffer.write(b);

if (b == match[i]) {

i++;

if (i >= match.length)

return true;

} else

i = 0;

if (!withinBlock && i == 0 && fsin.getPos() >= end)

return false;

}

}

}

}

/*

* XMLMapper.java

*/

package xmlinput;

import java.io.ByteArrayInputStream;

import java.io.FileNotFoundException;

164

import java.io.IOException;

import java.io.InputStream;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.StringTokenizer;

import javax.crypto.Cipher;

import javax.crypto.SecretKey;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

import org.w3c.dom.DOMException;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

import org.apache.log4j.Logger;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

165

import org.apache.hadoop.fs.Path;

public class XMLMapper extends Mapper<LongWritable, Text, Text, Text

> {

private final Logger logger = Logger.getLogger(XMLMapper.class);

// stop words to eliminate while extracting text

private static final ArrayList<String> stopwords = new ArrayList

<>(Arrays.asList(

"a", "as", "able", "about", "above", "according", "accordingly",

"across", "actually", "after",

"afterwards", "again", "against", "aint", "all", "allow", "allows

", "almost", "alone", "along",

"already", "also", "although", "always", "am", "among", "amongst

", "an", "and", "another", "any",

"anybody", "anyhow", "anyone", "anything", "anyway", "anyways", "

anywhere", "apart", "appear",

"appreciate", "appropriate", "are", "arent", "around", "as", "

aside", "ask", "asking", "associated",

"at", "available", "away", "awfully", "be", "became", "because",

"become", "becomes", "becoming", "been",

"before", "beforehand", "behind", "being", "believe", "below", "

beside", "besides", "best", "better", "between",

"beyond", "both", "brief", "but", "by", "cmon", "cs", "came", "

can", "cant", "cannot", "cant", "cause", "causes",

"certain", "certainly", "changes", "clearly", "co", "com", "come

", "comes", "concerning", "consequently",

166

"consider", "considering", "contain", "containing", "contains",

"corresponding", "could", "couldnt", "course",

"currently", "definitely", "described", "despite", "did", "didnt

", "different", "do", "does", "doesnt", "doing",

"dont", "done", "down", "downwards", "during", "each", "edu", "

eg", "eight", "either", "else", "elsewhere",

"enough", "entirely", "especially", "et", "etc", "even", "ever",

"every", "everybody", "everyone", "everything",

"everywhere", "ex", "exactly", "example", "except", "far", "few

", "ff", "fifth", "first", "five", "followed", "following",

"follows", "for", "former", "formerly", "forth", "four", "from",

"further", "furthermore", "get", "gets", "getting", "given",

"gives", "go", "goes", "going", "gone", "got", "gotten", "

greetings", "had", "hadnt", "happens", "hardly", "has", "

hasnt",

"have", "havent", "having", "he", "hes", "hello", "help", "hence

", "her", "here", "heres", "hereafter", "hereby", "herein",

"hereupon", "hers", "herself", "hi", "him", "himself", "his", "

hither", "hopefully", "how", "howbeit", "however", "i", "id",

"ill", "im", "ive", "ie", "if", "ignored", "immediate", "in", "

inasmuch", "inc", "indeed", "indicate", "indicated", "

indicates",

"inner", "insofar", "instead", "into", "inward", "is", "isnt", "

it", "itd", "itll", "its", "its", "itself", "just", "keep",

"keeps", "kept", "know", "knows", "known", "last", "lately", "

later", "latter", "latterly", "least", "less", "lest", "let",

167

"lets", "like", "liked", "likely", "little", "look", "looking",

"looks", "ltd", "mainly", "many", "may", "maybe", "me", "mean

",

"meanwhile", "merely", "might", "more", "moreover", "most", "

mostly", "much", "must", "my", "myself", "name", "namely",

"nd", "near", "nearly", "necessary", "need", "needs", "neither",

"never", "nevertheless", "new", "next", "nine", "no",

"nobody", "non", "none", "noone", "nor", "normally", "not", "

nothing", "novel", "now", "nowhere", "obviously", "of",

"off", "often", "oh", "ok", "okay", "old", "on", "once", "one",

"ones", "only", "onto", "or", "other", "others", "otherwise",

"ought", "our", "ours", "ourselves", "out", "outside", "over", "

overall", "own", "particular", "particularly", "per",

"perhaps", "placed", "please", "plus", "possible", "presumably",

"probably", "provides", "que", "quite", "qv",

"rather", "rd", "re", "really", "reasonably", "regarding", "

regardless", "regards", "relatively", "respectively",

"right", "said", "same", "saw", "say", "saying", "says", "second

", "secondly", "see", "seeing", "seem", "seemed",

"seeming", "seems", "seen", "self", "selves", "sensible", "sent

", "serious", "seriously", "seven", "several", "shall",

"she", "should", "shouldnt", "since", "six", "so", "some", "

somebody", "somehow", "someone", "something", "sometime",

"sometimes", "somewhat", "somewhere", "soon", "sorry", "

specified", "specify", "specifying", "still", "sub", "such",

"sup", "sure", "ts", "take", "taken", "tell", "tends", "th", "

than", "thank", "thanks", "thanx", "that", "thats",

168

"thats", "the", "their", "theirs", "them", "themselves", "then",

"thence", "there", "theres", "thereafter", "thereby",

"therefore", "therein", "theres", "thereupon", "these", "they",

"theyd", "theyll", "theyre", "theyve", "think", "third",

"this", "thorough", "thoroughly", "those", "though", "three", "

through", "throughout", "thru", "thus", "to", "together",

"too", "took", "toward", "towards", "tried", "tries", "truly", "

try", "trying", "twice", "two", "un", "under",

"unfortunately", "unless", "unlikely", "until", "unto", "up", "

upon", "us", "use", "used", "useful", "uses", "using",

"usually", "value", "various", "very", "via", "viz", "vs", "want

", "wants", "was", "wasnt", "way", "we", "wed", "well",

"were", "weve", "welcome", "well", "went", "were", "werent", "

what", "whats", "whatever", "when", "whence", "whenever",

"where", "wheres", "whereafter", "whereas", "whereby", "wherein

", "whereupon", "wherever", "whether", "which", "while",

"whither", "who", "whos", "whoever", "whole", "whom", "whose",

"why", "will", "willing", "wish", "with", "within",

"without", "wont", "wonder", "would", "would", "wouldnt", "yes

", "yet", "you", "youd", "youll", "youre", "youve",

"your", "yours", "yourself", "yourselves", "zero"));

private SecretKey KEY;

private IvParameterSpec IV;

// mapper implementation for indexing application

@Override

169

public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

try {

List<String> written = new ArrayList<>();

InputStream is = new ByteArrayInputStream(value.toString()

.getBytes());

DocumentBuilderFactory dbFactory = DocumentBuilderFactory.

newInstance();

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Document doc = dBuilder.parse(is);

String w;

StringTokenizer itr;

doc.getDocumentElement().normalize();

// Abstract files

NodeList AbstractList = doc.getElementsByTagName("doc");

// All other files

NodeList pageList = doc.getElementsByTagName("page");

if(AbstractList.getLength() > 0) {

for (int i = 0; i < AbstractList.getLength(); i++) {

Node nNode = AbstractList.item(i);

if (nNode.getNodeType() == Node.ELEMENT_NODE) {

Element eElement = (Element) nNode;

String Title = eElement.getElementsByTagName("

title").item(0).getTextContent();

170

itr = new StringTokenizer(eElement.

getElementsByTagName("abstract").item(0).

getTextContent().replaceAll("[^A-Za-z\\s+]",

"").toLowerCase());

while(itr.hasMoreTokens()) {

w = itr.nextToken().trim();

if(!stopwords.contains(w) && w.length() > 2

&& !written.contains(w)) {

written.add(w);

context.write(new Text(w), new Text(Title

));

}

}

NodeList links = eElement.getElementsByTagName("

links").item(0).getChildNodes();

for (int temp2 = 0; temp2 < links.getLength();

temp2++) {

Node sub = links.item(temp2);

if(sub.getNodeType() == Node.ELEMENT_NODE) {

Element e = (Element) sub;

itr = new StringTokenizer(e.

getElementsByTagName("anchor").item(0)

.getTextContent().replaceAll("[^A-Za-z

\\s+]", "").toLowerCase());

while(itr.hasMoreTokens()) {

w = itr.nextToken().trim();

171

if(!stopwords.contains(w) && w.length

() > 2 && !written.contains(w)) {

written.add(w);

context.write(new Text(w), new

Text(Title));

}

}

}

}

}

written.clear();

}

}

if(pageList.getLength() > 0) {

for (int i = 0; i < pageList.getLength(); i++) {

Node nNode = pageList.item(i);

if (nNode.getNodeType() == Node.ELEMENT_NODE) {

Element eElement = (Element) nNode;

String Title = eElement.getElementsByTagName("

title").item(0).getTextContent();

NodeList revision = eElement.

getElementsByTagName("revision");

for (int j = 0; j < revision.getLength(); j++) {

Node sub = revision.item(j);

if(sub.getNodeType() == Node.ELEMENT_NODE){

Element e = (Element) sub;

172

if(e.getElementsByTagName("comment").

getLength() > 0 && e.

getElementsByTagName("comment") !=

null) {

itr = new StringTokenizer(e.

getElementsByTagName("comment").

item(0).getTextContent());

while(itr.hasMoreTokens()) {

w = itr.nextToken().trim();

if(!stopwords.contains(w) && w.

length() > 2 && !written.

contains(w)) {

written.add(w);

context.write(new Text(w), new

Text(Title));

}

}

}

if(e.getElementsByTagName("text").

getLength() > 0 && e.

getElementsByTagName("text") != null)

{

itr = new StringTokenizer(e.

getElementsByTagName("text").item

(0).getTextContent());

while(itr.hasMoreTokens()) {

w = itr.nextToken().trim();

173

if(!stopwords.contains(w) && w.

length() > 2 && !written.

contains(w)) {

written.add(w);

context.write(new Text(w), new

Text(Title));

}

}

}

}

}

}

}

written.clear();

}

} catch (ParserConfigurationException | SAXException |

IOException | DOMException e) {

//

}

}

public void readKey(String path, FileSystem fs) throws

FileNotFoundException, IOException{

FSDataInputStream stream = fs.open(new Path(path));

int keySize = (int) fs.getFileStatus(new Path(path)).getLen()

- 16;

try {

174

byte[] key = new byte[keySize];

byte[] iv = new byte[16];

stream.read(key, 0, keySize);

stream.read(iv, 0, 16);

KEY = new SecretKeySpec(key, 0, keySize, "AES");

IV = new IvParameterSpec(iv);

} finally {

stream.close();

}

}

private static byte[] encrypt(byte[] plainText, SecretKey Key,

IvParameterSpec iv) throws Exception {

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.ENCRYPT_MODE, Key, iv);

return cipher.doFinal(plainText);

}

public static byte[] encryptString(String plain, SecretKey Key,

IvParameterSpec iv){

try {

byte[] cipher = encrypt(plain.getBytes(), Key, iv);

return cipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

175

return new byte[1];

}

public static byte[] hashBytes(byte[] data) throws

NoSuchAlgorithmException {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

byte[] hash = digest.digest(data);

return hash;

}

public static String decryptString(byte[] cipher, SecretKey Key,

IvParameterSpec iv){

try {

byte[] decrypted = decrypt(cipher, Key, iv);

String decipher = new String(decrypted);

return decipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return "";

}

private static byte[] decrypt(byte[] cipherText, SecretKey Key,

IvParameterSpec iv) throws Exception{

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.DECRYPT_MODE, Key , iv);

return cipher.doFinal(cipherText);

176

}

}

/*

* XMLReducer.java

*/

package xmlinput;

import com.sun.istack.logging.Logger;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.UnsupportedEncodingException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.logging.Level;

import javax.crypto.Cipher;

import javax.crypto.SecretKey;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

import org.apache.commons.codec.binary.Base64;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

// reducer implementation for MapReduce application

public class XMLReducer extends Reducer<Text, Text, Text, Text> {

177

private final Logger logger = Logger.getLogger(XMLReducer.class);

private SecretKey KEY;

private IvParameterSpec IV;

@Override

protected void setup(Context context) throws IOException,

InterruptedException, UnsupportedEncodingException {

if (context.getCacheFiles() != null && context.getCacheFiles

().length > 0) {

readKey("key.dat", FileSystem.get(context.getConfiguration

()));

}

}

@Override

public void reduce(Text key, Iterable<Text> values, Context

context) throws IOException, InterruptedException {

context.getCounter(XMLInput.OUTPUT_COUNTER.

OUTPUT_RECORDS_COUNTER).increment(1);

boolean firstKey = true;

byte[] enc = encryptString(key.toString(), KEY, IV);

Text encWord = new Text("");

try {

encWord = new Text(new String(Base64.encodeBase64(

hashBytes(enc))));

} catch (NoSuchAlgorithmException ex) {

178

java.util.logging.Logger.getLogger(XMLReducer.class.

getName()).log(Level.SEVERE, null, ex);

}

for (Text value : values) {

context.write(firstKey ? encWord : null, new Text(new

String(Base64.encodeBase64(encryptString(value.toString

(), KEY, IV)))));

firstKey = false;

}

}

public void readKey(String path, FileSystem fs) throws

FileNotFoundException, IOException{

FSDataInputStream stream = fs.open(new Path(path));

int keySize = (int) fs.getFileStatus(new Path(path)).getLen()

- 16;

try {

byte[] key = new byte[keySize];

byte[] iv = new byte[16];

stream.read(key, 0, keySize);

stream.read(iv, 0, 16);

KEY = new SecretKeySpec(key, 0, keySize, "AES");

IV = new IvParameterSpec(iv);

} finally {

stream.close();

}

179

}

private static byte[] encrypt(byte[] plainText, SecretKey Key,

IvParameterSpec iv) throws Exception {

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.ENCRYPT_MODE, Key, iv);

return cipher.doFinal(plainText);

}

public static byte[] encryptString(String plain, SecretKey Key,

IvParameterSpec iv){

try {

byte[] cipher = encrypt(plain.getBytes(), Key, iv);

return cipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return new byte[1];

}

public static byte[] hashBytes(byte[] data) throws

NoSuchAlgorithmException {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

byte[] hash = digest.digest(data);

return hash;

}

180

public static String decryptString(byte[] cipher, SecretKey Key,

IvParameterSpec iv){

try {

byte[] decrypted = decrypt(cipher, Key, iv);

String decipher = new String(decrypted);

return decipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return "";

}

private static byte[] decrypt(byte[] cipherText, SecretKey Key,

IvParameterSpec iv) throws Exception{

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.DECRYPT_MODE, Key , iv);

return cipher.doFinal(cipherText);

}

}

/*

* StreamingTextOutputFormat.java

*/

package xmlinput;

import java.io.DataOutputStream;

import java.io.IOException;

import java.io.UnsupportedEncodingException;

181

import org.apache.hadoop.fs.FSDataOutputStream;

import org.apache.hadoop.io.NullWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.RecordWriter;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.compress.CompressionCodec;

import org.apache.hadoop.io.compress.GzipCodec;

import org.apache.hadoop.mapreduce.TaskAttemptContext;

import org.apache.hadoop.util.ReflectionUtils;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import org.apache.log4j.Logger;

// streams output of application without having to store it in

memory

public class StreamingTextOutputFormat<K, V> extends

TextOutputFormat<K, V> {

protected static class StreamingLineRecordWriter<K, V> extends

RecordWriter<K, V> {

private static final String utf8 = "UTF-8";

private static final byte[] newline;

private final Logger log = Logger.getLogger(

StreamingLineRecordWriter.class);

static {

try {

newline = "\n".getBytes(utf8);

182

} catch (UnsupportedEncodingException uee) {

throw new IllegalArgumentException("can’t find " + utf8

+ " encoding");

}

}

protected DataOutputStream out;

private final byte[] keyValueSeparator;

private final byte[] valueDelimiter;

private boolean dataWritten = false;

public StreamingLineRecordWriter(DataOutputStream out, String

keyValueSeparator, String valueDelimiter) {

this.out = out;

try {

this.keyValueSeparator = keyValueSeparator.getBytes(

utf8);

this.valueDelimiter = valueDelimiter.getBytes(utf8);

} catch (UnsupportedEncodingException uee) {

throw new IllegalArgumentException("can’t find " + utf8

+ " encoding");

}

}

public StreamingLineRecordWriter(DataOutputStream out) {

this(out, ",", ",");

}

183

private void writeObject(Object o) throws IOException {

if (o instanceof Text) {

Text to = (Text) o;

out.write(to.getBytes(), 0, to.getLength());

} else {

out.write(o.toString().getBytes(utf8));

}

}

@Override

public synchronized void write(K key, V value) throws

IOException {

boolean nullKey = (key == null || key instanceof

NullWritable);

boolean nullValue = (value == null || value instanceof

NullWritable);

if (nullKey && nullValue) {

return;

}

if (!nullKey) {

// if we’ve written data before, append a new line

if (dataWritten) {

out.write(newline);

}

// write out the key and separator

writeObject(key);

184

out.write(keyValueSeparator);

} else if (!nullValue) {

// write out the value delimiter

out.write(valueDelimiter);

}

// write out the value

writeObject(value);

// track that we’ve written some data

dataWritten = true;

}

@Override

public synchronized void close(TaskAttemptContext context)

throws IOException {

// if we’ve written out any data, append a closing newline

if (dataWritten) {

out.write(newline);

}

out.close();

}

}

@Override

public RecordWriter<K, V> getRecordWriter(TaskAttemptContext job)

throws IOException {

Configuration conf = job.getConfiguration();

boolean isCompressed = getCompressOutput(job);

185

String keyValueSeparator = conf.get("mapreduce.output.

textoutputformat.separator", ",");

String valueDelimiter = conf.get("mapreduce.output.

textoutputformat.delimiter", ",");

CompressionCodec codec = null;

String extension = "";

if(isCompressed) {

Class<? extends CompressionCodec> codecClass =

getOutputCompressorClass(job, GzipCodec.class);

// create the named codec

codec = (CompressionCodec) ReflectionUtils.newInstance(

codecClass, conf);

extension = codec.getDefaultExtension();

}

Path file = getDefaultWorkFile(job, extension);

FileSystem fs = file.getFileSystem(conf);

if (!isCompressed) {

FSDataOutputStream fileOut = fs.create(file, false);

return new StreamingLineRecordWriter<>(fileOut,

keyValueSeparator, valueDelimiter);

} else {

// build the filename including the extension

FSDataOutputStream fileOut = fs.create(file, false);

return new StreamingLineRecordWriter<>(new

DataOutputStream(

codec.createOutputStream(fileOut)),

keyValueSeparator,

186

valueDelimiter);

}

}

}

/*

* HadoopSearchIndex.java

*/

package hadoopsearchindex;

import java.io.IOException;

import java.net.URI;

import java.net.URISyntaxException;

import java.security.NoSuchAlgorithmException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

public class HadoopSearchIndex {

public enum OUTPUT_COUNTER {

OUTPUT_RECORDS_COUNTER

};

// driver for the MapReduce index search application

187

public static void main(String[] args) throws IOException,

URISyntaxException, InterruptedException,

ClassNotFoundException, NoSuchAlgorithmException {

Configuration conf = new Configuration();

String[] otherArgs = new GenericOptionsParser(conf, args).

getRemainingArgs();

if (otherArgs.length < 4) {

System.err.println("Usage: Index <numReduce> <in> <out> <#

queries> <q1> <q2> ... <qn> (use ! for not and | for or

)");

System.exit(2);

}

int numQueries = Integer.parseInt(otherArgs[3]);

int numReduce = Integer.parseInt(otherArgs[0]);

if (otherArgs.length != (4 + numQueries)) {

System.err.println("Missing queries");

System.exit(2);

}

conf.setInt("numQueries", numQueries);

for(int i = 4; i < (4 + numQueries); i++) {

conf.set("q" + (i - 4), otherArgs[i]);

}

Job job = Job.getInstance(conf);

job.setJobName("Query and decrypt");

188

job.addCacheFile(new URI("key.dat#key"));

job.setJarByClass(HadoopSearchIndex.class);

job.setMapperClass(HadoopSearchMapper.class);

job.setCombinerClass(HadoopSearchCombiner.class);

job.setReducerClass(HadoopSearchReducer.class);

job.setNumReduceTasks(numReduce);

job.setMapOutputKeyClass(IntWritable.class);

job.setMapOutputValueClass(TextArrayWritable.class);

job.setOutputKeyClass(IntWritable.class);

job.setOutputValueClass(TextArrayWritable.class);

FileInputFormat.addInputPath(job, new Path(otherArgs[1]) {});

FileOutputFormat.setOutputPath(job, new Path(otherArgs[2]));

job.waitForCompletion(true);

System.out.print(numReduce + "," + (job.getFinishTime() - job

.getStartTime())/1000 + ",");

System.out.println(job.getCounters().findCounter("

hadoopsearchindex.HadoopSearchIndex$OUTPUT_COUNTER", "

OUTPUT_RECORDS_COUNTER").getValue());

}

}

/*

* HadoopSearchMapper.java

*/

189

package hadoopsearchindex;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.UnsupportedEncodingException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.Arrays;

import java.util.HashMap;

import java.util.Map;

import javax.crypto.Cipher;

import javax.crypto.SecretKey;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.commons.codec.binary.Base64;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

// mapper implementation for MapReduce index search application

public class HadoopSearchMapper extends Mapper<Object, Text,

IntWritable, TextArrayWritable> {

private SecretKey KEY;

190

private IvParameterSpec IV;

private final Map<String, Integer> queries = new HashMap<>();

private int numQueries;

@Override

protected void setup(Context context) throws IOException,

InterruptedException, UnsupportedEncodingException {

int typeQ;

readKey("key.dat", FileSystem.get(context.getConfiguration())

);

Configuration conf = context.getConfiguration();

numQueries = conf.getInt("numQueries", 1);

for(int i = 0; i < numQueries; i++) {

String q = conf.get("q" + i);

if(q.startsWith("!")) typeQ = 1; // NOT Query

else if(q.startsWith("|")) typeQ = 2; // OR Query

else typeQ = 3; // AND Query

String query = q.replaceAll("[^A-Za-z\\s+]", "").

toLowerCase();

try {

String enc = new String(Base64.encodeBase64(hashBytes(

encryptString(query, KEY, IV))));

queries.put(enc, typeQ);

} catch (NoSuchAlgorithmException ex) {

//

}

}

191

}

@Override

protected void map(Object key, Text value, Context context)

throws IOException, InterruptedException {

String line = value.toString();

String[] splitLine = line.split(",");

String w = splitLine[0];

if(queries.containsKey(w)){

String[] res = Arrays.copyOfRange(splitLine, 1, splitLine.

length);

Text[] finalFiles = new Text[res.length];

for(int i = 0; i < res.length; i++) {

finalFiles[i] = new Text(res[i]);

}

context.write(new IntWritable(queries.get(w)), new

TextArrayWritable(finalFiles));

}

}

public void readKey(String path, FileSystem fs) throws

FileNotFoundException, IOException{

FSDataInputStream stream = fs.open(new Path(path));

int keySize = (int) fs.getFileStatus(new Path(path)).getLen()

- 16;

try {

byte[] key = new byte[keySize];

192

byte[] iv = new byte[16];

stream.read(key, 0, keySize);

stream.read(iv, 0, 16);

KEY = new SecretKeySpec(key, 0, keySize, "AES");

IV = new IvParameterSpec(iv);

} finally {

stream.close();

}

}

private static byte[] encrypt(byte[] plainText, SecretKey Key,

IvParameterSpec iv) throws Exception {

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.ENCRYPT_MODE, Key, iv);

return cipher.doFinal(plainText);

}

public static byte[] encryptString(String plain, SecretKey Key,

IvParameterSpec iv){

try {

byte[] cipher = encrypt(plain.getBytes(), Key, iv);

return cipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return new byte[1];

193

}

public static byte[] hashBytes(byte[] data) throws

NoSuchAlgorithmException {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

byte[] hash = digest.digest(data);

return hash;

}

public static String decryptString(byte[] cipher, SecretKey Key,

IvParameterSpec iv){

try {

byte[] decrypted = decrypt(cipher, Key, iv);

String decipher = new String(decrypted);

return decipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return "";

}

private static byte[] decrypt(byte[] cipherText, SecretKey Key,

IvParameterSpec iv) throws Exception{

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.DECRYPT_MODE, Key , iv);

return cipher.doFinal(cipherText);

}

194

}

/*

* HadoopSearchCombiner.java

*/

package hadoopsearchindex;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.UnsupportedEncodingException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.List;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collection;

import java.util.HashSet;

import java.util.Set;

import javax.crypto.Cipher;

import javax.crypto.SecretKey;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

195

/**

* combine the list of result for each type and decrypt

*/

public class HadoopSearchCombiner extends Reducer<IntWritable,

TextArrayWritable, IntWritable, TextArrayWritable>{

List<String> AndRes = new ArrayList<>();

List<String> OrRes = new ArrayList<>();

List<String> NotRes = new ArrayList<>();

List<List<String>> tempAndRes = new ArrayList<>();

List<List<String>> tempOrRes = new ArrayList<>();

List<List<String>> tempNotRes = new ArrayList<>();

private SecretKey KEY;

private IvParameterSpec IV;

// Finds difference between set A and set B (A - B) and returns a

new list

public static <T> List<T> Difference(Collection<T> A, Collection<

T> B) {

List<T> diff = new ArrayList<>(A);

diff.removeAll(B);

return diff;

}

// Finds the union between two collections and returns a new list

196

public static <T> List<T> union(Collection<T> list1, Collection<T

> list2) {

Set<T> set = new HashSet<>();

set.addAll(list1);

set.addAll(list2);

return new ArrayList<>(set);

}

// Finds the intersection between two collections and returns a

new list

public static <T> List<T> intersection(Collection<T> list1,

Collection<T> list2) {

List<T> list = new ArrayList<>();

for (T t : list1) {

if(list2.contains(t)) {

list.add(t);

}

}

return list;

}

@Override

197

protected void setup(Context context) throws IOException,

InterruptedException, UnsupportedEncodingException {

//if (context.getCacheFiles() != null && context.

getCacheFiles().length > 0) {

readKey("key.dat", FileSystem.get(context.getConfiguration

()));

//}

}

@Override

protected void cleanup(Context context) throws IOException,

InterruptedException {

int ind = 0;

Text[] finalFiles = new Text[1];

String[] res;

if(!tempNotRes.isEmpty()){

// combine not operator results

for(List<String> nQ : tempNotRes) {

if(ind == 0)

{

NotRes = union(NotRes, nQ);

ind++;

}

NotRes = intersection(NotRes, nQ);

}

res = new String[NotRes.size()];

198

res = NotRes.toArray(res);

finalFiles = new Text[NotRes.size()];

for(int i = 0; i < res.length; i++) {

finalFiles[i] = new Text(res[i]);

}

context.write(new IntWritable(1), new TextArrayWritable(

finalFiles));

}

if(!tempOrRes.isEmpty()){

// combine or operator results

for(List<String> oQ : tempOrRes) {

OrRes = union(OrRes, oQ);

}

res = new String[OrRes.size()];

res = OrRes.toArray(res);

finalFiles = new Text[OrRes.size()];

for(int i = 0; i < res.length; i++) {

finalFiles[i] = new Text(res[i]);

}

context.write(new IntWritable(2), new TextArrayWritable(

finalFiles));

}

if(!tempAndRes.isEmpty()) {

ind = 0;

// combine and operator results

for(List<String> aQ : tempAndRes) {

199

if(ind == 0) {

AndRes = union(AndRes, aQ);

ind++;

}

else {

AndRes = intersection(AndRes, aQ);

}

}

res = new String[AndRes.size()];

res = AndRes.toArray(res);

finalFiles = new Text[AndRes.size()];

for(int i = 0; i < res.length; i++) {

finalFiles[i] = new Text(res[i]);

}

context.write(new IntWritable(3), new TextArrayWritable(

finalFiles));

}

}

@Override

protected void reduce(IntWritable key, Iterable<TextArrayWritable

> values, Context context) throws IOException,

InterruptedException{

String[] vals;

List<String> temp;

for(TextArrayWritable value : values) {

vals = value.toStrings();

200

temp = new ArrayList<>();

temp.addAll(Arrays.asList(vals));

switch (key.get()) {

case 1:

tempNotRes.add(temp);

break;

case 2:

tempOrRes.add(temp);

break;

case 3:

tempAndRes.add(temp);

break;

default:

break;

}

}

}

public void readKey(String path, FileSystem fs) throws

FileNotFoundException, IOException{

FSDataInputStream stream = fs.open(new Path(path));

int keySize = (int) fs.getFileStatus(new Path(path)).getLen()

- 16;

try {

byte[] key = new byte[keySize];

byte[] iv = new byte[16];

stream.read(key, 0, keySize);

201

stream.read(iv, 0, 16);

KEY = new SecretKeySpec(key, 0, keySize, "AES");

IV = new IvParameterSpec(iv);

} finally {

stream.close();

}

}

private static byte[] encrypt(byte[] plainText, SecretKey Key,

IvParameterSpec iv) throws Exception {

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.ENCRYPT_MODE, Key, iv);

return cipher.doFinal(plainText);

}

public static byte[] encryptString(String plain, SecretKey Key,

IvParameterSpec iv){

try {

byte[] cipher = encrypt(plain.getBytes(), Key, iv);

return cipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return new byte[1];

}

202

public static byte[] hashBytes(byte[] data) throws

NoSuchAlgorithmException {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

byte[] hash = digest.digest(data);

return hash;

}

public static String decryptString(byte[] cipher, SecretKey Key,

IvParameterSpec iv){

try {

byte[] decrypted = decrypt(cipher, Key, iv);

String decipher = new String(decrypted);

return decipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return "";

}

private static byte[] decrypt(byte[] cipherText, SecretKey Key,

IvParameterSpec iv) throws Exception{

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.DECRYPT_MODE, Key , iv);

return cipher.doFinal(cipherText);

}

}

/*

203

* HadoopSearchReducer.java

*/

package hadoopsearchindex;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.UnsupportedEncodingException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Collection;

import java.util.HashSet;

import java.util.List;

import java.util.Set;

import javax.crypto.Cipher;

import javax.crypto.SecretKey;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

import org.apache.commons.codec.binary.Base64;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

204

// reducer implementation for MapReduce index search application

public class HadoopSearchReducer extends Reducer<IntWritable,

TextArrayWritable, IntWritable, TextArrayWritable> {

List<String> Result = new ArrayList<>();

List<String> NotResult = new ArrayList<>();

List<String> OrResult = new ArrayList<>();

List<String> AndResult = new ArrayList<>();

private SecretKey KEY;

private IvParameterSpec IV;

@Override

protected void setup(Context context) throws IOException,

InterruptedException, UnsupportedEncodingException {

readKey("key.dat", FileSystem.get(context.getConfiguration

()));

}

// Finds difference between set A and set B (A - B) and returns a

new list

private static <T> List<T> Difference(Collection<T> A, Collection

<T> B) {

List<T> diff = new ArrayList<>(A);

diff.removeAll(B);

return diff;

}

// Finds the union between two collections and returns a new list

205

private static <T> List<T> union(Collection<T> list1, Collection<

T> list2) {

Set<T> set = new HashSet<>();

set.addAll(list1);

set.addAll(list2);

return new ArrayList<>(set);

}

@Override

protected void cleanup(Context context) throws IOException,

InterruptedException {

if(NotResult.isEmpty()) {

Result.addAll(AndResult);

}

else {

Result.addAll(Difference(AndResult, NotResult));

}

// Find union between the results and or result

if(!OrResult.isEmpty() && OrResult != null) {

Result = union(Result, OrResult);

}

String[] res = new String[Result.size()];

res = Result.toArray(res);

Text[] finalFiles = new Text[Result.size()];

for(int i = 0; i < Result.size(); i++) {

206

finalFiles[i] = new Text(decryptString(Base64.decodeBase64

(res[i]), KEY, IV));

}

context.getCounter(HadoopSearchIndex.OUTPUT_COUNTER.

OUTPUT_RECORDS_COUNTER).setValue(Result.size());

context.write(new IntWritable(Result.size()), new

TextArrayWritable(finalFiles));

}

@Override

public void reduce(IntWritable key, Iterable<TextArrayWritable>

values, Context context) throws IOException,

InterruptedException{

// 1 is not

// 2 is or

// 3 is and

String[] vals;

for(TextArrayWritable value : values) {

vals = value.toStrings();

switch (key.get()) {

case 1:

NotResult.addAll(Arrays.asList(vals));

break;

case 2:

OrResult.addAll(Arrays.asList(vals));

break;

case 3:

207

AndResult.addAll(Arrays.asList(vals));

break;

default:

break;

}

}

}

public void readKey(String path, FileSystem fs) throws

FileNotFoundException, IOException{

FSDataInputStream stream = fs.open(new Path(path));

int keySize = (int) fs.getFileStatus(new Path(path)).getLen()

- 16;

try {

byte[] key = new byte[keySize];

byte[] iv = new byte[16];

stream.read(key, 0, keySize);

stream.read(iv, 0, 16);

KEY = new SecretKeySpec(key, 0, keySize, "AES");

IV = new IvParameterSpec(iv);

} finally {

stream.close();

}

}

private static byte[] encrypt(byte[] plainText, SecretKey Key,

IvParameterSpec iv) throws Exception {

208

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.ENCRYPT_MODE, Key, iv);

return cipher.doFinal(plainText);

}

public static byte[] encryptString(String plain, SecretKey Key,

IvParameterSpec iv){

try {

byte[] cipher = encrypt(plain.getBytes(), Key, iv);

return cipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return new byte[1];

}

public static byte[] hashBytes(byte[] data) throws

NoSuchAlgorithmException {

MessageDigest digest = MessageDigest.getInstance("SHA-256");

byte[] hash = digest.digest(data);

return hash;

}

public static String decryptString(byte[] cipher, SecretKey Key,

IvParameterSpec iv){

try {

byte[] decrypted = decrypt(cipher, Key, iv);

209

String decipher = new String(decrypted);

return decipher;

} catch(Exception e) {

System.err.println(e.getMessage());

}

return "";

}

private static byte[] decrypt(byte[] cipherText, SecretKey Key,

IvParameterSpec iv) throws Exception{

Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5PADDING");

cipher.init(Cipher.DECRYPT_MODE, Key , iv);

return cipher.doFinal(cipherText);

}

}

/*

* HashFiles.java

*/

package hashfiles;

import java.io.BufferedReader;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.BooleanWritable;

210

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.util.GenericOptionsParser;

// driver class for MapReduce disk search application

public class HashFiles {

public enum OUTPUT_COUNTER {

OUTPUT_RECORDS_COUNTER

};

public static void readHashes(String hashFile, Configuration conf

) throws FileNotFoundException, IOException{

try(BufferedReader buf = new BufferedReader(new FileReader(

hashFile))) {

int numHashes = Integer.parseInt(buf.readLine());

conf.setInt("NumHashes", numHashes);

for(int i = 0; i < numHashes; i++) {

conf.set("hash" + i, buf.readLine());

}

}

}

public static void main(String[] args) {

try {

Configuration conf = new Configuration();

211

String[] Args = new GenericOptionsParser(conf, args).

getRemainingArgs();

conf.set("mapreduce.map.output.compress", "true");

conf.set("mapred.map.output.compress.codec", "org.apache.

hadoop.io.compress.SnappyCodec");

conf.set("mapreduce.output.fileoutputformat.compress", "

false");

if(Args.length < 3) {

System.err.println("Usage: Search <hashes> <in> <out>")

;

System.exit(2);

}

readHashes(Args[0], conf);

Job job = Job.getInstance(conf);

job.setJobName("Search Disk");

job.setJarByClass(HashFiles.class);

job.setMapperClass(HashFilesMapper.class);

job.setReducerClass(HashFilesReducer.class);

job.setInputFormatClass(WholeFileInputFormat.class);

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(Text.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(BooleanWritable.class);

FileInputFormat.addInputPath(job, new Path(Args[1]));

FileOutputFormat.setOutputPath(job, new Path(Args[2]));

job.waitForCompletion(false);

212

System.out.println((job.getFinishTime() - job.getStartTime

())/1000 + "," + job.getCounters().findCounter("

hashfiles.HashFiles$OUTPUT_COUNTER", "

OUTPUT_RECORDS_COUNTER").getValue());

System.exit(1);

} catch (IOException | IllegalStateException |

IllegalArgumentException | InterruptedException |

ClassNotFoundException e) {

System.out.println(e.getMessage());

}

}

}

/*

* WholeFileInputFormat.java

*/

package hashfiles;

import java.io.IOException;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.mapreduce.JobContext;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.io.IOUtils;

213

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.InputSplit;

import org.apache.hadoop.mapreduce.RecordReader;

import org.apache.hadoop.mapreduce.TaskAttemptContext;

import org.apache.hadoop.mapreduce.lib.input.FileSplit;

// custom input format that reads chunks whole

public class WholeFileInputFormat extends FileInputFormat<Text, Text

> {

@Override

protected boolean isSplitable(JobContext context, Path filename)

{

return false;

}

@Override

public RecordReader<Text, Text> createRecordReader(

InputSplit inputSplit, TaskAttemptContext context)

throws IOException,

InterruptedException {

WholeFileRecordReader reader = new WholeFileRecordReader()

;

reader.initialize(inputSplit, context);

return reader;

}

214

public class WholeFileRecordReader extends RecordReader<Text,

Text> {

private FileSplit split;

private Configuration conf;

private final Text currKey = new Text();

private final Text currValue = new Text();

private boolean fileProcessed = false;

@Override

public void initialize(InputSplit split, TaskAttemptContext

context)

throws IOException, InterruptedException {

this.split = (FileSplit) split;

this.conf = context.getConfiguration();

}

@Override

public boolean nextKeyValue() throws IOException,

InterruptedException {

if (fileProcessed) {

return false;

}

currKey.set(split.getPath().getName());

int fileLength = (int) split.getLength();

byte[] result = new byte[fileLength];

FileSystem fs = FileSystem.get(conf);

FSDataInputStream in = null;

215

try {

in = fs.open(split.getPath());

IOUtils.readFully(in, result, 0, fileLength);

currValue.set(result, 0, fileLength);

} finally {

IOUtils.closeStream(in);

}

this.fileProcessed = true;

return true;

}

@Override

public Text getCurrentKey() throws IOException,

InterruptedException {

return currKey;

}

@Override

public Text getCurrentValue() throws IOException,

InterruptedException {

return currValue;

}

@Override

public float getProgress() throws IOException,

InterruptedException {

216

return 0;

}

@Override

public void close() throws IOException {

}

}

}

/*

* HashFilesMapper.java

*/

package hashfiles;

import java.io.IOException;

import java.security.NoSuchAlgorithmException;

import org.apache.commons.net.util.Base64;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.log4j.Logger;

// mapper implementation for MapReduce disk search application

public class HashFilesMapper extends Mapper<Text, Text, Text, Text>{

Logger logger = Logger.getLogger(HashFilesMapper.class);

@Override

protected void map(Text key, Text value, Context context) throws

IOException, InterruptedException {

try {

217

byte[] hash = Base64.encodeBase64(AES.hashBytes(value.

getBytes()));

context.write(key, new Text(new String(hash)));

} catch (NoSuchAlgorithmException ex) {

//

}

}

}

/*

* HashFilesReducer.java

*/

package hashfiles;

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.io.BooleanWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.log4j.Logger;

// reducer implementation for MapReduce disk search application

public class HashFilesReducer extends Reducer<Text, Text, Text,

BooleanWritable> {

218

List<String> hashes = new ArrayList<>();

Map<String, Boolean> hashmap = new HashMap<>();

Logger logger = Logger.getLogger(HashFilesReducer.class);

@Override

protected void setup(Context context) {

Configuration conf = context.getConfiguration();

int numHashes = conf.getInt("NumHashes", 0);

for(int i = 0; i < numHashes; i++) {

hashes.add(conf.get("hash" + i));

hashmap.put(conf.get("hash" + i), false);

}

}

@Override

protected void cleanup(Context context) throws IOException,

InterruptedException{

for(String hash : hashmap.keySet()) {

if(hashmap.get(hash)) context.getCounter(HashFiles.

OUTPUT_COUNTER.OUTPUT_RECORDS_COUNTER).increment(1);

context.write(new Text(hash), new BooleanWritable(hashmap.

get(hash)));

}

}

@Override

public void reduce(Text key, Iterable<Text> values, Context

context) throws IOException, InterruptedException {

219

for(Text value : values){

for(String hash : hashmap.keySet()) {

if(!hashmap.get(hash)) {

if(hash.equals(value.toString())) {

hashmap.replace(hash, true);

break;

}

}

}

}

}

}

220

REFERENCES

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei

Zaharia. A View of Cloud Computing. Communications of the ACM, 53(4):50–58,

2010.

[2] S. Subashini and V. Kavitha. A survey on security issues in service delivery models of

cloud computing. Journal of Network and Computer Applications, 34(1):1–11, 2011.

[3] Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud computing security issues.

Future Generation Computer Systems, 28(3):583–592, 2012.

[4] Diogo A. B. Fernandes, Liliana F. B. Soares, João V. Gomes, Mário M. Freire, and

Pedro R. M. Inácio. Security issues in cloud environments: a survey. International

Journal of Information Security, 13(2):113–170, 2014.

[5] Egemen K. Çetinkaya. A Brief Review of Security in Emerging Programmable

Computer Networking Technologies. IEEE-HKN Bridge Magazine, 112(2):27–34,

May 2016.

[6] Jose Moura and David Hutchison. Review and analysis of networking challenges

in cloud computing. Journal of Network and Computer Applications, 60:113–129,

January 2016.

[7] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner, Markus Huber, and

Edgar Weippl. Dark Clouds on the Horizon: Using Cloud Storage As Attack Vector

and Online Slack Space. In Proceedings of the 20th USENIX Conference on Security,

pages 1–11, San Francisco, CA, August 2011.

[8] DropShip. https://github.com/driverdan/dropship, 2011.

221

[9] Siani Pearson andAzzedineBenameur. Privacy, Security andTrust IssuesArising from

Cloud Computing. In Proceedings of the Second IEEE International Conference on

Cloud Computing Technology and Science (CloudCom), pages 693–702, Indianapolis,

IN, November 2010.

[10] Lori M. Kaufman. Data Security in the World of Cloud Computing. IEEE Security

Privacy, 7(4):61–64, July 2009.

[11] Mortada A. Aman and Egemen K. Çetinkaya. Towards Cloud Security Improvement

with Encryption Intensity Selection. In Proceedings of the 13th IEEE/IFIP Interna-

tional Conference on the Design of Reliable Communication Networks (DRCN), pages

55–61, Munich, March 2017.

[12] Mortada A. Aman and Egemen K. Çetinkaya. DSB-SEIS: A Deduplicating Secure

Backup System with Encryption Intensity Selection. In Proceedings of the 4th ACM

PODC Workshop on Distributed Cloud Computing (DCC), Chicago, IL, July 2016.

[13] Yujuan Tan, Hong Jiang, Dan Feng, Lei Tian, Zhichao Yan, and Guohui Zhou. SAM:

A Semantic-Aware Multi-tiered Source De-duplication Framework for Cloud Backup.

In Proceedings of the 39th International Conference on Parallel Processing (ICPP),

pages 614–623, San Diego, CA, September 2010.

[14] Yinjin Fu, Hong Jiang, Nong Xiao, Lei Tian, and Fang Liu. AA-Dedupe: An

Application-Aware Source Deduplication Approach for Cloud Backup Services in

the Personal Computing Environment. In Proceedings of the IEEE International Con-

ference on Cluster Computing (CLUSTER), pages 112–120, Austin, TX, September

2011.

[15] WikiMedia Dump. https://dumps.wikimedia.org/enwiki/latest/, 2017.

[16] CloudLab. http://cloudlab.us/, 2017.

222

[17] OpenStack. https://www.openstack.org/, 2017.

[18] Andrei Z. Broder. Some applications of Rabin’s fingerprintingmethod, pages 143–152.

Springer New York, New York, NY, 1993.

[19] Yujuan Tan, Hong Jiang, Dan Feng, Lei Tian, and Zhichao Yan. CABdedupe: A

Causality-Based Deduplication Performance Booster for Cloud Backup Services. In

Proceedings of the IEEE International Parallel Distributed Processing Symposium

(IPDPS), pages 1266–1277, Anchorage, AK, May 2011.

[20] Jian Liu, N. Asokan, and Benny Pinkas. Secure Deduplication of Encrypted Data

Without Additional Independent Servers. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security (CCS), pages 874–885, Den-

ver, CO, October 2015.

[21] João Paulo and José Pereira. A Survey and Classification of Storage Deduplication

Systems. ACM Computing Surveys, 47(1):11:1–11:30, July 2014.

[22] Dropbox. https://www.dropbox.com/, 2017.

[23] Google Drive. https://www.google.com/drive/, 2017.

[24] SipderOak One. https://spideroak.com/solutions/spideroak-one, 2017.

[25] Amazon S3. https://aws.amazon.com/s3/, 2017.

[26] Box. https://www.box.com/, 2017.

[27] Apple iCloud. http://www.apple.com/icloud/, 2017.

[28] Microsoft Cloud. https://cloud.microsoft.com/, 2017.

[29] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. Cumulus: Filesystem

Backup to the Cloud. ACM Transactions on Storage (TOS), 5(4):14:1–14:28, Decem-

ber 2009.

223

[30] Bacula. http://www.bacula.org/, 2017.

[31] Arthur Rahumed, Henry C. H. Chen, Yang Tang, Patrick P. C. Lee, and John C. S.

Lui. A Secure Cloud Backup System with Assured Deletion and Version Control. In

Proceedings of the 40th International Conference on Parallel Processing Workshops

(ICPPW), pages 160–167, Taipei City, September 2011.

[32] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL) Protocol Version

3.0. RFC 6101 (Historic), August 2011.

[33] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.

RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176,

7465.

[34] E. Rescorla. HTTP Over TLS. RFC 2818 (Informational), May 2000. Updated by

RFCs 5785, 7230.

[35] Seny Kamara and Charalampos Papamanthou. Parallel and Dynamic Searchable

Symmetric Encryption. In Proceedings of the International Conference on Financial

Cryptography and Data Security (FC), pages 258–274, Okinawa, April 2013.

[36] Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick P. C. Lee, and Wenjing Lou. A Hybrid

Cloud Approach for Secure Authorized Deduplication. IEEE Transactions on Parallel

and Distributed Systems, 26(5):1206–1216, May 2015.

[37] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon,

Ryusuke Masuoka, and Jesus Molina. Controlling Data in the Cloud: Outsourc-

ing Computation without Outsourcing Control. In Proceedings of the ACMWorkshop

on Cloud Computing Security (CCSW), pages 85–90, Chicago, IL, November 2009.

224

[38] Dan Boneh and Brent Waters. Conjunctive, Subset, and Range Queries on Encrypted

Data. In Proceedings of the 4th Theory of Cryptography Conference (TCC), pages

535–554, Amsterdam, February 2007.

[39] Tingjian Ge and Stan Zdonik. Answering Aggregation Queries in a Secure System

Model. In Proceedings of the 33rd International Conference on Very Large Data

Bases (VLDB), pages 519–530, Vienna, September 2007.

[40] Bharath K. Samanthula, Yousef Elmehdwi, Gerry Howser, and Sanjay Madria. A

Secure Data Sharing and Query Processing Framework via Federation of Cloud Com-

puting. Information Systems, 48:196–212, March 2015.

[41] Eu-Jin Goh. Secure Indexes. Cryptology ePrint Archive, Report 2003/216, 2003.

[42] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable Sym-

metric Encryption: Improved Definitions and Efficient Constructions. Journal of

Computer Security, 19(5):895–934, 2011.

[43] M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. On-line Ciphers and the

Hash-CBC Constructions. Journal of Cryptology, 25(4):640–679, October 2012.

[44] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser,

and Kan Yasuda. Parallelizable and Authenticated Online Ciphers. In Proceedings of

the 19th International Conference on the Theory and Application of Cryptology and

Information Security, pages 424–443, Bengaluru, December 2013.

[45] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu,

andMichael Steiner. Highly-Scalable Searchable Symmetric Encryption with Support

for BooleanQueries. InProceedings of the 33rd Annual Cryptology Conference, pages

353–373, Santa Barbara, CA, August 2013.

225

[46] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-Preserving

Multi-keyword Ranked Search over Encrypted Cloud Data. IEEE Transactions on

Parallel and Distributed Systems, 25(1):222–233, January 2014.

[47] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,

Marcel-Cătălin Roşu, and Michael Steiner. Dynamic Searchable Encryption in Very-

Large Databases: Data Structures and Implementation. Cryptology ePrint Archive,

Report 2014/853, 2014.

[48] Melissa Chase and Emily Shen. Substring-Searchable Symmetric Encryption. Pro-

ceedings on Privacy Enhancing Technologies, 2015(2):263–281, June 2015.

[49] Changhui Hu, Lidong Han, and Siu Ming Yiu. Efficient and secure multi-functional

searchable symmetric encryption schemes. Security and Communication Networks,

9(1):34–42, 2016.

[50] Shuguang Dai, Huige Li, and Fangguo Zhang. Memory leakage-resilient searchable

symmetric encryption. Future Generation Computer Systems, 62:76–84, September

2016.

[51] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on

Large Clusters. Communications of the ACM, 51(1):107–113, January 2008.

[52] Jeffrey Dean and Sanjay Ghemawat. MapReduce: A Flexible Data Processing Tool.

Communications of the ACM, 53(1):72–77, January 2010.

[53] Jens Dittrich and Jorge-Arnulfo Quiané-Ruiz. Efficient BigData Processing inHadoop

MapReduce. Proceedings of the VLDB Endowment, 5(12):2014–2015, August 2012.

226

[54] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos

Kozyrakis. Evaluating MapReduce for Multi-core and Multiprocessor Systems. In

Proceedings of the 13th IEEE International Symposium on High Performance Com-

puter Architecture (HPCA), pages 13–24, February 2007.

[55] Richard McCreadie, Craig Macdonald, and Iadh Ounis. MapReduce indexing strate-

gies: Studying scalability and efficiency. Information Processing and Management,

48(5):873 – 888, 2012.

[56] Robert Ricci, Eric Eide, and the CloudLab Team. Introducing CloudLab: Scientific

Infrastructure for Advancing Cloud Architectures and Applications. The Magazine of

USENIX, 39(6):36–38, December 2014.

[57] Aditya Akella. Experimenting with Next-Generation Cloud Architectures Using

CloudLab. IEEE Internet Computing, 19(5):77–81, 2015.

[58] Chae Hoon Lim and Pil Joong Lee. Another Method for Attaining Security Against

Adaptively Chosen Ciphertext Attacks, pages 420–434. Springer Berlin Heidelberg,

Berlin, Heidelberg, 1994.

[59] Ronald Cramer and Victor Shoup. A Practical Public Key Cryptosystem Provably

Secure against Adaptive Chosen Ciphertext Attack, pages 13–25. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1998.

227

VITA

Mortada Aman was born in Qatif, Saudi Arabia. He developed a passion for

technology as he was growing up. He knew early in his life that he would like to pursue a

career in computers. In his last year of high school, he decided to attendMissouri University

of Science and Technology for a Bachelor of Science in Computer Engineering.

After graduating in December 2015, he enrolled in Missouri University of Science

and Technology’s computer engineering Master of Science program. During his studies,

he worked as graduate research and teaching assistant at the Electrical and Computer

Engineering department at Missouri S&T. He received his Master of Science in computer

engineering from Missouri S&T in December 2017. Upon graduation, he will work for

Cerner Corporation.

	Analysis of outsourcing data to the cloud using autonomous key generation
	Recommended Citation

	tmp.1517861532.pdf.IzYmh

