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ABSTRACT

Accurately detecting and classifying vesicle-plasma membrane fusion events in flu-

orescence microscopy, is of primary interest for studying biological activities in a close

proximity to the plasma membrane. In this paper, we present a novel Gaussian mixture

model for automated identification of vesicle-plasma membrane fusion and partial fusion

events in total internal reflection fluorescence microscopy image sequences. Image patches

of fusion event candidates are detected in individual images and linked over consecutive

frames. A Gaussian mixture model is fit on each image patch of the patch sequence with

outliers rejected for robust Gaussian fitting. The estimated parameters of Gaussian func-

tions over time are catenated into feature vectors for classifier training. Applied on three

challenging datasets, our method achieved competitive results on detecting and classifying

fusion events compared with two state-of-the-art methods.
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1. INTRODUCTION

Vesicle exocytosis is an essential cellular trafficking process, by which materials

(e.g., transporters, receptors and enzymes) are transported from one membrane-bounded

organelle to another or to the plasma membrane for growth and secretion. Vesicle exocyto-

sis needs to be highly regulated as the dysregulation of it is related to many human diseases

(e.g., neurodegenerative disease, cancer and diabetes, etc. [1]). Total Internal Reflection

Fluorescence (TIRF) microscopy is a powerful tool for visualization and analysis of vesicle

exocytosis; it selectively records the dynamics of vesicle traffic near the bottom of plasma

membrane, with superb spatial resolution. A pH-sensitive mutant of GFP, pHluorin, is

widely used in visualization of single vesicle lumen. When a vesicle is exposed to extra-

cellular neutral environment as the vesicle fuses with the plasma membrane, it becomes

brightly fluorescent. The vesicle’s three-stage movement is shown in Fig.1.1. In stage 1,

vesicles move towards the cell membrane. In the stage 2 and stage 3, by the stimulation of

insulin, some vesicles fuse on the cell membrane with a visible “explosion” phenomenon

(called “puff”), which are considered as a significant feature of full fusion events. Other

vesicles undock the cell membrane and suddenly move out of the view, which are consid-

ered as partial fusion events.

1.1. RELATED WORK

A typical TIRF image sequence might consist of hundreds of frames with hun-

dreds of vesicles. Manual analysis is very time-consuming, even for experienced biolo-

gists. When computer-based microscopy image analysis is used to relieve human from the

tedious manual labelling [2, 3], it is unsurprising that the uncontrollable noise interference
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Figure 1.1. The movement process of vesicles and their related fusion events.

of TIRF images and the high variability of fusion events’ size, duration and maximum

intensity hinder the automated image processing.

An automated method to identify full fusion events was proposed in [4], which uses

a local maximal detector to search fusion event patches, then connects detected patches

in the same position as patch sequences. If the total patch intensity increases within 1

second, while the patch’s peak intensity decreases during the same time window, then this

patch sequence is considered as a full fusion event. However, local maximal detector is

sensitive to intensity variation caused by background fluctuation inside the cell, which may

generate many false positive detections (Fig.1.2(a)). The fusion event patch detection may

be affected by moving objects too (Fig.1.2(c)). Lorenz et al.[5] proposed a method to

detect pixels with local maximal/minimal intensity in each frame. For each detected pixel,

a diffusion model is developed to analyze the quantity of local maximal pixels and the local

minimal pixels happened at this pixel’s position, in a time window. The diffusion model

method effectively distinguished full fusion events from non fusion regions, leaving a large

amount of partial fusion events unrecognized. A Gaussian model was used to fit fusion

events in [6]. The standard deviation in the Gaussian model is used to classify fusion
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Figure 1.2. Examples of major challenges of fusion event detection.

events, assuming full fusion events have greater standard deviation than the partial fusion

events. However, fusion events generally have large variation on its blob sizes spatially and

temporally (Fig.1.2(b)).

1.2. OUR PROPOSAL

In our work, an adaptive detection method based on local contrast is proposed first

for searching potential fusion event patches in each frame. Then, a tracking method is

developed to link detected patches over consecutive frames into patch sequences as the

fusion event candidates. Thirdly, a mixture of Gaussian functions are fit on each patch of

the patch sequence with Random Sample Consensus algorithm to remove outliers during

the Gaussian fitting. Finally, the patch sequences are aligned with the same time length and

a feature vector is extracted from a series of Gaussian functions fit on the patch sequence,

based on which a Support Vector Machine classifier is trained to classify the patch sequence

into one of three classes: full fusion, partial fusion or non-fusion event.
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2. DETECTION OF FUSION EVENT CANDIDATES

During the 3-stage vesicle movement in Fig.1.1, vesicles intend to halt at a position

near the cell membrane for a few seconds before they either fuse or undock. This visible

phenomenon is perceived as a process of intensity changes which suddenly appears in the

image and then disappears either gradually (full fusion) or all in a sudden (partial fusion).

In this process, the high local contrast is a significant feature to recognize fusion events,

which is visible in the stage 2 or 3. According to these observation, we propose a local

contrast detector to detect potential fusion event image patches frame-by-frame, and then

the detected patches are tracked/linked over consecutive frames into patch sequences as the

fusion event candidates.

2.1. DETECT POTENTIAL FUSION EVENT IMAGE PATCHES

During the stage 2 and 3 of a vesicle fusion event, the intensities of pixels around the

vesicle location increase. Thus, finding local intensity maximums has been used to detect

image patches as the candidates of fusion events [4, 6]. However, due to the illumination

variation and intensity fluctuation of background pixels, the local maximal method may

find many false positives (Fig.2(a)). Instead, we use a local contrast detector to detect

image patches of fusion event candidates. If a pixel’s intensity value, I(p), is more than γ

times of the maximal intensity value among the pixels which are away from pixel p by a

radial distance r, then pixel p is detected as a high contrast pixel. After detecting all pixels

with high contrast, those pixels which are close to each other are clustered together into a

group and an image patch around the group centroid is extracted as a fusion event candidate

in the current image I.
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2.2. LINK POTENTIAL FUSION EVENT IMAGE PATCHES

Figure 2.1. The method to link image patches into fusion event candidates.

After the frame-by-frame detection, all detected potential fusion event patches are

stored in a matrix V with the size of P× 3 where P is the number of candidate patches

in the image sequence and each row of V stores the spatial location and timestamp of a

patch. V stores the patches of the 1st frame, then the 2nd frame and so on. We propose

a five-step approach to link the patches into patch sequences over time, as illustrated in

Fig.2.1. The 1st step starts from picking the first patch in V as the initial potential vesicle

and the frame in which it appears is the initial frame. The 2nd step is to search in the

next N frames for other fusion event candidate patches around the initial patch. In the 3rd

step, we connect candidate patches from the initial frame to the last frame in the N frames

which contains a candidate patch. During this connection, patches missed in some frames

can be supplemented by extracting patches around interpolated positions. In the 4th step,

the last connected patch will be the new initial vesicle, then the 2nd step and 3rd step are

repeated until there is no potential patches in the next N frames. In the 5th step, we search
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the missing patches from the previous H frames and the next T frames of the fusion event

candidate using a lower threshold γ in the local contrast detector.1 Thurs, a complete set of

image patches are linked to form a fusion event candidate (Fig.3(d)). All image patches in

this fusion event candidate will be deleted from V, and the five steps are repeated until V is

empty.

1We set the detector threshold γ = 1.3 for the frame-by-frame detection, and γ is lowered to 1.1 for
detecting missing patches in the 5th step. Since fusion events tend to have a quick appearance at the end of
stage 1, but a relatively longer period to fade away in stage 3, we set H = 5 for head frames and T = 10 for
tail frames. The parameters can also be learned by cross-validation.
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3. GAUSSIAN MIXTURE MODEL FOR CLASSIFICATION

The pixel intensity values in a fusion event have been modeled by a 2D Gaussian

model in [6, 7]. However, the pixel intensity in a fusion event may be complicated such that

a single Gaussian is not accurate enough to model it, thus a mixture of Gaussian might be a

good solution. Furthermore, fitting a Gaussian model on observed data is very sensitive to

outliers, so a robust mechanism is required to avoid outlier pixels with undesired intensity

fluctuation.

In this paper, the region-of-interest of each fusion event is defined by a “peak area”

and a “flat area” as shown in Fig.4.1. The “peak area”, denoted as Areap, is a 5×5 neigh-

borhood which is centered by the highest intensity pixel of the impulse. The “flat area”,

denoted as Area f is a 13×13 neighborhood surrounding Areap. In the Gaussian mixture

model, two center-surround 2D Gaussian models will fit the pixel values in Areap and

Area f , respectively. Meanwhile, to avoid the outlier effect, a Random Sample Consensus

(RANSAC) algorithm is adopted to estimate the parameters of Gaussian models robustly.

Figure 3.1. The region-of-interest of a fusion event consists of a “peak area” and “flat area”.
In stage 2 and stage 3, fusion spreads into the “flat area”
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3.1. 2D GAUSSIAN MODEL FITTING

We define our 2D Gaussian function as

I(x,y) = λexp(−x2 + y2

2σ2 )+β (3.1)

where I(x,y) is the intensity value at the position (x,y). Note that λ is not necessarily to

be 1
2πσ2 since we model the pixel intensities by a Gaussian function rather than a Gaussian

probability distribution. We further simplify Eq.3.1 by defining α =− 1
2σ2 , thus

I(x,y) = λexp(α(x2 + y2))+β . (3.2)

β is computed as the minimum of pixel values. For example, when fitting the

Gaussian function to the peak or flat area,

β = min
m∈Areap/ f

{Im}. (3.3)

Suppose M pixels are selected from the peak area to fit its Gaussian function, the following

cost function is defined to estimate λ and α for the peak area:

L(λ ,α) =
M

∑
m=1

[log(Im−β )− log(λ exp(α(x2
m + y2

m)))]
2 (3.4)

Taking the partial derivatives regarding to λ , α and setting them to zero lead to

α =
M ∑

M
m=1(x

2
m + y2

m)log(Im−β )− (∑M
m=1(x

2
m + y2

m))(∑
M
m=1 log(Im−β ))

M ∑
M
m=1(x2

m + y2
m)

2− (∑M
m=1(x2

m + y2
m))

2
(3.5)

λ = exp(
∑

M
m=1 log(Im−β )−α ∑

M
m=1(x

2
m + y2

m)

M
) (3.6)

Similarly, the 2D Gaussian fitting procedure can be applied to the flat area.
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3.2. RANSAC ALGORITHM TO AVOID OUTLIERS DURING GAUSSIAN FIT-
TING

When fitting Gaussian functions in the peak and flat areas, the outlier pixels from

background may bias the parameter estimation largely. Especially, Area f is a relatively

larger area in TIRF images compared to Areap, therefore it may contain more pixels which

are interfered by pixel intensity noise. In some cases, the positions of multiple fusion

events are very close such that the Area f of them may overlap, which will also challenge

the compatibility of the Gaussian mixture model we proposed. To avoid these interferences,

we apply the Random Sample Consensus (RANSAC) method to estimate the optimal λ , α

and β of Eq.3.2 in Algorithm 1.

Algorithm 1 Gaussian fitting with Random Sample Consensus.
Require:

Maximum iterations K, Areap/ f , distance threshold T ;
Ensure:

1: while Iteration less or equal to K do
2: Randomly pick 4 pixels in Areap/ f ;
3: Estimate λ , α and β by Eq.3.6, Eq.3.5 and Eq.3.3, respectively;
4: Compute all pixel intensities in Areap/ f by Eq.3.2: Îm;
5: Count the number of inliners (those pixels with (Im− Îm)

2 < T );
6: end while
7: Output the optimal λ , α and β with the maximal number of inliners;

3.3. FEATURE EXTRACTION FROM GAUSSIAN MODELS FOR CLASSIFICA-
TION

Since the fusion event candidates (represented as image patch sequences) may have

different time lengths, we need to align the patch sequences and cut/append them with

the same time length in order to have comparable feature vectors. The alignment process

is illustrated in Fig.3.2. For each fusion event candidate, the maximum intensity value

of each image patch is computed and the maximums of all image patches of this fusion
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event candidate formulate a time-series signal, whose climax moment (t∗) is selected as the

time instant to align the fusion event. We extract features from each image patch in the

temporal sliding window [t∗−Fh, t∗+Ft ], where Fh = 10 and Ft = 20 in our experiments.

For fusion event candidates whose time lengths are shorter than the sliding window, we will

zero-padding them to have the sliding window of [t∗−Fh, t∗+Ft ], while the fusion event

candidates with longer time lengths will be fit into the time length by dropping frames

exceeding the temporal sliding window.

Figure 3.2. Feature vector alignment process.

For each patch, we obtain a 1× 6 feature vector, including the λ , α and β from

both peak area and flat area. The feature vectors of all image patches in a fusion event

candidate are catenated sequentially, so the length of our feature vector for a fusion event

candidate is 6∗ (Fh +Ft +1), based on which we train a Support Vector Machine classifier

to classify the fusion event candidate into one of three classes: full fusion, partial fusion,

or non-fusion.
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4. RESULT

Three datasets were captured for the experiments, each of which consists of 300

images. The ground truth was provided by an experienced cell biologist working in the

field of vesicle trafficking analysis in TIRF microscopy. The comparison between our

method, denoted as G.M.M, with RANSAC and without RANSAC, denoted as G.M.M w/o

RANSAC, was tested in Dataset 1, with the results shown in Table 1. By avoiding outliners

during the Gaussian fitting, our method effectively improve the classification accuracy on

both full and partial fusion events.

Table 4.1. The comparison of four methods on dataset 1.

Dataset 1
Full Fusion Partial Fusion

Precision Recall F Score Precision Recall F Score
G.M.M 89.2% 91.7% 90.4% 89.3% 83.3% 86.2%

G.M.M w/o RANSAC 85.3% 80.6% 82.9% 78.1% 83.3% 80.6%
S.G.M.[3] 79.5% 86.1% 82.7% 78.6% 73.3% 75.9%
Int.V.[2] 64.4% 80.6% 71.6% n/a n/a n/a

We also compare our method with the single Gaussian model method [6] (denoted

as S.G.M.) and intensity-variance-based method [4] (denoted as Int.V.) in all three datasets,

Figure 4.1. Classification examples of our method on three datasets (yellow: partial fusion;
red: full fusion).
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Table 4.2. The comparison of four methods on dataset 2.

Dataset 2
Full Fusion Partial Fusion

Precision Recall F Score Precision Recall F Score
G.M.M 93.3% 89.4% 91.3% 80.0% 91.0% 85.1%

S.G.M[3] 80.4% 78.8% 79.5% 70.8% 77.3% 73.9%
Int.V.[2] 71.4% 74.5% 72.9% n/a n/a n/a

Table 4.3. The comparison of four methods on dataset 3.

Dataset 3
Full Fusion Partial Fusion

Precision Recall F Score Precision Recall F Score
G.M.M. 68.2% 71.4% 69.8% 62.5% 71.4% 66.7%

S.G.M.[3] 60.9% 66.7% 63.7% 50% 57.1% 53.3%
Int.V.[2] 53.8% 66.7% 59.6% n/a n/a n/a

with the results shown in Tables (1-3), respectively. All parameters in algorithms of [4] and

[6] are optimized to ensure they can achieve the best results in our datasets. Compared to

the single Gaussian model method [6], our method achieves better classification results for

both full fusion events and partial fusion events in three tested datasets, which validates

that the Gaussian mixture model has a better compatibility to fusion events than the single

Gaussian model. The algorithm in [4] was developed for full fusion event identification

based on intensity thresholds on multiple low level features, e.g., maximum intensity vari-

ance and total intensity variance. Compared to the algorithm in [4], our proposed method

has a better full fusion classification result, which proves that the feature we extract from

proposed Gaussian mixture model is more effective than low level intensity features. Note

that dataset 3 has very low Signal-Noise-Ratio and the frequent background fluctuation

generates a strong interference on the performance of all methods. The short fusion dura-

tion in dataset 3, which is as short as 3 frames, makes the feature extraction difficult.
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5. CONCLUSION

Accurately detecting and classifying vesicle-plasma membrane fusion events from

TIRF microscopy images is an important research problem on cellular trafficking processes.

We proposed an adaptive detection method based on local contrast to detect image patches

of fusion event candidates in individual frames and developed a tracking method to link

image patches as candidate patch sequences. A center-surround Gaussian mixture model

was proposed to fit the image patch intensity with outliers rejected for robust Gaussian

fitting. A feature vector is extracted from parameters of the series of Gaussian functions fit

on the aligned patch sequence, based on which a SVM classifier is trained. Compared on

three challenging datasets, our method showed promising performance and outperformed

two state-of-the-arts.
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