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ABSTRACT 

Wellbore instability problems play a major rule of increasing nonproductive time 

(NPT) during drilling processes. In most cases, the cost of drilling a well can be reduced 

by designing a suitable operational window using geomechanical models. Several wellbore 

instability problems have been encountered during drilling Nahr Umr Formation in an oil 

field in southern Iraq. These problems include but are not limited to, mechanical stuck, 

caving, and tight holes. Data from twenty vertical wells are investigated to reveal the major 

factors that control the instability problems and to design an optimum mud window. A 

geomechanical model is developed to determine the in-situ stress and induced stresses by 

using numerous field and laboratory data for Nahr Umr Formation. Mohr-Coulomb and 

Mogi-Coulomb failure criteria are used to predict the breakout profile and to estimate the 

optimum mud weight to avoid sticking. Our analysis shows that the majority of wellbore 

instability problems are mainly caused by, rock failure (shear failure) around the wellbore 

due to high stresses and low rock strength, and inappropriate drilling practice with respect 

to the heterogeneity of Nahr Umr Formation. Moreover, the wellbore failure analysis 

demonstrates the necessity of core analyses and field tests such as the triaxial test and the 

mini-frac. test to improve the geomechanical model when studying lithology with high 

heterogeneity. 
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1. INTRODUCTION 

H field is one of the mature oil fields in southern Iraq. It was discovered in 1949 

and went on stream in 1951. The field structure includes four reservoirs: upper sand 

member, Mishrif carbonate, upper and lower sandstone (3rd pay and 4th pay). The 

structural trap of H field is a large gentle anticline oriented north/northwest to 

south/southeast approximately 60 km long and 10-15 km wide. H Field consist of four 

domes divided by saddles; from the northwest to southeast are dome 1, dome 2, dome 3, 

and dome 4. From a genetic point of view, the tectonic deformation of the structure of H 

field are related to the following two reasons: uplift of basement rocks and salt tectonics. 

Dome 1 culmination was formed mainly by salt tectonics, whereas dome 2 culmination 

was formed by uplift of basement rocks. 

Despite the modern advancement and the usage of new technology in the oil and 

gas industry, wellbore instability remains one of the most challenging aspects in terms of 

the cost to drill and complete a well. Eight billion dollars are spent each year due to 

wellbore instability problems (Peng, 2007), causing an increase in the drilling budget by 

10% (Aadnoy, 2003). Therefore, wellbore stability is considered to be one of the major 

stages of well planning and has been studied extensively (Bell, 2003; Bradley, 1979; Ding, 

2011; Zhang et al., 2003; Zhang et al., 2009; Gentzis et al., 2009). 

Wellbore instability is dominated by pore pressure, in-situ stresses, and rock 

strength properties. Prior to drilling a well, the formation is in equilibrium. As soon as the 

drilling starts, the stresses surrounding the wellbore have to take the load that was taken by 

the removed rock. Therefore, the in-situ stresses near the borehole wall will be modified, 

and a stress concentration is present. As a result, the stress concentration will cause a failure 



 

 

2 

in the borehole wall. The basic problem is to be able to identify the reaction of the rock in 

respect to the mechanical loading.  

However, to avoid the borehole failure, an appropriate internal wellbore pressure 

(mud pressure) should be altered to adjust the stress concentration. Moreover, borehole 

orientation with respect to the in-situ stresses should be taken into account to avoid the 

wellbore failure. The drilling mud pressure is the controllable parameter in any drilling 

operation, and it can prevent failure if the pressure is still within the bounds of collapse and 

fracture gradients, in addition to its advantage in eliminating/mitigating the effect of the 

mechanical wellbore failure (Bourgoyne et al., 1986). Drilling mud provides several 

functions, including cooling and lubricating the drilling bit and drill string, transporting 

cutting to the surface, transmitting hydraulic energy to the tools and bit through drilling 

string, and controlling formation pressure. Traditionally, the drilling mud pressure is 

designed to restrain the flow of the formation fluid into the well regardless of the field 

stresses and the rock strength effects. Practically, there is a constant pressure, typically 

100-200 psi or 0.3 to 0.5 lb/gal mud density greater than the formation pore pressure 

(French & McLean, 1992; Awal et al., 2001), between the formation pressure and pore 

pressure to inhibit the flow of the fluid. In general, due to the in-situ stresses, the mud 

pressure required to sustain the wellbore should be greater than the pressure required to 

balance. Hence, better approaches should be used to obtain optimum mud pressure based 

on the accurate estimation of rock properties, stresses around the wellbore, and wellbore 

trajectory to drill a well safely. 

Literature groups wellbore instability failure into mechanical (for instance, high 

stresses, low rock strength, and inappropriate drilling practice) and chemical (due to the 
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interaction between drilling fluid and the rock). In many cases, instability may be occur 

due to a combination of the two failures. Mechanical failures are classified into three 

categories, as shown in Figure 1.1. 

 

 

Figure 1.1. Mechanical wellbore failure. 

 

Hole enlargement, or borehole collapse, happens when the mud weight pressure is 

lower than expected. In other words, the collapse occurs when the stress imposed by 

drilling mud is less than rock the compressive strength. This type of failure called shear 

failure. The symptoms of shear failure are poor cementing, increase in hydraulic 

requirements for effective hole cleaning, and difficulties in run and response of well 

logging tools. Poor cementing can cause sand control problems and influx of the formation 

fluid. Moreover, when the hole starts to collapse, the collapsed rock pieces fall down into 
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the borehole and start to settle on the drill string. This settling prevents the ability to pull 

out the drill string and leads to stuck pipe. As a result, the drilling operations will halt.  

In addition, borehole breakout is known as an enlargement or elongation in the 

wellbore within a particular direction. This enlargement is considered an important 

indicator to predict the orientation of minimum horizontal stress. Practically, the borehole 

enlargement can be predicted by using a 4-6 arm caliper tool, optical imaging log, resistive 

image log, and acoustic image log (Jaeger et al., 2009; Bell & Gough, 1979; Zoback et al., 

1985). Figure 1.2 shows wellbore enlargement pattern via four arm caliper. The four arms 

caliper has four pads in two calipers: pad 1 and 3 are represented by caliper 1 (C1), while 

pad 2 and 4 are represented by caliper 2 (C2). The diameter of the hole can be identified 

from those two calipers. Figure 1.2a shows an in-gauge hole because of the C1 and C2 

have the same reading as bit size. In contrast, Figure 1.2c demonstrates a severe washout 

in the borehole size. This washout is identified through the disparity in C1 and C2 reading.  

 

 

Figure 1.2. Caliper log responses due to wellbore enlargement (Reinecker et al., 

2003) 
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Tight hole or hole sized reduction is a narrowing process of borehole instability. It 

generally occurs by plastic flow of the rock (creep under the overburden effect) and is 

usually encountered in shale, sandstone, and salt sections. The consequences of this 

reduction are increased drag and torque, possible of pipe sticking, and difficult casing 

landing. Repeat reaming operations are required to prevent these consequences.     

Fracturing occurs when the mud weight pressure exceeds the formation fracture 

pressure. The symptoms of hydraulic fracture are lost circulation and well control problems 

(kick and blowout). Lost circulation is illustrated as the invasion of drilling fluid into the 

formation. This invasion will diminish the effect of the applied mud pressure and may 

result in an inflow of formation fluid. Therefore the pore pressure will flow from a high-

pressure zone to a low-pressure zone (loss zone) and cause underground blowout, or kick.  

In order to determine wellbore stresses, the rock strength must be known, an 

appropriate model must be selected, and an accurate rock failure criterion must be chosen. 

The rock strength is an essential parameter in wellbore stability because it shows the 

behavior of the rock when it is under the in-situ stress effects. The rock strength properties 

can be obtained from well logs data and empirical equations (Rahimi, 2014).  

Numerous models have been built to identify the induced stress in a circular well 

and to predict the suitable mud pressure by using failure criteria. Several failure criteria are 

presented with various characteristics, including 2D or 3D criteria. Among the proposed 

models, the linear elastic model is likely the most common approach (in synchronism with 

a linear failure criterion). Frequently, the Mohr-Coulomb failure criterion is the simplest 

and the most practically used in prediction of borehole breakout. This failure criterion was 

built based on the assumption that, at the failure, there is a linear increase between the 
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major,
1

 , and minor, 
2

 , principle stresses. Additionally, Mohr assumes that the 

intermediate principle stress has no effect on rock strength. The Mohr-coulomb criterion 

was found by several researchers as a deficient and conservative estimation of optimum 

mud pressure because the intermediate principle stress may feed rock with additional 

strength. Vernik and Zoback (1992) alluded that the Mohr- Coulomb criterion did not 

provide realistic results when they made their analysis on crystalline rocks. So, they 

recommended using a 3D failure criterion (criterion that accounts the intermediate 

principle stress). In order to meet the needs, Mogi (1971) conducted experimental analyses 

by using triaxial tests carried out on different types of rock. His analysis unveiled the 

influence of 
2

 on the rock strength.  

In this analysis, two failure criteria have been used to predict the proper mud weight in the 

Nahr Umr Formation in southern Iraq. The two failure criteria are Mohr-Coulomb and 

Mogi-Coulomb. 

 

1.1. AN OVERVIEW OF DRILLING CHALLENGES  

It reported that approximately 75% of the drilled formations worldwide are shale 

formations, where 90% of related drilling problems occur (Steiger, 1992). Drilling through 

a 12.25-in. hole section was investigated for twenty vertical wells in a southern Iraqi oil 

field. This investigation reveals that several wellbore instability problems have been 

encountered while drilling that section, such us stuck pipe, partial and total losses, 

sidetrack, hole pack off, and caving Figure 1.3. Some of these problems contributed to the 

NPT by increasing the time of circulation and reaming. The severity of these problems has 

caused, in some cases, several sidetracks in one well and/or losing the well. Moreover, the 
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analysis shows that the majority of instability problems have taken place in Nahr Umr shale 

formation Figure 1.4. A compressive wellbore failure (breakout failure) has been noticed 

as well. This compressive failure considers as the main causes of hole enlargement, stuck 

pipe, poor primary cement jobs, and poor log quality while drilling Nahr Umr Formation.  

 

 

Figure 1.3.Wellbore instability problems in 12.25-in. hole section. 

 

 

Figure 1.4. The NPT during drilling 12.25-in. hole section and the Nahr Umr Formation. 
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Stuck pipe incidents are a major drilling problem in the petroleum industry in terms 

of cost. Historically, about $250 million are spent annually in the Gulf of Mexico and the 

North Sea due to stuck pipe troubles (Howard, J. A., & Glover, S. B. 1994). Stuck pipe is 

defined as the inability to pull out the drilling string due to downhole hitch. Commonly, 

there are two types of sticking pipe: mechanical sticking and differential sticking. 

Mechanical sticking covers several causes in the form of key seating, accumulation of 

drilling cutting due to inadequate hole cleaning, and borehole instability (caving and shale 

creeping).    

Additionally, differential sticking occurs when there is a difference between the 

borehole pressure and the formation pressure. This difference tends to push the drilling 

string toward the formation, especially in front of permeable formations where mud cake 

is present. As a result, the drilling string will be embedded in the mud cake and the pipe 

unable to rotate and move up or down, but free circulation is easily retrieved. The stuck 

pipe problem is shown in Figure 1.5. 

 

 

Figure 1.5.Stuck pipe 
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1.2. DATA UTILIZATION FOR WELLBORE STABILITY ANALYSIS   

Various types of data for twenty vertical wells in the oil field southern Iraq were 

investigated in order to identify the wellbore stability problems and build a comprehensive 

geomechanical model. The following data were used in this analysis. 

1.2.1. Daily Drilling Report.  Several wellbore instability events were identified 

by using daily drilling reports. Problems such as stuck pipe, tight hole, and lost circulation 

were encountered while drilling a 12.25-in hole section. In general, the daily drilling report 

is a summary of daily drilling operations, and it is considered a helpful source in the 

prediction of the rock failure interval. This kind of report has a brief description of bottom 

hole assembly (BHA) profile and bit data in addition to information about the tripping and 

ream operations.  

1.2.2. Daily Mud Reports.   Daily mud reports were employed to estimate the mud 

characteristics, such as mud weight (MW), viscosity, yield point, and solid percent. 

Additionally, these daily mud reports described the daily losses as well as the cutting size.  

1.2.3. Mud Logging Reports.  Mud logging reports were used to predict the 

formation lithology of the interval of interest.  

1.2.4. Final Well Reports.  Final well reports were used to obtain the final 

productive time and NPT. 

1.2.5. Well Logging Data.  Well logging data such as sonic log, density log, and 

porosity log were employed to build a one-dimensional geomechanical model. 

Furthermore, image log and caliper log were used to identify the borehole breakout zone 

and the stress orientation. Pore pressure was predicted by using repeat formation test (RFT) 

for 20 wells. 
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1.3. GEOLOGICAL SETTING  

Iraq is located in the northeastern part of the Arabian Peninsula and embraces the 

northwestern portion of the Arabian Basin and the Zagroes fold. Iraq has a complex 

geological setting with desert in the west and mountains in the North East. In geological 

terms, Iraq is positioned at the transition between the Arabian Shelf in the west and the 

intensely deformed Taurus and Zagros Suture Zones in the north and northeast. The Central 

depression of Iraq is categorized into south east part, which represents the Mesopotamia 

Plain, and the Jezira Plain in the northwest. The Jezira Plain located in the area between 

the Mesopotamian plain and the Euphrates depression of E Syria. The Mesopotamian plain 

(which is dominated in the southern part of Iraq) is bounded by the Euphrates River in the 

west and the Makhul-Hemrin-Pesh-i-Kuh range in the east. The geology of the 

Mesopotamian depression is produced by a complex system of river channels, levees, flood 

plain, marshes, sabkha and deltas, bordered on both sides by alluvial fans. Buday and 

Jassim (1987) pointed out that the Mesopotamian is located in the unstable shelf of the 

Arabian platform and classified it into three subzones. These subzones are the Tigris 

Subzone in the northeast, the Euphrates Subzone in the west, and the Zubair Subzone in 

the south of Iraq. In addition, Jassim and Goof (2006) mentioned that during the Hercynian 

deformation, the Mesopotamian was uplifted, then it subsided during the late Permian 

period.    

Furthermore, the passive margin of Mesopotamian basin was formed by two 

tectonic phases, which are opening and closing phases (Numan, 2000). The opening phase 

illustrates the Permian-Jurassic period and represents the beginning of the Wilson cycle. 

The passive margin in the opening phase started forming when the Iranian and Turkish 

plates separated from the Arabian Plate. This separation caused an opening in the Neo-
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Tethys Ocean. The closing phase was formed in the Cretaceous period and caused a 

reduction in the Neo-Tethys because the plates moved together. Later, the compressive 

forces on the passive margin lead to destroyed the rocks and formed oil traps. As a result, 

a reduction in the Mesopotamian passive margin has been formed.  

According to Jassim and Goff (2006), the development of the Arabian Shelf was 

affected by the movement of the Precambrian basement and tectonism along the Neo 

Tethyan margin. The Arabian Plate is bounded by the passive margins in the west (which 

lies at the spreading ridges of the red sea) and Gulf of Aden in the south. The northern and 

northeastern boundaries are compressional due to the late tertiary collision of the Arabian 

Plate with the Turkish and Iranian Continents. Figure 1.6 shows the Arabian Plate in the 

present time. Some tectonic blocks of the Turkish and Iranian plates (now sutured to the 

Arabian Plate) were originally part of the Arabian Plate in Early-Mid Palaeozoic period. 

They later split off the Arabian Plate and became isolated microcontinents during the 

opening of the Neo-Tethys Ocean. In the Late Precambrian, the Arabian Plate joined the 

Indian and African Plates and formed part of Gondwana. At this time, the Northern 

Gondwana was subjected to an important period of tectonic extension. This extension 

created the NE-SE trending rift basins in southern Arabia (Husseini, 2002) and N-S 

trending grabens and half grabens in western and eastern Arabia (Andrews et al., 1991).  

Tectonically, the Arabian Plate is subducted under the Iranian and Anatolian Plates as a 

result of extensional movement.  

The geology of Iraq has attracted the attention of researchers due to the abundance 

of hydrocarbons. In 2015, the Organization of the Petroleum Exporting Countries 

announced that the Iraq proven reserves reached to 142,503 (billion barrels). With this 
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reservation, Iraq had the second largest reserves in the Middle East and fourth in the world. 

Sharland et al. (2001) alluded that several tectonic periods formed the lithology succession 

in southern Iraq. This succession is called the Palaeozoic Megasequences. One of the 

important Palaeozoic megasequence is the late Tithonian-Early Turonian Megasequence, 

which is formed the middle part of the southern Iraq succession.  

 

 

Figure 1.6. The Arabian Plate (Stern & Johnson, 2010) 

The new Phase of ocean floor spreading in southern Neo Tethys was 

contemporaneous to the deposition of the Late Tithonian-Early Turonian Megasequence. 

This period was deposited in a large intra-shelf basin. The intra-shelf basin axis shifted 

from the Salman zone and western Mesopotamian zone to the eastern Mesopotamian zone 

into the Tigris subzone due to the differential subsidence that occurred across transverse 
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faults and the opening of the Neo-Tethys. Moreover, the Late Tithonian-Early Turonian 

Megasequence was comprised of four sequences: the late Tithonian-Hauterivian and 

Barremian-Aptian sequences (Thamama Group), and the Albian and Cenmanian-Early 

Turonian sequences (Wasi’a Group). During this sequences numerous formations were 

deposited in southern Iraq, such as Sulaiy, Yamama, Ratawi, Zubair, Shuaiba, Nahr Umr, 

and Mauddud. Nahr Umr Formation is the zone of interest and was deposited during the 

lower Cretaceous (upper Aptian-Albian) age, and it is well known due to its wide spread 

across Iraq (Figure 1.7) and for being a significant oil reservoir in southern Iraq (Jassim & 

Goff, 2006). Nahr Umr Formation is a sand-dominated clastic unit in the west and 

southwest and shale dominated toward the eastern parts of Iraq. In addition, the Nahr Umr 

Formation is a lateral equivalent of the Burgan Formation in Kuwait (Douban & Medhadi, 

1999). In southwestern Iran, the formation passes into the shales and limestones of the 

Kazdhumi Formation (Furst, 1970). Additionally, it correlates with the Rutbah sandstone 

of the Palmyrides (Brew et al., 1999) and the Kurnub sandstone penetrated in Risha wells 

of northeastern Jordan.  

Glynn Jones (1948) defined the Nahr Umr Formation based on Nahr Umr structure 

in southern Iraq. According to Bellen et al. (1959), the Nahr Umr Formation in southern 

Iraq is comprised of black shales interbedded with medium-to fine-grained sandstone with 

lignite, amber, and pyrite. Carbonate unit occurs locally in the upper part of this formation 

in southeastern Iraq. The average thickness of Nahr Umr Formation is +/- 260 m (Jassim 

& Goff, 2006). Its porosity ranges from 16 to 23%, and the permeability ranges from 20 to 

3000 md (Aqrawi et al., 2010). The stratigraphic column of H oil field is shown in the 

Figure 1.8. 
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Figure 1.7. Geological map for Nahr Umr Formation (Aqrawi et al., 
2010). The lithology bar on the right shows the rock types that 

comprise Nahr Umr formation in the study area. 
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Figure 1.8. The stratigraphic column of H oil field. 
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1.4. LITERATURE REVIEW 

A better understanding of borehole stability issues is necessary for drilling a well 

under difficult geological conditions. Wellbore instability in shale formation becomes one 

of the critical challenges that affect drilling operations. Problems related to wellbore 

instability are considered as time-and cost-consuming (Meng and Fuh, 2013). Therefore, 

wellbore failure has been studied extensively (Fjaer, 2008; Zoback, 2007). There are 

several factors that are associated with wellbore instability during drilling operation. These 

factors include, but are not limited to, mechanical-induced compaction, chemical effect, 

and well trajectory. Mechanical-induced compaction (mechanical failure) happens when 

the stress around the borehole exceeds the rock strength. On the other hand, chemical effect 

or fluid-rock interaction is another factor that leads to exacerbating the wellbore instability 

due to the reactivation between the drilling mud and the formation (especially shale). 

Additionally, some authors revealed that the weak bedding planes have a significant effect 

on the wellbore stability in an anisotropic formation (anisotropic rock strength can affect 

the stability of wells drilled at particular angles to the bedding planes). Thus, many studies 

are developed and implemented to eliminate/mitigate wellbore stability problems.  

Bradly (1979) developed a theoretical model of the mechanical wellbore instability 

failure to predict hole breakout and induced tensile failure (hydraulic fracturing) and 

estimate optimum mud pressure to avert borehole failure. He pointed out that the model 

can be used in both vertical and directional borehole with a region under normal and 

tectonic conditions.  His results show that the borehole inclination has a significant effect 

on the wellbore failure. For example, he found that the inclined wellbore will fracture by a 

pressure lower than that used in vertical one. Furthermore, he found that increasing 

wellbore inclination requires more mud pressure to prevent wellbore collapse. Also, the 
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results reveal that the borehole direction plays a major role in wellbore stability (especially 

in a tectonically active region).  

Aadnoy and Chenevert (1987) studied the major wellbore instability failure 

mechanism by developing a linear elastic and isotropic model based on data from the U.S. 

Gulf Coast. The objective of their study was to understand the behavior of inclined 

boreholes in shale formation and create quantitative criteria. Their analysis used Von Mises 

and Mohr- Coulomb failure criteria. They found that the collapse failure is caused not only 

by shear failure but also by tensile failure, while fracturing is caused just by tensile failure. 

Furthermore, they pointed out that shear failure combined with tensile failure is the main 

reason behind the collapse failure in low borehole pressure. Additionally, they gave more 

weight on Mohr-Coulomb theory because it showed that the higher borehole inclination 

tends to be more sensitive to collapse, in contrast with Von Mises theory, which showed 

no increase in collapse sensitivity with increasing of borehole inclination. 

Manshad et al. (2014) investigated the wellbore instability in the vertical, 

horizontal, and deviated wellbore by applying analytical and numerical methods for a well 

located in Iran.  The objective of their study was to perform a comparison between four 

rock failure (namely, Mohr-Coulomb, Mogi-Coulomb, Modified Lade, and Tresca yield 

criterion) to estimate the optimum mud weight (to prevent wellbore collapse) and optimum 

drilling trajectory. Also, a finite difference method combined with an elastoplastic model 

has been used for mechanical wellbore stability analysis to show the validation and 

accuracy of the calculated mud pressure. The results illustrated that the Mogi-Coulomb and 

the modified Lade estimate the lowest minimum pressure, whereas the Mohr-Coulomb and 

Tresca criterion showed the highest minimum mud pressure. Furthermore, the minimum 
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mud pressure was obtained for a wellbore with an inclination of 20 degrees; the results 

indicate that the safest drilling direction for that inclination is at an azimuth of 90 degrees, 

which is the direction of minimum horizontal stress.  

Yamamoto et al. (2002) studied the shale instability problems in Zakum field in 

Abo Dhabi. The study included a geomechanical and chemical view. Numerous field data 

were utilized, including drilling data, wireline logging, and well test data, and analysis of 

cutting and cores. Moreover, mineralogical tests and mechanical and chemical 

characteristics for the cutting and cores have been examined. The investigation showed 

that the shale has a severe mechanical strength and anisotropic physical features. Further, 

the authors concluded that the bedding plane failure is the main cause of wellbore 

instability in the laminated shale, and the drilling (mud chemistry) and formation fluid have 

a significant effect on wellbore instability in anisotropic and discontinuous shale.  

Mansourizadeh et al. (2016) applied a comprehensive geomechanical model to 

estimate the in-situ and induced stresses. The purpose of this study was to predict the 

wellbore stability and breakout pressure via vertical and deviated well by utilizing failure 

criteria. The model has been constructed by employing several petrophysical, field data, 

and laboratory tests for one formation located in the southwest of Iran. Mohr-Coulomb (a 

2D linear failure criterion), Hoek-Brown (a 2D nonlinear failure criterion), and Mogi-

Coulomb (3D failure criterion) failure criteria were applied to estimate the breakout 

pressure. Stress transformation equations were used to investigate the effect of azimuth and 

inclination on the breakout pressure in the deviated wells. Their investigation illustrated 

that the Hoek-Brown criterion has more accurate results than the others. As a consequence 

of the sensitivity analysis that was performed for the inclination angle and the azimuth, the 
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authors concluded that the increase in wellbore inclination causes an increase in breakout 

pressure.  

Waragai et al. (2006) presented an operation guideline to eliminate the severity of 

wellbore instability in the Nahr Umr shale formation in the offshore field in UAE after the 

prohibition of using the diesel in water-based drilling mud. A geomechanical model has 

been developed based on the mechanical and chemical analysis; these analyses were 

obtained by employing extensive field data such as open hole logging and core analysis. 

This study found that the Nahr Umr formation consists of laminated shale, the mechanical 

failure was imputed from the mud invasion into a lamination, and effective hole cleaning 

plays a major role especially with a hole angle between 30 and 50 degrees. As a result of 

the guideline implementation no well with sidetracking has been noticed. Based on the 

results they inferred that the guideline works and the wellbore instability problems can be 

mitigated by following it.  

Ruzhnikov (2013) applied several steps to eliminate the shale instability of the 

production section in southern Iraq. These steps included constructing a geomechanical 

model to identify the main problems in the shale formation and find the possible root cause 

of these problems. Furthermore, core analysis, fracture development tests and cation 

exchange capacity (CEC) (to classify shale structure) were performed. Based on the 

analyses, Ruzhnikov proposed a new drilling fluid combined with good drilling practices 

to mitigate the shale instability. He also recommends using inhibitors and sealant 

components to prevent mud invasion into shale micro fractures and decreasing the 

exposure of formation to extravagant equivalent circulating density (ECD) by modifying 

the drilling strategy through shale formation. 
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Han et al. (2009) proposed modified drilling strategies after an investigation and 

ruled out the effect of the several wellbore instability mechanisms such us chemical 

reactions, weak beddings, and overpressure. In his analysis, he focused on fractured shale, 

which he considered as the main factor that causes the wellbore instability in Phu Horm 

field. Several tests have been conducted on a group of caving, includeing thin section, 

ultrasonic, and strength test. The investigation showed the tectonic movement causes an 

extensive fracture in the shale formation. Therefore, he concluded the shale instability 

problems at this area are combination of fractured shale and inappropriate mud weight. 

Finally, LCM and solids have to be added to the drilling mud to avoid mud penetration, 

mitigate swab, and surge operations. Redesign of the bottom hole assembly (BHA) has 

been recommended.  

Alsubaih (2016) applied a geomechanical model to estimate the optimum mud 

pressure while drilling shale formations in southern Iraq. Data from 45 deviated wells have 

been examined to predict the majority of the non-productive time (NPT) in Tanuma shale 

formation. His study shows the most severe problem is stuck pipe, which is a result of 

wellbore shear failure.   

Tutuncu et al. (2006) carried out a case study in terms of borehole stability and risk 

assessment in order to estimate optimum mud weight pressure. His analysis indicates that 

the key process in the success of well planning and avoiding wellbore stability problems 

(stuck pipe, lost circulation, and hole cleaning) is the identification of local and regional 

in-situ stresses in addition to formation lithology. Moreover, he mentioned that the in-situ 

stresses and rock strength properties were calculated by using sonic log and image log data 

along with drilling data. By using drill-cutting data, the hole cleaning parameters and well 



 

 

21 

trajectory were obtained. Furthermore, the study results have been implemented in the well 

design programs for the Amazon Jungle and show a good outcome in terms of reduction 

the amount of NPT. Finally, Tutuncu et al. concluded that the fluid pressures required for 

stable drilling decrease with hole inclination, which means the vertical well tends to use a 

higher mud pressure than the horizontal one.  
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2. THEORY OF ROCK MECHANICS  

In well design, it is crucial to have a good understanding of rock mechanics. The 

design should consider several factors, including the influence of the fluid forces in the 

well and the formation pressure, seismic shock, and the thermal expansions/contractions. 

As well, overburden pressure has to be considered when drilling a deep well. 

Solid engineering is designed under the concept of solid mechanics by employing 

analytical methods with adequate stiffness, strength, stability and integrity. Despite the 

high overlaps between the concepts and analytical methods of solid mechanics and 

continuum mechanics, solid mechanics are widely used across all branches of engineering 

and well design, including drilling, completion, and production (Aadnoy and Looyeh, 

2011). There are two key components in solid mechanics: the internal resistance of an 

object that acts against the effect of external forces (denoted by stress) and the object 

deformation corresponding to external forces (represented by strain). 

 

2.1. STRESS 

In a simple definition, stress was introduced into the theory of elasticity as the force 

per unit area. This area could be an imaginary plane or a surface. Although calculating 

stress may be difficult (due to the amount of algebraic), knowledge about forces and 

tractions are required to understand the stress principles (Twiss and Moores, 2006). Stress 

is defined as 

 𝛔 =
𝐅

𝐀 
 (1) 

where σ is the stress (psi or pa), F is the force (N or lbf), and A is the area (M2 or in2). 
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Since the stress is the force acting on an area, it is therefore independent of the size and 

shape of the body. However, stress is dependent on the orientation. Going even further, 

there are two types of stresses resulting from the equilibrium condition, shown in Figure 

2.1. These stresses are the normal stress (σ), which acts perpendicular to the plane, and the 

shear stress (τ), which acts along the plane. 

 

 

Figure 2.1. The normal stress and the shear stress (Aadnoy and Looyeh, 2011). 

 

2.2. STRESS COMPONENTS 

It is necessary to identify the stresses on the surface in a three-dimensional state to 

get a complete description of the state of stress at a point. Nine different components of 

stress are required to estimate the state of stress at a point, shown in Figure 2.2. The stress 

components are classified into two groups: normal stresses (𝜎𝑥𝑥, 𝜎𝑦𝑦,   and 𝜎𝑧𝑧) and shear 

stresses (𝜏𝑥𝑦, 𝜏𝑥𝑧 , 𝜏𝑦𝑥, 𝜏𝑦𝑧 , 𝜏𝑧𝑥 ,and 𝜏𝑧𝑦).  
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Figure 2.2. State of stress at three-dimensional (Aadnoy and Looyeh, 2011). 

 

The first index in the alluded stress components described the axis normal to the 

plane on which the stress acts, while the second index illustrates the orientation of the stress 

component. The stress matrix of the nine stress components can therefore be expressed as 

 
[𝜎] = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧𝑧

] (2) 

Equation 2.2 is known as stress tensor. 

 

2.3. STRAIN 

The body will undergo displacement and/or deformation as a result of shift and 

deformation when exposed to an external force. Therefore, any point in or out of the body 

will be displaced from its original position. 

Aadnoy (2011) defined the strain as the ratio of the deformation to the original 

dimension. The strain is simply expressed by 
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ɛ =

𝛥𝑙

𝑙𝑜
 (3) 

where ɛ is the strain, 𝑙𝑜 is the original length (m or in), and 𝛥𝑙 is the deformation 

dimension (change in length) (m or in.). This type of deformation is called elongation 

strain.  

When the equation above is no longer valid (in the case of large deformation), two 

large deformations formulas introduced by Almansi and Green, respectively, can be used 

as follows: 

 
ɛ =

𝑙2 − 𝑙𝑜
2

2𝑙2
 

(4) 

 

 ɛ =
𝑙2 − 𝑙𝑜

2

2𝑙𝑜
2

 (5) 

 

2.4. ELASTICITY 

Elasticity is the ability of a material to resist and recover from deformation after the 

external forces are gone. Many materials are subjected to the various types of forces. For 

instance, the formation rocks are exposed to in-situ stresses, pore pressure, and the drilling 

bit force. Therefore, knowledge about the rock characteristics is necessary to avoid any 

deformation and excessive failure. This knowledge is achieved by understanding of the 

stress-strain relationship. 

The theory of elasticity is rests on the concept of stress and strain. Thus, it 

represents the linear relation between the applied force (stress) and the deformation 

produced by that force (strain) for the material which acts partially or entirely elastically. 
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Nevertheless, the stress-strain relation is not always linear due to the diversity of material 

properties and geometry.   

 

2.5. HOOKE’S LAW 

The linear relation between the stress and strain is known as Hooke’s law and 

expressed by 

 𝜎𝑥 = 𝐸ɛ𝑋 (6) 

   

where  σx and ɛX are defined in Equations 1 and 2, respectively, and E is the Young 

modulus or elastic modulus which is a measure of the rock stiffness. In other words, it is 

the resistance of the sample against the uniaxial stress. Young’s modulus can be calculated 

from the slope of the stress-strain diagram as shown in the Figure 2.3 or by the triaxial and 

uniaxial compressive strength test in addition to empirical correlation.  

 

 

Figure 2.3. Stress-strain diagram 

 

Lacy (1997) presented two empirical equation to estimate Young’s Modulus, 

these equations are   

2 .0 4
0 .2 6 5E d v p                                                         (7) 
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2
0 .0 1 8 0 .4 2 2E s E d E d                                                 (8) 

where Ed and Es are the dynamic and static Young Modulus, and Vp is the compressive 

sonic wave.  

 

2.6. POISSON’S RATIO 

Poisson’s ratio (ν) is one of the main mechanical properties used to estimate the 

wellbore stresses. This parameter is defined as the negative ratio of the lateral strain to 

the axial strain where ν is written as 

 
y

x





   (9) 

In addition, many approaches compatible with well logging data have been 

developed to estimate the Poisson’s ratio, such as  
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 

 

 (10) 

where v is the Poisson’s ratio, and Vp and Vs are the compressive and shear sonic wave 

(ft/ms). 

 

2.7. IN-SITU STRESSES 

Any point beneath the surface is subjected to three orthogonal principle stresses. 

These stresses are classified in terms of magnitude and orientation into vertical stress, 

minimum horizontal stress, and maximum horizontal stress. The in-situ stresses are 

generally nonhomogeneous, anisotropic, and compressive (Veatch and Moschovidis, 
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1986). Accordingly, in-situ stress plays a vital role in wellbore construction, planning, 

drilling, completion, production, and simulation of the well. Thus, it is important to have 

full knowledge about the in-situ stresses before performing any failure assessment and rock 

stress analysis. This knowledge could be helpful to understand and estimate the state of 

stress, predict the direction and the magnitude of the principle stresses, identify the 

directions of rock failure, determine the effect of the stresses on drilling and production 

operations, and investigate the main boundary in wellbore analysis (Aadnoy, 2011). 

Despite the significance of in-situ stresses, they have not received much attention. 

Therefore, the lack of data is recompensed by using indirect stress-related information 

(Avasthi et al., 2000).   

Anderson (1951) proposed a fault regime classification for in-situ stress based on 

the ratio of horizontal stress magnitude to vertical stress magnitude. He assumed that no 

shear stress acts on the earth surface. Therefore, he described the normal or extensional 

fault (NF) as
V H h

S S S  , while the strike-slip fault (SS) and reverse fault (RF) regimes 

are associated with 
H v h

S S S   and
H h v

S S S  , respectively. Figure 2.4 illustrates the 

in-situ stress regimes. Moreover, Herget (1988) and Chen et al. (2002) presented the ratio 

of the maximum horizontal stress to minimum horizontal stress /
H h

   as a range from 1 

to 2 and /
h v

    ranges from 0.3 to 1.5.   
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Figure 2.4. In-situ stress regimes (Wikel, 2011) 

 

As illustrated in Figure 2.4, the vertical stress is dominated in the normal fault 

regime; the fault slip takes place when the minimum horizontal stress reaches a relatively 

lower value than vertical stress and pore pressure. When there is a significant difference 

between the maximum horizontal stress and minimum horizontal stress, a strike-slip fault 

will be created.  On the other hand, the reverse fault is induced by the high diversity 

between maximum horizontal stress and vertical stress. Once both horizontal stresses 

exceed the vertical stress, a crustal shortening is accommodated throughout. 
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2.7.1. Vertical Stress.  Vertical stress, also known as overburden stress, is the 

pressure imposed on a point by the weight of overlying formations.  Overburden pressure 

has a direct propagation with the depth due to the increasing of sediments. The vertical 

stress of homogenous formation can be calculated by

 v a
S g z

 
(11) 

where ρa is the average density, g is the acceleration due to gravity, Z is the depth. 

If the density varies with depth, the vertical stress can be estimated by the 

integration of rock densities as 

 
0

( )

z

v
S z g d z   (12) 

where ρ is the bulk density.  

Among the many ways to calculate the bulk density, density logging tools have 

been used extensively (Bell 1990a). The bulk density at any point is considered as a 

combined of matrix density, fluid density, and the porosity of the formation, i.e., 

 
fmb

 )1(
 

(13) 

where ρm is the matrix density, ρf is the fluid density, and  Ø is the porosity of the 

formation. 

Density log is commonly not recorded at shallow depth. Therefore, many empirical 

approaches have been developed and used to obtained rock density at the shallow depth.  

The vertical stress varies linearly with depth when the formations are cemented and 

well-compacted. The average density of sediments ranges between 1.8 and 2.2 g/cm3 and 

the overburden gradient 1 psi/ft (Fjaer et al., 2008).   
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2.7.2. Horizontal Stresses.  Due to the effect of overburden pressure squeezing the 

rock vertically, the rock tends to move horizontally (Aadnoy, 2011). This movement has 

an impact on the horizontal stresses. In isotropic formation with no tectonic activities, 

minimum and maximum horizontal stress tends to be equal in value (i.e., when only 

overburden effect is present). When there are a major fault and tectonic activities, however, 

the horizontal stresses have different values and should be calculated. Hudson and Harrison 

(1997) summarized many direct approaches to estimate the horizontal stresses, including 

four testing techniques: the hydraulic fracture test, the flat jack test, the over-coring gauge 

test by the United States Bureau of Mines (USBM), and the over-coring gauge test by the 

Commonwealth Scientific and Industrial Research Organization (CSIRO). 

However, national and international bodies suggested indirect methods to calculate 

the horizontal stresses; these approaches include acoustic emission, borehole breakouts, 

core discing, and differential strain analysis. 

2.7.2.1 Minimum horizontal stress.  Full knowledge of the orientation and 

magnitude of the horizontal stresses is necessary to find a solution for many geomechanics 

problems. Direct methods such as the leak off test (LOT), the extended leak off test 

(XLOT), and mini-frac. test can be used to obtain the minimum horizontal stress 

(Yamamoto, 2003; Zoback et al., 2003). Hydraulic fracturing is the most accurate 

technique for determining the minimum horizontal stress because it does not require the 

mechanical properties of the rock. The first use of hydraulic fracturing in stress 

measurement was in the 1960s (Haimson & Fairhurst, 1967). However, these tests are 

considered as time-and cost-consuming. Also, it is not routinely performed, and even 

when fulfilled, limited data set can be obtained. Consequently, leak off tests are widely 
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used to predict the minimum horizontal stress (Zoback et al., 1985) and the maximum 

mud pressure to prevent onset of the hydraulic fractures and assess the fracture gradient 

(Engelder, 1993; Jørgensen & Fejerskov, 1998). The LOT procedures are relatively 

simple, while the XLOT tests are more complicated because they include pressurizing 

producers. Practically, the leak off test is conducted after drilling (10-20 ft) below the last 

casing shoe. Once the test is carried out, the well is isolated and fluid (mud) is pumped 

into the well at a constant flow rate. Hence, the pressure is gradually increased, and a 

linear relation between the pressure and time is created as the volume of the borehole is 

fixed. The point where the pressure starts to diverge from the linearity is defined as the 

leak-off point (LOP) or fracture initiation pressure (FIP). Consequently, a hydraulic 

fracture is initiated. At this point and in the case of LOT, the pump is stopped as soon as 

the leak-off point has been clearly identified. However, the pumping will continue beyond 

the LOP point in case of XLOT, as shown in Figure 2.5. Hence, the pressure keeps 

increasing in a low rate until a distinctive pressure drop can be noticed. The pressure at 

this point is called formation breakdown pressure, and it represents the fracture 

propagation from the wellbore area (fluid will drain faster through the fracture more than 

the wellbore, thereby causing the pressure to drop). By keeping pumping with a constant 

rate, the pressure will then drop until it reaches a constant value, called the fracture 

propagation pressure (FPP). Finally, the pump is shut in, and the pressure drops. The 

instantaneous shut-in pressure (ISIP) is the pressure imposed on the wellbore when it is 

closed. ISIP is reported as a better measure of the minimum horizontal principle stress 

because at this point, any pressure associated with friction will vanish (Haimson & 

http://pg.geoscienceworld.org.libproxy.mst.edu/content/8/2/189#ref-6
http://pg.geoscienceworld.org.libproxy.mst.edu/content/8/2/189#ref-10


 

 

33 

Fairhurst, 1967). Additionally, if a viscous fluid is used, the FPP will increase. In such 

cases, the fracture closure pressure (FPP) will be the better measure of .
h

S  

 

 

Figure 2.5. Formation strength tests (FIT, LOT, and XLOT). 

 

Due to unavailability of the field tests, many empirical equations have been 

developed. Hubbert and Willis (1957) developed an empirical equation in the area of 

normal faulting such as the Gulf of Mexico to estimate the minimum horizontal stress as a 

function of vertical stress and pore pressure: 

 0 .3 ( )
h v p p

S S p p    (14) 

where Pp is the pore pressure, and 0.3 is a constant estimated by the hydraulic fracture 

data. 
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Eaton (1969) presented a modified version of the Hubbert and Willis approach; this 

method is derived from the bilateral constraint. He used a variable overburden stress 

gradient and a variable Poisson’s ratio with depth. This approach is used to obtain the 

minimum horizontal stress of the Gulf Coast area, and it may be used in other areas. 

  
1

h v p p
S S p p





 
   

 
 (15) 

By 1982, Breckels and van Eekelen established empirical correlations to estimate 

the minimum horizontal stress as a function of depth. Hydraulic fracture data from 

different areas around the world were employed to derive these correlations. The 

correlations for the US Gulf Coast are 
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where Ph is the hydrostatic pore pressure. 

Based on the frictional strength equilibrium concept, Zoback and Healy (1984) 

came up with newly derived equation after analyzing fluid pressure and in situ stress data 

from the Gulf Coast (Eq. 2.18). Lately, Holbrook (1990) proposed an empirical approach 

based on the porosity (Eq. 2.19). His techniques were based on a force-balance concept.  
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2.7.2.2 Maximum horizontal stress.  The maximum horizontal stress is the most 

challenging parameter to estimate in the stress tensor accurately. There is no direct way to 

predict the value of maximum horizontal stress. As a result, many technical approaches 

have been developed. Addiset et al. (1996) proposed an equation based on the slippage on 

the fault by using the Mohr-Coulomb criterion and the theory of elasticity. Peng (2007) 

proposed an equation based on vertical stress, minimum horizontal stress, and fault regime 

(Eq. 20).  

 * ( )
H v h h

S m S S S  
 

(20) 

where SH is the maximum horizontal stress and m is a constant.  

 

2.8. PORE PRESSURE   

Pore pressure is one of the main factors in geomechanical analysis and petroleum 

production. It has a significant effect on the wellbore stability analysis and the deformation 

around the wellbore (Detournay & Cheng, 1988). Therefore, pore pressure can be defined 

as the pressure induced by the formation fluid. The pore fluid can support part of 

overburden weight while the rest is carried out by the rock grains (Rabia, 1985). 
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Conceptually, the theory of pore pressure prediction relies on Biot’s and Terzaghi’s 

effective stress law (Biot, 1941; Terzaghi et al., 1996). This theory points out that pore 

pressure is a function of effective stress and total stress, i.e. 

 T e

p
P

 






 
(21) 

where 
T

  is the total stress, 
e

  is the effective stress, and   is Biot’s coefficient 

 (  = 1, conventionally). 

The inappropriate prediction of pore pressure can cause a significant NPT during 

the drilling and severe drilling incidents such as kick and blowout. Hence, several models 

have been developed to estimate the pore pressure (Standifird et al. 2004). Furthermore, 

well logs and direct measurements have been used to predict the pore pressure. Direct 

measurement is always applied in the permeable formations by using wireline technology 

such as repeat formation test (RFT) or via the pipe (drill stem test, DST, with packers to 

isolate the formation).  

 

2.9. STRESS DISTRIBUTION AROUND THE WELLBORE IN VERTICAL 

WELLS 

Underground formations undergo to vertical stresses caused by the weight of the 

overlying formation layers, and two horizontal stresses produced by the confining lateral 

restraints, the three stresses known as in-situ stresses. As a result of these in-situ stresses, 

the rock mass is in a balanced (static) state before drilling a borehole. Figure 2.6a 

demonstrates a schematic of stresses around a wellbore in a static state. This static state 

will be alerted and destroyed once the excavation is commenced. By commencing the 

drilling, the stresses are altered and changed due to rock removal; the load of these rocks 
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is carried out by the adjacent rock to readjust the equilibrium and to correspond with the 

new boundary condition at the wellbore. Therefore, the in-situ stresses are modified, as 

shown in Figure 2.6b. Due to the absence of the support pressure, failure at the borehole 

may occur. Maintaining pressure is required to prevent the onset of borehole failure; this 

pressure can be provided by a pressurized fluid called a drilling mud.  

 

 

Figure 2.6. State of stress. a. State of stress at static state, b. State of 

stress at dynamic state.   

 

A constitutive model is required to understand the stresses around a wellbore to 

estimate the possibility of mechanical instability at the borehole. Numerous models have 

been developed. Westergaard (1940) proposed an elasto-plastic model, which is considered 

one of the earliest works in the understanding of the stresses distribution around the 

borehole. Subsequently, many elasto-plastic models have been developed and presented, 

such as Gnirk  (1972), Risnes and Bratli, (1981), Mitchell et al. (1987), and Anthony and 

Crook (2002). The requirement of using fewer input parameters encourages some authors 
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to present a new model. A linear elastic model has been established by Paslay and 

Cheatham (1963), Fairhurst (1965b), Bradley (1979), and Aadnoy (1989b). 

Kirsch (1898) developed a solution for stress distribution around borehole in a 

cylindrical coordinate system. His analysis was built for the wells that were drilled 

perpendicular and parallel to the vertical stress (Sv) and was based on the assumption of 

linear elasticity, homogenous, isotropic, and elastic medium. The following equations were 

presented by Kirsch: 
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where 
r

  is the radial stress, which acts along the radius of the wellbore, 


 is the hoop 

stress acting tangential to the wellbore, 
z

 is the axial stress which acts parallel to the well 

path and tangential too, a is the wellbore radius, 
w

p  is the drilling mud pressure, and   is 

Poisson’s ratio. The angle    is measured clockwise from the x-axis. 

By assuming of the anisotropic solution and r = a, Kirsch’s equations are defined 

the following: 

r w
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By changing the stresses corresponding to effective principle stress at the 

wellbore, the equations will be defined as 
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2.10. STRESS POLYGON 

It is helpful to consider that the values of the three principle stresses in the form of 

Sv, SH, and Sh relies on the method that proposed by Anderson (1951). Zoback et al. (1986) 

introduced a new method to constrain stress magnitudes called stress polygon. This method 

was derived based on the definition of Coulomb’s theory for faulting and Anderson’s 

faulting theory.The polygon technique allowed a range of possible stress magnitudes to be 

predicted for a point at a particular depth for a given pore pressure and assumed friction’s 

coefficient. Figure 2.7 shows the main construction of the stress polygon as a function of 

σH and σh. Additionally, the stress polygon figure demonstrates an allowable range of 

magnitudes for the minimum and maximum horizontal stress in case of three fault regimes 

(NF, SS, RF). The value of the two horizontal stresses was found by using one of the 

equations below:  

For normal fault: 
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For strike-slip fault:  

 
2

1 / 2
21

3

1
H p

h p

S p

S p


 




    
  

                                   (26) 



 

 

41 

For reverse fault  

 
2

1 / 2
21

3

1
H p

v p

S p

S p


 




    
  

                                   (27) 

 

 

Figure 2.7. Stress polygon (Zoback et al., 2003). 

 

2.11. ROCK STRENGTH PROPERTIES 

Rock strength parameters play a crucial role in petroleum-related geomechanics. 

Compressive and tensile strength, including unconfined compressive strength (UCS), 

tensile strength, cohesion, and internal friction angle, are considered the key processes in 

any wellbore stability analysis. These parameters can be calculated by means of core 

sample tests (Peng et al., 2002a). However, the core samples are not available in most cases 
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especially in the deep wells, and these cores are just from a small segments of the well 

interval. So, direct measurements such us uniaxial and triaxial strength tests can be used. 

Therefore, well logging data are employed with compatible correlations to estimate the 

rock strength parameters for the entire section. These correlations have been derived for 

specific rock formations that rely on the relationships of geophysical data and core tests. 

2.11.1. Cohesion.  Cohesion, or cohesive strength, is defined as the ability of the 

molecules to stay connected with each other. Moreover, when there is no applied normal 

stress, cohesion will represent the shear strength of the rock (Aadnoy & Looyeh, 2001). 

Cohesion is described base on the Tresca criterion as 

 )(
2

1

31max
 

o
S

 
(28) 

where So is the cohesion (inherent shear strength), and 𝜎1 and 𝜎3 are the maximum and 

minimum principle stress respectively (Fjaer et al., 2008). 

In a Mohr-Coulomb plot, the Tresca criterion looks like a straight horizontal line, 

as shown in Figure 2.8. 

 



 

 

43 

 

Figure 2.8. Mohr-Coulomb criterion 

 

2.11.2. Internal Friction Angle.  Internal friction angle, which represents the 

ability of the rock to resist the shear failure, is an important parameter in predicting the 

rock failure. So, Friction angle ( ) is defined graphically based on the Mohr-Coulomb 

criterion plot as the angle of inclination with respect to the normal stress (horizontal axis). 

Recently, numerous studies on the relationship between the friction angle and rocks 

stiffness have been conducted due to the variety of rock behaviors (some weak rock shows 

high value of friction angle). Lama and Vutukuri (1978) reveal that shales with high 

Young’s modulus tend to present a high value of . In order to meet the needs, methods 

such as core lab analysis and special rock tables can be used to obtain the friction angle 

(Zoback, 2010). In addition, several empirical equations were developed due to the absence 

of core sample. A correlation conducted by Plumb (1994) was derived as a function of 

porosity and shale volume as 

 



 

 

44 

2
2 6 .5 3 7 .4 (1 ) 6 2 .1(1 )

S h a le S h a le
N P H I V N P H I V                       (29) 

Where   is the friction angle, NPHI is the porosity from neutron porosity log, and Vshale 

is the shale volume which is expressed by 
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where GR is the value of gamma ray log, and GRmax  and GRmin are the maximum and 

minimum values of gamma ray log, respectively. 

2.11.3. Unconfined Compressive Strength.  Rocks tend to fail when the 

compressive shear strength exceeds rock strength. This exceeding can lead to mechanical 

failure in the wellbore. Mechanical failure in the rock means either fracturing or permeant 

deformation in the wellbore has occurred as a result of compression. The unconfined 

compressive strength (UCS) is one of the key parameters in rock strength. Several methods 

gave been used to estimate UCS, including direct and indirect methods. The uniaxial 

compression test has been widely used as a direct measurement and is considered one of 

the key loading tests performed on rocks to predict UCS. This test is applied base on the 

American Society for Testing and Materials (ASTM) D 5102-09 standard. Pariseau (2006) 

reported that rock specimens usually fail by fracture under the unconfined compression 

test. 

However, due to the absence of core samples for laboratory testing, many empirical 

correlations between rock strength and well logging data have been developed (Peng et al., 

2001). Chang (2006) has summarized several empirical correlations for a different kinds 

of formations, sandstone (Vernik et al., 1993), shale (Lal, 1999), and limestone (Middle 

East) to predict the unconfined compressive strength: 
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For shale  

 
3 0 4

1 0 ( )
( 1)

U C S
t


 

 (31) 

For limestone  
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For sandstone  
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where Δt is the sonic slowness (µs/ft) and   is the rock porosity. 

 

2.12. ORIENTATION OF PRINCIPLE HORIZONTAL STRESSES 

The orientation of the principle stresses is an essential aspect in wellbore failure 

analysis (Barton et al., 1997). Zoback et al. (2003) pointed out that in the area of maximum 

hoop stress, the wellbore is most likely to be under compressive failure (at the Sh azimuth). 

Zoback et al. (1985) defined the orientation of the maximum horizontal stress as perpendicular 

to the breakout direction.  

 

2.13. ROCK FAILURE CRITERIA 

Rock failure occurs when the stresses surrounding the wellbore exceed one of the 

allowable strengths of the rock (tensile, compressive, or shear strength). Therefore, 

designing an appropriate mud window by using compatible rock failure criteria plays a 

significant role in wellbore stability. Since there is no specific failure criterion works with 

all material and cases, several failure criteria have been developed to predict rock failure 

based on types of rock failure and lithology. These criteria mimic the behavior of the 

stresses around the wellbore. In any analysis, it is essential to select appropriate criteria for 
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a given problem. This selection is based on the types of the rocks (ductile or brittle). The 

objective of using the failure criterion is to determine the suitable mud windows to prevent 

failure. Further, it applies a comparison between the internal stresses with the strength of 

the material. In general, failure criterion is used to predict the safe wellbore trajectory 

(identify the stable and unstable regions in drilling) and optimum mud window. 

2.13.1. Mohr-Coulomb Failure Criteria.  Mohr-Coulomb shear failure criterion 

is the most frequently used criteria in mechanical earth modeling due to its simplicity 

(Horsrud, 2001; Fjaer et al., 2008). In this failure criteria, shear failure takes place through 

a plane due to the effect of shear stress on that plane. Additionally, Mohr failure criterion 

is considered as a 2D linear approach because it assumes that the intermediate principle 

stress has no influence on rock strength. As a result, Mohr-Coulomb is expected to be 

deficient and conservative in estimating the optimum mud window because the 

intermediate principle stress may feed rock with additional strength. The linearized form 

of the Mohr failure criterion is expressed as 

 ta n
n

c   
 

(34) 

where τ is the shear stress, c is the rock cohesion, 
n

  is the normal stress, and ø is the 

internal friction angle. 

The coefficient of internal friction angle can be formulated as 

 tan   (35) 

Mohr failure criteria can also be expressed by the maximum and minimum principle 

stresses, as follows 
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where 
1

  and 
3

  are the maximum and minimum principle stresses, repectivily. o
c , is the 

unconfined compressive strength, which is a function of cohesion and internal friction 

angle and q is the flow factor, which is related to internal friction angle and can be obtained 

by 
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2.13.2. Mogi-Coulomb Failure Criteria.  Mogi (1971) implemented laboratory 

studies on different types of rock by using a triaxial compression techniques.  He found 

that the strength of the rock is markedly affected by the magnitude of intermediate principle 

stress and the fracture occurs along the direction of
2
.  Based on his observation, Mogi 

came up with new criterion that takes into account the effect of intermediate principle 

stress. Moreover, Mogi alluded that ( , 2
m

 ) is the mean normal stress that opposes the 

creation of the fracture instead of the normal octahedral stress (
o c t

 ):  
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 Therefore, Mogi suggested new criteria, defined as   

 , 2
oct m

f                                                  (41) 

where the octahedral shear stress is expressed as  
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 After this observation, it became obvious the importance of
2

 . Therefore, many 3D 

failure criteria have been developed. After performing extensive reviews of rock failure 

models, Al-Ajmi and Zimmerman (2005) introduced a 3D failure criterion called the Mogi-

Coulomb criteria. This criterion can be formulated as a linear relation in a similar format 

to the Mohr-Coulomb criterion as follows: 

 o c t o c t
a b                                                            (43) 

Where a and b are material constant and are related to c and ø as follow  
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2.13.3. Modified Lade Failure Criteria.  Lade (1984) proposed 3D failure criteria 

that considered the effect of intermediate principle stress. This approach was initially 

proposed for frictional materials without effective cohesion. Fourteen years later, Ewy 

(1999) further developed the Lade criteria and proposed the modified Lade criteria. In 

modified Lade criteria, only two rock strength parameters are required: cohesion and 

friction angle (Zoback, 2007). The modified Lade criterion is given as 
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where 𝐼1
′  and  𝐼3

′  are stress invariants and are defined as 
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s and η are material constants, where s is related to the cohesion of the rock and η represents 

the internal friction. These parameters can be derived directly from the Mohr-Coulomb 

cohesion (So) and internal friction angle (ϕ) by 

0
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where tan φ = μi and S0 = C0/ (2 q1/2) with q defined by 𝑞 = 𝑡𝑎𝑛2 (
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3. DATA AND ANALYSIS  

3.1. DATA SOURCE  

Data from twenty vertical wells are examined to detect the majority of the wellbore 

instability problems. This data included field tests, such as the extended leak off test 

(XLOT), and well logging (gamma ray, caliper, density, sonic, and porosity). The 

investigation reveals that the majority of the wells have suffered from sticking pipe, caving, 

and tight-hole problems, and one well with sidetrack was noticed. 

 

3.2. GEOMECHANICAL MODELS FOR NAHR UMR FORMATION 

From theoretical to experimental aspects, a comprehensive model on the 

mechanical effects on wellbore stability in the Nahr Umr Formation for a field located in 

southern Iraq was considered in this study. The process of building a geomechanical model 

implies the prediction of the elastic and mechanical properties from physical equations and 

correlations (Zoback, 2007; Aadnoy, 2010). Then, the magnitudes of three principle 

stresses (vertical stress, minimum horizontal stress, and maximum horizontal stress) and 

pore pressure are to be calculated. Therefore, pore pressure, rock mechanical properties, 

and in-situ stresses are considered among the main factors for building a geomechanical 

model. In this study, four wells were selected based on the location of the wells according 

to H field domes.  

3.3. THE ORIENTATION OF HORIZONTAL STRESSES 

The orientation of the horizontal stresses was estimated by performing image 

interpretation analysis on the STAR image log acquired from Well H-50. According to 

Zoback et al. (1985), breakout orientation is created along the direction of the minimum 

horizontal stress. Figure 3.1 shows three breakout zones with a combined length of 15 m. 
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In addition, it can be noticed that the breakout orientation ranges between 135-140°. 

Therefore, the direction of the maximum horizontal stress is between 45-50°.  

 

 

Figure 3.1. Star image log shows the breakout zone within well H-50. 
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3.4. CASE STUDY 1 

The well H-10 is part of H Field Development Plan; its objective is to produce oil 

from 3rd pay Reservoir in the northern part of the field. The H Field is one of the mature 

oil fields in southern Iraq. It is located 20 km southwest of Basra city. The 12.25-in. hole 

of well H-10 was drilled with KCl Polymer mud type, and the mud weight ranged from 

1.18 to 1.24 Sg. This section drilled through Sadi, Tanuma, Khasib, Mishrif, Rumaila, 

Ahmadi, Maddud, Nahr Umr, Shuaiba, and few meters in Zubair upper shale formation. 

Severe loss rates up to 40 m3/hr have been encountered while drilling at a depth of 2252 m 

(Mishrif formation). Therefore, a cement plug was used to stop the losses. Moreover, 

several drag and tight spots were faced at Nahr Umr Formation, and caving was noticed on 

the shale shaker. The lithology description of Nahr Umr Formation in the well H-10 was 

presented as 

1- Limestone: Wackstone, packstone, dark grey, grey, soft to moderately hard, sub 

blocky to blocky, fine crystalline, argillaceous, no visual porosity, no oil show.  

2- Shale: Dark grey, grey, brownish grey, firm to moderately hard, fissile, non-

calcareous.  

3- Sandstone: Quartz, light brown, white, transparent to translucence, fine grain, sub 

rounded to rounded, moderately hard, well sorted, calcareous cement, no visible 

matrix, poorly visible porosity, no oil shows. 

The construction procedure of the mechanical earth modeling in well H-10 is given below.  

3.4.1. Pore Pressure.  Pore pressure is one of the important parameters that has a 

significant effect on wellbore stability. Pore pressure was directly calculated by utilizing 

the repeat formation test (RFT). Figure 3.2 shows the variation of the pore pressure with 

respect to the depth. 
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3.4.2. Mechanical Rock Properties.  The mechanical properties of the rock, such 

us elastic modulus (Young’s modulus), Poisson’s ratio, internal friction angle, and 

unconfined compressive strength (UCS), are derived by using an empirical equations. 

These equations are connected with five types of logs: compression and shear sonic (Vp & 

Vs), bulk density (ρb), neutron porosity, and gamma ray. Figure 3.3 illustrates the utilized 

logs for well H-10. 

Additionally, the dynamic Young modulus is converted by using Equation 8. 

Equation 29 is used to derive the friction angle due to unavailability of the core sample. 

Figure 3.4 shows the calculated mechanical properties for Nahr Umr Formation. 
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Figure 3.2. Pore pressure variation with respect to the depth. 
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Figure 3.3. Well logs in well H-10. 
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Figure 3.4. The mechanical properties in Nahr Umr Formation. 
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Due to the strong heterogeneity of Nahr Umr Formation, the UCS is estimated by 

using three empirical equations, such as Equation 31 for shale formation, Equation 32 for 

limestone, and Equation 33 for sandstone (Figure 3.5). 

 

 

Figure 3.5. Confined compressive strength with respect to lithology heterogeneity. 
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3.4.3. In-Situ Stresses.  The overburden stress (Sv) is estimated by integration of 

the rock densities Equation 12. Density logging tools were used in this analysis to obtain 

the bulk density (Bell, 1990a). The vertical stress of Nahr Umr Formation in well H-10 

ranged from 58 Mpa to 72 Mpa. For the horizontal stresses, Hudson and Harrison (1997) 

summarized many direct and indirect approaches to estimation. In this study, the minimum 

horizontal stress (Sh) is estimated from the extended leak-off test (XLOT) (Zoback et al., 

1985). The minimum horizontal stress is estimated to be 55.1 Mpa at a depth of 2970 m. 

In addition, empirical equations including Equations 14, 15, 16, and 19 are used to predict 

the minimum horizontal stress for the entire Nahr Umr section. The Sh value calculated 

from XLOT at depth 2970 is overlaid with the Sh values that are calculated from Holbrook 

et al. (1993) (Eq. 19). Thus, the Holbrook et al. (1993) equation is utilized to estimate the 

Sh for the entire Nahr Umr formation. Because there is no direct way to predict the value 

of maximum horizontal stress (SH), Equation 20 is used to estimate the maximum 

horizontal stress. Figure 3.6 illustrates the in-situ stress profiles across the entire section. 

To evaluate the horizontal stresses, the stress polygon was used to estimate the allowed 

ranges of maximum and minimum horizontal stresses, Figure 3.7. The polygon results 

show that the normal faulting regime is dominate. 

The minimum mud density is estimated by using a constitutive geomechanical 

model connected with two failure criteria (Mohr and Mogi). The input parameters for our 

geomechanical are summarized in Table 3.1. The recommended mud weight by using 

Mohr-Coulomb and Mogi-Coulomb are listed in Table 3.2.  
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Figure 3.6. Stress profile through 12.25-in. hole section, case study 1. 
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Figure 3.7. Nahr Umr Formation stress polygon. 

 

Table 3.1. The input of the geomechanical model (In-situ stresses, Pore pressure, and 

mechanical properties), case study 1. 

Parameters Value Unit Source 

Depth 2900 m  

Sv 60.15 Mpa  

SH 50 Mpa Peng (2007) 

Sh 45 Mpa Holbrook et al. (1993) 

Pp 31.6 Mpa RFT 

Poisson’s ratio 0.23   

Young’s modulus 23.5 Gpa  

UCS 20 Mpa Lal (1999) 

Friction angle 24.4  Plumb (1994) 
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Table 3.2. The output of the geomechanical models, case study 1. 

 Used Mohr-Coulomb Mogi-Coulomb 

MW (SG) 1.2 1.32 1.26 

 

3.5. CASE STUDY 2  

The H-2 well is part of H Field Development Plan; its objective is to provide water 

from Nahr Umr Formation and reinject the water by closed system in Cretaceous Mishrif 

Limestone in order to support the reservoir pressure decline. The well is located in the 

dome 2, which is the second largest dome in the H field. Instability problems such as caving 

and tight spots were observed during drilling the Nahr Umr Formation, the lithology 

description in the Well H-2 shows the same description as Well H-10. Case 1 procedure 

was followed to construct the stress profile, predict the rock strength properties, and 

optimum mud density for Well H-2. Figure 3.8 shows the in-situ stress and pore pressure. 

Rock strength properties and shale volume are displayed in Figure 3.9 and Figure 3.10. The 

input (in-situ stresses, rock strength properties, and pore pressure) and output parameters 

are listed in the Table 3.3 and Table 3.4, respectively. 

3.6. CASE STUDY 3 

The well H-8 is planned as a vertical hole with a total depth of 3610 m. Nahr Umr 

Formation was drilled with mud weight 1.2 SG. Several drag and tight spots, as well as 

shale caving (blocky and splintery with 2-4 cm in length), were observed while performing 

wiper trip in Nahr Umr Formation. The same empirical equations in case 1 were used to 

build the geomechanical model. Figure 3.11 shows the in-situ stress and pore pressure. The 

rock strength properties and shale volume are illustrated in Figure 3.12 and 3.13. Table 3.5 

and 3.6 illustrated the input and output of the geomechanical model. 
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Figure 3.8. In-situ stresses and pore pressure profile though Nahr Umr 

Formation, case study 2. 
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Figure 3.9. Rock strength parameters, case study 2. 
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Figure 3.10. Shale volume and UCS, case study 2.  
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Table 3.3. The input of the geomechanical model, case study 2. 

Parameters Value Unit Source 

Depth 2981 m  

Sv 70.35 Mpa  

SH 64 Mpa Peng (2007) 

Sh 47 Mpa Holbrook et al. (1993) 

Pp 32.5 Mpa RFT 

Poisson’s ratio 0.28   

Static Young’s modulus 12.5 Gpa  

UCS 31 Mpa Lal (1999) 

Friction angle 24.4  Plumb (1994) 

 

Table 3.4. The output of the geomechanical model, case study 2. 

 Used Mohr-Coulomb Mogi-Coulomb 

MW (SG) 1.2 1.36 1.27 
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Figure 3.11. In-situ stresses and pore pressure profile though Nahr Umr 

Formation, case study 3. 
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Figure 3.12. Rock strength parameters, case study 3. 
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Figure 3.13. UCS and shale volume, case study 3. 
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Table 3.5. The input of the geomechanical model, case study 3.  

Parameters Value Unit Source 

Depth 2880 m  

Sv 64.13 Mpa  

SH 56.5 Mpa Peng (2007) 

Sh 50.6 Mpa Holbrook et al. (1993) 

Pp 31.39 Mpa RFT 

Poisson’s ratio 0.29   

Static Young’s modulus  Gpa Lacy (1997) 

UCS 32 Mpa Lal (1999) 

Friction angle 21  Plumb (1994) 

 

Table 3.6. The output of the geomechanical model, case study 3. 

 Used Mohr-Coulomb Mogi-Coulomb 

MW (SG) 1.2 1.38 1.27 

 

3.7. CASE STUDY 4 

Several wellbore instability problems were faced while drilling Nahr Umr 

Formation in the Well H-6. These problems included tight spots, hard back reaming, and 

stuck pipe. The stuck pipe experience was encountered two times preceding by overpull 

reach to 40 tons. A geomechanical model was employed to predict optimum mud weight.   

In-situ stresses and pore pressure results are illustrated in Figure 3.14. Rock strength 
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properties and shale volume are depicted in Figure 3.15 and 3.16. The input and output of 

the geomechanical model are illustrated in Table 3.7 and 3.8, respectively.  

 

 

2760

2810

2860

2910

2960

3010

3060

0 10 20 30 40 50 60 70 80

D
ep

th
 (

m
)

Stress (Mpa)

SV Sh SH Pp

Figure 3.14. In-situ stresses and pore pressure profile though Nahr Umr 

Formation, case study 4. 
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Figure 3.15. Rock strength parameters, case study 4. 
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Figure 3.16. UCS and shale volume, case study 4. 
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Table 3.7. The input of the geomechanical model, case study 4. 

Parameters Value Unit Source 

Depth 2890 m  

Sv 70.53 Mpa  

SH 63 Mpa Peng (2007) 

Sh 50 Mpa Holbrook et al. (1993) 

Pp 31.51 Mpa RFT 

Poisson’s ratio 0.34   

Static Young’s modulus 11.39 Gpa  

UCS 30 Mpa  Lal (1999) 

Friction angle 38  Plumb (1994) 

 

Table 3.8. The output of the geomechanical model, case study 4. 

 Used Mohr-Coulomb Mogi-Coulomb 

MW (SG) 1.2 1.38 1.28 
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Input and output parameters of the geomechanical model for five cases are 

summarized in Table 3.9. 

Table 3.9. Input and output of the geomechanical model for five cases.  

 Case 1 Case 2 Case 3 Case 4 Case 5 

Depth 2900 2981 2880 2890 2920 

Sv 60.15 70.35 64.13 70.53 65.21 

SH 50 64 56.5 63 55.6 

Sh 45 47 50.6 50 49 

SH Orientation 45°-50° 45°-50° 45°-50° 45°-50° 45°-50° 

Pp 31.6 32.5 31.39 31.51 31.9 

UCS 20 31 32 30 29 

Friction angle  24.4 24.4 21 38 32 

Poisson’s ratio 0.23 0.28 0.29 0.34 0.29 

Young’s 

Modulus 

23.5 12.5 10.4 11.39 12.3 

Used MW 1.2 1.2 1.2 1.2 1.25 

Related-

problems  

Breakout 

and stuck 

pipe  

Tight spots  Breakout and 

tight spots  

Stuck pipe 

and tight 

spots 

No 

problems  

Mogi-Coulomb  1.26 1.27 1.27 1.28 1.27 

Mohr-Coulomb  1.32 1.36 1.38 1.38 1.38 
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3.8. SENSITIVITY ANALYSIS 

A sensitivity analysis for geomechanical input parameters was conducted by using 

a tornado chart, Figure 3.17, to predict the effect of these parameters on the mud pressure 

design. The analysis reveals that the two horizontal stresses have a major effect on the mud 

pressure, with maximum horizontal stress having the greatest effect. In addition, the 

vertical stress and the internal friction angle showed a minor impact. Pore pressure and 

unconfined compressive strength came in the middle with intermediate effect.  

 

 

Figure 3.17. Contribution of the input parameters on the geomechanical 

model output. 
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4. DISCUSSION AND CONCLUSION  

4.1. DISCUSSION 

The 1D geomechanical modeling approach presented here is used to provide a more 

accurate representation of stable mud window by applying a geomechanical analysis 

incorporated with two failure criteria: Mohr-Coulomb and Mogi-Coulomb. This model is 

applied to five vertical wells to analyze the mechanical stability in the Nahr Umr Formation 

H oil field. These wells were selected based on the instability issue (stuck pipe, caving, and 

tight spots) and the location of the wells according to field domes. Well log data, final well 

reports, daily mud reports, mud logging reports, and field tests were investigated to predict 

the causes and majority of wellbore instability. Based on the data investigation the in-situ 

stresses and pore pressure profile, and rock strength was built. The results show that the 

vertical stresses in the five wells ranges between 56.9 and 75.4 Mpa, and there is linear 

increasing between vertical stress and depth. I addition, the pore pressure shows the same 

behavior of vertical stress (a linear relationship with depth). Figure 3.6 shows the horizontal 

stresses magnitudes based on different correlations. The correlations of Hubberts and 

Willis (1957) and Breckels and Van Eeckelen (1981) show a linear propagation with depth, 

while those from Holbrook et al. (1993) and Eaton (1969) show high fluctuations in the 

horizontal stresses through the interval. This fluctuation was caused by the variety of 

porosity and Poisson’s ratio. Holbrook et al. (1993) showed the best representative of Sh in 

the field due to overlay with the LOT value. The Peng (2007) equation was used to predict 

the value of maximum horizontal stress. The results in Figure 3.6 show high fluctuation 

due to the variety in the value of Sh through the interval. Due to the high heterogeneity in 

the Nahr Umr Formation, three empirical equations were used to predict the value of UCS: 
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sandstone, limestone, and shale correlations. As can be seen in Figure 3.5, the UCS trend 

shows a high value in the limestone interval, but tends to decrease when the shale volume 

increases (Figure 3.15). On the other hand, the rock strength parameters in Figure 3.4 show 

the same behavior of UCS (Young’s modulus and the internal friction angle tend to 

increase in the limestone intervals). As can be seen in the output tables, the four wells were 

drilled with 1.2 SG mud weight; the results show that the used mud weight is less than that 

required to sustain the borehole wall. The Mohr-Coulomb failure criterion predicts the 

optimum mud weight to be between 1.32 and 1.38 SG, and Mogi-Coulomb predicts the 

optimum mud weight between 1.26 and 1.28. Vernik and Zoback (1992) pointed out that 

Mohr-Coulomb failure criterion did not provide realistic results. Recently, Rahimi and 

Nygaard (2015) alluded that the Mohr-Coulomb predicition showed overestimated value, 

while the Mogi-Coulomb prediction was more reliable. In addition, comparing the mud 

weight of 1.25 SG that has been used in the successful wells (well number five) and the 

geomechanical model outputs shows that Mogi-Coulomb produces a reasonable prediction 

of 1.26-1.28 SG and it is in close agreement with field observation. 

  

4.2. CONCLUSION 

This research presents a case study in the Nahr Umr Formation of oil fields in 

southern Iraq. Through this study, the following conclusions can be made: 

1- This investigation reveals that the majority of the drilling events that caused most 

of the NPT while drilling in Nahr Umr Formation are mostly caused by high 

stresses and low rock strength and inappropriate drilling practice with respect to the 

heterogeneity of Nahr Umr Formation. 
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2- A geomechanical model was developed using two failure criteria. The analysis of 

the output of the geomechanical model shows that the Mogi-Coulomb criterion 

gives more appropriate results than the Mohr-Coulomb criterion (Mogi-Coulomb 

was in close agreement with field observation). This was related to the fact of Mohr-

Coulomb criterion underestimates the rock strength by disregarding the effect of 

intermediate principle stress. In contrast, the Mogi-Coulomb criterion becomes 

more realistic by considering the effect of intermediate stress on rock strength.   

3- Wellbore breakout observation with resistivity image log (star image log) show that 

the surrounding area of the wellbore fails due to the strong control of the orientation 

and magnitude of the in-situ stresses.   

4- Based on the horizontal stresses orientations, the recommended safe drilling in the 

inclination or directional wells will be along the minimum horizontal stress 

direction which is between 135-140°.  

5- The rock strength tests and field tests are useful in the calibration of the mechanical 

earth modeling.   

6- Several wellbore collapses, stuck pipe, and shale caving (wellbore failure) were 

observed in the Nahr Umr Formation. This wellbore failure was due to using 

insufficient mud weight and not considering an appropriate geomechanical 

analysis.  

7- Normal fault regime is the dominate regime in the H-field (Sv > SH > Sh).  
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