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ABSTRACT 

 

High salinity waterflooding for carbonate reservoirs is efficient and cheap method 

used for improved oil recovery. Various mechanisms have been proposed including 

adsorption/desorption on rock surface, mineral dissolution and precipitation, 

multicomponent ion exchange, interfacial tension reduction, fine migration and double 

layer expansion. These all process alter the wettability which leads to improved oil 

recovery.  

Objective of this study was to understand processes that occur during water-rock 

interaction when high salinity water is flooded into the reservoir. In this work, effect of 

temperature on water-rock interaction is studied along with effect of pH and specific 

surface areas of calcite at normal and elevated temperatures. To understand processes 

occurring on surface of rock, reactive transport model for brine-rock interaction was 

developed. It included surface complexation and mineral dissolution processes which 

contribute towards wettability alteration. Effect of pH, specific surface area of calcite on 

surface complexation and mineral dissolution at normal and elevated temperatures 

showed that rate of mineral dissolution was higher than surface complexation reactions. 

Calcite dissolved volumes for varied composition of injected brine were compared with 

oil recovery percentages. The results showed that calcite dissolution increased with 

increase in oil recovery at higher temperatures. The study showed that improved oil 

recovery is complicated process which is result of various processes and steps involved. 

Sensitivity of each process and step for wettability alteration can be different depending 

on environment 
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NOMENCLATURE  

 

Symbol Description 

𝑘1, 𝑘2, 𝑘3 Reaction rate constants for mineral dissolution (mol/m2/s) 

∆𝐻 enthalpy change (J/mol) 

Keq equilibrium constant 

SSA Specific surface area (m2/g) 

v Flow velocity vector (m/s) 

VX Velocities in longitudinal direction (m/s) 

VY Velocities in transverse direction (m/s) 

𝛼 Longitudinal dispersivity (cm) 

LogK Logarithm of Keq 

D Combined dispersion-diffusion tensor (m2/s) 

𝑅 Gas Constant 

D* Effective diffusion coefficient in porous media (m2/s) 

C Total concentration of ions (mol/m3) 

𝑃𝐶  Capillary pressure 

𝑃𝑛𝑤 Pressure of nonwetting phase 

𝑃𝑤 Pressure of wetting phase 

𝜎𝑜𝑤 Interfacial tension between oil and water 

Ɵ Contact angle measured through the water 
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1 INTRODUCTION 

 

Waterflooding is widely used technique in upstream oil industry for oil recovery. 

Extraction methods of oil are broadly classified as primary, secondary and tertiary oil 

recovery techniques. Primary oil recovery techniques are those which do not require 

injection of gas or liquid to enhance production. These techniques include use of natural 

energy to produce oil. Natural reservoir energy is available in the form of gas-cap, water 

drive, gravity drainage, solution gas drive and combination of these drives. The reservoir 

pressure available in initial stage of production, is usually higher than bottom hole pressure. 

This pressure difference drives hydrocarbon up to the surface. The reservoir pressure is 

maintained by above mentioned drives (water, gas, gravity). Hence, to continue oil 

production, it is necessary to keep this differential pressure maintained by either reducing 

bottom hole pressure or increasing reservoir pressure. This differential pressure is 

maintained by using artificial lift technique. The extraction potential is only 5 to 15% for 

primary techniques. Primary recovery stage reaches its limit when either reservoir pressure 

is so low that production rate declines significantly or water or gas production is 

significantly increased. When primary recovery techniques fail to stimulate production, 

secondary recovery techniques are used. These include injection of gas or water into 

reservoir through injection wells to increase pressure and stimulate production. 

Waterflooding is considered as secondary oil recovery method. 

In waterflooding, water is injected into reservoir to support pressure necessary to 

produce oil. Since water is cheapest and readily available for waterflooding, it is one of the 

cheapest techniques used for oil recovery. For many years, waterflooding was technique 

considered to improve oil recovery by maintaining reservoir pressure. In recent years, 
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geochemical aspect of waterflooding was studied. Many researchers proposed new 

chemical mechanisms that takes place in reservoir when water (brine) with different 

composition compared to initial formation water composition. This injecting brine 

composition has profound effect on the wettability alteration.  

 

1.1 OIL RECOVERY METHODS 

Oil production starts after drilling and completion of well. Oil is produced in several 

stages. These stages are often referred as oil recovery techniques. 

 Primary production: Primary and artificial lift 

 Secondary oil recovery: (For maintaining pressure by means of 

waterflooding) 

 Tertiary oil recovery: (Enhanced production by injecting gas, chemicals, 

polymers and surfactants). 

Period of production is divided into stages based on amount of pressure available 

in the reservoir to produce oil. In early period of production, reservoir pressure is usually 

in abundance. Natural driving mechanism determines overall pressure energy available for 

production. When production starts, as high pressure energy is readily available, reservoir 

fluids flow to the surface through wellbore. As pressure starts declining, artificial lift can 

be used. Presence of aquifer can help maintain reservoir pressure naturally. It is known as 

water drive mechanism. The pressure loss during production is directly proportional to 

volume of hydrocarbon produced. Hence production rate drop indicates low reservoir 

pressure. When oil production rate drops down significantly after using artificial lift, 

secondary and tertiary oil recovery techniques are used. Fig 1.1 shows the production 



3 
 

phases in terms of pressure energy. These stages of production just give idea about overall 

production techniques and when they are used. It is not always profitable to produce oil 

with same sequence.  Selection of recovery technique depends not only on reservoir 

pressure but also on factors like cost of recovery, current oil prices, availability of 

equipment and injecting material and recovery factor. 

 

Fig 1.1. Production phases. (Based on Raymond and Leffler, 2006). 

 

1.1.1 Primary Oil Recovery Methods. Primary oil recovery is method which 

utilizes natural pressure energy from the reservoir to produce hydrocarbon. The availability 

of natural pressure energy depends on existing natural drive mechanisms. Water drive, gas 

cap drive, solution gas drive, gravity drainage are the main natural drive mechanisms that 

assist oil production during initial production period. Water drive mechanism consists of 

presence of water aquifer which exerts large pressure into the reservoir. It also helps for 

maintaining reservoir pressure when oil is produced. Gas cap drive includes presence of 
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gas cap on top of hydrocarbon zone. As oil production starts, the gas from gas cap expands 

and maintains pressure. Water drive and gas cap drive help maintain pressure for many 

years of continuous production. In solution gas drive, gas is dissolved in the oil. As 

production starts, pressure drops, and this oil and gas mixture expands and provides 

necessary energy needed for production. The natural energy from solution gas drive is 

many times not long lasting and sufficient to produce oil.  

Overall, primary oil recovery recovers oil in the range of 10% to 15% oil of original 

oil in place. Recovery from primary oil recovery depends on- 

 Amount of original oil in place and its distribution in reservoir 

 Fluid and rock properties 

 Production rate and drive mechanism 

 Economic factors 

When fluids are not capable of flowing to the surface by the mean of natural energy, 

artificial gas lift methods and electric pumps are used to bring reservoir fluids to the 

surface.  

1.1.2 Secondary Oil Recovery Methods. When oil production rate drops 

considerably after primary oil recovery production phase, organizations may decide to use 

secondary oil recovery methods. In secondary oil recovery methods, water or immiscible 

gases are forcefully injected into the reservoir using injecting wells. The main goal of this 

method is to maintain reservoir pressure to produce oil at desirable rate. Production rate 

depends on availability, oil prices and many other factors. Hence, use of this method 

depends on desirable production rate. Waterflooding is most common term used for 
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secondary oil recovery. Immiscible gas flooding is rarely used compared to waterflooding. 

Thus, secondary oil recovery includes- 

 Waterflooding 

 Immiscible gas flooding 

To achieve maximum oil recovery through waterflooding or gas flooding, various 

factors such as lithology, reservoir geometry, permeability, porosity, fluid saturation, fluid 

properties, continuity of rock properties, reservoir depth, relative permeabilities, water 

source and its chemistry are taken into consideration.  During early uses of waterflooding, 

chemical behavior of rock and injected water was not taken into consideration. But 

recently, it is found that this chemical behavior leads to wettability alteration. But, as 

primary purpose of secondary oil recovery methods is to boost natural energy, 

waterflooding as secondary oil recovery is still considered for maintaining reservoir 

pressure. Using secondary oil recovery methods, 15% to 20% oil can be recovered. A 

suitable candidate reservoir can produce total 40-50% oil using primary and secondary oil 

recovery methods. 

1.1.3  Tertiary Oil Recovery Methods. Tertiary oil recovery methods are also 

known as enhanced oil recovery methods. These methods involve injection of chemicals, 

surfactants, polymers, miscible gases to produce oil by reducing viscosity of oil or 

increasing overall sweep efficiency. There are many definitions used by many 

organizations to describe tertiary oil recovery. For sake of simplicity, enhanced oil 

recovery is defined as “oil recovery by injection of materials not normally present in the 

reservoir” (Lake, 2010).  
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Chemically modified water injection can be considered as tertiary oil recovery 

method or enhanced oil recovery method since this water is not already present in the 

reservoir. It was also seen that when chemically modified water injected into the reservoir, 

it alters the wettability which can lead to improved oil recovery.  

Main objectives of enhanced oil recovery are- 

 Like secondary oil recovery, EOR can be used to maintain reservoir pressure at 

desired level 

 Increase the displacement efficiency. Microscopic displacement efficiency 

indicates extents of oil flow at pore scale. Reducing residual oil saturation can 

increase displacement efficiency. Interactions between displacing fluid and oil 

determine microscopic displacement efficiency. These interactions can be chemical 

or physical such as change in IFT between the fluids, decrease in oil viscosity, oil 

volume expansion (Green and Willhite 1998).  

 Improving sweep efficiency which depends on mobility ratios. Improving mobility 

ratio improves sweep efficiency. Sweep efficiency is measured in horizontal 

direction (areal sweep efficiency) and vertical direction (vertical sweep efficiency). 

It is degree to which flood have moved the displaced fluid  

 fluid through the reservoir before reaching the producing well. (Green and Willhite 

1998).  

Sweep efficiency is related to macroscopic scale, and displacement efficiency is 

related to microscopic scale. Different EOR techniques emphasize on different types of 

displacements. For example, Alkaline flooding accounts for improved displacement 

efficiency by altering rock wettability. Polymer flooding affects sweep efficiency by 
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increasing water viscosity. (Bavière 1991). Fig 1.2 (Alvarado and Manrique) shows EOR 

methods used in several types of rocks.  

 

Fig 1.2.  EOR methods by lithology. (Alvarado and Manrique, 2010). 

 

In high/low salinity waterflooding, oil recovery is improved due to effect of 

improved microscopic displacement efficiency. High or low salinity water is immiscible 

fluid. Hence, forces related to displacement efficiency are capillary, viscous and gravity 

forces acting on fluid droplets. Capillary forces occur at the interface of wetting and non-

wetting fluids. At microscopic scale, capillary forces are greater than any other forces such 

as viscous and gravity forces.  

Capillary pressure is defined as pressure difference across the interface of two 

immiscible fluids. Imbibition and drainage processes have considerable influence on 
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capillary pressure (Thakur and Satter, 1998). Imbibition is process in which non-wetting 

fluid is displaced by wetting fluid, whereas, drainage is the process in which wetting fluid 

is displaced by non-wetting fluid. These two processes are either aided or opposed by 

capillary forces (Ahmed, 2006).  Capillary forces in a reservoir are the result of the 

combined effect of interfacial and surface tension, pore geometry and size, and wetting 

characteristics of the system (Ahmed, 2006).  

Mathematically, capillary pressure can be expressed as 

𝑃𝐶 = 𝑃𝑛𝑤 − 𝑃𝑤  

where,  

𝑃𝐶 = Capillary pressure 

𝑃𝑛𝑤 = Pressure of nonwetting phase 

𝑃𝑤 = Pressure of wetting phase 

Considering oil as non-wetting phase, and water as wetting phase, the formula can 

be written as 

𝑃𝐶 = 𝑃𝑜 − 𝑃𝑤 = 𝜎𝑜𝑤𝐶 =
2𝜎𝑜𝑤𝐶𝑂𝑆Ɵ

𝑟
 

where,  

𝜎𝑜𝑤 = Interfacial tension between oil and water 

𝐶 = Mean curvature of the interfacial tension 

𝑟 = Radius of cylindrical pore channel 

Ɵ = Contact angle measured through the water 

Capillary forces, surface tension, interfacial tension and wettability are important 

properties in microscopic scale. Hence, high salinity waterflooding can be considered as 
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EOR related to microscopic displacement efficiency. Also, it can be placed as chemical or 

miscible class of EOR.  

 

1.2 BRINE COMPOSITION AND WATERFLOODING EFFICIENCY 

For many years, waterflooding was used as secondary recovery technique which 

maintains or increases reservoir pressure to increase oil production. In recent years, lot of 

research is focused on geochemical reactions and chemical mechanism that takes place 

between rock-oil- water system. Many laboratory studies proposed that crude oil, rock and 

brine tend to form chemical equilibrium. During the process of achieving chemical 

equilibrium, wettability is altered. This wettability alteration leads to increase or decrease 

oil recovery. Hence, ultimately, we can say that waterflooding efficiency is function of 

wettability alteration and so brine composition.  

Composition of rocks and minerals are also equally important to understand 

geochemical trend and chemical behavior of rock-oil-brine system. Carbonates and 

Sandstone rocks have different chemical compositions.  Interaction of different types of 

rocks with different brine composition leads to varying chemical behavior. It is very 

important to understand this varying chemical behavior to achieve optimum oil recovery 

by waterflooding technique.  

Studies found that seawater depleted in NaCl led to increased oil recovery (Fathi, 

et al., 2011). Seawater brine contains Ca2+, Mg2+, SO4
2- as potential determining ions which 

change the surface charge of carbonate rock and lead to wettability alteration (Zhang et al., 

2006).  
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Coreflooding studies in laboratories proved this fact. Fig 1.3 shows oil recovery 

percentage for different brine compositions containing different concentrations of SO4
2- 

ions for chalk cores at 100°C. In this case, increasing concentration of SO4
2- in injecting 

brine led to increased oil recovery at same temperature. 

 

Fig 1.3.  Oil recovery by spontaneous imbibition. Sulfate-modified SW was used into 
chalk cores at 100°C. (Zhang and Austad, 2006). 

 

Fig 1.4 shows effect of modified seawater with increasing calcite concentration at 70°C on 

oil recovery. It can be seen here that oil recovery improved for same temperature, when Ca++ 

concentration in injection brine was increased. Finally, when it was increased to 4 times, oil 

recovery reached to 68% approximately. This increase in oil recovery is due to Ca++ ion to bonding 

of calcite ion with oil carboxylic group which is negatively charged. 

Studies found that low salinity waterflooding improves oil recovery in sandstone 

reservoir. However, for carbonate reservoirs, high salinity water is used to improve oil 
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recovery. Recent studies showed that low salinity waterflooding improved oil recovery by 

4% of OOIP (original oil in place). 

 

 

Fig 1.4. Oil recovery by spontaneous imbibition. Calcite-modified SW was used into 
chalk cores at 70°C. (Zhang and Austad, 2006). 

 

All experimental study was conducted using coreflooding techniques. Coreflooding 

technique is used in laboratories to emulate actual reservoir conditions and oil recovery 

method from field. At first, field conditions are studied. Necessary data is gathered to 

emulate these conditions in labs. Generally, rock samples from same reservoir are cut into 

cylindrical shape and used as cores for coreflooding experiments. But, synthetically 

modified cores are also used for coreflooding. If cores are prepared from same rock 

samples, it is necessary to clean those cores to remove the sulfate and salts, which could 

affect the wetting properties. To remove these salts, cores are flooded with distilled water. 

Toluene is also used for cleaning cores at high temperatures.  
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Coreflooding setup is shown in Fig 1.5. The main setup consists of coreholder, 

transfer cells, pressure regulators and pump. Constant pressure is required to displace fluid 

throughout the coreflooding process. This constant pressure is provided by syringe pump. 

During experiment, core is kept in coreholder. This coreholder can be kept in oven if high 

temperature is required. Various accumulators are used to store brines and oil which are 

injected into the core as per requirement. Back pressure is required at output junction to 

keep outlet flow constant. Hence, back pressure regulator is also required. Differential 

pressure transducer is used to measure pressure difference between input and output 

pressures.  

Coreflooding experiments for chalks (Fathi et al., 2011) showed that oil recovery 

factor increased from 38% to 45% when imbibing fluid was changed from seawater to 

seawater depleted in NaCl at 70°C. Also, recovery factor increased to 50% when sulfate 

concentration in seawater depleted in NaCl was increased to four times compared to sulfate 

concentration in initial formation water.  

 

Fig 1.5.  Flooding system. 
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1.3 WETTABILITY 

Distribution of fluids in porous media is not only affected by affected by forces at 

immiscible fluid interface such as capillary forces, gravity and viscous forces but also 

forces present at liquid-solid interface. Wettability is important property which describes 

interaction of solid and liquid. It is property of solid, particularly rock in reservoir 

engineering aspect. It is tendency of fluid to spread on or adhere to a solid surface in the 

presence of the other immiscible fluids (Ahmed, 2006). It is considered as property of rock 

because different rocks prefer different wetting fluids. Wettability has influence on 

capillary pressure, relative permeabilities and fluid saturation. Hence, fluid entrapment, 

distribution and flow in pore space are strongly affected by wettability (Thakur and Satter, 

1998).  

When two immiscible fluids are flowing in the reservoir, the fluid which makes 

rock surface wet is known as wetting phase, while another phase is known as non-wetting 

phase. Relative permeability is concept used in reservoir engineering if two or more fluids 

are flowing in the reservoir. It is defined as ratio of effective permeability of fluid to the 

absolute permeability. Effective permeability is property of fluids, and is measured in 

laboratories using rock cores, while absolute permeability is property of porous media and 

it is capacity of the porous medium to allow fluid flow. Thus, relative permeability can be 

expressed as-  

𝑘𝑟𝑓 =
𝑘𝑓

𝑘
   

Where 𝑘𝑟𝑓 =  Relative permeability of fluid (oil, water or gas) 

𝑘𝑓 =  Effective permeability of fluid (oil, water or gas) 

𝑘 =  Absolute permeability of fluid (oil, water or gas) 
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Relative permeability curves are strongly affected by wettability. Relative 

permeability curve is shown below in Fig 1.6. The curve presents oil-water system with 

water as wetting phase, and oil as non-wetting phase. It shows effect of changing 

wettability on relative permeabilities of oil and water. 

In this study wettability was altered by changing concentration of additives in oil 

and water. Ɵ indicates contact angle which is measurement for wettability. Dark thick lines 

are indicating relative permeability curves for water, while, thin lines are indicating relative 

permeability curves for oil. Fig shows that intersection of relative permeability curves of 

water and oil shifts to right and maximum 𝑘𝑟𝑤 decreases with increase in water wetting. 

Many other researchers (Morrow et al., 1973, McCaffery and Bennion et al., 1974, Trieber 

et al., 1972) also studied effects of wettability on relative permeabilities and saturations of 

oil and water. Table 1 below shows the relation of flow characteristics and wettability 

(Bavière, 1991). 

Wettability depends on chemical composition of oil, water and composition of 

rocks. Hence, rocks can be either oil-wet or water-wet depending on chemical and physical 

compositions of oil, water and rock. To classify rock as water-wet or oil-wet, it is necessary 

to measure the wettability. Wettability is measured in terms of contact angle (ɵ). This 

contact angle varies from 0° to 180°.  In hydrocarbon reservoir, two phases such as gas and 

liquid, two immiscible liquids, solids and liquids are separated by interface between them. 

Interfacial tension is related to adhesion tension. This tension determines which fluid will 

wet the solid (rock surface). 
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Fig 1.6. Effect of rock wettability on oil-water relative permeabilities. (Owens and Archer, 
1971). 

 

Table 1.1. Wettability and flow characteristics relation. (Bavière, 1991). 
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Adhesion tension is given by following equation. 

 𝐴𝑇 = 𝜎𝑠𝑜 − 𝜎𝑠𝑤 = 𝜎𝑤𝑜𝑐𝑜𝑠 

Where,  

σso = Interfacial tension between solid and lighter liquid 

σsw = Interfacial tension between solid and denser liquid 

σwo = Interfacial tension between lighter liquid and denser liquid 

When rock prefers one fluid to adhere over other fluid, different type of overall 

wettability is established in the system (Thakur and Satter, 1998). Since, capillary pressure 

and relative permeability, which are crucial factors for oil recovery, are affected by 

wettability, it also controls ultimate oil recovery. Fig 1.9 shows dependence of oil 

saturation on wettability.  

 

 
 

Fig 1.7. The interfacial tension values and contact angle. 

 

Reservoir rocks are generally classified based on wettability as water-wet and oil-

wet rocks. Fig 1.8 shows water-wet and oil-wet rocks.  
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Fig 1.8. Idealized representation of water-wet and oil-wet reservoir rocks.  

 

Wetting phase usually prefers to stick to smaller pores having small openings. Thus, 

if system is water-wet then waterflooding causes water to enter into small pores with small 

openings. This water squeezes oil to larger pores. In larger pores with large pore openings, 

oil can easily flow. Preferential wetting of rock surface helps water phase to maintain fairly 

uniform front with the oil displaced in front of it. Sometimes, this flowing oil fails to 

connect with remaining oil in the pores and breaks off which leads to oil drops trapped into 

the pores at center surrounded water and rock. This is known as residual oil saturation.  

This trapped oil is immobile, and no additional oil is recovered after water breakthrough in 

strongly water-wet system (Agbalaka, Dandekar et al., 2008). The oil droplet trapped into 

the pore center surrounded by rock and water is shown as water-wet system in Fig 1.5. 

In strongly oil wet reservoir, waterflooding results in formation of water channels 

or fingers through the center of larger pores squeezing oil to smaller pores. Oil sticks to the 

rock surface in small pores and crevices as continuous film over pore space, pore throat 

(Agbalaka, Dandekar et al., 2008). 
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Mixed wettability can also occur in reservoir due to heterogeneity or variation in 

mineralogy of exposed rock surface or cementing material surfaces (Green and Willhite 

1998). Reservoir rock wettability is strongly affected not only by rock minerology and 

composition but also adsorption and desorption of components in oil phase, rock surface 

and film deposition. Mixed wettability is range of water-wet to oil-wet system. Some 

reservoirs have heterogeneous wettability with variation in wettability preferences on 

different surfaces (Anderson, 1987). Contact angel method, Amott wettability test are 

methods to measure wettability. Already described, contact angle measurement is most 

conventional method for determining wettability. 

When oil and water come in contact with solid, if the measured contact angle is 

90°, wettability is expressed as neutral wettability. This indicates that both fluids tend to 

wet the surface. When contact angle close to is 180°, the system is considered as strongly 

oil wet system. The ranges of contact angles and wettability preferences are shown in table 

1.2 (Rezaeidoust, 2011). 

 

Fig 1.9. Dependence of oil saturation on wettability. (Thakur and Satter, 1998). 
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The main drawback of contact angle measurement method is that the experimental 

value of contact angle depends on image magnification. Direct goniometer is used to 

measure contact angle.  

 

Table 1.2. Wettability expressed by contact angles. (Rezaeidoust, 2011) 

Contact angle values  Wettability preferences  

0-30° Strongly water-wet  

30°-90° Preferentially water-

wet 

 

90° Neutral wettability  

90°-150° Preferentially oil-wet  

150°-180° Strongly oil-wet  

 

 

Fig 1.10. Wetting conditions on solid. (A: Non-wetting phase, B: Intermediate wetting 
phase, C: Wetting phase). 

 

For small contact angles below 20°, acquiring accurate measurements is very 

difficult. This is due to uncertainty in drawing tangent line when the droplet profile is 
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almost flat (Yuan and Lee, 2013). Also, geometric form of solid sample can affect contact 

angle measurement. 

Amott wettability test is another method used for determining wettability. It is 

based on capillary pressure phenomena and determination of Amott wettability index. If 

wettability index is 1.0, it indicates strongly wetting index whereas, index of 0.0 indicates 

strongly non-wetting index (Thakur and Satter, 1998). This method neglects capillary 

pressure curve hysteresis, and thus, can be misleading if system is fractionally wet 

(McDougall and Sorbie 1995). 

Generally, sandstone and carbonate reservoirs are water-wet before contact with 

crude oil, but may change to oil-wet by components of crude oil. Certain minerals may be 

variably prone to water or oil-wet. Also, any treatment that can change the wettability of 

the formation from water-wet to oil-wet can significantly impair productivity.  

Other techniques used for wettability measurements include imbibition rate test, 

hysteresis of relative permeability curve, United States Bureau of Mines (USBM) 

wettability test and Nuclear Magnetic Relaxation (Agbalaka, Dandekar et al. 2008). 

 

1.4 FACTORS AFFECTING WETTABILITY OF ROCK  

Several factors affect wettability of rock including oil composition, pH, brine 

composition, ionic strength, mineral surface, pressure, temperature and traces of 

multivalent cations (Anderson, 1986).  

Oil and Brine Composition Interaction- Crude oil contains organic matter including 

asphaltene and resin, which are rich in polar compounds of acidic and basic nature. This 
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composition of crude oil is very important parameter for wettability alteration. It affects 

wettability in two ways. 

1. Polar components exhibit surface activity 

2. Oil creates solvent environment 

Four wettability alteration mechanisms by crude oil were identified as follows: 

 Polar interaction between oil and solid in the absence of water 

 Precipitation on surface, depending upon behavior of oil as solvent 

 Acid/base interactions between the opposite charged interfaces 

 Specific interaction charged sites and multivalent ions  

Surface charge of rock surface and fluid interface is strongly affected by important 

factors such as brine composition, pH and salinity which ultimately results in wettability 

alteration.   

Oil recovery in carbonate reservoirs is generally less than 30% due to low water 

wetness, natural fractures, low permeability and heterogeneous rock properties. Carbonate 

rocks are chemically unstable rocks. At higher temperatures, many mineralization reactions 

take place in carbonate reservoir which may affect wettability. Carbonate surface is initially 

positively charged. When it comes in contact with crude oil, negatively charged carboxylic 

group (-COO) from crude oil gets bonded with positively charged carbonate surface. This 

carboxylic group (-COO) is important parameter responsible for wettability alteration in 

carbonate reservoir. The carboxylic group is determined by acid number, AN (mg KOH/g). 

The effect of this Acidic number, AN was studied by (Standnes and Austad, 2000a). It was 

found that the spontaneous imbibition rate and oil recovery decreased with increase in AN. 
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Fig 1.12 shows oil recovery with respect to time for different AN of carboxylic group used 

in diverse types of crude oils for spontaneous imbibition. 

 

 

Fig 1.11. SEM image of carbonate section. 

 

 
Fig 1.12. Spontaneous imbibition into chalk cores saturated with different oils. (Stadnes 
and Austad, 2000a). 



23 
 

AN of carboxylic group decreases as the temperature increases. Hence, at elevated 

temperature, carbonate reservoirs are more water-wet compared to low temperature 

reservoirs. At high temperature, decarboxylation of acidic material takes place. This 

process is catalyzed by solid CaCO3. Thus, initially, carbonate reservoirs are water-wet. 

When rock surface comes in contact with crude oil, it becomes oil-wet. The carboxylic 

group determined by AN is responsible for altering water-wet rock to oil-wet.  

Spontaneous imbibition is the process in which wetting fluid displaces non-wetting 

fluid. Thus, water-wet rock contains water as wetting fluid and oil as non-wetting fluid. 

Hence, water as wetting fluid displaces oil (non-wetting fluid) which leads to improved oil 

recovery. Therefore, it is easier to produce oil from water-wet rock compared to oil wet 

rock.  

 

Fig 1.13. Capillary pressure diagram used to characterize wettability. 
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In recent studies, it was found that salinity of injected water and its composition 

can alter the wettability of reservoir. Usually, sea water is cheap and readily available 

source of injecting water used for waterflooding. Seawater contains ions like Ca2+, Mg2+ 

and SO4
2- which are reactive towards carbonate rock surface. These ions can act as potential 

determining ions and can change the surface charge of the rock (Pierre et al., 1990; Zhang 

and Austad, 2006).  The affinity of these potentially determining ions was studied using 

chromatographic wettability test (Zhang et al., 2006; Zhang et al., 2007) and mechanism 

for wettability alteration was suggested. 

 

 

Fig 1.14. Maximum oil recovery from chalk cores at 100 and 130°C. 

 

Desorption of carboxylic group from rock surface is first step of wettability 

alteration.  As the SO4
2- concentration in injecting water increased, affinity of SO4

2- 

towards rock surface increases and it adsorbs on surface (Strand et al., 2006).  This 
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adsorption of sulfate ions on rock surface removes carboxylic group attached to surface. 

Negatively charged carboxylic group couples with positively charged calcite (Ca2+) ions. 

It is important to note that adsorption of sulfate onto the chalk promotes increasing co-

adsorption of Ca2+, which increases the concentration of Ca2+ at the surface to facilitate the 

reaction with adsorbed carboxylic components (Strand et al., 2006). Fig 1.15 shows the 

overall chemical mechanism for wettability alteration. At low temperatures such as 25°C, 

Mg2+ adsorbs less strongly than Ca2+. At higher temperatures (130°C), Mg2+ substitutes 

Ca2+, and degree of substitution increases with increasing temperature (Zhang et al., 2007).   

 

Fig 1.15. Suggested chemical mechanism for wettability alteration. (Zhang et al., 2007). 

 

The impact of each of these potential determining ions on oil recovery was tested 

separately. As discussed earlier, oil recovery increased from 10% to 50% of original oil in 

place, as the concentration of SO4
2- was increased from 0 to 4 times the concentration in 

ordinary SW. It is shown in Fig 1.3. Similarly, as the concentration of Ca2+ increased from 

0 to 4 times the concentration in SW, oil recovery increased from 28% to 60%. Fig 1.4 

shows increase in oil recovery with increase in Ca2+ concentration at 70°C. The reactivity 
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of Mg2+ towards rock surface increases as the temperature increases. Coreflooding study 

was conducted at 25, 130°C to understand the effect of Ca2+ and Mg2+ (Zhang et al., 2007). 

The concentration Ca2+ from effluent was increased at 130°C compared to that of 25°C. 

Concentrations of tracer (SCN-) Ca2+ and Mg2+ are plotted for both temperatures. Plots are 

shown below in Fig 1.7. and Fig 1.8. Area between tracer curve and Ca2+ and Mg2+ gives 

quantitative measurement of adsorption. For 25°C, the area between tracer curve and Ca2+ 

is 0.290, and area between tracer curve and Mg2+ is 0.085 (Fig 1.7). This showed that the 

affinity of Ca2+ towards carbonate surface is 3.4 times stronger than that of Mg2+. But, at 

130°C, concentration of Ca2+ in effluent was significantly higher than the initial 

concentration (Fig 1.8).  

 

 

Fig 1.16. Competitive adsorption of Ca2+ and Mg2+ at room temperature. (Zhang et al., 
2007). 
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Fig 1.17. Competitive adsorption of Ca2+ and Mg2+ at 130°C. (Zhang et al., 2007). 

 

1.5 OBJECTIVE 

There are various reactions that occur on the surface of rock when it comes into 

contact with high salinity water. It is not possible to study these complicated reactions and 

processes using laboratory coreflooding experiments. Hence, it was important part of study 

to create reactive transport model which simulate environment similar to actual 

coreflooding environment and rock properties. By creating this reactive transport model, 

we modeled flow of high salinity brine through calcite rock. To model exact environment 

and chemical behavior of the system, various reactions, such as surface complexation 

reactions and mineral dissolution reactions that occur on the rock surface were taken into 

consideration. The reaction network is mentioned in methodology with equilibrium 

constants and rate values. These reactions with kinetics and thermodynamic data can help 

to understand chemical behavior of water-rock system. This behavior can be related to 

improved oil recovery which has oil-water-rock interaction that leads to wettability 

alteration.  
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2 METHODOLOGY 

 

2.1 REACTIVE TRANSPORT 

Crunchflow is the program used for simulating the water-rock interaction that takes 

place when seawater is flooded into the chalk core. Crunchflow code is written in 

FORTRAN 90, and it can be used for simulating many important processes, including 

reactive contaminant transport, chemical weathering, carbon sequestration, 

biogeochemical cycling, and water-rock interaction.  It is based on finite volume 

discretization of the governing partial differential equations that can link flow, solute 

transport, multicomponent equilibrium and kinetic reactions in porous media. The 

governing mass conservation equation used by Crunchflow for reactive transport modeling 

is given below. 

−
𝑑(𝑐)

𝑑𝑡
= 𝛻(−𝐷𝛻𝐶 + 𝑣𝐶) + 𝑅𝐶𝑎𝐶𝑂3                                              (2.1)                     

Where, C is the total concentration of ions (mol/m3). t is time (s); D is the combined 

dispersion-diffusion tensor (m2/s); v is the flow velocity vector (m/s). D (dispersion-

diffusion tensor) is sum of mechanical diffusion coefficient and effective diffusion 

coefficient. 

In grid block, at any location, flow velocities in longitudinal and vertical direction 

are denoted by vx and vy. Their corresponding dispersion coefficients DL and DT are given 

by, 

𝐷 = 𝐷∗ + 𝛼𝑣                                                                         (2.2) 

where D* is effective diffusion coefficient. In this work, the value for effective diffusion 

coefficient was 1.7 X 102 m2/s. 𝛼 is longitudinal dispersivity. The value used for this work 
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is 0.026 cm. In this work, spatial variation was not considered. Hence, effective diffusion 

coefficient and dispersivity values are kept same for each grid. There are total 25 grids in 

X direction, and 70 grids in Y direction. Each grid has size of 0.1 cm X 0.1cm. 

Crunchflow code uses initial condition, chemical composition of rock, mineral 

type. Aging brine and condition was used as initial condition, and chemical composition 

of rock includes aging brine composition and rock composition. Calcite and small amount 

of dolomite was considered with porosity of 43%.  

For time steps, 10 time intervals were considered from 0.01, 0.1, 0.2, 0.5, 1.0, 1.5, 

2.0, 3.0, 4.0, 5.0, 6.0, 10 in hours. For breakthrough curves, these time steps were converted 

into pore volume (PV) using velocity and volume of block.  

 

Fig 2.1. Dimensions of chalk core. 
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2.2 REACTIONS  

To model the reactive transport process, mineral dissolution and precipitation is 

important step that needs to be considered. In this work, calcite and dolomite are minerals 

present on the chalk surface. Calcite and dolomite dissolution and precipitation are taken 

into consideration for the model. Reactions are taken from previous literature (Chou et al., 

1989).  

The dissolution reactions for calcite are shown below, 

𝐶𝑎𝐶𝑂3 + 𝐻+ →  𝐶𝑎2+ + 𝐻𝐶𝑂3−                                                  (2.3)      

𝐶𝑎𝐶𝑂3 + 𝐻2𝐶𝑂3
0 →  𝐶𝑎2+ + 2𝐻𝐶𝑂3−                                        (2.4)          

𝐶𝑎𝐶𝑂3 →  𝐶𝑎2+ + 𝐶𝑂3
2−                                                               (2.5)    

Small amount of dolomite is also present on the chalk core surface. The dissolution 

reactions for dolomite are shown below (Chou et al., 1989), 

𝐶𝑎𝑀𝑔(𝐶𝑂3)2 + 𝐻+ →  𝑀𝑔𝐶𝑂3  + 𝐶𝑎2+ + 𝐻𝐶𝑂3−                      (2.6)      

𝑀𝑔𝐶𝑂3 + 𝐻+ →  𝑀𝑔2+ + 𝐻𝐶𝑂3−                                               (2.7)          

𝑀𝑔𝐶𝑂3 →  𝑀𝑔2+ + 𝐶𝑂3
2−                                                            (2.8)    

The reactions from (2.3) to (2.5) and (2.6) to (2.8) are elementary steps in 

dissolution process of calcite and dolomite respectively. The forward and backward rates 

for these reactions are expressed based on stoichiometry of three reaction steps and 

thermodynamic constraints. They area shown below (Chou et al., 1989), 

For forward reaction,  

𝑅𝑓 = 𝑘1𝑎𝐻 + 𝑘2𝑎𝐻2𝐶𝑂3
∗ + 𝑘3  

𝑅𝑏 = 𝑘−1𝑎𝑀2+𝑎𝐻𝐶𝑂3
− + 𝑘−2𝑎𝑀2+𝑎𝐻𝐶𝑂3

−2 + 𝑘−3𝑎𝑀2+𝑎𝐶𝑂3
2−  
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 𝑘1, 𝑘2, 𝑘3, 𝑘−3 are rate constants (mol/m2/s). The values of 𝑘1, 𝑘2, 𝑘3, 𝑘−3 were 

determined experimentally (Chou et al.,1989). Their values are 8.5X10-1, 5X10-4, 6.5X10-

7(mol/m2/s) for 𝑘1, 𝑘2, 𝑘3 respectively. Similarly, for dolomite, 2.6X10-3, 1.0X10-4, 2.2X10-

8(mol/m2/s) are values for 𝑘1, 𝑘2, 𝑘3 respectively. For reactive transport process modeling 

in Crunchflow, various components in the database are divided into primary and secondary 

species. Primary species are main building blocks for particular problem. Secondary 

species are those for which equilibrium reaction relationship is assumed with primary 

species in the problem. In this reactive transport model, primary species are H+, Cl-, HCO3
-, 

Mg++, Ca++, Na++, K+, SO4
-, SCN-. Secondary species include OH-, CO2(aq), HSO4

-, CO3
--

, MgSO4(aq), CaSO4(aq). Also, there are active surface sites on the rock surface, which 

play important role in wettability alteration. These surface species are >CaOH2+, >CaOH, 

CO3
-, >CaSO4

-, > CO3Mg+, >CO3H, >CaO-, >CaCO3 >CaHCO3
-, >MgOH, >CaHCO3

-, > 

CO3Ca+, >CaOH2+, >MgHCO3
-, >MgCO3. These species are calculated by mass 

conservation equation. These reactions are used for 25°C and 130°C. Equilibrium constant 

for each reaction changes as concentration changes. Equilibrium constants for reactions at 

130°C are calculated using Van’t Hoff equation. It is given below. 

ln (
𝐾1

𝐾2
) = − (

∆𝐻

𝑅
) . (

1

𝑇2
−

1

𝑇1
)  

where, ∆𝐻 is enthalpy change (J/mol). T1 and T2 are temperatures. R is molar gas constant. 

The reaction network is shown below.  

 

Log K values at different temperatures such as 60, 90, 130 and 170°C were 

calculated using above mentioned Van’t Hoff equation. Log K values at 110°C were used 

as reference (T2) to get enthalpy change. Using same enthalpy change, log K values at 
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different temperatures were calculated. Log K gives logarithmic value of Keq which is 

equilibrium constant. 

 

Table 2.1. Reactions for calcite and dolomite surface. Reactions (1 to 5,7,10) are for calcite, 
and reactions (6,8,9,11) for dolomite. 

Reactions LogKeq(25°C) LogKeq(110°C) 

> 𝐶𝑎𝑂𝐻 + 𝐻+↔ > 𝐶𝑎𝑂𝐻2+ 11.80 11.80 

> 𝐶𝑎𝑂𝐻2+ + 𝑆𝑂4
2−↔> 𝐶𝑎𝑆𝑂4

− + 𝐻2𝑂 -2.10 -3.25 

> 𝐶𝑎𝑂𝐻 + 𝐶𝑂3
2−↔> 𝐶𝑎𝐶𝑂3

− + 𝐻+ 17.5 15.4 

> 𝐶𝑂3𝐻↔ > 𝐶𝑂3
− + 𝐻+ -5.10 -5.10 

> 𝐶𝑂3𝐶𝑎+↔ > 𝐶𝑂3
− + 𝐶𝑎2+ -2.6 -3.40 

> 𝐶𝑂3𝑀𝑔+↔ > 𝐶𝑂3
− + 𝑀𝑔2+ -2.6 -3.40 

> 𝐶𝑎𝑂𝐻 + 𝐶𝑂3
2− + 𝐻+↔> 𝐶𝑎𝐻𝐶𝑂3

− + 𝐻2𝑂 23.5 21.5 

> 𝑀𝑔𝑂𝐻 + 𝐶𝑂3
2− + 𝐻+↔> 𝑀𝑔𝐻𝐶𝑂3

− + 𝐻2𝑂 23.5 21.5 

> 𝑀𝑔𝑂𝐻 + 𝐶𝑂3
2−

↔> 𝑀𝑔𝐶𝑂3
− + 𝐻+ 15.4 17.5 

> 𝐶𝑎𝑂− + 𝐻+↔> 𝐶𝑎𝑂𝐻  -12 -11 

> 𝑀𝑔𝑂− + 𝐻+↔> 𝑀𝑔𝑂𝐻  -12 -11 

*Log K values for reactions 1,2,4,5 and 6 are taken from Qiao et al., (2015). Log K values 
for 7 to 11 are taken from Pokrovsky et al., (1999). Log K for reactions 7-11 (where log K 
for 110°C is not available) were tuned to match the data. 
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3 RESULTS AND DISCUSSION 

 

3.1 BASE CASE SIMULATIONS 

Low salinity waterflooding experiments were mostly conducted using coreflooding 

techniques. For this work, data from Zhang et al., (2007) was used. Their experiments were 

carried out for different temperatures to understand effect of temperature on potential 

determining ions.  

The experiments from Zhang et al., (2007) used homogeneous Stevns Klint chalk 

cores. The porosity was in the range of 45% to 50%. Permeability was in the range of 2mD 

to 5mD. Specific surface area was approximately 2m2/g. These cores, after drilling, were 

dried at 120°C and were cut to correct diameter (approximately 37mm) and length 

(approximately 70mm).  The cores were saturated with two different brines. At first, cores 

were saturated with brine 1, which is formation water brine.  Then brine 2 was injected at 

25°C and 130°C at constant pH of 8.4. Compositions of brine 1 and brine 2 are shown 

below. This brine composition data and chalk core data from Zhang et al., (2007) was used 

in Crunchflow. The data mentioned in Crunchflow is shown below in table 3.2. 

Chalk cores used for experiments from Zhang et al., (2007), were 7cm long and had 

diameter of 3.7 cm. For reactive transport modeling, it was assumed that water moves 

through 2-D column. Grid block of 75X25 was created with each grid having length and 

width of 0.1cm. Cores used in experiments as well as grid block created in Crunchflow are 

shown below. 
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Table 3.1. Composition of brine 1 and brine 2. 

 Brine 1(mol/l) Brine 2 (mol/l) 

Na+ 0.573 0.504 

K+ - - 

Mg2+ - 0.013 

Ca2+ - 0.013 

𝐶𝑙− - 0.556 

𝐻𝐶𝑂3
− - -  

𝑆𝑂4
2− - 0.013 

𝑆𝐶𝑁− 0.573 0.573 

 

 

Table 3.2. Parameters used in Crunchflow. 

Parameter  Units Value 

Specific surface area of calcite   (m2/g) 0.504 

Specific surface area of dolomite+  (m2/g) - 

Diffusion Coefficient  (m2/s) 1.7X10-8 

Temperature  °C 25, 130 

Porosity  % 0.556 

pH  - 8.4  

Dispersivity  cm 0.026 
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3.2 CHEMICAL ANALYSIS 

After cores were saturated with formation water, seawater was injected. A pre-

programmed Spectroquant Nova 60 photometer was used to determine the concentrations 

of Ca2+ and Mg2+. Fig 3.1 shows concentrations of SCN-, Ca2+and Mg2+ after flooding brine 

2 at 25°C from experiments. The dotted lines are values from simulation. Matching SCN- 

curve from experiments and simulation indicates that flow conditions are successfully 

achieved in Crunchflow.  

 

Fig 3.1. Concentrations of effluent Ca2+, Mg2+ and SCN-. Cores were already saturated 
with brine 1 at 25°C (Zhang et al., 2007). Dotted lines indicate values plotted from 
simulation. 

 

SCN- also known as Thiocyanate, is tracer used for reference during coreflooding, 

and is non-reactive. At 25°C, both Ca2+ and Mg2+ curves from Fig 3.1 are close to SCN- 
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curve. This indicates that both ions are adsorbed or desorbed in lesser amount. Finally, all 

concentrations try to reach at initial concentration (equilibrium) at approximately 1.5 PV.  

The initial concentration of Ca2+, Mg2+ and SCN- were all 0.013 mol/l. The Mg2+ curve to 

immediate right of SCN- curve shows that it is adsorbed on the rock surface but in lesser extent as 

compared to Ca2+ (as Ca2+ curve is to the extreme left). 

  

Fig 3.2. Concentrations of effluent Ca2+, Mg2+ and SCN-. Cores were already saturated 
with brine 1 at 130°C (Zhang et al., 2007). Dotted lines indicate values plotted from 
simulation. 

 

Similarly, coreflooding test was carried out at 130°C. It showed significant 

difference in behavior of both ions. Fig 3.2 shows that Ca2+ concentration was suddenly 

spiked at 1 PV. The effluent concentration was almost double of initial concentration of 

Ca2+. This means that additional Ca2+ from the rock surface was dissolved into effluent 
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concentration. Similarly, Mg2+ curve is showing less effluent concentration values than the 

initial concentration till 2PV was flooded. This suggests that Mg2++ from initial injected 

concentration is reacting on the rock surface. This reaction where Ca2+ is replaced by Mg2+ 

is known as dolomitization reaction. It leads to formation of dolomite. Higher temperature 

is favorable condition for this reaction.  

 

3.3 SURFACE COMPLEXES 

In order to understand wettability alteration, role of active surface sites is very 

important. These surface sites lead to reactions known as surface reactions. It is necessary 

to consider surface complexation modeling to simulate more accurate environment for 

wettability alteration. This section includes results from surface complexation model. Fig 

3.3 shows surface complexes distribution.  

Calcite rock surface has reactive surface sites such as >CO3
- and >Ca+. Injecting 

additional concentration of different ions results in reaction of these ions with these sites. 

Reactions of surface sites and ions were discussed in section 2 including table 2.1. Thus, 

the surface sites concentrations may increase or decrease over time. 

Fig 3.3 shows surface complexes distribution at 130°C. It can be noticed here that 

many sites are showing change in their concentration over PV injected. This concludes that 

for same injected brine, surface complexes concentrations change significantly showing 

reactions favor higher temperature. >CO3H concentration drops rapidly, and >CO3
- and 

>CO3Mg+ concentrations increased over injected PV. This suggests that >CO3H detaches 

H+ and becomes >CO3
- and attracts Mg2+. The reaction of >CO3

- and Mg2+ forms 

>CO3Mg+. Hence, concentration of >CO3Mg+ increases. 
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Fig 3.3. Surface complexes distribution at 25°C. 

 

 

Fig 3.4. Surface complexes distribution at 130°C. 
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Figs 3.5 and 3.6 show surface concentration divided by initial surface 

concentration. This gives idea about how surface concentration changed from initial 

concentration over injected PV. 

 

Fig 3.5. concentration ratio of surface complexes vs injected pore volume at 25°C. 

 

3.4 EFFECT OF VARYING TEMPERATURE 

To understand the effect of varying temperatures on adsorption and desorption of 

various ions and surface sites concentrations, simulations were run for 60 and 150°C. The 

effect of temperatures on chemical analysis are shown below in Fig 3.7 and 3.8. 

It can be seen here that as the temperature increases more Ca2+ is getting desorbed 

from the surface of chalk. This additional desorbed Ca2+ may be from surface sites such as 

>CaOH, >CaOH2+, >CaCO3
- and >CaSO4

-.  
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Fig 3.6. concentration ratio of surface complexes vs injected pore volume at 130°C. 

 

Fig 3.8 shows chemical analysis of Mg2+. It also shows progressive increase in 

adsorption, as the temperature increases.  This also confirms that higher temperature favors 

dolomitization reaction.  

 

 

Fig 3.7. Chemical analysis of Ca2+ at 25,60,130,150°C. 
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Fig 3.8. Chemical analysis of Ca2+ at 25,60,130,150°C. 

 

 

Fig 3.9. concentration ratio of surface complexes vs injected pore volume at 60°C. 
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Similarly, effect of varying temperatures on surface complexes was studied. 

Surface complexes distribution showed different trend for each temperature. Figs 3.9 and 

3.10 show surface complexes concentration change. 

It can be seen here that the increase in temperature from 25 to 60°C resulted all 

surface sites concentration change except >CaSO4
- and >CaOH2+. It also shows that Mg2+ 

is more reactive towards >CO3
- than Ca2+. 

Finally, at 150°C, Mg2+ stops reacting with surface sites. Again, Ca2+ shows 

significant affinity towards >CO3Ca+.  

Concentration ratios vs PV injected plots give better idea about change in 

concentration from initial concentration. They are shown below in Figs 3.11 and 3.12 

 

 

Fig 3.10. Concentration ratio of surface complexes vs injected pore volume at 150°C. 
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Fig 3.11. Concentration ratio of surface complexes vs injected pore volume at 60°C. 

 
 

 

Fig 3.12. Concentration ratio of surface complexes vs injected pore volume at 150°C. 
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Fig 3.11 and 3.12 shows how surface sites deviate from their initial concentrations 

with respect to increasing injected PV. It can be noticed here that >CO3H, >CO3
- and 

>CO3Ca+ show significant increase in 130 and 150°C. >CaSO4
- and >CaCO3

- are 

decreasing. This decrease in negative sites and increase in positive sites can result in 

significant wettability alteration.  

To compare the increase in positively charged sites and decrease in negatively 

charged surface sites, ratio of each positively charged site concentration to its initial 

concentration and ratio each negatively charged surface site concentration to its initial 

concentration was plotted for different temperatures. These results are shown in Figs 3.13, 

3.14 and 3.15. It can be seen here that at higher temperature concentration of >CO3Ca+ 

increased except at 60°C. At 150°C, >CO3Ca+ concentration increased approximately 4.2 

times of initial concentration.  

Previous study showed that Mg++ replaces Ca++ at elevated temperatures. Hence, 

ratio of concentrations of >CO3Mg+ to its initial concentration was plotted for different 

temperatures as shown in Fig 3.14. It shows that >CO3Mg+ concentration increased to 

much higher value than its initial concentration for 60°C. It was approximately 120 times 

greater than initial concentration. But, as the temperature increased, concentration change 

showed opposite trend. The ratio started decreasing. At 130°C, ratio is 70, and at 150°C, 

ratio is approximately 38. Even though ratio for >CO3Mg+ decreases, it is still much higher 

than ratio of >CO3Ca+ at any temperature. This indicates that Mg++ has higher affinity 

towards rock surface than Ca++.  
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Fig 3.13. concentration ratio of >CO3Ca+ vs injected pore volume. 

 
 

 

Fig 3.14. Concentration ratio of >CO3Mg+ vs injected pore volume. 
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Fig 3.15. Concentration ratio of >CaCO3- vs injected pore volume. 

 

Thus, at higher temperature, Mg++ can act as main potential determining ion and 

can make greater contribution towards wettability alteration. Hence, increasing Mg++ in 

injecting brine for higher temperature, might increase the concentration of >CO3Mg+ at 

elevated temperature and can result in significant wettability alteration which can 

ultimately result in improved oil recovery.  

On the other hand, overall charge on the rock surface determines whether water 

film will be stable or will collapse (Hiorth et al., 2010). Oil has negative surface potential. 

If rock has negative surface potential, water film will be more stable and it will be water 

wet. But, if rock is positively charged, water film will collapse and the surface will be oil-

wet. Hence, it is important to have overall negative charge on the rock surface. When brine 

containing positive and negatively charged ions is injected, positively charged ions strip 

out negatively charged oil and negatively charged ions from brine attached to rock surface 

making it negative or reduce the positive charge.  
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In case of 25°C, total concentration of negatively charged sites was less than 

positively charged sites. Thus, overall rock surface was positively charged. When the 

temperature increased to 60°C, concentration of >CO3
- was increased significantly than 

any other positive sites. So, the total concentration of negatively charged sites was nearly 

equal to positively charged sites making surface charge less positive. It means that due to 

less positive charge on the rock surface, lesser oil will be attached to rock surface. As the 

temperature increased to 130°C and 150°C, >CO3Mg+ concentration was decreased 

reducing overall positively charged sites concentration and that reduced positive charge on 

the surface. Table 3.2 shows all surface sites concentrations at different temperatures. 

 

Table 3.3. Surface sites concentration ratios at different temperatures. 

Surface sites At 25°C 

 

At 60°C 

 

At 130°C 

 

At 150°C 

 

>CO3Mg+ 1.16 120.51 68.8 39.4 

>CO3Ca+ 1.00 0.61 2.11 4.23 

>CaCO3
- 0.93 1.01 0.70 0.39 

 

Table 3.1 shows that total positive sites concentration goes on decreasing as 

temperature increases. >CaCO3
- is negative site which shows increase in concentration at 

60°C and 130°C but then slightly decreases at 150°C. 

It can be seen here that even though Mg++ has greater affinity towards rock surface, 

its affinity towards negatively charged sites on the rock surface decreased with increased 

temperature. This resulted into decreasing concentration of >CO3Mg+. This suggests that 

Mg++ reacting on rock surface to precipitate as magnesium rich mineral dolomite. At the 



48 
 

same time, Ca++ showed less affinity towards rock surface and Ca++ concentration from 

effluent was higher than initial injected concentration of Ca++. This indicates that excess 

Ca++ from effluent came from dissolution of calcite. To verify, dolomite precipitation and 

calcite dissolution were calculated.  

 

Table 3.4. Mineral fractions at different temperatures. 

Minerals At 25°C 

fraction 

At 60°C 

fraction 

At 130°C 

fraction 

At 150°C 

fraction 

Calcite 1 1 0.998 0.997 

Dolomite 1.16 0.991 1.86 8.174 

 

 

3.5 BRINE COMPOSITION AND CALCITE DISSOLUTION 

To understand relation between brine composition and calcite dissolution, several 

simulations were run using different brine compositions. Oil recovery percentages and 

brine compositions are used to relate them with the calcite dissolution. It was found that 

oil recovery and calcite dissolution increased with increase in volume. Following table 

shows the relation between brine composition, calcite dissolution and oil recovery 

percentage. This shows that there is correlation between all three of them. 
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Table 3.5. Oil recovery percentage and calcite dissolution relation. 
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4 CONCLUSION AND RECOMMENDATION 

 

4.1 CONCLUSION 

This study presents reactive transport model for high salinity waterflooding for 

carbonate. Surface complexation modeling was also part of this study. Surface 

complexation model helped to understand surface sites concentration changes with respect 

to different temperatures. Oil recovery mechanism based on water chemistry was studied 

using this model. 

Based on chemical analysis at 25°C, Ca++ from injecting brine showed more affinity 

towards rock surface than Mg++. At 130°C, Mg++ was more reactive towards rock surface 

than Ca++. Surface sites also showed significant changes in concentration at different 

temperatures. It showed that both >CO3Ca+ and >CO3Mg+ concentrations decrease with 

increase in temperature. >CO3
- concentration showed accordance with increasing 

temperature and improved oil recovery by reducing positive charge on the rock surface. 

Thus, the excess Mg++, which reacted on rock surface, resulted in precipitation of 

dolomite. Hence, excess Ca++ from the calcite in effluent concentration in chemical 

analysis was result of calcite dissolution. Calcite dissolution is supposed to enhanced by 

organic matter attached to it. Thus, calcite dissolution is plausible reason for improved oil 

recovery.   

Also, at 130 and 150°C, >CO3Mg+ and >CO3Ca+ concentrations were less 

compared to 25 and 60°C. It means surface potential at 25 and 60°C was highly positive 

than at 130°C and 150°C. Initially less positive surface potential of rock reduces attraction 

between rock surface and negative carboxylic group from oil. This reduced binding of rock 

and oil group helps to change the wettability of rock during waterflooding. 
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4.2 RECOMMENDATIONS 

Since, reactions related to mineral dissolution depend on reaction rates, and surface 

site reactions depend on equilibrium constants, it is necessary to have accurate values of 

both from experimental data in order to simulate exact reaction environment. This study 

was only based on water-rock interaction.  

Carboxylic group which is present in oil was not considered in model. To 

understand water-oil-rock interaction, -COO (carboxylic group) must be considered in 

model. It can help to understand relation between oil recovery and surface complexation 

and mineral dissolution mechanism. 
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