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ABSTRACT 

 

When developing a ground water model, the quality of the dataset should first be 

evaluated.  Spatial outliers can lead to predictions which are not representative of actual 

conditions.  In order to isolate misrepresentative points, a method is presented which 

examines the experimental variogram of a ground water elevation dataset.  To define a 

threshold variance between pairs of ground water elevation measures, ground elevation 

values from a digital elevation model (DEM) are used to determine a maximum 

reasonable variance expected to occur on the experimental variogram.  To determine 

appropriate DEM parameters, a separate study was also done which observed 

characteristic behavior of gradient calculations for a DEM with fluctuating resolution and 

extent.  This method is applied first to a synthetic dataset and then to a monitoring well 

network at Fort Leonard Wood, Missouri.  Results of the analysis show that all points 

targeted as spatial outliers in the case study are justified for removal.  This approach can 

readily be incorporated into the development of a regional groundwater model by kriging.  

The strengths of this method are that it incorporates supplemental DEM building of the 

concept that the groundwater surface is a smoothed version of the topographic surface.  

This method also takes advantage of every point pair relationship in that both 

neighboring points and distant pairs are compared. 

  



v 

 

ACKNOWLEDGEMENTS 

 

A special thanks to Dr. Curtis Elmore for presenting the opportunity to pursue my 

Master’s Degree and for the help and guidance throughout my research.  A special thanks 

also to Dr. Joe Guggenberger for guidance on my thesis and encouragement along the 

way.  Lastly a thanks to my sponsors at the Army Corps of Engineers for sponsoring this 

research. 

  



vi 

 

TABLE OF CONTENTS 

 

 Page 

PUBLICATION THESIS OPTION ................................................................................... iii 

ABSTRACT ....................................................................................................................... iv 

ACKNOWLEDGEMENTS ................................................................................................ v 

LIST OF ILLUSTRATIONS ........................................................................................... viii 

LIST OF TABLES .............................................................................................................. x 

SECTION 

1. INTRODUCTION .................................................................................................. 1 

1.1. REVIEW OF SPATIAL OUTLIER DETECTION APPROACHES ....... 1 

1.2. GEOSTATISTICAL CONCEPTS ............................................................ 4 

2. METHOD DEVELOPMENT ................................................................................. 7 

2.1. GRADIENT SCALE RELATIONSHIPS ................................................. 8 

2.2. MODEL VERIFICATION ...................................................................... 14 

PAPER 

I.  DEVELOPMENT OF A VARIOGRAM PROCEDURE TO IDENTIFY 

SPATIAL OUTLIERS USING A SUPPLEMENTAL DIGITAL ELEVATION 

MODEL ................................................................................................................ 17 

ABSTRACT .............................................................................................................. 18 

1. INTRODUCTION ................................................................................................ 19 

2. METHODS ........................................................................................................... 21 

2.1. MODEL DEVELOPMENT .................................................................... 24 

2.2. DEVELOPMENT OF A SYNTHETIC DATASET ............................... 27 

3. RESULTS AND DISCUSSION ........................................................................... 28 



vii 

 

3.1. FORT LEONARD WOOD CASE STUDY RESULTS ......................... 31 

4. CONCLUSIONS................................................................................................... 42 

ACKNOWLEDGEMENTS ...................................................................................... 44 

REFERENCES .......................................................................................................... 44 

SECTION 

3. RECOMMENDATIONS FOR FUTURE WORK ............................................... 47 

APPENDICES 

A. MONITORING WELL DATABASE .................................................................. 48 

B. GRADIENT CALCULATIONS MATLAB CODE ............................................ 51 

C. DEM GRADIENT DIRECTION AND MAGNITUDE PLOTS ......................... 56 

D. SEASONAL ANALYSIS .................................................................................... 69 

REFERENCES ................................................................................................................. 96 

VITA ................................................................................................................................. 98 

 

  



viii 

 

LIST OF ILLUSTRATIONS 

 

SECTION Page 

Figure 2.1. Variations in DEM threshold with changing extent. ........................................ 9 

Figure 2.2.  Establishing a minimum acute angle for three point problem. ...................... 10 

Figure 2.3. Constant resolution 1000ft (300m) with increasing extent. ........................... 11 

Figure 2.4. Constant extent (3000ft) with increasing grid size ......................................... 12 

Figure 2.5. Gradient Magnitude: 3000ft extent with increasing grid size ........................ 13 

Figure 2.6. Gradient magnitude:  1300ft (400m) resolution with increasing extent ......... 14 

Figure 2.7. Illustration of scale effects shown on binned variogram ................................ 15 

Figure 2.8. Equivalent variance from three point calculations ......................................... 16 

 

PAPER 

Figure 1.  Estimation of local scale from gradient direction plot ..................................... 27 

Figure 2.  Gradient direction plot for the synthetic dataset............................................... 28 

Figure 3.  Synthetic Dataset variogram threshold comparison ......................................... 29 

Figure 4.  Synthetic data outlier identification .................................................................. 30 

Figure 5.  Overview of the FLWMR monitoring well groupings ..................................... 32 

Figure 6.  MWG1 gradient direction plot ......................................................................... 33 

Figure 7.  MWG1 divided into two subsites ..................................................................... 33 

Figure 8.  Gradient direction plots for MWG1A and MWG1B ........................................ 34 

 

 



ix 

 

Figure 9.  Variogram threshold comparison for MWG1A and MWG1B ......................... 35 

Figure 10.  MWG1A potential spatial outlier detection ................................................... 36 

Figure 11.  MWG1B spatial outlier detection ................................................................... 36 

 

 

  



x 

 

LIST OF TABLES 

 

PAPER Page 

Table 1.  FLWMR Case Study Results ............................................................................. 37 

Table 2.  Sources of error for spatial outliers.................................................................... 39 

Table 3.  Case study results using z-score approach ......................................................... 41 

 



1. INTRODUCTION 

 

1.1. REVIEW OF SPATIAL OUTLIER DETECTION APPROACHES 

Two general types of outliers are presented by Shekhar et al. (2003).  Global 

outliers are values that are inconsistent with the remainder of the dataset or do not follow 

the standard distribution of the dataset.  Spatial outliers are values which do not follow 

the assumed continuity of nearby values or the underlying structure of the surface which 

is being considered.  The key difference between these two definition’s is that global 

outliers do not consider the spatial attribute of a point, therefore global methods are not 

suited to compare values which are samples of an surface that varies with space, such as 

terrain or groundwater elevation (GWE) data.  The focus of this study will be to present a 

method to identify spatial outliers from a GWE dataset.  Spatial outliers can be caused by 

natural variability that occurs in the system, such as sources of sinks due to karst, or from 

other sources of error in the acquisition of the data value.  Therefore it is important to be 

able to identify these errors, so non-representative measures are excluded from a regional 

groundwater model and repetition of errors is mitigated.  Shekhar et al. (2003) and Chen 

et al. (2008) identify two general methods which are designed to detect spatial outliers.  

The first is a graphical method which is based on the visualization of spatial data which 

highlights spatial outliers.  The second is a quantitative method which provides a precise 

test to distinguish spatial outliers from the remainder of the data (Shekhar et al., 2003; 

Chen et al., 2008).   
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Miller et al. (1997) presented a quantitative approach to scanning for potential 

spatial outliers by examining the prediction error from kriging divided by the root of the 

kriging estimation variance, referred to as the z-score.   Points with a high z-score 

indicated they needed further inspection.  A similar approach was taken by Bardossy and 

Kundzewicz (1990) using a jack-knifing technique, where the point of interest is 

temporarily removed from the dataset, then neighboring points are used to predict the 

value at that location.  The residual of the predicted and observed value is divided by the 

standard deviation of the estimation error.  The resulting value is the criterion used to 

highlight spatial outliers. This process of comparing observed values to a value predicted 

at that same location by neighboring values in called cross validation.  Tremblay and 

others (2015) presented a semi-automated filtering approach to detecting outliers from 

large public groundwater databases.  The automated portion of the approach first 

identified depth to static water level measurements that were greater than a threshold 

determined by a high quality dataset.  The second automated step calculated moving 

averages of neighboring wells and highlighted points that deviated significantly from the 

local average.  For a final processing step the data identified as potential outliers was 

visually examined where qualitative hydrogeological knowledge was applied to 

determine if the points were truly outliers.  Liu and others (2001) presented another 

quantitative technique using super block based spatial sorting and searching scheme to 

identify nearest neighbors.  They applied an inverse distance weighted technique to 

interpolate from the identified nearest neighbors and compared the interpolated value to 

observed values.  Points with high residuals were identified as spatial outliers.  This 

technique was made more robust and overcame the shortcomings of typical cross 
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validation techniques by using a jackknifing technique to determine which neighbors had 

the greatest effect on the interpolated value, and subsequently dropping the two values 

which contributed the most to the estimation.  Similarly Liu and others (2001) also 

calculated the gradient of the triangles formed by the neighboring points and the 

observation point and applied the same robust technique by dropping out the two most 

influential values.  The robust gradient was compared to the non-robust method to 

determine if the observation point was a potential outlier.  Shekhar et al. (2003) did a 

comprehensive study of a number of spatial outlier detection algorithms to identify the 

key components or building blocks of a spatial outlier detection algorithm.  The authors 

first identified S-outliers as spatial objects lying in a spatial framework that can be 

described by an attribute function which has a statistically significant arithmetic 

difference from a neighborhood aggregate function.  Where an aggregate function 

describes a group of data by a single representative value, such as the median or mean.  

Using this core definition an efficient algorithm was designed to minimize computer time 

in detection of S-outliers.   Hannah (1981) presented an interesting approach to 

identifying errors in elevation data for digital terrain models.  The approach was based on 

the assumption that a terrain model represents a continuous surface, which for the most 

part, varies smoothly with elevation.  Therefore any points causing sharp discontinuities 

in the elevation or sudden changes in the surface slope can be suspected of being in error.  

Therefore a number of tests were done which looked the slopes between a central 

observation point and surrounding neighbor points.  If the observation point caused a 

significant difference in the slope of surrounding points it was identified as a potential 

source of error. 
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Bardossy and Kundzewicz (1990) and Shekhar et al. (2003) identified that outliers 

can be detected during the development of a semivariogram by examining the cloud and 

selecting the points on the cloud with the highest squared differences.  Shekhar et al. 

(2003) points out that this graphical approach lacks precise criteria to distinguish outliers 

from true values.  A common practice in developing a groundwater model is to 

supplement sparse groundwater elevation (GWE) data with ground surface elevation data 

from a digital elevation model (DEM).  This practice is based off the assumption that for 

unconfined conditions, the groundwater is a smoothed version of the topographic surface 

(King, 1899; Domenico and Schwartz, 1998; Blauvelt and Fullmer, 2011).  Following 

this same assumption, this paper presents an approach that uses the variogram of a DEM 

to define a threshold on the experimental variogram of GWE values to provide precise 

criteria for identification.  A key advantage to using relationships from an experimental 

variogram is that every pair of points is plotted so more information is used than tradition 

quantitative outlier detection approaches that only consider neighboring points.  This 

approach provides new contributions by providing precise criteria for a graphical method.    

 

1.2. GEOSTATISTICAL CONCEPTS 

Geostatistical theory is based on the observation that the variability of measured 

quantities with a spatial attribute, called regionalized variables, have a particular structure 

(Journel and Huijbregts, 1978).   The variogram, also referred to in some texts as the 

semi-variogram, is a common geostatistical tool used to describe this structure by 

quantifying the relation of  point pairs, which possess spatial attributes, based on the 
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distance between the pair of points.  The variogram function is expressed by Goovaerts 

(1997) as: 

 ( )  
 

  ( )
∑ ( (  )   (    ))

  
     (1) 

Where: 

                                        

                                        

 ( )                                                 

                                         
              

An intrinsic hypothesis of the variogram is that the variogram function is not a 

function of the location   , but only a function of the separation, s.  This intrinsic 

hypothesis is the hypothesis of second order stationarity of the differences. This means 

that within the domain of h, the variability between ( (  )   (    )) is constant and 

independent of     (Journel and Huijbregts, 1978).  While the formal definition of the 

variance follows Equation (2), Goovaerts (1997) states that the semivariogram value at a 

given separation, s, is sometimes referred to as the semivariance.  Following this 

established convention the value of the variogram function will be referred to here as the 

variance. 
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The first step in the development of any variogram is plotting the experimental 

variogram, or the variogram cloud.  The variogram cloud plots the variance for every 

possible pair of points on the domain, so N is always equal to one and every s is 

considered.  To summarize the experimental variogram a binned variogram is developed.  

The binned variogram accounts for spatial anisotropy by setting an angular tolerance for 

the angle of separation, s.  The semivariogram is symmetric with respect to its first 

bisector (Goovaerts, 1997), so the variogram value computed in opposite directions are 

identical.  Therefore, the number of different directions considered on the variogram is 

the angular tolerance divided by 90°.  As an example from Goovaerts (1997), for a 

semivariogram with an angular tolerance of 22.5°, there would be a total of four 

directional bins with directions of 22.5°, 67.5°, 112.5°, and 157.5°.   In each direction the 

average variance is calculated for each increment of | |.  The size of the increment of 

separation distance,| |, is referred to as the lag size. 
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2. METHOD DEVELOPMENT 

 

For the same location on the topographic and potentiometric surface, it can be 

assumed that the gradient of the topographic surface should be greater than or equal to 

the gradient of the potentiometric surface.  This follows the assumption of unconfined 

conditions for the groundwater surface.  The equation for the gradient of a field of scalar 

values ( ) is presented by Domenico and Schwartz (1998) as: 

   
  

  
  

  

  
  

  

  
   (3) 

The true gradient of a planar surface is calculated using the three point problem as 

presented by Vacher (2005).  A good approximation of the gradient for the same planar 

surface can be found by computing the difference, or residual, of every pair of points on 

the domain, as presented in Equation (4) and (5).  The magnitude of the gradient 

corresponds to the greatest residual and the direction of the gradient is parallel to vector 

separating the point pair with the greatest magnitude. 

|  |  
    

|    |
    (4) 

with 

         (  )  (5) 

Where: 

                        
                                   

                                                                

To relate the gradient approximation from Equation (4) to the variogram function 

in Equation (1) it must be recognized that both equations consider the difference between 

each pair of points on the entire domain.  Therefore from Equation (4), we expect that the 
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largest difference for the variogram function,  (  )   (    ), for each lag interval to 

correspond to the average gradient for that lag over the domain.  To get a more 

conservative average estimate of the aggregate gradient for each lag, only the greatest 

anisotropy direction should be considered.  Because of the inherent variability in the 

gradient vector field over the domain, the use of this conservative average is an 

appropriate method to represent the gradient of the entire domain.  When computing the 

binned variogram function for each direction, the variogram threshold is defined by the 

maximum variance (     ) for each lag interval of | |. 

    (| |     )  
 

  (| |     )
∑ ( (  )   (   | |))

  
    (6) 

Where: 

                                                            ( ) for each | | 

  

2.1. GRADIENT SCALE RELATIONSHIPS 

Figure 2.1 shows that the location of the boundary formed by the binned 

variogram of the DEM points was found to be dependent on both the resolution of the 

DEM as well as its extent about the GWE dataset of interest.  Therefore a study was done 

following the work of Silliman and Frost (1998) to determine the response of the range of 

gradient magnitudes and directions for gradient calculations using the solution to the 

three point problem presented by Vacher (2005).  For the three point problem 

calculations, the acute angle of the triangle formed by the three points was limited to be 

greater than or equal to 30°.  This reduced the number of required iterations (thus 

reducing computation time) and improved the convergence of calculations, as shown in 

Figure 2.2. 
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Figure 2.1. Variations in DEM threshold with changing extent. 

 

 

To look at the scale effects of DEM parameters two different cases were 

considered to observe effects on both gradient magnitude and direction: 

1) Constant resolution with variable extent 

2) Constant extent with variable resolution 

The extent was determined by selecting DEM points that where within a specified 

radial distance from the MW points.  The different resolutions were based from a DEM 

with a 30ft (10m) grid size.  To decrease the resolution, the grid sized was increased by 

mean aggregation in ArcGIS.  For both cases the gradient magnitude and direction were 

plotted against the area of the triangle formed the by the three points used for the 
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calculation to determine the effects of scale.  This study was done for two different 

locations to evaluate if relationships where location specific.   

 

 

 
Figure 2.2.  Establishing a minimum acute angle for three point problem. 

 

 

For the same DEM resolution the extent about the MW points of interest was 

gradually increased to see the effects of the domain of the DEM on the calculated 

gradient direction.  The calculated gradient direction, expressed in degrees azimuth, was 

plotted against the triangular area used for the gradient calculations in the figures 
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following.  On the gradient direction plot, for every trio of points the direction of the 

gradient was calculated and then plotted against the area of the triangle formed by the 

three points.  The figure shows that for larger areas there is a decreasing range of gradient 

directions.  This transition from where gradient direction does not depend upon the area 

to where the direction begins to converge to a single value with increasing area can be 

interpreted as the transition from the local scale to the regional scale.  The gradient at the 

local scale reflects the true gradient at a point.  The gradient at the regional scale reflects 

an underlying trend of the entire gradient field.  The transition point is represented by the 

area coinciding with the vertical dashed line.  As shown in Figure 2.3, for a constant 

resolution it was found that: 

 As the extent increases the size of the local scale also increases 

 The median gradient direction stays relatively constant as extent increases 

 

 

 
Figure 2.3. Constant resolution 1000ft (300m) with increasing extent.  
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The same procedure was applied again only the extent was held constant and the 

resolution was increased.  A similar trend, shown in Figure 2.4, was found for a constant 

extent with increasing resolution: 

 As the DEM grid size increases there is a decrease in the size of the local scale.  

 The gradient direction stayed nearly constant with a variable resolution 

 

 

 
Figure 2.4. Constant extent (3000ft) with increasing grid size 

 

 

Case 1 and 2 were again considered, now looking at effects of scale on calculated 

gradient magnitude, as shown in Figure 2.5 and 2.6.  The following relationships were 

found to hold true for variable extents. 

 The range of calculated gradient magnitudes at smaller areas decreases as the 

DEM resolution decreases. 

 As the area increases the gradient converges to a much smaller range which is 

expected to be the regional value.  

 As the resolution decreases the median of the gradient magnitude values decrease. 
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 As the resolution decreases the median follows closer with the converged gradient 

value. 

The final analysis was on the effect of variable extent with a fixed resolution on 

the calculated gradient magnitude, as shown in Figure 2.6.  Results from the study show 

the following patterns: 

 The range of gradient magnitudes increase as the domain of the DEM decreases.   

 The median of the calculated gradient magnitude decreases as the domain of the 

DEM increases 

 

 

 
Figure 2.5. Gradient Magnitude: 3000ft extent with increasing grid size 

 

 

Results from this study replicated those from Silliman and Frost (1998), where it 

was shown that with increased area the gradient magnitude and direction converge to a 

regional value.  This study showed what should already be apparent, that the gradient at 

the local scale is highly variable, as it is dependent upon location.  To fully capture the 
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variability in gradient at each location the DEM extent about each point should be 

approximately equal to the maximum area of the local scale of the GWE gradient.   

 

 

 
Figure 2.6. Gradient magnitude:  1300ft (400m) resolution with increasing extent 

 

 

2.2. MODEL VERIFICATION 

The characteristic structure of the gradient calculations over the entire domain 

shown in this study can be seen in the variogram as well.  For one, the local scale and 

regional scale that are identified in the gradient direction plots are also shown on the 

binned variogram of the DEM.  In Figure 2.7, for each separation distance, the variogram 

function is computed for different directions.  On the binned variogram for each 

separation distance the average variance for each direction is plotted.  The same behavior 

exhibited in the gradient direction and magnitude plots is shown here.  For small 

separation distances, analogous to a smaller calculation area, the variogram function is 

relatively independent of the direction.  As the separation distance increases, the value of 
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the variogram function starts to become far more dependent on the direction, replicating 

the scale characteristics identified in the gradient direction plot.   

 

 

 
Figure 2.7. Illustration of scale effects shown on binned variogram 

 

 

In addition, the assertion that the maxed binned variance is representative of the 

average gradient can be verified with the gradient magnitude plots.  With the magnitude 

of the gradient representing the largest change that will occur on some surface per unit 

length, to check how well the developed threshold matches with the average calculated 

gradient, Equation (7) was formulated to calculate the equivalent variance that would 

occur between two points separated by a distance   parallel to the gradient,    . In order 

to compare the values at the same scale, the area of calculation for the three point 

problem should be related to the separation distance on the variogram. Because the 
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variogram and gradient plot were calculated on the same domain, the maximum area 

should correspond to the greatest separation distance and the smallest area correspond to 

the smallest separation distance.  With this established, both the range of areas and 

separation distances were divided into 20 equal sized bins.  For each area bin the average 

gradient was determined and multiplied by the separation distance associated with the 

same bin number.  The resulting variance that would occur on a plane with gradient |  | 

is shown in Equation (7). 

     ( )  
 

 
(|  |   )  (7) 

Equation 7 is plotted with the DEM variogram threshold to see how well the 

threshold follows the average gradient from the three point problem computation for the 

same points over the same domain.  Figure 2.8 shows that the max binned threshold 

provides a reasonable estimate of the average variance on the domain. . 

 

 

 
Figure 2.8. Equivalent variance from three point calculations  
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ABSTRACT: 

 

When using a ground water elevation dataset for the development of a 

groundwater model, it is prudent to first evaluate the quality of the data before using it in 

a ground water model.  However, it may not be practical to evaluate every data point 

when working with large datasets associated with a regional model. To isolate 

misrepresentative points in a large data set, a graphical technique has been developed 

which examines the experimental variogram of ground water elevation values to identify 

points with high variogram function values.  The potential outliers identified using the 

graphical variogram process are subsequently evaluated by reviewing well borings, well 

installation records, and available time series of water level measurements to retain or 

reject outlier status.  Supplemental ground elevation data from a digital elevation model 

is used to create a threshold on the experimental variogram of the ground water elevation 

data.  This process is verified using a developed synthetic ground water dataset, then 

applied to a case study at the Fort Leonard Wood Military Reservation, Missouri. The 

method showed good results in identifying points that were justified for removal upon 

inspection of the available records and provides recommendations based on common 

causes of error.  With this methods reliance on both an experimental variogram of 

measured water levels and a binned variogram of ground elevation measures, it naturally 

fits as a preprocessing step that can be applied prior to kriging. 

 

Keywords:  outlier detection, spatial outlier, variogram, supplemental topographic data, 

gradient 
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1. INTRODUCTION 

 

Pucci and Murashige (1987) state that before a groundwater resource 

investigation is established or a hydraulic model developed, existing groundwater 

measurements should first be evaluated for their usefulness.  There are many potential 

sources of error in measures of the potentiometric surface including human error in 

measuring of depth to static water level, inaccurate well coordinates, measurements taken 

directly after well completion before the water level has stabilized, and non-

representative measurements in wells with long completion intervals and significant 

vertical gradients (Hill-Rowley et al., 2003; Snyder, 2008; Arihood, 2009; Tremblay et 

al., 2015; Elci et al., 2003).  All these sources of error may be present in databases that 

are not always systematically validated, with quality control often absent, and reliability 

in the measurements highly variable depending on where the data is sourced (Tremblay 

et. al. 2015).  In addition to sampling errors, there are naturally occurring (for example, 

sources or sinks from karst) and/or anthropogenic features, such as leaking water from 

supply pipelines, which can create a localized effect on the potentiometric surface which 

may skew the characterization of the more regional surface, especially when monitoring 

locations are relatively sparse.  When this is the case, points reflecting such local 

variability should be considered for exclusion from a regional model.  Such data points 

that differ significantly from neighboring points for the reasons given above are referred 

to as spatial outliers (Shekhar et al., 2003; Chen et al. 2008; Liu et al., 2001).  Spatial 

outliers differ from global outliers in that global outliers are identified by comparison 
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with the aggregate of the entire population while spatial outliers are those that go against 

regional trends or do not maintain local continuity.  

There are two general methods applied to detect spatial outliers.  The most 

common approach is a quantitative method which looks at the residual between a point 

and a predicted value at the same location then applies some mathematical method to 

determine if the residual is significant (Tremblay et al., 2015; Shekhar et al., 2013; Miller 

et al., 1997; Bardossy and Kundzewicz, 1990; Liu et. al., 2001).  The second is identified 

by Shekhar et al. (2003) and Chen et al. (2008) as a graphical method which is based on 

the visualization of spatial data to highlight spatial outliers.  Graphical methods rely on 

the qualitative identification of outliers which appear to fall outside of the grouping of the 

remainder of the data, and thus lack defined criteria for when a point on the graphic 

qualifies as an outlier.  When discussing different outlier detection methods, Bardossy 

and Kundzewicz (1990) and Shekhar et al. (2003) discuss the conceptual use of an 

experimental variogram as a way of identifying outlying points, however, the 

presentation of a systemic approach to selecting outlying points on a variogram is absent. 

A common assumption in the development of groundwater models is that for 

unconfined conditions the groundwater is a smoothed version of the topographic surface 

(King, 1899; Domenico and Schwartz, 1998; Blauvelt and Fullmer, 2011).  This 

assumption enables the incorporation of a ground elevation dataset to supplement sparse 

groundwater elevation (GWE) measurements when developing a model of the 

potentiometric surface (Desbarats et al., 2002; Boezio et al., 2005; Boezio et al., 2006; 

Hoeksema et al., 1989).  The purpose of this paper is to present a new graphical approach 

to identifying potential spatial outliers which use a digital elevation model (DEM) dataset 



21 

 

to establish criteria for detecting spatial outliers.  Unlike those in the literature review, 

this approach addresses regional trends at the site in addition to comparing each 

individual data point to its neighbors, thus fully using all point-to-point relationships.  To 

demonstrate the applicability of the approach, it is used to perform an outlier analysis on 

a dataset collected at Fort Leonard Wood, Missouri where multiple monitoring well 

(MW) networks have been established to sample the quality of the regional aquifer. 

 

2. METHODS 

 

A common geostatistical tool used to describe the difference between pairs of 

points based on the distance between the point pairs is the variogram.  Goovaerts (1997) 

presents the variogram function as  

 ( )  
 

  ( )
∑ ( (  )   (    ))

  
    (1) 

Where: 

                                        

                                        

 ( )                                                                       

                                         
              

The  ( ) values from Equation 1 will be referred to here as the variance, although 

other authors refer to it as the variability (Journel and Huijbregts, 1997), or the semi-

variance (Goovaerts, 1997).  The variogram is usually either expressed as a binned 

variogram or a variogram cloud.  A variogram cloud (also referred to as an experimental 

variogram) plots half the squared difference of every pair of points against the separation 
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distance for that pair, so every separation vector s is considered and N is always one.   For 

the binned variogram, point pairs are separated into distance bins which only include 

pairs separated by a specified range of the magnitude of s.  Within each distance bin, 

pairs are further classified by the direction in which they are separated.  Half the average 

variance of each directional class is plotted within each bin of separation distance.  Each 

possible GWE pair are plotted in order to isolate GWE values as potential spatial outliers.  

This is facilitated through the use of the GWE variogram cloud.  

The principal assumption used in this analysis is that the potentiometric surface is 

a smoothed version of the topographic surface.  This allows for the development of a 

threshold comparison to the GWE variogram cloud.  We can assume that at the same 

location on both surfaces, the gradient of the topographic surface should be greater than 

or equal to the gradient of the potentiometric surface.  Domenico and Schwartz (1998) 

define the gradient of a scalar field of some attribute a as: 

   
  

  
  

  

  
  

  

  
  (2) 

The direction of     corresponds to the direction of greatest change in attribute a.  

The magnitude of    for a planar surface is the greatest level of change per unit length 

that will occur on that surface.  The gradient of a planar surface is calculated using any 

three points that do not fall along a line, and the three point problem can be simplified to 

a two point problem if the direction of the gradient is known.  With a known gradient 

direction, the magnitude of the gradient can be determined from the residual of two 

points separated in that direction.   

|  |  
  

|  |
   (3) 

Where: 
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When the direction of the gradient is not known, a reasonable approximation of 

the planar surface gradient can be found by looking at the residual of every pair of points 

in the domain.   The magnitude of the gradient is approximated as the greatest residual 

between a pair of points in the domain divided by the magnitude of the vector separating 

the pair of points, and the direction of the gradient is a direction parallel to the vector 

separating the two points.   

|  |  
    

|    |
 (4) 

With 

         (  ) (5) 

Where: 

                        
                                   

                                                                

The variogram function (Equation 1) and gradient approximation (Equation 4) 

both consider the residual of every point pair on the area of interest so for a set of data on 

the same domain:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          

     (  )   (    ) (6) 

From Equation 4, we expect the variance corresponding to the points separated in 

the direction of the gradient to be at         .  So the greatest value from  (  )  

 (    ) should correspond to the greatest variance and is expected to result from a pair 

of points separated in the direction of the gradient.  Thus for each separation distance the 

largest variance to occur is dependent on the gradient between the point pairs. The 
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inherent variability of the topographic surface causes the gradient to fluctuate over the 

entire domain of interest.  To find a representative variance which adequately describes 

the gradient of the entire domain, the average variance corresponding to the greatest 

directional bin from the binned DEM variogram should be used.  Using the maximum of 

the directional variance averages gives a good estimate of the average calculated gradient 

for different separation distances.  To target values on the GWE variogram cloud, the 

maximum variance on the binned DEM variogram can be used as a threshold.  When 

multiple points lie above this threshold, the corresponding pairs should coincide with a 

single point that can be identified as a potential spatial outlier.  For points identified as a 

potential outliers, justification should be provided through inspection of each point in 

order to retain the point as a spatial outlier. 

 

2.1. MODEL DEVELOPMENT 

The location of the boundary formed by the binned variogram of the DEM points 

was found to be dependent on both the resolution of the DEM as well as its extent about 

the GWE dataset of interest.  A 30ft (10m) resolution DEM was found to have the highest 

data density for a best approximation of the topographic surface evaluated in this study.  

To find the DEM extent which adequately characterized the area about each MW, a study 

was done, which followed the work of Silliman and Frost (1998) that looked at the 

response of the calculated gradient to changes in the extent and resolution of the DEM.  

In this study, the gradient magnitude and direction for every point trio were calculated 

from the three point problem as presented by Vacher (2005).  To rule out point trios that 

were close to falling along a line, only trios with an inner acute angle greater than a 
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prescribed tolerance were used in the computation.  The gradient direction, expressed in 

degrees azimuth, and magnitude were then plotted against the area of the triangle formed 

by the three points in the problem.   Figure 1, shows that the local and regional scale of 

the gradient could be differentiated using gradient direction plots.  This matches the 

results of Silliman and Frost (1998).  Figure 1 shows that for larger areas there is a 

decreasing range of gradient directions.  The area at which at which the gradient direction 

is no longer independent of the calculation area marks the transition from the local scale 

to the regional scale.  The gradient at the local scale reflects the true gradient at a point 

and is more dependent upon location and any localized gradient variations, and the 

gradient at the regional scale reflects an underlying trend of the entire gradient field.  The 

area at which this transition occurs is represented by the vertical dashed line on Figure 1.  

The DEM dataset more clearly shows the scale than the GWE dataset due to the higher 

density of points and is used to illustrate the relationship.  

 

 

 
Figure 1. Estimation of local scale from gradient direction plot. The gradient direction for 

each point trio from a 300m (1000ft) resolution DEM with a 3000ft extent was computed 

and plotted against the triangular area defined by the three points.  The maximum area of 

the local scale is approximately 4x107 ft
2
, represented by the black vertical dashed line. 
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To best capture the maximum DEM variance at each separation distance at a point 

of interest, points separated in each direction must be considered.  So the extent of DEM 

data needed to capture the gradient at each scale is encompassed by a circular area about 

the point of interest.  The local scale is dependent upon location, which is why the range 

is much larger than the regional scale when calculating gradient for every three point 

combination.  The gradient at the regional scale is not dependent on location, so long as it 

is in the same domain.  Therefore when comparing DEM variance to the GWE cloud, 

only DEM points in an extent about the GWE points equal to the local scale are needed to 

fully capture a gradient estimate.  Because the extent of the DEM is defined by a radius 

about each MW, to define the radial extent for the DEM, the radius of a circle with an 

area equal to the area of the maximum local scale of the GWE points was used.  

The binned variogram of the DEM is plotted with the variogram cloud of the 

GWE values as the first step in identifying potential spatial outliers.  Lines are drawn on 

a site map between pairs of GWE measures corresponding to each point lying above the 

DEM threshold.  A point cannot be isolated as a potential outlier from a single linkage, 

therefore at least two linkages are need to identify a point as a potential spatial outlier.  

However, a point with two links may not be the source of high variance, but rather be 

linked with two potential outlying points.  Ideally, there should be an iterative approach 

to removing the point with the greatest number of linkages and then recalculating the 

variogram cloud to repeat the analysis to ensure that only points contributing to the high 

variance are removed.  To replace this time consuming process it can be determined from 

the first iteration if a link should be associated with a point.  Links to a point can be 

established as significant or not based on if they connect with a higher level candidate, 
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where a higher level candidate is one with more linkages.  A link only significantly 

contributes to a point if it does not connect with a higher level candidate.  A point is 

identified as a potential spatial outlier if it has at least two significant links. 

 

2.2. DEVELOPMENT OF A SYNTHETIC DATASET 

A synthetic dataset was created to test the validity of the method.  To create 

artificial groundwater elevations that represented a smoothed version of the topography, 

surface elevations gathered from a DEM were divided into 24 equal sized bins, each bin 

covering 15 feet of elevation.  For each of the 34 synthetic points, the surface elevation at 

that point was multiplied by a coefficient, ranging from 0.95 to 0.75, corresponding to the 

elevation bin it belonged to.  The lowest coefficient was used at points with the highest 

surface elevation and likewise the highest coefficient was used at the lowest surface 

elevation.  This produced a smoothing effect so that at topographic highs the difference in 

groundwater and surface elevation was the greatest. 

From the average of the original synthetic data set, six potential outlier points 

where added that corresponded to three levels of error.  The first level, being the lowest 

level of error contained two points corresponding to plus and minus a single standard 

deviation from the mean of the synthetic dataset.  Following this two second level error 

points were added whose values were plus and minus two standard deviations from the 

synthetic data mean and the two points with the highest level of error were plus and 

minus three standard deviations from the mean of the synthetic dataset.  The spatial 

coordinates of the outlying points were constrained to fall inside of the domain of the 

original synthetic dataset. 
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3. RESULTS AND DISCUSSION 

 

A 30ft (10m) resolution DEM with a sampling frequency reduced to 160ft (50m) 

intervals was used to determine the threshold variance of the synthetic GWE dataset.  

Reducing the sampling frequency allowed for faster computations of the DEM gradient 

plots and variogram.  In addition the gradient may not be an accurate reflection of the 

surface when calculated between short distances, the increased distance between 

sampling points reduces anonymously high or low gradients due to embankments or flat 

areas from human development, such as parking lots.   

The scale of the synthetic dataset was determined from the gradient direction plot, 

with the local scale defined by an area to the left of the vertical dashed line in Figure 2.  

The radial extent of the DEM used for comparison was determined from the radius of a 

circle with an area equal to the maximum area at the local scale.  The resulting extent of 

the DEM was a 2400ft radius about the synthetic data points. The binned variogram of 

the DEM was laid over the variogram cloud of the synthetic data, as shown in Figure 3.   

 

 

 
Figure 2.  Gradient direction plot for the synthetic dataset.  The local scale is estimated by 

the black vertical dashed line. 
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The data pair links corresponding to GWE points lying above the variogram 

threshold are illustrated in Figure 4 to identify points with the highest variability. When 

multiple linkages are drawn to the same point, it indicates the point is the source of the 

high variance and should be further investigated, that is, it is a potential outlier. 

 

 

 
Figure 3.  Synthetic Dataset variogram threshold comparison.  The binned variogram of a 

DEM with 30ft resolution, sampled at 160ft intervals, with a 2400ft radial extent about 

the monitoring wells was overlaid over the synthetic GWE variogram cloud.  Each point 

from the synthetic cloud lying about the DEM binned variogram corresponds to a point 

pair that contains an outlying point. 

 

 

Inspection of Figure 4 shows that point C has 3 linkages.  The link connecting to 

point B should not be considered because B has a greater number of linkages than C, so it 

is a higher level candidate.  This leaves point C with 2 significant linkages, so it still 

qualifies as a potential spatial outlier.  In addition to point C, points A and B are also 

identified as potential spatial outliers.  Both A and B have at least 5 linkages so can easily 
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be identified as potential spatial outliers.  All three of the points identified corresponded 

to the introduced outlier points.  Points A and B were the highest level error points and 

point C was a second level error point.  The remaining second level error point is 

relatively far away from other points. Due to this points distance from neighboring points 

a higher residual is tolerated, so it was not identified as an outlier.  The two points with 

the lowest level of error (a single standard deviation from the original mean) were not 

identified either.  The first level error points are least likely to significantly deviate from 

neighbors and regional trends and thus were not identified as outliers in this case.  With a 

greater number of significant linkages corresponding to higher level error points, this 

synthetic study shows that the number of significant linkages can be used as degree of 

confidence in positive identification of spatial outliers.  

 

 

 
Figure 4.  Synthetic data outlier identification.  Links between point pairs, shown in blue, 

corresponding to points lying above the threshold, aid in targeting which points are the 

cause of the high variation. Points A, B, and C are identified as spatial outliers. 
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3.1. FORT LEONARD WOOD CASE STUDY RESULTS  

A case study was performed using groundwater elevation data collected at Fort 

Leonard Wood Military Reservation (FLWMR) in south-central Missouri.  The regional 

aquifer is unconfined and is within the Gasconade Formation, consisting of Ordovician 

aged dolomite. A number of detailed investigations have been carried out at the FLWMR 

which discuss the site geological and groundwater flow mechanisms (Kleeschulte and 

Imes, 1997; Mugel and Imes, 2003; Harrison et al., 1996; Imes et al., 1996).  The dataset 

is from a set of 69 monitoring wells installed for environmental sampling.  Measures of 

depth from top of casing were all collected within a 24 hour period in January of 2015 

using an electronic water-level meter.  The measured depth to water ranges from 3ft to 

326ft below top of casing, and screened intervals ranged from 10ft to 206ft in length.   

The site was divided into three subsites based on the geographic separation of the 

monitoring wells, as shown in Figure 5.  For each subsite, the binned variogram from a 

30ft (10m) resolution DEM sampled at 160ft (50m) intervals was used to establish the 

threshold on the variogram cloud of the GWE values.  For brevity, only the analysis for 

MWG1 is shown here, however, the procedure was the same for the remaining sites.  

After creating the gradient direction plot for MWG1, it was observed that the regional 

gradient converged in two directions as shown in Figure 6.  A potential reason for this is 

that the northern most points belonged to a different flow regime and thus should be 

considered separately.  Therefore MWG1 was divided into two separate subsites, 

MWG1A and MWG1B, as shown in Figure 7.   

The resulting gradient direction plots for MWG1A and MWG1B are shown in 

Figure 8.  The maximum area corresponding to the local scale at MWG1A is shown and 
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the regional value now converges to a single direction.  The local scale was not readily 

determined for MWG1B because it was a relatively small dataset, so the scale was 

assumed to the greatest calculated area for the MWG1B site.  By using the greatest 

calculated area, a larger extent DEM is used which results in a lower variogram 

threshold.  With this approach more linkages are drawn, so a point may be identified with 

greater confidence.  While this approach may lead to the identification of more potential 

outliers, this places more reliance on the individual analysis of each point to determine if 

an outlier should be retained.   

 

 

 
Figure 5.  Overview of the FLWMR monitoring well groupings. 
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Figure 6.  MWG1 gradient direction plot.  The site was divided into two subsites, 

MWG1A and MWG1B to address convergence in two different directions at the regional 

scale. 

 

 

 
Figure 7.  MWG1 divided into two subsites.  The point lying between MWG1A and 

MWG1B was considered in the analysis for both sites. 
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Figure 8.  Gradient direction plots for MWG1A and MWG1B.  It should be noted the 

area for MWG1B is an order of magnitude smaller than the area on the MWG1A plot.  

Sparse GWE data at MWG1B leads to a lack of structure on the gradient direction plot 

and thus poor interpretation. 

 

 

With the calculated area corresponding to the local scale determined, the binned 

variogram of the DEM with corresponding radial extent about each point in MWG1A and 

MWG1B was overlaid over the GWE variogram cloud, shown in Figure 8.  Figure 9 

shows the linkages to the data pairs corresponding to the points above the variogram 

threshold.  MW-1207 was included in both subsites since its location fell approximately 

in the middle of the two sites.  From the results of both subsites MWG1A and MWG1B, 

MW-1207 was identified as a spatial outlier.  From MWG1B two additional potential 
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outliers are identified, with both MW-1204 and MW-1205 having at least two significant 

linkages.  The small number of points in MWG1B showed to be low quality, with nearly 

half of the points on the site identified as potential outliers. 

 

 

 
Figure 9.  Variogram threshold comparison for MWG1A and MWG1B.  A 3000ft extent 

DEM was used for MWG1A comparison and a 1700ft extent DEM was used for 

MWG1B comparison.  Outlying points are found from points lying above the binned 

DEM variogram shown in red. 

 

 

This procedure was repeated for both MWG2 and MWG3, and a total of 7 more 

spatial outliers were identified.  All points identified from the variogram comparison 

method have been outlined in Table 1 with the number of links shown to indicate the 

level of confidence in a positive identification of a potential spatial outlier.  
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Figure 10.  MWG1A potential spatial outlier detection.  The lines represent the links 

between pairs of points.  Both points lying above the variogram threshold linked to the 

same point, providing MW-1207 with the perquisite two significant linkages to qualify as 

a spatial outlier. 

 

 

 
Figure 11.  MWG1B spatial outlier detection.  The lines show links between data pairs 

corresponding to points on the variogram.  MW-1207 was included in both MWG1A and 

MWG1B because it was not clearly part of a group of wells.  In the analysis for both sites 

it was identified as a potential spatial outlier.  Two other points within MWG1B were 

also identified as potential spatial outliers. 
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Table 1.  FLWMR Case Study Results 

Group Number Well ID Significant Links 

MWG1A/B 1207 6 

MWG1B 1204 2 

MWG1B 1205 3 

MWG2 309 2 

MWG2 401 5 

MWG2 307 14 

MWG2 305 5 

MWG3 211 11 

 

 

A number of potential causes or indicators of error which might justify retaining a 

potential outlier were considered for the FLMWR site.  After the review of borings logs 

and well installation records, each well that possessed the specified attribute was 

indicated by a dot in Table 2, with closed dots indicating that the well which possessed 

that attribute was retained as a spatial outlier.  Highlighted rows correspond to the 

potential outliers identified in Table 1.   Wells with long completion intervals (greater 

than 50ft in length) were expected to be a potential source of error.  Wells with shallow 

completion were completed above the Gasconade formation (the regional aquifer unit), 

and thus potentially sampling a different aquifer unit or perched zone.  Wells with 

solution features (voids greater than 5ft) identified in the boring logs were thought to 

have potential sources or sinks.  Wells with any perched zones identified in the boring 
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log, if not properly completed, may reflect an average of the perched and regional 

aquifer.  Wells with inconsistent initial water levels deviating more than 30ft from the 

water level measured at the time of drilling, may indicate that the water level might not 

have stabilized when the initial measurement was taken, or there may be seepage in an 

improperly completed well.  Seasonal variation marks those wells which had a greater 

water level in January 2015 than the average of the previous four years of spring 

measures.  This goes against the assumption that water levels in spring are greater than in 

January, and thus a source term, such as a leaky pipe may provide a source to keep the 

water level in January high.   

As shown in Table 2, the most common cause of error was wells completed above 

the regional aquifer unit, leading to uncharacteristically high water levels.  In addition, 

each well showing unexpected seasonal variation was retained as a spatial outlier.  

Inspection of boring logs for MW-305 and adjacent wells showed a large void (~14ft) at 

the same depth in each borehole.  However, MW-305 was the only well with no record of 

grouting the void and thus was retained as a potential outlier.  For MW-307, the January 

water level was more than 40ft higher than the measured water level at time of drilling.  

As shown in Table 2, MW-309 is the only well that was identified as a potential spatial 

outlier but not excluded from the regional model.  Table 2 shows that despite 

expectations, long screened wells, perched zones and solution features did not 

significantly contribute as a source of error.  
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Table 2.  Sources of error for spatial outliers 

Well ID 

Long 

Completion 

Interval
 

Shallow 

Completion 

Solution 

Features 

Perched 

Zones 

Inconsistent 

Initial Water 

Level 

Seasonal 

Variation 

MW-1202  
2     

MW-1204       

MW-1205       

MW-1207       

MW-0601       

MW-0602       

MW-0603       

MW-0604       

MW-0606       

MW-0607       

MW-0609       

MW-0610       

MW-209  2     

MW-211       

MW-212  2     

MW-303       

MW-304       

MW-305   1    

MW-307       

MW-309       

MW-401       

MW-402       

MW-502       

MW-0801       

MW-6002       

MW-5614D       

MW-5614S       

= Retained spatial outlier Potential spatial outlier

= Possesses specified attribute 

1 
Adjacent wells with large voids are grouted, however, this was not. 

2
 Completion is within 10ft of the top of the Gasconade Formation 
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When deciding if a point should be removed, the resulting loss of resolution in the 

model should be considered.  If the resolution loss is negligible then even for low 

confidence points, one can simply drop the targeted outlier (Liu et al., 2001).  Likewise, 

if the inclusion of a targeted outlier that is suspected to be caused by natural variation has 

significant effects on the development of a groundwater model, then it should be 

excluded.   For example, while it was decided to retain a point identified using this 

procedure, the scale of the effect of the potential sink on the model may be greater than 

the actual effects on the potentiometric surface.  If this is the case then it could lead to 

false interpretations of groundwater flow characteristics 

In order to test this new approach against more established approaches to data 

quality analysis, the results of this method were compared against results from a more 

conventional cross validation approach, specifically the approach presented by Miller et 

al.  Miller at al identified that estimation errors from kriging greater than two kriging 

standard deviations may indicate an anomaly or erroneous value.  Therefore, points with 

z-scores, the estimation error divided by the kriging standard deviation, greater than 2 are 

potentially spatial outliers.  Results from the z-score method for each site are shown in 

Table 3.   

It is immediately noted that there is little agreeance in the results of the two 

methods.  Notably absent are points identified from the variogram approach that were 

confirmed to measures of perched aquifers (MW-1204 and MW-1205).  Likely the reason 

these points were not identified is that for the MWG1B area, kriging standard deviation 

values were so high that the z-score was acceptably low.  From Table 2, we see some of 

the wells identified in MWG1A only with the z-score method, are wells which have long 
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completion interval and others have solution features present in the borehole.  However, 

the remaining wells (MW-5602,MW-5607,MW-5612, MW-0605) have no justification 

for removal.  The case here may be the opposite than shown for MWG1B, were with a 

higher density of points in the area, a lower kriging standard deviation causes the method 

to be overly sensitive in identification of points.  The potential outliers in MWG3 agreed 

for both methods.  For MWG2 there were no points with a z-score higher than 2, 

however, the two points with the highest z-score were potential outliers identified in the 

variogram approach. 

 

 

Table 3.  Case study results using z-score approach 

Group Number Well ID 

Kriging 

Standardized 

Error 

MWG1A MW-0601 -2.99 

MWG1A MW-0602 6.00 

MWG1A MW-0604 -3.54 

MWG1A MW-0605 6.14 

MWG1A MW-0606 6.06 

MWG1A MW-0610 -7.10 

MWG1A MW-5602 -2.58 

MWG1A MW-5607 2.28 

MWG1A MW-5612 2.27 

MWG1A MW-1207 2.49 

MWG3 MW-211 -3.02 
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4. CONCLUSIONS 

 

The variogram comparison approach to detecting spatial outliers provided 

reasonable results with a synthetic dataset and when applied during a case study at Fort 

Leonard Wood, Missouri.  By providing justification as a final step to retaining a spatial 

outlier, a better understanding of causes of error are gained and there is a chance to 

introduce best management practices for monitoring well installation and sampling.  The 

results showed that a recommended best practice from this study is to verify the geologic 

units during well construction and completion.  In addition, because every point that 

showed seasonal variation was identified as an outlier, expected seasonal trends should 

be considered when evaluating if a measured water level is a good representation of the 

ground water surface.  By using a supplemental DEM and every GWE point relationship, 

spatial outliers were still able to be identified in small low quality datasets.  Other 

approaches which use cross-validation from some interpolation method may have skewed 

results based on the structure and density of data points, which ultimately effects the 

results of the interpolation.  Therefore these methods may be overly sensitive for 

clustered data or the standard deviation from interpolation may be high enough to mask 

any potential outliers.  The approach presented in Miller et al. is presented as only a rapid 

filtering procedure to identify points to be inspected.  Other cross-validation procedures 

are made more robust, such as was presented in Liu et al. and may not be subject to such 

shortcomings.  This approach overcomes these shortcomings as it is not reliant on placing 

confidence in neighboring points, but rather compares observations to a secondary high 

confidence dataset.  Tradition spatial outlier detection methods only consider the 
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expected continuity of a point with its nearest neighbors.  This approach looks at the 

relation of neighboring points along with distant points to see if data pairs also conform 

to expected regional trends.   

Limitations of this method should also be considered. The location of the 

variogram threshold is dependent upon the qualitative identification of the area of the 

local scale on the gradient direction plot, leading to non-unique results.  In addition, 

while assuming a single average gradient value for each scale on the variogram was 

necessary for comparison, in reality the gradient is a vector field and thus unique to each 

location.  In the case study the procedure did not identify outliers in areas with long 

screened intervals or areas with known leaky pipes.  There was concern that these areas 

may not give representative water levels.  While the variation between a pair of points on 

the groundwater surface may be less than the average variation on the topographic 

surface, this does not disqualify a point as a spatial outlier.  It may be the case that this 

method is not sensitive enough to the small changes these processes may have on the 

groundwater table.  Lastly, the requirement for a supplementary related dataset limits 

extended application of this procedure.  

This technique is recommended for those already applying geostatistical 

techniques to develop a groundwater surface.  When co-kriging, the development of an 

experimental variogram of GWE values and a binned variogram of the secondary 

variable (DEM) are already part of the process.  This technique can readily be 

incorporated as a preliminary step in the kriging process.   
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SECTION 

 

3. RECOMMENDATIONS FOR FUTURE WORK 

 

The following ideas are presented provide alternative approaches to this procedure 

and continued research. 

 

 Rather than using the binned DEM variogram as the threshold establish a 

hypothesized gradient to plot the equivalent variance. 

 Rather than establishing a boundary on the variogram, use gradient direction and 

magnitude plots to identify outlying points. 

 The gradient magnitude and direction plots can be used to best fit a trend model in 

kriging. 

 Establish an interval above the threshold that indicates confidence in points. 

 Rather than dividing sites by spatial proximity, do a watershed analysis to 

separate sites for analysis. 
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APPENDIX A. 

MONITORING WELL DATABASE  
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FLW OU MW ID  Northing (ft) Easting (ft) 
TOC 

(ft) 

GWE 

(ft) 
GE (ft) 

FLW-002 MW-209 13689040.56 1881917.989 1142.72 934.08 1139.86 

FLW-002 MW-210 13689014.15 1882397.205 1122.96 934.32 1120.18 

FLW-002 MW-211 13689023.91 1882877.546 1120.52 997.77 1117.48 

FLW-002 MW-212 13688647.68 1882928.75 1126.54 937.76 1123.85 

FLW-002 MW-213 13688196.38 1883302.68 1128.21 934.76 1125.41 

FLW-002 MW-214 13689423.67 1881960.476 1143.49 936.74 1140.50 

FLW-002 MW-215 13688899.59 1880784.564 1124.04 932.39 1121.75 

FLW-002 MW-216 13689291.02 1883456.079 1111.53 954.96 1108.84 

FLW-002 MW-217 13688113.43 1882476.949 1135.94 932.42 1133.29 

FLW-002 MW-218 13688129.36 1882027.113 1144.19 932.16 1142.05 

FLW-002 MW-219 13687951.41 1882325.344 1135.67 932.52 1132.41 

FLW-056 MW-5611 13717176.73 1901116.125 1061.44 885.23 1058.90 

FLW-056 MW-5612 13712580.31 1897492.867 1054.98 868.58 1052.75 

FLW-056 MW-5613 13713751.39 1900695.223 1121.50 894.81 1118.56 

FLW-056 MW-5614S 13714872.5 1900503.068 1103.79 889.44 1101.23 

FLW-056 MW-5614D 13714890.59 1900508.793 1102.95 889.22 1100.11 

FLW-056 MW-5615 13714885.54 1897855.171 1050.64 851.70 1048.06 

FLW-006 MW-0601 13709285.83 1896060.853 1076.71 850.80 1073.93 

FLW-006 MW-0602 13710045.74 1896170.801 1078.62 847.37 1075.40 

FLW-006 MW-0603 13709632.7 1895551.404 1087.00 844.18 1087.01 

FLW-008 MW-0801 13711916.95 1901901.506 1063.64 874.66 1060.00 

FLW-003 MW-305 13699195.28 1891303.694 1078.97 895.24 1076.18 

FLW-003 MW-306 13699740.36 1888954.619 1145.06 865.35 1142.67 

FLW-003 MW-307 13699870.05 1891169.695 1099.73 919.04 1097.03 

FLW-003 MW-308 13698670.75 1892058.491 1103.00 845.12 1100.61 

FLW-003 MW-309 13697444.77 1893632.247 1076.57 814.97 1073.57 

FLW-006 MW-0607 13710180.6 1894838.858 1118.84 830.79 1119.11 

FLW-006 MW-0608 13710717.41 1894834.544 1133.54 830.02 1134.16 

FLW-012 MW-1204 13721797.69 1896454.337 927.20 886.81 924.08 

FLW-012 MW-1205 13722584.88 1896986.312 912.31 893.49 909.68 

FLW-060 MW-6001 13711786.33 1905542.49 888.66 861.40 885.68 

FLW-060 MW-6002 13712078.7 1906781.158 863.99 858.07 860.63 

FLW-056 MW-5603 13715976.1 1901323.36 1084.69 896.88 1082.69 

FLW-056 MW-5604 13714207.12 1899950.387 1070.73 886.46 1068.48 

FLW-056 MW-5605 13714301.36 1901755.532 1095.56 896.52 1092.46 

FLW-056 MW-5606 13715415.57 1899861.191 1049.40 887.55 1046.82 

FLW-056 MW-5607 13716390.76 1899261.509 1029.37 881.72 1029.38 

FLW-056 MW-5608 13715164.69 1898806.955 1053.15 877.07 1049.98 

FLW-003 MW-301 13698676.33 1888781.22 1136.71 863.69 1133.71 
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FLW-003 MW-302 13699394.84 1889641.814 1130.22 875.68 1128.02 

FLW-003 MW-303 13699113.69 1889832.392 1122.04 875.62 1120.24 

FLW-003 MW-304 13698608.86 1890031.811 1100.55 877.05 1097.85 

FLW-006 MW-0609 13710352.39 1895112.356 1114.70 832.35 1114.96 

FLW-003 MW-310 13696501.53 1892478.455 1121.59 842.04 1118.70 

FLW-003 MW-311 13696924.99 1890805.827 1109.90 856.19 1106.90 

FLW-006 MW-0604 13710291.06 1895551.588 1097.29 839.49 1097.72 

FLW-006 MW-0605 13710829.82 1896231.26 1077.15 847.00 1077.25 

FLW-006 MW-0606 13710556.04 1897347.379 1071.20 851.42 1071.30 

FLW-056 MW-5609 13713746.1 1899091.677 1094.32 881.33 1090.81 

FLW-056 MW-5610 13715361.89 1902421.506 1064.57 898.05 1061.07 

FLW-002 MW-201R 13688165 1881265.157 1155.51 931.80 1153.07 

FLW-006 MW-0610 13710509.9 1896758.56 1067.14 859.09 1064.86 

FLW-056 MW-5601 13715187.83 1900937.159 1078.19 895.61 1076.20 

FLW-056 MW-5602 13716383 1900159.514 1022.58 895.78 1019.98 

FLW-003 MW-505 13697110.62 1892424.892 1093.80 842.72 1091.11 

FLW-003 MW-401 13698819.02 1891195.597 1073.80 889.28 1070.80 

FLW-003 MW-402 13698446.59 1891353.609 1070.32 858.02 1067.12 

FLW-003 MW-502 13697889.38 1891196.509 1078.06 853.36 1075.06 

FLW-003 MW-503 13697638.11 1891723.422 1068.79 856.08 1066.30 

FLW-003 MW-504 13697194.99 1891829.911 1085.91 860.01 1082.92 

FLW-056 MW-5616 13711836.42 1899620.945 1117.52 880.22 1115.08 

FLW-012 MW-1201 13724233.16 1896087.956 1088.69 759.39 1085.81 

FLW-012 MW-1202 13724440.97 1897620.584 889.93 797.18 886.40 

FLW-012 MW-1203 13723969.89 1898334.432 909.51 818.51 906.63 

FLW-056 MW-5618 13713603 1896291.972 1080.08 835.09 0.00 

FLW-060 MW-0901 13713354.72 1905251.322 908.86 881.72 909.13 

FLW-056 MW-5617 13716612.46 1902710.509 1040.78 881.70 0.00 

FLW-012 MW-1206 13721902.04 1894841.926 1066.41 798.72 1064.12 

FLW-012 MW-1207 13719650.96 1900194.967 1125.97 945.53 1123.01 
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APPENDIX B. 

GRADIENT CALCULATIONS MATLAB CODE 
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%Calculates true gradient on a plane defined by three points for each 
%unique three point combination from xyz data.  0 degrees is north. 

  
clear 
clc 
close all 
format long 

  
%input file location for spatial data.  Data should be in three columns 
%with no headings.  The first two columns should be x and y data 

respectively with the 
%third column being the head or elevation 

  
data = xlsread('x_validation_olea_comparison','xyz'); 
%easting should be in first column and northing in second column 

  
%N is the number of data points 
%C is the total number of unique 3 point combinations; formula to find 

C 
%can be found in accompanying three point problem mathcad file. 

  
N = 69;            
C = 52394; 
ext = 3000;             %labels for graph 
res = 500;              %labels for graph 
season = 'January ';    %labels for graph 
year = 2015;            %labels for graph 
site = 'MWG1B ';        %labels for graph 

  

  
Z = zeros(C,1);    
G = zeros(C,1); 
AT = zeros(C,1); 
counter = 0; 
for i = 1:N-2 
        for j = i+1:N-1 
                for k = j+1:N 

                     
                    xi = data(i,1); 
                    xj = data(j,1); 
                    xk = data(k,1); 
                    yi = data(i,2); 
                    yj = data(j,2); 
                    yk = data(k,2); 
                    zi = data(i,3); 
                    zj = data(j,3); 
                    zk = data(k,3); 

                     
                    if xi == xj && xj == xk 
                        continue 
                    end 

                     
                    if yi == yj && yj == yk 
                        continue 
                    end 
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                    A = [xi,yi,0]; 
                    B = [xj,yj,0]; 
                    C = [xk,yk,0]; 

  
                    BA = B-A; 
                    CB = C-B; 
                    CA = C-A; 
                    AB = A-B; 
                    AC = A-C; 
                    BC = B-C; 

                     

  
                    thetaA = atan2d(norm(cross(BA,CA)),dot(BA,CA)); 
                    thetaB = atan2d(norm(cross(AB,CB)),dot(AB,CB)); 
                    thetaC = atan2d(norm(cross(AC,BC)),dot(AC,BC)); 

                    
                    thetas = [thetaA(:), thetaB(:), thetaC(:)]; 
                    D= min(thetas(:)); 

                     
                    %filters acute angle values less than input 
                    if D <= 30 
                        continue 
                    end 

                     

                   
                    a = -[zi yi 1; zj yj 1; zk yk 1]; 
                    b = -[xi zi 1; xj zj 1; xk zk 1]; 
                    c = [xi yi 1; xj yj 1; xk yk 1]; 

                     
                    me = det(-a)/det(c); 
                    mn = det(-b)/det(c); 

                     
                    Area = norm(cross(CA,CB))/2; 
                    strike = atand(-det(b)/det(a)); 
                    dzdx=-det(a)/det(c); 

                     
                    %for the theta value below, north is 0 degrees and 

east 
                    %is 90 
                    if strike<90 
                       if dzdx < 0 
                           theta = strike+90; 
                       else  
                           theta = strike +270; 
                       end     
                    end 

  
                    if strike >= 90 
                        if dzdx >0 
                            theta = strike+90; 
                        else 
                            theta = strike-90; 
                        end 
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                    end     

                     
                    %translation of deta 90 degrees clockwise moves 0 
                    %degrees from N to E.  However, angles still 

increase 
                    %clockwise, remove comments to include code 

                     
                    %theta=theta+90; 
                    %if theta >360 
                    %    theta = theta-360; 
                    %end     

                        
                    delH = ((me)^2 + (mn)^2)^0.5; 
                    counter = counter +1; 
                    Z(counter,1)=(theta); 
                    AT(counter,1) = Area; 
                    G(counter,1) = delH; 

                     

  
                end 
        end 
end 

  
P = Z(1:find(Z,1,'last'));      %Gradient direction matrix 
AP = AT(1:find(AT,1,'last'));   %Area matrix 
GF = G(1:find(G,1,'last'));     %Gradient magnitude matrix 

  
%Change variable input dependent on plotting gradient or direction and 
%seasonal 

  
s=scatter(AP,P,10);  %input 
s.LineWidth=0.5; 
x=xlabel('Area (ft^2)','FontSize',7,'fontname','Times New Roman'); 
y=ylabel('Gradient Direction (°)','FontSize',7,'fontname','Times New 

Roman'); 
%title([num2str(res) 'm DEM ' num2str(ext) 'ft Gradient Direction vs. 

Area']) 
%title(['MW G1B Gradient Direction']) 
t = title([(site) (season) num2str(year) 

],'FontSize',7,'fontname','Times New Roman'); 
%Average = mean(GF) 
Median = median(P)  %input 
s=sprintf('45%c',char(176)); 
mdlabel=sprintf('Median: %0.1f' ,[Median]); 
%h=annotation('textbox',[0.78 0.72 0.105 0.06],'String',[mdlabel 

char(176)],'linestyle','none','FontSize',20,'FontName','Times New 

Roman'); 
ax=gca; 
ax.PlotBoxAspectRatio=[1 0.3 0.3427]; 
ax.ActivePositionProperty = 'position'; 
set(gca,'Units','centimeters','position',[1.5 1 12.5 4]); 
%set(gca,'Units','centimeters','outerposition',[1 1 14 5]); 
set(y,'Units','Normalized','Position',[-0.07, 0.5, 0]); 
set(x,'Units','Normalized','Position',[0.5, -0.16, 0]); 
set(t,'Units','Normalized','Position',[0.5, 1.05, 0]); 



55 

 

ax.FontName='Times New Roman'; 
ax.FontSize=7; 
ax.XMinorTick='on'; 
ax.YMinorTick='on'; 
set(gca,'TickDir','out'); 
ax.YLim = [0 360]; 
ax.YTick = [0 90 180 270 360]; 
ax.XGrid= 'on'; 
ax.YGrid = 'on'; 
ax.Box='on'; 
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APPENDIX C.   

DEM GRADIENT DIRECTION AND MAGNITUDE PLOTS 
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APPENDIX D. 

SEASONAL ANALYSIS 
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MWG1A Gradient Direction Plots – Local Scale Defined by Vertical Dashed Line 
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MWG1B Gradient Direction Plots – Local Scale approximated by maximum area 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 

 

MWG2 Gradient Direction Plots – Local Scale Defined by Vertical Dashed Line 
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MWG3 Gradient Direction Plots – Local Scale Defined by Vertical Dashed Line 
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MWG1A Fall 2009 Variogram Comparison 
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MWG1A Fall 2010 Variogram Comparison 

 

MWG1A Fall 2011 Variogram Comparison 
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MWG1A Fall 2012 Variogram Comparison 

 

 

MWG1A Fall 2013 Variogram Comparison 
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MWG1A Fall 2014 Variogram Comparison 

 

MWG1A Spring 2008 Variogram Comparison 
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MWG1A Spring 2009 Variogram Comparison 

 

MWG1A Spring 2010 Variogram Comparison 



83 

 

 

MWG1A Spring 2011 Variogram Comparison 

 

MWG1A Spring 2012 Variogram Comparison 
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MWG1A Spring 2013 Variogram Comparison 

 

MWG1A Spring 2014 Variogram Comparison 
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MWG1A Summer 2007 Variogram Comparison 

 

MWG1A Winter 2007 Variogram Comparison 
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MWG1B Summer 2007 Variogram Comparison 

 

MWG1B Fall 2009 Variogram Comparison 
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MWG1B Spring 2012 Variogram Comparison 

 

 

 

MWG2 Spring 2010 Variogram Comparison 
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MWG2 Spring 2011 Variogram Comparison 

 

MWG2 Spring 2012 Variogram Comparison 
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MWG2 Spring 2013 Variogram Comparison 

 

 

 

MWG3 Spring 2010 Variogram Comparison 
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MWG3 Spring 2011 Variogram Comparison 

 

MWG3 Spring 2012 Variogram Comparison 
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MWG3 Spring 2013 Variogram Comparison 

 

 

 

MWG1B Spring 2012 Variogram Links 
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MWG2 Spring 2010 Variogram Links 

 

 

MWG2 Spring 2011 Variogram Links 
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MWG2 Spring 2013 Variogram Links 

 

 

MWG3 Spring 2010 Variogram Links 
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MWG3 Spring 2011 Variogram Links 

 

 

MWG3 Spring 2012 Variogram Links 
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MWG3 Spring 2013 Variogram Links 
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