
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2017

Depth determination method for a trailer-truck test-bed Depth determination method for a trailer-truck test-bed

Aditya Thakur

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Thakur, Aditya, "Depth determination method for a trailer-truck test-bed" (2017). Masters Theses. 7681.
https://scholarsmine.mst.edu/masters_theses/7681

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7681&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7681?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7681&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

DEPTH DETERMINATION METHOD FOR A TRAILER-TRUCK TEST-BED

by

ADITYA THAKUR

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

2017

Approved by

Dr. Levent Acar

Dr. Jagannathan Sarangapani

Dr. Randy Moss

Copyright 2017

ADITYA THAKUR

All Rights Reserved

iii

ABSTRACT

A camera is considered as a good sensing device to obtain visual information from

its surrounding environment. In a three dimensional space, a camera has a two dimen-

sional plane. Projection of an object on this plane creates a two dimensional projection

and loses information of the third dimension. A single projection is not enough to retrieve

the lost third dimensional information about the object. Thus it makes it difficult to use a

single camera as a sensing instrument. In this project, we have developed a method that

determines the three dimensional information using a single camera. The method utilizes

an assumption of the camera being in motion, allowing it to take projections on unaligned

camera planes at different positions. A mathematical comparison of these projections gives

us a deterministic value of depth of the surroundings from these camera planes.

iv

ACKNOWLEDGMENTS

I would like to thank Dr. Levent Acar for being my adviser and guiding me in

completing the current thesis. I also want to thank Dr. Jagannathan Sarangapani and Dr.

Randy H. Moss for serving in the committee. I would like to thank my family and friends

for their continued support and encouragement that pushed me towards the completion of

this project. This research was supported by the Department of Electrical and Computer

Engineering of the Missouri University of Science and Technology.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . viii

LIST OF TABLES . x

SECTION

1. INTRODUCTION. 1

2. HARDWARE . 4

2.1. CONTROLLER MODULE PFM-945C . 4

2.2. DATA ACQUISITION BOARD - RTD DM35425HR . 5

2.3. DIGITAL I/O BOARD - DM35820 . 5

2.4. STORAGE BOARD - SSD 104 SATA . 6

2.5. FRAME GRABBER - SENSORAY 911 . 7

2.6. SENSORS . 8

2.6.1. Camera - Sony EVI. 8

2.6.2. Analog Accelerometer - DE ACCM3D . 9

2.6.3. Potentiometer . 11

2.6.4. Servo Motor . 11

2.6.5. Operating Range of Hardware Components . 12

3. SETUP OF TRUCK . 13

vi

3.1. TRACKING THE TRUCK TRAJECTORY . 18

4. INTRODUCTION TO THE DEPTH DETERMINATION METHOD 21

4.1. INFORMATION LOSS IN PROJECTIONS . 21

5. BINOCULAR DISPARITY IMAGE DEPTH ESTIMATION METHOD 23

5.1. DEMONSTRATION OF THE BINOCULAR DISPARITY METHOD 23

5.2. LIMITATIONS OF THE METHOD . 29

6. OBTAINING DEPTH FROM UNALIGNED PLANES METHOD 31

6.1. APPLICATION OF DEPTH FROM UNALIGNED PLANES METHOD . . . 39

6.1.1. Scenario: Planes Separated by 90 Degrees . 41

6.2. CREATING POINT-CLOUD FROM MULTIPLE POINTS. 43

7. LIBRARIES FOR IMAGE PROCESSING AND STORAGE OF THE POINTS . . 48

7.1. VARIABLES AND DATA STRUCTURES TO STORE DATA 48

7.1.1. Structure for Storing Images . 48

7.1.2. Structure for Storing Points . 49

7.1.3. Dictionary for Storing Points . 50

7.2. FUNCTIONS FOR OBTAINING THIRD DIMENSION . 50

7.2.1. Function for Matching Points from Two Camera Planes 50

7.2.2. Functions for Obtaining Rotation Matrix and Projection 51

7.2.3. Function for Obtaining Depth. 53

7.3. OTHER FUNCTIONS . 55

7.3.1. To Retrieve Point from Storage . 55

7.3.2. To Erase Point from Storage . 55

7.3.3. Finding Color of the Point . 55

8. CONCLUSION AND FUTURE WORK . 57

vii

APPENDICES

A. MAIN SIMULATION FILE : MAIN.M . 59

B. SUPPORTING FUNCTIONS . 63

BIBLIOGRAPHY . 66

VITA . 68

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Reference Control Scheme for Mobile Robot Systems . 2

2.1 Controller Module PFM-945C . 5

2.2 Data Acquisition Board DM35425 . 6

2.3 Digital I/O Board DM35820 . 7

2.4 SSD Storage Module SSD-104 SATA. 7

2.5 Frame Grabber - Sensoray 911 . 8

2.6 Camera - Sony-EVI-D30 . 9

2.7 Accelerometer . 10

2.8 Potentiometer . 10

2.9 Servo Motor . 11

3.1 Trailer-Truck Test-bed . 13

3.2 Stacked Embedded Computer System . 14

3.3 Block Diagram of Test-bed . 14

3.4 Control Panel of Truck . 15

3.5 Dimensions of the Trailer Truck. 16

3.6 1-dimensional Representation of the Truck . 17

3.7 Analysis of Multiple Points on the Truck . 19

5.1 Experimental Setup for the Binocular Disparity Method . 24

5.2 Projection of Point on Multiple Image Planes . 25

5.3 Images for the Binocular Disparity Method . 27

5.4 Camera plane α . 29

5.5 Camera plane β . 29

5.6 Display of Resulted Points from Binocular Disparity Method in three Dimen-

sional Space (a),(c),(e) from front to top and (b),(d),(f) from front to side 30

ix

6.1 Projection of Point on Unaligned Image Planes . 31

6.2 Coplanarity of Projection Vectors and its Components . 33

6.3 Projections of Points with respect to the World Coordinate System 36

6.4 Representation of Projections with Respect to the Angle between Planes 36

6.5 Image of the Object Taken from 1st and 2nd Camera Planes . 39

6.6 Representation of Experimental Setup for Example 1 of Unaligned Planes Method 40

6.7 Projection of the Object from α and γ Planes. 41

6.8 Representation of Experimental Setup for Example 2 of Unaligned Planes Method 42

6.9 Test Images for Unaligned Planes Method. 43

6.10 Matched Points from 2 Images . 44

6.11 Front View of Point Cloud . 45

6.12 Auxiliary View of Point Cloud . 45

6.13 Results from Method 2, Point Cloud from (a) Front View and (b) Auxiliary View 46

6.14 Representation of Resulted Points from Unaligned Planes Method in three Di-

mensional Space from, (a),(c),(e) Front to Top and (b),(d),(f) Front to Side 47

x

LIST OF TABLES

Table Page

2.1 Hardware in Computer System of Test-bed . 4

2.2 Operating Range of All Hardware Components . 12

1. INTRODUCTION

A control scheme can be represented as the combination of four basic blocks that

are Perception, Motion Control, Cognition Path Planing and Localization. A generalized

model of this system as represented by the Book Autonomous Mobile Robots by Roland

Siegwart Siegwart et al. (2011) in Figure 1.1. Perception and Localization are the blocks

that we are focusing on in this research topic. A general approach for the perception is

by the use of multiple sensors, such as ultrasonic range finder, LIDAR, etc. These sensors

are easier to use but have problems of having limited field of view. These sensors are also

susceptible to noise. A camera is a better alternative for perception. The data we retrieve

from the camera is closer to human vision. But as in humans, we require two eyes to get

better perception, a camera based system needs to have more than one camera. This makes

the system costly. To avoid this drawback, a single camera approach for estimating depth of

the environment is developed in this project. The information obtained through this method

is then further used for localization and Map building.

Numerous work has been done to develop methods to compute the third dimension

information using cameras. Adelson, et al. in Adelson and Wang (1992) have developed a

method to obtain the depth by the use of a plenoptic camera. Another method in Hermans

et al. (2009) uses a sliding projection to estimate the depth. Although this method gives

good results, it is computationally expensive. There have been a few hybrid methods such

as Matusik et al. (2000); Slabaugh et al. (2002). These methods make a rough estima-

tion of 3D geometry and mix it with the traditional image rendering algorithms to obtain

accurate results. Saxena, et al. in Saxena et al. (2005) use a probabilistic model on monoc-

ular images. In Esteban and Schmitt (2004), Esteban uses silhouette and stereo fusion for

3D object modeling. A few other methods use two aligned images to estimate the depth

information using disparity maps as in Shadbolt (2003); Jain et al. (1995). One of these

2

Figure 1.1. Reference Control Scheme for Mobile Robot Systems

methods by Jain, et al. in Jain et al. (1995), uses a human eye-like detection technique on

two parallel images estimates the depth of an object. This method, being good for depth

estimation, has a few limitations such as having more than one aligned camera planes. This

method may or may not require more than one camera but because of that it can also be

computationally expensive for the cases where the motion is not so linear.

Nowadays, there exist many system which move in a three dimensional space with-

out adrones Apvrille et al. (2014). These systems still do not use the camera as a sensor

of perceiving depth because of the limitations of currently existing methods. To avoid this

problem, a new approach is developed by the use of single camera that moves through a

three dimensional space. The limitations of requiring an aligned camera plane does not

exist for this method.

The hardware setup we have used here is a miniaturized truck model that was de-

signed by Pravin Dhake in Dhake (2007) and Robert Woodley in Woodley and Acar (1999).

The test-bed they designed was not compatible with PCIe modules and thus, it was up-

3

graded to accommodate the PCIe modules. Using these modules, a stacked test-bed was

designed. All the peripherals including motor driver, camera and sensors are connected

to this test-bed. Using the information gathered from these peripherals, extra information

about its surroundings is calculated. This information is then stored for further processing

of complex calculation of object retrieval and map building.

This thesis is divided into two sections. In first part we will see how the data acqui-

sition is done on this test-bed and in the later section we will see how the surroundings are

mapped using the acquired data.

4

2. HARDWARE

Earlier, the hardware was designed around the PCI-104 bus. The modules from that

test-bed were compatible with only PC/104 bus and the newer modules were compatible

with the PCIexpress bus. This inconsistency was causing a conflict in communication and

required extra hardware for interfacing. To avoid this, the modules were replaced and

upgraded by adding Data Acquisition and Motor Driver Modules that supported the PCIe

bus. The hardware list for the test bed is given below in Table 2.1,

2.1. CONTROLLER MODULE PFM-945C

The hardware was designed around the PFM-945C Motherboard Aaeon’s, which is

a Processor module designed for Intel Atom N270 Processor. The module has about 1GB

of Memory and an expansion bus to support both PCI-104 and PCI-104-E bus. The older

hardware was designed for PC/104 form factor based modules and it had legacy hardware

issues. AAEON PFM 945C has clock speed of 1.6 Gigahertz. This board requires a power

supply of 12V and 1.5 Amperes. The Mother board can be seen in a Figure 2.1 below,

Table 2.1. Hardware in Computer System of Test-bed

Type of Module Name of Module

Controller Board AAEON PFM-945C

Data Acquisition RTD DM35425HR

Motor Controller RTD DM35820HR

Frame Grabber Sensoray 911

Storage Board SSD-104 SATA

5

Figure 2.1. Controller Module PFM-945C

2.2. DATA ACQUISITION BOARD - RTD DM35425HR

The DM35425 is a software configurable high-speed, 12-bit data acquisition mod-

ule in the PCIe/104 form factor. This module provides 16 differential or 32 single-ended

analog input channels, with programmable gain and variable input range. The DM35425

also features four 12-bit high-speed analog outputs with programmable output range, and

a 32-bit port of digital I/O. This module can acquire the data from all the analog sensors

including the potentiometers and the IMU unit. The module can be seen in Figure 2.2.

2.3. DIGITAL I/O BOARD - DM35820

The DM35820HR is designed to provide high speed digital I/O for PCI/104-Express

Systems. It interfaces with the PCI or PCI Express bus and uses large FIFOs and DMA

transfers to allow for efficient data management. Several peripherals, including Pulse Width

Modulators, Incremental Encoders, and Programmable Clocks are also provided with this

6

Figure 2.2. Data Acquisition Board DM35425

module. The Encoder is directly connected to this board which measures the distance

covered by the system. The Digital I/O’s helps us to provide a control signal to the Motor

Driver Circuitry. The module can be seen in Figure 2.3.

2.4. STORAGE BOARD - SSD 104 SATA

SSD-104 SATA is the dual memory storage device supported by PCI-104 and PCIe-

104 bus. It allows 2 mSATA SSD cards. The SSD cards improves the performance of the

system. In this storage, we have installed the Debian OS which is patched with RTAI

as in Raghavan (2014), to act like a real time system. The image grabber also captures

and stores frames from the camera plane to the same storage. The SSD being faster storage

system keeps the system performance from failing down. The Figure 2.4 shows the module

SSD-104.

7

Figure 2.3. Digital I/O Board DM35820

Figure 2.4. SSD Storage Module SSD-104 SATA

2.5. FRAME GRABBER - SENSORAY 911

Sensoray 911 Sensoray is four channel frame grabber that can simultaneously cap-

ture data from four image and audio channels. Here we are using just a single camera and

thus the other channels are not used. It can capture 120 FPS with NTSC format or 100

8

FPS with PAL format. There is also a provision from I/O signals which can be used as a

regular Digital Input/ Outputs. The frame grabber stores the data constantly on the storage

module and it can be processed and stored in any format. This module can be seen in the

Figure 2.5.

Figure 2.5. Frame Grabber - Sensoray 911

2.6. SENSORS

In this section, the sensors that are connected to the embedded computer are de-

scribed.

2.6.1. Camera - Sony EVI. Sony EVI-D30 is an NTSC color camera as seen in

Figure 2.6. We will be using this camera to capture frames while our system is on the move.

The camera through an RCA port is connected to the frame grabber module mentioned

9

before. Camera has a pan and tilt setting using which it can be moved to take images from

multiple angles. It is a high speed camera with auto focus and a 12X zoom. This helps us

to achieve a faster performance for our overall system.

Figure 2.6. Camera - Sony-EVI-D30

2.6.2. Analog Accelerometer - DE ACCM3D. The analog accelerometer which

works on a 3.3- volt power source provides three analog channels which provide pitch, roll

and yaw motion measurement. This accelerometer is attached horizontally to the truck test-

bed and it is used to find the turning of the truck along its axis. According to the angle, it

generates voltage in the range or 0 to 3.3-volts and this voltage is given to the Data Acquisi-

tion board. The board then provides the digital output between the range of 0-4096. These

values are then converted into the angle by which the truck has rotated. The accelerometer

can be seen in Figure 2.7. The accelerometer gives 3.3 volts as the max voltage and the

1.66 point is considered a 0g point. The sensitivity of the given Accelerometer is 0.333v/g.

Using this information, the motion can be calculated by using Equation 2.1

10

Figure 2.7. Accelerometer

Figure 2.8. Potentiometer

δ = (
3.3 ∗ ADCval

4095
− 1.66)

1

0.333
(2.1)

11

Figure 2.9. Servo Motor

2.6.3. Potentiometer. A potentiometer is attached to the joint where the Trailer is

connected to the head of the truck. The potentiometer has a rotary play and it is used to

measure the angle of rotation of the trailer with respect to the truck. The potentiometer

provides an analog voltage which converts it to an angle after it provides it to the Data

Acquisition board. The Potentiometer is showed in Figure 2.8. The possible angle is from

−170 to 170 degrees and thus the ADC data is converted using Equation 2.2.

δ1 = (
340 ∗ ADCval

4095
− 170)

π

180
radians (2.2)

2.6.4. Servo Motor. Servo motor is connected to the steering wheel and even

though it is an actuator, it is also a sensor. Airtronics Servo Motor was used to imple-

ment the steering mechanism. The servo motor can be seen in Figure 2.9. The motor also

has a potentiometer inside it. The analog signal from this potentiometer is used to measure

the angle of rotation of the steering wheel. This data is given to the ADC of Data Acquisi-

tion Board. It converts the data into a Digital 12-bit value. This 12-bit value is then further

substitutated in Equation 2.3 to obtain the actual angle. This will give us the angle in range

12

Table 2.2. Operating Range of All Hardware Components

Component Data Rate Operating Range Update Frequency

Encoder 200MHz 0 − 5V 12.5MHz

Accelerometer 12-bit Digital from ADC 0 − 5V 1.25MHz

Trailer Potentiometer 12-bit Digital from ADC 0 − 5V 1.25MHz

Servo Potentiometer 12-bit Digital from ADC 0 − 5V 1.25MHz

Servo Motor 0 − 6V 25MHz

Camera 130fps 6V 2000Hz

Driving Motor 0 − 12V 25MHz

of −15 to 15 degrees

δ2 = (
15 ∗ ADCval

4095
− 30)

π

180
radians (2.3)

2.6.5. Operating Range of Hardware Components. The maximum operating

range of all connected hardware components is in Table 2.2.

13

3. SETUP OF TRUCK

The hardware in Section 2 was compiled together to construct a 1 : 16th scale

model of a truck and its trailer. The constructed model can be seen in Figure 3.1. The

sensors except camera, allow the truck to measure own position from the starting point,

and the trajectory it is going to follow.

Figure 3.1. Trailer-Truck Test-bed

Figure 3.2 shows the stackable embedded computer which is connected to the sen-

sors. The representative block diagram of this system can be seen in Figure 3.3. The Data

Acquisition board is connected to all the sensors including the accelerometer and the Po-

tentiometer. The Digital I/O board provides PWM signals to the Motor Driver and the

Servo Motor which is used to steer the truck. The Digital I/O board also has 16-bit Timer

Counters which are used to measure the pulses generated by the Rotary Encoder.

14

Figure 3.2. Stacked Embedded Computer System

Camera

Sensors

Controller Board

WiFi

Digital I/O Board

Actuators

Storage Board

Data Acquisition

Board
Frame Grabber

Board

Figure 3.3. Block Diagram of Test-bed

The trailer truck system has USB ports and Ethernet ports too. Using which, the

truck can be connected to the internet through a secure gateway. The truck has an on-board

LAMP Server as in Timberlake (2010), which has Linux as operating system, Apache as

15

Figure 3.4. Control Panel of Truck

the web server, MySQL as the relational database and PHP as the object oriented scripting

language. The video from the camera is shared with this server so the controller can have a

constant video feed coming from the truck.

The system runs on a lightweight variant of a Debian Operating system called

Xubuntu. The OS was chosen for its minimalism and thus it is not heavy on the resources.

The kernel that comes with the Debian is not suitable for the real-time applications as it

lacks the required scheduling capabilities of a real-time scheduler. To fix that, the ker-

nel was patched with the Real-time Application Interface as in (RTAI) Mantegazza et al.

(2000), which enables the operating system to behave like a real time system.

The control panel allows the user to drive the truck. The control panel has buttons

to adjust its speed and also steer the truck. The values from the sensors are also collected

and showed on the same panel for making it available as an API for designing a remote

application as a future work.

16

dPC dCB dBA

dDEdEF

13cm 34cm 6cm

DF

15cm

E

P C B A

9.5cm4.5cm9cm 24cm 5cm

Figure 3.5. Dimensions of the Trailer Truck

Figure 3.5 shows us the points of interest and the dimensions of the truck and the

trailer connected to it. Variable d is used to denote the dimensions in centimeters and

the subscript denotes the difference between two points. For example, dCB will show the

distance between point B and C. The points P and D are the pivot points where the trailer is

connected to the truck. A is the center for the steering tires and C is the center for the driving

tires. Points B and E denote the centers of gravity for truck and the trailer, respectively.

The truck and the trailer can be reduced into a one dimensional model where the

modules are reduced into a single line through their center. The reduced model and the

related variables can be seen in Figure 3.6. Velocity and acceleration components are shown

in two directions. One is along the direction of the truck and second component is in

the perpendicular direction to the truck. The ith component points towards the direction

of Truck and jth component points towards the perpendicular. For example, vD j
is the

component of velocity which is perpendicular from point D.

17

aP j

vP j

aPi

vPi aCi

vCi

aC j

vC j aB j

vB j

aBi

vBi

aA j

vA j

aAi

vAi

θ̇C
θ̈C

θ̇T
θ̈T

aF j

vF j

aFi

vFi

aE j

vE j

aEi

vEi

aD j

vD j

aDi

vDi

P

F E D

A
BC δ

Figure 3.6. 1-dimensional Representation of the Truck

Angle δ is the angle of steering of the steering tires. In motion, the same angle is

achieved by the truck while turning, with respect to the truck. The center of gravity of

the truck is at point B and the camera is placed between points D and E. In next section,

the points around the truck will be obtained in the three dimensional space. But the points

will be denoted from the point of the camera and not from the trucks perspective. Thus

it is required to convert these points into the trucks coordinate system, that is, the global

coordinate system. The transformation of these points can be given by,

xo = [Hs→o]xs (3.1)

where H is the transformation matrix which converts the points from midpoint of D and E

to the global coordinate system at point B.

18

~H =







R ~t

0 1







=



















cos(δ) 0 sin(δ) t1

0 1 0 t2

− sin(δ) 0 cos(δ) t3

0 0 0 1



















(3.2)

where, xs is a three dimensional vector represented as a homogeneous vector with four

components to accommodate the 4 × 4 Transformation matrix.

3.1. TRACKING THE TRUCK TRAJECTORY

Figure 3.7, shows the different points on the truck with respect to the global coor-

dinate system. For the sake of simplicity, it is assumed that initially, the truck has its center

of gravity at global origin and it parallel to the x-axis. Thus the pose angle is 0 initially.

The coordinates X1,Y1, X2,Y2 and X3,Y3 can be represented by the following Equations.

The angle θ1(t) with respect to the global origin is addition of steering angle and the angle

δ which is,

θ1(t) = φ1(t) +

∫ t

0

v1(σ) sin(φ1(σ))dσ (3.3)

The angle δ1 is thus as mentioned in Equation 3.3, such that

δ1(t) =
1

l1

∫ t

0

v1(σ) sin(φ1(σ))dσ (3.4)

19

α

φ1(t)

l1

l2

θ1(t)

δ1(t)

δ2(t)

X1(t),Y1(t)

x
x

x

x

y

y

y

y

X3(t),Y3(t)

lo f f

X2(t),Y2(t)

Figure 3.7. Analysis of Multiple Points on the Truck

Where, the velocity v1 is the velocity from the driving wheels. the coordinates X1,Y1 can

be obtained using angle θ1, such that

X1(t) =

∫ t

0

v1(σ) cos(θ1(σ))dσ

Y1(t) =

∫ t

0

v1(σ) sin(θ1(σ))dσ

(3.5)

The coordinates obtained are of the point where the center of gravity is located. We are

interested in the point where the camera is located that is X3,Y3. To obtain that information,

we first need the pivot point, that is X2,Y2,

X2(t) = X1(t) − l1cos(δ1(t))

Y2(t) = Y1(t) − l1sin(δ1(t))

(3.6)

For obtaining the X3,Y3, we need the angle generated by the trialer with respect to the

global coordinates.

α = δ1(t) − δ2 (3.7)

20

Where the angle α is the angle between trailer and truck. This angle is known from the

feedback of potentiometer.

X3(t) = X2(t) − l2cos(δ2(t))

Y3(t) = Y2(t) − l2sin(δ2(t))

(3.8)

Thus the final equation for the coordinates X3,Y3 are written, such that

X3(t) =

∫ t

0

v1(σ) cos(θ1(σ))dσ − l1cos(δ1(t) − l2cos(δ2(t))

Y3(t) =

∫ t

0

v1(σ) sin(θ1(σ))dσ − l1sin(δ1(t)) − l2sin(δ2(t))

(3.9)

21

4. INTRODUCTION TO THE DEPTH DETERMINATION METHOD

With robotics and automation gaining prominence in the tech world, efficient and

fast processing of visual data has become increasingly important. In the field of robot vi-

sion, various types of sensors, such as ultrasonic and LIDAR, are available to detect objects

in their surroundings Besl (1988); Benet et al. (2002). Although these sensors are easy to

use, their limitations such as limited sensing field and noise render them inconvenient for

larger unknown environments.

A camera is considered a good sensing device to obtain visual information from its

surrounding environment. In a three dimensional environment, most cameras provide only

two dimensional projections at fixed locations. Thus additional methods are required to

determine information about the third dimension.

In this section, we have developed a method that overcomes the limitations of re-

quiring aligned camera planes. Our method determines the three dimensional information

of an object from its projections on camera planes at two different locations. The cam-

era takes a picture of an object at one location and then takes another picture of the same

object from another location. Comparing these two projections, we present a method that

mathematically provides a deterministic value for the three dimensional information of the

object.

4.1. INFORMATION LOSS IN PROJECTIONS

To represent the object and the camera locations and incorporate possible rotation

and translation movements, we denote a vector x in three dimensional space as
[

x1 x2 x3

]T

. We assume that the global origin is at o =
[

0 0 0
]T

and the local normal vector in

the camera coordinate system is n =
[

0 0 1
]T

. When the camera takes a picture, the

picture is a two dimensional projection of a three dimensional object on the camera plane.

22

In this process, we lose the information about the third dimension of the object. By taking

the projection of the point x =
[

x1 x2 x3

]

onto the α camera plane we get

Pα[x] =
(

I − nαnα
T
)

x

=

























1 0 0

0 1 0

0 0 1













−













0

0

1













[

0 0 1

]

























xo1

xo2

xo3













=













xα1

xα2

0













(4.1)

As Equation (4.1) shows, when we take a projection of point x on a plane α with

center at cα and normal vector nα perpendicular to the first two dimensions. A projection

will lack the third dimension information. A point x can have multiple projections on

multiple planes. For example, the projections of the point x on planes α and β are,

Pα

[

x
]

=













xα1

xα2

0













, and Pβ

[

x
]

=













xβ1

xβ2

0













, respectively. (4.2)

where xα1
, xα2

and xβ1
, xβ2

are in local coordinates.

23

5. BINOCULAR DISPARITY IMAGE DEPTH ESTIMATION METHOD

Two planes α and β are represented by their centers cα and cβ and their normal

vectors nα and nβ, respectively. The center of the first plane is also assumed as the origin

of the global coordinate system. In this method, we assume that the planes are perfectly

aligned with each other, such that their normal vectors are translations in one dimension

only. To obtain the third dimensional information using the Binocular Disparity Method,

as described in Trucco and Verri (1998), we take the projection of a point on the image

plane. A point xo is described in a three dimensions with coordinates, such that xo =

[

xo1
xo2

xo3

]T
. The projection, with respect to the α plane, gives coordinates Pα

[

xo

]

=

[

xα1 xα2 0
]T

. Here the third dimension coordinate is 0 as described in Section 4.1. The

d1→2 is the relative distance between the centers of these two planes.

Figure 5.2 shows the camera configuration for the Stereo Disparity Method. f is

the distance from the camera plane to each of the lenses, and is also the focal length of

the cameras. Theorem 1 gives a relative approach to find the third dimension value of a

point by finding a relationship between the actual point and the diminished image due to

the lenses.

5.1. DEMONSTRATION OF THE BINOCULAR DISPARITY METHOD

The Binocular Disparity Method works with a single perfectly aligned camera slid-

ing along on one of the dimensions of the camera plane or with a pair of perfectly aligned

cameras that are placed along a line. In this method, we need to determine the focal length

of the camera lenses in pixels. We obtain this information by calibrating the camera and

by obtaining its intrinsic matrix as in Zhang (2000). Additionally, the camera measures

24

the first and second dimensions as the projection of the point on the camera planes α and

β. Figure 5.1 shows the setup for calculations, where the distance between the cameras is

d1→2.

xo3

nα

d1→2

Point x

cα cβ

nβ

Figure 5.1. Experimental Setup for the Binocular Disparity Method

Theorem 1. Given two perfectly aligned camera planes separated in one dimension

25

f

f

c1

c2

Pα

Pβ

Point x

xα3

xα3

[

xα1
, xα2

, xα3

]T

[

xβ1
, xβ2

, 0
]T

d1→2

[

xα1
, xα2

, 0
]T

Figure 5.2. Projection of Point on Multiple Image Planes

the depth from plane of an object can be obtained by

xα =



























xo3

f
xα1

xo3

f
xα2

d1→2

xα1
−xβ1

f



























. (5.1)

Proof From Figure 5.2, we can observe that

xα1

f
=

xo1

xo3

, and
xβ1

f
=

d1→2 − xø1

xo3

(5.2)

Thus ,

xα1
=

xo1

xo3

f , xβ1
=

xo1
− d1→2

xo3

f (5.3)

26

and

xα2
=

xo2

xo3

f , xβ2
=

xo2

xo3

f (5.4)

Calculating disparity using the above equations, such that

xα1
− xβ1

=
xo1

xo3

f −

(

xo1
− d1→2

xo3

)

f =
d1→2

xo3

f . (5.5)

Thus, the depth or the 3rd dimensional information of given point is

xo3
=

d1→2

xα1
− xβ1

f . (5.6)

Using the depth information, all the actual coordinates of the point x can be obtained as

follows

xo1
=

xo3

f
xα1

and xo2
=

xo3

f
xα2
. (5.7)

So the actual point from the perspective of first plane can be represented as

xα =



























xα1

xo3

f

xα2

xo3

f

d1→2

xα1
−xβ1

f



























. (5.8)

�

Definition 1. The method to calculate the coordinates of a point in the three dimensional

space using Theorem 1 is called the ’Binocular Disparity Method’.

27

For demonstration of this method, we used an Ion Air Pro camera. We utilized

the same camera on the method described in Section 6. We placed a round red object as

our point of interest. We calculated the first and second coordinate values in pixels by

observing the point in multiple images. Figure 5.3 shows three images of the object taken

from multiple positions.

Figure 5.3. Images for the Binocular Disparity Method

From the images in Figure 5.3, we get the pixel data in three camera planes as,

xα
∗ =













1547

yα
∗

0













, and xβ
∗ =













1145

yβ
∗

0













, and xγ
∗ =













667

yγ
∗

0













, (5.9)

To adjust the pixel data to the center of image plane from the left top corner, we

subtract half of the image from the raw data, such that

28

xα =













1547 − 1024

x∗α2
− 768

0













=













523

xα2

0













xβ =













1145 − 1024

x∗β2
− 768

0













=













121

xβ2

0













xγ =













667 − 1024

x∗γ2
− 768

0













=













−557

xγ2

0













(5.10)

We calculated the focal length of camera in pixels from the calibration matrix which was

970 pixels. For Image A and B, the camera is translated by 19 cm and for Image A and C

it is translated by 30 cm. We put this information into Equation(5.8),

xα3
=

0.3 × 970

523 + 557
m = 0.2694 m, (5.11)

which is very close to the actual depth of about 28 cm. To validate the results, we rechecked

the calculations with Image A and Image C, we get

xα3
=

0.19 × 970

121 + 557
m = 0.2718 m. (5.12)

We used these equations with the data provided by Middleburry in Scharstein et al.

(2014). Figure 5.4 shows set of these images. The features from α plane were matched

with the features in β plane. We used the algorithm from the Binocular Disparity method

on these features to obtain the depth of all the points. The points in the set of images can

be seen represented in three dimensional space in Figure 5.6.

29

Figure 5.4. Camera plane α Figure 5.5. Camera plane β

5.2. LIMITATIONS OF THE METHOD

For the Binocular Disparity method, the projections are to be taken at the equal

set of intervals. The planes have to be perfectly aligned to each other for this method to

work. This limits the use of this method as it starts to work only for small changes in

position. Another limitation for this method is when the distance between the object and

the cameras is less than 30 times of the distance between camera planes, this method fails,

as in Kytö et al. (2011). In addition, if this method is used with a single camera, there is a

need of rotating the camera planes mathematically for each iteration.

30

4000

3000

2000

500 1000 1500

1400

1200

1000

1000

800

600

400

200

(a)

2500

2000

1400

1200

1000

800

1500

600

400

200

1500

1000

500

1000

(b)

1200

2000

1000

800

1500

600

400

1000

200

(c)

1400

1200

1000

800

600

1500

400

200

10002000

1500 500
1000

(d)

200 400 600 800 1000 1200 1400 1600
1400

1200

1000

800

600

400

2000

200

1500

1000

(e)

1400

1200

1000

800

600

400

200

1500

1000

500

2500 2000

(f)

Figure 5.6. Display of Resulted Points from Binocular Disparity Method in three Dimen-

sional Space (a),(c),(e) from front to top and (b),(d),(f) from front to side

31

6. OBTAINING DEPTH FROM UNALIGNED PLANES METHOD

In this method, we use properties of projection from different perspectives to obtain

the third dimension information. The two camera locations can be practically anywhere

that eliminates one of the limitations of the earlier method, the particular alignment of

the two cameras. We assume that the projection of a point x is being projected on two

unaligned planes α and β as in Figure 6.1. The planes are represented by centers cα and

cβ with normal vectors nα and nβ, respectively. There can be angular difference present

between these planes in contrast to the earlier method. We represent the angular difference

in terms of normal vectors, such that

Line of Intersection

Plane α

Plane β

Point x

nα

nβ

cα

cβ

Pα[x]

Pβ[x]

Figure 6.1. Projection of Point on Unaligned Image Planes

φ = cos−1

(

i1α .i1β

‖i1α |‖i1β ||

)

, ψ = cos−1

(

i2α .i2β

‖i2α |‖i2β ||

)

, θ = cos−1

(

i3α .i3β

‖i3α |‖i3β ||

)

(6.1)

32

where, the i, j and k components are the projections of the normal vectors nα and

nβ on the global planes x, y and z, respectively. We obtain these projection vectors from the

usual basis vectors e1, e2 and e3,such that for second and third coordinate plane,

i1α = (I3×3 − e1e1
T)nα, i1β = (I3×3 − e1e1

T)nβ (6.2)

for first and third coordinate plane,

i2α = (I3×3 − e2e2
T)nα, i2β = (I3×3 − e2e2

T)nβ (6.3)

and for first and second coordinate plane,

i3α = (I3×3 − e3e3
T)nα, i3β = (I3×3 − e3e3

T)nβ (6.4)

The perpendicular drawn from the projections along the plane towards the line of

intersection and the projection vectors coming from the point x are co-planar from Theo-

rem 2

Theorem 2. The Projection vectors from a point x on planes α and β, and the perpendicular

vectors along the plane from these projections drawn towards the line of projection are co-

planar.

Proof Two vectors always intersect in a line as long as they are not parallel. Let the planes

be specified in Hessian normal form, then the line of intersection must be perpendicular to

both nα and nβ, which means it is parallel to

a = nα × nβ (6.5)

33

x

A

Plane β

Pα[x]
Plane α

Pβ[x]

Plane ζ

a

a2

a1

a3

Figure 6.2. Coplanarity of Projection Vectors and its Components

The projection vectors points towards the same direction as the normal vectors and

intersect at point x. Thus the Equation (6.5) can be written as,

a = Pα[x] × Pβ[x] (6.6)

These three points x, Pα[x] and Pβ[x] form a plane ζ. Line of intersection and the

vector orthogonal to the plane ζ are thus parallel.

Let vector a2 be the line of intersection of planes and vectors a1 and a3 be the

orthogonal vectors drawn at projections Pα[x] and Pβ[x], respectively as in Figure 6.2,

such that

a || a1 || a2 || a3 (6.7)

Thus any co-planar vector drawn from the projection meets the line of intersection

a2 is a perpendicular to it. �

34

Corollary 1. The perpendicular vectors drawn along the planes towards the line of inter-

section from the points of projection vectors, which are co-planar to the actual vectors of

projection, intersect the line of intersection at the same point.

Proof The vectors drawn perpendicular towards the line of intersection are co-planar to

plane ζ. Let these points meet the line of intersection at points A1 and A2, such as

−−−−−−−→
Pα[x] A1⊥a2 ,

−−−−−−−→
Pα[x] A2⊥a2 (6.8)

The line of intersection a2 is orthogonal to the plane ζ. Thus there can not exist two different

points on a2 which can be co-planar to plane ζ. Thus the points A1 and A2 are the same

points. �

The camera planes are unaligned. Thus the planes can be rotated by three possible

angles of rotation. The three dimensional Rotation matrix R is represented by

R = RxRyRz, (6.9)

where R is the overall rotation matrix, and Rx, Ry, and Rz are the rotation matrices along

each axis. The combined rotational matrix R is represented as

R =









cos(θ) cos(ψ) − sin(θ) cos(θ) sin(ψ)

cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ) cos(φ) cos(θ) cos(φ) sin(θ) sin(ψ) − sin(φ) cos(ψ)

sin(φ) sin(θ) cos(ψ) − cos(φ) sin(ψ) sin(φ) cos(θ) sin(φ) sin(θ) sin(ψ) − cos(φ) cos(ψ)









(6.10)

The angles θ,φ and ψ can be obtained using Equation(6.1). The translation vector

t can be represented as,

t =













cα1
− cβ1

cα2
− cβ2

cα3
− cβ3













, (6.11)

35

A combination of R and t forms a Transformation matrix H. A transformation ma-

trix H can be represented in the form Hα→β, where transformation happens from coordinate

system α to coordinate system β.

A real world example for visualizing this method we can consider. A robot equipped

with a camera is traversing through its surroundings. It takes two projections of a point

object from two different positions with unaligned camera planes. We know the centers cα

and cβ of the camera planes with respect to the global co-ordinate system. We can calculate

angular difference between the camera planes using Equation(6.1).

Theorem 3. A point x has projections on unaligned camera planes α and β. The projec-

tions are Pα[x] =
[

xα1
xα2

0
]T

and Pβ[x] =
[

xβ1
xβ2

0
]T

. The planes are separated

by translation vector t and rotated by angles φ, ψ and θ, forming the Rotation Matrix R and

a combined transformation matrix Hα→β. Hα→β transforms the point vectors from α coor-

dinate system to β coordinate system. The depth of point x from α plane can be estimated

by the ratio of Euclidean distance between projection of Pα[x] on β plane Pβ[Hα→oPα[x]]

and the projection of x on β plane Pβ[x] with the sine of angle ∡µ, where ∡ν is the angle

between the planes at virtual intersection of camera planes.

xα3
=
‖Pβ[Hα→βPα[x]] − Pβ[x‖]

sin(∡ν)
(6.12)

Proof

As seen in Figure 6.3, the plane with center cα and normal vector nα is plane α, and

plane with center cβ and normal vector nβ is plane β. The point x is projected on plane α

and β at points Pα[x] and Pβ[x] respectively.

The point Pα[x] is further projected on plane β at point Pβ[Hα→βPα[x]].

The planes intersect at a line vector a2, as in Figure 6.2. There is a point E on

the line of intersection. The vectors of projections are originated at point x. This forms a

co-planar quadrilateral with vectors of projection, joining the planes at 90 degrees each as

in Theorem 2. This plane is called plane ζ.

36

E

D

x

cβ

nα nβ

Plane β
Plane α

µ

ν

Pβ[Hα→βPα[x]]

cα
Pβ[x]Pα[x]

Figure 6.3. Projections of Points with respect to the World Coordinate System

Plane α

Plane β

cα

cβ

nβ

Point x

Pα[x]

Pβ[x]

∡µ
nα

Figure 6.4. Representation of Projections with Respect to the Angle between Planes

37

The planes intersect each other in three dimensional space as in Figure 6.1, where

Point x, Pα[x] and Pβ[x] are co-planar. There also exists a point A on a line of intersection

of planes α and β. This point co-planar to plane ζ as in Corollary 1, such that

−−−−−−−−→
(x Pα[x]) × (

−−−−−−→
x Pβ[x]).

−→
xA = 0 (6.13)

The angle ν is the angle between the points of projections Pα[x], Pβ[x]. There is

only one angle ∡µ at the intersection of the planes, as in Figure 6.4. That is given by the

normal vectors nα and nβ by the equation,

∡ν = cos−1 nαnβ

‖nα‖‖nβ‖
(6.14)

Also, the plane ζ is a quadrilateral with 2 angles at 90 degrees. Thus, angle µ is

obtained by,

∡µ = 180◦ − ∡ν (6.15)

A perpendicular is drawn from point Pα[x] on the line joining x and Pβ[x]. From

Figure 6.3, we can see,

−−−−−−−−−−−−−−−−−−−−−→
(Pα[x] Pβ[Hα→βPα[x]]) ||

−−−−−−−−→
(D Pβ[x]) (6.16)

Thus the Euclidean distances between the projections is same as,

‖Pα[x] − D‖ = ‖Pβ[Hα→βPα[x]] − Pβ[x]‖ (6.17)

and thus, additionally, trigonometric ratios around angle ∡µ produces relationship

as given in Equation (6.18)

‖Pα[x] − x‖ =
‖Pα[x] − D‖

sin(∡ν)
(6.18)

38

Substituting Equation (6.17) in Equation (6.18) we get,

‖Pα[x] − x‖ =
‖Pβ[Hα→βPα[x]] − Pβ[x]‖

sin(∡ν)
(6.19)

Here ‖Pα[x] − x‖ is the depth of projection on plane α. From Equation (6.15), we get

sin(∡µ) = sin(180◦ − ∡ν) = sin(∡ν) (6.20)

Substituting these values in the above equation we get,

xα3
=
‖Pβ[Hα→βPα[x]] − Pβ[x]‖

sin(∡ν)
(6.21)

�

Definition 2. This method to calculate the three dimensional information of a point in the

visible space of camera planes using Theorem 3 is named as Depth from Unaligned Planes

Theorem.

The three dimensional information of the point from plane β can be shown as,

xα =























xα1

xα2

‖Pβ[Hα→βPα[x]]−Pβ[x]‖

sin(∡ν)























. (6.22)

We can further convert this point to the global coordinate system using the Rota-

tional matrix and Translation vector Rα→w and tα→w respectively as follows:

x = Rα→wxα + tα→w or x = Hα→oxα (6.23)

39

6.1. APPLICATION OF DEPTH FROM UNALIGNED PLANES METHOD

Figure 6.5. Image of the Object Taken from 1st and 2nd Camera Planes

First example, we choose the camera planes that are aligned at an angle of 45

degrees with each other, as in Figure 6.6. The representation of experimental setup is

demonstrated in Figure 6.6. The center of plane α is at cα =
[

0 0 0
]T

, and the cen-

ter of plane β is at cβ =
[

170 0 170
]T

. The projections of point x on plane α is at

Pα[x] =
[

25 0 0
]T

and on plane β is at Pβ[x] =
[

−42 0 0
]T

. The angle ν between

the camera planes is 45 degrees. Thus putting it in the Equation(6.22), we get,

40

Z

X

xo3

t

nα

nβ

cβ

x

cα

Figure 6.6. Representation of Experimental Setup for Example 1 of Unaligned Planes

Method

xα =







































25

0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Pα





















Hβ→α





















25

0

0









































−





















−42

0

0





















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

sin(45◦)







































. (6.24)

The third dimensional information of point x is thus obtained as 270 millimeters.

Thus point x from plane α, can be represented as xα =
[

25 0 270
]T

. The result has an

error of less than 1 cm. While operating for larger visual regions with larger measurement

units, this error is insignificant.

41

6.1.1. Scenario: Planes Separated by 90 Degrees. If the planes are at 90 degree

angles to each other, then the third dimensional information of any given point is obtained

by,

xβ3
= ‖Pβ[Hα→βPα[x]] − Pβ[x]‖, (6.25)

The experimental setup is shown in Figure 6.8. For the test cases shown in Figure 6.7, the α

Figure 6.7. Projection of the Object from α and γ Planes

plane is assumed to be at origin cα =
[

0 0 0
]T

and γ plane is at cγ =
[

190 0 340
]T

.

The projections of point x on planes α and γ are obtained at Pα[x] =
[

25 0 0
]T

and

Pγ[x] =
[

−20 0 0
]T

respectively. The angle ψ between the camera planes is 90 degrees.

42

Z

X

cα

nα t

cβ
nβ

xo3

x

Figure 6.8. Representation of Experimental Setup for Example 2 of Unaligned Planes

Method

Thus putting it in the Equation(6.22), we get,

xα =







































25

0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Pα





















Hγ→α





















25

0

0









































−





















−20

0

0





















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

sin(90◦)







































. (6.26)

Thus the three dimensional information about the point x from the camera plane α is xα =

[

25 0 280
]T

.

Corollary 2. When the camera planes are aligned to each other, the third dimensional

information cannot be obtained.

43

Proof For Equation(6.21), when the angle between two camera planes is zero, the denom-

inator of equation also becomes zero thus,

xα3
=
‖Pβ[Hα→βPα[x]] − Pβ[x]‖

sin(∡ν)
=
‖Pβ[Hα→βPα[x]] − Pβ[x]‖

sin(∡0◦)
= ∞. (6.27)

�

Hence, when camera planes are aligned, the third dimensional information cannot

be determined using the Unaligned Plane Method. But the Binocular Disparity Method

works well for aligned camera planes. Thus the Binocular Disparity Method can be used

for cases of exception. In Section 6.2, we will see that even though the Unaligned Planes

Method fails for 0 degree angular difference between camera planes, it does work for non-

zero angles.

6.2. CREATING POINT-CLOUD FROM MULTIPLE POINTS

We used the test images from Middlebury stereo imaging website Scharstein et al.

(2014) to test the Unaligned Plane Method. These images are considered as a benchmark

for stereo imaging experiments. A set of such images are shown in Figure 6.9.

Figure 6.9. Test Images for Unaligned Planes Method

44

We obtained the stronger points in these images as shown in Figure 6.10 and then

processed these points in each image using the point matching algorithm and retrieved the

matched points from both images. 3000+matching points were found through this process.

The setup in Scharstein et al. (2014) did not mention the distance between the cam-

eras or the angle, so a small angle of 5 degrees and a small distance of 10 units was used to

estimate the third dimensional information.

Figure 6.10. Matched Points from 2 Images

45

Using this method on multiple points, we generated a point-cloud. This point cloud

was plotted on the three dimensional space. The three dimensional representation of Fig-

ure 6.9 can be seen in Figure 6.11 and Figure 6.12. A more elaborate set of results is also

displayed in Figure 6.14.

2000

1800

1600

1400

1200

1000

800

600

400

200

200015001000500

Figure 6.11. Front View of Point Cloud

4000

3000

2000

1000

500

1500

1000 1500

1000

2000

500

Figure 6.12. Auxiliary View of Point Cloud

We performed a second test on another data-set obtained from the same source and

the original data-set which was tested with the first method. The results are provided in

Figure 6.13.

As seen from Figure 6.9, both images are almost aligned with each other with a very

small angle between them. Corollary 2 states that the Unaligned Planes Method does not

work when the angle difference between the planes is zero. But the method works well for

non-zero angles, in the case of our example, five degrees. Thus the case of aligned planes

can be remedied by introducing a non-zero angle to the calculations.

46

500

100

200

400

300

300

400

300

200

200

100

100

500

400

300

200

100

400300200100

350

300

250

200

150

100

50

Figure 6.13. Results from Method 2, Point Cloud from (a) Front View and (b) Auxiliary

View

The method was implemented using MATLAB and its timing complexity was mea-

sured. It produces the results in 0.12 seconds for Binocular Disparity Method and 0.14

seconds for the Unaligned Planes Method. Thus for a small compromise of timing com-

plexity, more cases can be covered using Unaligned Planes Method. The performance of

Unaligned Planes Method is faster than the performance observed for other third dimen-

sional information estimation techniques such as depth from sliding projection by Chris

Hermans in Hermans et al. (2009) or the multi-view stereo method introduced by Goesele

in Goesele et al. (2006).

47

4000

2000

500 1000 1500 2000

1800

1600

1400

1200

1000

800

600

400

200

(a)

3000 2000 1000

(b)

3000

2000

1000

1600

1400

1200

1000

800

600

400

200

(c)

4000

3500

3000

2500

2000

1500

1500
1000

500

(d)

4500

4000

3500

3000

2500

2000

1500

1000

500
1000

500

(e)

4000
3500

3000
2500

2000
1500

1000
500

(f)

Figure 6.14. Representation of Resulted Points from Unaligned Planes Method in three

Dimensional Space from, (a),(c),(e) Front to Top and (b),(d),(f) Front to Side

48

7. LIBRARIES FOR IMAGE PROCESSING AND STORAGE OF THE POINTS

For Localization and Map Building, as shown in Figure 1.1, we need to provide

the information about the environment in terms of points/coordinates. The points then can

further be processed to form lines, polygons and other complex objects. The points, for

the ease of accessibility, are stored in a certain hierarchy of time-stamps and point-label

combination. In this section, we will discuss variables and library functions for processing

and storage of the points. The implementation is done in OpenCV using C++ and the initial

prototyping was done on MATLAB.

7.1. VARIABLES AND DATA STRUCTURES TO STORE DATA

This section describes the storage related libraries and global variables that are used

for this application.

7.1.1. Structure for Storing Images. OpenCV uses a class Mat as a storage con-

tainer for n-dimensional dense arrays. It is used to store real or complex-valued vectors,

matrices, gray-scale or color images. A custom structure for storing images used here has

an object of class Mat. The structure also keeps a track of number of points matched from

that image.

struct ImageMat{

Mat img;

int number_points_detected;

ImageMat(){

number_points_detected=0;

}

};

49

7.1.2. Structure for Storing Points. OpenCV has a point storing classes Point2f,

Point3f etc. These classes are not enough to store the points and we need time-stamps and

the colors too, to track the motion as a future work. The points has to be stored in the

following hierarchy.

Label→ Time-stamp→ <Point x, y, z >

Each point at different time-stamp is matched with itself and it is stored under the same

label as the same point. The overall structure looks like this

Point1→ t0 − t5→ <Point1 x, y, z >

Point1→ t5 − t7→ <Point1 x, y, z >

Point2→ t0 − t5→ <Point2 x, y, z >

Point3→ t0 − t5→ <Point3 x, y, z >

For example, in the table above, it can be seen that Point1 is stored twice but it

is stored under the same label. The data is stored under different time stamps. First time-

stamp goes from t0 to t5 and second time-stamp goes from t5 to t7. The point is not updated

till the object actually changes its position. The data stored under points are stored in 1st,

2nd and 3rd dimensions after converting them into the global coordinate system as showed

in Section 6. This structure can be used to save more data such as color of the point.

struct point{

string label;

time_t t;

Point3f P;

Vec3b C;

};

The variable C holds the color of the point and Point3f holds the 1st, 2nd and 3rd dimension

of the point.

50

The vec3b and Point3f are the inbuilt classes provided by OpenCV.

typedef Vec<uchar, 3> Vec3b;

typedef Point3_<float> Point3f;

7.1.3. Dictionary for Storing Points. To store the points as a dictionary or a key-

value pair, as in Section 7.1.2, we need to use a Hashmap from C++. The label and the

time-stamp are the keys for storing the point.

struct P_List{

map < pair<string, time_t>, point > Points_List;

vector<string> pointlabel;

vector<time_t> timestamp;

};

7.2. FUNCTIONS FOR OBTAINING THIRD DIMENSION

This section describes the functions that are used to obtain the 3rd dimension.

7.2.1. Function for Matching Points from Two Camera Planes. Before we go

into obtaining third dimension, first we need to identify the points for which we are going

to do the processing. Not all points can be used to obtain the depth. So first, the strongest

points are obtained from an image and then the points are matched with it’s pair. A FLANN

based matcher is used to match the points from two images. FLANN uses the Hierarchical

K-means Tree for generic feature matching as in Muja and Lowe (2009). The set of points

are returned in the form of Keypoint Vector.

int minHessian = 5;

Ptr<FeatureDetector> detector = ...

FastFeatureDetector::create(minHessian);

std::vector<KeyPoint> keypoints_1, keypoints_2;

51

detector->detect(img_1, keypoints_1);

detector->detect(img_2, keypoints_2);

Mat descriptors_1, descriptors_2;

Ptr<SURF> extractor = SURF::create();

extractor->compute(img_1, keypoints_1, descriptors_1);

extractor->compute(img_2, keypoints_2, descriptors_2);

FlannBasedMatcher matcher;

std::vector< DMatch > matches;

matcher.match(descriptors_1, descriptors_2, matches);

double max_dist = 120; double min_dist = 5;

for(int i = 0; i < descriptors_1.rows; i++)

{ double dist = matches[i].distance;

if(dist < min_dist) min_dist = dist;

if(dist > max_dist) max_dist = dist;

}

printf("-- Max dist : %f \n", max_dist);

printf("-- Min dist : %f \n", min_dist);

std::vector< DMatch > good_matches;

for(int i = 0; i < descriptors_1.rows; i++)

{ if(matches[i].distance <= max(2*min_dist, 0.2))

{ good_matches.push_back(matches[i]); }

}

7.2.2. Functions for Obtaining Rotation Matrix and Projection. To obtain the

third dimension, as in Section 6, we need to define a few methods or the functions to obtain

Rotation Matrix and the to obtain the Projections.

52

Mat get_rotation(int phi,int psi,int theta){

Mat product1;

Mat RX = (Mat_<double>(4, 4) <<

1, 0, 0, 0,

0, cos(phi), -sin(phi), 0,

0, sin(phi), cos(phi), 0,

0, 0, 0, 1);

Mat RY = (Mat_<double>(4, 4) <<

cos(psi), 0, -sin(psi), 0,

0, 1, 0, 0,

sin(psi), 0, cos(psi), 0,

0, 0, 0, 1);

Mat RZ = (Mat_<double>(4, 4) <<

cos(theta), -sin(theta), 0, 0,

sin(theta), cos(theta), 0, 0,

0, 0, 1, 0,

0, 0, 0, 1);

product1=RX*RY*RZ;

return product1;

}

Mat get_proj(Mat point){

Mat proj = (Mat_<double>(4, 4) <<

0, 0, 0, 0,

0, 0, 0, 0,

0, 0, 1, 0,

53

0, 0, 0, 1);

Mat eye4 = (Mat_<double>(4, 4) <<

1, 0, 0, 0,

0, 1, 0, 0,

0, 0, 1, 0,

0, 0, 0, 1);

return (eye4-proj)*point;

}

The angles φ,θ,ψ and angle ν are defined globally as integer variables.

7.2.3. Function for Obtaining Depth. Using the above mentioned functions, the

depth is obtained by the use of function getdepth. It takes input of Matched Keypoints,

two sets of keypoints from the pair of images, the image from plane α and the rotation

matrices.

vector<Point3f> get_depth(std::vector< DMatch > v,...

...std::vector<KeyPoint> keypoints_1,std::vector<KeyPoint> ...

... keypoints_2,Mat img,Mat R1,Mat R2){

Point3f T1=c1_act-c2_act;

R1.at<double>(0,3)=T1.x;

R1.at<double>(1,3)=T1.y;

R1.at<double>(2,3)=T1.z;

Mat c1_actm = (Mat_<double>(4, 1) <<

c1_act.x,

c1_act.y,

c1_act.z,

1);

Mat c2_actm = (Mat_<double>(4, 1) <<

c2_act.x,

54

c2_act.y,

c2_act.z,

1);

Mat c1_act_2=R2*c1_actm;

Mat c2_act_2=R2*c2_actm;

Mat T2=c1_act_2-c2_act_2;

R2.at<double>(0,3)=T2.at<double>(0,0);

R2.at<double>(1,3)=T2.at<double>(1,0);

R2.at<double>(2,3)=T2.at<double>(2,0);

for(int i=0;i<v.size()-1;i++)

{

int pt1_x=keypoints_1[v[i].trainIdx].pt.x-1024;

int pt2_x=keypoints_2[v[i].queryIdx].pt.x-1024;

Mat temp1 = (Mat_<double>(4, 1) <<

pt1_x,

0,

0,

1);

Mat temp2 = (Mat_<double>(4, 1) <<

pt2_x,

0,

0,

1);

Mat p21=R1*temp1;

Mat p2_1=get_proj(p21);

Mat temp3 = (Mat_<double>(4, 1) <<

pt1_x,

55

0,

norm(p2_1,temp2,NORM_L2)/sin(nu),

1);

Mat p_act=R1*temp3;

p_act.at<double>(0,0)=keypoints_1[v[i].trainIdx].pt.x;

p_act.at<double>(1,0)=keypoints_1[v[i].trainIdx].pt.y;

}

}

7.3. OTHER FUNCTIONS

This section describes the functions that are used as an extra support for our appli-

cation.

7.3.1. To Retrieve Point from Storage. The function takes the list of points, the

point-label and the time-stamp and then returns the point information of that point from

permanent storage.

point retreivepoints(P_List &P, time_t t, string key);

7.3.2. To Erase Point from Storage. This function takes the list of points, the

point-label and the time-stamp and then erases the point from permanent storage.

void erasepoints(P_List &P, time_t t, string key);

7.3.3. Finding Color of the Point. This vector takes the set of keypoints, the id of

the point, original image from camera plane α and returns the color vector.

56

Vec3b get_color(vector<KeyPoint> keypoints_1,int i,Mat img)

This function returns set of points in 3-dimensional space that were matched earlier

using point-matching algorithm. These points can further be stored in the dictionary as a

key-value pair as mentioned in Section 7.1.3

57

8. CONCLUSION AND FUTURE WORK

The work presented in this thesis presents a depth determination approach for in-

motion control systems that is in possession of single camera. The camera perceives sur-

rounding data by capturing the projection on camera planes from multiple positions. The

change in position and difference in projections gives us enough information about the

object that helps us determine the exact depth of the object from any camera plane. The

method can be repeated to all the points in the image. The depth of these points in three

dimensional space gives the control system enough knowledge about the depth of its sur-

rounding.

The Unaligned Planes Method was compared with the already existing Binocular

Disparity Method. The pre-existing method was limited, as it needed planes to be com-

pletely aligned. The newly discovered method has a higher computational requirement

than the previous method by a small factor. The Unaligned Planes Method gives us a wider

scope of analysis and mapping than the pre-existing methods such as Binocular Disparity

Method. Thus the increase in computationally expensiveness is also justified.

At each step, the algorithm produces more than 1000 matched points and these

points are stored in the storage board. These points accessed constantly by the algorithm

to see if the point that is matched is same or not. The hierarchical nature of stored data

avoids the iterative search for the matched point in the storage. This saves the system some

processing time.

The developed system was able to be controlled from remote locations as it is con-

nected to the internet through a secure gateway. If further development requires more

computational power, the control panel can serve as an API. Using this API, the data can

be accessed from any cloud service. By processing this data, any feedback signal can be

provided back from such cloud based service.

58

In this project, only the points and their depth is obtained using the set of images.

More number of points gives us more idea about the surrounding. But the actual struc-

tural data about the surrounding is still not obtained. Thus, in further work, using these

point data, complex objects including lines, planes, three dimensional structures can be

constructed.

The stored points also stores the time at which the point was recorded. Using this

time information, it is possible to track a moving object and its trajectory.

APPENDIX A

MAIN SIMULATION FILE : MAIN.M

60

0.1. MATLAB File to Test the Unaligned Planes Method.

% I1=imread(’left.png’);

% I2=imread(’right.png’);

% I1=imread(’view1.png’);

% I2=imread(’view2.png’);

I2=imread(’im01.png’);

I1=imread(’im12.png’);

figure

imshowpair(I1, I2, ’montage’);

title(’Original Images’);

load upToScaleReconstructionCameraParameters.mat

% I1 = undistortImage(I1, cameraParams);

% I2 = undistortImage(I2, cameraParams);

figure

imshowpair(I1, I2, ’montage’);

title(’Undistorted Images’);

%%

roi = [30, 30, size(I1, 2) - 30, size(I1, 1) - 30];

% Detect feature points

imagePoints1 = detectMinEigenFeatures(rgb2gray(I1), ’ROI’,...

roi, ’MinQuality’, 0.00000001);

% Visualize detected points

61

figure

imshow(I1, ’InitialMagnification’, 50);

title(’150 Strongest Corners from the First Image’);

hold on

plot(selectStrongest(imagePoints1, 3500));

% Create the point tracker

tracker = vision.PointTracker(’MaxBidirectionalError’, 4,...

’NumPyramidLevels’, 15);

% Initialize the point tracker

imagePoints1 = imagePoints1.Location;

initialize(tracker, imagePoints1, I1);

% Track the points

[imagePoints2, validIdx] = step(tracker, I2);

matchedPoints1 = imagePoints1(validIdx, :);

matchedPoints2 = imagePoints2(validIdx, :);

% Visualize correspondences

figure

showMatchedFeatures(I1, I2, matchedPoints1, matchedPoints2);

title(’Tracked Features’);

figure;

points3d=depth_estimate(matchedPoints1,matchedPoints2,...

[0,0,0,1],[10,0,0,1],0,5,0);

62

points3d=points3d/50;

numPixels = size(I1, 1) * size(I1, 2);

allColors = reshape(I1, [numPixels, 3]);

colorIdx = sub2ind([size(I1, 1), size(I1, 2)],...

round(matchedPoints1(:,2)),round(matchedPoints1(:, 1)));

color = allColors(colorIdx, :);

ptCloud=pointCloud(points3d,’Color’, color);

%ptCloud=pointCloud(points3d);

pcshow(ptCloud, ’VerticalAxis’, ’y’, ’VerticalAxisDir’, ’down’,...

’MarkerSize’, 45);

APPENDIX B

SUPPORTING FUNCTIONS

64

0.1. MATLAB Function to get Projection.

function proj=get_proj(point)

proj=(eye(4)-[0,0,1,0]’*[0,0,1,0])*point;

end

0.2. MATLAB Function to get Rotation Matrix.

function R=get_rotation(phi,psi,theta)

Rx=[1,0,0;0,cosd(phi),-sind(phi);0,sind(phi),cosd(phi)];

Ry=[cosd(psi),0,sind(psi);0,1,0;-sind(psi),0,cosd(psi)];

Rz=[cosd(theta),-sind(theta),0;sind(theta),cosd(theta),0;0,0,1];

R=Rx*Ry*Rz;

end

0.3. MATLAB Function to Estimate Depth.

function [points3d] = depth_estimate(point_set_1,point_set_2,...

c1_act,c2_act,alpha,beta,theta)

pending=point_set_1;

point_set_1(:,1)=point_set_1(:,1)-1024;

point_set_2(:,1)=point_set_2(:,1)-1024;

point_set_1(:,2)=point_set_1(:,1)-768;

point_set_2(:,2)=point_set_2(:,1)-768;

R1=get_rotation(alpha,beta,theta);

T1=c2_act-c1_act;

H1=[R1,T1(1:3)’;0,0,0,1];

R2=get_rotation(alpha,-1*beta,theta);

65

c1_act_2=R2*c1_act(1:3)’;

c2_act_2=R2*c2_act(1:3)’;

T2=c1_act_2-c2_act_2;

H2=[R2,T2;0,0,0,1];

points3d=[pending zeros(length(point_set_1),1)];

%points3d=[pending 0];

for i=1:length(point_set_1)

temp1=[point_set_1(i,1),0,0,1];

temp2=[point_set_2(i,1),0,0,1];

p21=H1*temp1’;

p2_1=get_proj(p21);

dist2=abs(sqrt(sum((p2_1-temp2’).ˆ2))/sind(beta));

temp3=temp1;

temp3(3)=dist2;

p_act=H1*temp3’;

points3d(i,3)=p_act(3);

end

end

66

BIBLIOGRAPHY

Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza. Introduction to au-

tonomous mobile robots. MIT press, 2011.

Edward H Adelson and John YA Wang. Single lens stereo with a plenoptic camera. IEEE

transactions on pattern analysis and machine intelligence, 14(2):99–106, 1992.

Chris Hermans, Yannick Francken, Tom Cuypers, and Philippe Bekaert. Depth from slid-

ing projections. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE

Conference on, pages 1865–1872. IEEE, 2009.

Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J Gortler, and Leonard McMil-

lan. Image-based visual hulls. In Proceedings of the 27th annual conference on Com-

puter graphics and interactive techniques, pages 369–374. ACM Press/Addison-Wesley

Publishing Co., 2000.

Greg Slabaugh, Ron Schafer, and Mat Hans. Image-based photo hulls. In 3D Data Process-

ing Visualization and Transmission, 2002. Proceedings. First International Symposium

on, pages 704–862. IEEE, 2002.

Ashutosh Saxena, Sung H Chung, and Andrew Y Ng. Learning depth from single monoc-

ular images. In Advances in Neural Information Processing Systems, pages 1161–1168,

2005.

Carlos Hernández Esteban and Francis Schmitt. Silhouette and stereo fusion for 3d object

modeling. Computer Vision and Image Understanding, 96(3):367–392, 2004.

Adam Shadbolt. From 2d photographs to 3d caricatures. Undergraduate project Disserta-

tion, Department of Computer Science, University of Sheffield (June 2003), 2003.

Ramesh Jain, Rangachar Kasturi, and Brian G Schunck. Machine vision, volume 5.

McGraw-Hill New York, 1995.

Ludovic Apvrille, Tullio Tanzi, and Jean-Luc Dugelay. Autonomous drones for assisting

rescue services within the context of natural disasters. In General Assembly and Scientific

Symposium (URSI GASS), 2014 XXXIth URSI, pages 1–4. IEEE, 2014.

Pravin Dhake. A real time operating system based test-bed for autonomous vehicle navi-

gation. 2007.

Robert S Woodley and Levent Acar. A testbed system for nonlinear or intelligent control.

In American Control Conference, 1999. Proceedings of the 1999, volume 5, pages 3441–

3445. IEEE, 1999.

PFM Aaeon’s. 945c cpu boards: Pc/104 cpu module with onboard intel atom n270 proces-

sor.

67

Krishnan Raghavan. Computer vision libraries for trailer truck testbed using open source

computer vision libraries. 2014.

Sensoray. Sensoray model 911 user manual. 2005.

Bruce Timberlake. Building a lamp server, 2010.

Paolo Mantegazza, EL Dozio, and S Papacharalambous. Rtai: Real time application inter-

face. Linux Journal, 2000(72es):10, 2000.

Paul J Besl. Active, optical range imaging sensors. Machine vision and applications, 1(2):

127–152, 1988.

Gines Benet, Francisco Blanes, José E Simó, and Pascual Pérez. Using infrared sensors

for distance measurement in mobile robots. Robotics and autonomous systems, 40(4):

255–266, 2002.

Emanuele Trucco and Alessandro Verri. Introductory techniques for 3-D computer vision,

volume 201. Prentice Hall Englewood Cliffs, 1998.

Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on

pattern analysis and machine intelligence, 22(11):1330–1334, 2000.

Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl, Nera Nešić,

Xi Wang, and Porter Westling. High-resolution stereo datasets with subpixel-accurate

ground truth. In German Conference on Pattern Recognition, pages 31–42. Springer,

2014.

Mikko Kytö, Mikko Nuutinen, and Pirkko Oittinen. Method for measuring stereo camera

depth accuracy based on stereoscopic vision. In IS&T/SPIE Electronic Imaging, pages

78640I–78640I. International Society for Optics and Photonics, 2011.

Michael Goesele, Brian Curless, and Steven M Seitz. Multi-view stereo revisited. In

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,

volume 2, pages 2402–2409. IEEE, 2006.

Marius Muja and David G Lowe. Flann, fast library for approximate nearest neighbors.

In International Conference on Computer Vision Theory and Applications (VISAPP09),

volume 3. INSTICC Press, 2009.

68

VITA

Aditya Thakur was born in Mumbai, India. After completing his schoolwork at

C. K. Thakur High School in India in 2010, Aditya entered S.K.N. College of Engineering

affiliated to University of Pune in Pune. He received a Bachelor of Engineering with a major

in Electronics and Telecommunication Engineering from University of Pune in May 2014.

In July 2017, he Completed his MS degree in Electrical Engineering from the Missouri

University of Science and Technology at Rolla, MO, USA.

	Depth determination method for a trailer-truck test-bed
	Recommended Citation

	template.dvi

