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ABSTRACT 

Network coding is a network layer technique to improve transmission efficiency. 

Coding packets is especially beneficial in a wireless environment where the demand for 

radio spectrum is high. However, to fully realize the benefits of network coding two 

challenging issues that must be addressed are: (1) Guaranteeing separation of coded 

packets at the destination, and (2) Mitigating the extra coding/decoding delay. If the 

destination has all the needed packets to decode a coded packet, then separation failure 

can be averted. If the scheduling algorithm considers the arrival time of coding pairs, then 

the extra delay can be mitigated. In this paper, we develop a network coding method to 

address these (decoding and latency) issues for multi-source multi-destination unicast and 

multicast sessions. We use linear programming to find the most efficient coding design 

solution with guaranteed decodability. To reduce network delay, we develop a scheduling 

algorithm to minimize the extra coding/decoding delay. Our coding design method and 

scheduling algorithm are validated through experiments. Simulation results show 

improved transmission efficiency and reduced network delay. 
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1. INTRODUCTION 

Since its introduction in 2000 [1], network coding has gained a lot of research 

interest. Applications of network coding techniques in communication networks are still 

growing, from improving communication throughput and fairness [2], improving storage 

and content distribution efficiency [3], [4], to error detection/correction [5]–[11] and 

distortion optimization [12]. The main stream of research on network coding has been on 

finding the throughput capacity through random [13] or deterministic [14] coding 

schemes. 

The fundamental difference between network coding and routing is the 

transmission reduction. In a wireless network shown in Fig. 1.1, nodes A and B need to 

send to each other via a relay node C. If routing is used, which simply does store-and-

forward without changing the packets passing by, it takes four transmissions; but if 

network coding is used, it only takes three transmissions— there lay node combines two 

packets using a bitwise XOR operation and broadcasts the coded packet to nodes A and B 

simultaneously. Fewer transmissions reduce bandwidth demand which can directly 

improve communication throughput. Reduced medium contention can also indirectly 

improve the delay performance. However, when the network topology becomes complex, 

there is no easy solution for network coding. Some researchers studied the characteristics 

of the network topology that has a network coding solution [15]. Such characteristics 

include the well-known butterfly network, the grail network, etc. However, to our 

knowledge, there is no general analytical method to address the following question: given 

a network and its traffic load, does network coding offer more benefit than routing? 

 

Fig. 1.1: Example of routing transmission. (a) Routing requires 4 transmissions in 4 time 
slots, (b) Network coding requires 3 transmissions in 3 time slots. 
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It is not difficult to find a common relay node between two flows, which harbors 

opportunity for using network coding. However, if the two flows are combined at some 

intermediate node, can the destinations successfully decode and recover the needed 

packets? The answer depends on the decodability of a network coding solution. If the 

needed data are mixed with sources it does not need it is called “pollution” [16].In fact, 

even if the needed data are mixed with other sources it needs, a pollution-free coded 

packet still does not guarantee it can be decoded. For instance, if a node receives a packet 

C = A⊕B, without knowing either A or B, it cannot recover either one. How can we 

design a network coding solution that is decodable? What is the most bandwidth-efficient 

coding solution? The current lack of tools for decodability analysis and optimal coding 

design motivated this study. 

The goal of this paper is to develop a general analytical method that is both 

decodable and efficient. To our knowledge, this is the first paper that concerns itself with 

these practical design issues. Our method finds a decodable coding solution which 

minimizes the required number of transmissions. Regardless of the destination 

decodability, we first determine the number of transmission reductions of two combined 

flows. Then we employ an integer linear program to find the optimal coding combination 

with the constraint that every destination must be able to decode the needed packets. 

Since our method does not require explicit graph-theoretical characterization, it is 

applicable for any complex network with arbitrary traffic loads. Such a deterministic 

coding design approach also offers better security features against the pollution attack— 

a relay node will not encode a packet with another random packet it receives if they are 

not a coding pair by design. 

An important discovery of [15] is that the complexity of finding a good coding 

solution lies in finding the good paths rather than finding good encoding functions. It is 

also revealed in [17] that systematic network coding using XORs can provide the same or 

close to the same performance in terms of completion time as a random linear network 

coding scheme that uses a large field size, with the added advantage of requiring fewer 

and simpler operations during the decoding process. Therefore, in this paper we use 

simple pairwise XOR as the encoding function and use a deterministic network coding 

scheme to find the coding pairs. 
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The first step towards efficient communications is reducing the number of 

transmissions. Intuitively, fewer transmissions in wireless networking environments 

improve bandwidth efficiency. But the efficiency in spectrum does not always translate to 

shorter delay, especially when the waiting time is increased because of the use of network 

coding. A large number of studies focused on the tradeoff between the throughput gain of 

network coding and network delay. Apparently, if an opportunistic coding scheme is used, 

a relay node may need to hold a packet until its coding pair occurs or the threshold 

waiting time has passed [18], and a destination may need to wait until all the needed 

information is received to perform decoding, thus increasing delay. Sometimes the delay 

time at the destination can be unbounded. However, if a deterministic coding scheme is 

used, the transmission time can be scheduled in such a way that the total end-to-end delay 

is minimized. Although the transmission scheduling problem has been extensively 

studied, there is no scheduling scheme available that specifically addresses network 

coding traffic. In this paper, we focus on transmission scheduling when the traffic is a 

mixture of uncoded (forwarded without network coding) and coded packets. 

Our main two contributions are: 1) finding the most bandwidth-efficient 

decodable network coding combination for wireless communications, and 2) developing 

a deterministic scheduling scheme to minimize network delay. First, we steer traffic to 

stay on the original routes and find the coding pairs resulting in the fewest number of 

transmissions. Integrated as a single linear program, this network coding scheme achieves 

an optimal solution with guaranteed decodability at each destination. Second, we develop 

a media access control (MAC) layer scheme that incorporates the new network coding 

conflict relation and generates a transmission schedule with minimum network delay. To 

preserve the original routes and keep the coding design as an add-on module is a design 

choice, which has the benefit of allowing different routing algorithms to couple with the 

coding scheme, and the routes in the routing table do not need to be updated; Moreover, 

the computation of coding combinations has less complexity than the one that uses joint 

design of routing and coding. The latter will be studied in our future work. 

The rest of the paper is organized as follows. In Section II, we briefly survey the 

previous related work. In Section III, we describe the network setting in which network 

coding is explored. In Section IV, we formulate the coding design problem, provide a 
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decodability analysis framework and a linear programming model to find the optimal 

coding solution. In Section V, we develop a scheduling scheme for the mixed coding and 

routing traffic. Section VI validates the proposed models and algorithms by using the 

standard butterfly network. In Section VII, we present the ideas of random linear network 

coding and the comparison with our work. We present simulation results in Section VIII 

to study the performance of the algorithms in randomly chosen network settings. Section 

IX concludes the paper and points out future research directions. 
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2. RELATE WORK 

Recently, a new area of research has emerged called network coding that allows 

packet mixing at intermediate nodes [1]. Wang et al. [15] studied the problem of network 

coding with two simple unicast sessions for directed acyclic graphs (DAG). Unlike our 

work, the work in [15] characterizes the graphs that offer a coding opportunity. Such 

graphs include the well-known butterfly and grail subgraphs, but it does not address 

whether such a coding opportunity has advantages over routing. Our work addresses both 

feasibility and optimality — it answers whether the coding opportunity exists and 

whether coding is advantageous over routing. Moreover, the work in [15] is for two 

unicast sessions only. Our work includes a general model that can be applied to multiple 

unicast sessions and multiple multicast sessions. It goes beyond feasibility analysis and 

addresses whether there is performance gain in network coding and how to maximize this 

performance gain. 

While the concept of random network coding seems promising, failure to separate 

the coded data can be the biggest barrier to its full potential. Unless the coded data can be 

successfully decoded, it is useless. The probability to decode has been addressed in [19]–

[22]. In [19], Li et al. used the coupon collect or model to compute the expected number 

of coded packets needed for successful decoding, and provided abound on the probability 

of decoding failure. In [21] Ho et al. provided a lower bound on the probability of 

successful decoding for randomized network coding. 

In a different direction, finding the capacity region enabled by network coding has 

been an active research area. Some studies focused on the outer bound, which is defined 

by the necessary conditions for the existence of network coding solutions [23]–[27], and 

some studies addressed the inner bound, which is the maximum achievable throughput 

under a certain coding scheme. The inner bound can be determined by linear 

programming, using a butterfly-seeking implementation [15], [28], [29], or a constructive 

coding design approach [16]. 

The issue of transmission scheduling with network coding on a time-division 

channel has also been investigated. Sagduyu et al. [30] investigated joint scheduling and 

wireless network coding. In this work, the whole network is partitioned into some 
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conflict-free disjoint subnetworks, each with minimum cost assignment. Then the 

network throughput is optimized through joint scheduling and network coding. In 

[31], opportunistic scheduling for wireless network coding is studied. The basic idea is to 

dynamically change the network coding group size by using opportunistic scheduling to 

maximize the average throughput. Our work uses separate modules for coding design and 

scheduling, with the objective of the former being to reduce transmissions and the latter 

being to reduce delay. Such an approach has the advantage of allowing the same 

scheduling algorithm to work with different coding schemes, or even with joint design of 

routing and coding as mentioned in our future work in Section IX. 

 In our previous work [32], we proposed a scheduling scheme for multicasting. 

Using this scheduling algorithm, unicast can be considered as a special case with a 

destination group of size one. However, to consider coded packets in unicast or multicast, 

additional care must be taken to consider the new conflict relation, since one coded 

packet contains the contents of two sources. The new scheduling scheme in this paper is 

designed to explore this feature in order to further improve delay performance. 
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3. NETWORK SETTING 

In this paper, we consider multicasting in a multihop wireless network. Multicast 

generalizes unicast and broadcast by varying the destination group size. We assume the 

multicast routing information is known, and the packets will be forwarded along their 

original routes. After a packet is encoded with another packet, the coded packet still stays 

on the original routes towards the destinations. The network layer can use any routing 

algorithm. Our optimal coding algorithm uses the output of the routing algorithm as input. 

We also assume the packets are transmitted over a time-division multiplexing channel, 

and each time slot is equivalent to one packet transmission time. 

 The proposed work involves the network layer and the MAC layer. In the network 

layer, we discuss a process to decide the coding pairs—which flows will be coded 

together, and the location of coding—which relay node will perform the encoding 

function. The encoding function is pairwise XOR. We choose XOR for its simplicity, 

since our main objective is to find the coding combinations instead of the encoding 

function. In the MAC layer, we present an algorithm that schedules transmissions. 

Section IV addresses the network layer function and section V addresses the MAC layer 

function. 
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4. OPTIMAL CODING 

The objective of the coding design is to reduce the number of transmissions. 

Among all the feasible coding solutions, the optimal solution is the one that uses the 

minimum number of transmissions to deliver data. Feasible solution means the receivers 

must either receive the needed data in its original form, or in a coded packet that can be 

decoded. So far, to the best of our knowledge, there is no other available tool to address 

the decodability issue other than a probability model. Our work is the first in its kind to 

provide a deterministic answer to the question. 

4.1. TRANSMISSION REDUCTION 

Let Wij denote the number of transmissions that can be reduced by encoding 

packets of flow i and flow j. Wij is an indicator of the benefit of coding flow i and flow j 

together. Let S denote the set of source nodes. To compute Wij for all pairs i, j∈S, we can 

look at how many hops are on the shared paths of flow i and flow j. For example, in Fig. 

4.1 (a), source i uses the path {1 → 2 → 3 → 4}, and source j uses the path {4→ 3 → 2 

→ 1}, then Wij = 1. Flow i and flow j meet at node 2, then node 2 combines them and 

sends a coded packet i + j. Therefore, the number of transmissions reduced is 1. On the 

other hand, if source j uses {2 → 3 → 4} (Fig. 4.1 (b)), then Wij = 3. Since nodes 2, 3, 

and 4 each only need to transmit one coded packet i + j instead of separate packets i and j, 

therefore the number of transmissions reduced is 3. 

 

Fig. 4.1: Calculate the weight Wij between flow i and flow j. (a) Wij = 1, (b) Wij = 3. 

 

For unicast, the route is a simple path, and therefore can be described as a totally 

ordered list of nodes. The task of computing Wij for unicast becomes trivial, since to 

compute the number of shared nodes in two totally ordered lists is equivalent to compute 

the longest common subsequence of two sequences, but this approach cannot be applied 

to multicast. For multicast, the route is a tree that can be described as a partially ordered 

list of nodes. If the packets generated by two sources can be coded, the two sets must 
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share at least one relay node. Sharing relay node(s) is a necessary but not sufficient 

condition to ensure that the coded packets can be decoded, as the more complicated 

analysis shows in the following. 

Computing Wij for multicast is more involved than for unicast. We first need to 

decide the partial order in a multicast tree, and represent the partially ordered set as a 

precedence matrix. Among all shared nodes of two partially ordered sets, we compute a 

new transmission order that preserves the original order of each multicast tree. The 

following procedure Weight calculates Wij, in which the multicast trees T1 of source i and 

T2 of source j are given as input. If the returned value Wij = 0, then there is no potential 

benefit from coding flows i and j; if Wij > 0, then there is potential benefit from coding 

(regardless of the decodability at the destination), and the resulting graph GT suggests 

where coding should occur. 

WEIGHT(T1,T2) 

1 Let V be the common relay nodes in T1and T2 

2 Let n = |V| 

3 for k = 1 to 2 

4     do Mk = Transitive_Closure(Tk) 

5       Reduce matrix Mk to be n ×n by eliminating 

                              the non-common vertices and relabeling 

                              the rows and columns 

6       for i = 1 to n 

7          do Set Mk(i, i) = 0 

8          for j = 1 to n 

9             do if Mk(i, j) = 1 

10             then Mk(j, i) = -1 

11       Build a tree of n nodes that preserves the 

        precedence relation in Mk, call it tk 

12 Graft t1 to t2 (or t2 to t1) to get a minimum graph GT 

that preserves the original transmission order 

13 Let m = number of vertices in GT 

14 Return 2n – m 
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Remark 1: At line 4, the precedence matrix Mk is obtained from procedure 

Transitive_Closure [33] to find the precedence relation of the nodes in the original 

multicast tree. Mk is binary. An entry ‘1’ in cell (i, j) indicates node i is before node j by 

the partial order specified in the tree; and ‘0’ otherwise, which has two possible 

implications: (a) j is before i by the partial order; (b) i and j are not ordered so it can be 

either way. 

After line 10, the precedence matrices Mk becomes ternary and has entries 1, -1 or 

0: 

M୩ ቐ
1, if i must transmit before j transmits

−1, if j must transmit before i transmits
0, if i and j are not ordered

  

Entries with 1 and -1 in Mk indicate strong precedence relations that must be 

preserved in the subsequent procedure. 

Remark 2: The grafting procedure in line 12 can be done while preserving the 

strong precedence relation in M1 and M2. In Fig. 4.2, to graft t1 into t2, we add edges (3, 4) 

and (1, 3) from t1 (see Fig.4.2 (c)), but we do not need to add edge (1, 2), since node 1 is 

already a predecessor of node 2. The graph in (c) shows the transmission order if coding 

occurs at node 4; to graft t2 into t1 (see Fig. 4.2 (d)), we add edges (2, 1) and (4, 2) from t2, 

but not edge (4, 3), since node 4 is already a predecessor of node 3. The graph in (d) 

shows the transmission order if coding occurs at node 1. In either (c) or (d), graph GT has 

6 vertices, so a total of 6 transmissions will be sufficient instead of 4 transmissions for 

each. The number of transmissions that can be reduced by coding is 2 × 4 － 6 = 2. 

 

Fig. 4.2: Example of tree grafting. (a) t1, (b) t2, (c) graft t1 into t2, (d) graft t2 into t1. 
Labels on edges show the source of the packets. 
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The grafting procedure takes one entire tree and adds edges from the other tree to 

it to preserve the transmission order specified in both trees. This procedure takes O(E) 

time, where E = n － 1 is the number of edges in t1 or t2. To graft t1 into t2 and the other 

way around yield the same m, since the number of edges that need to be added to the tree 

is the same. 

4.2. LINEAR PROGRAM MODEL FOR OPTIMAL CODING DESIGN 

After we obtain the weight Wij, we can use it as a constant in the mathematical 

optimization model. Recall that Wij denotes the number of transmissions that can be 

reduced by encoding flow i and flow j. Let the decision variable Cij indicate if flow i 

should be coded with flow j: Cij = 1 indicates flow i is coded with flow j; =0 otherwise. 

So the objective should be maximizing the sum of WijCij for all pairs of i and j. 

We try to find the coding design with the fewest number of transmissions. The 

rules are: (1) encoding of two packets can only occur at a relay node, so the source node 

must transmit the original information; (2) decoding is the task of destination nodes, so 

the relay nodes do not attempt to decode a coded packet; (3) for simplicity, we also 

assume a flow will be coded with at most one other flow, and keep the same coding pair 

through its lifetime; (4) packets stay on their predetermined routes. Therefore, if Ckj = 1 

(flow k is coded with flow j), then the destinations of k and j both receive the coded 

packet from their predetermined routes. 

 The constraint of the optimization model is the guaranteed decodability— all 

destinations must receive data directly or after decoding. Due to the simple rule of XOR 

coding, if node i receives h = k⊕j, having knowledge of k can help node i decode j: h⊕k 

= j. Therefore node i can decode a received packet h = k⊕j to recover j if there exists 

another flow k such that Xik = 1 (i.e., i knows k). 

Let Dj denote the destinations of source j. The following rules specify the 

requirement that every destination i of j must receive from j. Xij, Tij , and Ckj are all 

binary variables. The first indicates i can receive from j either directly (Xij = 1) or by 

decoding (Tij = 1); The second indicates as long as there is one k such that i knows k (Xik 

= 1) and k is coded with j (Ckj = 1), then i can decode j (Tij = 1);The third one indicates if 

there is no such k then Tij = 0; The last one indicates a source j has to be either coded 

with another source k or sent in its original form. 
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X୧୨ + T୧୨ = 1, ∀i ∈ D୨, ∀j ∈ S                                                  (1a) 

T୧୨ ≥ X୧୩ ∧ C୩୨, ∀k ∈ S, ∀i ∈ D୨, ∀j ∈ S                                (1b) 

T୧୨ ≤ ሧ X୧୩ ∧ C୩୨

୩∈ୗ

, ∀i ∈ D୨, ∀j ∈ S                                       (1c) 

X୧୨ = 1 −  C୩୨

୩∈ୗ

, ∀i ∈ D୨, ∀j ∈ S                                         (1d) 

 

Let Lkij denote the logic AND of Xik and Ckj, so Tij ≥ Lkij. Recall that for binary 

variables a, b, and c, a = b ∧ c is equivalent to a ≤ b, a ≤ c, and a ≥ b + c − 1; a = b ∧ c is 

equivalent to a ≥ b, a ≥ c, and a ≤ b + c. If we know that (b, c) = (0, 1) or (1, 0), then b ∧

 c = b + c. With these simple manipulations, the above relations can be written in linear 

inequalities in the following linear program: 

Maximize 

 

  C୧୨W୧୨

୧ஷ୨∈ୗ୨∈ୗ

                                                            (2) 

 

Subject to 

 

X୧୨ + T୧୨ = 1, ∀i ∈ D୨, ∀j ∈ S                                              (3a) 

X୧୨ = 1 −  C୩୨

୩∈ୗ

, ∀i ∈ D୨, ∀j ∈ S                                     (3b) 

L୩୧୨ ≤ X୧୩, ∀k ∈ S, ∀i ∈ D୨, ∀j ∈ S                                    (3c) 

L୩୧୨ ≤ C୩୨, ∀k ∈ S, ∀i ∈ D୨, ∀j ∈ S                                    (3d) 

L୩୧୨ ≥ X୧୩ + C୩୨ − 1, ∀k ∈ S, ∀i ∈ D୨, ∀j ∈ S                 (3e) 

T୧୨ ≥ L୩୧୨, ∀k ∈ S, ∀i ∈ D୨, ∀j ∈ S                                      (3f) 

T୧୨ ≤  L୩୧୨

୩∈ୗ

, ∀i ∈ D୨, ∀j ∈ S                                            (3g) 

C୧୨ = C୨୧, ∀i, j ∈ S                                                                 (3h) 

X୨୨ = 1, C୨୨ = 0, ∀j ∈ S                                                        (3i) 
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X୧୨ = 1, ∀i ∈ N୨, ∀j ∈ S                                                       (3j) 

 C୧୨

୧∈ୗ

≤ 1, ∀j ∈ S                                                               (3k) 

X୧୨ = ሼ0,1ሽ, T୧,୨ = ሼ0,1ሽ, ∀i ∈ D୨, ∀j ∈ S                          (3l) 

C୧୨ = ሼ0,1ሽ, ∀i, j ∈ S                                                          (3m) 

L୩୧୨ = ሼ0,1ሽ, ∀k ∈ S, i ∈ D୨, j ∈ S                                    (3n) 

 

The solution to Cij indicates which pairs of flow should be coded for maximum 

benefit. The relay node that performs the encoding function is already known when W ij is 

calculated. If all Cij’s are zero, then there is no decodable solution for the given network 

setting. Therefore the above model can also be used for decodability analysis. 

Integer linear programs are NP-hard to solve, but we can use relaxation and 

rounding to get an approximate solution. In fact, the linear program solver [34] has a 

built-in relaxation and rounding function. For the above integer linear program as well as 

the one in Section V, we used the solver directly to obtain integer solutions. 
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5. TRANSMISSION SCHEDULING 

After we obtain the coding solution, the next step is to schedule the transmission 

of the coded packets and the original packets so that the coding/decoding delay won’t 

degrade the performance of the network. Coding/decoding delay refers to the extra delay 

caused by the use of network coding, i.e., a packet has to stay in the buffer to wait for its 

coding pair (or decoding key) to arrive. Since a coded packet has contents of two original 

packets but only takes one slot to transmit, a new conflict graph is needed. 

 The result from the coding design in Section IV provides the flow information on 

each link, including the coded packets and uncoded packets. Given the flow information, 

we can build a conflict graph GC = (VC, EC), where each vertex v ∈ VC is a transmission 

denoted by a pair (transmitter, flow), and two vertices are connected by an edge if and 

only if the two transmissions conflict with each other. The flow is the identifier of the 

source node. 

 The definition of conflict relation depends on the MAC layer protocol. For 

instance, if the MAC layer ACK is used, any two links within 2 hops are considered 

conflicting with each other; But if the MAC layer ACK is not used, two transmissions are 

considered conflicting with each other if a receiver of one transmitter is in the 

interference range of the other transmitter. The latter is more appropriate for multicast 

since the multiple ACKs from receivers can overwhelm the sender. For example, in Fig. 

5.1 (a), A and B conflict because a receiver of A is in B’s transmission range, but in (b) A 

and B do not conflict. Different conflict relation definitions may result in different 

conflict graphs, but the scheduling algorithm proposed in this paper uses the established 

conflict graph as input and therefore can work with any definition of conflict relation. 

 If network coding is not used, the number of vertices |VC| in GC is the actual 

number of transmissions (Fig. 5.2 (a)). However, when network coding is used, the actual 

number of transmissions may be smaller than the number of vertices in GC (Fig. 5.2 (b)), 

because the transmission of one coded packet is represented as two vertices in GC. Since 

it is essentially one transmission, there will be no edge between the two vertices in GC 

(between (a, 1) and (a, 2), between (b, 1) and (b, 2)), which implies the transmission of 

flow 1 and flow 2 by the same wireless node can happen at the same time. 
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Fig. 5.1: Example of conflict relation. A and B conflict in (a) but not in (b). 

 

Fig. 5.2: Routing example. (a) Routing without network coding, (b) With network coding. 
Labels on edges are flow IDs. The bottom row shows the conflict graphs. 
 

After obtaining the conflict graph, we can use an optimization model to compute 

the slot assignment. Rs is the data rate of source s, given in the number of packets 

transmitted in a TDMA frame. Let dv,s,i represent the delay at node v for a packet 

generated by source s, which includes the store-and-forward delay and waiting time 

before transmission; index i is for the ith packet, and i = 1..Rs. 

Since a coded packet stays on the original route, we can calculate its delay at a 

relay node for each source separately. For example, if flow 1 and flow 2 are combined at 

node v, then the delay for flow 1 is dv,1,i and the delay for flow 2 is dv,2,i. Depending on 

the packet arrival time of flow 1 and flow 2 at node v, dv,1,i and dv,2,i could be different. 

The difference is the coding delay. At the destination, the time difference between 

receiving a coded packet and its decoding key is the decoding delay. If we minimize the 

total end-to-end delay for all flows, we have considered the effect of both coding and 

decoding delay. 

In the following objective function, Ps,d is the routing path from s to a destination 

node d. v ∈ Ps,d is a transmitting node on the path. v could be the source node or a relay 
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node. Ds is the group of destination nodes of source s. We can minimize the total end-to-

end delay using the following objective function: 

Minimize 

 

    d୴,ୱ,୧

୴∈౩,ౚୢ∈ୈ౩

ୖ౩

୧ୀଵୱ∈ୗ

                                                    (4) 

 

The constraints for the optimization model are: (1) all transmissions must be 

conflict-free; (2) the slot assignment can accommodate the traffic load given by the 

network layer. In the following, v ∈ Ps, or Pathv,s = 1 means v is a transmitting node on 

the routing paths of source s. In (5d), (u, v) ∈ Ps means the directed link (u, v) is on the 

routing paths, and node u and v both are transmitters. Let F be the total number of distinct 

slots in a TDMA frame. Let As be the packet generation time at source s, which is given 

as input. The time difference between the transmission time and As is the initial access 

delay at the source. If a packet is one of the coding pairs, it is important that the initial 

access delay is minimized to reduce the waiting time of the other packet. We introduce 

binary variables slv,s,f and slv,s,f,i: slv,s,f =1 indicates slot f is assigned to node v for 

transmitting packets generated by source s; slv,s,f,i is for the ith packet among the Rs 

packets. We can express the constraints of the optimization in the following linear 

inequalities: 

Subject to 

 

sl୴,ୱ, + sl୴ᇲ,ୱᇲ, ≤ 1, ∀൫(v, s), (vᇱ, sᇱ)൯ ∈ Eେ, ∀f = 1. . F                   (5a) 

 sl୴,ୱ,,୧ = Path୴,ୱ, ∀i = 1. . Rୱ, ∀v ∈ Pୱ, ∀s ∈ S                           (5b)



ୀଵ

 

sl୴,ୱ, =  sl୴,ୱ,,୧, ∀v ∈ Pୱ, ∀s ∈ S, ∀f = 1. . F                                  (5c)

ୖ౩

୧ୀଵ

 

d୴,ୱ,୧ =  sl୴,ୱ,,୧ × f −  sl୳,ୱ,,୧ × f + X୴,ୱ,୧F



ୀଵ

,                                                



ୀଵ
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∀(u, v) ∈ Pୱ, ∀s ∈ S, ∀i = 1. . Rୱ                                            (5d) 

dୱ,ୱ,୧ =  slୱ,ୱ,,୧ × f − Aୱ + xୱ,ୱ,୧F, ∀s ∈ S, ∀i = 1. . Rୱ                 (5e)



ୀଵ

 

0 < d୴,ୱ,୧ < ,ܨ ݒ∀ ∈ Pୱ − ሼsሽ, ∀s ∈ S, ∀i = 1. . Rୱ                              (5f) 

0 < dୱ,ୱ,୧ < ,ܨ ݏ∀ ∈ ܵ, ∀݅ = 1. . Rୱ                                                        (5g) 

sl୴,ୱ, = ሼ0,1ሽ, sl୴,ୱ,,୧ = ሼ0,1ሽ, ∀v ∈ Pୱ, ∀s = S, ∀f = 1. . F, ∀i = 1. . Rୱ    (5h) 

x୴,ୱ,୧ = ሼ0,1ሽ, ∀v ∈ Pୱ, ∀s ∈ S, ∀i = 1. . Rୱ                                          (5i) 

 

(5a) requires that any two vertices connected by an edge in the conflict graph not 

use the same slot to transmit. (5b) – (5c) assign slots to nodes according to the traffic load 

from the network layer. (5d) – (5e) model the delay of each packet at each node, 

including the initial access delay at the source node. 

In case that a relay node v is transmitting a coded packet from s1 and s2, the two 

vertices in the conflict graph representing the transmission must be assigned to use the 

same slot, and therefore the following additional constraint is added: 

 

 sl୴,ୱభ,,୧ × f =  sl୴,ୱమ,,୧ × f, ∀i = 1. . Rୱ                               (5j)



ୀଵ



ୀଵ

 

 

where Rs = min{Rୱభ
, Rୱమ

}. The one with a higher data rate will send the remaining 

packets uncoded and therefore are not subject to the constraint. 
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6. MODEL CONSISTENCY 

We use the well-known butterfly network to validate the proposed scheme. For 

the network shown in Fig. 5.2, there are two unicast sessions: s1～>t1 and s2～>t2. If we 

do not use network coding, flow s1 → a → b → t1 requires three transmissions, and flow 

s2 → a → b → t2 requires three transmissions. The conflict graph has a clique of size 6, 

so a total of 6 mutually conflicting transmissions need 6 time slots. If we use network 

coding, only 4 slots are needed. The conflict graph has a maximum clique of size 4. We 

first run the Weight procedure to get W12 = 2 and get graph GT, which consists of node a 

and node b and a directed edge from node a to node b. Solving the integer linear program 

for the optimal coding design, we get C12 = 1, which indicates flow 1 and flow 2 should 

be coded at node a. 

At the MAC layer, we run the scheduling procedure based on the integer linear 

program model (4) – (5j). Fig. 6.1 shows the slot assignment on the nodes. The results 

generated from the proposed scheme are consistent with the prediction. 

 

Fig. 6.1: Slot assignment for the Butterfly Network. (a) without using network coding; (b) 
using network coding. 
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7. RANDOM LINEAR NETWORK CODING 

7.1. LITERATURE SURVEY 

Ahlswede et al. [1] showed that with network coding, a source can multicast 

information at a rate approaching the smallest minimum cut between the source and any 

receiver when the symbol size approaches infinity. Li et al. [19] proved that a finite 

symbol size is sufficient for linear coding in multicast. Ho et al. [35] showed a novel 

randomized coding approach which achieves robustness in a way different from the 

traditional approaches, and presented the lower bound on the success probability of a 

random network code. Their following research [13] presented the specific random linear 

network coding approach in general multisource multicast networks. Feder et al. [36] 

gave the lower bounds of the coding field size, and the upper bounds between flows from 

source to destinations based on the number of clashes. Furthermore, they computed the 

exact probability of the random linear network coding over a Galois Field of size q. 

7.2. ALGORITHM IDEAS 

When data is sent from one or more sources to one or more destinations using 

RLNC, each original packet can be divided into s symbols [7]. These symbols can be 

interpreted from the Galois Field GF(2s), which has finite number of elements. All the 

operations are performed over the GF and result in the same field elements. For the 

original packets X1, X2, ... , Xn, the sources node chooses a set of coding coefficients gi = 

[gi1, gi2, ... , gin] from the GF(2s). Hence each original packet has one coefficient. The new 

coded packet C becomes: 

 

C୨ =  g୨୧ × X୧



୨

                                                              (6) 

 
Since the coefficients are randomly selected and independently from the GF, this 

approach is referred to as random linear coding. 

7.3. DECODABILITY ANALYSIS 

When the destination nodes received the set (gj, Cj), ..., (gN, CN) of encoded 

packets, they need to solve the equation (6) to retrieve the original packets. Xi are the 
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unknowns. This is a linear system with K equations and N unknowns, which can be 

considered as a matrix form: 

 

X = gିଵ × C                                                                   (7) 

 

To recovering the original packet, we need K ≥ N, i.e., the number of received packets 

has to be at least larger than the number of original packets. However, this condition is 

not sufficient, because it does not guarantee all the combinations are independent. 

Specific decoding process will be discussed later. 

7.4. COMPARISON 

We apply the XOR based network coding and the random linear network coding 

on the butterfly network as shown in Fig. 7.1 (a) and (b). Without using network coding, 

it needs 6 hops to send messages b1 and b2 to the destinations. With XOR based network 

coding, it needs 5 hops, and the random linear network coding only needs 4 hops. 

However, that does not mean the random linear network has the best performance. First 

of all, its coding process is more complicated than the XOR based network coding. It 

requires computation over a GF(2s). Second, if it decides to encode k packets, each relay 

node will have to wait a period of time to gather k packets. Hence its delay can be much 

longer. As for the decodability, we can confirm that b1 and b2 will be decoded, whereas in 

random linear network coding, there is a chance that the received combinations are not 

linear independent. Therefore the XOR based network coding with our scheme performs 

better in decodability. 

 

Fig. 7.1: An example in the Butterfly Network. (a) with XOR based network coding; (b) 
with random linear network coding. 
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8. SIMULATION 

8.1. COMPARE WITH THE NETWORK WITHOUT USING NETWORK 
.CODING 

To test if the proposed scheme provides any benefit for networks beyond the well-

known butterfly network, we randomly deploy wireless nodes on a 150m×150m square 

region. Node transmission range is set to 30m. If two nodes are within 30m of each other, 

they are connected by a wireless link. 

In the first simulation, we test the scheme on networks of 10 to 80 nodes, among 

which, 20% of the nodes are used as sources of multicasting. Each source has 5 

destinations. We randomly choose destinations of each source across the network. The 

routing information is given, so all packets are transmitted without changing their 

predetermined routes. We use the network coding design to explore the coding 

opportunity, and then use the proposed LP-based scheduling scheme to compute the slot 

assignment. The objective function (4) is used to compute the total end-to-end delay. The 

results are compared with the simple First-Come, First-Served (FCFS) scheme, in which 

a node is assigned to use the next available slot as soon as it arrives at a relay node. For a 

fair comparison, we use the centralized FCFS that is aware of the network topology to 

make sure the new assignment has no conflict with existing assignments. 

The TDMA frame size is 30 slots, and each slot time is one packet transmission 

time. If the source generates one packet each frame, then the source rate is 1/30 B, where 

B is the wireless link bandwidth. We define the baseline rate = 1/30 B. We compare the 

delay performance obtained from the proposed scheme Network Coding with Optimal 

Scheduling (NC-OptSchedule) with that obtained from the shortest path multicast routing 

with FCFS scheduling (MOSPF-FCFS). We observed that with multicast destinations 

randomly distributed across the network, there is little chance for two flows to benefit 

from network coding. Unicast traffic is worse in terms of coding opportunity. This 

observation further testifies that if an opportunistic coding scheme is used, in which 

packets stay on their original routes and relay nodes opportunistically encode packets 

passing by, some destinations may never be able to receive enough information to decode 

a coded packet, or have to wait for a long time to collect the needed information. Fig. 8.1 



 

 

22

shows that the number of transmissions is the same, but the proposed scheme still 

outperforms the FCFS scheme. The performance gain comes from using the optimal 

scheduling scheme. The proposed scheduling scheme outperforms FCFS by 25% to 40%. 

 

Fig. 8.1: Result with no group communication. (a) End-to-end delay; (b) number of 
transmissions. The two algorithms have the same number of transmissions. 
 

In the second simulation, we choose N nodes to have group communication (i.e., 

all-to-all communication). This group of N nodes is randomly chosen from networks of m 

nodes. Fig. 8.2 shows the results for N = 10, m = 10 to 80. When nodes are having group 

communication, there are more chances that two flows share a path (or a segment of a 

path), which creates an opportunity to use network coding. The benefit of using network 

coding is shown in the number of transmissions and the demand for spectrum bandwidth. 

The demand for bandwidth is the minimum number of distinct slots needed in order to 

have conflict-free transmissions. The proposed network coding scheme (NC) shows 

significant reduction in both as shown in Fig. 8.2 (b) and (c). The overall reduction in 

delay (see Fig. 8.2 (a)) is achieved from both the network layer by using network coding 

and the MAC layer by using the proposed optimal scheduling scheme. The results for N 

= 20, m = 20 to 80 (Fig. 8.3) are consistent with Fig. 8.2. 
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8.2. COMPARE WITH OTHER NETWORK CODING: RLNC 

We first apply the random linear coding strategy on the example network in Fig. 

8.4. The network is deployed on a 150m×150m square field. The transmission range is 

set to 30m. Nodes within 30m to each other are connected by a wireless link. Node 

positions are randomly generated. None of the node is isolated, which means that there is 

at least one routing path from every node to reach every other node. The routing 

information is given, so the routing paths of all packets are predetermined. 

 

 

 

Fig. 8.2: Result with 10 nodes having group communication. (a) end-to-end delay; (b) 
number of transmissions; (c) required bandwidth. 
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Fig. 8.3: Result with 20 nodes having group communication. (a) end-to-end delay; (b) 
number of transmissions; (c) required bandwidth. 
 
lower level, but lower level nodes should not receive packets came from higher level. 

Hence, we used the Breadth-first search algorithm to mark the level on each node. The 

next step is to generate the original packets Xi. We want to see the performance changes 

between different packets encoded strategy and different numbers of sent packets. Xi is 
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set from 2 to 30. Every node contains a receive packets array and a sent packets array. At 

first, the source node will be inserted 2 packets in the receive packets array. If there are 

enough packets in this array, they will be encoded into 1 packet and stored in the send 

packets array. In the next level, nodes will receive all the send packets from the lower 

level nodes which are within 30m. When the destination nodes received packets, the 

coefficient of every original packet will be extracted and formed a matrix. We used this 

matrix to determine whether the encoded packets can be decoded. Specific decoded 

process will be explained in the following part. 

 

Fig. 8.4: Randomly generated network. 

 
Fig. 8.5 shows the result after we run the test 400 times with different sources and 

destinations. In Fig.8.5 (b), we observed that the total decodability, which means the 

probability of all the destinations can decode all the encoded packets, can decrease to 0 

when we encode every 10 packets and every 20 packets. Encoded every 2 packets can 

make sure some of the destinations decode them all, but in a very low decoded rate. Fig. 

8.5 (a) shows the sum of the number of decode packets in each destination. When we 

encode every 2 packets, as expected, the number of decode packets gradually increased 

along with the number of sent packets. But when we encode every 10 packets, the result 

number suddenly drops when there are 10 sent packets. That is because these 10 packets 

are encoded into 1 packet in the source node so that the number of transmitted packets in 

the network reduces. Same as when we encode every 20 packets. 
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Fig. 8.5: Result of RLNC. (a)The changes of the sum of decode packet in each 
destination. (b)The total decidability decreases along with the increase number of sent 
packets. 
 

To clarify the decoding process, we apply the random linear coding algorithm on 

a simple network in Fig.8.6. Every 2 packets will be encoded into 1, extra packet which 

can not be encoded will be sent out directly. X1 and X2 are the source messages being 

sent to the destination n6 and n7. At first, X1 and X2 are encoded into g1X1+g2X2 and sent 

to n2 and n3. But n2 and n3 do not receive enough packets, so they pass the packet to the 

next level. n4 and n5 re-encode the packets again and generate different coefficient for X1 

and X2. The coefficient gi is randomly selected elements from a finite field. For node n6, 

its received coefficient can form a matrix: 

 

൬
gଷgଵ + gସgଵ    gଷgଶ + gସgଶ

gହgଵ + ggଵ    gହgଶ + ggଶ
൰ 
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If the rank of the matrix K > N, which N is the number of original packet, then we 

can decode the coded packets and get the original data. In this case, we have 2 sent 

packets, so K needs to larger or equal to 2. 

 
Fig. 8.6: Example of random linear network coding process. 

 
Furthermore, Fig. 8.7 demonstrates the result of this simple network. As the 

number of packets increase, the total decodability will decrease to 0, no matter what the 

encode strategy is. As for the number of decoded packet in Fig. 8.7 (a), only 2-packets-

per-encoded-packet strategy has a relatively stable decode rate. The results of the other 

two strategies fluctuate in certain patterns. 
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Fig. 8.7: Result of RLNC (Special Case). (a)The changes of the sum of decode packet in 
each destination. (b)The total decidability decreases along with the increase number of 
sent packets (cont.). 
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9. CONCLUSION AND FUTURE WORK 

In this paper, we develop a deterministic network coding method and scheduling 

scheme using linear programming in multi-source multicasting wireless networks. Our 

network coding method at the network layer is designed to find the most bandwidth-

efficient coding solution with guaranteed packet decodeability at all destinations. Our 

conflict-free, node transmission scheduling algorithm at the MAC layer is designed to 

minimize network delay. Indeed, our coding and scheduling schemes outperformed the 

shortest path routing using first-come first-serve scheduling by 25-40%. The coding and 

scheduling scheme produce consistent result for the well-known butterfly network but are 

also extensible to any complex network with arbitrary traffic. Our simulation results 

confirm that network coding is beneficial when a group of nodes are engaged in group 

communication. Overall, our approach reduces end-to-end delay, improves transmission 

efficiency, and minimizes bandwidth requirements when a network coding opportunity 

exists. 

Although we assumed a pairwise XOR for encoding and original packet routes are 

preserved before and after coding, even more efficient solutions may be possible by 

relaxing one or more of these assumptions. Therefore, future research will explore the 

joint computation of routing and coding. 
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