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ABSTRACT 

Mold flux plays a small but critical role in the continuous casting of steel. The 

carbon-coated powder is added at the top of the water-cooled copper mold, over time it 

melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold 

powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) 

lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) 

promotion of even heat flux. All five functions are critical to slab casting, but surface defect 

prevention is primarily controlled through even heat flux. Glassy fluxes have high heat 

transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling 

must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of 

cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is 

important to study the thermal conditions that promote each phase and its morphology.  

Laboratory tests were performed to generate continuous cooling transformation 

(CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling 

transformation tests were performed in an instrumented eight cell step chill mold. Results 

showed that cuspidine was the only phase formed in conventional fluxes and all observed 

structures were dendritic. An isothermal tin bath quench method was also developed to 

isothermally age glassy samples. Isothermal tests yielded different microstructures and 

different phases than those observed by continuous cooling. Comparison of aged tests with 

industrial flux films indicates similar faceted structures along the mold wall, suggesting 

that mold flux first solidifies as a glass along the mold wall, but the elevated temperature 

devitrifies the glassy structure forming crystals that cannot form by continuous cooling. 
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1. INTRODUCTION 

1.1. OVERVIEW 

Mold flux is a carbon-coated, often spray dried, powder that is used in the 

continuous casting of steel. It serves five primary functions: (1) protect the steel from 

oxidation, (2) control heat removal and steel shell formation, (3) absorb inclusions, (4) 

lubricate the steel as it is drawn out of the mold, and (5) thermally insulate the steel. It is 

imperative to identify the proper mold flux for casting each steel grade as the powder 

regulates steel shell formation by controlling the heat transfer from the strand to the mold. 

High heat transfer is associated with a glassy morphology and can lead to longitudinal 

cracking on the steel surface. [1] Fluxes with a high degree of crystallinity can be 

problematic if the steel shell is not strong enough at the mold exit to withstand the 

ferrostatic pressure of the molten steel within. Since the crystallinity and crystal 

morphology play a large role in the control of the heat transfer between the steel shell and 

the water-cooled copper mold, it is imperative to understand the thermal history required 

to create desired morphologies in the mold flux film.  

The mold gap between the mold and the steel shell is only 1 to 4 mm thick, [2-3] 

but has a thermal gradient ranging from steelmaking temperatures (~1600°C) on the steel 

side to approximately 400°C on the mold side. High temperatures and corrosive materials 

make it difficult to directly measure what is occurring in the mold gap during casting. 

Instrumented molds can provide thermal profiles of the mold gap that clarify differences 

in heat removal from various locations in the mold, but they cannot define the temperatures 

at various distances from the mold wall. If flux film structures can be replicated in the 

laboratory, the thermal history that produces these crystals can be better understood. 

Studies presented in this thesis target the relationship between the crystal 

morphology and thermal history. In this introduction, a brief summary of the continuous 

casting process will be presented, followed by a study of the current state of mold flux 

research focused on compositional effects, kinetics of crystallization, and methodologies 

for developing continuous cooling transformation (CCT) curves and time temperature 

transformation (TTT) diagrams.    
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1.2. CONTINUOUS CASTING [4-5] 

Mold flux powder plays a small but critical role in the production of continuously 

cast steel.  Steelmaking has been developing for centuries, but continuous casting has only 

been in practice since it was introduced in the 1950s. This process can be used to make 

billets, blooms, or slabs for subsequent processing in rolling mills. The use of the mold is 

somewhat analogous to extrusion in ceramics processing, where only materials with 

constant cross-section can be cast (typically rectangular). However it is different from most 

ceramic extrusion because it is a molten liquid casting process. The schematic drawing in 

Figure 1.1 shows the basic steel making process, starting with either producing pig iron in 

a blast furnace and then melting in a basic oxygen furnace (BOF) or melting scrap in an 

electric arc furnace (EAF). After melting the steel is alloyed and temperature is maintained 

in the ladle metallurgy furnace (LMF) and the continuous casting machine (CCM). The 

subsequent sections will provide an overview of the EAF steelmaking process from scrap 

to slab for the purpose of clarifying the role of mold flux. 

 

 

 

Figure 1.1: Overview of the steelmaking process starting from scrap steel. From [6]. 
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1.2.1. Melt Shop.  The steelmaking process begins in the melt shop. All steel  

plants employ a variation of two methods of melting: an electric arc furnace (EAF) or a 

basic oxygen furnace (BOF). The EAF steelmaking method is predominantly used in the 

United States today, however the BOF process has the highest global production. This 

section will focus on the EAF melting process. An electric arc furnace can use either AC 

or DC power. An AC furnace will have three electrodes that will lower down into the ladle 

once the scrap steel has been added. A DC furnace has a single graphite electrode and an 

anode that resides in the base of the furnace. This type of furnace requires a “hot heel,” 

excess molten steel left in the furnace, to ensure intimate contact between the graphite 

electrode and the base anode and to increase the overall efficiency of the furnace. EAFs 

typically use a form of oxygen blowing in conjunction with the arc melting process. This 

helps remove carbon through gas evolution, as shown in Equations 1 and 2. Bracketed 

components are in the steel.  

 

 2[C] + O2 (g) → 2CO(g) (1) 

 

 [C] + O2 (g) → 2CO2 (g) (2) 

 

Oxygen and slag control are critical to generate a foamy slag, which protects the 

refractory, promotes phosphorus removal, and reduces iron oxide pickup into the slag. 

Eccentric bottom tapping (EBT) is commonly used for the EAF process to avoid slag 

carryover on tapping and decrease the reabsorption of nitrogen into the steel. The primary 

functions of the EAF are melting at steelmaking temperatures (~1600°C), carbon and 

phosphorous removal, and nitrogen control.  

1.2.2. Ladle Metallurgy.  Ladle metallurgy is a secondary refining process, post  

melting, that is used to achieve the target chemistry prior to casting. During this process 

the slag and steel are deoxidized to an acceptable oxygen content, typically by Al-killing 

or Si-killing the steel. Reduced oxygen content promotes desulphurization of the steel. The 

steel is typically alloyed to achieve the final desired chemistry. Other additions such as 

calcium may be made to modify inclusion chemistry and further desulphurize the steel by 
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the reaction shown as Equation 3. Bracketed terms still designate components in the steel. 

Parenthesized components are in the slag and bracketed components are in the steel. 

 

 2(CaO) + 2[S] → 2(𝐶𝑎𝑆) + [𝑂2] (3) 

 

Argon stirring is commonly employed to promote flotation of inclusions and 

homogenization of the steel. The ladle metallurgy step is critical for chemistry modification 

and attaining a target temperature for casting. It also can act as a buffer between the EAF 

and the caster which often run at different speeds.   

1.2.3. Vacuum Treatment. Vacuum treatment is a process that has been developed  

to increase the cleanliness of the steel, which has become increasingly important for high-

quality steel grades. This method is not employed for all steel grades and is not pictured in 

Figure 1.1. Vacuum methods may be employed for several purposes including: removal of 

dissolved gasses, decarburization, alloying, de-oxidation, and inclusion removal. 

1.2.4. Tundish. Following the final refining step the ladle is brought to the tundish,  

which contains the steel between the ladle and the mold. Residence time in the tundish is 

increased so it can act as a reservoir during ladle changes; a critical aspect of continuous 

casting. The tundish is the final step in which inclusions can be removed prior to casting. 

Additionally steel composition and temperature must be controlled throughout this step to 

ensure proper casting. Modern tundishes employ several flow modifiers such as impact 

pads, weirs, dams or baffles to direct flow, promote inclusion removal, and to homogenize 

the melt. Steel is distributed from the tundish to the mold via a submerged entry nozzle 

(SEN). Many plants have a single tundish that distributes steel to multiple molds. It is 

increasingly important in these cases that the steel is homogeneous so the steel cast in each 

caster is identical.    

1.2.5. Casting. Casting begins with the molten steel travelling from the tundish  

through the submerged entry nozzle (SEN) into a water-cooled copper mold. Molten steel 

is protected from oxidation by a thick layer of mold powder on top of the molten steel in 

the mold. The powder melts and infiltrates the gap between the molten steel and the mold. 

Heat transfer for steel shell solidification is controlled by the crystallization behavior of the 

mold flux.  
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Steel shrinkage during solidification is counteracted by tapering the mold. The 

mold oscillates at a fixed rate to prevent the steel shell from sticking and to pump molten 

flux down the mold gap for lubrication. [7, 8] Oscillation occurs in the casting direction 

with an amplitude less than 10 mm and a frequency range of 50 to 250 cycles per minute. 

[7] The mold oscillation is related to the casting speed by referring to the portion of the 

cycle when the mold moves downward at a speed greater than the casting speed as 

“negative strip.” The complementary portion of the cycle is referred to as “positive strip.” 

Negative strip time is necessary to compress and heal imperfections and strengthen the 

steel strand. Molten flux is also pumped further down the mold gap. However, if the 

negative strip time is too long, deep oscillation marks can form on the steel surface. Positive 

strip time helps distribute the liquid flux to the mold gap and promote flux consumption, 

which promotes uniform heat transfer. [7] 

During casting, mold flux can be entrapped into the molten steel. This type of defect 

is associated with the flow patterns and may be caused by: 1) steel flow reversing from the 

narrow face of the mold, 2) the high shear stress that is associated with reversing flow, 3) 

the excessive velocity at the flux-metal interface, 4) entrapment from an argon bubble 

escaping the SEN ports and reaching the steel-mold powder interface, and 5) uneven flow 

on either side of the nozzle as depicted in Figure 1.2. [9] Water-model studies have been 

performed to understand the entrapment phenomena and to determine what parameters can 

be adjusted to minimize the formation of mold flux inclusions. [9-11] The water models 

were able to duplicate several of the suspected mechanisms and indicated the extent of 

entrapment as well as mold locations likely to experience these mechanisms.   

Upon mold exit, the strand goes through a series of water sprays and support rollers 

to promote further solidification and control cooling. There are several caster 

configurations: vertical casters, bending casters with a straight mold, and bow-type casters 

with a curved mold. [5] Each process has advantages and disadvantages concerning 

bending, straightening, casting speed, inclusion removal, and strand length. Regardless, all 

casters must cool the strand and support the strand upon mold exit. This is typically done 

using a set of rollers that are aligned and tapered to compensate for shrinkage. Water  
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Figure 1.2:  Schematic of methods of mold powder entrapment from [9]. 

Numbers correspond to the flux entrapment methods described previously. 

 

 

nozzles or water-air nozzles are used to spray the steel shell surface to promote heat transfer 

through the slab and further cooling. The solidification rate of each steel grade must be 

controlled by modifying the water spray rate, and the casting speed. [5] 

1.2.6. Mold Configurations and Properties. Conventional slab casters are  

typically rectangular with a taper towards the bottom of the mold to promote uniform shell 

formation during mold oscillation. A funnel-type mold may be used for thin slab-casting. 

These molds have a larger funnel opening at the top where liquid steel flows into the mold 

via the SEN. The bottom of a funnel mold is similar to a conventional mold because the 

sides become parallel again. Depending on mold sophistication, the taper of the mold can 

be adjusted prior to casting or in real-time. Molds are machined out of copper due to its 

high thermal conductivity (~402 W/mK at room temperature). [12] Often the hot face of 

the mold is coated in a sacrificial, 1-3mm thick, nickel coating to reduce wear. [13]  

Many authors have modeled the thermal and mechanical behavior of conventional 

molds [13-14] as well as funnel molds [15-17].  These models are complex but still rely on 

assumptions to simplify the system for rapid computation. For example, mechanical 

models often ignore the nickel plating on the hot face because the layer is only a few 

millimeters thick. [13,17] Thermal models indicate that the highest temperature is found 

just below the meniscus, these temperatures can be problematic to the mechanical integrity 

of the mold because over time embrittlement, surface cracking, and crack propagation can 

occur on the copper surface. [16] After several cycles the hot face is machined to eliminate 
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the surface defects, which allows the mold to be reused. However the machining may have 

an effect on heat transfer through the mold as the water delivery mechanism is now closer 

to the hot face.  

 Trials of mechanically texturing the copper mold surface have been performed in 

an attempt to reduce mold flux heat density without worsening lubrication. [18] Results 

from the work of Cho and Jeong indicate that flux thickness, including liquid, decreased 

overall with the texturing method. Many more studies are still necessary to optimize the 

mold set up and reduce mold variability. 

 

1.3. MOLD FLUX: STRUCTURE AND PROPERTIES 

This section will overview the effect of different oxide additions on the overall 

glass network and the critical properties of mold flux. 

1.3.1. Glass Structure. [19] Mold powders form both glassy and crystallized 

phases, thus it is important to understand the structure and the formation of each. Glass 

structure will be discussed in this section. Nucleation and growth phenomena of the 

crystallized phases will be discussed later in the kinetics section. Mold powders initially 

form glasses, which unlike crystalline materials (Figure 1.3a) have no long range order. 

Even though the same repeating units are present in a glass, a non-repeating network is 

formed (Figure 1.3b). Mold powders tend to have a high fraction of glass formers usually 

in the form of SiO2 and sometimes B2O3. Glass formers follow an empirical set of rules 

determined by Zachariasen: (1) Each oxygen should be coordinated with no more than two 

metal atoms, (2) The metal atoms should have small coordination numbers, (3) oxygen 

polyhedral share corners, not edges or faces, and (4) Three or more corners of each 

polyhedral coordination unit must be shared in order to create a 3D network. [20] Silica 

prefers tetrahedral bonding. This makes silica a good glass former because the Si-O-Si 

bonds between tetrahedra are able to have various bonding angles. Most mold fluxes 

contain 25-40 wt% silica.  

A large number of constituents that are added to mold powders are “modifiers.” 

These oxides modify the existing silica network by breaking bonds and neutralizing 

charges. Modifiers determine the number of non-bridging oxygen atoms (NBOs) that form 

in silicate tetrahedra. In a silicate glass with no modifiers, all tetrahedra have zero NBOs. 
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As the concentration of modifying oxides increases, the number of NBOs per tetrahedra 

will increase, indicating a more broken network. This structural change directly affects the 

properties of the glass. For example an increase in the number of NBOs will decrease the 

polymerization of the network and decrease the viscosity. The valence state of the modifier 

can also affect the viscosity. Cations such as calcium with a +2 valence state have a higher 

field strength than sodium ions with a +1 valence state. The increased field strength of 

alkaline earth oxides results in a stronger bond with the silicate network. This ultimately 

leads to increased viscosity relative to adding the same amount of alkali oxide.  

 

 

 

(a)                            (b)     

Figure 1.3: Atomistic schematic of (a) crystalline material and (b) glassy 

material. From [21]. 

 

 

The basic glass model does fairly well at explaining additions of oxides and their 

effect on glass structure. However, it does not account for the addition of oxide modifiers 

beyond complete network depolymerization, nor does it explain the effect of CaF2 

additions. Several studies have been performed on SiO2-CaO glasses with addition of oxide 

modifier (Na2O [22], Li2O [22], MgO [23], MnO [24]) and increasing amounts of CaF2 to 

understand the effect of fluorine on the glass structure. As expected, the results vary 

depending on the base structure of the glass. Park et al. [23] found that increasing CaF2 

content reduced the crystallization temperature. Additionally IR spectra indicate that the 

number of bands with low [NBO]/Si decreased and bands with high [NBO]/Si increased 

with addition of CaF2, which indicates that CaF2 acts like a modifier. Other experiments 
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corroborate these results and further suggest that the effect of CaF2 lessens after a critical 

amount has been added. [22, 24] The critical amount of CaF2 varies based on the basicity 

and other modifiers present in the system.  

Alumina is a conditional glass former, which means that it is difficult to form a 

glass alone but it will form a glass when combined with other glass forming oxides (i.e. 

aluminosilicate, aluminoborate, and aluminophosphate glasses). In a modified silicate 

network, the addition of alumina decreases the number of NBOs and increases the network 

connectivity. With a fixed concentration of modifying cations, an ideal ratio exists between 

silica and alumina to get the desired increase in viscosity. If too much alumina is added, 

there will not be enough cations to balance the lower valence state of the alumina ion. 

Ideally the ratio of alumina to silica is 1:1 with the exact amount of modifying oxides for 

a fully restored network, however research at Stanford has shown that perhaps NBOs still 

exist at this ratio. [25]  

1.3.2. Composition. Conventional mold fluxes are composed of the same 

components (typical ranges shown in Table 1.1), but the relative amount of each varies 

depending on the desired properties. Properties considered are: viscosity, heat transfer, 

crystallization tendency, melting characteristics, and the effect of additions on structure. 

Effects of different element additions on the viscosity and crystallization tendency are 

detailed in 1.3.2.1 and 1.3.2.2 respectively. Heat transfer is outlined in section 1.3.3. 

Melting characteristics, including melt rate and the type of carbon used to coat the powder, 

are important for the prevention of steel oxidation and the continuous renewal of liquid 

flux in the mold. However, these topics but are not relevant to the central focus of this 

thesis and thus are excluded.  

 

 

Table 1.1: Ranges of weight percentages of common oxides in conventional 

mold fluxes. The listed element denotes the oxide that is added (i.e. Al 

denotes Al2O3), except F which is typically added as CaF2. 

wt%  Ca Si Mg Al Mn Na F Li B Zr Ti Basicity 

Min 22 25 0 3 0 3 0 0 0 0 0 0.7 

Max 44 45 14 22 3 16 11 5 2 2 < 1 1.3 
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1.3.2.1 Viscosity. Viscosity is critical because it is responsible for the flow 

characteristics and lubrication behavior of the mold powder. The viscosity is a direct 

measurement of the network polymerization of the silicate network; an increased fraction 

of NBOs results in a decreased viscosity. The most common methodology for measuring 

viscosity is the rotating spindle technique. [22-23, 26-28] This technique involves rotating 

a spindle in a crucible at constant speed and measuring the required torque. In all cases this 

measurement was executed at elevated temperature (1300-1500°C) to determine the effect 

of temperature on the viscosity of the specific molten flux. Viscosity at 1573K can vary 

from 0.5 dPas to 30dPas in high speed casting and billet casting respectively. [29] Several 

studies have been performed to understand the effect of different oxide additions on 

viscosity at different temperatures.  

Increasing Na2O content has been shown to depolymerize the silicate network by 

increasing the number of NBOs, which effectively lower the viscosity of melts of a variety 

of compositions. [30]. Li2O, another alkali oxide, decreases the viscosity of the mold flux 

in additions up to 2 wt%. Work by Kim et al. has shown that additions exceeding 2 wt % 

have a dramatically reduced effect since other additions have already completely modified 

the existing silicate network. [22] The effect of CaF2 is not as well understood as alkali 

metals in lime-alumino-silicate melts. Regardless, several studies have shown that 

increasing the CaF2 content reduces the viscosity and the activation energy for viscous 

flow; the effect of each addition lessens the effect on viscosity. [22-24] The effect of CaF2 

on viscosity is more significant in a more basic system. [23] 

TiO2 is not commonly added to conventional mold powders, however during the 

casting of Ti-stabilized stainless steels, it often reduces silica in the glass by the reaction in 

Equation 4. Components in brackets are in the steel and parenthesized components are in 

the mold powder. 

 

 [𝑇𝑖] + (𝑆𝑖𝑂2) → [𝑆𝑖] + (𝑇𝑖𝑂2) (4) 

 

This exchange reaction can increase the TiO2 content in conjunction with increasing the 

basicity of the mold flux. When TiO2 replaces SiO2 the viscosity has been shown to remain 

relatively constant at high temperatures (~1563-1623K) and increase viscosity at lower 
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temperatures. [26, 28] However without the Ti-Si exchange reaction, TiO2 decreases 

viscosity. [28] Although rare earth oxide (RE) additions are uncommon, W. Deyong et al. 

have done some preliminary studies into the effect of RE additions on mold flux viscosity. 

[31] At 1300°C, the viscosity remained constant up to 15 mass percent RE oxide additions, 

above 15 mass percent of RE oxide additions the viscosity increases dramatically.  

1.3.2.2 Crystallization tendency. The crystallization rate can be controlled by 

mold flux basicity, the weight percent ratio of CaO to SiO2 (C/S), literature findings are 

compiled in Table 1.2. [32] Calcia and silica are the largest constituents of conventional 

mold powder as shown in Table 1.1. Increasing the basicity increases the crystallization 

temperature, thus mold fluxes with a C/S < 1 tend to be more glassy, whereas crystallization 

more readily occurs when C/S > 1. [32] More sophisticated ways of calculating basicity 

have been introduced where all oxides are considered based on the acidity or basicity, 

which considers valence state and oxygen affinity, as shown in Equation 5. [33] 

 

 
𝐵 =  

2𝑋𝐶𝑎𝑂+2𝑋𝐵𝑎𝑂+2𝑋𝐶𝑎𝐹2+2𝑋𝑁𝑎2𝑂+2𝑋𝐴𝑙2𝑂3+6𝑋𝐹𝑒2𝑂3+(2𝑋𝑀𝑔𝑂+2𝑋𝑀𝑛𝑂)

𝑋𝑆𝑖𝑂2+2𝑋𝐴𝑙2𝑂3+𝑋𝑇𝑖𝑂2+𝑋𝐵2𝑂3+(𝑋𝑀𝑔𝑂+𝑋𝑀𝑛𝑂)
  

(5) 

 

X represents the mole fraction of each compound. The parenthesized expression in the 

denominator is included if MgO content is greater than 7% or MnO content exceeds 4%. 

For all other cases the parenthesis in the numerator are used and the denominator is 

excluded. Although Equation 4 includes BaO, most conventional fluxes do not contain 

barium. However BaO is being investigated as a potential substitute in fluorine-free mold 

fluxes. [34] Alumina can behave as a modifier or conditional glass former and is therefore 

included in both the numerator and denominator of equation 4. Alumina content for 

conventional mold fluxes is given in Table 1.1; this table does not include alumina content 

for AHSS mold fluxes, which is discussed in section 1.2.6. Additions of up to 10 wt% 

alumina have been shown to decrease the crystallization ratio and crystallization 

temperature, suggesting that alumina inhibits crystal growth through acting as a glass 

former. [35-36]  

One study reports that MnO and MgO can behave as network modifiers when 

present in low quantities, but in larger quantities, greater than 7 and 4 mole percent 

respectively, viscosity increases. [33] Lithium oxide and sodium oxide are both alkali 
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oxides that act as network modifiers. Alkali additions have been noted to change the 

method of crystallization from surface to bulk by enhancing the number of crystallization 

sites. [37] Lithium oxide tends to be present in smaller amounts by weight percent, but it 

is more effective than sodium at lowering Tg and the activation energy for crystal growth, 

thus enhancing crystallization. [22, 37] However sodium oxide, a primary component in 

nepheline, is typically added in larger quantities. Calcium fluoride additions greatly reduce 

viscosity, but have a diminished effect on the melting temperature. Direct effects of CaF2 

on crystallization are unclear, however it has been suggested that CaF2 causes the 

precipitation of high temperature phases such as gehlenite and cuspidine. [38]  

B2O3 is an effective glass former, but is not typically used in conventional mold 

fluxes. However, boria has been studied for potential use in fluorine free fluxes. [39] 

Fluorine free mold powders are of interest to steel producers because they avoid dangerous 

byproducts such as HF which can harm employees and corrode the casting equipment. TiO2 

also uncommon for conventional mold powders, but it has been researched for other 

 

 

Table 1.2: Compilation of the effects of additions of common mold flux 

components on the crystallization behavior. 

Addition        Effect on Crystallization 

Basicity Increases < 1 considered glassy 

Al2O3 Depends 
Additions of up to 10 wt% decrease percent crystal 

and crystallization temperature 

MnO Increases Only reduces viscosity when less than 7 mol% added 

MgO Increases 
Only reduces viscosity when less than 4 mole% 

added 

Li2O Increases 
More effective than Na2O at lowering Tg and 

activation energy for crystal growth 

Na2O Increases Added to promote nepheline growth 

CaF2 Unclear 
Decreases viscosity and is suggested to precipitate 

high temperature crystalline phases 

B2O3 Decreases 
Glass former, potential use in fluorine free mold 

fluxes and AHSS fluxes 

TiO2 Unclear 
Suppresses cuspidine formation in favor of other 

crystalline phases 
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potential flux applications such as: fluorine free mold powder [39-40], AHSS [42], and 

casting Ti-stabilized stainless steels [26, 28, 42]. In stainless steel casting when TiO2 

pickup is at 5-10%, cuspidine and perovskite both form. However as TiO2 additions 

increase, cuspidine formation is suppressed. [26] 

1.3.3. Heat Transfer. Heat transfer between the steel strand and the copper mold 

is critical to the continuous casting process. It controls the steel shell growth during the 

strand residence time in the mold. Heat transfer in this system is complex and cannot be 

defined by a single parameter. The following subsections will introduce the methods used 

to measure heat transfer, detail the effects of crystallinity and air gap on the heat transfer, 

and review the compositional effects on heat transfer. 

1.3.3.1 Experimental methods. Five primary methods and a sixth blended method 

have been developed to measure the heat transfer of mold powder. Schematics of each of 

the experimental methods are shown in Figure 1.4. (1) The pouring method was developed 

by Shibata et al.; molten slag is poured onto an instrumented copper plate to measure 

transient heat transfer to the mold. [43] Equipment set-up is relatively simple as shown in 

Figure 1.4a, but this test is limited because the thickness of the film cannot be varied and 

it is difficult to compute the heat transfer in transient conditions. [44] (2) The parallel plate 

experiment improved on the pouring method by adding a thermal gradient. Mold flux is 

melted on an inductively heated plate and a water-cooled copper plate is placed onto the 

top of the molten glass. [45-46]While this method is effective for steady state conditions, 

it does not work well for in-situ experiments. [44] (3) The infrared emitter technique (IET) 

alleviates many of the problems of the previous two methods. Heat transfer is measured 

through a mold flux layer by blasting the surface with infrared energy and measuring the 

temperature of the copper mold beneath the film. [47-48] Varying thickness and unsteady 

heat transfer conditions can by simulated with this method, but a heating process is 

employed, which is not representative of the behavior in the mold gap. [44]  

(4) Industrial flux film structures can be replicated in the copper-finger test. In this 

test, a water-cooled finger is dipped into a bath of molten flux; by varying the amount of 

time in the bath, different structures can adhere and grow onto the finger. Heat transfer is 

measured by monitoring the water temperature going into and out of the finger and using 
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(a) (b) 

 
 

(c) (d) 

  

(e) (f) 

Figure 1.4: Schematics depicting each of the heat transfer measurement 

methods: (a) pouring [43], (b) parallel-plate [46], (c) IET [48], (d) copper 

finger [49], (e) mold simulator [52], and (f) MFHTS [44]. 
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a simple energy conservation equation. [49-51] The copper-finger test is limited by its 

inability to monitor heat flux in real-time. [44] (5) A mold simulator was developed to 

simulate the change in heat flux with the growth of the steel shell. This test is ideal to test 

the heat transfer behavior of a new mold with a various grades of steel without disrupting 

plant production. [52] A problem with this test is the co-existing multi-factors, which 

confound the effects of each factor on the overall heat transfer. [44] A sixth method has 

been developed that combines the copper finger test with the mold simulator set up (Figure 

1.4f). The mold flux heat transfer simulator (MFHTS) has an additional set of 

thermocouples placed beneath the copper finger surface to allow for real-time heat transfer 

analysis. Resulting flux films are identical to industrially extracted flux films. [44] The six 

methods presented are able to compute the heat transfer of the mold flux with varying 

degrees of similarity to an in-use mold. 

Methods presented above are intended to measure the overall heat transfer of the 

system. Additional techniques were used to measure the thermal conductivity of the mold 

flux with varying degrees of crystallinity. These methods include: FTIR [53-54], laser flash 

[43, 55-56], non-stationary hot wire method [57-59], and even the double hot thermocouple 

technique (DHTT) [60]. Since radiative heat transfer has been proven to play a more pivotal 

role in heat transfer, measuring thermal conductivity is not useful for understanding mold 

gap behavior as measuring the overall heat transfer. 

1.3.3.2 Crystallinity and air gap effects. Researchers agree that crystallization 

behavior is the dominant influence on heat transfer. [61-68] Crystallization reduces the 

heat transfer by two mechanisms: (1) shrinkage during crystallization increases the air gap 

between the mold wall and the mold flux and (2) transmissivity of crystallized mold flux 

is reduced, overall reducing radiative heat flux. [61] Heat transfer control is critical for 

steel shell solidification; the required shell thickness is dictated by the steel grade. 

Peritectic (PC) have a large volumetric shrinkage during the δ-γ phase transition, which 

increases the stress in the solidified shell, making PC steels prone to longitudinal cracking. 

Surface quality of PC steels can be improved by increasing the crystallinity and thickness 

of the film. [62] Low carbon (LC) steels are generally cast at a higher speed because they 

are more resistant to cracking. Higher casting speeds result in thinner shell thicknesses and 

higher frictional forces, which increases the probability of a breakout. [63] Therefore, for 
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LC steels a glassy layer of flux is often maintained between the strand and the mold to 

increase heat flux and maximize shell thickness before mold exit.   

Dynamic flux crystallization experiments by Wang and Cramb [47, 64] showed that 

crystallization reduces radiative heat transfer by 16-20%, which agrees with work by 

Ozawa et al. [65] The study by Ozawa suggests that radiative conductivity becomes 

constant above 15% crystallization and lattice conductivity increased with increasing 

crystallization. [65] The increase in lattice conductivity was more notable above 20% 

crystallization, which is speculated to be related to higher lattice connectivity.  

An air gap forms between the flux film and mold wall because shrinkage occurs as 

the flux film crystallizes, thus increasing the surface roughness of the flux film. A study by 

Cho et al. showed that increased basicity of mold powder can lead to higher shrinkage [66]. 

Yamauchi et al. noted a 15% reduction in heat transfer for a high basicity flux and proposed 

three mechanisms for this behavior: 1) an increase in micropores, 2) a high crystalline 

fraction, and 3) an increase in surface roughness. Several experiments have demonstrated 

that interfacial resistance controls heat transfer [67], and that the gas type and gap size will 

heavily influence the heat transfer coefficient. [68]  

1.3.3.3 Compositional effects. Additions of certain components can improve or 

impede the ability to crystallize and so affect the overall heat transfer. J. Diao et al. 

published two papers concerning the effects of transition metal oxides on the heat transfer 

behavior of the mold powder, primarily focused on FeO, MnO, and TiO2. [53, 69] These 

studies found that transition metal oxides reduce heat transfer, but the effect is more 

pronounced in crystallized regions than glassy regions. Another study disagreed, showing 

results that FeO increases the apparent absorptivity and decreases apparent reflectivity, 

which does not reduce heat transfer. [61] The authors’ claim that crystallized mold fluxes 

can further reduce radiative heat transfer without the addition of FeO. J. Bothma has shown 

that the effect of TiO2 during the casting of stainless steels is overshadowed by the increase 

in viscosity due to the exchange reaction in (4).[70] This increase in viscosity causes 

porosity and the contact resistance to increase effectively limiting heat transfer.  

The effects of basicity and alumina additions on the thermal conductivity were 

measured in two separate experiments using the same non-stationary hot wire method. [57-

58] Basicity increases were shown to decrease the thermal conductivity when C/S < 1. 
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However when C/S > 1, the thermal conductivity became constant. Experimental results 

also showed that additions of alumina (up to 15-20 wt%) increased the thermal 

conductivity. [57-58] 

 Extensive research has been performed to improve the understanding of heat 

transfer behavior in mold fluxes. Standard techniques are used to study thermal 

conductivity, while specific experiments have been designed to study the heat transfer 

behavior of mold fluxes. Studies agree that a larger gap between the flux film and the mold 

wall reduces heat transfer. Radiative heat transfer will be reduced by increasing the 

crystallization fraction, but lattice conductivity will increase. Compositional effects on heat 

transfer are mainly related to the overall effect of the component on crystallization 

behavior.  

1.3.4. Crystalline Phases and Morphology. Crystalline phases that form in the  

mold gap play a substantial role in the heat transfer and the overall strength of the flux film. 

Cuspidine has been identified as the primary phase, but several other phases have been 

reported to form based upon the chemistry of the mold powder. A review of the phases 

reported in literature are summarized in Table 1.3. This table excludes fluorine-free mold 

fluxes and phases that form in AHSS mold powders. Most phases reported contain Na, Ca, 

Si, Al, and O, the primary atomic constituents of mold powders. 

 Crystal morphology is also important to consider as it often indicates the thermal 

history of the crystal. Using single hot thermocouple technique (SHTT) and double hot 

thermocouple technique (DHTT) to create continuous cooling transformation (CCT) 

diagrams and time-temperature-transformation (TTT) diagrams, Li et al. were able to 

observe crystal formation at various times and temperatures. [78] At the highest 

temperatures (>1350°C) equiaxed spherical crystals were observed. Dendritic crystals 

grew quickly in the range of ~1250°C to 1350°C due to the fluidity of the melt. Equiaxed 

and columnar growth occurred at low temperatures (1175°C-1250°C), and below 1175°C 

only columnar growth occurred. [78] A study by Mizuno et al. observed similar structures 

in laser microscopy samples and glass films heat treated at various temperatures in a 

resistance furnace. [80] In this case directional columnar grains were observed at 800°C 

and equiaxed dendrites formed at 600°C. Dendritic growth suggests a large undercooling 

during quenching, which in the case of the glass films could indicate nucleation had already 
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Table 1.3: A review of phases reported in literature through cooling from a 

liquid or aging from a glass.  

Phases Formula References 

Cuspidine Ca4Si2O7F2 [51,71-81] 

Nepheline NaAlSiO4 [72, 76, 82] 

Combeite Na2Ca2Si3O9 [71, 73, 82] 

Gehlenite Ca2Al2SiO7 [71, 73, 82-83] 

Melilite (Ca,Na)2(Al,Mg,Fe++)(Si,Al)2O7 [83] 

Akermanite Ca2Mg[Si2O7] [83] 

Sodium Silicate Na2SiO3 [72] 

Pseudo-wollastonite CaSiO3 [72] 

Hematite Fe2O3 [72] 

Wollastonite β-CaSiO3 [73, 81, 82] 

Larnite Ca2SiO4 [73] 

Rankinite Ca3Si2O7 [73] 

Merwinite Ca3Mg(SiO4)2 [73] 

Hatrurite Ca3SiO5 [73] 

Fluorite CaF2 [74, 77] 

Sodium fluoride NaF [76-77] 

Calcium silicate hydrate Ca2Si6O17(OH)2 [77] 

Tetrasodium aluminosilicate Na4Al2Si2O9 [78] 

Calcium sodium silicate Na2Ca2Si2O7 [78] 

Disodium aluminosilicate Na4Al2Si2O9 [82] 

 

 

occurred in the glass during the initial quench. Other authors attribute the dendritic crystal 

growth to basicity or cooling rate. [51, 74, 81, 84] Dendritic growth can occur 

homogeneously (equiaxed crystals) or heterogeneously by nucleating and growing off of 

another phase or pore. [74] Although phases are readily identified via XRD and 

morphologies viewed using SEM, a correlation between thermal history, phase, and crystal 

morphology has only be clarified at short times. [85] The devitrification behavior below 

the nose of the curve needs to be studied for longer times.   

1.3.5. Fluxes for Advanced High Strength Steel (AHSS) Casting. Steel  

production in some countries is inexpensive due to reduced labor costs. In order to stay 

competitive, many American companies are pushing to produce niche steels that are 

difficult to cast, such as high aluminum transformation-induced plasticity (TRIP) and 
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peritectic steels. High aluminum steels are difficult to cast because the aluminum in the 

steel will reduce less stable oxides in the mold powder such as SiO2 and MnO: [86] 

Components in brackets are in the steel and parenthesized components are in the mold flux. 

 

 3(𝑆𝑖𝑂2) + 4[𝐴𝑙] → 3[𝑆𝑖] + 2(𝐴𝑙2𝑂3) (6) 

 

 3(𝑀𝑛𝑂) + 2[𝐴𝑙] → 3[𝑀𝑛] + (𝐴𝑙2𝑂3) (7) 

 

These exchange reactions will minimally effect the composition of the steel, however the 

composition of the mold powder can be greatly affected. The alumina content of the mold 

powder can increase up to 30% [87], which affects the properties of the mold powder. 

Residence time in the mold gap can drastically change the lubrication and heat transfer 

behavior of the mold powder.  

Additions of various modifiers have been investigated to evaluate their effect on 

critical properties such as crystallization temperature, critical cooling rate and the 

crystalline phases formed. The primary crystalline phase that forms in Ca-Si based AHSS 

mold fluxes is CaF2. [88-90] This phase can be modified with up to 10% TiO2 addition, 

which increases the crystallization temperature and forms MgO, Ca12Al14O33, and CaTiO3. 

[91] Li2O suppresses crystallization by decreasing the critical cooling rate and the 

crystallization temperature. [88] Lithia also inhibits high temperature phase formation by 

increasing the incubation time; crystallization of cuspidine and Ca2Al2SiO7 are suppressed 

in favor of LiAlO2. Na2O also suppresses crystallization and decreases the crystallization 

temperature. Sodium promotes nepheline growth and decreases incubation time. [88] BaO 

inhibits crystallization and promotes Ba-rich phases. [89] BaO also increases heat transfer, 

reduces the crystallization temperature and critical cooling rate, and curtails the effect of 

increasing alumina to silica ratio. [90] Alone, additions of B2O3 inhibit the crystallization 

of CaF2. [89] However in combination with BaO, B2O3 promotes crystallization in the high 

temperature region and CaF2 forms. [89] MnO is a reducible oxide and may be exchanged 

with aluminum in the steel, although additions of MnO improve heat transfer by reducing 

the thickness of the crystallized layer and increasing the thickness of the liquid flux. [92] 
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Research has been focused on eliminating the Si-Al exchange reaction, primarily 

through the development of Ca-Al based fluxes. [93] Slabs were successfully cast with 

reduced surface defects and less than 5% overall alumina pick up by using a Ca-Al based 

flux. [94] Crystallization temperatures of Ca-Al fluxes are lower than conventional Ca-Si 

fluxes, Ca-Al fluxes can also crystallize cuspidine, lower heat transfer at the meniscus, and 

yield complex morphologies. [95] Casts employing Ca-Al based fluxes have been 

successful, but more development work is needed in this area. It is necessary to improve 

our understanding of the phases that crystallize and how to control the formation of the 

complex crystal morphologies.  

 

1.4. KINETICS 

This section will provide an overview to the homogeneous and heterogeneous 

nucleation behavior and growth phenomena. The Johnson-Mehl-Avrami (JMA) technique 

for analyzing the combined nucleation and growth behavior will also be detailed. 

1.4.1. Nucleation Theory. [96] A barrier exists for the formation of a new phase  

from a liquid or a gas. The new phase forms by agglomerating a small nucleus of atoms. 

The rate of movement of atoms to and from the nucleus defines the rate of new phase 

formation. Nucleation can occur homogeneously or heterogeneously. Homogeneous 

nucleation occurs by the spontaneous formation and growth of nuclei of the new phase. 

Heterogeneous nucleation lowers the surface energy barrier of nucleation by initiating the 

new phase on a foreign phase or particle. Mathematical considerations of the energy barrier 

of homogeneous and heterogeneous nucleation will be discussed in the following sections. 

1.4.1.1 Homogeneous nucleation. [96] Max Volmer invented nucleation theory by  

considering the surface energy barrier difference between small particles and the bulk 

phase. He assumed that the free energy favoring nucleation formation would have to 

balance with the decreased free energy of the new phase with the increased surface energy 

required to form a new cluster. Assuming the cluster is a sphere with radius r, Volmer was 

able to define the change in free energy for cluster formation as: 
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∆Gr =  ∆GV

4

3
πr3 + 𝛾4πr2 

(8) 

 

where ΔGV is the change in free energy per unit volume and γ is the surface tension. 

Separating Equation 8 into two terms, the first term describes the bulk free energy of the 

new phase and the second term refers to the surface free energy of the nuclei. If ΔGr is 

plotted as a function of radius, a critical radius (r*) can be defined; r* is the radius when 

the bulk free energy and the surface free energy term are equal.  

 

 
𝑟∗ =  

2𝛾

∆𝐺𝑉
 

(9) 

 

For radius sizes greater than r* nucleation is possible because the bulk free energy of the 

new phase is larger than the surface free energy term, however below r* nucleation will 

not occur because the surface free energy is too large. This relationship is graphically 

shown as Figure 1.5. By substituting r* (Equation 9) back into free energy for cluster 

formation equation (Equation 8), the free energy to form a cluster can be calculated.  

 

 
∆𝐺𝑟∗ =  

16

3

𝜋𝜎3

(∆𝐺𝑉)2
 

(10) 

 

 

 

Figure 1.5: Gibbs free energy as a function of the radius of the nucleus. The 

critical Gibbs free energy (ΔG*) and critical radius (r*) are defined to occur 

when the interfacial energy is equal volume free energy.  
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Since the probability of finding a fluctuation of energy, W, is given by a Boltzmann factor: 

exp (-W/kT), the probability of finding a cluster of critical size r* among N atoms is: 

 

 𝑁𝑟∗

𝑁
= exp (−

∆𝐺𝑟∗

𝑘𝑇
) = exp (−

16𝜋𝜎3

3𝑘𝑇(∆𝐺𝑣)2
) 

(11) 

 

The probability of finding a critical size cluster in Equation 11 can be related to the 

nucleation rate (I) by: 

 

 
𝐼 =  

𝑁𝑟∗

𝑁
∙ 𝑣 

(12) 

 

where υ is the atomic jump frequency. Equation 11 can also be related to temperature to 

solve for various degrees of undercooling by expanding the volume free energy term into 

its components: 

 

∆𝐺 =  ∆𝐻 − 𝑇∆𝑆 ≅  ∆𝐻 −
𝑇

𝑇𝑚
∆𝐻 =  ∆𝐻 (1 −

𝑇

𝑇𝑚
) =

∆𝐻

𝑇𝑚

(𝑇𝑚 − 𝑇) =
∆𝐻

𝑇𝑚
(∆𝑇) 

(13) 

 

where H is enthalpy, S is entropy, T is temperature, and Tm is the melting temperature. 

When Equation 13 is substituted into Equation 11, the result is an equation that relates the 

critical cluster size to the degree of undercooling (ΔT).  

 

 
𝑁𝑟∗

𝑁
= exp (−

16𝜋𝜎3

3𝑘𝑇(
∆𝐻

𝑇𝑚 
(∆𝑇))

2)  
(14) 

 

 

A critical cluster homogeneously nucleated from a liquid typically contains about 

300 atoms. [96] The free energy required to form a cluster accounts for the free energy 

change necessary for all 300 atoms. Nucleation occurs rapidly once a certain degree of 

undercooling is achieved, especially in systems where atom mobility is high such as a 

liquid metal. In systems with high viscosity, such as glasses, the growth rate of nuclei can 
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be reduced so the rate can be measured. Surface tensions are difficult to measure because 

of surface irregularities and defects in the structure, therefore it is not straightforward to 

use the equations stated above. Additional limitations of the classical nucleation theory 

include: assuming the critical nucleus is a sphere, ignoring free energy contributions from 

other sources such as stress, and assuming the cluster is at equilibrium. Despite the 

limitations of classical theory, Zanotto and James validated that classical theory 

satisfactorily described the temperature dependence of nucleation rates over a wide range 

of temperatures for lithium silicate and barium silicate melts. [97] In addition, Zanotto and 

James suggest that the interfacial energy may not be independent of temperature as 

assumed.  

1.4.1.2 Heterogeneous nucleation. Homogeneous nucleation assumes that 

nucleation occurs spontaneously due to the reduction in free energy for nuclei greater than 

a critical size. However, there are often foreign particles present that can act as nucleation 

sites and further reduce the energy barrier for nucleation. In heterogeneous nucleation, the 

wetting angle (θ) describes the interaction of the new phase with that of a foreign particle. 

When surface tension between the two phases is low, θ is small. Complete wetting occurs 

when θ = 0. The wetting angle and the surface tensions between a nucleating droplet and a 

mold wall are shown in Figure 1.6. Balancing the surface tension terms yields: 

 

 𝛾𝐿𝑀 =  𝛾𝑆𝑀 + 𝛾𝑆𝐿 cos 𝜃 (15) 

 

 

 

Figure 1.6: Schematic of a solid droplet (S) heterogeneously nucleating 

along a mold wall (M) from a liquid (L). The surface tension (γ) between 

each phase and the contact angle (θ) are labelled. 
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The free energy for heterogeneous nucleation is expressed as: 

 

 ∆𝐺𝐻𝑒𝑡 = 𝑉𝑠∆𝐺𝑉 + 𝐴𝐿𝑆𝛾𝑆𝐿 +  𝐴𝑆𝑀𝛾𝑆𝑀 − 𝐴𝐿𝑀𝛾𝐿𝑀 (16) 

 

where A is the interfacial area and Vs is the volume of the droplet. Since ALM = ASM, 

Equation 15 can be substituted into Equation 16 and simplified: 

 

 
∆𝐺𝐻𝑒𝑡 = (2 − 3𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠3𝜃) [

1

3
∆𝐺𝑉𝜋𝑟3 + 𝛾𝐿𝑆𝜋𝑟2] 

(17) 

 

The free energy for heterogeneous nucleation (Equation 17) related back to homogeneous 

nucleation (Equation 8) is: 

 

 
∆𝐺𝐻𝑒𝑡 =  ∆𝐺𝐻𝑜𝑚𝑜 [

2 − 3𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠3𝜃

4
] 

(18) 

 

When θ = 90°, the free energy for heterogeneous nucleation is reduced to half of the free 

energy for homogeneous nucleation. Even at non-wetting conditions (θ > 90°) the free 

energy for nucleation is reduced for heterogeneous nuclei. Additional surface roughness 

can also further reduce the free energy required for nucleation. When foreign particles are 

present, it is far more likely that phases will nucleate heterogeneously because the free 

energy is significantly reduced for cluster formation. 

1.4.2. Growth Behavior.  This section reviews the classical models for crystal  

growth from a glass melt; these mechanisms occur after the nucleation of critical-sized 

nuclei. K.A. Jackson, D.R. Uhlmann, and J.D. Hunt pioneered many of the classic growth 

models used today. [98] The main points on the theory of interface motion and overall 

growth are summarized by I. Gutzow in [99]. A brief introduction to growth velocity and 

the mechanisms of crystal growth will be presented here. The crystallization velocity, V, 

of a crystal growing in a supersaturated phase is temperature dependent and can be related 

by: 
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𝑉 ≅ 𝑐𝑜𝑛𝑠𝑡.× 𝑧 [1 − exp (−

∆𝜇

𝑘𝑇
)] Ω 

(19) 

 

Where z is the impingement rate of the molecules of the ambient phase, Δμ is the 

thermodynamic driving force (i.e. the supersaturation), and Ω is a function of Δμ. The form 

of Ω is dependent on the growth mechanism.  

For normal growth, molecules are incorporated directly into growth sites of the 

advancing crystal, causing Ω to be constant and equal to the relative number of growth 

sites. This type of growth is only possible on non-equilibrium, high-faceted crystal faces. 

Melts with structurally similar corresponding crystals with atomically rough interfaces 

have been shown to increase the number of growth sites, causing continuous growth.  

 Spiral growth is only possible when the growing crystal phase contains screw 

dislocations.  The screw dislocations act as a constant source of growth sites and the driving 

force becomes: 

 

 
Ω =

𝑑Δ𝜇

4𝜋𝑉𝑚𝜎
 

(20) 

 

Where σ is the specific surface energy at the interface, Vm is the molar volume, and d is 

the inter-atomic spacing of the crystal.  

 Two-dimensional nuclei formed onto a foreign crystal can also act as growth sites 

for lateral crystalline layer propagation. For this growth mechanism, the thermodynamic 

driving force is: 

 

 
Ω = 𝑐𝑜𝑛𝑠𝑡.× exp (−

𝐾2

𝑘𝑇∆𝜇
) 

(21) 

 

 
𝐾2 =

𝜋𝜎2𝑉𝑚𝑑

𝑅
 

(22) 
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Lateral growth by either surface nucleation or spiral growth is only possible for high 

entropy melts. For these growth mechanisms to occur in lower entropy systems, a greater 

degree of undercooling is necessary.  

All three mechanisms of crystal growth can occur at small undercoolings for simple 

glass forming melts. The valid range for growth mechanisms is predicted by melt to crystal 

structure similarity. Lateral growth modes are only observed in glass forming melts where 

the crystallization process is tied to significant structural changes. Spiral growth is the 

predominant form of reconstructive crystallization. It is theoretically possible that the 

growth mechanism will change based upon the degree of undercooling, however it is 

difficult to prove this transition experimentally. 

1.4.3. JMA Kinetics. [96, 100] Johnson - Mehl - Avrami (JMA) kinetics is a model  

for nucleation and growth that assumes both behaviors occur simultaneously throughout 

the transformation period. There are four primary assumptions for this model: (1) the 

growth rate of the nucleus is constant, (2) nucleation is homogeneous (or heterogeneous on 

randomly dispersed nuclei), (3) the nucleation rate is constant, and (4) the new phase grows 

as a sphere. The derivation for the model can be found in [96] and will not be repeated 

here. The Johnson-Mehl equation models the volume of material transformed as a function 

of nucleation and growth rate. 

 

 𝑋𝑓 =  1 − exp (
−𝜋

3
𝐼v3𝑡4) (23) 

 

In Equation 23, Xf is the fraction transformed, I is the nucleation rate, v is the constant 

growth rate, and t is time. This form of the equation corrects for nuclei overlap. Avrami 

proposed a more general form of this equation.  

 

 𝑋𝑓 = 1 − exp (−(𝑘𝑡)𝑛) (24) 

 

 
𝑘 =  𝑘0 exp (

−𝑄

𝑅𝑇
) 

(25) 

 



 

 

27 

where  k0 is the attempt frequency, n is the time exponent, and Q is the activation energy. 

If k0, n, and Q are constant over a range of temperatures the reaction is considered 

isokinetic. Large values of n indicate a fast reaction, whereas smaller values of n 

correspond to a slower reaction. The parameter k shifts the curve left and right, high k 

values result in shorter incubation times whereas small k values have longer incubation 

times. To solve for Avrami constants the fraction transformed is measured at isothermal 

temperatures and plotted as a function of time. Figure 1.7 is a typical graphical 

representation of a JMA curve.  With changes in temperature, the shape of the curve will 

remain the same, but the curve will be translated to longer or shorter times. Shifts in k0 

have the same effect, the overall shape remains, but larger k0 values shift to shorter times. 

Changes in n correspond to a change in slope; when n increases, growth occurs over a 

shorter period of time and the slope increases.   

 

 

 

Figure 1.7: A typical JMA curve plotting fraction transformed as a function of log time. 

 

 

The JMA equation can be used to find the time required for a particular fraction of 

transformation. Typically 5% is used to define the onset of crystallization and 95% 

indicates the end of the reaction. This translates well into a time-temperature-

transformation (TTT)-diagram, which will be expanded upon in section 1.5.2. A useful 

way to extract the kinetic constants from the crystallization data is to plot –ln (1-Xf) versus 

time on a double log plot. Equation 26 can be used to extract the values of n and k. 
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 log(− 𝑙𝑛(1 − 𝑋𝑓)) = 𝑛 log(𝑘) + 𝑛 log (𝑡) (26) 

 

Equation 26 follows the linear equation form, y = mx + b; n is defined by the slope 

of the line and the intercept is equal to n log (k). The activation energy of the reaction can 

also be determined by using Equation 28. The validity of the JMA model can be tested by 

an isothermal method (Equation 27) and an isochronal method (Equation 25). Non-linear 

portions of the plotted isothermal data indicates that the behavior is deviating from Avrami 

kinetics. 

 

 𝑑 ln (− ln(1 − 𝑋𝑓))

𝑑 ln (
1
𝑇

)
= 𝑛 

(27) 

 

 𝑑 𝑙𝑛[− ln(1 − 𝑋𝑓)]

𝑑 ln (
1
𝑇

)
= (

𝑛𝑄

𝑅
) 

(28) 

  

The Johnson Mehl equation is similar to the Avrami equation, but it introduces separate 

exponents for nucleation and growth. 

 

 𝑋𝑓 = 1 − exp (−
𝜋

3
𝐽𝑟𝐺𝑠𝑡𝑟+𝑠) = 1 − exp ((−𝑘𝑡)𝑛) (29) 

 

In Equation 29, n = r + s. When separated into nucleation and growth portions, the 

exponents give insight to the mechanism of nucleation and growth. When s = 1 needle like 

growth occurs, s = 2 results in plate-like growth, and when s = 3 crystal growth is 

spheroidal. The nucleation component, r, defines the nucleation rate. When r = 1 the 

nucleation rate is constant, if r > 1 the nucleation rate increases with time, and if r < 1 

nucleation rate decreases with time. Nucleation is complete and site saturation has been 

achieved when r = 0. The JMA method is commonly used to produce TTT-diagrams and 

to determine the mechanism of both nucleation and growth.  
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1.5. CCT & TTT CRYSTALLIZATION DIAGRAMS 

Two diagrams are commonly generated to describe crystallization phenomena: 

continuous cooling transformation diagrams (CCT) and time-temperature-transformation 

(TTT) diagrams. CCT diagrams are experimentally determined by cooling a liquid from a 

melt and measuring the crystallization temperature during cooling. Some tests determine 

the onset of crystallization by visually observing the sample throughout the entire test. [85] 

Thermal techniques detect a peak, which indicates an exothermic transformation. [101] A 

CCT diagram is generated by performing the experiment at different cooling rates. 

 TTT diagrams are generated using isothermal techniques. The onset of 

crystallization is either determined optically or with a characterization technique such as 

X-ray diffraction (XRD). The resulting shape of a TTT diagram is typically a “C”, where 

the lowest and highest temperatures take the longest amount of time to crystallize. [85] The 

nose of the TTT-curve defines the separation between crystallization and glass formation. 

The cooling rate that crosses the nose of the TTT-cure is called the critical cooling rate 

(CCR). Samples cooled faster than the CCR are glassy; samples cooled slower are 

crystalline.  

TTT diagrams and CCT diagrams appear to map out the same regions, however the 

two diagrams do not generate the same curve. Since CCT curves are generated by 

continuous cooling, crystallization temperatures are lower and longer times are required 

for the onset of crystallization compared to isothermal techniques. A lot of development 

has gone into transforming CCT diagrams into TTT diagrams and vice versa for steels. 

[102] This ultimately led to the creation of the JMatPro software, which, unfortunately, is 

not as good at converting oxide systems. However, using Scheil’s additivity rule CCT 

diagrams can be converted to TTT diagrams for oxide systems. [40] This rule assumes that 

the continuous cooling curve can be described by the addition of several small isothermal 

steps.  

 ∑
Δ𝑡𝑖

𝜏𝑖
= 1𝑛

𝑖−1   (30) 

 

In Equation 30, Δti represents the time period for the i-th isothermal step and τi is the ideal 

incubation time of TTT-diagram at the same temperature of the i-th isothermal step.  
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1.5.1. Experimental Methods. In the following sections, several techniques used  

to generate both TTT and CCT diagrams will be outlined to highlight the advantages and 

disadvantages of each technique. In addition, the effect of composition on the 

crystallization temperature and incubation time will be discussed for mold flux systems.  

1.5.1.1 Differential thermal analysis (DTA). Differential thermal analysis is a 

robust technique for materials analysis. Heat is applied to a sample and a reference material 

simultaneously, while the temperature of each sample is continuously monitored with 

thermocouples. [103] As the sample goes through physical and chemical changes, such as  

melting, decarburization, crystallization etc., the monitored temperature is affected by 

changes in internal energy. By monitoring differences in temperature between the sample 

and the reference, temperature and energy for the physical and chemical changes can be 

determined.  

DTA is used to determine the crystallization temperature of materials at different 

cooling rates. [104] The crystallization temperature is defined by the onset of the 

exothermic peak on cooling. DTA can be used to generate CCT curves by cooling at 

various rates and determining the crystallization temperature. [105] However, this 

technique is limited to slow cooling rates, which often are not representative of the mold 

gap. [106] Most commercial DTA units are limited to sample sizes of less than one gram, 

which intensifies the effect of compositional changes.  Maldonado et al. were able to use 

DTA to determine the kinetic parameters for mold flux powders using a Kissinger-type 

equation, which was used to predict the TTT-diagram. [107] A Kissenger-type equation 

 

 

 

Figure 1.8: Schematic of a typical DTA experimental set up from [104]. 
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can be used to determine the activation energy and an Arrhenius pre-exponential factor 

and can take the form shown in Equation 31.  

 

 ln (
𝛽

𝑇𝑚
2 ) =  (ln (𝑍𝑛(1 − 𝑥𝑚)𝑛−1) − ln (

𝐸

𝑅
)) −  

𝐸

𝑅
(

1

𝑇𝑚
)  (31) 

 

where β is the heating or cooling rate, Z is the pre-exponential factor, E is the activation 

emergy, Tm is the melting temperature, xm is the volume fraction of crytals at the peak 

maximum, R is the gas constant, and n is the order of the reaction. The predicted TTT-

diagram is in good agreement with experimental results. 

1.5.1.2 Differential scanning calorimetry (DSC). Differential scanning 

calorimetry is a testing method patented by E. Watson and M. O’Neil. [103] Instead of 

applying constant heat and monitoring temperature changes like DTA, in DSC heat is 

added to maintain constant temperature between a specimen and a reference.  This provides 

a direct quantitative measurement of heat effects, as well as increased sharpness and 

resolution. Faster speeds can be used to survey a wide range of temperatures in a short 

time. DSC is capable of using smaller sample sizes than DTA, which intensifies the issue 

of compositional change. However this could be mitigated by using sealed sample holders. 

DSC was employed by Meng et al. to create CCT curves with cooling rates from 1 

to 30°C/sec. [105] Since DSC is limited to slow cooling rates relative to the critical cooling 

rate of most fluxes,  the authors had to employ a different technique to increase the cooling 

rate. Maldonado et al. also used DSC to determine the kinetic parameters for a Kissenger-

type equation so the TTT curve could be predicted. [109] The DSC predicted TTT-diagram 

agrees well with the experimentally determined diagram.  

1.5.1.3 Single hot thermocouple technique (SHTT). Single hot thermocouple 

technique was developed by Kasiwaya et al. for in situ observation of crystallization 

phenomena and to overcome the slow cooling rates needed for DTA and DSC. [110] SHTT 

technique utilizes a complex control system that rapidly alternates between heating the 

specimen and monitoring temperature. The B-type thermocouple is bent into a U-shape 

and a small glass specimen (< 1g) is balanced on the thermocouple as shown in Figure 1.9 

(a). The specimen is melted and held at temperature to ensure uniformity, then quenched 

following the desired thermal profile. This method has been used to directly continuously 
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cool samples for CCT diagrams [101, 110-113], and to isothermally age samples for TTT 

diagrams [101, 110-114].  

SHTT is limited to small sample sizes (< 1g) and slower cooling rates (max 16°C/s) 

relative to those experienced in the mold (average of 20-25°C/s, locally 50-100°C/s). [106] 

In addition, because the crystallization behavior can be directly observed, the flux 

compositions that can be tested are limited to transparent systems. Transparent flux systems 

often exclude transition metal oxides such as FeO and MnO, which can significantly impact 

the crystallization behavior of the flux. 

 

 

 

Figure 1.9: Schematic of the sample region of (a) SHTT and (b) DHTT 

technique from [110]. 

 

 

1.5.1.4 Double hot thermocouple technique (DHTT). Double hot thermocouple 

technique is an extension of SHTT. As shown in Figure 1.9 (b), DHTT employs two 

thermocouples which can introduce a thermal gradient in the flux sample. [110] The sample 

size of the flux is still small (15-20mg) [104], but because this method employs a thermal 

gradient it is more representative of mold gap behavior.  DHTT can be used to generate 

CCT [85, 110] and TTT-curves [85, 115]. This technique is often used to see how 

crystallization behavior changes with the introduction of a thermal gradient [116]. The 
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same limitations of SHTT apply to DHTT: small sample size, slower cooling rates relative 

to the mold, and the flux must be transparent.  

1.5.1.5 Confocal scanning laser microscopy (CSLM). Crystallization behavior 

can be observed in-situ using a hot-stage CSLM. A halogen lamp heats the sample while 

temperature is continuously monitored with a thermocouple as shown in Figure 1.10. [117] 

Sample images are continuously recorded and crystallization temperature and can be 

reviewed to determine the time and temperature of crystallization. In a conventional 

CSLM, fluorine cannot be controlled once it volatilizes, which impacts the overall 

chemistry of the flux. Park et al. modified their microscope to include a quartz cover to 

isolate the observation and contain volatiles. [118] 

 

 

 

Figure 1.10: Schematic of a typical CSLM set up for mold flux 

crystallization analysis from [117]. 

 

 

CSLM is a high magnification technique, which aids in measuring small (~50μm) 

crystal. However, the surface area of the sample is large at high magnification and it is 

difficult to find the first crystal to measure the size. [104] In addition, CSLM microscopes 

are expensive and thus inaccessible to many researchers.  
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1.5.1.6 Other techniques. The previously described methods are commonly used 

to study mold powders. Techniques reviewed in this section are more uncommon, but have 

been employed by a few research groups. Before the use of SHTT and DHTT, many 

researchers would use a quench, re-heat, and isothermal age method to determine the TTT-

diagram of the system. Using this technique, molten flux was quenched to room 

temperature and confirmed to be completely glassy. The material was then reheated in a 

furnace to an isothermal temperature and aged to investigate the devitrification behavior. 

[108] This method does not replicate the thermal history of the fluxes in the mold, thus it 

is expected that the crystal morphologies and incubation times will differ from those 

quench to and held at the aging temperature directly.  

Prasad et al. review the segmented mold or “step chill” method used to generate 

CCT diagrams. [106] A stair-step type mold with eight cells of different widths can be used 

to test eight cooling rates at one time. Temperature is monitored in each cell and 

differentiated to identify thermal arrests, which indicate a phase change. Crystal phases and 

morphology must be analyzed using other characterization techniques such as XRD and 

microscopy.  

An atomizer technique can also be employed to generate the highest cooling rates. 

[104, 106] Glassy samples can be made for other methods or this technique can be used to 

analyze flux crystallization behavior. This method uses a high speed two color pyrometer, 

which can measure temperature, velocity and size. If crystals nucleate in the droplet the 

pyrometer will note the discontinuity in the trajectory. 

The dip thermocouple method can be used to increase the cooling rate experienced 

by the mold flux relative to DSC or DTA. A thermocouple is dipped into molten flux, then 

removed and allowed to cool in air. As the droplet of flux at the end of the thermocouple 

cools, the temperature is continuously monitored. [104, 106] Thermal data can be analyzed 

by differentiating and identifying the thermal arrest that corresponds to crystallization.  

1.5.2. Compositional Effects. Similar trends can be noted between the  

compositional effects on CCT and TTT diagrams and the viscosity effects discussed earlier 

in Section 1.3.2.1. Flux composition can change the crystallization temperature and critical 

cooling rate on the CCT diagram. Incubation time, the time it takes to initiate 

crystallization, can vary in TTT diagrams.  
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Zirconia is commonly added to mold powders to promote crystallization. The 

crystallization temperature increases with increasing zirconia content. This is attributed to 

the zirconia acting as a site for heterogeneous nucleation. [111, 119] The incubation time 

varied based on temperature; at low temperature zirconia additions increased the viscosity 

and the incubation time increased. [111] When temperatures were elevated the incubation 

time was shortened, which was attributed to the decreased energy required for 

heterogeneous nucleation.  

Shu et al. observed no obvious effects of small (< 5 wt%) titania additions on the 

TTT-diagram. [39] Additions greater than 5% slightly decreased the incubation time. 

Another study noted an increase in incubation time with 2% titania additions. [111] As 

titania additions increased the nose of the curve became less sharp, eventually forming a 

double-nosed curve. Both studies agree that large (> 5 wt%) additions of TiO2 decrease 

incubation time. 

Increasing of lithium oxide content in lime-alumina based mold fluxes decrease the 

crystallization temperature. [88] CCT diagrams of conventional fluxes showed that 

additions less than 6 mass% Li2O easily formed a glass. Larger additions (> 6 mass%) 

increased the critical cooling rate by 4°C/s for every 1% lithium oxide added. [112] As 

lithium content was increased the incubation time increased at high temperatures and 

decreased at low temperatures. Lu et al. confirmed a decrease in incubation time at low 

temperatures after a critical addition (4-7 wt%) of lithium. [88] 

Sodium oxide additions lower the crystallization temperature of lime-alumina 

based mold fluxes, but have no impact on the critical cooling rate. [88] Incubation time is 

short at midrange temperatures, but increases dramatically at higher and lower 

temperatures. Increasing sodium oxide content does not change the incubation time at low 

temperatures, but increases the incubation time at high temperatures. The opposite effect 

occurs for MC steel flux compositions; Na2O promotes crystallization and increases the 

crystallization temperature. [78] Furthermore, incubation time is reduced at all 

temperatures with increasing Na2O content. Both studies note that when Na2O levels are 

high (> 7.5 mass%), the effect of additional Na2O on crystallization behavior is diminished. 

The differences in the results of the two studies emphasizes the importance of the 

interaction of all components in the system. In fluxes with more alumina, Na2O additions 
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balance the alumina ion in the glassy network, increasing the glassiness of the system. 

However in conventional fluxes sodium additions break up the glassy network and promote 

crystallization.  

B2O3 is a glass forming oxide, therefore the additions of boron oxide contribute to 

the glassy network. In a study of boron oxide additions between 0 and 5%, the incubation 

time increased by an order of magnitude. [39] In AHSS studies of lime-alumina mold 

powders, B2O3 has been added in excess of 15 wt% to keep the flux glassy throughout the 

casting sequence. [87] 

MnO additions have only been studied for lime-alumina based fluxes using the 

crystal fraction in DHTT thermal gradient experiments. [92] Results showed that additions 

of MnO increase in the liquid content of thermal gradient samples. MnO weakens the 

crystallization behavior of the flux by contributing the polymerization of the glassy 

network.  

Shifts in TTT diagrams and CCT diagrams are directly related to the effect of each 

addition on the glassy network. Polymerized networks take more time to crystallize, 

increasing incubation time and lowering the crystallization temperature. Depolymerized 

networks crystallize more easily, which translates to an increase in crystallization 

temperature and a decrease in incubation time.  

 

1.6. CHARACTERIZATION TECHNIQUES 

Conventional techniques such as scanning electron microscopy (SEM), energy 

dispersive spectroscopy (EDS), X-ray diffraction (XRD), and differential thermal analysis 

(DTA) were used to characterize samples from experiments conducted in this work. These 

methods are common and technique limitations are generally well known. This section will 

focus on lesser known techniques that were employed for sample analysis: 

cathodoluminescence (CL) and Reitveld analysis. This section will detail background 

information about each technique and describe some of the limitations of the 

characterization method.  

1.6.1. Cathodoluminescence Microscopy. Similar to scanning electron  

microscopy (SEM), cathodoluminescence phenomena is observed by impinging electrons 

onto a material surface. Electron excitation of the affected atoms results in the emission of 
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photons. This technological phenomena was first used for cathode ray tube based 

instruments. As electron microscopy was developed, CL has become a critical 

characterization technique in geology and has expanded to other fields. [121] CL provides 

two pieces of information: microscopy and spectroscopy. Microscopy produces a 

luminescent map of a region, whereas spectroscopy obtains a spectra at a specific point of 

interest. Steel industry applications primarily use the microscopy aspect of CL. [87, 122-

127] This technique uses a relatively simple set up with a small high-vacuum chamber with 

an optical window, which can be mounted onto an optical microscope. [121] A “flood 

illumination” electron gun, where a wide spray of electrons impinge the surface of the 

sample, is used to produce large total CL intensities, which increases the spectral resolution 

of the region. This technique is considered non-destructive, but can ionize or create defects 

in the surface of the sample. [121] This is a non-issue for steel industry samples, but can 

cause issues for materials where the defect chemistry is critical.  

 Luminescence phenomena are sensitive to slight changes in the material. Changes 

in CL are noted to occur due to intrinsic and extrinsic factors. Intrinsic factors are related 

to the structure and fundamental band gap of the material. [121] Extrinsic factors are 

associated with impurities in the band gap caused by: an increase in temperature, local 

defects, electric field, stress, and local chemistry changes. There is not a systematic way to 

separate the effect of intrinsic and extrinsic factors on CL bands because an applicable 

theory has not yet been developed. Consequently it is difficult to use CL as a quantitative 

technique. [121] Therefore, CL is often used in conjunction with other characterization 

methods. This methodology is limited to low magnification images due to objective lenses 

with long working distances, which cannot resolve multiphase regions smaller than 20μm. 

[122] 

1.6.1.1 Application of CL to the steel industry. CL was used in the steel industry  

to research inclusions, nozzle clogging, slags, and other non-metallic components. [122-

126]. Different phases have distinctive CL colors, distinguishing changes in chemistry in 

different regions.  For example corundum (Al2O3) is bright red in CL, whereas spinel 

(MgAl2O4) is bright green. [122] M. Karakus et al. examined a nozzle clog area using CL 

and discovered that, although it was previously suspected to be corundum, the clog was 

mostly comprised of spinel. [123] In the reflected light image (Figure 1.11A) the clog area  
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Figure 1.11: Reflected light (A) and CL images (B) of powdery deposits 

along the inside a post-mortem submerged entry nozzle. From [123]. 

 

 

is visible, but is a single color which seems to indicate that only one phase is present. 

However, two distinct phases are visible in the CL image (B): spinel (green) and corundum 

(red). 

Each phase has a distinct color, allowing it to be distinguished from the surrounding 

area. Most transition metal ions and rare earth elements are activators that emit photons in 

the visible range when excited by electrons. However, iron typically will poison the CL  

 

 

 

Figure 1.12: Refractory corrosion samples at the (a) refractory-slag 

interface and at (b) the refractory-steel interface. From [126]. 
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process, causing no color to be seen in phases with high iron concentrations. [122] The 

effect of iron on CL can be observed in refractory corrosion tests by A. Kumar et al. in 

Figure 1.12. [126] Image (a) contains some faint coloration in the slag layer, which contains 

CL active oxides. However at the steel-refractory interface in (b) no CL is observed in the 

steel layer due to the high iron content. CL is a better used technique when iron is absent, 

but it can be used to observe the effect of iron on the surrounding refractory material. 

1.6.1.2 Application of CL to mold fluxes. Aside from the papers presented in this  

thesis, only two references have specifically applied CL to mold fluxes. Microscopy results 

by E. Paransky et al. suggest that CL may be applied to mold fluxes and is effective for 

distinguishing between glassy regions and crystalline regions. [127] The authors suggest 

that CL may be used to determine the kinetics of crystalline layer growth, however the 

technique used is not clearly identified. However they note the difference in morphologies 

and stark contrast between phases. The authors recommend using this method in 

conjunction with image analysis software to better analyze the percentage of phases. 

Researchers at Arcelor Mittal and Stollberg USA used CL to better visualize the chemistry 

changes in the mold powder while casting AHSS. [87] They cast high aluminum TRIP 

steels using a few lime-silica and lime-alumina mold fluxes and studied the chemistry 

changes, crystallization behavior, and slab surface quality. Lime-silica fluxes had an 

orange-yellow tinge in CL images and tended to precipitate CaF2, resulting in a layered 

structure. As shown in Figure 1.13, the lime-alumina fluxes started as a blend of navy and 

greenish layers, but as the residence time in the mold increased, the colors progressed to a 

bright blue and pink, indicating a significant chemistry change. [87] These authors 

employed CL to visualize the crystallization behavior across the entire mold gap and were 

able to determine which powder minimized steel surface defects and retained desired 

properties. [87] 

1.6.2. Quantitative XRD. X-ray diffraction (XRD) is a structural technique that is  

often used to determine what crystalline phases are present in a specimen. Each crystalline 

phase has a specific “fingerprint,” a set of peaks that corresponds to the d-spacings present 

in the material. When multiple phases are present, it becomes more difficult to resolve 

which peaks belong to which phase. Software analysis has made it easier to match a 

specimen pattern with standard patterns. Relative peak heights of each phase does not  
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Figure 1.13: Optical and CL images of an advanced high strength steel mold 

flux film at various time during the alumina-silica exchange reaction in the 

mold. 

 

 

correlate linearly to the percentage of each phase present. [128] Therefore in order to 

quantify the percentage of each phase present a different method is needed. 

1.6.2.1 Methods. Cullity outlines three methods to quantify a multiphase sample: 

an external standard, direct comparison, and an internal standard. [128] The external 

standard method involves measuring a pure specimen of one of the phases present in the 
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material to determine a normalization constant that is related to the conditions of the 

instrument. The intensity ratio of a material containing phase α to pure α (Iα/Iαp) can be 

solved for using a complex relationship between the weight fractions, densities, and 

absorption constants. [128] Typically the relationship between Iα/Iαp is not linear, therefore 

a calibration curve can be made by testing the pure standard against synthetic mixtures of 

the two phases in different ratios as shown in Figure 1.14. 

 

 

 

Figure 1.14: Calibration curve for quartz with berryllia, cristobalite, and 

potassium chloride using pure quartz as an external standard. From [129]. 

 

 

The external standard method is beneficial because it is an indirect method and does 

not contaminate the sample. However this method can be difficult to implement because 

the mass absorption coefficient must be accurately measured for the sample and standard. 

Additionally this method cannot correct for microabsorption errors. Measurements on the 

pure standard will have to be repeated to compensate for the ageing of the tube as well as 

configurational changes in the instrument. 

The direct comparison method does not require a sample of a pure phase because 

another phase in the mixture becomes the reference line. This method works particularly 

well for materials such as iron that have two or more phases with the same composition, 
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but different structures. In this case the diffracted intensity equation of the two phases, γ 

and α, are related by: 

 

 𝐼𝛾

𝐼𝛼
=

𝑅𝛾𝑐𝛾

𝑅𝛼𝑐𝛼
 

(32) 

 

where I is the X-ray line intensity of each phase, c is the concentration of each phase, and 

R is a constant that depends on θ, hkl, and the material. Using this equation and the pattern, 

the value of cγ/cα can be determined. For a material like iron the two (or three) phases make 

up the entirety of the phases present, therefore using Equation 33, the percentage of each 

phase can be determined.  

 

 𝑐𝛼 + 𝑐𝛾 (+𝑐𝐶) = 1 (33) 

 

The parenthesized portion of Equation 32 is included only if a third phase, C, is present. In 

the case where a third phase is present an additional relation between either α or γ and C 

will be necessary. The direct comparison method works well for metallurgical samples 

where the total concentration of phases will add to one (i.e. no amorphous content).  

 The internal standard method mixes a known quantity of a pure standard into the 

sample. This standard is related to phases in the material by:  

 

 𝐼𝐴

𝐼𝑆
=  𝐾

𝑐𝐴

𝑐𝑆
 

(34) 

 

where A refers to the phase in the sample, S is the standard, and c is the weight percent of 

each phase. K is a constant that relates the two phases together. If corundum is used as the 

standard the Reference Intensity Ratio (RIR) value takes the place of K and is typically 

reported in all standard patterns. Since a single peak is used to determine the weight 

percentage of each phase, the results may be skewed due to preferential orientation or 

sample absorption. When peaks overlap, the intensity of a peak is difficult to extract.  

 All three methods described above are accepted methods to quantify XRD patterns. 

However since the development of computers, more sophisticated computer software has 
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been developed to account for complex phenomena that can affect the peak height, 

broadening, and shifts in peak location.    

1.6.2.2 Reitveld analysis. Developed by H. M. Reitveld in 1969, this method uses 

a computer to more comprehensively analyze the full diffraction pattern. [130] The 

Reitveld method applies a least-squares refinement until the best fit is obtained between 

the entire sample pattern and the calculated pattern. The calculated pattern can be refined 

using crystal structure models, diffraction optic effects, instrumental factors, and other 

specimen characteristics. [131] The user plays a vital role in Reitveld refinement. The user 

must determine all phases present in the pattern and throughout the refinement process 

apply various portions of the model. The order in which parts of the model are applied will 

affect the quantification results. The user must be sure that the model makes physical and 

chemical sense.  

 

1.7. PURPOSE STATEMENT 

The goal of this research is to characterize the morphology of commercial mold 

fluxes through flux film sampling at industrial companies. Those structures will then be 

replicated in the laboratory using both primary cooling and secondary isothermal aging 

techniques. These methodologies will be applied to several mold powders with different 

composition. Additionally the relationship between the mold flux film structure and mold 

thermal behavior will be investigated at manufacturing sites with instrumented molds to 

understand the effect of mold flux morphology and thermal history on the overall heat 

transfer. 
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2. METHODOLOGY 

2.1. INDUSTRIAL MOLD FLUXES 

Industrial sponsors supplied mold powders with a variety of chemistries for the 

testing procedures outlined in Sections 2.2 and 2.3. All mold powders were carbon coated, 

spray dried, and granulated; chemistries as measured by the manufacturer using XRF are 

listed in Table 2.1. Powders were calcined prior to employing either testing method to 

reduce melting time. All samples were calcined at 600°C for three hours and stirred 

periodically.  

 

 

Table 2.1: Industrial mold flux compositions in weight percent (R=Na, K, 

Li). Basicity is the ratio of lime to silica in the mold powder. A sample name 

was given to each mold powder to avoid disclosure of the supplier.  

Sample 

Name 
MgO Al2O3 MnO2 R2O F B2O3 ZrO2 TiO2 Fe2O3 Basicity 

G1 3 6  18 9 <1    0.8 

G2 3 6  17 9     0.8 

G3 2 5 2 13 10  2   0.92 

G4 3 4 2 13 10  2   0.83 

H1 2 5  10 4     1.16 

H2 4 3  14 9     0.77 

H3 4 11  14 9     0.77 

H4 2 5  11 9     0.92 

S1 <1 4  8 6     1.06 

S2 1 6  4 7     1.09 

S3 <1 5  8 5     0.98 

S4 2 5  7 7     1.25 

D1 2 4 0 11 8     0.99 

D2 1 4 0 11 9     1.18 

D3 2 3  10 8     1.12 

D4 1 3 0 11 9     1.15 

D5 3 4 3 5 8     1.1 

D6 2 4 2 5 8     1.2 

D7 6 3 <1 14 11 2    0.9 

D8 2 4  9 8     1.06 

U1 2 <1 <1 15 13     <1 <1 0.72 
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2.2. PRIMARY TESTING 

Approximately 55 grams of calcined powder were melted in air for 15 minutes at 

1350°C in a graphite crucible. Molten glass was poured directly into an instrumented step 

chill mold (SCM). SCMs were designed to test eight different cooling rates by having eight 

cells with varying widths as shown in Figure 2.1. Cooling rate is dictated by the cell width, 

with the widest cell (top) having the slowest cooling rate and the thinnest cell (bottom) 

having the highest cooling rate. The dimensions of each cell are given in Table 2.2.  Steps 

were instrumented with a grounded, 0.020” outer-diameter, K-type thermocouple at the 

center of the cell. A portable data logger (Graphtec midi logger GL 220) monitored 

temperature every 0.01 seconds.  

 

 

  

(a) (b) 

Figure 2.1: Configuration of small copper 8-step chill mold with (a) defined 

cell sizes and (b) thermal insulation and thermocouple instrumentation. 

 

 

Table 2.2: Step chill mold cell dimensions. 

Step 1 2 3 4 5 6 7 8 

Width (mm) 25 20 16 12 8 6 4 2 
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Three mold configurations were used: a large water-cooled copper mold (water 

cooling can be turned on or off), a small copper mold (Figure 2.1), and a large steel mold. 

These configurations were used to modify the cooling rate from fastest to slowest 

respectively. The water-cooled mold and steel mold are the same molds referenced in 

[107]. Thermal data was smoothed using a weighted averaging scheme; thermal arrests 

were pinpointed by looking for a decreased cooling rate and a cooling acceleration of zero. 

For some chemistries thermal arrests were identified by extrapolating the slopes before and 

after the thermal arrest and identifying the intersection point.  

 Specimen were extracted from each cell of the SCM for characterization. Powder 

x-ray diffraction (XRD) was performed on a PANalytical X’Pert Pro Multi-Purpose 

Diffractometer with a Cu Kα x-ray source to determine whether the cell crystallized. 

Specimen from cells containing crystallized material were mounted in epoxy and polished 

to a 0.1µm finish. Microstructures were analyzed using cathodoluminescence (CL) 

microscopy (model 8200 MK II) and SEM/EDS using an ASPEX-PICA 1020. 

 

2.3. ISOTHERMAL AGED TESTING 

The isothermal tin bath quench and age methodology is outlined in the experimental 

procedure of Paper II. The paper specifically outlines the methodology for testing flux G2, 

but the isothermal testing set up was slightly modified for each mold powder. S1 corroded 

several stainless steel tubes and required a thin layer of graphite on the inside of the steel 

tube to prevent corrosion during melting. 

Future experiments will be carried out on synthesized advanced high strength steel 

(AHSS) fluxes. The synthetic powders were batched to match the chemistries of dip 

samples extracted from a mold during the casting of a TRIP steel and are not granulated. 

Alumina content increased to nearly 30%, and the silica content decreased significantly. 

These fluxes require a higher melting temperature than 1350°C, therefore an induction 

furnace set up with graphite tubes was introduced, as shown in Figure 2.2, to achieve 

temperatures that exceed 1350°C with minimal fluorine loss. This testing set-up is able to 

achieve 1400-1700°C as measured by an optical pyrometer. Graphite can reduce silica, 

however no silicon peaks were observed when testing the glassy G2 flux at 1500°C. The 

testing procedure is still in the development stage. 
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Figure 2.2: Induction furnace set up for melting AHSS fluxes. 

 

 

2.4. XRD QUANTIFICATION METHOD 

Specimens from each cell of all primary tests and all aged test samples were ground 

(-325 mesh) and analyzed via powder X-ray diffraction (XRD) on a PANalytical X’Pert 

Pro Multi-Purpose Diffractometer using a Cu Kα X-ray source for a standard thirty minute 

scan. Due to variations in the XRD source and overall set up, patterns generated on 

different days cannot be directly compared. Primary samples were not quantified, but were 

ran on the same day to compare the growing intensity of the peaks to confirm higher 

crystalline content in the larger cells. Aged samples at isothermal temperatures were run 

on the same day for direct comparison to one another.  

The standard thirty minute scan is used to determine if the aged sample is glassy or 

crystalline. For crystalline samples, the phases present were determined (i.e. only cuspidine 

or cuspidine and nepheline etc.). Crystallized samples were scanned at a slower rate over 

the 24 to 31° two-theta angle range; then the area under the (221) cuspidine peak can be 

measured. It was assumed that the area under the peak was related to how much cuspidine 

was present. At an isothermal temperature, when no crystallization has occurred the area 

under the peak will be zero. When the maximum amount of crystallization occurred the 
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peak height will be the tallest. It was assumed that a linear relationship existed between 

these two points; the 1 hour sample must be quantified to fix the second endpoint.  

The 1 hour samples were quantified by mixing 10 wt% of alumina standard with 

the sample and scanning over a 2 hour time period. The pattern was refined using the 

RIQAS Reitveld software. By fixing the alumina content, the software can more accurately 

estimate the amorphous content. The cuspidine content of all samples at an isothermal 

temperature was determined by using the area under the cuspidine peak and relating it to 

the area of the 1 hour (221) peak and the cuspidine content determined by Reitveld. For 

samples with more than just cuspidine present, the full pattern scan was refined by the 

Reitveld software to determine the crystalline phase distribution. This phase distribution 

totals 100% since the software cannot accurately determine amorphous content without a 

standard. The content of other phases was determined by using the percentage of cuspidine 

present in the sample; the remainder was assumed to be glass.  

This method was confirmed for the 1 hour G2 sample at 700°C by comparing the 

quantitative XRD results to an area analysis of cuspidine in several regions; the results 

were reproducible within 3 wt%. However, treatment times less than 1 hour were not 

verified microscopically due to the heterogeneous nature of the crystal growth. The 

synthesis of cuspidine (procedure in Section 2.5) allowed for the validation of the Reitveld 

results. Glass was also batched and melted with a chemistry equivalent to 43% cuspidine 

removal as shown in Table 2.3. Cuspidine was mixed with the glass in known ratios: 10/90, 

22/78, 30/70, and 43/57 respectively by weight percent; 10 wt% alumina standard was 

added for quantification purposes. Results determined experimentally through Reitveld 

analysis were compared to the known ratios of each mixture in Figure 2.3.  

 

 

Table 2.3: Synthetic glass composition (wt%) based on G2 flux when 43 

wt% cuspidine is removed. 

CaO SiO2 MgO Al2O3 Na2O CaF2 Li2O 

0 45 5 13 25 02 10 
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Cuspidine batched in the 43/57 cuspidine-to-glass ratio was re-mixed and ran three 

times on the X-ray diffractometer to quantify the error associated with the instrument and 

Reitveld analysis. The standard deviation indicates variability up to 4 wt% between 

measurements. In addition, the trend of the experimental results is parallel to the theoretical 

1:1 line. This suggests that Reitveld predicts the correct trend with increasing cuspidine 

content, but it underestimates the percent cuspidine present. This underestimation may be 

due to absorption effects or difficulty modelling the amorphous behavior. Based on the y-

intercept of the trendline, it is suggested that 6 wt% is added to all Reitveld estimations of 

cuspidine content with a known amount of standard present.   

 

 

 

Figure 2.3: The known quantity of cuspidine plotted against the cuspidine 

content determined experimentally by Reitveld analysis. 

 

 

2.5. SYNTHETIC CUSPIDINE 

Cuspidine was synthesized to standardize XRD quantification. Rankinite 

(Ca3Si2O7) was synthesized first by mixing 99+% pure CaCO3 and SiO2 in a 3:2 molar 

ratio. Powders were thoroughly mixed by adding alumina media and deionized water and 

ball milling for approximately 18 hours, then dried in a 110°C furnace. Powder was pressed 

into 5g, 1” diameter pellets. Pellets were fired in a Pt crucible at 1375°C for 10 hours, then 
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removed immediately from the crucible and allowed to cool. Room temperature samples 

were stored under vacuum and Rankinite was confirmed via XRD.  

Rankinite pellets were ground and equimolar amounts of rankinite and CaF2 were 

mixed together. One gram of the mixed powder was pressed into ½” diameter pellets. 

Several pellets were stacked in a larger Pt crucible for firing. A smaller Pt crucible was 

placed upside-down over the top of the pellets to act like a lid. The furnace was preheated 

to 900°C and then the pellets were placed in the furnace. After 4 hours of sintering, the 

pellets were removed and quickly cooled in air. The bottom pellet was discarded and top 

pellets were characterized to confirm the formation of cuspidine. Excess CaF2 was also 

found in the XRD pattern. For quantification purposes, a small portion of the cuspidine 

sample was mixed with 25 wt% NIST Alumina standard and analyzed via XRD. The 

pattern was then run through the Reitveld program to confirm the percent cuspidine present 

in the sample, fixing the alumina content at 25 wt%. Results showed that less than 3 wt% 

CaF2 was present in the cuspidine. An unsuccessful second attempt to make cuspidine was 

made in another furnace at 900°C. This suggests the controller and the actual temperature 

of the furnace initially used differ. Based on the difference measured by a separate 

thermocouple above 1300°C during the 10 hour Rankinite firing, it is suspected that the 

furnace was up to 75°C above 900°C when cuspidine was made.  
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3. SUMMARY OF PAPERS 

PAPER I: Application of Cathodoluminescence in Analyzing Mold Flux Films 

 Paper I was submitted and presented at the 10th International Conference on Molten 

Slags, Fluxes, and Salts in Seattle Washington, May 2016. Flux film samples were 

extracted from a funnel mold in an industrial thin slab caster. Accompanying thermocouple 

data was analyzed to relate morphological structures to the heat removal measured in the 

mold. It was determined that in the high stress funnel region, the flux film would fracture 

and withdraw, briefly leaving an air gap which lowered the regional heat removal. Glass 

would re-infiltrate the region, increasing the heat transfer to a local maxima. As the glass 

solidified and crystallized, the heat transfer would slowly decrease. The repetition of this 

thermal cycling leads to what is coined as “saw tooth” behavior. Using conventional 

techniques for mold flux characterization, it would be difficult to view this behavior. By 

employing cathodoluminescence high resolution images of the entire cross section of the 

flux film were taken at low magnification. This method is recommended for further study 

of flux films.  

 

PAPER II: Investigation of Mold Flux Crystallization by Rapid Quenching and Isothermal 

Aging in Molten Tin 

 Paper II was submitted and accepted for presentation at the AISTech 2017 

conference in May 2017. “Quench and age” experiments were performed on a specified 

mold flux chemistry at 500 to 800°C for 0.5, 1, 2, 4, 8, 16, 32, and 60 minutes. Specimen 

were melted at 1350°C for 1 minute and quenched at a rate greater than the critical cooling 

rate to an isothermal temperature. XRD and microscopy showed that crystallization rates 

leveled off at 32 minutes to 1 hour for all temperature. Three phases were observed: 

cuspidine, nepheline, and lithium silicate. Comparison of quench and age microstructures 

with those of the flux film indicated similar faceted morphologies. Continuous cooling 

experiments yielded only dendritic structures and cuspidine crystals. Since the majority of 

the flux film structure is non-dendritic and contains nepheline, the structures in the flux 

film could not have formed by continuous cooling and instead formed by devitrification. 
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PAPER 

I. APPLICATION OF CATHODOLUMINESCENCE IN  

ANALYZING MOLD FLUX FILMS 

 

Elizabeth Nolte1, Jeffrey D. Smith1, Michael Frazee2, Neil Sutcliffe2, Ronald J. 

O’Malley1 

 

1Missouri University of Science and Technology 

238 McNutt Hall, 1400 N. Bishop Ave., Rolla, MO, 65401, USA 

 

2Nucor Steel Gallatin 

4831 US Highway 42 West, Ghent, KY, 41045, USA 

 

ABSTRACT 

Mold fluxes are used in continuous casting of steel to control heat transfer from the 

steel shell to the copper mold based on their structure and properties. Structures observed 

in mold flux film samples extracted from conventional and thin slab continuous casters at 

the end of a cast were examined using cathodoluminescence (CL) imaging in conjunction 

with XRD and SEM/EDS analysis. Glassy and crystalline structures in the flux films varied 

greatly depending on sampling location in the mold, distance from the mold wall and the 

mold flux being examined. Temperature data collected from thermocouple arrays in a thin 

slab funnel mold indicated saw-tooth temperature fluctuations in the lower area of the 

funnel region, presumably due to cyclic fracture and regrowth of the mold flux crystalline 

layer in that region of the mold. The temperature observations correlate well with the 

structures observed in the flux film samples from the region. CL microscopy clearly 

distinguishes glassy regions from regions with devitrified and dendritic crystal growth, as 

well as continuous and fractured crystallite layers and cuspidine and nepheline phases that 

are present. The technique also highlights small variations in Mn oxide content in the glassy 

region of the flux that results from exchange reactions with the steel, making flow lines in 

the previously liquid portion of the flux film clearly visible. The benefits of applying 

cathodoluminescence imaging to the analysis of mold flux films in continuous casting are 

discussed. 
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1. INTRODUCTION 

Mold flux is critical for regulating mold heat flow and controlling slab surface 

quality in the continuous casting process [1, 2, 3]. The crystalline structure that forms in 

the mold flux film in the mold gap region of the continuous caster plays a significant role 

in the performance of a mold powder for a given steel grade and caster (Figure 1.1). 

 

  

 

Figure 1.1: Schematic of the funnel mold and the cross section of the mold. 

 

 

Mold powders are often selected based on their viscosity and primary 

crystallization temperature even though the crystallite phases and morphologies that are 

observed in the mold gap generally do not form by the primary crystallization path [4]. The 

crystalline layers that are observed in the mold gap have been found to form by 

devitrification of the super-cooled glass layer that remains in contact with the caster mold 

well beyond the residence time of the steel shell [4,5]. The phases and structures formed 

by devitrification have a strong influence on the mold thermal behavior through their 

influence on the crystalline layer’s resistance to shear and fracture in the mold gap. 

Crystalline film fracture and reformation appears to be a primary cause of periodic 

temperature and heat transfer fluctuations in the mold [4]. Techniques such as: (DSC) [6-

8], (DTA) [9-11], (SHTT) [6,12-14], and (DHTT) [14], can be used to characterize mold 
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flux. However, these techniques rely on simulating only a small portion of the mold 

environment. Cathodoluminescence (CL) analysis has been a standard technique for 

geological materials for 30 years, but in the last 20 years has been developed as an effective 

method to observe refractory corrosion. [15] This paper will discuss the application of 

cathodoluminescence analysis to the investigation of crystallization behavior for industrial 

flux films, in conjunction with (XRD) and (SEM).  

 

2. EXPERIMENTAL PROCEDURE 

Flux film samples were extracted from the funnel mold of a thin slab caster at the 

end of a cast. The flux composition, as reported by the supplier, is recorded in Table 2.1.  

 

 

Table 2.1. Composition of mold flux in wt% (R=Na, K, Li). 

Basicity MgO Al2O3  R2O F 

0.8 2.6 5.9 16.5 8.6 

 

 

Specimens were analyzed using powder x-ray diffraction (XRD) on a PANalytical X’Pert 

Pro Multi-Purpose Diffractometer with a Cu Kα x-ray source. Specimens were mounted in 

epoxy and polished to a 0.1μm finish. Crystallite structures were analyzed using 

cathodoluminescence (CL) microscopy (model 8200 MK II) and SEM/EDS using an 

ASPEX-PICA 1020.   

 

3. RESULTS & DISCUSSION 

Many of the flux film samples exhibited a crystalline layer on the mold wall side 

of the film as reported elsewhere [5,24,25]. Samples obtained from lower in the funnel also 

exhibited fractures in the crystallite film, and areas that were almost fully glassy. Figure 

3.1 shows the variation in the flux film appearance as the sample location progressed lower 

into the funnel. 
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Figure 3.1: Flux film samples from upper funnel area (a) to lower funnel 

area (d) - Mold side. 

 

 

Figure 3.1 (a) and (b) are primarily crystalline with very little glass infiltration 

except along a large crack in (b). Figures 3.1 (c) and (d) are glassy and show longitudinal 

striations across the face. This structure is believed to result from crystalline layer 

fracturing and re-filling with glass. This behavior is consistent with thermal data collected 

from an instrumented funnel mold, where temperature was monitored at several locations 

both within and outside of the funnel region. Large saw tooth shaped fluctuations in 

temperature (± 45°C) were evident within the high-stress funnel region (Figure 3.2a). The 

rapid temperature decrease is associated with crystal fracture and removal, while the rapid 

temperature increase is associated with glass infiltration in the fractured region. The slow 

drop in temperature is associated with aging and crystallization of the glass.  Outside of the 

funnel region, smaller (± 10°C) temperature fluctuations were evident (Figure 3.2b).  

 

(a) (b) 

(c) (d) 

10 mm 10 mm 

10 mm 

10 mm 
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(a) 

 

 

(b) 

Figure 3.2: Inside the funnel area (a) exhibits saw tooth behavior, where 

temperature fluctuates on a semi-regular basis with respect to time. Outside 

the funnel area (b), temperature fluctuations are mild (± 10°C). 

Corresponding diagrams indicate thermocouple locations in the funnel 

mold. 

 

 

CL imaging proved to be a valuable method for identifying crystalline phases and 

structure in polished flux film samples. Figure 3.3 shows a cross section of a flux film from 

lower in the funnel area. The yellow and bright orange regions are crystalline and the light 

orange regions are glassy. The crystalline layer on the mold side of the flux film is 

fractured. The flow lines in the glassy region suggest that glass flowed and infiltrated the 
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fracture region. The structures in the CL image support the theory of crystalline fracture 

and backfilling with glassy material by the mechanism proposed in Figure 3.4. 

The variation in shades in the darker orange region opposite the mold highlights 

the flow lines in the glassy region of the flux film that was fluid during casting. The color 

 

 

 

Figure 3.3: CL image of flux film sample – lower funnel region. 

 

 

 

Figure 3.4: Proposed origin of saw tooth temperature fluctuations: (1) 

fracture of flux crystalline film, (12) withdraw of flux crystalline film, 

(2) air gap, (23) inflow of glass, (3) complete glass infiltration, (31) 

aging and crystallization of glass. 

Mold Side 
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variations are directly related to variations in manganese oxide content in the flux that was 

picked up during casting from interaction of the mold flux with the molten steel. Figure 3.5  

documents this pickup. These variations in manganese oxide level were also documented 

using SEM/EDS analysis. 

XRD analysis of the flux films shows both the cuspidine and the nepheline phases 

are present in the flux film. The presence of nepheline in the crystalline layer suggests that 

this layer formed by devitrification of a super-cooled glass and not by primary 

crystallization [1, 9]. Devitrification follows a cooling path achieved by cooling faster than 

the critical cooling rate, avoiding crystallization, and isothermally holding at a temperature. 

In flux films, nepheline can only be formed through devitrification [9]. Its presence 

suggests that a super-cooled glass layer that remains in contact with the caster mold well 

beyond the residence time of the steel shell [1]. The distribution of cuspidine and nepheline 

in the crystalline layer can be seen more clearly in the CL image in Figure 3.6(a), cuspidine 

being yellow and nepheline being brown. These phases were also confirmed by SEM EDS 

analysis, Figure  3.6(b). 

 

 

 

Figure 3.5: Flux film chemical analysis indicating manganese oxide pickup in mold flux. 
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(a) (b) 

Figure 3.6: CL image (a) and SEM image (b) of the crystal growth along 

the mold wall. In (b) orange is nepheline, yellow is cuspidine, and purple 

indicates the bulk glassy region. 

 

 

CL images best show the morphology and crystallites present. The cuspidine 

(yellow-orange) appears to co-crystallize with nepheline (dark orange) along the mold face. 

The crystal structures in the flux film change based on distance from the mold wall. Along 

the mold wall both cuspidine and nepheline have crystallized as small equiaxed crystals. 

As the temperature increases with distance away from the mold wall, the nepheline crystals 

do not appear to form as readily and the cuspidine crystal concentration increases. This 

forms a dense crystalline layer approximately 200μm from the mold wall. EDS confirmed 

the compositions of the crystals. In Figure 3.6(b) the orange region indicates nepheline, 

yellow is cuspidine and purple is the bulk glass where the Ca to Si ratio is approximately 

1:1. 

Although the nepheline and cuspidine phases can both be distinguished in the SEM 

image, it is much easier to visualize the crystallization of cuspidine and nepheline using 

CL analysis. In addition, small variations in manganese oxide content in the glass can be 

easily observed.  
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4. CONCLUSIONS 

Flux films have widely varying structures based on distance from the mold wall 

and position in the mold. Information on these structures can be obtained by carefully 

extracting flux films at the end of a cast sequence and analyzing their microstructure. 

Cathodoluminescence imaging allows different structures to be observed more readily than 

by SEM analysis. This technique makes variations in the content of transition metal oxides 

in the flux film readily visible. Flux film structures can also vary significantly within a 

funnel mold. Flux film samples from high stress regions in the funnel area are observed to 

have fracture and glass re-infiltration marks that match the saw tooth temperature behavior 

in these regions. The following specific conclusions are made based on these experiments: 

Large fluctuations in temperature on the mold side of the flux film are observed in 

the funnel region. In addition, glassy striations are observed on the mold face side of the 

flux film suggesting that the flux film repeatedly fractures, dropping the mold temperature 

sharply on initial withdrawal of the crystalline layer and then increasing temperature 

sharply when new glass infiltrates the fractured region.  Following infiltration, the mold 

temperature then drops slowly as the re-infiltrated glass ages and crystallizes. This 

mechanism explains the observed periodic saw tooth mold temperature behavior. 

Cathodoluminescence is a useful tool for studying flux films. It provides high 

resolution at low magnification, so phases can be easily distinguished optically and other 

small details can be observed that may have been missed  using other techniques. It 

provides better visualization the distribution and type of crystal structures than SEM 

analysis and can also be used to observe small variation in composition in the bulk glass 

regions. Therefore, use of CL in analyzing flux films is recommended. 
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ABSTRACT 

Crystallization behavior of a mold flux under conditions found in the mold gap of 

the continuous casting process was investigated. A laboratory technique that employs 

molten tin as the quench medium was utilized to “quench and age” molten flux samples to 

generate a time temperature transformation (TTT) diagram for nucleation and growth of 

crystallites from the molten mold flux. A commercial flux film sample of the same 

composition was extracted from a caster at cap-off. The phases, structure, and quantity of 

crystallites formed in the mold gap are compared to the crystal phases and structures 

observed in the “quench and age” experiments and with crystal structures formed in the lab 

by direct cooling and crystallization of the flux. The crystal phases and morphologies 

present in the extracted flux film compare favorably with the structures and phases 

observed in the “quench and age” experiments.  

 

1. INTRODUCTION 

Continuous casting relies on mold powder to control the heat transfer between the 

steel shell and the water-cooled copper mold. Proper heat transfer is critical to prevent 

surface defects and breakouts. [1] Heat transfer is controlled by the crystallization behavior 

of the mold flux in the mold gap. Despite the higher thermal conductivity of crystallized 

phases, heat transfer in the mold gap is controlled by radiation and interface roughness 

between the mold wall and flux film, thus glassy regions have higher heat transfer. [1-4] 

While it is recognized that heat transfer is an important property of the mold flux, it is 
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difficult to measure and is often not repeatable. [4] Therefore it is important to study the 

crystallization and subsequently correlate the crystal morphologies to the thermal behavior 

to understand what is happening in the mold gap. 

Several methods have been used to study the crystallization behavior of mold 

fluxes. These include: differential scanning calorimetry (DSC) [6-8], differential thermal 

analysis (DTA) [7-14], confocal laser microscopy (CSLM) [15-17], single hot 

thermocouple technique (SHTT) [6, 12-14], and double hot thermocouple technique 

(DHTT) [14]. DSC and DTA identify phase transformations from changes in thermal 

behavior relative to a reference. These techniques are generally limited to non-isothermal 

studies, require small samples (< 1g), and have slow heating rates (~10°C/min). Small 

batch sizes increase the effect of volatile loss, such as fluorine. CSLM is a powerful 

technique that allows the crystallization behavior to be observed over time; however the 

microscope is expensive and has poor atmosphere control. Work by Cho et al. 

demonstrated that adding a quartz lid to the CSLM unit decreases fluorine loss, though the 

sample size is still small (0.07-0.12 grams). [15] SHTT and DHTT are also limited to small 

batch sizes (< 0.1g), but generally samples can be heated and cooled quickly to minimize 

fluorine loss. Sample transparency is a larger issue for SHTT and DHTT specimens as 

these techniques require visual observation of crystal formation. Components such as FeO, 

MnO, and TiO2 are often excluded to increase transparency. [14] Yet these oxides can be 

important to the crystallization behavior; TiO2 has been reported to act as a nucleating 

agent. [18] 

An isothermal tin bath quench method has been developed to address some of the 

issues with the techniques discussed previously. This test was designed to accommodate 

larger sample sizes (~8 g), allowing powder X-ray diffraction (XRD) and microscopy to 

be performed. Since transparency is not a requirement for this test, industrial flux 

compositions that contain transition metal oxides can be tested. In this work, isothermal 

tests were performed at specified times and temperatures on an industrial mold powder. 

Crystallized phases were identified and mapped in a time-temperature-transformation 

(TTT) diagram and crystal morphologies were compared with industrial flux film samples. 
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2. EXPERIMENTAL PROCEDURE 

Industrial mold powder (chemistry in Table 2.1) was calcined at 600°C for 3 hours, 

stirring periodically to facilitate carbon removal before melting. Small batches (~10g) were 

melted at 1350°C for ten minutes in a graphite crucible. Molten flux was rapidly quenched 

between two room temperature copper plates; glass formation was confirmed with XRD. 

The quenched glass was crushed using a hardened steel pin and die set. Stainless steel 

tubing (0.25” OD, 0.020” wall thickness) was crimped at one end and filled with the 

crushed glass. Specimens were melted by suspending them in a furnace for 1 minute at 

1350°C and then rapidly transferring to, and quenching in, the tin bath held at a specified 

temperature. Specimens were aged for 0.5, 1, 2, 4, 8 16, 32, and 60 minutes in the tin bath. 

After isothermal aging, the specimens were water quenched to cool them rapidly to room 

temperature. A thermocouple was inserted into the stainless tube in one experiment to 

confirm complete melting of flux and to document the quench rates. The thermal profile of 

the test is presented as Figure 2.1. A maximum temperature of 1340°C was achieved, which 

is above the melting temperature (~1120°C, DTA) of the flux sample. The quench rates in 

the tin bath and in the water bath averaged 65°C/s and 30°C/s, respectively, and were 

adequate to avoid premature crystallization. A schematic of the tin bath quench system is 

included as Figure 2.2.  

 

 

Table 2.1: Composition of mold flux in wt% (R=Na, K, Li). 

Basicity MgO Al2O3  R2O F 

0.8 2.6 5.9 16.5 8.6 

 

 

A diamond saw was used to section the stainless steel tubes, isolating the portion 

of the specimen that was immersed in the tin.  Extracted samples were ground (-325 mesh) 

and analyzed via powder X-ray diffraction (XRD) on a PANalytical X’Pert Pro Multi-

Purpose Diffractometer using a Cu Kα X-ray source. A Reitveld refinement method [19] 

was used to determine the quantity of each crystalline phase. Amorphous content of 

samples that were aged for 60 minutes at each test temperature was determined by doping  
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Figure 2.1: Thermal profile of aged test with isothermal hold for 2 minutes 

at 500°C. Dashed lines indicate estimated glass temperature prior to 

thermocouple insertion. 

 

 

 

Figure 2.2: Schematic of isothermal tin bath quenching system. (A) are the 

specimens (x4), (B) argon input to reduce tin oxidation, (C) refractory lid, 

(D) crucibles containing tin, (E) tin bath, (F) is the resistance element 

furnace, and (G) are the specimen holders (x4) to suspend the sample in the 

bath away from crucible walls. 
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with 10 wt% of a NIST 676 alumina standard and measuring the X-ray pattern. This pattern 

was modeled using Reitveld software with the alumina peak constrained to 10 wt%. 

Subsequent spectra were acquired using a slow scan rate (0.0134°/s) in the 24-31° two-

theta range and the integrated area under the 2-2-1 cuspidine peak was measured. The 

percentage of cuspidine was calculated using a linear relationship between the peak area 

and the amount of cuspidine present in the alumina doped samples. The percentage of other 

phases in the samples were determined using Reitveld software, scaled to the previously 

determined cuspidine content. Microstructures were examined using cathodoluminescence 

(CL) microscopy (model 8200 MK II) and SEM/EDS using an ASPEX-PICA 1020 and a 

Helios Nanolab 600 for higher resolution. 

 

3. RESULTS & DISCUSSION 

3.1. Generation of Quantitative TTT-diagram 

SEM images of aged samples (Figure 3.1) show heterogeneously nucleated crystals 

along the tube wall. The transformed fraction increased with time, achieving complete 

transformation between 16 and 32 minutes for all temperatures. Two distinct phases were 

identified: cuspidine (Ca4Si2F2O7) and nepheline (NaAlSiO4), which have been reported as 

common phases in literature. [1, 21] Additionally several peaks potentially correspond to 

a lithium silicate phase (Li2SiO3). However since it is difficult to distinguish lithium silicate 

from lithium in the bulk glass using most characterization techniques and less than 10 wt% 

forms, this phase could not be confirmed. Crystallization contour lines were drawn onto 

the time-temperature-transformation (TTT) diagram to indicate the total percentage 

transformed (Figure 3.2).  

XRD results indicate that the first detectable crystalline phase was cuspidine. 

Nepheline and lithium silicate phases always formed after 10-30 wt% cuspidine was 

present and they often appeared together, suggesting that cuspidine may act as a nucleation 

site for nepheline and lithium silicate growth. However, at 700°C, nepheline was observed 

nearly 40 minutes earlier than lithium silicate. Complete transformation is achieved 

between 32 minutes and 1 hour and the weight percentage of all phases appears to stabilize 

(Figure 3.3). 
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(a) (b) (c) 

Figure 3.1: SEM cross sections of aged samples at (a) 4 minutes, (b) 16 

minutes, and (c) 1 hour at 700°C. “x” and “g” denote the crystallized and 

glassy regions respectively. 

 

 

 

Figure 3.2: TTT diagram indicating phases that form for distinct times and 

temperatures. “G” indicates that no crystallization was detected. “C” 

indicates regions where cuspidine forms. Regions with “N+C” contain both 

cuspidine and nepheline. Regions where all three phases: nepheline, 

cuspidine, and lithium silicate form are denoted by “N+C+L.” 
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(a) (b) 

  

(c) (d) 

Figure 3.3: Weight percent of each phase plotted against time for (a) 500°C, 

(b) 600°C, (c) 700°C, and (d) 800°C. 

 

 

For aging times of less than 1 hour, cuspidine forms at all test temperatures above 

400°C. Cuspidine formed after a few seconds at 700°C but required 16 minutes to form at 

500°C. After cuspidine nucleation, growth occurred rapidly during the first 15 minutes. 

Thereafter, the percentage of cuspidine increased more slowly until maximum 

crystallization was achieved. 

In Figure 3.3(b), lithium silicate was indicated to exist based upon XRD results.  

This phase has not yet been visually identified in SEM specimens. This is likely due to 

three factors: the low z-value (similar to the base glass), the small (< 5 wt%) percentage 

that forms, and the fact that lithium is undetectable using standard EDS equipment.  

Nepheline also forms in relatively small amounts (< 5 wt% at 800°C and 500°C), but at 

600°C and 700°C about 10-15 wt% forms. Nepheline is stable over a wider temperature 

range than lithium silicate and is most favorable to form between 600°C and 700°C. 
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Nepheline has a similar z-contrast to the bulk glass so high magnification and high contrast 

are required for identification as shown in Figure 3.4. Nepheline appears to grow between 

cuspidine crystals, as observed by other investigators [15].  

 

 

 

Figure 3.4: High resolution SEM image of sample aged for 32 min at 700°C 

taken with high contrast. Light phase crystals are cuspidine (C), the dark 

phase is nepheline (N) and the matrix is glassy (G). 

 

 

3.2. Industrial Flux Film 

A flux film with the chemistry in Table 2.1 was extracted from a funnel mold of a 

thin slab caster at the end of a heat. Crystallization behavior of the flux film varied with 

height/position in the mold. XRD results from various regions of the industrial flux film 

indicate that multiple phases form in the mold gap. The predominant crystalline phases, 

cuspidine and nepheline, form adjacent to the mold wall as indicated in Figure 3.5. 

Additionally most samples display a strong amorphous hump in XRD spectra indicating 

glass formation. Both CL and SEM-EDS corroborate these observations (Figure 3.5). 

Cathodoluminescence (CL) is a geological technique that is commonly used to analyze 

rock minerology. It has been applied to analyzing conventional flux films by Paransky et 

al. [22] and advanced high strength steel (AHSS) flux films by Blazek et al. [23]. The 

authors employed CL to analyze a flux film with the same chemistry described in Table 

2.1, the results are reported in [24]. 

 

C 
N 

G 
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(a) (b) 

Figure 3.5: CL image (a) and SEM image (b) of the crystal growth along 

the mold wall. The cuspidine (C), nepheline (N) and glassy (G) phases are 

labelled in (b). From [24]. 

 

 

Flux films have a complicated crystalline structure, containing a mixture of phases 

formed by different thermal histories. Along the mold wall, a thin glassy layer that contains 

some porosity is observed in Figure 3.6(a). Cuspidine is present just behind this layer in 

the form of small (< 10μm) faceted crystals. As distance from the mold wall increases the 

size and area fraction of cuspidine increases (Figure 3.6(b)), but structures remain faceted. 

EDS maps of two separate crystallized regions along the mold wall (Figure 3.7 and Figure 

3.8) indicate that the crystal phase fractions change with distance from the mold wall. The 

sodium-rich nepheline phase is observed between the cuspidine crystals, but in Figure 3.7 

the nepheline fraction is much higher than the region shown in Figure 3.8.  

Variability in nepheline crystal density suggests that local temperature differences 

within the film may affect the crystal growth. Large pores present in the flux film shown 

in Figure 3.7 likely inhibit heat transfer locally and increase the temperature on the steel 

side of the pore. The increased temperature in this region appears to coincide with enhanced 

nepheline growth.  

Small equiaxed dendritic crystals were observed on the steel shell side of the 

crystalline layer.  These crystals, Figure 3.9, appear to be less than 5μm in diameter and to 

have grown from isolated nuclei, not as dendritic structures as observed in Figure 3.8.   
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(a) (b) 

Figure 3.6: Micrograph of flux film crystalline structure at (a) the mold wall 

and (b) just above the glass-crystalline region interface. 

 

 

 

Figure 3.7: Elemental map of flux film against the mold wall superimposed 

onto the original micrograph. Purple represents Ca-rich cuspidine regions. 

Yellow indicates Na-rich glassy regions. Orange designates nepheline 

regions, a mixture of Na and Al. 

 

 

3.3. Microstructural Comparison 

Most of the flux film morphological features appear to be faceted and non-dendritic, with 

the exception of the dendritic structures observed on the shell side of the crystalline layer. 

In laboratory continuous cooling tests, the method described in [25] was performed with 

the same flux chemistry. All crystals formed by continuous cooling had a dendritic 
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structure (Figure 3.10) and only cuspidine was observed. Since much of the industrial flux 

film structure is not dendritic and contains nepheline, the observed structures could not 

have formed by continuous cooling. Thus, the crystal structures observed in the industrial 

flux film must have formed through devitrification. Laboratory aged samples display 

morphologies and phase assemblages comparable to those observed in the industrial flux  

 

 

 

Figure 3.8: Elemental maps of Ca (yellow) and Al (blue) indicating 

cuspidine and aluminum regions of the flux film respectively. Figure is 

oriented such that the mold wall is at the top. 

 

 

 

Figure 3.9: SEM micrograph of region below dense cuspidine layer on the steel side. 
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Figure 3.10: Primary dendritic growth from continuous cooling experiment. 

 

 

 

Figure 3.11: EDS map superimposed on an electron micrograph of a tin bath 

quench sample aged at 700°C for 32 minutes. Purple indicates Ca-rich 

cuspidine regions. Yellow represents Na-rich glassy regions. Orange 

denotes nepheline, a mixture of red Al-rich and yellow Na-rich regions. 

 

 

film (Figure 3.11). Nepheline is observed between cuspidine crystals in both the tin bath 

quenched samples and the flux film sample, further supporting devitrification as the 

crystal forming mechanism. The TTT-diagram generated from the tin bath quench 

experiments indicates that cuspidine is the first phase to form at all temperatures, and that 

the secondary phases only form after initial cuspidine growth. Nepheline and cuspidine 

do not appear to co-crystallize. Rather these studies suggest that nepheline nucleation and 

growth only occurs after cuspidine forms. 
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4. CONCLUSIONS 

The crystallization of a commercial, non-transparent mold flux containing 

transition metal oxide was measured using a new experimental technique. Quantitative 

XRD analysis combined with isothermal quenching and aging of flux samples in a molten 

tin quench bath was used to generate a quantitative TTT diagram for crystallization of the 

flux. A commercial mold flux film was also examined, and the crystalline phases and 

structures were compared to laboratory observations.  The following conclusions were 

drawn from the experiments for the flux composition analyzed: 

1. In tin bath quench and aged experiments, crystal growth appears to plateau after 

approximately 30-45 minutes at test temperatures above 400°C. At 400°C, no 

crystallization was observed for this flux at times of less than 60 minutes. Details 

of the specific crystalline phases encountered follow. 

a. Cuspidine was the first crystal to form. At the lower test temperatures (400-

600°C), several minutes were required before crystallization was observed. 

At higher temperatures (700-800°C), crystallization occurred within 

seconds. 

b. Nepheline formed after cuspidine, but only after a minimum of 10 wt % 

cuspidine was present. In addition, nepheline was observed to form between 

cuspidine crystals. Nepheline crystallizes most rapidly between 600°C and 

700°C. Temperatures above and below this range tend to crystallize with 

less than 1 wt% nepheline.  

c. XRD results suggests that crystalline lithium silicate may also be present in 

samples at 600°C, however it was difficult to verify using standard 

microscopic techniques. 

2. In the industrial flux films, faceted cuspidine was observed through most of the 

crystalline layer, while dendritic (columnar and equiaxed) cuspidine was observed 

on the steel shell side of the crystalline layer.    

3. Comparable crystal morphologies were observed in flux film samples and tin bath 

quench and age experiments, suggesting that the structures observed in this flux 

film form by devitrification. 
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5. ADDENDUM 

Synthesis of cuspidine allowed for the verification of the quantitative XRD method 

outlined in this paper. Cuspidine was synthesized in two steps. First, rankinite was 

manufactured by mixing 99+% pure CaCO3 and SiO2 in a 3:2 molar ratio. Powders were 

thoroughly mixed and pressed into pellets. Pellets were fired in a Pt crucible at 1300°C + 

75°C for 10 hours. Samples were immediately removed from the crucible and cooled to 

room temperature, then Rankinite was confirmed via XRD.  

Rankinite pellets were ground and equimolar amounts of rankinite and CaF2 were 

mixed together. Pellets were pressed and stacked in a larger Pt crucible for firing. A smaller 

Pt crucible was placed upside-down over the top of the pellets to act like a lid. The furnace 

was preheated to 900° + 75°C and then the pellets were placed in the furnace. After 4 hours 

of sintering, the pellets were removed and quickly cooled in air. The bottom pellet was 

discarded and top pellets were characterized to confirm the formation of cuspidine. Excess 

CaF2 was also identified. For quantification purposes, a small portion of the cuspidine 

sample was mixed with 25 wt% NIST Alumina standard and analyzed via XRD. The 

pattern was analyzed using the Reitveld program to confirm the percent CaF2 present in 

the sample, fixing the alumina content at 25 wt%. Results showed that less than 3 wt% 

CaF2 was present in the cuspidine. 

Cuspidine deficient glass was batched and melted from reagent grade raw materials. 

The chemistry of the glass, as reported in Table 5.1, was based on the G2 flux composition 

when 43% cuspidine is removed. Cuspidine and the glass were mixed in known ratios: 

10/90, 22/78, 30/70, and 43/57 respectively by weight percent, adding 10 wt% alumina 

standard to each mixture for quantification purposes. Results determined experimentally 

by Reitveld analysis were compared against the known ratios of the mixtures in Figure 5.1. 
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Table 5.1: Synthetic glass composition (wt%) based on G2 flux when 43 

wt% cuspidine is removed. 

CaO SiO2 MgO Al2O3 Na2O CaF2 Li2O 

0 45 5 13 25 2 10 

 

 

 

Figure 5.1: Known quantity of cuspidine in each sample plotted against the 

cuspidine content measured by Reitveld analysis. Same as Figure 2.3 in 

Methodology section. 

 

 

Cuspidine batched in the 43/57 cuspidine to glass ratio was re-mixed and analyzed 

three times on the X-ray diffractometer to quantify the error associated with instrument 

measurement and Reitveld analysis. The standard deviation indicates approximately 4 wt% 

standard deviation between the measurements. In addition, the experimental trendline is 

parallel to the theoretical 1:1 line. This suggests that Reitveld predicts the correct trend 

with increasing cuspidine content, but it underestimates the percent cuspidine present. 
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Based on the y-intercept of the trendline, it is suggested that 6 wt% is added to all Reitveld 

estimations of cuspidine content with a known amount of standard present.   

Based on the observations above, the G2 1 hour results were re-quantified by 

adding 6 wt% to the cuspidine percentage. Phase percentages at shorter times were 

recalculated based on the area under the (221) cuspidine peak and the corrected 1 hour 

percentages. Smaller values near the onset of crystallization did not change very much as 

they were already a small portion of the total crystallization, whereas longer times with 

larger fractions of crystal changed more significantly. The re-quantified TTT diagram is 

Figure 5.3, indicating also a 60% iso-crystallization line.    

 

 

 

Figure 5.2: Corrected TTT diagram indicating phases that form at distinct 

times and temperatures. “G” specifies that no crystallization was detected. 

“C” indicates regions where cuspidine forms. Regions with “N+C” contain 

both cuspidine and nepheline. Regions where all three phases: nepheline, 

cuspidine, and lithium silicate form are denoted by “N+C+L.” 
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(a) (b) 

  
(c) (d) 

Figure 5.3: Corrected plots of the weight percent of each phase plotted 

against time for (a) 500°C, (b) 600°C, (c) 700°C, and (d) 800°C. 

 

 

The graphs of phase growth over time at each temperatures were also corrected and 

are below as Figure 5.3. Trends in the corrected plots still indicate complete transformation 

at about 32 minutes. However the percent crystal achieved is at or above 50% for 

temperatures above 600°C. At 500°C only about 40% crystal is achieved. Other trends 

corresponding to time of transformation appear constant, although the phase percentages 

are varied. 
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SECTION 

4. CONCLUSION 

The research presented in this thesis focused on understanding the morphologies of 

industrial flux films and attempting to duplicate the structures in a series of laboratory 

experiments. Cathodoluminesence (CL) microscopy was applied to flux film analysis, 

allowing for high resolution, low magnification investigation of the mold gap. Using CL, 

nepheline and cuspidine phases could be distinguished along the mold wall. Additionally 

fractures were evident in the funnel region of the water-cooled mold. These fractures have 

been linked to oscillating, “saw-tooth” thermal behavior that occurs only in the funnel 

region. The high temperature point of the oscillation is correlated to glass infiltration, 

which increases the heat transfer. As the glass begins to crystallize, the temperature 

decreases steadily. When crystalline fracture occurs and withdraws, a sudden drop in 

temperature is experienced, which was correlated to an air gap forming. Thermal data and 

structural data of the flux film correlated, but structures and phases could not be duplicated 

by primary cooling. 

An isothermal tin bath quench method was developed to increase sample size and 

avoid chemistry modification relative to other crystallization techniques. Cuspidine was 

the first phase formed in both continuously cooled and isothermal samples. In isothermal 

testing, cuspidine was observed to form in several minutes at low temperatures (500-

600°C), whereas only a few seconds were required at high temperatures (700-800°C). 

Nepheline and lithium silicate, two phases not observed in continuously cooled samples, 

were detected using the isothermal method. Nepheline formed only after cuspidine was in 

excess of 10 wt% and was most favored between 600 and 700°C. At temperatures outside 

of this range less than 1 wt% nepheline was observed. Lithium silicate may be present at 

600°C, but its existence cannot be proven by standard microscopic techniques. Aged 

structures were faceted and non-dendritic, which mimic the crystal layer observed along 

the mold wall. The similarity of aged structures to industrial flux films suggests that the 

crystalline layer along the mold wall forms by devitrification. 
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5. FUTURE WORK 

5.1. COMPLETION OF PRIMARY TESTING 

The step chill testing method works well for easily crystallized fluxes because 

thermal arrests can be easily identified. On the other hand, glassy fluxes may only 

crystallize in one cell and have thermal arrests that are difficult to identify. Some glassy 

fluxes will not crystallize in any of the developed mold configurations. A slower cooling 

method is necessary for these fluxes. DTA and DSC are slow cool methods, but volatile 

loss is high for unsealed samples because the heating rate is so slow. A step chill or other 

slow cool method would be beneficial for identifying a critical cooling rate range for glassy 

fluxes and identifying behavior for fluxes with long residence times in the mold.  

Additional characterization of the primary test thermal data is necessary to 

understand the effect of composition on the crystallization temperature. Fluxes tested in 

this thesis were collected from industrial sponsors that produce a variety of steels. 

Compiling flux chemistry, crystallization temperature, and steel composition data would 

be useful for mapping out chemistry ranges of fluxes that are compatible with certain steel 

compositions, and identifying the ideal crystallization behavior for the mold gap. In 

addition tests would need to be repeated to better quantify the error associated with the 

crystallization temperature measurement.  

 

5.2. EXPANDING AGED TESTS 

Other flux chemistries are already in the process of being testing using the quench 

and age technique. Completing tests on fluxes with different chemistries would aid in 

identifying the compositional effects on isothermal crystallization. In addition, the aged 

crystals could be directly compared to flux films to get an idea of the temperatures 

experienced along the mold gap. Aged tests may also be repeated numerous times at 

different aging temperatures to acquire more data points for kinetic analysis of 

crystallization behavior.  

5.2.1 Advanced High Strength Steel Mold Powders. AHSS are of particular  

interest to the steel industry due to their enhanced mechanical properties. However, the 

higher alumina content causes significant problems such as changes in heat flux and 

lubrication during the casting process. Since these steel chemistries are difficult to cast, 
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they have a higher market value and so their development is of great interest to steel 

companies. During the casting process, conventional fluxes experience an alumina-silica 

exchange reaction where the alumina in the steel reduces the silica in the mold powder. 

Alumina content of the mold powder can increase by 30 weight percent. Since the silica 

content decreases, the melting temperature of these fluxes increases, changing the 

properties of the flux during the casting process.  

A future experiment has been designed to test AHSS powders at various stages of 

the alumina-silica exchange reaction, based on dip sample chemistries during the casting 

of a TRIP steel. Since these powders have elevated alumina contents, a higher temperature 

furnace is necessary for melting. An induction furnace set up has been completed, as shown 

in Figure 2.2, to melt these fluxes at temperatures above 1400°C. Extensive TTT-diagram 

development would aid in understanding the effect of the alumina-silica exchange reaction 

on the crystal evolution in the mold gap. 

5.2.2   Changing Tube Wall Material. Nucleation behavior can change based 

upon the wetting behavior between the liquid and solid interface. It would be interesting to 

test graphite, quartz, and copper and compare the nucleation behavior to the steel tubes 

used in these experiments. Utilizing different materials would help to better understand the 

effect of the copper mold on the nucleation behavior along the mold wall. 
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APPENDIX A 

 

INFLUENCE OF MOLD FLUX CRYSTALLITE FILM FRACTURE ON 

THERMAL FLUCTUATIONS IN A THIN SLAB FUNNEL MOLD 
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ABSTRACT 

Mold thermal data from two thin slab casters was investigated. Both facilities 

employ funnel molds that were instrumented with thermocouple arrays that extend into the 

lower part of the mold. Under specific operating conditions, regular saw-tooth-like 

temperature fluctuations were observed in the lower part of the funnel area at both facilities. 

Flux film sampling and analysis of the mold temperature data suggest that the fluctuations 

are caused by the fracture, removal and regrowth of the mold flux crystalline layer in the 

convergent area of the funnel. The effects of the film fracture on the heat flux profile in the 

mold are examined. 

 

INTRODUCTION 

The magnitude, stability and uniformity of heat extraction in the mold of the 

continuous casting process is influenced markedly by the properties of continuous casting 
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mold flux and the conditions within the mold gap[1-4].  Large local variations in heat 

removal in the mold can induce stresses in the solidifying steel shell that can lead to defects 

such as longitudinal cracks, shell buckling and shell thinning. The crystallization behavior 

of the mold flux plays an important role in the control of the process by slowing the rate of 

heat extraction and reducing heat removal variability [5, 6].  It has been shown that the 

stability of the crystalline layer that resides against the mold within the mold gap has a 

strong effect on the variability in mold temperature and heat removal during casting[2, 7].  

Weak crystallites can fracture easily, leading to large variations in heat transfer with time, 

while excessively strong crystallite layers can cause a steady drop in heat removal over 

time[2, 8].   

In high-speed thin slab casting, the shear stresses in the mold gap are often higher 

than the stresses observed in the conventional continuous casting process, in part because 

higher casting speeds and oscillation frequencies are employed in the process. In thin slab 

casters that employ funnel mold designs, additional shear stresses can be generated in the 

lower area of the funnel as the solidifying steel shell is formed in the mold to achieve a 

rectangular slab shape at mold exit[9, 10].  If the shear stresses in this region of the mold 

exceeds the shear strength of the crystalline layer in the flux film, the film can fracture 

locally in the region of high shear stress [11-13].  In this paper, the authors present some 

examples of localized thermal instabilities that were observed in the mold funnel area on 

two thin slab casters along with evidence for the source of these instabilities.  It should be 

noted that saw-tooth-like mold temperature fluctuations have been observed in many 

studies [2, 7, 8, 12].  What is of interest here is the relatively small localized area within 

which these fluctuations occur, and the difficulty in detecting them without employing 

enhanced mold instrumentation. 

 

PROCEDURE 

Process data was collected during casting from two thin slab casters that employed 

funnel molds. The molds were both instrumented with thermocouples to examine the mold 

temperatures over a large area of the mold during casting.  At caster G, mold flux films 

were also extracted at cap-off to examine the structures of the flux films in different areas 

of the mold funnel.  A map of the thermocouple positions on the thin slab mold at company 
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G is shown in Figure 1 and the thermocouple positions on the thin slab mold at company 

D is shown in Figure 2.  

An example of some additional process data (cast speed, mold broad-face heat 

removal, etc.) collected from company G is shown in Figure 3 for a typical cast sequence 

of medium carbon steel.  The sequence represents 18 hours of casting time. The 

corresponding thermocouple traces from each broad-face plate for this cast sequence are 

shown in Figure 4.  At company G, the temperature data was recorded at 3 second intervals 

 

 

 

Figure 1:  Thermocouple Locations in Funnel Mold at Company G.  Vertical 

distances shown in Figure 4.  

 

 

 

Figure 2:  Thermocouple Locations in Funnel Mold at Company D. 

Distances in mm from center or top of mold. 
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Figure 3:  Mold Heat Removal for 1026 steel cast with Flux G2 at Company 

G.  Fixed broad face is south and loose broad face is north. 

 

 

while company D collected temperature data every 0.5 seconds. Both facilities employed 

spring loaded type K thermocouples to measure the mold plate temperatures. 

The red vertical lines in Figure 4 a and b mark the time at which of the temperature 

profiles was plotted in Figure 4 c and d.  These plots show a snapshot of the temperature 

profile along the length of the mold for the various thermocouple array positions noted in 

Figure 1 at the designated time.  These profiles were also reviewed as a function of time to 

observe the dynamic behavior of the mold temperature profiles. 

 

OBSERVATIONS AND DISCUSSION 

The sequence presented in Figures 3 and 4 was selected because the caster operated 

at steady state conditions for a substantial operating period and exhibited relatively stable 

mold broad face heat removals during the cast.  The overall heat flux and mold 

temperatures look stable at first glance, but they do exhibit some thermal instabilities that 

were only evident upon reviewing the animated temperature profiles of specific 

thermocouple arrays and examining the data on an expanded time scale.   

 



 

 

90 

 

 

Figure 4: Thermocouple mold broad face temperatures for 1026 with Flux 

G2 at Company G (a and b) and snapshot of temperature profile on north 

and south broad face plates at 31000s (c and d) at red vertical line in upper 

figures. 

 

 

Figure 5 shows data for two specific thermocouple arrays on the north broad face over a 

period of 2.7 hours in the middle of the cast sequence.  Figure 5a shows the data from a 

thermocouple array that is within the funnel region of the mold, while Figure 5b shows the 

data from a thermocouple array that is outside of the funnel region of the mold.  It is evident 

that some specific thermocouple positions within the lower funnel area show strong 

periodic saw-tooth-like temperature fluctuations, every 600 to 1000 seconds of cast time.  

It is also interesting to note that while the temperature fluctuations are large (on the order 

of 50 to 80 C), the observed overall heat removal fluctuations on the broad face plate is 

barely evident in the heat removal trace in Figure 5.  This suggests that the disturbance is 

localized to the funnel area and not large enough to be detected in the overall broad face 

heat removal measurements.  Outside of the funnel area (Figure 5b), the mold temperatures 

do not exhibit large fluctuations or saw-tooth-like fluctuations.   
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Figure 5: Comparison of isolated thermocouple array temperatures from 

inside and outside of the funnel area over 2.8 hours of steady state operation. 

 

 

A snapshot of the temperature profiles for the two thermocouple arrays in Figure 5 

at 24,000 seconds (6.7 hours) into the cast sequence is shown in Figure 6.  Outside of the 

funnel area (Figure 6b), the mold temperature decreases uniformly down the length of the 

mold.  However, within the funnel area, the temperature decreases down the length of the 

funnel area but then increases at the base of the funnel and then decreases again toward the 
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bottom of the mold.  This temperature drop and rebound in the root of the funnel suggests 

that the solidifying shell is pulling away from the mold and then being compressed as the 

shell moves through the funnel root area.  This behavior is expected because the shell must 

be formed to accommodate the parallel section at the bottom of the mold. 

Similar mold thermal behavior was observed in temperature measurements at 

Company D.  Figure 7 shows the mold temperature trends from thermocouple arrays within 

(E) and outside (B) of the funnel area during the casting of a 0.25% carbon steel.  As 

observed previously, saw-tooth-like fluctuations are evident in the root area of the funnel 

and the region outside of the funnel is devoid of the periodic fluctuations.   

The saw-tooth thermal behavior is remarkably similar at both mills, despite 

significant differences in the two thin slab caster designs and the differences in the mold 

powders employed to produce similar grades of steel.  A comparison of the two mold fluxes 

used in these studies is shown in Table 1.  Note that the saw-tooth-like thermal behavior is 

observed despite the fluxes having very different chemistries and basicity.   

An estimate of the rate of propagation of the thermal disturbance was made at 

Company D by timing a single temperature rise event as it passed successive 

thermocouples in the funnel area.  Data from caster D was used because it had a lower 

casting speed (2.7 m/min) and a faster (0.5 second) data logging rate.   The results, shown 

in Figure 8, suggest that the thermal disturbance traveled down the mold at about 70% of 

the casting speed.  A similar analysis performed at company G showed a thermal 

disturbance propagation rate of about 88% of the cast speed at 5 m/min. 

The saw-tooth-like temperature fluctuations do appear to be associated with 

conditions that exist exclusively within the lower funnel area.  Figure 9a shows that the 

timing of the fluctuations is highly correlated within the same funnel but on opposite sides 

(+100 mm and -100 mm) of the center (0 mm) of the north broad face plate.  This suggests 

that the disturbances within the funnel on an individual mold plate have a common cause.  

On the other hand, Figure 9b shows that the disturbances within the north face mold plate 

funnel area and south face mold plate funnel area are out of sync.  The thermal disturbances 

on opposing mold plates were not correlated, despite having very similar average cycle 

times. This suggests that the disturbances on the loose and fixed side mold plates are not 

initiated simultaneously by a single event, but instead are initiated within each funnel area  
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Figure 6: Thermocouple temperature profile snapshot at 24000s (red 

vertical line in Figure 6) (a) within the mold funnel area and (b) outside the 

mold funnel area. 

 

 

(a) 

(b) 
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Figure 7: Temperature trends inside and outside of the mold funnel area 

over 4.5 hours of operation with flux D2 at Company D casting a 0.25 

carbon steel.  

 

 

Table 1: Composition of Mold Fluxes Used – wt.% (R=Na, K, Li) 

Flux Basicity MgO Al2O3  R2O F 

G2 0.80 2.6 5.9 16.5 8.6 

D2 1.18 1.2 3.5 10.9 8.7 

 

 

separately, likely due to the local friction conditions on each mold plate.  It should also be 

noted that no catastrophic shell sticking events, severely degraded oscillation marks or 

other degraded surface conditions on the slab were observed during these sequences at 

either facility during these tests.  This suggests that the disturbance is occurring within the 

mold gap and not in the solidifying shell. 

A G2 mold flux film sample was collected at the end of the cast sequence to 

investigate the possible cause of these thermal fluctuations in the funnel area.  The flux 
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film was sampled during cap-off at the end of the cast sequence and handled carefully to 

preserve the approximate position of the flux film within the funnel area.  An evaluation 

of this flux film has been reported on in a previous publication[11].  This work showed that 

the flux film sample from the upper position in the funnel where the temperature trace was 

stable shows a continuous, well formed, crystalline layer (Figure 10a).  However, the 

investigation also showed that the flux film sample taken from lower in the funnel area 

showed evidence of crystalline film fracture and flow lines in the glass that suggest that 

the observed free floating crystallites originated by fracture and removal from the mold 

wall (Figure 10b). 

The flux film sample, shown in Figure 10b, suggests that fracture and withdrawal 

of the crystalline film on the mold wall is the primary cause of the observed thermal 

fluctuations in the root area of the funnel.   

The timing of the observed thermal fluctuations in the funnel area is of considerable 

interest.  Even though the solidifying steel shell residence time in the mold is only about 

12 seconds on Caster G, we have observed in this investigation that a complete thermal  

 

 

Figure 8: Rate of propagation of thermal disturbance past successive 

thermocouples in funnel area at Company D compared to casting speed.  
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Figure 9: Saw-tooth temperature fluctuations: (a) on north broad face plate 

at opposite sides of the mold center within the funnel, and (b) on north and 

south broad face plates within the funnel. 

 

 

disturbance cycle takes roughly 10 to 20 minutes to complete, with the temperature rise 

occurring relatively quickly (1-3 minutes) and the temperature decrease occurring very 

slowly during the remainder of the cycle (7-19 minutes).  This slow decrease in temperature 

is consistent with the time required to form a crystalline layer on the mold wall from a 

super-cooled glass.  Measurements performed by Cramb and others[14-17] have observed 

comparable crystallization rates when the glass is super-cooled below the nose of the TTT 

(a) 

(b) 
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Figure 10: Cathodoluminescence (CL) images of flux film sample G2 taken 

at cap-off from: (a) stable temperature region (b) region with saw-tooth 

temperature fluctuations in lower funnel area[11]. 

 

 

curve.  Our own laboratory work on flux G2 that has been melted, quenched to 500 C – 

800 C and aged shows a similar incubation time for crystal nucleation and growth, as shown 

in Figure 11[18].  In addition, we have also observed that flux G2 only forms Nepheline 

crystals when the glass is super-cooled below the nose of the primary Cuspidine 

crystallization curve and aged, as shown in Figure 12, path 3.  The presence of Nepheline 

in the G2 flux films extracted from the mold at cap-off (Figure 13) supports the claim that 

the crystallites observed in the mold gap form via devitrification of a super-cooled glass. 

Based on evidence from the flux film petrography and analysis of the mold thermal data 

from the two casters investigated, we propose the following mechanism for the occurrence 

of saw-tooth-like temperature fluctuations in the lower part of a funnel mold:  A crystalline 

film forms by infiltration of molten flux and aging of the glass that resides on the mold 

wall.  As this crystalline layer slowly forms, the rate of heat removal slowly decreases. In 

regions of higher shear stress local stresses acting on the crystalline film cause it to fracture 

(a) 

(b) 
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and detach from the mold wall. In some cases, the withdrawal of the crystalline layer 

creates an air gap that causes a sudden additional drop in heat removal. This air gap is 

rapidly back filled with molten glass, causing the heat removal rate to rise sharply.  At this 

point, the glass begins to age to form a new crystalline layer, repeating the cycle.  These  

 

 

  

(a) (b) 

Figure 11: (a) X-Ray diffraction patterns for G2 flux melted, quenched in 

molten Sn and aged at 500 C for various times and then water quenched.  

The appearance of sharp peaks indicates crystallite formation [18]. (b) TTT 

diagram. Crystal phases consist of Cuspidine and Nepheline. 

 

 

 

Figure 12: Typical CCT diagram showing alternate paths for crystallization. 
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(a) (b) 

Figure 13: (a) CL image of crystalline layer in G2 flux film sample showing 

evidence of Cuspidine and Nepheline phases [11].  (b) Phases confirmed by 

XRD analysis. 

 

 

 

Figure 14: Proposed origin of saw-tooth temperature fluctuations at TC#3 

in funnel: (1) fracture of flux crystalline film, (12) withdraw of flux 

crystalline film and air gap formation, (23) inflow of glass, (3) complete 

glass infiltration, (31a) aging and crystallization of glass [11]. 

 

 

 

 

(1a) 
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steps are summarized in Figure 14.  Note that not all thermal fluctuations exhibit air gap 

formation (steps 1-2). 

A mold heat flux model was employed to attempt to estimate the magnitude of the 

local changes in the heat flux profile in the funnel area compared to the body of the mold 

under the localized crystalline film sheeting conditions.  This model was adapted to the 

operating conditions employed at company G during the time of the casting trial.  The 

details of the model formulation and data fitting procedures are reported elsewhere [7, 19, 

20].  In this investigation, the overall heat flux profile was fitted to agree with the 

thermocouple temperatures measured in the mold plate outside of the funnel and the overall 

mold plate heat removal.  The local heat flux profile for the funnel region was adjusted to 

force agreement with the local temperatures in the funnel.  This approach is justified 

because the local heat flux changes in the funnel area do not affect the overall mold heat 

removal of the mold plate significantly, as shown previously in Figure 5. 

The temperatures and predicted heat flux profiles at three steps in the thermal cycle 

of a single saw-tooth-like temperature fluctuation event shown in Figure 14 are 

summarized in Figures 15 – 17.  The predictions suggest that local heat flux varied by 

approximately 47% locally (1.8 MW/m2) in the funnel root area when fluctuations were 

present.   Furthermore, the predictions suggest that the local heat flux dropped by about 

21% (0.8 MW/m2) as the infiltrated glass crystallized, with the remaining 26% drop (1.0 

MW/m2) resulting from local flux starvation and air gap formation.  The impact of these 

changes in heat flux on the predicted mold hot face temperature profiles is shown in Figure 

18 for the two extreme heat flux conditions presented in Figures 16 and 17.  The predictions 

suggest that the hot face temperatures can fluctuate by more than 160 C during a flux film 

shearing event. 

It is interesting to note that an animated view of the temperature profiles shown in 

Figure 15 shows evidence that the thermal disturbance induced by the flux film fracture 

and withdrawal initiates at or before the TC#2 position (384 mm from the top of the mold), 

propagates through to the exit of the mold on Caster G and exits at about 88% of the shell 

withdrawal speed.  The largest temperature disturbance is observed at TC#3 (546 mm 

below the top of the mold).  The thermocouples below position #3 show smaller 

temperature disturbances.  The large temperature drop at TC#3 may have several possible 
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causes.  The temperature drop from (1) to (2) appears to be the result of an air gap formed 

by liquid flux starvation immediately after the withdrawal of the crystalline layer.  The 

sharp drop is not seen at other thermocouple positions, suggesting the intermittent flux 

starvation is localized to specific regions in the lower funnel area.  Another possibility is 

that at higher positions in the mold, higher temperatures in the mold gap increases the rate 

of crystal growth from the infiltrating glass, as shown in Figures 11 and 12.   

Ultimately, the crystal structures and phases that form in the mold gap define the 

strength of the film and its ability to resist fracture.  The flux crystallite morphology is a 

strong function of temperature and the cooling path that is experienced by the molten flux.  

Conditions of high localized stresses found within the funnel area of a thin slab mold can 

lead to localized flux film fracture where elsewhere in the mold, the flux film had sufficient 

strength to resist fracture.  Currently, we are able to reproduce the phases and structures 

observed in extracted flux films using commercial mold fluxes in the laboratory[18].  

However, we have yet to develop a method for growing crystalline flux films and testing 

their strength in the lab.  More work is still needed to realize the goal of laboratory testing 

of mold fluxes to confirm how they function in the continuous casting process. 

 

CONCLUSIONS 

Localized periodic thermal fluctuations observed in the lower funnel region of the 

mold on two thin slab casters were investigated using mold thermocouple array data, flux 

film sampling and laboratory crystallization studies.  Analysis of the thermal data and 

analysis of extracted flux films indicate that the thermal fluctuations are the result of flux 

film fracture and withdrawal in the funnel area, followed by a brief period of air gap 

formation at some locations, glass infiltration into the gap and crystallization of the 

infiltrated glass.  The withdrawal rate of the crystalline layer was measured to be between 

70% and 88% of the strand withdrawal speed.   

The slow drop in heat removal following glass infiltration was found to be 

consistent with crystallization rates reported in literature and with those measured in the 

lab for the G2 mold flux.  The presence of Nepheline in crystalline phases observed in the 

extracted flux film was also consistent with a cooling path that produces a supercooled 
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glass that remains in contact with the mold wall for an extended period of time and slowly 

ages and devitrifies.  

 Thermal disturbances appeared to be caused by a single sheeting event within the 

funnel of an individual broad face plate.  The cycle times of the thermal disturbances within 

the funnel on one mold plate were well correlated.  Thermal disturbances in the funnel 

region on opposing broad face plates were not correlated, but did have similar cycle times. 

Sheeting events appear to be associated with local conditions on each broad face plate.  

Conditions of high localized stresses found within the funnel area of a thin slab mold can 

lead to localized flux film fracture where elsewhere in the mold, the flux film had sufficient 

strength to resist the fracture of the crystalline layer.  Additional work is still needed to 

characterize the relationship between flux film structures and their resistance to crystalline 

film fracture. 

This investigation also highlights the importance of mold temperature mapping in 

the development of fluxes for continuous casting.  The temperature disturbances observed 

at both casting operations would likely never have been identified by conventional mold 

heat removal and breakout detection thermocouple measurements. 
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Figure 15: Thermocouple temperature profile snapshot at 24000s and 

predicted heat flux profile. 
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Figure 16: Thermocouple temperature profile snapshot at 24105s (minimum 

temperature) and predicted heat flux profile. 
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Figure 17: Thermocouple temperature profile snapshot at 24405s 

(maximum temperature) and predicted heat flux profile. 
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Figure 18: Predicted Mold Plate Surface Temperature Profiles for High and 

Low Temperature Conditions shown in Figure 14. 
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