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ABSTRACT  

Grout is the material used in the annulus of water supply and monitoring wells to 

prevent movement of water from adjacent formations or from the land surface into the 

well. Grout is critical for preventing cross-contamination of aquifers through a borehole 

when a single well penetrates multiple aquifers and for protecting aquifers from surface 

contamination.  The composition and emplacement of grout is regulated in most states, 

with standard mixes of bentonite and cement being the most widely used types of grout.  

Despite widespread adoption of grout regulations, surprisingly little literature is available 

to describe the effectiveness of different grout mixtures.. This study investigates the 

effectiveness of three bentonite-cement mixes (3%, 6%, and 12% bentonite by weight) 

and cement grout without bentonite. The study tests the hydraulic conductivity of each 

mixture as a function of grout composition and bonding of grout to the well casing.   

Results show that as the ratio of bentonite is increased the hydraulic conductivity 

decreased, however between 3% and 6% bentonite the hydraulic conductivity begins to 

increase.   
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1. INTRODUCTION  

Water wells are created by boring a hole into the ground and placing a casing of a 

smaller diameter into the hole.  Portions of this casing are perforated, allowing water to 

enter the borehole and be brought to the surface, while other portions are non-perforated.  

The space left between the outside of the borehole and the well casing is referred to as 

the annular space.  In the portions of the aquifer used for water extraction, , a high 

permeability material will be placed between the perforated casing (well screen) and 

outside of the borehole; this materials is known as the filter pack.  There are many 

references which address methods for optimizing filter pack materials for water 

extraction wells and for monitoring wells.  Zones which are not intended for water 

extraction must be filled with a low permeability material such as grout.  Grout restricts 

the movement of water and contaminants from both the horizontal and vertical direction, 

thus preventing cross-contamination of aquifers through a borehole. Contamination can 

infiltrate vertically from surface water into aquifers or horizontally when a single well 

penetrates multiple aquifers allowing for contamination of an aquifer to spread to 

underlying aquifers.  In the case of monitoring wells, where the purpose is to characterize 

the aquifer chemistry, extent of contamination, or groundwater head, grout serves to 

isolate a formation of interest, thus allowing measurements of head at different 

elevations; multi-level head measurements are needed to understand vertical flow within 

or between aquifers.  Grout is thus essential both for maintaining the integrity of the 

water supply wells and for accurate characterization of groundwater conditions.  
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The composition of the grout in the annular space is regulated by each state’s 

environmental regulation agency, which in Missouri is the Department of Natural 

Resources (DNR).  State regulations specify the composition of the grout and the 

minimum required length of annular space to be filled with grout based on the well 

application.  These requirements can vary depending on regional geology, known 

contamination of a geologic formation, or geo-hazards such as sinkholes.  Grouting along 

the entire annulus from the screened interval to the surface is not always required in 

Missouri, and in some regions of the state, as little as 20 feet of grout is required.  The 

grouting material used is of great importance, particularly in situations in which the 

required length of grout is short.  

Grouting materials are selected based upon their ability to restrict flow.  Hydraulic 

conductivity is a measure of how easily water passes through a media and is presented in 

terms of length per time, where higher values of hydraulic conductivity allow water to 

move through a material more quickly. A hydraulic conductivity of 10-6 cm/s is 

considered to be low and can be deemed impervious for grouting applications.  For 

projects where it is imperative that water not pass through a material, it is naturally 

desirable to seek the lowest hydraulic conductivity possible.   

Commonly, the grout material selected is pure Portland cement, which can cure 

underwater, and once set, is resistant to breakdown. Portland cement is desirable because 

it is made of very fine grained, almost dust-sized, particles of silica and lime.  These 

materials bond chemically when saturated, resulting in a low hydraulic conductivity.  A 

number of additives have been used with Portland cement to increase the strength, 
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decrease the permeability, or control the curing time.  One such additive is Bentonite 

clay, which is believed to decrease the permeability of cement-bentonite mixture.  To 

install monitoring wells  in Missouri, drillers are required to use bentonite as an additive 

to cement up to 6% by weight.  Bentonite is a swelling clay which expands to up to 10 

times its original volume in the presence of water, filling any available space.  The 

current theory is that once hydrated, bentonite does not dry out.  Therefore, it should fill 

any open pore spaces permanently.  Despite the frequent and required use of bentonite, 

relatively few studies are available in the literature quantifying its effectiveness as a 

sealant.  In this research, we seek to better understand how bentonite affects the hydraulic 

conductivity of grout and how it may affect the seal between grout and the casing 

material. 
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2. PREVIOUS WORK 

Literature regarding the hydraulic conductivity of cement-bentonite mixtures is 

limited.  It is possible that a great deal of research has been conducted, particularly by the 

petroleum industry, but that the studies are not published for proprietary reasons. In 2004, 

a study was performed in Nebraska to observe the behavior of in-situ cement, bentonite 

and cement-bentonite grouts over a two-year period of time (Lackey et al, 2009).  The 

objective of this study was to determine how grout mixtures with varying percentages of 

solid materials performed under various hydrological and/or geologic conditions.  Wells 

were installed using clear polyvinyl chloride (PVC) casing and observed using down-

hole camera methods during the placement of the materials. A second survey, 16 months 

later, revealed that the integrity of the grout had been compromised by cracks and voids. 

This initial study prompted the creation of the Nebraska Grout Task Force (NGTF), 

which sought to test, in a similar manner, all of the state approved grouts, including 

bentonite slurry, bentonite chip, geothermal bentonite slurry, and cement-based grouts. 

The study consisted of the installation, between 2002 and 2004, of 63 monitoring wells in 

five sites across Nebraska with varying geological and hydrological settings. The grout 

structure was surveyed by downhole camera 90 days after installation, then dye was 

placed in the monitoring wells.  The wells were again inspected after 24-hours. Initial 

dye testing occurred between 2004 and 2006, and a secondary test was performed in 

2007 to assess the stability of the grout.  

The footage obtained by the down-hole camera survey was analyzed for cracking, 

voids, and detachment from the well casing in foot long intervals. A rating ranging from 
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1 to 3 was assigned to each foot a of well, with 1 being very good, 2 showing cracks, and 

3 showing voids or detachment. The ratings were averaged for the entire length of the 

well, as shown in Table 2.1. The cement-bentonite grout (the composition of which was 

not stated) was rated in the top 25% of the grouts studied. 

In the dye testing phase of the investigation, a yellow dye was placed into the well 

and a down-hole survey was performed 24 hours later to find the deepest point of 

penetration. The results were presented as the average percentage of the saturated zone 

penetrated by dye and are presented in the following table (Table 2.2). The cement-

bentonite grout drops from being in the top 25% of the visual rankings to ~50% in the 

dye penetration testing, with the dye penetrating an average of 48% of the unsaturated  

zone. Within the subcategory of cement-based grouts, the cement with bentonite 

exhibited the worst performance.  During the 2007 dye testing, no dye penetration was 

observed in the wells with cement-based grout. The reason for this has not yet been  

Table 2.1 Nebraska Grout Task Force Overall Average Visual Ratings
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determined, but the NGTF hypothesized that either the red dye used in the second dye 

test was more difficult to detect, thus yielding faulty data, or that the precipitation of 

calcium may have sealed any detachment from the casing. The NGTF concluded that 

drilling and installation methods, hydrological and geological conditions, and grout 

composition all play an important role in the performance of the annular seal and called 

for a closer examination of installation practices (Lackey et al, 2009). 

In a second study, researchers studied cement and bentonite grout mixtures in a 

laboratory setting (Edil et al, 1992).  In this study, Sealing Characteristics of Selected 

Grouts for Water Wells, the authors concluded that the “structural stability” of the grout 

was perhaps more important than the permeability of the material itself.  In their 

experiment, performed on neat cement, cement-bentonite, powder bentonite (Volclay), 

and granular bentonite (Benseal), the well grouts were evaluated using a well model in 

Table 2.2 Nebraska Grout Task Force Overall Average Percentage of Unsaturated 
Zone Penetrated by Dye
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the laboratory.  The experimental apparatus was a tank 15 ft x 6 ft wide and 6 ft deep, and 

four 8 inch PVC pipes were placed vertically into the model.  The model was then filled 

with sand and saturated to simulate an aquifer. Lastly, a 4 inch outer diameter steel well 

casing was installed concentrically within the empty PVC pipes.  

The four annular spaces created between the casing and the PVC were then filled 

with the four different grouts described above (one well for each mix) using tremie 

methods for the neat cement and powder bentonite and direct pouring of the cement-

bentonite and granular bentonite mixes.  Samples of each grout were also collected and 

placed into 2 inch diameter cylindrical molds for permeability testing in a flexible wall 

permeameter after curing. Following grout placement, the PVC pipes were removed, 

allowing the grout to come into contact with the sand.  Infiltrometers (short sections of 8 

inch PVC pipe) were installed around each of the annular seal at the grout sand interface 

to a depth of 1 foot below the surface, but were not filled with water during the curing 

process.  

Cracking to various degrees was observed in all of the grout mixes within the two 

week curing period. At the end of the curing period, the infiltrometers were filled with 

water.  Red dye was added to the infiltrometer at 10 weeks (8 weeks since grout 

placement) to trace the fluid flow paths that may have developed.  Infiltrometer testing 

was concluded at the end of week 19.  In the discussion of the results, the authors state 

that “infiltration rate tended to slow down after some time. However, the replenishment 

of water caused an increase in the infiltration rates…”  An increase in the infiltration rate 

with an increase in the hydraulic head should have been expected.  Increasing the column 
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of water on top of the grout increases the pressure that is exerted by the water thereby 

causing fluid to move more quickly through the pore spaces or cracks. Likewise a 

decrease in hydraulic head would lead to a decreased rate of infiltration.  The hydraulic 

conductivities calculated throughout the course of the experimentation were then 

averaged which further obscures the true hydraulic conductivities of the grout materials.  

The averaged results of the experimentation are presented in the table below (Table 2.3). 

After the conclusion of testing, the grouts were removed an investigated for dye 

traces.  In the cement-bentonite grout, dye was found at the PVC infiltrometer grout 

interface to the bottom of the infiltrometer (approximately 1 foot) and 6 inches of 

infiltration between the grout and steel well casing interface.  

The authors concluded that given the infiltration along the grout casing interfaces 

and the cracking observed during the curing period, the permeability of the grout 

materials may be more controlled by the “structural stability” of the grout,(Edil et al, 

1992).   

Table 2.3 Infiltration Rates in Well Model Experiment from Edil et al, 1992
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In 2014, the Missouri DNR performed an unpublished qualitative experiment on 

well grouts. A well was drilled on their property in Rolla, MO, and the well was cased 

with clear PVC to allow a borehole camera to image the placement of various approved 

grouts. One of the grouts placed was a 50/50 cement-bentonite mix, and it was observed 

in the well that the two materials did not create a homogenous mixture (Justin Davis, 

MDNR Employee). It is not clear whether the large proportion of bentonite used in this 

experiment is responsible for the heterogeneity, but a propensity to not mix would create 

different zones within the grout that might lead to vastly different permeabilities for each 

zone. 
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3. METHODOLOGY  

This experiment was designed to investigate how the cement-bentonite grout 

composition affects hydraulic conductivity and how it affects the seal between the grout 

and the casing.  Three different  cement-bentonite mixtures were tested, and , tests were 

also performed using pure cement as an annular seal.  To test how the cement-bentonite 

ratio affects the seal with the casing, the surface area of the grout:casing interface was 

varied for each cement-bentonite mixture.  The expectation was that if poor seals were 

forming between the grout and the casing, the hydraulic conductivity of the grout would 

increase as the area of the grout:casing interface increased.  The increased hydraulic 

conductivity in this circumstance would be attributed to failure of the grout to create an 

effective seal to the well casing, which would create a micro-annular space and provide a 

conduit for fluid.   

3.1 CEMENT AND BENTONITE MIXTURES 

When deciding what mixtures of cement and bentonite to use in this study, 100 

percent cement (neat cement) was chosen as a baseline for comparison to the cement-

bentonite grouts.  It is also important to test neat cement because it is the most commonly 

used grout. The quantity of bentonite to add to the cement was based upon current 

requirements by the Missouri DNR, where drillers must add up to 6% bentonite.  To 

provide a range of bentonite-cement mixtures that are in line with current requirements, 

we tested mixtures where the bentonite was 3%, 6%, and 12% of the grout mixture, as 

determined by dry mass.  
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3.2 ADHERENCE OF GROUT TO THE CASING 

To test the seal between the grout and well casing, the surface area of the casing 

was varied for different experiments.  All experiments were conducted in a rectangular 

tank 11 in. wide by 20 in. long.  Some tanks were filled only with grout, while other 

tanks had vertically installed PCV pipes of 1 in diameter which were set in the tank prior 

to adding grout.  . To change the surface of the grout:casing interface, the number of 

pipes in each tank were varied; tests were run with 3 pipes and with 9 pipes, and we 

expected to observe an increase in the apparent hydraulic conductivity as the number of 

pipes increased.. If little or no difference in hydraulic conductivity was observed in tanks 

with no pipes or several pipes , this would indicate that adherence of the grout to the 

casing is generally good.   

The decision to test the adherence of grout to only PVC pipes and not to include 

testing on steel well casing was made based on the limitations of time and budget. PVC 

was chosen over steel because of PVC’s increasing dominance as a casing material in the 

field. A coding system using the parameters to be tested was established to identify the 

variables in each trial. The coding system will consist of the percentage of bentonite to be 

tested, either B0 (0% bentonite), B3 (3% Bentonite), etc.,, paired with the number of 

pipes used in the trial, where P0 designates zero pipes, P3 is three pipes, etc. The 

combinations tested are presented in Table 3.1. 
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3.3 PERMEAMETER TESTING APPARATUS   

Different experimental apparatuses were considered prior to construction of our 

final design.  Measurements of hydraulic conductivity are generally performed in a 

permeameter for specimens that are anticipated to have low hydraulic conductivities. 

There are two types of permeameters, rigid-wall and flexible-wall. Rigid-wall 

Permeameters (ASTM D5856-15) are used where expected hydraulic conductivities are 

less than or equal to 10-5 m/s, meaning water travels less than 1 meter in a day’s time 

under a unit gradient (0.864 m/ day). Rigid-wall permeameters use specimens which 

have been compacted inside the test apparatus and vacuum sealed, allowing only water to 

pass in and out of the material. Flexible-wall permeameters (ASTM D 5084-10) are used 

for specimens with expected hydraulic conductivities less than or equal to 10-6 m/s, 

around 0.1 meter in a days time under a unit gradient (0.0864 m/day).  Samples used in a 

flexible-wall permeameter are also compacted.  However, they are compacted outside of 

the testing apparatus, and after compaction they are placed inside the permeameter. The 

walls of the permeameter are then made to inflate, squeezing the sides of the specimen. 

To use a flexible-wall permeameter, the specimen must be fully saturated prior to 

Table 3.1 Coding System
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compaction. Both of these permeameters attest a small diameter of material and are 

meant to test loose materials. In our study, grout cannot be compacted, and both rigid-

wall and flexible-wall permeameters had no mechanism for incorporating pipes within 

the sample, so these permeameters were considered to be inappropriate for our 

experiment.  

A study was performed by the American Society for Testing and Materials 

(ASTM) on the discrepancy between hydraulic conductivity values reported for in-situ 

field testing versus laboratory testing. Field testing generally involves a large area, 

whereas lab testing is often confined to only a few inches in diameter. Testing was 

performed in the field and using permeameters in the laboratory on compacted clay 

liners, which are similar to grout in that they have low hydraulic conductivities and have 

a macro-structure that may not be captured in testing a small sample. The diameter of the 

permeameter and the thickness of soil tested were increased until the field results could 

be replicated. This experiment found that the ideal sample for lab testing was 11.8 inches 

in diameter and 5.9 inches thick to acquire data that closely matched the values reported 

by in-situ testing (Benson et al, 1994). 

Like clay liners, cement-bentonite grout also has a macro-structure, and it would 

be most representative to perform large-scale tests. The macro-structure includes not only 

any cracks which may occur, but also its expected heterogeneous texture. Cement-

bentonite grout is mixed by first combining Portland cement and water and then adding 

bentonite granules. The mixture is then poured into the annular space around the well 

casing using one of several different approved methods. The goal of mixing these 
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materials is to provide a homogenous product, but it is uncertain whether the bentonite 

truly mixes with the cement. Based on the results of the MDNR and ASTM studies,, 

large-scale testing is the most appropriate method.   

Large diameter permeameters that met the requirements of this experiment are not 

commercially available, so it was necessary to construct the experiment apparatus.   The 

following sections discuss the procedures used to construct the experimental apparatus 

and to select which materials and processes were optimal for this experiment.   

Our experimental apparatus allowed water to be added above a layer of grout, to 

drain freely through the grout, and then to be collected when drainage was complete.  

The testing apparatus chosen for this experiment  was a pre-fabricated rectangular glass 

tank chosen to ensure structural stability throughout experimentation. New tanks were 

used for each of the twelve scenarios listed in Table 3.1. 

Each tank has a single hole which was drilled into the bottom using a 1/4” 

diamond bit hole saw and a power drill. This hole allowed for collection of drainage 

water which passed through the grout and into the bottom open portion of the tank. A 

hose was attached to the hole on the outside of the tank to control when the water was 

drained. The drainage hose was clipped to the top of the tank so that gravity prevented 

the tank from draining until an appropriate time.  Before pouring grout into the tank, 

plastic risers were placed on bottom of the tank to create an open chamber below the 

grout which allowed for water collection over the entire area of the tank.  

To allow water to drain through the grout while providing a surface upon which to 

pour grout, we constructed a drainage layer atop the risers using a wire mesh and a 
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geotextile.  The wire mesh was a strong, stiff sheet, and it allowed for water to flow 

freely through it.  The sheet’s primary purpose was to lend support to the geotextile 

which lies above it, and so the sheet must be relatively stiff. The geotextile was supplied 

by AgruAmerica and has a minimum apparent opening size of 0.150mm. The geotextile 

allowed water to pass through freely, but prevented grout particles from passing through 

during the placement and curing of the grout as well as during testing. The geotextile 

liner was sealed to the sides of the tank using silicone caulk. This seal prevented the 

migration of water along the sides of the tanks and held the geotextile in place during the 

placement of the grout.  A small layer of sand (0.5-1.0 in thick) overlaid the geotextile to 

prevent grout from passing through the geotextile while it was being poured. Typically, in 

a commercially available permeameter, a porous stone is used of this function.  Since 

there were no porous stones of this size commercially available, the geotextile in 

combination with the wish mesh sheet served the same purpose as a porous stone. The 

drainage layer (sand, geomembrane, and wire mesh) in each tank ranged from 0.75-1.25” 

thick. 

Because the bottom portion of the tank was sealed off from the atmosphere, a 

release valve or pipe between the bottom chamber of the tank to the atmosphere was 

needed to allow air to escape as water permeated through the grout. Without this pipes, 

the pressure in the bottom chamber would have increased until no water would have 

passed into the drainage space, rendering the experiment ineffective.. Release pipes were 

installed using small diameter plastic pipes (5.5 mm) that were sealed into the corners 

and ended just below the geotextile in the bottom portion of the tank, allowing for air to 
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leave this portion of the tank and ensuring free drainage of water while minimizing 

evaporation from this chamber. 

Once the drainage layer was in place, tanks without pipes were ready for grout. 

The tanks which had pipes required additional preparation. Sections of PVC pipe 2 

inches in diameter (the minimum diameter allowed by current MDNR regulations) and 

12 inches tall were prepared. The bottom of the pipe was sealed using silicone to prevent 

any migration of water through the pipe, and the pipes were then filled with cement. 

After curing, the top of each pipe was also sealed with silicone. This ensured that the 

pipes did not transmit water, therefore altering results, and gave the pipes more weight, 

which made them more stable during placement of grout. After tanks with and without 

pipes were prepared, they were partially filled with water to a depth of 6 inches. Grout 

was poured through this standing water. In the field, grout is often poured through water 

as the water flows into the borehole from the surrounding formation. When placing grout 

through water, a tremie pipe is required. A tremie pipe is simply a small diameter pipe 

inserted into the annual space of the borehole.  Grout flows through the tremie pipe to the 

bottom of the borehole, and the tremie pipe is raised as each section of the annular space 

is filled with grout.  Thus, the tremie pipe ensures good grout placement in the annular 

space along the entire grouted length of the borehole. The minimum length of the grout 

column in the borehole according to MDNR regulations in 30 feet; full length grouting of 

the borehole is not required for most settings. The thickness of grout for this 

experimental design was between 6 and 7 inches. Since a long column of grout was not 

required, no tremie pipe was used.   
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Grout was mixed according to common practice, as outlined by the MDNR 

regulations. Amounts of grout sufficient for testing needs were measured out and mixed 

with the appropriate amount of the water using a paddle attachment for a power drill in a 

5 gal bucket.  

After grout was poured into each tank, additional water was added as needed to 

bring the water level up to the top of the release pipes. The top of the tank was covered 

with a thin clear plastic membrane to limit the effects of evaporation. Completed tanks 

are pictured in Figure 3.1.  After the grout was poured, the tanks were left for a period of 

two week to allow for curing of the grout mixes, as was done in Edil et al., 1992. 

After grout curing time was complete, the drainage hose was released so that 

water in the lowermost chamber of the tank drained. During the draining of the tanks, the  

plastic was removed from the tops of the tanks, which allowed air to move into the tank 

and down the release pipes, so water could drain from the lower chamber. After the initial 

draining, the plastic was replaced.  

3.4 QUALITY CONTROL EXPERIMENTATION  

Two pre-experiments were performed before tanks were completed. The purpose 

of each pre-experiment was to better understand the materials that would be used during 

experimental trials and to better ensure their success.  

3.4.1 Pre-Experiment 1.  Pre-experiment 1 was performed to determine whether 

or not plastic wrap would be sufficient to eliminate or minimize the effects of 

evaporation at the top of the tank. Two identical tanks were filled with water to 

approximately the same height, and the water levels were marked. One tank was then  
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covered by plastic wrap and the other was left open for comparison as shown in       

Figure 3.2. Tanks were left to sit for a period of 14 days, after which water levels were 

re-measured. In the covered tank, no noticeable water loss was observed, however in the 

Figure 3.2 Pre-Experiment 1 Set Up 
Control Tank (left) and experimental tank covered 

in plastic wrap (right)

Figure 3.1 Tanks After Placement of Grout 
Left tank is without pipes and right tank is with nine pipes
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control tank, a water loss of 1.25” was recorded (see Figure 3.3).  From this experiment it 

was determined that plastic wrap can be used to eliminate water loss due to evaporation. 

3.4.2 Pre-Experiment 2. Pre-Experiment 2 involved the selection of the 

geotextile material to line the bottom of the drainage layer. Having a geotextile that will  

not pass grout during pouring is essential because the bottom chamber must be empty to 

allow for drainage during the permeability testing. AgruAmerica donated several samples 

for testing, as well as donating the Geotextile chosen in this experiment to line all of the 

tanks. A summary of the materials tested can be found in Table 3.2. 

In order to meet the purposes of this experiment, the geotextiles needed to resist the 

passing of a majority of the grout and needed to resist clogging that would impair the 

flow of water.  To test their properties, a piece of geotextile was fixed to the bottom of a 

3” diameter section of PVC using silicone as seen in Figure 3.4. 

Figure 3.3 Pre-Experiment 1 Results 
Appreciable drop in the water level in the uncovered tank shown
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PVC pipe sections were placed into tanks of water and grout was poured into the 

pipe. Pouring was recorded so that leaked amounts could be compared. Figures 3.5  and  

3.6 depict some of the images captured from those recordings.Information gathered was 

of a qualitative nature only. It was observed that a much smaller plume of grout passed  

through the bottom of the Agrutex 101 geotextile. This was anticipated as the Agrutex 

101 had the smallest apparent opening size.  

Figure 3.4 Pre-Experiment 2 PVC

Table 3.2 AgruAmerica Geotextile Properties
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During experimentation, the PVC pipe for the Agrutext 101 was pulled out of the 

water, at which point all of the material passed through the geotextile. This discovery  

reinforced the need to make sure that the geotextile was fixed firmly in place in the 

experimental tanks and that flow would not be induced through the tank so that materials 

Figure 3.6 Pre-Experiment 2 Agrutex 101

Figure 3.5 Pre-Experiment 2 Agrutex 061



!22

would not be carried through the geotextile.  As a result of Pre-Experiment 2, Agrutex 

101 was chosen as the geotextile material for the drainage layers in the experimental 

apparatuses.   
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4.EXPERIMENTATION   

Two sets of tanks were constructed, designated as Set 1 and Set 2. Set 1 had one 

tank for each of the scenarios described in Table 3.1 for a total of twelve tanks.  The Set 2 

tanks were similar, but lacked the neat cement control tanks, therefore totaling only nine 

tanks.  The two sets provided redundancy and the ability to collect more data in a short 

amount of time.  . Tanks were constructed according to the specifications set forth in the 

Apparatus Construction section of this study. It should be noted that each of the 

experiments were started at different times, as each grout was measured and mixed 

separately.  The same volume of material was mixed for each tank, and the entire grout 

mixture was used regardless of the number of pipes in the tank.  All the tanks were cured 

in a temperature controlled environment for quality control.  

The following observations were made during the placement of grout: 

1. Grout was poured into the approximate center of the tank and allowed to flow 

laterally to fill the space. It was observed that as the percentage of bentonite 

was increased, it became more difficult for the grout to flow laterally.  In the 

12% bentonite mix, the grout did not flow laterally and this grout had to be 

pushed into the empty space to uniformly fill the bottom of the tank. 

2. Even small increases in the percentage of bentonite greatly affected the ability 

to pour the mix. The 3% bentonite mix was noticeable thicker than the neat 

cement, and the 12% bentonite did not pour in a continuous stream, but rather 

in clumps. 
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3. The apparent grout level was marked on the tank immediately following the 

pour. In some of the 3% and 6% bentonite tanks and in one of the neat cement 

tanks, the grout appeared to settle. In the 12 percent bentonite tanks, no 

settlement was observed. 

After placement of grout and covering of the top of the tank, grout was allowed to 

cure for a period of 14 days. There are no requirements in the Well Specification and 

Regulations from MDNR on how long grout must be allowed to cure. Well installation 

generally occurs on a short time line, and sealing of the top of the well may immediately 

follow grout installation. A period of 14 days was chosen to ensure that the cement would 

be fully cured before a gradient would be produced across the grout during draining of 

the tank. At the end of the curing period, the bottom chamber of the tank was drained. 

After the drainage of the open chamber was accomplished, the drainage tubes were again 

elevated to prevent drainage out of the open chamber during the test.  

As time progressed, water migrated through the pore spaces, and potentially 

through cracks that may have formed in the grout, and into the bottom chamber. The 

volume drained was represented by a drop in the water level above the grout. The water 

level was periodically measured and the time recorded to determine the loss in head over 

time, which would be used to calculate the hydraulic conductivity. Water was allowed to 

accumulate until the bottom chamber was nearly full, at which time the bottom would be 

drained and water would be added to the top of the tank, the water level noted, and the 

experiment would start over again. If the bottom of the tank became full, then any last 
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measurements taken without free drainage would be invalid, as the exact gradient 

through the grout was no longer known.  

It was expected that each grout would have differing hydraulic conductivities, so 

some grout mixtures would take longer than others to fill the empty chamber at the 

bottom of the tank. This was found to be true in this experiment. In the time required for 

some tanks to have a significant water loss, other tanks had shown substantial water loss 

and been refilled, sometimes multiple times. To ensure high-quality data, tanks in which 

the bottom chamber was half-full were drained and refilled to repeat the experiment 

within a reasonable amount of time. If the chamber at the bottom of the tank was allowed 

to fill to capacity, the gradient was lowered, thus producing false low permeability data. 
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5.RESULTS 

The data collected from the tanks consisted of water level readings as a function 

of time, as well as measurements regarding the grout thickness. This information was 

used in the following equation to calculate the hydraulic conductivity (K) as shown in 

Equation 1. 

K=(Z/t)*ln(h1/h2)                                        Equation 1 

Where: K = hydraulic conductivity 

Z = thickness of grout 

h1 = initial water level reading 

h2 = final water level reading 

t = time elapsed between readings 

The hydraulic conductivity was calculated after the start or restart of the 

experiment, after the initial two readings, between each reading and as a cumulative 

hydraulic conductivity until the restart of the tank. Data tables for each tank are presented 

in the Appendix.   

A few of the tanks did not function properly; the water level in the Set 1 tank with 

12% bentonite with 3 pipes drained within 1 day, indicating that the seal between the 

grout and the tank was likely compromised. After a few months, a crack developed down 

the side of one of the control tanks, neat cement with no pipes, at which point usable data 

could no longer be collected from this tank.  
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6. RESULTS DISCUSSION  

6.1 CONTROL TANKS: NEAT CEMENT 

It was predicted that the neat cement (control) would have a consistent 

permeability over time, as indicated by Edil et al., and that the permeability would not 

vary with the number of pipes, based on the low dye penetration observed in the 

Nebraska Grout Task Force study. However a graph of the data (Figure 6.1) shows 

variable hydraulic conductivities.  It was surprising to note that the neat cement tank with  

3 pipes exhibited a higher hydraulic conductivity than the tanks with no pipes or 9 pipes.  

An approximately 5 month gap in data collection falls in the middle of the testing period. 

It was hypothesized that the hydraulic conductivity of the grout may change over time, 

either due to mineralization precipitated out of the water, yielding lower hydraulic 

conductivities, or dissolution of grout materials or the formation of cracks leading to 

Figure 6.1 Neat Cement: Hydraulic Conductivity vs Length of Test
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higher hydraulic conductivities.  A graph of the hydraulic conductivity over time is 

shown in Figure 6.2.  The hydraulic conductivity of the tanks with 3 and 9 pipes showed 

little variation from the data collected at the beginning of the testing period.  As stated 

earlier, the neat cement tank with zero pipes developed a crack over time that caused 

failure of the tank, thus the relationship between the hydraulic conductivity and the 

passage of time could not be established.   

Trends in the data were difficult to establish, it is hypothesized that since the 

control tanks were the first to be constructed and poured, the tanks may have had 

construction problems that the benefit of experience eliminated in the other tanks.  It is 

Figure 6.2 Neat Cement: Hydraulic Conductivity Over Time
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possible that construction of additional tanks may yield stronger trends, however research 

regarding the hydraulic conductivity of cement grout is more widely available.  The data 

collected in this study gave hydraulic conductivities expected for cement grouts. 

6.2 ALL TANKS WITH NO PIPES 

The data from the tanks containing no pipes has been plotted in the following 

graphs (Figures 6.3).  The data appears to be scattered with few strong trends. The neat 

cement tank, represented as 0% Bentonite appears to have a hydraulic conductivity 

greater than the majority of the Set 1 3% Bentonite data and the Set 2 6% Bentonite data.    

Edil et al concluded that the structural stability of the grout may be a contributing 

factor to the hydraulic conductivity in the long term (Edil et al, 1992).  If the interface 

between the well casing, whether PVC or steel, did not seal at pouring or was pulled 

away by shrinkage of the grout curing curing, then pathways for flow may be created.  

With that in mind, it was anticipated that in the tanks with no pipes, the hydraulic 

conductivity would remain constant over the passage of time.  However, based on the 

graph of the data over the test period, some of the tanks experienced significant increases 

in the hydraulic conductivity.  Significant increases were observed in the Set 2 3%, Set 1 

and 2 6%, and Set 1 and 2 12% Bentonite tanks.  As mentioned previously, the neat 

cement tank with no pipes developed a crack, so data after the time gap is not available. 

6.3 ALL TANKS WITH 3 PIPES 

The data from all the tanks with 3 pipes has been plotted in the following graphs 

(Figure 6.4).  The original hypothesis that increasing the ratio of Bentonite would lower 

the hydraulic conductivity was supported in data from the 3 pipe tanks, as well as the  
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hypothesis that the hydraulic conductivity would remain fairly consistent throughout the 

passage of time.  The hydraulic conductivities of the 3% and 6% bentonite are very close 

and the 12% bentonite was found to have higher permeabilities on average.  This may 

indicate that the benefit of adding bentonite to cement may diminish with increasing 

percentage. 

Figure 6.3 All Tanks with No Pipes
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6.4 ALL TANKS WITH 9 PIPES 

The data from all the tanks with 9 pipes has been plotted in the following graphs 

(Figure 6.5).  As in the tanks with no pipes, some of the cement-bentonite grouts yielded 

higher hydraulic conductivities than the neat cement, in this case Set 1 6% and Set1 and 2 

Figure 6.4 All Tanks with 3 Pipes
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12%.  The graph showing the hydraulic conductivity over time shows an increase for the 

Set 2 3%, Set 1 6% and Set 2 12% and a decrease in the Set 1 12% tank.  No other tanks  

in the data set showed a decrease in the permeability over time.  The cause of this 

decrease is unknown but could be a result of a crack that was sealed over time by the 

hydration of bentonite or the precipitation of mineralization to close a crack.   

Figure 6.5 All Tanks with 9 Pipes
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6.5 AVERAGED HYDRAULIC CONDUCTIVITIES 

It was observed that between the two sets of tanks, (cement-bentonite grout mixes 

only) Set 1 tanks gave on average higher hydraulic conductivities than the Set 2 tanks.  

Both sets of tanks were stored in temperature controlled environments and water level 

readings were performed at the same time. Again, a possible source of discrepancy could 

be in the construction of the tanks.  Set 2 was constructed and poured last and had the 

benefit of experience.  The average hydraulic conductivities  for all the tanks are 

presented in the following table (Table 6.1).   

According to the averages, all of the grout mixes, regardless of the inclusion of 

pipes, meet the requirements for impermeability of 10-6 cm/sec or less. The averages for 

the combined cement-bentonite tanks have been plotted as a function of the number of 

Table 6.1 Average Hydraulic Conductivities
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pipes and the percentage of bentonite which are included in the following graphs (Figures 

6.6 and 6.7).   

It was hypothesized that addition of bentonite would decrease the hydraulic 

conductivity due to the expansion of bentonite and its ability to hold on to moisture.  The 

trend in the data suggests that the benefit of bentonite might be limited to a small 

percentage.  Hydraulic conductivity was lowered between the 0 and 3% bentonite, 

however, rose between the 3 and 6% (with the exception of the 3 pipe tanks). In general, 

the addition of bentonite as an additive to cement to lower the hydraulic conductivity 

seem effective only when the percentage is less than 6% by weight.  It was also observed 

during the initial pouring of the grout that the workability of the 6 and 12% bentonite 

Figure 6.6 Average Values as a Function of the Percent Bentonite
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mixes was severely effected by the increase in bentonite.  Both mixes gave an 

inconsistent texture and were difficult to pour.  Based on these observations it is likely 

that pumping the grout with such high percentages of bentonite would be very difficult, 

possibly leading to poor seals. 

The tanks with pipes were added to the study in order to determine whether or not 

a macro-structure was present which could control the hydraulic conductivity.  It was 

assumed that, if present, the macro-structure would lead to increasing hydraulic 

conductivities as the number of pipes was increased.  This was assuming that cracking 

would propagate around the grout and casing interface or that a micro-annulus would 

form created by the grout pulling away from or poorly adhering to the well casing.  It 

was surprising to find that the tanks with 3 pipes had lower hydraulic conductivities than 

Figure 6.7 Average Values as a Function of the Number of  Pipes
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the tanks with zero or 9 pipes.  It is possible that the crack are not generated around the 

casing, but that the length of the crack may have been limited by the installation of the 

pipe, this would explain the lowered hydraulic conductivity between no pipes and 3 

pipes.  The increase between the tanks with 3 pipes and those with 9 could be due to the 

micro-annulus.  The micro-annulus may have been present in the 3 pipe tanks, however 

the flow pathways blocked may have been more significant in lowering the hydraulic 

conductivity, but in the 9 pipes the micro-annulus may have been significant enough to 

overcome the flow paths that were stopped.  Further investigation into why the hydraulic 

conductivity decreased with additional pipes would be necessary in order to draw any 

conclusions.   

The data collected also suggests that the hydraulic conductivity may increase with 

the passage of time.  A more significant period of data collection may indicate hydraulic 

conductivities higher than the averages reported here.  On the micro scale, fine particles 

initially blocking a flow path may become disturbed or pushed through the pore space 

over time causing an increase in the passage of water through the grout column.  On the 

other hand the grout may experience a change in the macro-structure which may cause 

new flow pathways to be opened up.  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7. CONCLUSIONS 

In conclusion:  

1. Macro structures may still be present within grout mixes that may contribute 

more significantly to the hydraulic conductivity than the composition of the 

material. 

2. The benefit of bentonite as an additive to cement may decrease as the ratio is 

increased. 

3. The hydraulic conductivity of the grout mix may increase over time, possible 

due to macro- or micro-structures within the grout. 

Additional work should be done related to the macro- and micro-structure of the 

well grouts, perhaps centering on the nature of the grout matrix, whether or not the 

cement and bentonite bond and if a failure to bond creates a pathway for flow.  
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APPENDIX:  

DATA TABLES FOR INDIVIDUAL TANKS 
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