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ABSTRACT

The performance of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) is sig-

nificantly impacted by flow distributor geometry. The effects of flow distributor geometry

on PEMFCs was explored in two ways in this study. Firstly, the relative effects of pressure

and distribution characteristics of different flow fields on fuel cell unit and system level

performance were considered. A method of decoupling these effects was proposed and

demonstrated by application to the traditional serpentine and parallel flow field designs.

The performance of these two designs were modeled computationally and it was shown

that, of the 17% better performance of the serpentine design, 12% was due to mass trans-

port effects, while 5% was due to the effect of increased pressure loss. Secondly, the idea

of Bio-Inspired design for creating new fuel cell flow field geometries was investigated to

determine the window of opportunity in fuel cell applications for gaining maximum benefit

from bio design. It was determined that the area of opportunity for bio design was when

having a minimal pressure loss across the flow field was a dominate design constraint. A set

of design principles for creating bio flow fields under this design constraint was developed.

These principles were then demonstrated by creating an example bio flow field, and simu-

lating its performance computationally, along with that of the traditional parallel design as

a reference. The bio design was shown to have lower pressure losses which allowed it to

produce 2-3 times better power output per pumping power input than the parallel design,

while also maintaining better reactant distribution. Lastly, a new method of determining

operating conditions when using low humidity supply gas was developed to help alleviate

water management issues. This method, which has been termed Water Balanced operation,

was tested on both the bio and parallel design, and was shown to improve performance in

both cases.



v

ACKNOWLEDGMENTS

I would like to thank my co-advisors, Dr. Umit Koylu and Dr. Ming Leu, for

providing me with the guidance and all of the resources that I required to succeed in

completing my MS degree. I would also like to thank the Department of Mechanical and

Aerospace Engineering and Dr. Ashok Midha for providing me with a Graduate Teaching

Assistantship during the course of pursuing myMS degree, and the Chancellor’s Fellowship

for funding my course work.

I would also like to thank the Missouri S&T FORGE cluster admins on the S&T

Research Support Services group, specifically Nicholas Eggleston and Buddy Scharfenberg,

for going above and beyond to help sort out the issues of running my computations on the

cluster. I could not have completed my work on time if not for their help.

The research for this thesis was supported by the Missouri University of Science

and Technology’s Innovation Initiative, and the Intelligent System Center at Missouri S&T,

and I would like thank those sources for supporting my work.

Finally, thanks to my wife, Hope, for putting up with my crazy schedule, and helping

me push through the times when I thought I had bitten off more than I could chew.



vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. PROTON EXCHANGE MEMBRANE FUEL CELLS . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. IMPORTANCE OF FLOW DISTRIBUTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. PRESSURE EFFECTS ON FUEL CELL PERFORMANCE . . . . . . . . . . . . . . . . . 4

1.4. BIO-INSPIRED DESIGN FOR FLOW FIELDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5. SUMMARY OF THE PRESENT WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

PAPER

I. DECOUPLING PRESSURE AND DISTRIBUTION EFFECTS ON THE PER-
FORMANCE OF POLYMER ELECTROLYTE FUEL CELLS . . . . . . . . . . . . . . . . . 7

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. PRESSURE EFFECTS ON FUEL CELL PERFORMANCE AND
AUXILIARY POWER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. COMPUTATIONAL METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



vii

3.1. Mesh and Model Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. Simulation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3. Convergence Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. RESULTS AND DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ACKNOWLEDGMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II. BIO-INSPIREDFLOWFIELDSFORPROTONEXCHANGEMEMBRANEFUEL
CELLS - IDENTIFYING OPPORTUNITIES AND DEMONSTRATING APPLI-
CATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2. IDENTIFYING STRENGTHS OF BIO-INSPIRED DESIGN . . . . . . . . . . . . . . . . 46

2.1. Characteristics of Biological Flow Structures. . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2. Analogous Fuel Cell Operating Regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3. Effect of Interdigitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4. Design Methodology for Creating Bio-Inspired Flow Fields . . . . . . . . . . 52

3. OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4. COMPUTATIONAL METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1. Mesh and Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2. Simulation Strategy and Convergence Criteria. . . . . . . . . . . . . . . . . . . . . . . . . 64

5. PERFORMANCE OF EXAMPLE BIO-INSPIRED DESIGN . . . . . . . . . . . . . . . . 66

5.1. Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2. Power Output Per Pumping Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3. ReactantDistribution, ProductWater Removal, andMembraneCon-
ductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Fixed Mass Flow Rate Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



viii

5.3.2 Water Balanced Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ACKNOWLEDGMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

SECTION

2. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 Cross Section of a PEMFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

PAPER I

1 Diagram of the thermodynamic devices in a PEMFC system. . . . . . . . . . . . . . . . . . . . . . 17

2 (a) Cut view of all through plane mesh layers and (b) enlargement of red insert
in (a) showing catalyst and electrolyte layer details (color version available online) 24

3 Convergence plot of species and current for parallel design at 0.25 V . . . . . . . . . . . . 27

4 Comparison of performance for serpentine and parallel designs (a) polarization
curves, and (b) power density curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Contours of oxygen molar concentration (kmol/m3) and velocity magnitude
(m/s) at the cathode GDL-catalyst interface, at 0.35 V for the serpentine design,
and parallel design at both back pressures (inlets at bottom left, color version
available online) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

PAPER II

1 Effect of HPLR on flow distribution- (a) diagram of simplest parallel flow case,
and (b) effects of HPLR on flow distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 Flow field designs (a) bio-inspired design created for demonstration (inlet at
left, outlet at right) (b) parallel 2x1 aspect ratio for comparison (inlet top left,
outlet bottom right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Variation of water vapor mole fraction at 100 % relative humidity with temper-
ature and pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Mesh- (a) cut view of all through plane mesh layers and (b) detail of catalyst
and electrolyte layers (color cersion available online) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Example convergence plot demonstrating species and current tracking . . . . . . . . . . . 66

6 Polarization curves obtained from CFD results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Fuel cell power output per pumping power input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



x

8 Fixed mass flow case: 0.65 Volts, catalyst-GDL interface (a) color legend for
oxygen contours (b) parallel oxygen concentration (c) bio oxygen concentration
(d) color legend for water contours (e) parallel water concentration (f) bio water
concentration (color version available online) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9 Water balanced case: 0.3 A/cm2, catalyst-GDL interface. (a) color legend for
oxygen contours (b) parallel oxygen concentration (c) bio oxygen concentration
(d) color legend for water contours (e) parallel water concentration (f) bio water
concentration (color version available online) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10 Average membrane water content and protonic conductivity of the bio design
for both fixed flow rate and water balanced operating cases . . . . . . . . . . . . . . . . . . . . . . . 72



xi

LIST OF TABLES

Table Page

PAPER I

1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Fuel cell geometry parameters for parallel and serpentine fuel cells . . . . . . . . . . . . . . 23

3 Numerical model parameters used in the fluent simulations . . . . . . . . . . . . . . . . . . . . . . . 25

4 Numerical model parameters affected by inlet pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Performance comparison using traditional and proposed methods . . . . . . . . . . . . . . . . 30

6 Oxygen concentration and mixture velocities at the cathode GDL-Catalyst in-
terface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

PAPER II

1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Flow field geometry parameters for parallel and bio designs . . . . . . . . . . . . . . . . . . . . . . 55

3 Inlet conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Mass flow rates for water balanced operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Fuel cell geometry and material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Numerical model parameters used in the fluent simulations . . . . . . . . . . . . . . . . . . . . . . . 64



SECTION

1. INTRODUCTION

1.1. PROTON EXCHANGE MEMBRANE FUEL CELLS

In the ongoing search for cleaner and more efficient power generation methods, fuel

cells have emerged as a promising candidate. Fuel cells work on the principle of direct

energy conversion, utilizing electrochemical reactions to produce electrical power from the

chemical potential of a fuel in a single step. There are many types of fuel cells, but among

them, Proton Exchange Membrane Fuel Cells (PEMFCs) are particularly promising due to

their low operating temperature, fast startup, and quiet operation. A cross section view of

a typical PEMFC is shown in Figure 1.1.

Figure 1.1. Cross Section of a PEMFC
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The heart of the PEMFC is the Membrane Electrode Assembly (MEA), consisting

of the electrolyte membrane with catalyst layer coating on either side, sandwiched between

the Gas Diffusion Layers (GDLs), which are typically made of porous carbon paper or cloth.

It is only at the catalyst layers that the electrochemical half reactions occur, as

Anode : H2 → 2H+ + 2e−, (1.1)

Cathode :
1
2

O2 + 2H+ + 2e− → H2O. (1.2)

For this reason, the planar projection of the catalyst layers is called the “active area” of the

fuel cell. Hydrogen is supplied to the anode and passes through the pores of the anode GDL

to complete the anode half reaction at the catalyst layer. Protonic transport then occurs

across the membrane, carrying H+ ions from anode to cathode, while the solid material of

the GDL transports the electrons away from the catalyst layer to pass through the external

load circuit. Oxygen supplied at the cathode, often in the form of air, travels through the

pores of the cathode GDL to the cathode catalyst layer. Here, the oxygen combines with

the H+ ions and e− electrons to participate in the cathode half reaction producing water and

some waste heat, which are the only bi-products of PEMFC operation.

The MEA is sandwiched between a pair of Bipolar Plates (BPP). These plates have

a set of channels in their surfaces contacting the GDL that serve as the flow distributors for

the fuel and oxidizer, while the ribs between channels serve to collect the current from the

GDL. (For this reason, they are also called current collector plates.)

Fuel cells posses some of the most attractive features of fuel based power production

and battery energy storage for both stationary and portable applications. By skipping the

multiple conversions of energy typically seen in conventional fuel based power generation

(chemical potential, to heat, to mechanical work and finally to electrical power) fuel cells

can operate at much higher efficiency than traditional methods. They operate as silently

as batteries since they have no moving parts, and in a similar temperature range, with
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temperatures staying below the boiling point of water. However, unlike batteries, since they

are still fuel based power production devices, not merely energy storage devices, they can

run continuously, given sufficient supply of fuel and oxidizer, without need for down time

to re-charge. This is especially beneficial in portable electrical applications where range is

often limited by battery capacity. Finally, as has been mentioned, the only bi-products of

fuel cells are heat and water, so no harmful emissions are produced in their operation.

1.2. IMPORTANCE OF FLOW DISTRIBUTORS

Despite all of these positive attributes, fuel cells have not yet achieved significant

market penetration. This is due in part to the fact that PEMFCs have yet to achieve the level

of durability and reliability required to replace conventional methods of power production

which have the advantage of decades of development. One of the critical contributors to

fuel cell degradation is non-uniform distribution of reactants over the active area, causing

non-uniform reactions. This leads to build up of product water in some locations (flooding),

dry spots in other locations, and hot spots in the fuel cell, all of which cause mechanical

degradation of the membrane. The key component in achieving good reactant distribution

in the fuel cell are the flow distributor channels in the BPPs.

Furthermore, maldistribution not only affects durability but also operating perfor-

mance of the fuel cell. The flow distributor channels are responsible for both supplying

fresh reactants to, and removing product water from the reaction zones. Any region which

is under supplied with fresh reactants or clogged with product water accumulation will be

poorly utilized. These areas, often referred to as “dead spots”, effectively reduce the active

area of the fuel cell, and performance suffers accordingly. Therefore, the geometry of the

flow channels is very important to both immediate and long-term fuel cell performance,

and as such flow field design is an active field of research.
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1.3. PRESSURE EFFECTS ON FUEL CELL PERFORMANCE

Not only does the geometry of the flow channels play a leading role in the distribution

of reactants but also determines the total pressure loss which will occur across the flow field,

and the local pressure distribution over the active area. The total pressure loss corresponds

directly to power consumption of the auxiliary system required to operate a fuel cell. The

auxiliary systempower requirement can be considered a parasitic loss to systemperformance

so it is desirable to reduce auxiliary power as much as possible. However, having a high

pressure drop across the fuel cell serves to raise the average operating pressure of the cell,

which increases cell performance through increased reactant molar concentration.

Since these factors influence fuel cell system performance in opposite ways, they

must both be taken into consideration to determine the overall effect. However, in past

works on flow field performance, there has not been a consistent method for comparison

of different flow field geometries. When comparing the performance of various flow fields

to one another, all performance variation is commonly attributed to reactant distribution

only, and one or both of these pressure effects is often neglected. In this thesis, the relative

effects of reactant distribution and pressure characteristics of flow field geometry on fuel

cell system performance were explored in detail, and a methodology was proposed for

comparing the performance of different flow field geometries which decouples all pressure

effects from those of reactant distribution.

1.4. BIO-INSPIRED DESIGN FOR FLOW FIELDS

As previouslymentioned, flowfield design is an active field of research for improving

fuel cell performance, durability, and reliability. The idea of Bio-Inspired design is a

promising strategy which has emerged in recent years. The idea behind bio design is that
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there exist similarities of operation in biological flow systems and fuel cell flow distributors.

Biological flow systems perform very effectively, and so aspects of these designs already

found in nature can be mimicked to improve fuel cell flow field performance.

A number of works have been published making use of bio design strategy. These

past studies mostly focus on the physical geometry of biological flow structures, and how

aspects of their geometry can be incorporated into fuel cell flow fields. This is often

done without delving into the performance requirements of biological flow structures which

determine their geometry in the first place. If mimicking the geometry of biological flow

systems is going to enhance flow field performance, the performance requirements of the

fuel cell flow field must be the same as those of biological flow structures. This means that

the application of bio design will only be beneficial to fuel cell performance if the operating

requirements match those of biological systems. In the wide range of applications for which

fuel cells are suited, this is not always the case. In this work, the dominating performance

requirements of biological flow systems were investigated. Those performance goals were

used to determine the window of opportunity in fuel cell flow field design that fits the

strengths of bio deisgn. Furthermore, a set of design principles for creating flow fields was

then developed to take maximum advantage of the strengths of biological flow systems in

the operating widow identified. The performance of the bio deisign was compared to that

of the traditional parallel design as a reference.

Finally, the performance of the bio and traditional parallel designs were tested under

low humidity cathode supply gas operation, in which mode water management issues of

bothmembrane dehydration and flooding could be of concern. In order to alleviate the water

management issues, a new method of determining the operating conditions was proposed

which has been termed Water Balanced (WB) operation, and was tested on both bio and

traditional parallel designs.
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1.5. SUMMARY OF THE PRESENTWORK

This thesis is composed of two journal papers which have been, or will be, submitted

for publication. The first paper focuses on the relative effects of pressure and flow distribu-

tion on the performance of fuel cell systems. The effects of pressure on both the fuel cell

unit and auxiliary system are modeled and discussed, and a method for decoupling pressure

and distribution effects on fuel cell system performance is proposed and demonstrated. The

second paper focuses on the applicability of bio design to fuel cell flow fields. The main

performance requirements of biological flow structures, which determine their geometry,

and the key geometric characteristics, which allow biological flow structures to meet these

performance requirements, are identified. This information is used to explore the widow of

opportunity for bio design to fuel cell flow fields by matching performance requirements,

and to develop a set of design principles for creating bio flow fields by using similar geo-

metric characteristics. The design principles are then demonstrated by creating and testing

an example bio design. In order to test the application of proposed methods and design

principles in these two works, analytical and computational modeling were employed to

predict the performance of fuel cells using various flow fields.
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I. DECOUPLING PRESSURE AND DISTRIBUTION EFFECTS ON THE
PERFORMANCE OF POLYMER ELECTROLYTE FUEL CELLS

Joshua D. Heck, Warren S. Vaz, Umit O. Koylu, Ming C. Leu

Department of Mechanical & Aerospace Engineering

Missouri University of Science and Technology

Rolla, Missouri 65409–0050

Tel: 573–466–3428, Fax: 573–341–4607

Email: jdh26c@mst.edu

ABSTRACT

The performance of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) is highly depen-

dent on the flow distribution and pressure of reactant gases. Existing studies on comparison

of flow field designs have not fully taken into account the degree to which the pressure

loss across different flow field designs affects the performance of a fuel cell system, rather

attributing performance of flow fields to mass transport characteristics only. In this work,

the relative importance of differing supply pressure requirements of flow field designs in

PEMFCs is considered. A thermodynamic First-Law analysis of the auxiliary system is

developed in order to demonstrate how the pressure drop affects all auxiliary system compo-

nents and fuel cell unit performance. A method of comparison is then proposed to eliminate

the effects of pressure in the comparison of fuel cells with different flow field designs. This

method is applied to the single serpentine and parallel designs by Computational Fluid

Dynamics (CFD) simulation. It is shown that, of the serpentine design’s 17.1 % better

performance, mass transport effects provide 12.2 % improvement, and pressure effects ac-
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count for the remaining 4.9 %. Since increased pressure loss across the flow field has both

positive and negative effects on system performance, decoupling pressure and distribution

effects is critical in comparing different flow fields. Finally, a metric is proposed by which

the relative effect of pressure between different designs may be estimated for past results

not using the recommended method, and is demonstrated by application to results found in

existing literature.

Keywords: polymer electrolyte membrane (PEM); fuel cell; flow distributor design; com-

putational fluid dynamics (CFD); First Law Analysis; system performance comparison

Highlights

• Discussed impacts of pressure drop on auxiliary system and inlet mixture properties

• Showed that pressure effects can have significant impact on fuel cell performance

• Proposed a method for decoupling pressure/distribution effects on fuel cell perfor-

mance

• Demonstrated the method of decoupling in comparison of serpentine and parallel

designs
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Table 1. Nomenclature

Symbol Meaning Units

Aact Active Area cm2

[Ci] Concentration of Reacting Species at Catalyst mol m−3

[Ci,re f ] Reference Concentration of Reacting Species mol m−3

cp Constant Pressure Specific Heat J kg−1K−1

F Faraday’s Constant C mol−1

h f g Enthalpy of Vaporization of Water k J kg−1

IH2 Total Current Produced Based on Hydrogen Consumption Amperes(A)

IO2 Total Current Produced Based on Oxygen Consumption Amperes(A)

J Volumetric Current Generation A m−3

j Current Density per unit Area A cm−2

jre f Reference Exchange Current Density A m−2

k Ratio of Specific Heats

Mi Average Molecular Weight of Dry Gas Mixture i kg mol−1

Mj Molecular Weight of Species j kg mol−1

Ûmi Mass Flow Rate of Dry Gas Mixture i kg s−1

Ûmw,i Mass Flow Rate of Water to Humidify Dry Gas Mixture i kg s−1

∆ ÛmH2 Mass Consumption Rate of Hydrogen kg s−1

∆ ÛmO2 Mass Consumption Rate of Oxygen kg s−1

n j Number of Electrons Released per Reaction per Species j

P̂ Non-Dimensional Inlet Pressure

P0 Local Dead State Pressure Pa

P1 Pressure at Compressor Outlet Prior to Humidification Pa

Pin Pressure at Fuel Cell Inlet Pa

Pi Partial Pressure of Species i Pa
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Continuation of Table 1

Symbol Meaning Units

Pv,in Saturation Pressure of Water at the inlet Temperature Pa

ÛQi Power Required to Heat Dry Gas Mixture i W

ÛQw,i Power Required Evaporate Water to Humidify Dry Gas i W

ÛQwaste Waste Heat Rejected from Fuel Cell W

R Universal Gas Constant J mol−1K−1

T Local Temperature K

T0 Dead State Temperature K

T1 Temperature at Compressor Outlet Prior to Humidification Pa

Tin Temperature at Fuel Cell Inlet K

ÛWaux,i Total Auxiliary System Power Requirement W

ÛWc,i Compressor Power to Pump Dry Gas i W

ÛW f c Power Output of a Fuel Cell Unit W

XH2O Mole Fraction of Water Vapor

Yj Mass Fraction of Species j

Greek Symbols

α Transfer Coefficient

γ Concentration Exponent

ζ Catalyst Layer Surface to Volume Ratio m−1

η Activation Overvoltage volts

ηc Compressor Efficiency

φ0 Relative Humidity of Dead State Air

φ1 Relative Humidity at Compressor Outlet Prior to Humidifica-

tion

φin Relative Humidity at Fuel Cell Inlet
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Continuation of Table 1

Symbol Meaning Units

ξ Stoichiometry (Ratio of Reactant Supply to Amount Con-

sumed)

End of Table

1. INTRODUCTION

In recent years, Proton Exchange Membrane Fuel Cells (PEMFCs) have emerged as

a promising candidate in a widespread search to develop energy devices that are sustainable

and have cleaner operation than traditional means of power generation, which rely heavily

on the combustion of fossil fuels [1]. The only local product of PEMFC operation is water,

and if clean methods are used to produce hydrogen, PEMFCs can have net-zero-emission

power production [2]. Additionally, since PEMFCs are a direct energy conversion device,

higher operating efficiencies can be realized than those attainable by conventional energy

conversion methods that rely on intermediate heat steps [3].

Before fuel cells are widely accepted, further improvements in performance and

durability need to be achieved. When operating a fuel cell, the inlet conditions may be set

as desired, but the spatial variation of parameters which affect performance and durability

are controlled by the mass and heat transport properties of the flow field and the porous

Gas Diffusion Layer (GDL). For this reason, one of the key research areas in fuel cell

development is the design of flow distributors in the bipolar plates. Effective distribution

of reactants and product removal have a large impact on the performance and durability of

PEMFCs [4–6]. Wang et al. [7, 8] noted that the thermal and water management issues,

which also affect durability in PEMFCs, were mainly due to maldistribution of flow both at

the stack and cell level and developed an analytical model, which may be applied to several

common flow field arrangements for even distribution performance.
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Numerousworks have been presented that attempt either to characterize performance

response to different flowdistributor designs or to propose some newgeometry for improving

flow distribution. Some of the most well-studied conventional designs are the Parallel,

Serpentine, and Interdigitated flow distributors. Depending on the configuration of the flow

channels, both convective and diffusive flow can take place in the GDL. Mass transport

across the GDL in the Parallel design is dominated by diffusion. The Interdigitated flow

distributor proposed by Nguyen [9] does not have a direct connection between the inlet

and outlet, and thus transport across the GDL is predominately convective, that is, the

bulk flow is driven through the GDL due to a pressure gradient between adjacent inlet and

outlet channels. Similar to the Parallel design, the channels of the Serpentine design are

continuous from inlet to outlet, however, both local convective and diffusive transport take

place in this design since appreciable pressure differences in adjacent channels develop due

to the long flow path [10]. Chiu et al. [11] performed a comparative study on these three

designs using computational methods in which they focused on the three designs’ abilities

to remove product water.

While the geometries of these three traditional designs are similar in form, many

researchers have proposed alternative new geometries for flow distributors. Vazifeshenas

et al. [12] proposed a compound flow field that utilizes the Serpentine configuration over

part of the flow field and Parallel over the rest. Juarez-Robles et al. [13] proposed a

flow distributor consisting of a number of concentric spiral channels. Guo et al. [14]

performed a network based optimization of the channel sizes in the traditional pin type

design, and in another work [15] proposed three variations on a bio-inspired design based

on leaf vein patterns. Further work on characterizing the water transport characteristics of

these bio-inspired designs was carried out by Saripella et al. [16]. The geometries of all of

these designs are radically different from the traditional ones. Many additional studies have

been published which attempt to characterize or improve some aspects of flow distributors

[17–29].
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With such widely varying geometry among previous works, there has not been a

consistent method for the comparison of the performance of fuel cells utilizing different

flow distributors. The most commonly used approach has been to set the same reactant

gas inlet temperatures, mixture compositions, and the same back pressures at the anode

and cathode outlet ports for the designs being considered. The polarization curves and

peak power density for those conditions are obtained and compared. However, the pressure

drop across a cell, which is controlled by the flow field geometry, affects the performance

of a fuel cell system in several ways and these effects can make this common method of

performance comparison insufficient.

In order for a fuel cell system to operate at a set of desired inlet conditions, an

auxiliary system is required in order to pump, heat, and humidify the supply gases. The

flow field geometry not only plays a major role in the variation of local conditions over

the active area of a fuel cell but also determines the total pressure loss across the fuel cell.

The energy lost in this pressure drop must be supplied by a compressor. Furthermore, the

inlet pressure, which for some designs can be significantly different than the outlet pressure,

impacts inlet mixture composition and properties, such as the required mass fraction of

water to obtain a desired relative humidity. Any change in inlet mixture composition will

in turn affect auxiliary power requirements, which may be considered a parasitic loss to the

fuel cell system. Accordingly, ranking performance based on net fuel cell system power

may produce results that are different from those seen when considering only gross fuel

cell power [28]. Some studies have ignored these losses entirely [18, 30], while others

have considered them to varying degrees, ranging frommerely mentioning that the different

designs induce different pressure losses [17] to calculating the net system power accounting

for pumping losses [28]. However, the effects of pressure on all auxiliary system processes,

not only pumping power but also heating and humidification, have not been considered in

the literature.
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In addition to its effect on auxiliary system power, another important consideration

is the direct effect of inlet pressure on the fuel cell performance. The kinetic losses in a

fuel cell are linked to the concentrations of reactants available, which increases linearly

with pressure [1]. As a result, the pressure distribution across the active area of the fuel

cell influences the local performance, and fuel cells with higher pressure over a significant

fraction of the active area will see a corresponding increase in performance. Finally, the

geometry of the flow field also has an effect on the ohmic losses since the geometry of the

lands determines the shape of current paths, and contact resistance is affected by the total

contact area. Consequently, if flow fields have significantly different land areas, this effect

should also be considered.

The variations in the performance of fuel cells using different flow fields have

mainly been attributed to their effectiveness at achieving uniform distributions, with little

consideration given to the effects of the flow field’s pressure characteristics. Achieving

uniform distribution will improve the performance of the fuel cell without penalty to system

performance. However, while a higher pressure drop will result in improved cell level

performance, this comes at the expense of increasing pumping power. Higher inlet pressure

will also necessitate using larger, more expensive auxiliary system components. Since the

pressure effects trend in opposite directions, the net effect needs to be considered, as failure

to consider either effect would yield erroneous results.

Based on the above observations, this paper focuses on the importance of decoupling

the effects of pressure and distribution to achieve the proper performance comparisons of

different PEMFC flow field designs. The effect of pressure on electrochemistry is first

considered, and a thermodynamic First-Law analysis of a representative fuel cell supply

system is developed in order to demonstrate how supply pressure affects the performance

requirements of all components of an auxiliary system. Then, a method for estimating the
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pressure contribution on fuel cell performance is developed. Finally, a comprehensive 3D

computational model is used to simulate two different conventional flow field designs in

order to demonstrate the method of decoupling pressure and distribution effects.

2. PRESSURE EFFECTS ON FUEL CELL PERFORMANCE AND
AUXILIARY POWER

The rates of the electrochemical reactions in a fuel cell and therefore the amount

of current produced by the fuel cell are sensitive to the temperature and concentration of

the reacting species. Additionally, the protonic conductivity of the polymer electrolyte is

largely a function of its water content. The water absorption of the membrane depends

on relative humidity, so ohmic losses are affected by relative humidity. There is interplay

between temperature, pressure and relative humidity and both experiments and computations

have been performed to map the response of PEMFCs to variations in these operating

parameters. Wang et al. [31] performed an experimental study on a PEMFC, in which the

parametric dependence on operating temperature, pressure, and level of humidification were

examined individually. It was observed that fuel cell power output increased monotonically

with increasing pressure due to higher reactant concentrations supplied. The effects of

temperature and humidity are linked: increase in cell temperature reduces the kinetic losses,

but if the level of humidification is not sufficiently high, increase in temperature may also

lead to drying of the membrane, reducing performance. It was shown that, if humidification

is sufficient, performance increases monotonically with temperature. Furthermore, increase

in humidification generally helps keep the electrolytic membrane hydrated. However, since

water is also a product of fuel cell operation, very high inlet gas humidification may cause

product water condensation and clogging of the porous GDL and channels, often referred to

as “flooding”. Other studies, both experimental and computational, show the same trends

[32, 33].
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There are two ways that the pressure drop between inlet and outlet affects the

performance and modeling of a fuel cell. Firstly, the current density produced by the

electrochemical reactions is sensitive to the concentration of reacting species at the catalytic

interface. The Tafel formulation of the Butler-Volmer equation [1, 34], which models

electrochemical reactions, is

J = ζ jre f

(
[Ci]

[Ci,re f ]

)γ
exp

(
αFη
RT

)
. (1)

where J is the volumetric current generation in the catalyst layer, ζ is the surface area to

volume ratio of catalyst in the catalyst layer, jre f is the reference area based current density

for the catalyst, Ci and Ci,re f are the actual and reference concentrations of the reacting

species, γ is the concentration exponent which is often included for generality, α is the

exchange coefficient, F is Faraday’s constant, η is the activation overvoltage, and R and T

are the universal gas constant and temperature.

Of particular interest to this discussion is the concentration term, [Ci]. The molar

concentration of a species i in an ideal gas mixture is

[Ci] = Pi/(RT) (2)

where Pi is the partial pressure. Inserting this expression into Equation 1 and holding all

other quantities equal the current production at a set voltage is directly proportional to the

local pressure, that is Pγ. Thus, any increase in local pressure would result in a proportional

rise in local current production.

Secondly, the auxiliary system power requirements are directly affected by the

required supply pressure of the inlet gases. A diagram of the basic thermodynamic devices

required to supply one side (anode or cathode) of a fuel cell system with auxiliary heating

and humidification is shown in Figure 1.
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Figure 1. Diagram of the thermodynamic devices in a PEMFC system

The total energy cost of operating a fuel cell at desired inlet conditions can be

calculated by finding the inputs required for each device shown in Figure 1 for both anode

and cathode in order to bring supply gases from the local thermodynamic dead state (T0,

P0, φ0) to the desired inlet conditions (Tin, Pin, φin).

Assuming that a fuel cell is to be operated with a stoichiometry of ξ based on the

operating current density j, at temperature Tin, pressure Pin, and relative humidity φin, and

using the relationship between current produced by an electrochemical reaction and molar

consumption rate of the reactants, the mass flow rate of dry gas may be determined by from,

Ûmi =
j Aact Mj

Yjn j F
ξ (3)

where the subscript i indicates either anode or cathode dry (un-humidified) gas mixture,

and subscript j indicates the reactive species, either hydrogen for the anode or oxygen for

the cathode. Yj , is the mass fractions of hydrogen or oxygen in the dry supply gases, and n j

is the number of moles of electrons released per mole of reactant.

The power requirement for the compression process needed to bring the dry gas up

to the inlet pressure may be obtained from

ÛWc,i =
1
ηc
ÛmicpT0

((
Pin

P0

) k−1
k

− 1

)
(4)
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which is derived for an ideal compression process and corrected for losseswith the isentropic

efficiency ηc. In Equation 12, cp is the constant pressure specific heat, and k the ratio of

specific heats of the gas being compressed. From isentropic relations and corrected for

losses with isentropic efficiency, the temperature of the dry supply gas after compression

may be derived as

T1 = T0

[
1 +

((
Pin

P0

) k−1
k
− 1

)
ηc

]
. (5)

Additional heat may be required to raise the temperature of the compressed dry gas

from intermediate temperature T1 to the desired inlet temperature Tin, and this additional

amount of heat, ÛQi, is given by

ÛQi = Ûmicp(Tin − T1). (6)

From the definition of relative humidity the required mole fraction of water vapor,

XH2O, in the humidified gas stream to achieve the desired relative humidity is calculated as

XH2O =
φinPv,in

Pin
(7)

where Pv,in is the saturation pressure of water vapor at the inlet temperature. The mass flow

rate of water, Ûmw,i, to attain the desired inlet relative humidity for either anode or cathode

may then be found by using Equation 7 and assuming ideal gas mixture behavior, which

results in

Ûmw,i = Ûmi

(
MH2O

Mi

) (
XH2O

1 − XH2O

)
(8)

where XH2O is the mole fraction of water vapor, M is the molecular weight, and subscript

i indicates the dry gas for either anode or cathode. The total mass flow rate supplied to the

fuel cell anode or cathode is Ûmtot = Ûmi + Ûmw,i.
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The heat required for evaporating liquid water to achieve the desired relative humid-

ity, ÛQw,i may be approximated by using the enthalpy of vaporization of water, h f g, at the

inlet temperature

ÛQw,i = Ûmw,ih f g . (9)

Due to the large enthalpy of vaporization of water, the energy required for the phase change

is much larger than the sensible enthalpy change associated with heating, so the sensible

enthalpy is ignored here. The total power requirement for the auxiliary system for either

anode or cathode side, ÛWaux,i, is then the sum of the power supplied for each process, i.e.

ÛWaux,i = ÛWc,i + ÛQi + ÛQw,i . (10)

This analysis my be performed for both supply gases at the anode and cathode, and the total

auxiliary system power is then the sum of the power required to pre-treat both sides.

In addition to the direct effect on the auxiliary power requirement that pressure drop

imposes, there is another, more subtle effect which also needs to be considered, particularly

in computational modeling. When testing a fuel cell experimentally, humidification temper-

ature and pressure are set for the desired operating point in order to control the inlet relative

humidity. However, in a numerical simulation, where the inlet species fractions must be set

by the user, particular care must be taken. Noting in Equation 7 that the required species

fraction of water to achieve a desired inlet relative humidity is a function of both temperature

and pressure when calculating the species fraction for the inlet boundary conditions, the

correct local temperature and pressure must be used. Since the required species fraction

of water to achieve a fixed relative humidity is inversely proportional to total pressure (Eq.

7), if the outlet pressure is used to calculate the inlet species fractions for a design with an

appreciable pressure drop, the actual inlet relative humidity could be significantly off, and

may even be physically impossible (i.e. φ > 100%).
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The supply rates of dry hydrogen and air are fixed by setting the operating stoi-

chiometry, but the total mass flow rate will vary with relative humidity. Note that while

this analysis assumes the dry hydrogen to initially be at ambient conditions for the sake of

calculating the energy cost of operation, hydrogen would be stored at high pressure and

would be throttled to the desired inlet pressure in reality. For an inlet pressure that is close to

atmospheric pressure and at typical fuel cell operating temperatures and relative humidities,

the mole fraction of water vapor can easily make up 25-35% of the mass supplied to the

cathode, and with the low molecular weight of hydrogen, 60% or more of the mass for the

anode. Therefore, incorrectly specified mass flow rates and species fractions at the inlet

can have a significant effect on the performance modeling of the fuel cell itself. Addi-

tionally, the inlet pressure not only affect the compressor work in the auxiliary system, but

through its effect on the mixture species fractions will also affect the energy requirements

of the humidification process, which can be quite significant due to the large enthalpy of

vaporization of water.

In order to account for all of these effects, the outlet pressure may not be used as a

representative pressure for the entire fuel cell domain for designs with a significant pressure

drop. Instead, it is proposed that all of the inlet conditions be fixed between fuel cell

designs in order to make a more equitable comparison. Thus, the design with the naturally

lower pressure loss should have the outlet pressure boundary condition raised such that the

inlet pressures between compared designs are the same. This results in all fuel cells under

consideration having supply gases at the same thermodynamic state, and the total auxiliary

system power for each cell being identical. While it may not be common practice to operate

a fuel cell with a restriction at the outlet to increase cell pressure, this is done here solely

for the sake of comparing the performance of the flow fields.

Fixing the state of the supply gases simultaneously eliminates the differences in total

system performance that would arise from all of the pressure effects, both on auxiliary power

requirements and fuel cell unit performance. The difference in the observed performance
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of the fuel cell units may then be attributed solely to the flow field’s effectiveness at reactant

distribution. The relative influence of pressure and reactant distribution on the performance

of the two flow fields may then be determined by comparison of the performance results

obtained by using fixed outlet pressures compared to those obtained using fixed inlet

properties.

Additionally, if results have been obtained for different flowfieldswithout accounting

for the different inlet pressures, some insight into the relative pressure effect may be gained

by examining Equation 1. Holding all quantities constant on the right hand side of Equation

1 except for the concentration term,Ci, is the equivalent to supplying the same inlet mixtures

and operating conditions with the exception of different inlet pressures. Then the current

density produced at a fixed voltage, and thus the power density, becomes a function of

concentration only. Isolating the concentration term and applying the Ideal Gas Law and

Dalton’s Law of Partial Pressures, the following equation can be obtained;

(
[Ci]

[Ci,re f ]

)γ
=

(
PinXi/RT
Pre f /RT

)γ
. (11)

Because the mixture properties are held constant in this comparison, the terms Xi, R,

and T are constants. The following equation, in which P̂ represents the total inlet pressure

normalized by ambient pressure as a reference, can be used as a metric to estimate the

relative pressure effect between designs.

ÛW f c ∝ P̂γ =

(
Pin

P0

)γ
(12)

Note that using Equation 12 to estimate pressure effects does not account for the

difference in auxiliary systempower requirements, and does not capture the effect of different

species fractions in the supply gases due to the humidity variation with pressure. Therefore,
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the proposed method of fixing inlet properties for comparison is the recommended method.

However, Equation 12 may be used to gain some insight into the relative effect of pressure

in previously published results where these effects were not considered.

3. COMPUTATIONAL METHODS

3.1. Mesh andModel Settings. The commercial software package ANSYS Fluent

15.0 was used to perform a computational study on the performance of fuel cells with differ-

ent flow field designs using the PEMFC Add-On Module. The Serpentine and Parallel flow

field designs were selected for this study, as they are among the most well-documented flow

field designs, both computationally and experimentally, and are often used as benchmark

designs [4, 6, 7, 9–12, 15–18, 22, 24, 25, 27, 28, 30, 32, 33, 35–38]. Furthermore, the

present authors have experimentally validated CFD results for the serpentine and parallel-

in-series flow field designs in previous work [15, 16] using the same software package,

and the computational study performed for the present work was based on the same model

parameters. These designs were chosen to demonstrate the importance of the proposed

method of comparison, but the same methods may be used for any flow field geometry.

The active area of each fuel cell was square and the geometry specifications of the

designs are listed in Table 2. The geometries weremeshedwith the ANSYSWorkbench 15.0

Meshing application. After several iterations of both mesh quality and fineness to ensure

stable convergence and mesh independence, the final meshes for both designs contained

approximately 1.8 million nodes using hexahedral cells with an orthogonal quality of 0.999

or greater. The maximum mesh size was set to 0.25 mm, which was the spacing in the

in-plane direction for all layers. The spacing in the through-plane direction was varied as

necessary in order to fit cells within the thinner layers. The channel layer had 6 cells across,

and all other layers were 4 cells across, as can be seen in the Figure 4 that shows the through

plane mesh spacing.
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Table 2. Fuel cell geometry parameters for parallel and serpentine fuel cells

Geometry Parameter Value
Active Area 25.0 cm2

Number of Channels 25
Channel Area- Serpentine 51.0 %
Channel Area- Parallel 53.0 %
Total BPP Thickness 2.50 mm
Channel Depth 1.50 mm
Channel Width 1.00 mm
Rib Width 1.00 mm
GDL Thickness 0.35 mm
Catalyst Thickness 0.01 mm
Electrolyte Thickness 0.15 mm
Total Cell Thickness 5.87 mm

In addition to the usual mass, momentum, energy, and species conservation equa-

tions solved in CFD modeling, additional joule heating, reaction heating, electrochemistry

sources, Butler-Volmer rate, and multiphase models, along with electrical potential and

electronic and protonic conduction are solved to simulate fuel cell performance. It should

be noted that two phase flow for condensed water vapor is not fully simulated here, but

rather the assumption is made that the water vapor travels with the free stream velocity in

the channel layer as a fine mist. The effect of poor blockage in the porous zones (GDL and

Electrolyte) is approximated by multiplying the porosity by (1 − s), where s is the volume

fraction of liquid water. For model details, the reader is referred to [39].

For these simulations, the SIMPLE (Semi-Implicit Method with Pressure Linked

Equations) solver was used, with least squares cell based gradient, while the discretization

set to standard for pressure and second-order upwind for all other parameters. The thermal

boundary condition for the exterior walls was set to a constant temperature of 348 K.

The modeling parameters which were common to all runs in the simulations are given in

Table 3 with references to indicate the source of critical parameters. Mass flow boundary

conditions were used for both anode and cathode inlets with a temperature of 348 K, and

pressure boundary conditions were used for the outlets. The inlet mass flow rates were
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(a) Cross section - all sayers (b) Details of catalyst and electrolyte sayers

Figure 2. (a) Cut view of all through plane mesh layers and (b) enlargement of red insert in
(a) showing catalyst and electrolyte layer details (color version available online)

constant for all operating points, and were calculated such that the stoichiometry would

be 2 at a current density of 2 A/cm2, ensuring that the amount of dry hydrogen and dry

air stayed constant between all runs. However, species fractions, and therefore total mass

flow rates, as noted in the previous section, are dependent on the inlet pressure required

for each design. Consequently, they were not constant between all runs since there were

different amounts of water vapor present to attain the same relative humidity at different

pressures. The pressure drops across the fuel cell for the Parallel and Serpentine designs

were quite different, thus different inlet mole fractions of water vapor were required for the

same relative humidity.

3.2. Simulation Strategy. For each design, simulations were run with potentio-

static boundary conditions at points from 0.85 V to 0.15 V at 0.1 V increments to obtain

polarization and power density curves. Both the Parallel and Serpentine designs were first

simulated with the outlet pressure boundary condition set to 0 Pa gage, and the inlet species

fractions calculated for the desired relative humidity at atmospheric pressure. The inlet total

pressure of the Parallel design deviated from atmospheric pressure by less than 1%, which

did not significantly affect the water mole fraction required to attain the desired relative
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Table 3. Numerical model parameters used in the fluent simulations

Model Parameter Units Values
Ref. Current Density- Anode A/m3 4.48E+05 [15]
Ref. Current Density- Cathode A/m3 4.48 [15]
Catalyst Layer Surface to Volume Ratio m−1 1.25e+07 [15]
Ref. Concentration- Anode kmol/m3 1.0
Ref. Concentration- Cathode kmol/m3 1.0
Concentration Exponent- Anode 1.0
Concentration Exponent- Cathode 1.0
Exchange Coefficient- Anode 1.0 [15]
Exchange Coefficient- Cathode 1.0 [15]
Open Circuit Voltage Volt 1.0
Leakage Current A 0.0
Reference Diffusivity- H2 m2/s 8.0E-05 [15]
Reference Diffusivity- O2 m2/s 2.0E-05 [15]
Reference Diffusivity- H2O m2/s 5.0E-05 [15]
Saturation Exponent (Pore Blockage) 2.0 [36]
Temperature (Boundaries and Inlet) K 348 [15]
Relative Humidity- Cathode % 75
Relative Humidity- Anode % 100

humidity. The boundary conditions for the zero back pressure Parallel run are listed in Table

4. The Serpentine design, however, has a significantly higher inlet pressure, and the species

fraction of water calculated for the desired relative humidity at atmospheric pressure is not

physically attainable at the real inlet pressures for both anode and cathode, as those mole

fractions of water vapor would result in greater than 100% relative humidity. Using the

inlet pressures obtained by the initial results, the inlet species fractions and total mass flow

rates were recalculated, and the serpentine design was run again. The slight change in mass

flow rate resulted in a corresponding change in inlet pressure, and this iterative process was

carried out once more to determine the correct species fractions, and the final values are

given in Table 4. Finally, the Parellel design was run again, this time with the outlet pressure

boundary conditions set such that the inlet pressures would be the same as the Serpentine
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design, and using the same mixture fractions and mass flow rate as the serpentine design.

In this way, the two designs can be compared using the proposed method, with the supply

gases in identical states and therefore with identical auxiliary loads.

Table 4. Numerical model parameters affected by inlet pressure

Model Parameter Units Values
Parallel- Zero Back Pressure

Inlet Pressure- Anode Pa, gage 0
Mass Flow Rate- Anode kg/s 6.65E-06
Hydrogen Mole Fraction 0.625
Water Mole Fraction- Anode 0.375
Inlet Pressure- Cathode Pa, gage 0
Mass Flow Rate- Cathode kg/s 4.43E-05
Oxygen Mole Fraction 0.15094
Water Mole Fraction- Cathode 0.28125
Serpentine Zero Back Pressure and Parallel Pressure Matched

Inlet Pressure- Anode Pa, gage 5000
Mass Flow Rate- Anode kg/s 5.964E-06
Hydrogen Mole Fraction 0.65497
Water Mole Fraction- Anode 0.34503
Inlet Pressure- Cathode Pa, gage 32000
Mass Flow Rate- Cathode kg/s 4.1648E-05
Oxygen Mole Fraction 0.16511
Water Mole Fraction- Cathode 0.21374

3.3. Convergence Criteria. In determining the point at which the solution is con-

sidered to have converged, it was necessary to look further than the standard method of

residuals reduction when using the PEMFC Module. It was found that species and current

conservation would not be satisfied until several thousand iterations after apparent con-

vergence was achieved based solely on the residuals, as noted in [40]. Naturally, current

and species conservation are more relevant and accordingly a better indicator of simulation
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convergence than the residuals. The coupled current and species models were the slowest

to converge, therefore total current and species values were monitored directly in order to

ensure convergence.

The current produced by the electrochemical reactions of hydrogen and oxygen may

be determined by

IO2 =
4F
MO2

∆ ÛmO2, (13)

IH2 =
2F
MH2

∆ ÛmH2 . (14)

The total current at the terminals and mid-plane of the fuel cell (Cathode, Anode, and

Electrolyte Currents), as well as the rate of hydrogen and oxygen consumption due to elec-

trochemical reactions (∆ ÛmH2 and ∆ ÛmO2) were monitored. Using the species consumption

rates, the expected current production was calculated using Equations 10 and 11. When all

of these values agreed to within 1%, the solution was considered to have converged. Figure

5 shows a representative convergence graph where the predicted total current and species

currents are plotted against iteration count.

Figure 3. Convergence plot of species and current for parallel design at 0.25 V
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If the simulation is stopped prematurely based onmonitoring residuals only, apparent

results may be obtained, but they would not be reliable as the currents at different planes

in the fuel cell do not agree. Additionally, the species data, which is of particular interest

for this work, is the last to converge, taking even longer to fall within the set convergence

tolerance than the measured current values, as can be seen in Figure 5. Even monitoring

the current data directly would not be enough, because the hydrogen data would still not

satisfy the coupled mass conservation and electrochemistry models. Thus, it is imperative

to monitor all of the quantities associated with the electrochemistry models for convergence

criteria.

4. RESULTS AND DISCUSSION

The Serpentine and Parallel designs were simulated using the methods and settings

described above. Even though a fixed mass flow rate was used for all operating points,

the pressure drop varied slightly with the current density level for each design. This

was because the rate of species consumption and mixture properties changed with the

electrochemical reaction rate, but the variation in pressure drop was slight. It was found

that, with the operating conditions used in this study, the Parallel design had an inlet gage

pressure of approximately 70 Pascals on the anode side, and 650 Pascals on the cathode

side, while for the Serpentine design, the anode inlet gage pressure was approximately 5,000

Pascals, and the cathode 32,000 Pascals. Relative to standard atmospheric pressure, the

anode and cathode inlets for the Parallel design had a difference of only 0.06% and 0.6%

respectively, while the Serpentine anode and cathode deviated from atmospheric pressure

by 4.9% and 31.6%, respectively. The polarization and power density curves obtained in

these simulations are given in Figure 4.

Figure 4 clearly indicates that the zero back pressure Serpentine design outperforms

the Parallel design at both back pressures in the high current density range. If the polarization

curves of both designs with zero back pressure were compared directly then the effects of
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(a) Polarization curves

(b) Power density curves

Figure 4. Comparison of performance for serpentine and parallel designs (a) polarization
curves, and (b) power density curves

the different inlet pressures, both on the fuel cell itself and on the auxiliary power, would be

overlooked. One could perform the analysis derived in Section 2 for both designs and adjust

the power density curves accordingly. However, by raising the back pressure of the parallel

design so as to match the inlet pressure to that of the serpentine designs, this analysis was

not required. By matching inlet conditions, the reactant gases were supplied at identical

states to both designs so the fuel cells received identical inputs, while the auxiliary systems

had identical loads. Thus, the effects of the different pressure drop of the two designs have

been effectively negated. The modes of mass transport remain unchained though, so any

remaining difference in performance will be due to the mass transport properties of the flow
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Table 5. Performance comparison using traditional and proposed methods

Run Peak PowerDensity (W/cm2) Difference (%)
Serpentine, Zero Back Pressure 0.527 0.0
Parallel, Zero Back Pressure 0.437 17.1
Parallel, Inlet Pressure Matched 0.463 12.2

fields. As noted in Section 1, the channel and rib geometry can affect the ohmic contact

resistance if there are significant differences in the designs, however the land areas of these

two designs were very similar (See Tab. 2) and so any difference in ohmic contact resistance

should be negligible.

By comparing the two results obtained for the parallel design, the relative effects of

pressure and mass transport characteristics may be estimated. The peak power density in

each run, and the performance relative to the Serpentine design are given in Table 5. When

the difference in performance due to the higher supply pressure of the Serpentine design

was removed by making the comparison with identical inlet properties, the discrepancy

between the peak performance of the Parallel design and the Serpentine design was reduced

from 17.1 % to 12.2 %. Consequently it might be reasoned that the superior mass transport

characteristics of the serpentine design yielded a 12.2 % performance increase over the

parallel design, and the effects of the increased supply pressure due to the serpentine’s

higher pressure loss produced an additional 4.9 % performance increase.

The individual effects of pressure and distribution on performance enhancement

were further observed by examining the concentration and reactant gas velocity in each

design at the level of the catalyst layer. The contour plots of computed molar concentration

of oxygen and velocity at the cathode GDL-catalyst interface are given in Figure 5, and the

average and maximum molar concentrations of oxygen, and mixture velocity magnitudes

for all cases are given in Table 6. The maximum molar concentration of reactant, oxygen

for the cathode side, is limited by the molar concentration supplied at the inlet, and the

maximum oxygen concentration for all three designs occurs near the inlet, as can be seen
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in Figure 5. The limiting maximum concentration will be determined by the inlet pressure

and mole fraction of oxygen (Eq. 2), which both have been noted to be directly affected

by the pressure drop. The maximum concentration at the catalyst layer should follow the

supply concentration. Since the serpentine and inlet pressure matched parallel designs have

an inlet pressure approximately 30 % higher than the zero back pressure parallel design, as

well as a slightly higher inlet mole fraction of oxygen due to the relative humidity effect, it

would be expected that the maximum concentration should be slightly over 30 % higher in

these designs. Furthermore, it would be expected that the serpentine and pressure matched

parallel cases would have a similar maximum oxygen concentration. From Table 6 it can be

seen that the higher inlet pressure designs have a maximum concentration approximately

37 % higher than the zero back pressure parallel, and the serpentine and pressure matched

parallel designs only differ by 2.6 %, both in the expected ranges.

Table 6. Oxygen concentration andmixture velocities at the cathode GDL-Catalyst interface

Run O2 Avg. O2 Max. V Avg. V Max.
kmol m−3 m s−1

Serpentine, Zero Back Pressure 2.54e-3 6.48e-3 9.76e-3 3.09e-2
Parallel, Zero Back Pressure 8.47e-4 4.71e-3 1.41e-3 4.37e-3
Parallel, Inlet Pressure Matched 1.26e-3 6.65e-3 9.71e-4 2.67e-3

The average oxygen concentration over the catalyst layer in the pressure matched

parallel design is higher than that in the parallel design with zero back pressure, but still

does not reach the same level as the serpentine design. This difference in concentration

accounts for the 5 % performance difference between the two parallel cases, relative to

the serpentine case. The further increase in average concentration in the serpentine design

may be attributed to the enhanced mass transport mechanism. As has been noted by Feser

et al. [10], there is some degree of convective transport in the Serpentine design which

enhances mass transport from the channels to the catalyst layer. This is clearly evident in the



32

(a) Parallel zero BP, O2 concentration (b) Parallel zero BP, reactant velocity

(c) Parallel matched BP, O2 concentration (d) Parallel matched BP, reactant velocity

(e) Serpentine, O2 concentration (f) Serpentine, reactant velocity

Figure 5. Contours of oxygenmolar concentration (kmol/m3) and velocitymagnitude (m/s)
at the cathodeGDL-catalyst interface, at 0.35V for the serpentine design, and parallel design
at both back pressures (inlets at bottom left, color version available online)
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velocity contours in Figure 5, where the pattern of higher gas velocity under ribs of adjacent

channels which are far from a u-bend is easily visible. Note that the scale of the velocity at

the catalyst layer in the Serpentine design is an order of magnitude larger than that in the two

Parallel designs which are of similar order (Tab. 6). This enhanced transport mechanism

accounts for the remaining 12 % performance increase over the Parallel design. However,

this performance enhancement comes at a cost, as large pressure gradients are required in

order to achieve some degree of convective flow through the porous GDL material.

In the case of comparison of the parallel and serpentine designs presented here, the

ranking of performance was not altered when the proposed comparisonmethodwas utilized,

but the apparent gap in performance was narrowed. Since the supply gases are at identical

states, there is no difference in auxiliary power between designs, thus it is appropriate

to compare the polarization curves with the same inlet state directly. If the difference in

performance between competing designs is not as great as that between the parallel and

serpentine designs, or if the relative difference in pressure is large, failure to decouple the

pressure and distribution effects while directly comparing the polarization curves may result

in more significant differences. This is an important consideration for fuel cell designers

because, in some applications, constraints such as total system mass, volume, or capital cost

can be critical restrictions, thus a design with lower peak power density, but which demands

a smaller auxiliary system may still be desirable over a higher power density design which

has more stringent auxiliary system demands.

In addition to demonstrating the method of decoupling pressure and distribution

effects, results from previous studies may also be examined to emphasize the importance

of doing so. Catlin et al. [28] conducted an optimization study on the geometry of the

serpentine flow field. While the proposed method of fixing inlet conditions was not used,

the authors did account for pumping power in their calculation of net power, and noted

that the designs under consideration differed in order when ranked by net as opposed to

gross power. Han et al. [41] presented both experimental and computational results for
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a PEMFC operating with different-geometry flow distributors by adding wave-like surface

designs at the cathode channels in a Multi-Serpentine flow field. Relative to the reference

case of smooth channels, the authors reported that the best performer had a power increase

of 5.76 % from their experimental results, but also had an increase in the inlet gage

pressure from approximately 4 kPa to 16 kPa. The authors commented on the fact that

increased pressure was undesirable due to the increase in pumping requirements; however,

the difference in performance between the designs was attributed solely to changes in mass

transport characteristics. Using the normalized inlet pressure method given by Equation

12, with the concentration exponent of γ = 0.5 used in [41], the contribution of increased

pressure can be estimated. Based on the reported reference case (smooth bottom) with

the normalized inlet gage pressure of P̂base = 1.0395 and the best performer case with

the normalized inlet pressure of P̂case1 = 1.1579, the predicted percentage increase in

performance due to increased pressure is 5.5 %. This value almost perfectly matches the

reported increase in performance over the reference case, and so the dominating mechanism

for performance enhancement is, in fact, increased operating pressure. This implies that

the same performance increase may be realized by increasing the outlet pressure of the

simpler smooth bottomedMulti-Serpentine design, thereby rendering the more complicated

geometry with wave-like structures in the channels unnecessary.

5. SUMMARY AND CONCLUSIONS

A comprehensive method for comparing the performance of PEMFCs at a system

level has been proposed. This method decouples the effects of reactant distribution and

pressure drop due to flow distributor design on the fuel cell, and normalizes auxiliary

power between designs for comparison of overall performance. This provides researchers

and fuel cell developers a tool to better rank and select flow distributor designs. The

computational modeling and necessary equations required to account for these effects were

first presented. The proposed method was then computationally implemented on two well-
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known traditional flow distributor designs, Parallel and Serpentine. Additionally, a metric

for approximating the relative effects of pressure in previously obtained results that do not

employ the proposed method of fixing inlet conditions was proposed and demonstrated. It

was shown that the contribution to performance caused by pressure drop across different

flow distributor designs, which is usually considered negligible compared to distribution

effects, had a significant impact on the fuel cell performance. The comparison of the

Parallel and Serpentine design yielded a 17.1 % total difference in peak power density when

both had the same outlet pressure, but 4.9 % was shown to be due to the pressure effects

while the remaining 12.2 % was due to distribution effects. Furthermore, in examination

of prior works, it was found that, in some instances, the pressure effect can be the primary

contributor to the observed difference in fuel cell performance. These results demonstrate

that the effect of pressure, both on the auxiliary system and the fuel cell itself, could be a

significant contributor to performance, and should not be ignored when considering flow

distributor designs that induce significant pressure drops. Because the effects of enhanced

distribution are only beneficial, while increased pressure drop tends to both increase cell

performance and auxiliary power requirements, thus causing both positive and negative

impacts on system performance, the ability to decouple these two effects is of critical

importance when comparing the relative attributes of multiple flow field designs.
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ABSTRACT

Bio-inspired design has emerged as a promising approach for improving the performance

of Proton Exchange Membrane Fuel Cell (PEMFC) flow fields. However, in order to get

the best results from bio designs, the main performance requirements of the flow field must

align with those of biological flow structures. In this work the main requirement which

determines the shape of biological flow structures has been identified as the need to achieve

good distribution with minimal flow losses, and a design approach has been outlined for

generating bio designs. To demonstrate the application of these bio design principles, a 25

cm2 design was created, and its performance was simulated using computational modeling,

along with a traditional parallel design as a reference. Furthermore, a new approach to

selecting operating conditions, referred to as Water Balanced (WB) operation, is developed

to help alleviate membrane dehydration or flooding issues at various points in fuel cell

operation. The two designs were simulated and the bio design was shown to have 2-3 time

better power output per pumping power input than the parallel design, as well as significantly

better reactant distribution and product removal performance. The performance of both

designs were also shown to improve when using WB operating conditions.
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Highlights

• Identify the strength of bio-inspired flow fields in PEMFCs

• Develop a strategy to reduce membrane dehydration under dry reactant operation

• Demonstrate low pressure losses in bio-inspired design

• Demonstrate good reactant distribution/product removal in a bio-inspired design
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Table 1. Nomenclature

Symbol Meaning Units

A2,3 Cross-sectionalArea of EitherMainChannel inHPLRExample cm2

Aact Active Area cm2

AHPLR Cross sectional Area of HPLR Section in HPLR Example cm2

cp Constant Pressure Specific Heat J kg−1K−1

D2 Diameter of Branch 2 in HPLR Example cm

D3 Diameter of Branch 3 in HPLR Example cm

D2,3 Diameter of Either Main Branch in HPLR Example cm

Di Diameter of Channel i in Branching Structure cm

Di+1 Diameter of Channel (i + 1) in Branching Structure cm

DHPLR Diameter of HPLR Section in HPLR Example cm

f Darcy Friction Factor

F Faraday’s Constant C mol−1

IH2 Total Current Produced Based on Hydrogen Consumption Amperes(A)

IO2 Total Current Produced Based on Oxygen Consumption Amperes(A)

j Current Density per Unit Area A cm−2

k Ratio of Specific Heats

L2 Length of Branch 2 in HPLR Example cm

L3 Length of Branch 3 in HPLR Example cm

L2,3 Length of Either Main Branch in HPLR Example cm

LHPLR Length of HPLR Section in HPLR Example cm

Ûm Mass Flow Rate of Supply Gas Mixture kg s−1

Ûm2,3 Mass Flow Rate in Either Branch in HPLR Example kg s−1

∆ ÛmH2 Mass Consumption Rate of Hydrogen kg s−1

∆ ÛmO2 Mass Consumption Rate of Oxygen kg s−1
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Continuation of Table 1

Symbol Meaning Units

MH2 Molecular Weight of Hydrogen kg mol−1

MO2 Molecular Weight of Oxygen kg mol−1

ÛNair Molar Flow Rate of Dry Air mol s−1

ÛNH2O,gen Molar Rate of Water Generation mol s−1

ÛNtot Molar Flow Rate of Humid Air Mixture mol s−1

ÛNuptake Molar Rate of Water Vapor Absorption by Cathode Supply Gas mol s−1

Pin Pressure at Fuel Cell Inlet(Absolute) Pa

P0 Local Dead State Pressure (Absolute) Pa

∆P Pressure Loss Across Fuel Cell (Gage) Pa

Psat(T) Saturation Pressure of Water as a Function of Temperature Pa

Pmix Total Mixture Pressure of Humid Air Pa

T0 Dead State Temperature K

ū2,3 Average Flow Velocity in Either Branch in HPLR Example m s−1

ÛWc Compressor Power to Pump Supply Gas W

ÛW f c Power Output of Fuel Cell Unit W

XH2O,in Mole Fraction of Water Vapor at Inlet

XH2O,out Mole Fraction of Water Vapor at Outlet

XH2O,max Maximum Mole Fraction of Water Vapor at Specified T and P

Greek Symbols

ηc Compressor Efficiency

ρ Supply Gas Density kg m−3

ξ Stoichiometry (Ratio of Reactant Supply to Amount Con-

sumed)

End of Table
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1. INTRODUCTION

Proton Exchange Membrane Fuel Cells (PEMFCs) have emerged as a promising

candidate for power generation due to their clean local operation, good operating efficiency,

quiet opperation, and short startup time, among other things [1]. The only local product of

PEMFC operation is water and, if clean methods are used to produce hydrogen, PEMFCs

can have net-zero-emission power production [2]. Additionally, since PEMFCs are a direct

energy conversion device, higher operating efficiencies can be realized than those attainable

by conventional energy conversion methods that rely on the intermediate heat step [3].

Despite these advantages, PEMFCs have not yet achieved the durability and reliability

required in order to successfully replace established methods. One of the key elements of

durability and reliability of PEMFCs is the ability to achieve good distribution of reactants

and effective removal of products over the active area of the catalyst. Maldistribution

of reactants and ineffective product removal lead to uneven chemical reaction rates over

the catalyst area, hot spots, and large water concentration gradients that negatively impact

the mechanical and chemical integrity of the polymer membrane [4, 5]. Additionally,

fuel cell performance is sensitive to operating conditions such as temperature, reactant

concentration, and relative humidity [6]. While the operating conditions may be nominally

set by controlling the state of the supply gases, the local distribution over a fuel cell active

area is highly dependent on the geometry of the flow fields in the bi-polar plates. For this

reason, flow field design has been the subject of many past works [7, 8] and is still an active

area of research.

One promising design strategy which has emerged for improving the performance of

flow fields is the idea of using biologically-inspired (bio) designs which mimic the geometry

of naturally occurring vascular structures. Several bio designs have been proposed in prior

literature. Tuber et al. [9] developed amethodologywhereby a “multiple-branched structure

with ‘smooth’ flow paths similar to biological fluid channels" could be generated for an

arbitrary active area. They then tested designs in both PEM and direct methanol fuel cells
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(DMFCs), comparing their performances to those of the traditional parallel and serpentine

designs. Kloess et al. [10] tested two designs, both interdigitated style, which they called

leaf and lung designs, and compared their performances to those of the traditional single

serpentine and interdigitated designs. Wang et al. [11] reported an initial bio-design with

a series of dividing and combining channels, and two more iterations on the design, all of

which are parallel style, in follow-up work [12]. The parallel and single serpentine designs

were used a references for performance comparison. Currie [13] applied biomimetic design

principles to make several alterations to the traditional parallel design, as well as creating

three new biomimetic designs, and compared their performances to those of the parallel and

multi serpentine designs. Roshandel et al. [14] presented a parallel style bio design based

on a leaf that used a parallel type configuration, and tested three different branch angles,

30, 45, and 60 degrees, and compared the performance to the parallel and single serpentine

designs.

Guo et al. [15] presented three variations on a bio design based on a leaf pattern, one

with constant width branches and parallel configuration, one with constant width branches

and interdigitated style, and one with varied width branches and interdigitated style. All

of these desings were compared to the traditional interdigitated and parallel-in-series (also

called multi-serpentine) designs. Further work was performed on characterizing the water

transport properties of these bio designs by Saripella et al. [16], using only the single

serpentine design for comparison.

Arvay et al. [17] proposed multiple biologically inspired flow field designs of

both parallel and interdigitated style, and compared with the parallel, single serpentine and

interdigitated traditional designs. Ozden et al. [18] recently investigated the application of

biologically inspired designs in DMFCs. The performance of a DMFC using the "Lung

Design" of Kloess [10] as well as two new designs were presented and compared to that of

the multi-serpentine design.
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In these previous works, varying levels of explanation were provided as to what

aspects of the proposed designs were inspired by biological flow structures, and emphasis

has been givenmainly to how tomimic the geometry of biological flow structures. However,

no concerted effort has been made to identify what the main defining characteristics of

biological flow structures are, what the specific strengths and purposes of those structures

are, and how they can best be applied to the design of fuel cell flow fields. In order for

the application of bio-design to be beneficial to fuel cells, flow field performance goals

must align with the purpose of biological flow structures. Fuel cells operate in a broad

range of applications, requiring an equally broad range of system constraints and operating

regimes, and not all of themwill align well with the motivations which shape biological flow

structures. In this work, the key characteristics and strengths of biological flow structures

will be identified, and fuel cell operating modes will be considered to find the analogous

operating regime which matches the performance goals of biological flow structures. A

design strategy whereby bio designs can be generated to take full advantage of the natural

strengths of biological flow structures will then be developed. Furthermore, a new method

of selecting operating conditions is developed which helps to alleviate water management

issues. Finally, in order to demonstrate the design principles and operatingmode, an example

PEMFC bio design is presented and the performance is simulated computationally using

two sets of operating conditions, along with the traditional parallel design for comparison.

2. IDENTIFYING STRENGTHS OF BIO-INSPIRED DESIGN

2.1. Characteristics of Biological Flow Structures. Several preceding authors

[13, 15–18] have utilized a principle of physiology called “Murray’s Law", which is a

relationship for the relative size of successive branches in biological flow systems. Sherman

[19] gave an explanation and derivation of this law, which Murray simply called “The

Physiological Principle of Minimum Work" [20] applied to channel diameters. This law

states that, when a parent branch (generation i) splits into n daughter branches (generation
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i + 1), the sum of the cube of the diameters of all daughter generation channels (Di+1) is

equal to the cube of the diameter of the parent channel (Di),

D3
i =

∑
D3

i+1. (1)

The D3 relation, which has come to be known as Murray’s Law, comes from the physio-

logical principle of minimum work applied to branch diameters, but there is actually more

than one application of this principle. Murray also applied it to branching angles and flow

path lengths [21]. The basis of this principle is as follows.

While the purpose of the vascular system in an organism is to transport necessary

reactants and remove waste products from metabolic activity, an organism must turn some

of its metabolic energy into flow energy to facilitate vascular circulation. It is undesirable

for the organism to use a large amount of metabolic energy in the process. Thus, since larger

flow carriers would reduce the viscous dissipation of flow energy (pressure loss), there is

a driving motivation for larger vessels. However, since the vascular material in biological

flow structures is living tissue, it also uses metabolic energy, and increasing the size of the

flow carriers means that more metabolic energy will be consumed by the vascular tissue.

So there is a limit to which increasing the size of the vasculature, and thereby reducing

flow losses, actually benefits the organism. As a final constraint, the vascular system should

supply every region of the organism in the appropriate proportion. Under-supplied tissue

would die from lack of nutrients, and over supply of any region would simply be a waste of

metabolic energy by pumpingmore fluid thanwas required. Murray [20, 21] showed that the

geometry of biological flow structures, both in the channel diameter, and in path lenghts and

branching angles, is optimized to balance these competing requirements. The result is large

parent channels which carry bulk flow from a central location and then strategically branch

into smaller generations near the target area following the D3 law for optimal distribution

with minimal flow losses. Thus, the geometry of biological flow structures is optimized to
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effectively distribute reactants and remove products with minimal flow losses. In order for

the application of bio-design to be most beneficial to fuel cell flow field performance, the

design motivation for the flow field must align with this goal.

2.2. Analogous Fuel Cell Operating Regime. There is a wide range of applica-

tions to which PEMFCs are well suited and many of these various applications call for

different system designs and operating regimes. The analogous operating mode in a fuel

cell system is the case in which it is desirable to operate with minimal auxiliary system

power and complexity. Reducing the auxiliary system requirements involves both reducing

the pumping power requirement, which is directly impacted by the pressure drop across

the flow field, and reducing any power or equipment associated with humidification, which

may require the fuel cell to operate with low humidity or “dry” reactants. Additionally, the

same requirement to distribute reactant to every portion of a fuel cell’s active area exists, as

any stagnant area quickly runs out of reactant, and can be considered a “dead spot” in the

fuel cell, as the catalyst is not being utilized. This means that both low pressure loss and

good distribution would be of primary concern, as in biological flow systems. Since the

ribs between channels on the bipolar plate are responsible for current collection from the

GDL, there is a requirement that channels may not be arbitrarily large, as mass distribution

of reactant must be balanced with current collection needs, similar to the limitations on

biological vessel size due to metabolic energy utilization of vascular tissue. The condition

of maintaining a balance between channel area and rib/GDL contact area is present in all

fuel cell applications. Thus, the particular strength which bio design has to offer is pro-

viding good reactant distribution in the channels when low pressure drop is a dominant

requirement.

2.3. Effect of Interdigitation. An important consideration in flow field design is

that the geometry will influence the mass transport mechanism by which reactants are

transported from the channel layer across the Gas Diffusion Layer (GDL) to the catalyst

layer. Mass transport of the reactant species from channel to catalyst layer occurs through
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diffusion due to the concentration gradient created by consumption of reactants at the

catalyst layer. However, bulk convective flow can also be driven through the GDL sufficient

pressure gradients are present. The geometry of the flow field will determine which of

these mechanisms is dominant. These effects may be observed in three of the most well

documented traditional designs, the parallel, interdigitated, and single serpentine designs.

The parallel design is dominated everywhere by diffusion since no appreciable pressure

difference is developed between adjacent channels, such that there is no driving potential

for convective flow through the GDL. The interdigitated design, introduced by Nguyen [22],

intentionally has two discontinuous sets of channels; once set connected to the inlet and the

other connected to the outlet, which are arranged so that each inlet channel is adjacent to an

outlet channel. In this way, the only path that the flow can take from inlet to outlet is to pass

through the GDL, and this design is dominated by convective flow. The single serpentine

consists of a single channel which passes back and forth across the active area by making

a series of 180° bends. Feser et al. [23] showed that, due to the major and minor pressure

losses in the long stretches of channels and 180° bends, significant pressure differences can

develop between adjacent channels far from a bend, which induces local convective flow,

while near the bends the mass transport of reactant is still predominately diffusive. (In this

work the terms "parallel style" and "interdigitated style" will be used to designate designs

which are continuous from inlet to outlet and rely predominately on diffusive transport,

and designs which have discontinuous channels and rely mainly on convective transport,

respectively.)

Whether to use a parallel or interdigitated style geometry is a decision which must

be made early on in the design process when creating a new flow field geometry. Among

previous works on bio-inspired designs there has been a mix of both parallel and interdigi-

tated style designs proposed. The enhancement of mass distribution provided by inducing

convective flow in the GDL makes interdigitation an attractive design feature in many ap-

plications. However, in consideration of the primary application area of bio design, namely
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providing good distribution with minimal pressure losses, there are two reasons why an

interdigitated style should not be used: 1) a large pressure gradient is required to force

convective flow through the GDL, and 2) the large pressure loss incurred in under rib flow

dominates the distribution characteristic of the flow field, making the channel geometry of

little impact on fuel cell performance.

(a) Diagram of HPLR in parallel flow paths
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(b) Plot of the effects of the HPLR of flow distribution

Figure 1. Effect of HPLR on flow distribution- (a) diagram of simplest parallel flow case,
and (b) effects of HPLR on flow distribution

A fuel cell flow field is simply a network of parallel flow paths. As an example of

the effect of interdigitation on flow distribution, the simplest parallel flow network having

only two flow paths may be considered. Shown in Figure 1 (a) is a two path parallel flow

network of equal length flow paths in which the diameter of one path, D2, is twice that of

the other, D3, but both have an identical section of reduced diameter which is labeled as a

High Pressure Loss Restriction (HPLR). Using the standard internal flow modeling method

of friction head loss analysis [24], the mass flow rate through each of these branches may be

determined. Ignoring minor loses, the total pressure drop, ∆P, across either of the possible
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flow paths would be

∆P = ρ
ū2

2,3

2

(
f

L2,3

D2,3
+

(
A2,3

AHPLR

)2

f
LHPLR

DHPLR

)
(2)

where ρ is the density, ū2,3 is the average velocity in the channel under consideration (either

2 or 3, as labeled in Figure 1 (a)), f is the Darcy Friction Factor, L2,3 is the length of the

main channel section, D2,3 is the diameter of the main channel section, A2,3 and AHPLR are

the cross sectional areas of the main branch under consideration and the HPLR section, and

LHPLR and DHPLR are the length and diameter of the HPLR section, which are identical for

either flow path. Note that the area ratio A2,3/AHPLR comes from applying the continuity

equation to get a relationship between the velocity in the HPLR section to that in the main

channel section so that only the velocity head in the main channel (ρū2
2,3/2) need be used.

Equation 2 may then be rearranged to find the mass flow through each branch as

Ûmmain = A2,3

√√√√ 2ρ∆P

f L2,3
D2,3
+

(
A2,3

AHPLR

)2
f LHPLR

DHPLR

. (3)

These equations have been implemented for the configuration shown in Figure 1 (a)

with main flow channel diameters with D2 = 2 × D3, a length of L2,3 = 10 × D2, and an

HPLR section diameter of DHPLR = (1/5)×D2. Equation 3 was applied while allowing the

length of the HPLR section to vary from 0 × L2,3 (no restriction case) to (1/20) × L2,3, and

the resulting mass distributions are shown in Figure 1 (b). The solid black line at a constant

mass fraction of 50% is the case where the two branches are symmetric in length and

diameter (D2 = D3 and L2 = L3) in which uniform distribution is achieved. For the red and

blue lines (D2 , D3 and L2 = L3 case) to the far left on this graph is the case of no HPLR

section, in which the different channel diameters result in a mass flow split of 85% passing

through the larger D2 channel and only 15% passing through the smaller D3 channel. The

addition of an HPLR section very quickly begins to drive the mass fractions back towards
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a uniform distribution, however at the cost of requiring a much higher pressure differential

to drive the same amount of flow. Compared to the unrestricted case, approximately two

orders of magnitude more pressure is required to drive the same amount of flow through

these parallel flow channels with a (1/20) × L2,3 HPLR section.

The same phenomenon appears in fuel cell flow field designs which make use of

Interdigitation. The major and minor pressure losses in the channels are typically on the

order of 102 Pascals in the traditional interdigitated design configuration, which is very

similar to the traditional parallel design. However, in order to drive the under-rib convective

flow through the porous GDL material a pressure loss on the order of 104 Pascals is often

encountered. The vast majority of the pressure loss occurs as the flow is forced through the

GDL, and this high pressure loss compared to that of the channel flow functions in the same

way as the previously demonstrated HPLR case. The HPLR effect of under-rib flow tends

to drive the flow pattern in the channels towards a uniform distribution, and dominates the

effect of channel geometry on the flow distribution characteristics of interdigitated designs.

This effect on distribution along with the performance enhancement due to the increased

mass transport capabilities of convective flow in the GDL can be of great advantage to fuel

cell designers who do not have to be concerned with minimizing the pressure losses across

the flow field. The combined effects can yield gains in fuel cell power output that outweigh

the losses incurred in increased pumping power required. However, the high pressure losses

incurred, and the domination of flow distribution by the HPLR effect over that of the channel

geometry effectively negate all advantages of using bio design.

2.4. Design Methodology for Creating Bio-Inspired Flow Fields. Based on the

principles highlighted in the preceding section and some further observations on biological

flow structures, a set of design principles was developed for creating bio-inspired flow field

geometries. To distribute reactants from a central location over a large area, biological flow

systems use networks of branching channels, a feature which should be mimicked in flow

field design. Biological systems are often symmetrical, a feature which may be used to



53

control the distribution of flow in fuel cells, so symmetry should be taken advantage of as

often as possible. Channel sizes are not uniform in biological flow structures, but rather

the size of a channel is proportional to the amount of reactant that must be transported.

This is the fundamental basis of Murray’s D3 law. Murray’s Law for channel size has

been applied directly in this work, under two constraints. Since the channels in a fuel

cell should not be too small or too large in order to balance mass transport and current

collection needs, Murray’s Law was applied within lower and upper limits on channels

sizes of 1 mm and 3 mm, respectively. (The ribs are of constant 1 mm width.) Murray’s

relations for branching angles was developed to minimize the flow losses for the case of

“free unobstructed branching of vessels" [21], and the optimum angle of branches depend

on their relative diameters. Since the channels in a fuel cell flow field are required to be

closely spaced with ribs between them to balance mass transport and current collection

needs, this is not a case of free unobstructed branching, and Murray’s Law for Branching

Angles was not applied directly. However, for branches which are of similar sizes, biological

systems tend to avoid both large (near 90°) and small (near 0°) branching angles, opting

rather for intermediate values near the middle of this range. In this work, a constant

branching angle of 45° was used. In the same vein of thought, biological systems rarely

form square or rectangular geometries, and the designer should not be constrained to such

geometries. Right angle corners can form stagnation points in parallel network type flow

systems such as fuel cell flow fields. In this work, the shape of the active area has been

altered from the traditional rectangular geometry to eliminate this issue. The total aspect

ratio of the minimum rectangular envelope which would enclose the bio design is 2x1, and

the rectangular parallel design, which is used as the reference case, has the same aspect

ratio. The flow field designer should avoid creating preferential flow paths, such as the

case of a set of large parent channels traveling directly from inlet to outlet, having only
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a very short section of daughter channels connecting them. Lastly, as has been shown in

Section 2.3, using interdigitation effectively eliminates all advantages of bio design, and so

interdigitation should be avoided. These design principles are summarized here:

1. Use branching geometry

2. Take advantage of symmetry when possible

3. Channel should be sized proportionally to their volume flow requirements (D3 law)

4. Branching angles should not be extreme (avoid 90 degree bends)

5. Do not constrain the flow field geometry to the traditional rectangular area

6. Avoid preferential flow paths- Match resistance with available potential

7. Avoid interdigitation

(a) Bio-inspired design

(b) Parallel 2x1 aspect ratio

Figure 2. Flow field designs (a) bio-inspired design created for demonstration (inlet at left,
outlet at right) (b) parallel 2x1 aspect ratio for comparison (inlet top left, outlet bottom
right)
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As an example, these principles were used to create a 25 cm2 design, which is

shown in Figure 2 (a). Using numerical simulations the performance of this design was

compared to that of a traditional parallel design, shown in Figure 2 (b), and the details of

these geometries are given in Table 2.

Table 2. Flow field geometry parameters for parallel and bio designs

Geometric Parameter Value Units
Parallel Design

Active Area 25 cm2

Length 70.7 mm
Width 35.4 mm
Number of Channels 36
Channel Branch Angle 90 °
Channel Area Ratio 56.1 %
Channel Depth 1.5 mm
Channel Width 1.0 mm
Rib Width 1.0 mm

Bio Design
Active Area 25 cm2

Length (inlet to outlet) 79.8 mm
Width 26.1 mm
Number of Minimum Diameter Channels 46
Channel Branch Angle 45 °
Channel Area Ratio 60.2 %
Channel Depth 1.5 mm
Channel Width (Minimum) 1.0 mm
Channel Width (Maximum) 3.0 mm
Rib Width 1.0 mm

The design shown in Figure 2 (a) is only one possible configuration resulting in

the application of these principles, and is in no way optimized. Undoubtedly this design

could be improved by using variable sizes on the final generation of channels, optimizing

the branching angles for this configuration, changing the upper and lower constraints on

the channel dimensions, or optimizing with respect to any other geometric parameter of the

flow field. Such topics are beyond the scope of this work. The purpose of the example
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geometry is to demonstrate that, even without optimization, through the application of these

design principles, flow fields may be created with better distribution performance at lower

pressure drop than the best conventional low-pressure drop design has to offer.

3. OPERATING CONDITIONS

When choosing operating conditions at which to test the performance of bio flow

fields, the operating conditions should align with the design constraint of minimizing

auxiliary system requirements. In this work, untreated atmospheric air was used for the

cathode supply gas in order to eliminate any heating or humidification system for the cathode.

Since both heat andwater are produced at the fuel cell cathode, the cathode gas can be heated

and humidified by normal fuel cell operation. The total auxiliary system for processing

cathode supply gas is then reduced to a single pump. By using a passive membrane

humidifier, the anode supply gas may be heated and humidified by the cathode exhaust gas.

In addition to hydrogen storage at high pressure, only a single passive membrane humidifier

which recovers product water and waste heat from the cathode exhaust, and, optionally, an

anode re-circulation pump is required. The sizes and power requirements of the pumps will

be dependent on the pressure loss of the flow field, so minimal pressure losses, provided by

the bio flow fields, are critical in minimizing the auxiliary system.

The nominal operating temperature and pressure of the fuel cells were 50 °C and 1

atm for all cases. The relatively low operating temperature reduces auxiliary heating and

humidification requirements. Note that while these two designs were allowed to exhaust to

atmospheric pressure, they have very low pressure drops, as the maximum variation at the

inlet from atmospheric pressure was only 0.1%, so the pressure was taken to be 1 atm for the

purpose of calculating inlet conditions. Two operatingmodeswere simulated to demonstrate

the designs’ reactant distribution and water removal characteristics: 1) constant flow rate

and 2) Water Balanced (WB) constant stoichiometry which will be explained later in detail.

For both cases the cathode inlet conditions were selected to represent un-treated ambient
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air, and the anode inlet conditions were fully humidified hydrogen at the fuel cell operating

temperature and pressure. For the constant mass flow rate case, the mass flow rates were set

such that at a current density of 1.0 A cm−2, the anode and cathode stoichiometries would

be 1.2 and 2.0, respectively. This means that relatively high stoichiometries are encountered

when operating at lower current densities.

Water management is always a concern in PEMFCs. When operating with fully

humidified reactants, membrane drying is unlikely while the main concern is removing

excess product water at high current densities. In most cases, when operating with fully

humidified reactants, cell performance increases monotonically with increasing mass flow

rate. However, when operating with dry cathode supply gas, membrane dehydration can be

a serious concern if the mass flow rate is too high [25, 26], while enough water may still be

produced at high current densities to cause mass transport limitations with low mass flow

rates. Thus, the issue of water management is doubly important when operating with dry

supply gas.

In order to alleviate this issue, a new operating strategy was devised. Using un-

treated atmospheric air in the cathode, the air enters at low temperature with some small

initial water vapor content, and exits the fuel cell at some higher temperature, and carrying

some additional water content, produced from the electrochemical reactions. Themaximum

mole fraction of water vapor which can be contained in a humid air mixture, XH2O,max , is

a function of both mixture temperature and pressure and, from the definition of relative

humidity, the relationship is given by

XH2O,max =
Psat(T)

Pmix
, (4)
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where Psat(T) is the saturation pressure of water as a function of temperature, and Pmix is

the total mixture pressure. Figure 3 shows the variation of the maximum mole fraction of

water vapor in fully saturated air (100 % relative humidity) with temperature and pressure

by applying Equation 4 over the range of 0-100 °C for several fixed mixture pressures.
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Figure 3. Variation ofwater vapormole fraction at 100% relative humiditywith temperature
and pressure

Note that with an increase in temperature or a decrease in pressure, the capacity of air

to hold water vapor increases. Li et al. [27] took advantage of this fact and devised a design

strategy to match the water uptake capability of the cathode to the water production rate in

the fuel cell. The dimensions and number of channels in a multi-serpentine configuration

were selected to induce a specific pressure drop across the flow field, such that with a known

temperature difference between inlet and outlet, the outlet relative humidity would be 100%.

This is possible in a serpentine configuration fuel cell as the pressure loss across the flow

field is significant. However, this strategy cannot be directly applied to low pressure drop

flow fields, such as bio designs.



59

A similar strategy was devised that utilized the temperature difference between inlet

and outlet directly when operating with dry air, rather than relying on a large pressure drop.

Cathode air was supplied at low temperature and, assuming that the cathode exhaust exits

at or near the nominal operating temperature, the mass flow rate could be selected such that

the outlet relative humidity was 100%.

The molar rate at which water is produced from the electrochemical reactions, ÛNH2O,

in the fuel cell cathode is

ÛNH2O,gen =
j Aact

2F
, (5)

where j is the current density, A is the active area, and F is Faraday’s constant. The rate

at which the cathode air can absorb additional water vapor, ÛNuptake, due to the temperature

rise between inlet and outlet is given by

ÛNuptake =

(
XH2O,out

1 − XH2O,out
−

XH2O,in

1 − XH2O,in
,

)
ÛNair (6)

where XH2O,in and XH2O,out are the mole fractions of water vapor at the inlet and outlet,

respectively, and ÛNair is the mass flow rate of dry air.

Knowing the inlet conditions and assuming the temperature at the outlet is approx-

imately equal to the nominal operating temperature, the required mole fraction of water

vapor to attain 100% relative humidity may be calculated. Then, by setting the rate at

which water is produced by the electrochemical reactions ( ÛNh2O,gen) equal to the uptake rate

( ÛNuptake), the flow rate of dry air ( ÛNair) which will result in an outlet relative humidity of

100 % may be calculated from Equations 5 and 6 as

ÛNair =

j A
2F

XH2O,out

1−XH2O,out
−

XH2O,in

1−XH2O,in

, (7)
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and the total mixture molar flow rate at the inlet is then given by

ÛNtot =

(
1

1 − XH2O,in

)
ÛNair . (8)

Since there is a fixed ratio between the current density and the total flow rate, this

means operating at a fixed stoichiometry. Presuming the mole fraction of oxygen in dry air

to be 0.21, the stoichiometry at which Water Balanced (WB) operation can be achieved is

ξ =
0.42

XH2O,out

1−XH2O,out
−

XH2O,in

1−XH2O,in

. (9)

This method was used to determine the cathode stoichiometry, while the anode was

set at a stoichiometry of 1.5. Using an inlet temperature of 25 °C, inlet relative humidity of

50%, and presuming an outlet temperature of 50 °C and target relative humidity of 100%,

the required cathode stoichiometry to achieve WB operation was determined to be 3.5.

The operating conditions used for both the fixed mass flow rate, and water balanced fixed

stoichiometry cases are given in Table 3, and the mass flow rates for both anode and cathode

in the fixed stoichiometry case are given in Table 4.

It should be noted that the method of determining water balanced operating condi-

tions may only be used at relatively low outlet temperatures. In the limiting case, with the

minimum possible operating stoichiometry of 1.0, the fuel cell will produce enough water

to achieve 100 % relative humidity for an outlet temperature of approximately 70 °C, so this

is the upper limit of operating temperature for which this method can be used. However,

since low temperature operation fits well with the constraint of minimizing the auxiliary

system, these operating conditions are well suited for bio design applications.
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Table 3. Inlet conditions

Inlet Property Value Units
Common Parameters

Anode Temperature 50 °C
Anode Pressure 1 atm
Anode Humidity 100 %
Anode Water Mole Fraction 0.120
Anode Hydrogen Mole Fraction 0.880
Cathode Temperature 25 °C
Cathode Pressure 1 atm
Cathode Humidity 50 %
Cathode Water Mole Fraction 0.016
Cathode Oxygen Mole Fraction 0.207
Cathode Nitrogen Mole Fraction 0.778

Fixed Mass Flow Case
Anode Mass Flow Rate 6.96 × 10−7 kg s−1

Cathode Mass Flow Rate 1.80 × 10−5 kg s−1

Fixed Stoichiometry Case
Anode Stoichiometry 1.5
Cathode Stoichiometry 3.5

Table 4. Mass flow rates for water balanced operation

j(Acm−2) Ûman (kgs−1) Ûmca (kgs−1)

0.1 8.70 × 10−8 3.15 × 10−6

0.2 1.74 × 10−7 6.29 × 10−6

0.3 2.61 × 10−7 9.44 × 10−6

0.4 3.48 × 10−7 1.26 × 10−5

0.5 4.35 × 10−7 1.57 × 10−5

0.6 5.22 × 10−7 1.89 × 10−5

0.7 6.09 × 10−7 2.20 × 10−5

0.8 6.96 × 10−7 2.52 × 10−5

4. COMPUTATIONAL METHODS

4.1. Mesh and Model Parameters. The commercial software package ANSYS

Fluent 15.0 was used to perform a computational study on the performance of the bio and

parallel flow field designs presented in Section 2.4 using the PEMFC Add-On Module. The

present authors have experimentally validated CFD results for various flow field designs
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in previous work [15, 16] using the same software package, and the computational study

performed for the present work was based on the same model parameters, as well as the

work of Iranzo et al. [28].

Table 5. Fuel cell geometry and material properties

Component Value Units
BPP Thickness 2.50 mm
BPP Electrical Conductivity [28] 926 S cm−1

GDL Thickness 0.35 mm
GDL Porosity 0.80
GLD Electrical Condictivity [28] 2.80 S cm−1

Catalyst Thickness 0.01 mm
Catalyst Porosity 0.80
Membrane Thickness 0.15 mm
Membrane Equivalent Weight [28] 1100 kg kmol−1

The flow field geometries were given in Table 2 in Section 2.4, and the layer

thicknesses and selectmaterial properties are provided inTable 5. Both designsweremeshed

with the ANSYS Workbench 15.0 Meshing application. A mesh study was performed on

both quality and number of elements to ensure stable convergence and mesh independence.

The finalmesh used for the parallel design contained 1.616million hexahedral elements with

aminimumorthogonal quality of 0.966, and the bio design contained 1.912million elements

of hexahedral and wedge type to accommodate the angled branches, with a minimum

orthogonal quality of 0.625. The maximum mesh size was set to 0.25 mm, which was the

maximum spacing in the in-plane direction for all layers. The spacing in the through-plane

direction was varied as necessary in order to fit cells within the thinner layers. The channel

layer had 6 cells across, and all other layers were 4 cells across, as can be seen in Figure 4.

In addition to mass, momentum, energy, and species conservation equations that

are routinely solved in CFD modeling, additional models are required for fuel cells com-

putations. Joule and reaction heating, electrochemistry sources for the species model,
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(a) Mesh- layers and channel view (b) Detail of catalyst and electrolyte Layers

Figure 4. Mesh- (a) cut view of all through plane mesh layers and (b) detail of catalyst and
electrolyte layers (color cersion available online)

Butler-Volmer reaction rate, and multiphase models, along with electrical potential and

electronic and protonic conduction are also solved to simulate fuel cell performance. It

should be noted that two phase flow for condensed water vapor is not fully simulated, but

rather the assumption is made that any condensed water travels with the free stream velocity

in the channel layer as a fine mist. The effect of blockage by liquid water in the porous

zones (GDL and Electrolyte) is approximated by multiplying porosity by (1− s), where s is

the volume fraction of liquid water. Additional model details can be found in [29].

The SIMPLE (Semi-Implicit Method with Pressure Linked Equations) solver was

used, with least squares cell based gradient, while the discretization set to standard for pres-

sure and second-order upwind for all other parameters. A constant temperature boundary

condition of 323 K was used for all exterior walls. Inlet boundary conditions for temperature

and species were previously given in Table 3, Section 3, and a constant pressure boundary

condition of 1 atm was used at all outlets. Table 6 lists the parameters specific to fuel cell

modeling used in the present study.
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Table 6. Numerical model parameters used in the fluent simulations

Model Parameter Units Values
Ref. Current Density- Anode A/m3 4.48×105 [15]
Ref. Current Density- Cathode A/m3 4.48 [15]
Catalyst Layer Surface to Volume Ratio m−1 1.25×107 [15]
Ref. Concentration- Anode kmol/m3 1.0
Ref. Concentration- Cathode kmol/m3 1.0
Concentration Exponent- Anode 0.5 [28]
Concentration Exponent- Cathode 1.0 [28]
Exchange Coefficient- Anode 1.0 [15]
Exchange Coefficient- Cathode 1.0 [15]
Open Circuit Voltage Volt 1.0
Leakage Current A 0.0
Reference Diffusivity- H2 m2/s 8 × 10−5 [15]
Reference Diffusivity- O2 m2/s 2 × 10−5 [15]
Reference Diffusivity- H2O m2/s 5 × 10−5 [15]
Saturation Exponent (Pore Blockage) 2.0 [28]

4.2. Simulation Strategy and Convergence Criteria. For the constant mass flow

rate cases, potentiostatic boundary conditions were used with voltage points being run from

0.25 to 0.85 volts in 0.1 volt increments, with an open circuit voltage of 1.0 volts. It was

found that the rate of convergence was greater with potentiostatic boundary conditions, so

for the fixed mass flow rate case, they were used to in order to reduce computational time.

For simulating fixed stoichiometry operation for the water balanced cases, galvanostatic

boundary conditions must be used, and the computations were run at 0.1 A/cm2 increments

up to 0.8 A/cm2. In both cases, the first point run was started from a default initialization,

and when convergence for that point was reached and the data file saved, the voltage or

current destiny for the respective cases was adjusted to the next set point and the simulation

continued to solve for the next operating point. This process of starting from the converged

solution of the preceding point was used for all remaining points.

In determining when the solution for each set point was considered to have con-

verged, it was necessary to look further than the standard method of residuals reduction

when using the PEMFC Module. It was found that species and current conservation would
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not be satisfied until several thousand iterations after apparent convergence was achieved

based solely on the residuals, as previously noted by Arvat et al. [30]. Naturally, in order to

gain insights to the details of flow field performance, current and species model convergence

must be attained. It was found that the coupled current and species models were the slowest

to converge, and therefore total current and species values were monitored directly in order

to ensure convergence.

The total current at the terminals and mid-plane of the fuel cell (Cathode, Anode,

and Electrolyte Currents), as well as the rate of hydrogen and oxygen consumption due to

electrochemical reactions (∆ ÛmH2 and ∆ ÛmO2) were monitored. In order to ensure that not

only the current at all planes in the fuel cell are in agreement but also the species model,

which is coupled by electrochemistry source terms, are all in agreement, the consumption

rates of oxygen and hydrogen may be used to calculate an equivalent current. The current

produced by the electrochemical reactions of hydrogen and oxygen may be determined by

IO2 =
4F
MO2

∆ ÛmO2, (10)

IH2 =
2F
MH2

∆ ÛmH2 . (11)

When the current values at each plane in the fuel cell alongwith the predicted current

values from the consumption rates of hydrogen and oxygen all agreed to within 1%, the

solution was considered to have converged. Figure 5 shows a representative convergence

plot where the predicted total current and species currents are plotted against iteration count.

If the simulation is stopped prematurely based onmonitoring residuals only, apparent

results may be obtained, but they would not be reliable as the currents at different planes in

the fuel cell would not agree. Additionally, the species data, which is of particular interest

for this work, is the last to converge, as can be seen in Figure 5. Even monitoring the current
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data directly would not be enough because the hydrogen data would still not satisfy the

coupled mass conservation and electrochemistry models. Thus, it is imperative to monitor

all of the quantities associated with the electrochemistry models for convergence criteria.

Figure 5. Example convergence plot demonstrating species and current tracking

5. PERFORMANCE OF EXAMPLE BIO-INSPIRED DESIGN

5.1. Polarization. The performance of the parallel and bio designs were each simu-

lated with a fixed mass flow rate, and with WB fixed stoichiometry, as described previously.

The polarization curves obtained are given in Figure 6.

It is immediately noticeable that there is no large discrepancy in fuel cell performance

between the cases presented here, as has often been observed in previous works. However,

such large variations in performance are usually only seen at high current densities in the

mass-transport dominated region as the result of significantly different mechanisms of mass

transport, such as the introduction of under-rib flow in interdigitated style designs. In the

cases considered here, mass transport from channel to catalyst layers is solely diffusive in

both desgins, so no major difference in fuel cell unit performance was expected. Instead,
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Figure 6. Polarization curves obtained from CFD results

the improvement seen in polarization performance is only incremental, while the main

difference in performance of the channels is the improved distribution of reactants and

removal of products over the active area, and the reduction of pressure loss across the flow

field.

5.2. Power Output Per Pumping Power. In order to gage the performance of the

parallel and bio designs in their ability to achieve minimal pressure losses, and therefore

minimal auxiliary system requirements, the fuel cell power output per unit pumping power

required was calculated for both designs. The power required to supply a fuel cell compres-

sor, ÛWc, at a specified mass flow rate, Ûm, and at a given inlet pressure, Pin, was derived for an

isentropic compression process, and correct for real loss effects by the isentropic efficiency,

ηc, and is given as

ÛWc =
1
ηc
ÛmcpT0

((
Pin

P0

) k−1
k

− 1

)
, (12)

where cp is the constant pressure specific heat of the supply gas, T0 and P0 are the ambient

temperature and pressure, and k is the ratio of specific heats. Using Equation 12 the

compressor input work for both designs using the fixed mass flow rate case was calculated

based on the pressure loss of each design. The power output of the cells were then
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normalized by their respective compressor input work, and the resulting plots of normalized

output power per compressor power input are given in Figure 7. As can be seen in, the

bio design has a normalized output power of 2-3 times that of the parallel design at all

operation points, and the same was true of the WB fixed stoichiometry case not shown in

the figure. Since these designs have very low pressure losses, the pumping power required

is quite small and the normalized output power of these designs is very large. This is a

desirable characteristic for applications where minimizing the auxiliary system is a design

constraint. As a point of reference, in previous work [31] the present authors have simulated

the performance of the single serpentine design, which has a significantly higher pressure

loss, and the maximum pumping power normalized power output was on the order of 101

as compared with 103 for the parallel design, and 104 for the bio.

Figure 7. Fuel cell power output per pumping power input
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5.3. Reactant Distribution, Product Water Removal, and Membrane Conduc-

tivity.

5.3.1. Fixed Mass Flow Rate Operation. While the bio design outperforms the

parallel at high current densities in both fixedmass flow andWB fixed stoichiometry modes,

the performance of all cases are nearly identical at a current density of approximately 0.5

A/cm2. Below this point the bio design operating with fixed mass flow rate is the worst

performer of all cases. The fixed mass flow rate case was the first used to compare

the performance of the parallel and bio designs, and upon obtaining initial results, this

phenomenon was surprising. However, investigation into the water management details of

the two designs revealed that, with the fixed mass flow rate used here, the point at which

the fuel cell produced enough water to fully humidify the cathode gas stream occurred

between 0.5 and 0.6 A/cm2. All operating points at lower current densities were suffering

from membrane dehydration and increased ohmic losses, and all higher current densities

had liquid water present at the outlet. The oxygen and water distributions at a low current

density/high voltage point are shown in Figure 8. The parallel design suffered from poor

distribution, and had a very large stagnation area. With the very high stoichiometries seen in

the low current density range while operating with the fixedmass flow rate, sufficient oxygen

was still supplied in the parallel design over most of the active area so that significant mass

transport losses were not encountered, though a small area of near zero oxygen concentration

is still present.The poorwater removal characteristics of the parallel design actually benefited

the performance in this case, as water accumulation occurred in the stagnation zone, helping

to alleviate local membrane dehydration.

The bio design had significantly better reactant distribution and product removal

performance, as can be seen in the contours. The oxygen distribution was significantly

better than the parallel design with no areas near zero concentration, and there was less

water buildup. However, in this case, product water being removed more effectively led to

more severe membrane dehydration, and actually reduced performance.
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(a) (b) Oxygen (c) Oxygen

(d) (e) Water (f) Water

Figure 8. Fixed mass flow case: 0.65 Volts, catalyst-GDL interface (a) color legend for
oxygen contours (b) parallel oxygen concentration (c) bio oxygen concentration (d) color
legend for water contours (e) parallel water concentration (f) bio water concentration (color
version available online)

5.3.2. Water Balanced Operation. It was noted that the membrane dehydration

issues were alleviated once the current density, and therefore waste water production,

reached a high enough point that the cathode outlet gas was fully humidified. This is what

brought about the idea of calculating the proper flow rate to achieve WB operation at all

current densities. The required flow rates to achieveWB operation were then calculated, and

both designs were simulated again with WB fixed stoichiometry operation. The contours

of oxygen and water concentration at low current density/high voltage using WB operation

are given in Figure 9. Note that with the lower stoichiometry operation, the stagnation zone

of the parallel design was much worse, with a large area of near zero oxygen concentration,

while the bio design had a much more uniform distribution of oxygen. Furthermore, while

water removal was still better in the bio design as compared to the parallel design, there was

significantly more water present using WB operation, so the severe membrane dehydration

issues were alleviated. This improvement in distribution not only affects the performance
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directly but, as noted previously, will also serve to improve the durability and reliability of

the fuel cell by reducing mechanical stresses induced by uneven water and heat distribution

[4, 5].

(a) (b) Oxygen (c) Oxygen

(d) (e) Water (f) Water

Figure 9. Water balanced case: 0.3 A/cm2, catalyst-GDL interface. (a) color legend for
oxygen contours (b) parallel oxygen concentration (c) bio oxygen concentration (d) color
legend for water contours (e) parallel water concentration (f) bio water concentration (color
version available online)

Using this operating scheme, the high ohmic losses incurred in protonic transport

due to membrane dehydration were eliminated. The average protonic conductivity of the

membrane as predicted by the Springer et al. model [32] (which is used by the computational

package) for both cases is shown in Figure 10. The protonic conductivity of the membrane

using WB operation was much higher at low current densities, and was relatively constant

over most of the range of operation. At greater than approximately 0.6 A/cm2 the protonic

conductivity of the fixed mass flow case surpassed that of the WB case due to the presence

of liquid water. Using WB operation, the polarization performance of the parallel and
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bio designs were nearly identical at low current densities in the activation and ohmic loss

dominated regions, and the bio design was better at high current density, due to its better

distribution performance, in the mass transport limited region. Thus, using WB constant

stoichiometry operation can eliminate membrane dehydration problems when using dry

supply gas in designs with good water removal characteristics such as bio-designs, while

still avoiding flooding issues.

Figure 10. Average membrane water content and protonic conductivity of the bio design
for both fixed flow rate and water balanced operating cases

6. SUMMARY AND CONCLUSIONS

The performance requirements of biological flow structures have been examined to

identify their main geometric characteristics, and the area of applicability of bio-inspired

design to fuel cell flow field design. The main driving requirement which determines the

shape of biological flow structures is to achieve good distribution with minimal flow losses.

Based on this performance requirement, the operating regime which has been identified for

the application of bio design to fuel cell flowfields is that the dominating system requirement
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is to have a minimal auxiliary system, such as a case where an extremely lightweight system

is required. Using the geometric characteristics of biological flow structures, a design

approach has been outlined for generating bio designs as follows:

1. Use branching geometry

2. Take advantage of symmetry when possible

3. Channel should be sized proportionally to their volume flow requirements (D3 law)

4. Branching angles should not be extreme (avoid 90 degree bends)

5. Do not constrain the flow field geometry to the traditional rectangular area

6. Avoid preferential flow paths- match resistance with available potential

7. Avoid interdigitation

In accordance with the design goal of using a minimal auxiliary system, operating

conditions were chosen which can be achieved with this goal, namely using a relatively low

operating temperature with un-treated air as the cathode supply gas. In order to alleviate

the water management issues of membrane dehydration at low current density, or flooding

at high current density encountered when operating with un-treated atmospheric air, a new

method of determining operation conditions was developed. This method matches the

cathode mass flow rate to the production rate of water in the fuel cell such that the outlet

relative humidity is near 100% for a given rise in temperature of the cathode supply gas.

This operating mode is referred to as Water Balanced (WB) operation.

Furthermore, to demonstrate the application of these bio-inspired design principles

and operating methods, a 25 cm2 design was created, and its performance was simulated

using computational modeling, along with a traditional parallel design as a reference. The

purpose of the example geometry is to demonstrate that, even without optimization, through

the application of these design principles, flow fields may be created with better distribution

performance at lower pressure drop than the best conventional low-pressure drop design has

to offer. The two designs were simulated with both fixed mass flow rates, andWB operation

conditions. The bio design was shown to have a power output per pumping power input
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of 2-3 times greater than that of the parallel design, as well as maintaining significantly

better reactant distribution and product removal performance in all cases. Additionally, the

performance of both designs were shown to improve when using WB operating conditions.
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SECTION

2. CONCLUSIONS

It has been shown that the effect on system performance, caused by the different

pressure loss characteristics of flow fields, can indeed be significant in PEMFCs. A

method of decoupling the performance effects of pressure and reactant distribution has

been demonstrated which normalizes the effects of pressure between different flow field

designs, and thereby provides fuel cell designers a tool whereby the relative merits of

different flow field designs can be better compared. This method was demonstrated by

application to the traditional parallel and serpentine flow fields. It was shown that, under

the operating conditions used, the fuel cell utilizing the serpentine flow field outperformed

that using the parallel flow field by 17% at the peak power density point. However, of the

17% improvement, 12% was due to improved reactant distribution of the serpentine design,

while the remaining 5% enhancement was from effects of the serpentine design’s higher

pressure loss. It was furthermore demonstrated from previous literature that, in some flow

field designs, the effects from increased pressure loss are the primary contributor to fuel

cell unit performance enhancement. This is an undesirable characteristic for a new flow

field, as the same effect can be achieved by simply operating an existing design at a slightly

higher back pressure.

The opportunity for application of bio design to fuel cell flow fields was also

investigated. The performance requirements for biological flow structures were examined,

and it was determined that the most important outcome for a biological flow system is to

achieve properly proportioned flow distribution with minimal pressure losses. Since the

requirement to achieve proper flow distribution exists for all fuel cell flow fields, the area
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of particular applicability for bio design must be when minimal pressure loss is a dominate

design constraint, such as when a minimal auxiliary system is desired. In keeping with this

design goal, a set of design principles was developed for creating bio designs as follows:

1. Use branching geometry

2. Take advantage of symmetry when possible

3. Channel should be sized proportionally to their volume flow requirements (D3 law)

4. Branching angles should not be extreme (avoid 90 degree bends)

5. Do not constrain the flow field geometry to the traditional rectangular area

6. Avoid preferential flow paths- Match resistance with available potential

7. Avoid interdigitation

The application of these design principles was demonstrated by creating an example

bio design. The performance of the bio design was then simulated, along with the traditional

parallel design as a reference. Operating conditions for testing these designs were chosen

in keeping with the goal of minimizing the auxiliary system, so a relatively low operating

temperature and ambient back pressure were used with un-treated atmospheric air supplied

for the cathode gas. When operating with low humidity supply gas, it was observed that

performancewas limited bymembraned dehydration at low current densitieswhen operating

under fixed mass flow rate conditions, while liquid water accumulation would still occur at

high current density. In order to alleviate these water management issues, a new method of

determining operating conditions was developed which has been termed Water Balanced

(WB) operation. Using WB operation, the supply rate of low humidity air at the cathode

inlet is matched to the production rate of waste water from the electrochemical reactions

such that the cathode gas is fully humidified at the outlet temperature. The bio and parallel

designs were both run with fixed mass flow rates andWB operation. In order to demonstrate

the reduced pressure losses in the bio design, the fuel cell power output per pumping power

required was calculated for both designs, and it was shown that the bio design performed 2-3

times better than the parallel design for both cases, while also maintaining better reactant
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distribution. Furthermore, it was shown that both the bio and parallel designs performed

better withWB operating conditions, which successfully eliminated membrane dehydration

issues.
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