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PUBLICATION THESIS OPTION

This thesis has been prepared in the form of two papers. It has been formatted

in accordance with the specifications provided by the Missouri University of Science and

Technology.

Paper I. Pages 5-53 have been submitted to 2016 IEEE Transactions on Neural

Networks.

Paper II. Pages 54-109 are intended for submission to 2016 IEEE Transactions on

Control Systems Technology. The second paper in this thesis has been augmented to in-

clude hardware results.
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ABSTRACT

Neural networks (NNs) are utilized in the backstepping approach to design a control

input by approximating unknown dynamics of the strict-feedback nonlinear system with

event-sampled inputs. The system state vector is assumed to be unknown and an observer

is used to estimate the state vector. By using the estimated state vector and backstepping de-

sign approach, an event-sampled controller is introduced. As part of the controller design,

first, input-to-state-like stability (ISS) for a continuously sampled controller that has been

injected with bounded measurement errors is demonstrated and, subsequently, an event-

execution control law is derived such that the measurement errors are guaranteed to remain

bounded. Lyapunov theory is used to demonstrate that the tracking errors, the observer

estimation errors, and the NN weight estimation errors for each NN are locally uniformly

ultimately bounded (UUB) in the presence bounded disturbances, NN reconstruction er-

rors, as well as errors introduced by event-sampling. Simulation results are provided to

illustrate the effectiveness of the proposed controllers.

Subsequently, the output-feedback neural network (NN) controller that was pre-

sented above is considered for an underactuated quadrotor UAV application. The flexibility

for the control of a quadrotor UAV is extended by incorporating notions of event-sampling

and by designing an appropriate event-execution law. First, the continuously sampled con-

troller is considered in the presence of bounded measurement errors and it is shown that the

system generates a local ISS-like Lyapunov function. Next, by designing an appropriate

event-execution law, the measurement errors that result from event-sampling are shown to

be bounded for all time. Finally, the effectiveness of the proposed event-sampled controller

is demonstrated with simulation results.
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SECTION

1 INTRODUCTION
1.1 BACKGROUND

Given their inherent approximation properties, neural networks (NNs) have become

popular in real-world applications that include unknown dynamics. In addition, due to the

fact that many dynamic systems can be expressed in the strict-feedback form, the incorpo-

ration of NNs in a backstepping design has become a natural approach in controller design.

In strict-feedback systems that have unknown nonlinearities, subsystems are considered

separately from one another and NNs are implemented in approximating the unknown part

of each subsystem’s virtual control law. A general control scheme for this approach is pre-

sented by Ge and Wang in [1]. However, the effort [1] requires full knowledge of the state

vector, a provision that is not always guaranteed.

The need for full-knowledge of the state vector can be easily avoided with the im-

plementation of a NN observer. As an example, the work in [2] models a quadrotor UAV

system in strict-feedback form and circumvents the need for velocity sensors with an ob-

server. In general, designing an output-feedback controller with backstepping is an ap-

proach that has been implemented in a number of different applications [3]-[6].

The previous works [1]-[6] on this class of systems assume a continuous sampling

paradigm wherein the control law is executed at a fixed frequency. An alternative to the

traditional sampling scheme, event-based sampling, is introduced by Tabuada in [7]: With

event-sampling, the control is updated only when an event occurs. The immediate ad-

vantage to this is that the number of computations is reduced; furthermore, if all design

parameters are appropriately selected, it can be shown that the reduction of computations

can be achieved without compromising the fidelity of the controller.

The work in [7] introduces basic concepts of event-sampling and applies them to

a general control system with known dynamics. Since then, a significant amount of work

has been done in the development of event-based controllers and they have been discussed

in various contexts, such as input-state stability [8], sensor/actuator networks [9], state-
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and output-feedback systems [10][11], and trajectory tracking applications [12]. In these

works [7]-[12], the dynamics are assumed to be known and the use of NNs becomes unnec-

essary; for this reason, the extent to which their results can be implemented in real-world

applications is somewhat restrictive. Finally, the work in [13] extends the notions of event-

based sampling to incorporate unknown dynamics in an NN-based controller for an affine

nonlinear system. In any work presenting results in event-sampling, the derivation of an

event-execution law is a necessary provision; a particularly useful conclusion given in [13]

is the presentation of an execution law in the presence of NN approximations.

However, the degree to which the results [13] can be applied in practical applica-

tions is limited to affine systems. Moreover, the execution law presented relies on having

knowledge of the NN weight estimates at the event-triggering mechanism. This neces-

sitates “mirror estimators” that synchronously provide NN weight estimates at both the

controller and at the event-triggering mechanism.

Additionally, the efforts in event-sampling [7]-[13] primarily consider generalized

systems and do not make substantial contributions to the incorporation of intermittent sam-

pling in real-world applications. To this effect, the works [14] and [15] make efforts to im-

plement event-sampling in the context of real-world dynamics. In [14], an event-sampled

approach is used in a vibration analysis for pneumatic tires; the work in [15] incorporates

event-sampling with an observer-based controller and it considers the results in the context

of a servoing control system. However, the efforts presented in [14] and [15] only con-

sider dynamics that are simple enough to where it is unecessary to implement advanced

adaptive methods. The incorporation of event-sampling in robotic applications that require

extensive use of NNs is a topic which has not received much attention.

This thesis extends the applicability of event-sampling to situations which have not

been previously explored. First, a general strict-feedback system will be considered. The

Lyapunov method will be used to develop an event-sampled direct adaptive NN output-

feedback controller for an uncertain nonlinear strict-feedback system. Subsequently, the
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modified strict-feedback dynamics of an under-actuated quadrotor UAV will be considered

in the derivation of an event-sampled NN-based output-feedback controller. The effective-

ness of the proposed controllers will be illustrated with simulation results and it will be

shown how the number of samples can be reduced without having to sacrifice controller

performance.

1.2 OBJECTIVE

The primary objective of this thesis is to design two event-sampled controllers.

First, an event-sampled output-feedback controller is derived for a general nonlinear un-

certain strict-feedback system such that the output follows a desired trajectory. Next, an

under-actuated quadrotor UAV system is considered. The derivation for an event-sampled

output-feedback controller is derived such that the UAV follows a desired trajectory while

maintaining stable flight.

1.3 ORGANIZATION

This thesis begins with this introductory section which is followed by two papers.

The first paper, “Event-Sampled Direct Adaptive NN Output- and State-Feedback Control

of Uncertain Strict-Feedback System,” will show the derivation for the event-sampled con-

troller for a general strict-feedback system. The primary contribution of the first paper is an

output-feedback controller that utilizes an observer and relaxes the need for full knowledge

of the state vector; the state-feedback case is presented as a corollary. The second paper,

“Event-Sampled Control of Quadrotor UAV,” presents the derivation for an event-sampled

output-feedback control for a quadrotor UAV. Here, too, the need for additional sensors is

avoided with the inclusion of an observer.

After the second paper, a final conclusion for the thesis will be given. The conclu-

sion will discuss the work that has been completed as well as possible opportunities for

future research.
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1.4 CONTRIBUTIONS

The primary contribution of this thesis is the development of an event-sampled

controller for both a general as well as a specific system, both of which are characterized

by uncertain nonlinearities. For the general case, the results from previous works were

limited by the assumptions that were invoked in the analyses. In particular, many of the

efforts assumed either full knowledge of the state vector, full knowledge of the system

dynamics, or both. With the incorporation of NNs, these assumptions can be relaxed.

Moreover, the use of NNs with event-sampling is a topic which has been explored, however,

the results are largely limited to affine systems; moreover, the use of mirror estimators in

the event-execution law that was presented requires greater computational effort. In the

derivations presented in this work, a strict-feedback system is considered, giving a greater

degree of flexibility for real-world applications. Additionally, it is shown how the Lyapunov

method can be used to derive an event-execution law that does not rely in mirror estimators

while ensuring the boundedness of the measurement errors that are introduced with the

intermittent sampling.

For the specific case, the dynamics of an under-actuated output-feedback quadro-

tor UAV in a modified strict-feedback form is considered. Here, too, it will be shown

how the Lyapunov method can be used to design an event-execution law that guarantees

bounded measurement errors and stable performance. Simulation results will be given in

order to demonstrate the effectiveness of the proposed event-sampled controller and it will

be illustrated how a reduction in computations can be achieved without having to sacrifice

controller performance.
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PAPER

I. EVENT-SAMPLED DIRECT ADAPTIVE NN OUTPUT- AND
STATE-FEEDBACK CONTROL OF UNCERTAIN STRICT-FEEDBACK SYSTEM

Abstract

In this paper, neural networks (NNs) are utilized in the backstepping approach to

design a control input by approximating unknown dynamics of the strict-feedback nonlin-

ear system with event-sampled inputs. The system state vector is assumed to be unknown

and an observer is used to estimate the state vector. By using the estimated state vector

and backstepping design approach, an event-sampled controller is introduced. As part of

the controller design, first, input-to-state-like stability (ISS) for a continuously sampled

controller that has been injected with bounded measurement errors is demonstrated and,

subsequently, an event-execution control law is derived such that the measurement errors

are guaranteed to remain bounded. Lyapunov theory is used to demonstrate that the track-

ing errors, the observer estimation errors, and the NN weight estimation errors for each NN

are locally uniformly ultimately bounded (UUB) in the presence bounded disturbances, NN

reconstruction errors, as well as errors introduced by event-sampling. Simulation results

are provided to illustrate the effectiveness of the proposed controllers.
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1 INTRODUCTION

Given their inherent approximation properties, neural networks (NNs) have become

popular in real-world applications that include unknown dynamics. In addition, due to the

fact that many dynamic systems can be expressed in the strict-feedback form, the incorpo-

ration of NNs in a backstepping design has become a natural approach in controller design.

In strict-feedback systems that have unknown nonlinearities, subsystems are considered

separately from one another and NNs are implemented in approximating the unknown part

of each subsystem’s virtual control law. A general control scheme for this approach is

presented by Ge and Wang in [1] and the work in [2] is able to use the concepts in a hyper-

sonic flight vehicle application. However, the efforts [1] and [2] require full knowledge of

the state vector, a provision that is not always guranteed.

In situations where the state vector is not available, an additional NN can be used

as an observer to estimate the unknown states. As an example, the work in [3] models

a quadrotor UAV system in strict-feedback form and circumvents the need for velocity

sensors with an observer. In general, designing an output-feedback controller with back-

stepping is an approach that has been implemented in a number of different applications

[4]-[7].

The previous works [1]-[7] on this class of systems assume a continuous sampling

paradigm wherein the control law is executed at a fixed frequency. An alternative to the

traditional sampling scheme, event-based sampling, is introduced by Tabuada in [8]: With

event-sampling, the control is updated only when an event occurs. The immediate ad-

vantage to this is that the number of computations is reduced; furthermore, if all design

parameters are appropriately selected, it can be shown that the reduction of computations

can be achieved without compromising the fidelity of the controller.

The work in [8] introduces basic concepts of event-sampling and applies them to

a general control system with known dynamics. Since then, a significant amount of work

has been done in the development of event-based controllers and they have been discussed
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in various contexts, such as input-state stability [9], sensor/actuator networks [10], state-

and output-feedback systems [11, 12], and trajectory tracking applications [13]. In these

works [9]-[13], the dynamics are assumed to be known and the use of NNs becomes unnec-

essary; for this reason, the extent to which their results can be implemented in real-world

applications is somewhat restrictive. Finally, the work in [14] extends the notions of event-

based sampling to incorporate unknown dynamics in an NN-based controller for an affine

nonlinear system. In any work presenting results in event-sampling, the derivation of an

event-execution law is a necessary provision; a particularly useful conclusion given in [14]

is the presentation of an execution law in the presence of NN approximations.

However, the degree to which the results [14] can be applied in practical applica-

tions is limited to affine systems. Moreover, the execution law presented relies on having

knowledge of the NN weight estimates at the event-triggering mechanism. This neces-

sitates “mirror estimators” that synchronously provide NN weight estimates at both the

controller and at the event-triggering mechanism.

To our knowledge, the inclusion of event-sampling in a NN-based backstepping

controller design for a strict-feedback nonlinear continuous-time system has not yet been

presented. Additionally, the incorporation of NNs in these systems allows the controller to

achieve a greater degree of flexibility in that the requirement for complete knowledge of the

system dynamics is relaxed. Moreover, the number of applications for which a controller

could be employed can be further increased with the inclusion of an observer, alleviating

the need for full knowledge of the states.

As part of the controller design, first, input-to-state stability (ISS) for a continuously

sampled controller that has been injected with bounded measurement errors is demon-

strated and, subsequently, an event-execution control law is derived such that the measure-

ment errors are guaranteed to remain bounded. Lyapunov theory is used to demonstrate

that the tracking errors, the observer estimation errors, and the NN weight estimation er-

rors for each NN are locally uniformly ultimately bounded (UUB) in the presence bounded
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disturbances, NN reconstruction errors, as well as errors introduced by event-sampling.

Simulation results are provided to illustrate the effectiveness of the proposed controllers.

The main contribution of this paper is the derivation of an event-sampled, strict-

feedback controller that operates in the presence of unknown nonlinearities without needing

full knowledge of the state vector. In tandem, an event-execution law that does not rely on

mirror estimators is presented, providing a more computationally efficient approach to what

was given in [14]. Finally, whereas the primary contribution in this work is the derivation

of an output-feedback controller, the state-feedback case is briefly presented as a corollary.

The remainder of this paper will be organized as follows: Section 2 will provide

background information and the problem statement; Section 3 will present details for the

output-feedback controller design and briefly give results for the state-feedback case; Sec-

tion 4 will provide simulation results as well a discussion comparing event-sampled results

with time-sampled results; finally, conclusions will be given in Section 5.
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2 BACKGROUND AND PROBLEM STATEMENT

In this section, an introduction on the notations used in this paper will be given,

a brief background on backstepping design with NNs will be provided, and the class of

strict-feedback system considered in this work will be defined.

2.1 NOTATIONS

The partial state vector is denoted by xi = [x1, . . . , xi]T , i ≤ n. It will become

necessary to make a distinction between estimated values and actual values; in this work,

estimated values will be denoted by a hat. Furthermore, the error between estimated values

and actual values will be denoted by a tilde, specifically ˜(·) = ˆ(·) − (·). In general, for

sake of brevity, the terms by which a function is defined will not be explicitly written; as

an example, f1 (x1) will simply be written as f1. Finally, in this work, ‖·‖ will be used as

the Euclidean vector norm; for matrices, ‖·‖ will be understood to be the Frobenius norm

[15].

2.2 BACKSTEPPING CONTROLLER DESIGN WITH NNs

In this work, each subsystem in the strict-feedback system is defined in terms of

unknown nonlinear functions and, as a result, the virtual control laws consist, in part, of

unknown constituents. The universal approximation property [15] of NNs makes their use

in this application very fitting: The property states that an NN approximation exists for any

smooth function such that the functional approximation error remains bounded. An NN

is introduced in each subsystem in order to approximate the unknown part of the virtual

control for that subsystem. Taking h (X ) to be an unknown function, the approximation is

given by

h (X ) = WTϕ
(
VT X

)
− ε, (1)

where, in this work, the activation function in the hidden layers, ϕ, is chosen to be the

logarithmic sigmoid function and the input layer weights, VT , is a constant random vector

functional link (RVFL), resulting in the generation of a basis [15]. The ideal values of the
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tunable weights are denoted by WT and these weights are bounded such that ‖W ‖ ≤ WM ;

moreover, the NN reconstruction error is also bounded such that, ‖ε‖ < εM . Finally, note

that all NN activation functions are bounded such that ‖ϕ‖ ≤
√

N , where N is the number

of hidden layer neurons in the NN.

What follows is a definition of the strict-feedback system that will be considered in

this paper as well as a statement of the control objectives.

2.3 PROBLEM STATEMENT

Consider the strict feedback system given by

ẋi = fi
(
xi

)
+ gi

(
xi

)
xi+1, 1 ≤ i ≤ n − 1

ẋn = fn
(
xn

)
+ gn

(
xn

)
u, n ≥ 2 (2)

y = x1.

In this work, fi
(
xi

)
and gi

(
xi

)
, i = 1, . . . , n, are unknown, smooth, nonlinear functions.

The control objective is to design an event-sampled adaptive NN controller for (2) such that

the following criteria are satisfied:

1. All signals in the closed-loop remain locally uniformly ultimately bounded (UUB)

2. The output, y, tracks the desired trajectory, yd , generated from the given smooth,

bounded reference

ẋdi = fdi (xd) , 1 ≤ i ≤ m

yd = xd1 m ≥ n, (3)

where xd = [xd1, . . . , xdm]T are the desired states, yd is the desired output, and

fdi (· ) , i = 1, 2, . . . ,m, are known, smooth, nonlinear functions

The following assumptions will be made in the analysis that will be presented in this paper:
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Assumption 1 [1]: The states of the reference model remain bounded, i.e., xd ∈

Sd,∀t ≥ 0.

Assumption 2 [1]: The signs of gi (· ) are known and there exist constants 0 < gmi ≤

gMi such that gmi ≤ |gi (·) | ≤ gMi,∀x̄n ∈ S ⊂ Rn. This implies that gi (· ) is either strictly

positive or strictly negative. Here, the former is assumed.

Assumption 3 [15]: The state vector, xn, is not available whereas the system (2) is

observable.

Assumption 4 [8]: There are no transmission or computation time delays.

In the following section, the proposed output feedback controller is derived. Next,

the state-feedback controller will be considered as a corollary. Since the procedure for the

two controllers are nearly identical, details for state-feedback will be largely omitted and

only major conclusions will be presented.
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3 OUTPUT-FEEDBACK CONTROLLER

Section 2.2 briefly described the implementation of NNs in an uncertain strict feed-

back system. In order to demonstrate stability, each subsystem will correspond to a sub-

Lyapunov function, Vi, in terms of tracking error, error in the NN weights, and additional

bounded terms. Furthermore, each successive sub-Lyapunov function will also be in terms

of the previous sub-Lyapunov function. A final Lyapunov function, Vn, will demonstrate

the stability of the overall system. For the state-feedback controller, this final Lyapunov ex-

pression would be sufficient in guaranteeing boundedness of all signals. However, for the

output-feedback controller, a Lyapunov function, Vo, will be first found for the observer and

then will be considered with Vn in order to prove stability for the closed-loop; it becomes

necessary to consider Vo and Vn together, because the separation principle [15] cannot be

applied due to the nonlinear nature of the system.

The NN observer design will be considered first and then the backstepping con-

troller design will be presented. In this work, the event-triggering mechanism is placed

at the observer and the state vector is estimated continously whereas the controller is up-

dated only when an event occurs. As a result, the event-sampling measurement errors are

explicitly present only in the controller design and not in the observer.

Remark 1. Although the observer NN makes use of continuously estimated values,

the NN weights are updated only at events. Since the NN updates are subject to event-

sampling, the NN reconstruction errors become functions of measurement errors and, in

this way, the observer is implicitly affected by event-sampling. In [14], it is shown that

the relationship between reconstruction errors and event-sampling errors is one wherein

a greater number of events (which results in smaller measurement errors) corresponds to

smaller NN approximation errors.
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Fig. 3.1 NN Output-Feedback Control Structure

3.1 NN OBSERVER DESIGN

In this section, an NN observer is designed to estimate the unknown state vector. In

this work, the observer is located at the sensor. Begin by defining the following terms:

c = [1, 0, . . . , 0] ∈ R1×n

L = [l1, . . . , ln]T ∈ Rn×1

A = Lc =



l1 · · · 0
...

. . .
...

ln · · · 0


where the matrix, A, is used only in analysis and the observer gain vector, L, is used in

practice. Next, define the system vector, z =
[

f1 + g1x2, . . . , fn + gnu
]T , allowing (2) to
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be rewritten as

ẋ = z

y = cx. (4)

Now, introduce an observer NN with ideal weights and denote

z = WT
o ϕo (Xo) − εo (5)

with Xo =
[
1, xT, x̃1

]
, where the observer estimation error is given by, x̃1 = x̂1 − x1. In

practice, only estimated weights are available; therefore, introduce estimated weights and

use the following observer

ẑ = ŴT
o ϕo

(
X̂o

)
− Ax̃ (6)

with X̂o =
[
1, x̂T, x̃1

]T
. Note that, in practice, (6) takes the form,

ẑ = ŴT
o ϕo

(
X̂o

)
− Lx̃1. (7)

Observing that ˙̃x = ẑ −z, the observer estimation error dynamics are given by

˙̃x = ŴT
o ϕo

(
X̂o

)
− Ax̃ −WT

o ϕo (Xo) + εo. (8)

For brevity, denote ϕ̂ , ϕ
(
X̂
)

and ϕ , ϕ (X ) and define ϕ̃ = ϕ̂−ϕ. Next, add and subtract

WT
o ϕ̂o to (8) and rearrange terms in order to find an expression strictly in terms of observer

estimation errors, NN weight estimation errors, and bounded terms. Denote the bounded

term by ξ , WT
o ϕ̃o + εo and note that ‖ξ‖ ≤ ξM , where ξM = 2WMo

√
No + εMo, revealing

˙̃x = −Ax̃ + W̃T
o ϕ̂o + ξ. (9)
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Next, the following theorem is stated in order to show the boundedness of the con-

tinuously sampled NN observer. The results of Theorem 1 will be used in demonstrating

the local ISS-like behavior of the closed-loop system.

Remark 2. In the following theorem, the control input, u, is assumed to be admiss-

able; the assumption is relaxed in subsequent theorems.

Theorem 1 (NN Observer Boundedness): Let the NN observer be defined by (6)

with estimation error dynamics given by (9). Furthermore, let the NN observer weights be

tuned by

˙̂Wo = Fo
[
−ϕ̂ocx̃T − αoŴo

]
(10)

where Fo = FT
o > 0 and αo > 0 are design parameters. Then, there exists a constant design

parameter A such that the observer estimation errors, x̃, and the NN observer estimation

errors, W̃o, are locally UUB, with the bounds being functions of the NN reconstruction

error and other bounded terms.

Proof: Consider the following positive-definite Lyapunov candidate:

Vo =
1
2

cx̃T x̃ +
1
2

tr
{
W̃T

o F−1
o W̃o

}
(11)

whose first derivative is given by V̇o = cx̃T ˙̃x + tr
{
W̃T

o F−1
o

˙̃Wo
}
. Substitution of the error

dynamics from (9) and using the NN update law given by (10) shows that

V̇o = −cx̃T Ax̃ + cx̃TW̃T
o ϕ̂o + cx̃T ξ + tr

{
−W̃T

o ϕ̂ocx̃T − αoW̃T
o Ŵo

}
. (12)

In order to proceed, recall the bounds on the ideal NN weights, the NN activation functions,

and the NN reconstruction error. Using properties of the matrix trace operation, note that

cx̃TW̃T
o ϕ̂o + tr

{
−W̃T

o ϕ̂ocx̃T − αoW̃T
o Ŵo

}
≤ tr

{
−αoW̃T

o Ŵo
}
. Using these results and noting
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that ‖c‖ = 1 reveals

V̇o ≤ − ‖A‖ ‖ x̃‖2 + ‖ x̃‖ ξM − αo



W̃o





2

+ αoWMo



W̃o




 . (13)

In order to further simplify (13), group the bounded terms together and denote ζo ,

1
2

[
αoW 2

Mo +
2ξ2

M

‖A‖

]
. Invoking Young’s inequality gives

V̇o ≤ −
3
4
‖A‖ ‖ x̃‖2 −

1
2
αo




W̃o





2
+ ζo. (14)

Finally, (14) is less than zero when the gain vector L is selected such that ‖A‖ > 0

and the following inequalities hold:

‖ x̃‖ >

√
4ζo

3 ‖A‖
or 


W̃o




 >
√

2ζo

αo
(15)

It can, therefore, be concluded [15] that V̇o is less than zero outside a compact set. This im-

plies that, with properly selected gains, the observer estimation and the NN approximation

errors are locally UUB.

Remark 3. By observation of (15) and the definition for ζo, it can be seen that the

bound on ‖ x̃‖ can be made arbitrarily small by choosing ‖A‖ to be large and αo to be small.

These conclusions also apply for the bounds on 


W̃o



.

With the derivation for the observer complete, the backstepping controller design is

now considered.

3.2 CONTROLLER DESIGN WITH ESTIMATED STATES

In the previous subsection, the derivation of an observer was presented. In this

subsection, the estimated state vector from the observer will be used in the backstepping

controller design. The standard approach of dividing the design procedure into separate

steps corresponding to different subsystems will be assumed here. Details will be provided
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for the first step; in order to reduce redundancies, detailed explanations will be omitted for

the intermediate ith steps as well as the final nth step.

In the analysis that follows, the derivations will make use of the fact x̂i = xi + x̃i, i =

1, . . . , n. The need for this subtle change arises in finding the tracking error dynamics:

Evaluating ˙̂xi would introduce the need to address the problem of evaluating the unknown

functions, fi and gi, at estimated states; the problem is circumvented by, instead, consider-

ing ẋi, from the system dynamics, and ˙̃xi, from the observer dynamics.

Step 1: Define the tracking error, r̂1 = x̂1 − xd1, whose derivative is

˙̂r1 = f1 + g1x2 − ẋd1 + ˙̃x1. (16)

In this first subsystem, x2 is taken to be a virtual control input; denote the ideal virtual con-

trol by ν∗1 , x∗2. Now, consider the Lyapunov candidate, Vr̂1 = 1
2 r̂2

1 , whose first derivative

is given by

V̇r̂1 = r̂1 ˙̂r1 = r̂1
[

f1 + g1ν1 − ẋd1 + ˙̃x1
]
. (17)

Choosing the ideal virtual control as ν∗1 = −k1r̂1 −
1
g1

[
f1 − ẋd1

]
, with k1 > 0 a constant

design parameter, provides

V̇r̂1 = −k1g1r̂2
1 + r̂1 ˙̃x1. (18)

Given the boundedness of the observer estimation error from Theorem 1, note that (18) is

a valid Lyapunov function, provided k1 is appropriately chosen.

It can be seen that the unknown part of the proposed virtual control is 1
g1

[
f1 − ẋd1

]
.

Denote

h1
(
X̂1

)
,

1
g1

[
f1 − ẋd1

]
, (19)
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where X̂1 = [1, x̂1, ẋd1, x̃1]T , and implement an NN to approximate h1, allowing the desired

virtual control to be expressed as

ν∗1 = −k1r̂1 −WT
1 ϕ̂1 + ε1 (20)

where it is understood that ϕ̂1 is evaluated at X̂1. Even though the function being ap-

proximated is in terms of actual states, X̂1 is taken to be input, because, in practice, only

estimated states are available. Recalling that the ideal weights, W1, are unknown, introduce

the NN weight estimates, Ŵ1, allowing (20) to be rewritten as

ν̂1 = −k1r̂1 − ŴT
1 ϕ̂1. (21)

It is at this point that the error introduced by event-sampling is incorporated in the

analysis. Consider the inter-event time period, tκ ≤ t < tκ+1, where events occur at time

instants tκ, tκ+1, . . .. In general, the event-sampling measurement error corresponding to the

ith subsystem is defined by

ei (t) = xie (tκ) − xi (t) , ∀t ∈ [tκ, tκ+1) . (22)

Remark 4. By definition (22), ei (tκ) = 0 at each event instant. This fact will be

used later in the analysis. Furthermore, in this work, the the event-execution law is designed

such that the measurement errors satisfy

e2
i ≤ σiµir̂2

i , i = 1, . . . , n (23)

where 0 < µi < 1 and 0 < σi < 1 are design parameters.

Remark 5. In practice, the state vector is continuously sampled; however, until an

event occurs, a zero order hold (ZOH) is placed at the controller and the state vector, the
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NN weights, and the desired control inputs are held. When an event does occur, the state

vector stored in the controller is updated with the most recent measured values and these

values are used to update the NN weights and the control input. The errors that result

from the intermittent update are what are defined as event-sampling measurement errors.

Note that, with event-sampling, the control input is piece-wise continuous; however, in the

analysis, a continuously sampled input will be considered with measurement errors written

explicitly.

In order to incorporate the effects of event-sampling into the analysis, replace the

time-sampled variable, xi, with the event-sampled variable, xie; by (22), xie = xi + ei.

Furthermore, by using the definition for the observer estimation error in tandem with the

definition for the measurement error it can be concluded that, in general, r̂ie = r̂i + ei.

Before incorporating the measurement error, note that x2 is taken to be the virtual

control input to the r̂1-subsystem and not the actual control; for this reason, introduce the

error variable r2 = x2 − ν̂1e and use x2 = r2 + ν̂1e in the analysis. As a point of clarity,

note that x2 is taken to be virtual control and not x̂2; this is because the dynamics of the

strict-feedback system are with regards to actual states and not estimated states. Morever,

for this same reason, it is only through the desired virtual control inputs which are injected

into the system by the controller that the measurement errors are introduced. With this in

consideration, observe that r2 is introduced in the analysis, however, since the controller

relies on estimated states, it is necessary to consider r̂2. This problem is easily addressed

by noting that, in general, ri = r̂i − x̃i.

Now, consider the desired event-sampled virtual control

ν̂1e = −k1 [r̂1 + e1] − ŴT
1 ϕ̂1e, (24)
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and use these results in the tracking error dynamics, giving

˙̂r1 = f1 + g1x2 − ẋd1 + ˙̃x1

= g1

[
r̂2 − x̃2 + ν̂1e +

f1 − ẋd1

g1

]
+ ˙̃x1

= g1
[
r̂2 − k1r̂1 − ŴT

1 ϕ̂1e + WT
1 ϕ1 − ε1

]
+ g1 [−k1e1] − g1 x̃2 + ˙̃x1.

(25)

Now, consider the Lyapunov candidate

V1 =
r̂2

1

2 ‖A‖2
+

tr
{
W̃T

1 F−1
1 W̃1

}

2 ‖A‖2
(26)

and the weight update law

˙̂W1 = F1
[
r̂1eϕ̂1e − α1 |r̂1e | Ŵ1

]
, (27)

where F1 = FT
1 > 0 and α1 > 0 are design parameters. Using (27), the first derivative of V1

is found to be

V̇1 =
1

‖A‖2
r̂1 ˙̂r1 +

1

‖A‖2
tr

{
W̃T

1 F−1
1

˙̂W1
}

=
1

‖A‖2
[
g1r̂1r̂2 − k1g1r̂2

1 − g1r̂1ŴT
1 ϕ̂1e + g1r̂1WT

1 ϕ1 − g1r̂1ε1

+ g1r̂1 [−k1e1] − g1r̂1 x̃2 + r̂1 ˙̃x1

]
+

1

‖A‖2
tr

{
r̂1eW̃T

1 ϕ̂1e − α1 |r̂1e | W̃T
1 Ŵ1

}
(28)

In order to further simplify the expression for V̇1, introduce the temporary variables

A1 = −k1g1r̂2
1 − g1r̂1ε1

B1 = −g1r̂1ŴT
1 ϕ̂1e + g1r̂1WT

1 ϕ1 + tr
{
r̂1eW̃T

1 ϕ̂1e − α1 |r̂1e | W̃T
1 Ŵ1

} (29)
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and consider them separately. Using completion of squares with respect to r̂1 reveals

A1 ≤ −
1
2

k1g1r̂2
1 −

1
2

k1g1


r̂2

1 − 2r̂1
ε1

k1
+
ε2

1

k2
1


+
g1ε

2
1

2k1

= −
1
2

k1g1r̂2
1 −

1
2

k1g1

[
r̂1 −

ε1

k1

]2

+
g1ε

2
1

2k1

≤ −
1
2

k1g1mr̂2
1 +

g1Mε
2
1M

2k1

The simplification process for B1 makes use of the bounding condition on the activation

functions with respect to the number of hidden layer neurons. With that, as well as proper-

ties of the matrix trace and norm operators and the conditions imposed by (23), the follow-

ing conclusion can be made:

B1 ≤
1
2

r̂2
1 − α1

[
2 − χ1

]
|r̂1 |




W̃1





2
+ 2g2

1MW 2
1M N1

+ |r̂1 |
[√

N1
[
g1M + χ1

]
+ χ1α1W1M

] 


W̃1





where, in general, χi =
√
σiµi + 1.The expressions for A1 and B1 can be used to rewrite

(28). Denoting the bounded term, ζ1 ,
g1Mε

2
1M

2‖A‖2k1
+

2g2
1MW2

1M N1

‖A‖2
, and rearranging terms gives

V̇1 ≤
g1r̂1r̂2

‖A‖2
−
|r̂1 |

‖A‖2

[
1
2

[
k1g1m − 1

]
|r̂1 | + α1

[
2 − χ1

] 


W̃1





2

−
[√

N1
[
g1M + χ1

]
+ χ1α1W1M

] 


W̃1





]

+ ζ1 +
1

‖A‖2
[
g1r̂1 [−k1e1] − g1r̂1 x̃2 + r̂1 ˙̃x1

]
(30)

Step 2: Begin by defining the tracking error r̂2 = x̂2 − ν̂1e, whose derivative is

given by ˙̂r2 = f2 + g2x3 − ˙̂ν1e + ˙̃x2. Here, x3 is taken to be the virtual control input to the
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r̂2-subsystem and the ideal feedback control is given by

ν∗2 = −r1 − k2r2 −
1
g2

[
f2 − ˙̂ν1e

]
(31)

where k2 > 0 is a design constant. Denote the unknown part with

h2
(
X̂2e

)
,

1
g2

[
f2 − ˙̂ν1e

]
. (32)

Note that the unknown part of ν∗2 is a function of ¯̂x2e and ˙̂ν1e; in turn, ˙̂ν1e is a function

of x̂1e, ẋd1, and Ŵ1. In order to minimize the number of inputs to the NN, introduce the

computable intermediate variable

ψ̂1e =
∂ν̂1e

∂xd
ẋd +

∂ν̂1e

∂Ŵ1

[
F1

[
r̂1eϕ̂1e − α1 |r̂1e | Ŵ1

] ]
(33)

and use it in the input, X̂2e =
[
1, ¯̂x2e, ∂ν̂1e/∂x1e, ψ̂1e, x̃1e

]T
, for the NN approximating h2,

allowing (31) to be rewritten as

ν∗2 = −r̂1 − k2r̂2 −WT
2 ϕ̂2 + ε2. (34)

With estimated weights and event-sampling, the desired virtual control becomes

ν̂2e = − [r̂1 + e1] − k2 [r̂2 + e2] − ŴT
2 ϕ̂2e. (35)

Using these results, tracking error dynamics are given by

˙̂r2 = g2
[
r̂3 − k2r̂2 − r̂1 − ŴT

2 ϕ̂2e + WT
2 ϕ2 − ε2

]
+ g2 [−k2e2 − e1] − g2 x̃3 + ˙̃x2. (36)
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Consider the Lyapunov candidate

V2 = V1 +
r̂2

2

2 ‖A‖2
+

tr
{
W̃T

2 F−1
2 W̃2

}

2 ‖A‖2
(37)

and the weight update law

˙̂W2 = F2
[
r̂2eϕ̂2e − α2 |r̂2e | Ŵ2

]
, (38)

where F2 = FT
2 > 0 and α2 > 0 are design parameters.

Remark 6. The general ith desired virtual control is given by

ν̂ie = − [r̂i−1 + ei−1] − ki [r̂i + ei] − ŴT
i ϕ̂ie, (39)

the tracking error dynamics become

˙̂ri = gi
[
r̂i+1 − kir̂i − r̂i−1 − ŴT

i ϕ̂ie + WT
i ϕi − εi

]
+ gi [−kiei − ei−1] − gi x̃i+1 + ˙̃xi, (40)

the Lyapunov candidate is provided by

Vi = Vi−1 +
r̂2

i

2 ‖A‖2
+

tr
{
W̃T

i F−1
i W̃i

}

2 ‖A‖2
, (41)

and the weight update law is given by

˙̂Wi = Fi
[
r̂ieϕ̂ie − αi |r̂ie | Ŵi

]
, (42)

where Fi = FT
i > 0 and αi > 0 are design parameters.
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Then, by introducing temporary variables and using procedures identical to what

was used in Step 1, the expression for V̇2 becomes

V̇2 ≤
1

‖A‖2
[
r̂1r̂2

[
g1 − g2

]
+ g2r̂2r̂3

]
−

1

‖A‖2

2∑
j=1

���r̂ j
���

[
1
2

[
k jg jm − 1

] ���r̂ j
���

+ α j
[
2 − χ j

] 


W̃ j





2
−

[√
N j

[
g j M + χ j

]
+ χ jα jW j M

] 


W̃ j





]
+

2∑
j=1

ζ j

+
1

‖A‖2

2∑
j=1

r̂ j ˙̃x j −
1

‖A‖2

2∑
j=1

g j r̂ j x̃ j +
1

‖A‖2
[
g1r̂1 [−k1e1] + g2r̂2 [−k2e2 − e1]

]
(43)

where ζ j =
g jMε

2
jM

2‖A‖2k j
+

2g2
jMW2

jM Nj

‖A‖2
is bounded.

Step n: Define the tracking error r̂n = x̂n − ν̂(n−1)e, whose derivative is given by

˙̂rn = fn + gnu − ˙̂ν(n−1)e + ˙̃xn. Here, u is the actual control input to the overall system and

the ideal feedback control is given by

u∗ = −rn−1 − knrn −
1
gn

[
fn − ˙̂ν(n−1)e

]
(44)

where kn > 0 is a design constant. Denote the unknown part with

hn
(
X̂ne

)
,

1
gn

[
fn − ˙̂ν(n−1)e

]
. (45)

In order to minimize the number of inputs to the NN, introduce the computable intermediate

variable

ψ̂(n−1)e =

n−1∑
j=1

∂ν̂(n−1)e

∂xd
ẋd+

n−1∑
j=1

∂ν̂(n−1)e

∂Ŵ j

[
Fj

[
r̂ jeϕ̂ je − α j

���r̂ je
��� Ŵ j

] ]
. (46)
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Use a NN with input X̂ne =
[
1, ¯̂xne, ∂ν̂(n−1)e/∂x1e, . . . , ∂ν̂(n−1)e/∂x (n−1)e, ψ̂(n−1)e, x̃1e

]T
to approx-

imate hn, allowing (44) to be rewritten as

u∗ = −r̂n−1 − knr̂n −WT
n ϕ̂n + εn. (47)

With estimated weights and event-sampling, the desired control input is given by

ue = − [r̂n−1 + en−1] − kn [r̂n + en] − ŴT
n ϕ̂ne (48)

and the tracking error dynamics become

˙̂rn = gn
[
−knr̂n − r̂n−1 − ŴT

n ϕ̂ne + WT
n ϕn − εn

]
+ gn [−knen − en−1] + ˙̃xn. (49)

Note that, since ue is the actual control input to the system, there is no need to introduce an

additional error term and, therefore, the x̃i term that exists in previous subystems is absent

here.

Now, consider the final Lyapunov candidate

Vn = Vn−1 +
r̂2

n

2 ‖A‖2
+

tr
{
W̃T

n F−1
n W̃n

}

2 ‖A‖2
(50)

and the weight update law

˙̂Wn = Fn
[
r̂neϕ̂ne − αn |r̂ne | Ŵn

]
, (51)
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where Fn = FT
n > 0 and αn > 0 are design parameters. Then, introducing temporary

variables and using a procedure identical to what was used in previous steps reveals

V̇n ≤
1

‖A‖2

n∑
j=2

r̂ j−1r̂ j
[
g j−1 − g j

]
−

1

‖A‖2

n∑
j=1

���r̂ j
���

[
1
2

[
k jg jm − 1

] ���r̂ j
���+α j

[
2 − χ j

] 


W̃ j





2

−

[√
N j

[
g j M + χ j

]
+ χ jα jW j M

] 


W̃ j





]
+

n∑
j=1

ζ j +
1

‖A‖2

n∑
j=1

r̂ j ˙̃x j

−
1

‖A‖2

n−1∑
j=1

g j r̂ j x̃ j+1 +
1

‖A‖2


g1r̂1 [−k1e1] +

n∑
j=2

g j r̂ j
[
−k je j − e j−1

]
(52)

Now, in order to simplify (52), introduce the following temporary variables:

T1 =
1

‖A‖2

n∑
j=2

r̂ j−1r̂ j
[
g j−1 − g j

]

T2 =
1

‖A‖2

n∑
j=2

g j r̂ j
[
−k je j − e j−1

]
+ g1r̂1 [−k1e1]

T3 =
1

‖A‖2

n∑
j=1

r̂ j ˙̃x j

T4 = −
1

‖A‖2

n−1∑
j=1

g j r̂ j x̃ j+1

First, consider T1 and T2. In order to simplify these terms, begin by defining gM =

max {g1M, . . . , gnM } and gm = min {g1m, . . . , gnm}. Expanding and rearranging terms and

invoking Young’s inequality reveals T1 ≤
1

2‖A‖2
∑n

j=1

[
1 + g2

M

]
r̂2

j and T2 ≤
1
‖A‖2

∑n
j=1

[
g2

M

]
r̂2

j +

1
2‖A‖2

∑n
j=1

[
k2

j + 1
]

e2
j . Using these results in (52) reveals

V̇n ≤ −
1

‖A‖2

n∑
j=1

���r̂ j
���

[
1
2

[
k jgm − 3g2

M − 2
] ���r̂ j

��� + α j
[
2 − χ j

] 


W̃ j





2
−

[√
N j

[
gM + χ j

]

+χ jα jW j M
] 


W̃ j






]
+

n∑
j=1

ζ j+
1

2 ‖A‖2

n∑
j=1

[
k2

j + 1
]

e2
j +

1

‖A‖2

n∑
j=1

r̂ j ˙̃x j−
1

‖A‖2

n−1∑
j=1

g j r̂ j x̃ j+1

(53)
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Now, considering T3, recall the observer estimation error dynamics from (9). Using

Young’s inequality with these dynamics gives

T3 ≤
1

2 ‖A‖2

n∑
j=1

[
No

‖A‖2
+ 2

]
r̂2

j +
1
2
‖ x̃‖2 +

1
2




W̃o





2
+

1
2
ξ2

M

Finally, for T4, use a similar procedure to discover

T4 ≤
g2

M

2 ‖A‖4
‖r̂ ‖2 +

1
2
‖ x̃‖2 .

The expressions for T3 and T4 are only useful in the presence of the closed-loop. Therefore,

proceed by focusing on the closed-loop dynamics.

3.3 CLOSED-LOOP OUTPUT FEEDBACK DYNAMICS

Consider the closed-loop Lyapunov candidate, V = Vo +Vn and define the following

bounded terms:

ζ = ζo +

n∑
j=1

ζ j +
1

2 ‖A‖2
ξ2

M

η j =

[
gM + χ j

] √
N j + χ jα jW j M

α j
[
2 − χ j

]

δ j = k jgm − 3g2
M −

g2
M

‖A‖2
−

No

‖A‖2
− 4

β j = k2
j + 1

Furthermore, recall the bounding term on the event-sampling errors, ���e j
��� ≤ Be j . Finally,

with completion of squares with respect to 


W̃ j



, the final Lyapunov candidate for the
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closed-loop system is given by

V̇ ≤ −
1
4

[3 ‖A‖ − 4] ‖ x̃‖2 −
1
2

[αo − 1] 


W̃o





2
+ ζ +

1

2 ‖A‖2

n∑
j=1

β j B2
e j

−

n∑
j=1

���r̂ j
���

[
1
2
δ j

���r̂ j
��� + α j

[
2 − χ j

] [


W̃ j



 −

η j

2

]2
−
η2

jα j
[
2 − χ j

]

4


. (54)

Now the following theorem is presented in order to show that the continuously

sampled closed loop dynamics are ISS-like in the presence of bounded measurement errors.

Theorem 2 (Output Feedback Input-to-State Stability): Let the NN observer be

defined by (6) with estimation error dynamics given by (9). Consider the NN observer

weight tuning given by (10). Given Assumptions 1-4, consider the tracking error dynamics

given by (25), (36), (40), and (49). Let the desired virtual control inputs and the actual

control input be given by (24), (35), and (39) and (48), respectively. Select the NN weight

tuning given by (27), (38), (42), and (51). Finally, let the measurement error in the ith

subsystem be bounded such that |ei | ≤ Bei, i = 1, 2, . . . , n. Then, there exists design

parameters, A and ki such that the observer estimation error, x̃, the tracking errors, r̂i, and

the NN weight estimation errors, W̃o and W̃i, are locally UUB, with bounds as functions of

measurement errors and NN reconstruction errors.

Proof: Consider the following positive-definite Lyapunov candidate describing the

closed loop:

V = Vo + Vn (55)

where Vo was defined in (11) and Vn was defined in (50). The first derivative of V is given

by V̇ = V̇o +V̇n. In Theorem 1, V̇o was found to be bounded above by (14); in further deriva-

tions, V̇n was found to be bounded above by (53). Making use of the observer estimation

error dynamics given by (9), the results from (14) and (53) are able to be connected. Based
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on the results given by (54), select controller gains satisfying the following conditions:

‖A‖ >
4
3

and ki > Γi (56)

where Γi = 1
gm

[
3g2

M +
g2
M

‖A‖2
+

No

‖A‖2
+ 4

]
for all i = 1, . . . , n. It can be concluded that V̇ is

less than zero when the controller gains are selected according to (56) and the following

inequalities hold:

‖ x̃‖ >

√
4ζ + 2BE

3 ‖A‖ − 4
or 


W̃o




 >
√

2ζ + BE

[αo − 1]

or

���r̂ j
��� >

η2
jα j

[
2 − χ j

]

2δ j
or 


W̃ j




 >η j (57)

where BE = 1
‖A‖2

n∑
j=1

β j B2
e j . It can, therefore, be concluded [15] that V̇ is less than zero

outside a compact set. This implies that the observer estimation error, the tracking errors,

and the NN estimation errors are locally UUB.

Remark 7. The conclusions made in Remark 3 with regards to the bounds on ‖ x̃‖

and 


W̃o



 are valid here. Similarly, by choosing α j such that η j is minimized and choosing

k j such that δ j is maximized, the bounds on ���r̂ j
��� and 


W̃ j




 can be made arbitrarily small.

Remark 8. The result in Theorem 2 shows that the system exhibits local ISS-like be-

havior with respect to bounded measurement errors and bounded NN reconstruction errors.

This can be seen by introducing an augmented vector, z =
[
r̂1, . . . , r̂n,




W̃1



 , . . . ,




W̃n





]T
,

and observing that (54) can be written in the form V̇ (z) ≤ −Λ (‖z‖) + γ (‖E‖), where

the positive part, γ, is viewed as an input to the closed-loop system and is a function of

bounded measurement and NN reconstruction errors. It can, therefore, be concluded that
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the continuously sampled, closed-loop system generates a local ISS-like Lyapunov func-

tion [8]. However, in order to implement the event-sampled controller, the boundedness of

the measurement errors must also be demonstrated.

Next, the following theorem is presented in order to demonstrate the boundedness

of the measurement error as well as to show the derivation of an event-execution law.

Theorem 3 (Overall Stability and Boundedness of Measurement Error): Let the

NN observer be defined by (6) with estimation error dynamics given by (9). Select the NN

observer weight tuning given by (10). Given Assumptions 1-4, consider the tracking error

dynamics given by (25), (36), (40), and (49). Let the desired virtual control inputs and the

actual control input be given by (24), (35), and (39) and (48), respectively. Moreover, select

the NN weight tuning at the event-sampling instants to be (27), (38), (42), and (51). Finally,

let the event-sampling error satisfy the condition given by (23). Then, there exists design

parameters, A and ki, such that the observer estimation error, x̃, the tracking errors, r̂i,

and the NN weight estimation errors, W̃o and W̃i, are locally UUB, both at event-sampling

instants as well as during inter-event periods. Furthermore, the bounds on these errors can

be expressed as functions of bounded terms and NN reconstruction errors. Finally, the

errors introduced by event-sampling remain bounded during inter-event periods.

Proof: Two cases are considered. The first case will analyze the system when

measurement errors are zero and the second case will analyze the system during the inter-

event periods.

Case 1. Recall that, from definition (22), at the event-sampling instants, the event-

sampling error is zero, ei (tκ) = 0. Furthermore, it is at the event-sampling instants that the

NNs are updated with (10), (27), (38), (42), and (51); however, in this case, the tracking

error terms and the activation function terms in the weight update laws are not under the

influence of measurement errors.

Begin by observing that the expression for V̇o remains identical to (14) and the

definition for the bounded term, ζo, also remains unchanged. Continue by rewriting the
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tracking error dynamics as

˙̂r1 = g1
[
r̂2 − k1r̂1 − W̃T

1 ϕ̂1 + WT
1 ϕ̃1 − ε1

]
− g1 x̃2 + ˙̃x1

˙̂ri = gi
[
r̂i+1 − kir̂i − r̂i−1 − W̃T

i ϕ̂i + WT
i ϕ̃i − εi

]
− gi x̃i+1 + ˙̃xi

˙̂rn = gn
[
−knr̂n − r̂n−1 − W̃T

n ϕ̂n + WT
n ϕ̃n − εn

]
+ ˙̃xn

(58)

with i = 2, . . . , n − 1. Using these error dynamics with the Lyapunov candidates (26), (37),

(41), and (50) and implementing a simplification procedure similar to what was presented

in Section 3.2 gives

V̇n ≤
1

‖A‖2

n∑
j=2

r̂ j−1r̂ j
[
g j−1 − g j

]
−

1

‖A‖2

n∑
j=1

[
k jg jm

���r̂ j
��� + α j




W̃ j





2

−

[√
N j

[
g j M + 1

]
+ α jW j M

] 


W̃ j



 − ζ j1

]
���r̂ j

��� +
1

‖A‖2

n∑
j=1

r̂ j ˙̃x j −
1

‖A‖2

n−1∑
j=1

g j r̂ j x̃ j+1

(59)

where ζ j1 = g j Mε j M + 2g j MW j M
√

N j is bounded. Note that simplification procedure here

was different in that the constant bounded terms were not separated from the tracking error

- this was done in order to be able to include the ζ j1 terms in the same summation as the

other terms.

In order to further simplify, the first term and the last two terms of (59) are consid-

ered separately. Simplifying the first terms allows the expression for V̇n to be simplified, but

the results for the simplification of the last two terms only make sense in the presence of the

closed loop. Therefore, consider the Lyapunov candidate (55). First, define the following
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bounded terms:

ζB1 =

n∑
j=1

ζ j1 + ξM

η j1 =

√
N j

α j

[
gM + 1

]
+ W j M

δ j1 = 2k jgm − g
2
M −

g2
M

‖A‖2
−

No

‖A‖2
− 2

Simplifying and rearranging terms gives

V̇ ≤ −
1
4

[3 ‖A‖ − 4] ‖ x̃‖2 −
1
2

[αo − 1] 


W̃o





2

−
1

‖A‖2

n∑
j=1

[
1
2
δ j1

���r̂ j
��� + α j

[


W̃ j



 −

η j1

2

]2
−


ζB1 +

η2
j1α j

4




+ ζo. (60)

Select controller gains satisfying the following conditions:

‖A‖ >
4
3

and ki > Γi1 (61)

where Γi1 = 1
2gm

[
g2

M +
g2
M

‖A‖2
+

No

‖A‖2
+ 2

]
for all i = 1, . . . , n. Then, (60) is less than zero

when the following inequalities hold:

‖ x̃‖ >

√
4ζo

3 ‖A‖ − 4
or 


W̃o




 >
√

2ζo

[αo − 1]

or

���r̂ j
��� >

4ζB1 + η2
j1α j

2δ j1
or 


W̃ j




 >
η j1

2
+

√√
4ζB1 + α jη

2
j1

4α j
. (62)

The bounds given by (62) are different than those given by (57) from Theorem 2 in

that they do not account for the effects of intermittent sampling; as a result, the χ j term,

which is an artifact from the event-triggering mechanism, is altogether absent here.
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Case 2. Now, consider the inter-event period, t ∈ [tκ, tκ+1), during which time there

is a nonzero event-sampling error, but with constant NN weights; in other words, in this

case, ei (t) , 0 and ˙̂W = 0 for all NN weights.

As before, begin by considering the observer estimation error dynamics and no-

tice that they remain identical to (9). The primary difference in this analysis arises in the

Lyapunov candidate, (11), noting that its first derivative simplifies to

V̇o = x̃T ˙̃x +
���

���
��:0

tr
{
W̃T

o F−1
o

˙̃Wo
}

= x̃T ˙̃x. (63)

Use (9) in (63) and implement a similar simplification procedure as before to arrive at

V̇o ≤ −
1
4

[3 ‖A‖ − 2No] ‖ x̃‖2 +
1
2




W̃o





2
+ ζo2 (64)

where ζo2 =
ξ2
M

‖A‖ .

Similar to the observer estimation error dynamics, the tracking error dynamics re-

main unchanged from (25), (36), (40), and (49). However, it is discovered that the deriva-

tives of the Lyapunov candidates are simplified to include only the first terms, r̂i ˙̂ri for all

i = 1, . . . , n. With these facts and using a similar simplification procedure as before reveals

V̇n ≤ −
1

2 ‖A‖2

n∑
j=1

[
k jg jm − 4g2

j M − 1
]

r̂2
j +

1

2 ‖A‖2

n∑
j=1

[
k2

j + 1
]

e2
j

+
1

2 ‖A‖2

n∑
j=1

N j
[
W j M +




Ŵ j





]2
+

n∑
j=1

ζ j2 +
1

‖A‖2

n∑
j=1

r̂ j ˙̃x j −
1

‖A‖2

n−1∑
j=1

g j r̂ j x̃ j+1 (65)

where ζ j2 =
gMε

2
jM

2‖A‖2k j
is bounded. Furthermore, note that, because the NN weights are not

being updated during the inter-event period, the term 1
2
∑n

j=1 N j
[
W j M +




Ŵ j





]2
remains
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bounded, subject to the NN weight estimates from the previous event-sampling instant,

Ŵ j = Ŵ j (tκ).

As before, the final terms in (65) can be simplified and incorporated in the closed-

loop dynamics, revealing

V̇ ≤ −
1
4

[3 ‖A‖ − 2No − 4] ‖ x̃‖2 −
1

2 ‖A‖2

n∑
j=1


k jgm − 4g2

M −
g2

M

‖A‖2
−

No

‖A‖2
− 3


r̂2

j

+
1

2 ‖A‖2

n∑
j=1

[
k2

j + 1
]

e2
j + ζB2 (66)

where ζB2 =



W̃o





2

+ 1
2
∑n

j=1 N j
[
W j M +




Ŵ j





]2
+

∑n
j=1 ζ j2 + ζo2 is bounded (recall that

the observer NN weight estimation errors also remain bounded as a result of the weights

remaining constant during the inter-event period).

It is at this point that an event execution law is selected. Recall the form of the

execution law given by (23), where µ j is to be selected such that the number of terms in

(66) is reduced. Therefore, consider

µ j =
1

k2
j + 1

, (67)

a constant, computable value. After using (67) in (23) and substituting into (66), combine

like terms and arrive at the final expression for V̇ :

V̇ ≤ −
1
4

[3 ‖A‖ − 2No − 4] ‖ x̃‖2 −
1

2 ‖A‖2

n∑
j=1

δ j2r̂2
j + ζB2 (68)

where δ j2 = k jgm − 4g2
M −

g2
M

‖A‖2
−

No

‖A‖2
− σ j − 3. Observe that the first two terms in (68)

are less than zero when controller gains are selected such that

‖A‖ >
2No + 4

3
and ki > Γi2 (69)
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where Γi2 = 1
gm

[
4g2

M +
g2
M

‖A‖2
+

No

‖A‖2
+ σi + 3

]
for all i = 1, . . . , n. Therefore, it can be

concluded that V̇ is less than zero given that gains are selected according to (69) and the

following inequalities hold:

‖ x̃‖ >

√
4ζB2

3 ‖A‖ − 2No − 4
or ���r̂ j

��� > ‖A‖
√

2ζB2

δ j2
. (70)

In this case, the selection of an event-execution law resulted in the elimination of

an explicit presence of measurement errors while adding an additional term, σ j , in the δ j2

term of (70). In this way, (70) is different from the bounds obtained in Theorem 2 in that

the measurement errors are not explicitly present.

In Case 1, the stability of the system was demonstrated at moments when the mea-

surement errors are zero and when the NN’s are updated and it was shown that all signals

remain bounded. Then, in Case 2, it was shown how all signals in the system remain

bounded during periods of time when there are nonzero measurement errors and when the

NN weight estimates are held. In connecting these two cases, one may consider the dy-

namics that exist at the moments of transition. In other words, the results from Case 1 only

show that the dynamics that exist at a single event-sampling instant are bounded; however,

by considering “jump dynamics” that may exist in the transitions in the dynamics described

by Cases 1 and 2, it may also be shown that these bounded effects do not accumulate over

time and, ultimately, result in instability.

This can be accomplished by extending the results for Case 2 and by considering,

not only the estimation error and tracking error dynamics, but also the dynamics of the NN

weight estimation errors at event-sampling instants. Since the observer estimation errors

and tracking errors have already been shown to be stable for Case 2, it is sufficient to show
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that a bound exists for the expression

∆VW =
1
2

tr
{
W̃T

o (tκ+1) W̃o (tκ+1)
}
−

1
2

tr
{
W̃T

o (tκ) W̃o (tκ)
}

+

n∑
j=1

[
1
2

tr
{
W̃T

j (tκ+1) W̃ j (tκ+1)
}
−

1
2

tr
{
W̃T

j (tκ) W̃ j (tκ)
}]

(71)

where the discretized observer and controller NN weight updates are given by

Ŵo (tκ+1) = Ŵo (tκ) +
[
Fo

[
−ϕ̂o (tκ) cx̃T (tκ) − αoŴo (tκ)

] ]
(72)

and

Ŵi (tκ+1) = Ŵi (tκ) +
[
Fi

[
r̂ie (tκ) ϕ̂ie (tκ) − αi |r̂ie (tκ) | Ŵi (tκ)

] ]
, (73)

respectively. Using (72) and (73), it is not difficult to show that (71) is bounded and,

therefore, the jump dynamics that exist in the transitions remain bounded for all time [15].

As an additional remark, note that, in Case 2, the results were given in terms of the ideal

and estimated NN weights; however, with the results presented here, it is easy to show that

the bounds on the NN weight estimation errors are decreasing. Hence, the bounds that exist

for the observer estimation errors, the tracking errors, and the NN weight estimation errors

are decreasing during the inter-event periods as well as in the jump dynamics.

From Case 1 and Case 2, it can be concluded that the tracking errors and the NN

weight estimation errors remain bounded for all time. Define the bounding terms

r jB = max



4ζ j1 + α jη
2
j1

2δ j1
,

√
2ζB2

δ j2




and W jB =
1
2



√√
4ζ j1 + α jη

2
j1

α j
+ η j1


. (74)

Next, by selecting controller gains satisfying (69), it can be concluded that V̇ is less

than zero when following inequalities hold

���r j
��� > r jB or 


W̃ j




 > W jB . (75)
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Finally, with bounded tracking errors and an event-execution law defined by (23) and (67),

it can be concluded that the measurement errors are bounded for all time.

Remark 9. By Theorems 2 and 3, the tracking errors in terms of estimated states,

r̂i, i = 1, . . . , n, are shown to be bounded. From Theorem 1, the observer estimation errors,

‖ x̃‖, are also bounded. Together, these results imply that the actual tracking errors, ri, are

also bounded.

Corollary 1. The result for the output-feedback controller (Theorems 2 and 3) can

be easily realized for a state-feedback controller. As a matter of fact, the derivations for the

state-feedback case become simpler due to the fact that an observer becomes unnecessary

and the dynamics that result from one’s incorporation vanish from the analysis. A detailed

presentation for the derivation of the state-feedback controller would be highly redundant

and, therefore, only major conclusions will be provided.

For clarity, the desired event-sampled control inputs that result when all states are

measurable are provided; note that they are identical in form to (24), (39), and (48):

ν̂1e = −k1 [r1 + e1] − ŴT
1 ϕ1e

ν̂ie = − [ri−1 + ei−1] − ki [ri + ei] − ŴT
i ϕie

ue = − [rn−1 + en−1] − kn [rn + en] − ŴT
n ϕne. (76)

The inputs to the NNs are identical to those specified in the output-feedback controller

with the differences being the absence of an observer estimation error term and the use of

actual states instead of estimated states. Using these control inputs (76), the tracking error

dynamics with measured states become

ṙ1 = g1
[
r2 − k1r1 − ŴT

1 ϕ1e + WT
1 ϕ1 − ε1

]
+ g1 [−k1e1]

ṙi = gi
[
ri+1 − kiri − ri−1 − ŴT

i ϕie + WT
i ϕi − εi

]
+ gi [−kiei − ei−1]

ṙn = gn
[
−knrn − rn−1 − ŴT

n ϕne + WT
n ϕn − εn

]
+ gn [−knen − en−1] . (77)
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Again, these results are similar to the error dynamics that were found in the presence of

an observer and estimated states. The primary difference in (77) is the absence of ˙̃x terms,

which are generated from the observer, and the absence of x̃ terms which are generated by

the distinction between the system dynamics and the estimated states. Similar to before,

these tracking error dynamics can be considered in the context of Lyapunov candidates

that have identical forms as (26), (41), and (50); however, with the absence of an observer,

it is not necessary to include the scaling term, 1
‖A‖2

, that was incorporated in the output-

feedback derivation in order to avoid controller gain bounds that are directly proportional

to ‖A‖. Choosing the weight update laws

˙̂Wi = Fi
[
rieϕie − αi |rie | Ŵi

]
i = 1, . . . , n (78)

where Fi = FT
i > 0 and αi > 0 are design parameters, and using a procedure similar to

what was presented in the output feedback controller reveals

V̇n ≤ −

n∑
j=1

���r j
���



1
2
δ j3

���r j
��� + α j

[
2 − χ j

] [


W̃ j



 −

η j3

2

]2
−
η2

j3α j
[
2 − χ j

]

4



+
1
2

n∑
j=1

β j B2
e j + ζFS1 (79)

where Bei is the bound on the measurement error in the ith subsystem and

ζFS1 =

n∑
j=1

ζ j3, η j3 =

[
gM + χ j

] √
N j + χ jα jW j M

α j
[
2 − χ j

]

β j = k2
j + 1, δ j3 = k jgm − 3g2

M − 2.

with ζ j3 =
g jMε

2
jM

2k j
+ 2g2

j MW 2
j M N j .

With (79) and an approach similar to what was presented in Theorem 2, it is easy

to demonstrate that the system is ISS-like with respect to the measurement error, provided
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that controller gains are selected satisfying the following condition:

ki > Γi3 (80)

where Γi3 = 1
gm

[
3g2

M + 2
]

for all i = 1, . . . , n. Bounds on the tracking errors and the

NN weight estimation errors can be found in terms of bounded terms and measurement

errors introduced by event-sampling. However, in order to implement the event-sampled

controller, it must also be shown that the event-sampling errors are also bounded.

Using the line of reasoning that was presented in Theorem 3, it is not difficult to

prove that the measurement errors in the state-feedback controller remain bounded at events

as well as during inter-event periods. Letting the event-sampling error satisfy the condition

e2
i ≤ σiµir2

i , i = 1, . . . , n (81)

and choosing

µ j =
1

k2
j + 1

, (82)

reveals

V̇n ≤ −
1
2

n∑
j=1

δ j4r2
j + ζFS2 (83)

where δ j4 = k jgm − 4g2
M − σ j − 1 and ζFS2 = 1

2
∑n

j=1 N j
[
W j M +




Ŵ j





]2
+

∑n
j=1

gMε
2
jM

2k j
is

bounded. The bound on the tracking error can, hence, be expressed as functions of bounded

terms.

Remark 10. From Theorem 3, Case 2, an event-execution law was derived in terms

of values that are known. An alternate derivation makes use of a Lipschitz condition on the

NN activation functions, generating an execution law in terms of the NN weight estimates

[14]. An immediate drawback with such execution law is that it requires the computation of

NN weight estimates during inter-event periods. Though more computationally expensive,



40

this approach is not without benefit: It can be shown that the bounds on the tracking errors

resulting from this derivation are smaller than the bounds resulting from the derivation

presented in Theorem 3. The engineering decision thus becomes a compromise between

computational efficiency and tracking performance.

Remark 11. In Theorem 2, the system was shown to be ISS-like with respect to

bounded measurement errors and, in Theorem 3, the measurement errors were shown to

be bounded in the presence of an appropriately selected event-execution law. Given that

the dynamics of the system are Lipschitz, all necessary conditions are satisfied in order

to demonstrate the existence of inter-event time periods that are bounded away from zero

[8][13].

Remark 12. In the derivations presented, a measurement error and an event-execution

law is considered at each subsystem. Moreover, the event-sampling errors are upper-

bounded by triggering mechanisms that are in terms of their respective tracking errors.

In other words, the magnitude of the error between the event-sampled state vector and the

continuously-sampled state vector is contained by a threshold that is determined by the

errors between the continuously-sampled state vector and their desired values:

[xie − xi]2 ≤ σiµi [xi − xdi]2

In practice, during an inter-event period, only the desired value in the first subsystem is

dynamic and the desired values in each subsequent subsystem - the desired virtual controls

that are approximated with NNs - remain static; in other words, it is not necessary to contin-

uously compute the desired virtual control inputs and the only information that is necessary

to implement the event-triggering mechanisms is knowledge of the continuously sampled

state vector, the state vector from the previous event, and the continuously sampled desired

value for the first subsystem.
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Remark 13. In the expressions for the bounds on the tracking errors and the NN

weight estimation errors, note the frequent appearance of terms stemming from the un-

known functions, gi (· ); in other words, many of the bounds are in terms of gM and/or

gm. The presence of these terms can be largely avoided by invoking an assumption on the

boundedness of |ġi (· ) |, as was done in [1]. With an assumption on |ġi (· ) | being bounded,

and using Barbalat’s lemma, it would not be difficult to show that the tracking errors con-

verge to zero in the ideal case when all states are available and when errors from NN

approximations are zero and all sigma-modification terms, αi, i = 1, . . . n, are zero.

Remark 14. Once the signals reach their bounds, additional events may become

redundant - in other words, after a certain point, the occurrence of an event may not reduce

any of the errors and it becomes superfluous to spend any computational energy. In order

to avoid this, a deadzone operator may be implemented.

With the derivations complete, simulation results may now be presented.



42

4 SIMULATION RESULTS

Given that the primary contribution of this work is the introduction of event-sampling

in the backstepping design for a strict-feedback system, the goal of the simulations will be

to compare the results of the proposed controllers when event-sampling is used to when

traditional time-sampling is used. Results for the output-feedback controller will be shown

first and then for the state-feedback controller.

Event-sampling in a strict-feedback system presents an interesting design decision

in that there are a number of ways in which the event-triggering mechanism can be imple-

mented in the system. As an example, separate triggering mechanisms can be placed in

each subsystem and, when an event occurs in one subsystem, the state vector is updated

with the state-variable corresponding to that subsystem; additionally, the controller in that

subsystem is also updated. Alternatively, the measurement errors and the dynamic thresh-

olds in each subsystem can be combined and a single event-triggering mechanism can be

used for the whole system. The results of Theorem 2 and Theorem 3 remain valid regard-

less of which approach is implemented. In the simulation results that follow, the latter

approach was used and the sum of the square of the measurement errors in each subsystem

was compared to the sum of the dynamic thresholds generated for each subsystem.

Prior to giving results, details common to both simulations will be specified. The

proposed controllers will be applied to the following strict-feedback system:

ẋ1 = x2
1 − x3

1 + x2

ẋ2 = x1 + x2 + u (84)

y = x1.
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The desired trajectory, yd , is generated from the following van der Pol oscillator system:

ẋ1d = xd2

ẋ2d = −xd1 + 0.4
[
1 − x2

d1

]
xd2 (85)

yd = xd1.

In both simulations, the controller NNs each contain 25 nodes and, for the results shown

in the figures, event-execution parameters of σ1 = σ2 = 0.0008 were selected. Initial

conditions of [x1 (0) , x2 (0)]T = [1.1, 0.9]T and [xd1 (0) , xd2 (0)]T = [1.6, 0.8]T were used.

4.1 OUTPUT FEEDBACK SIMULATION RESULTS

An observer NN with 10 nodes was implemented. Control gains of k1 = k2 = 6.5

and l1 = l2 = 60 and NN parameters of F1 = F2 = 0.01, α1 = 140, α2 = 40, Fo = 0.2, and

αo = 0.1 were selected.

The output results are shown in Fig. 4.1 and the observer estimation errors are

shown in Fig. 4.2. It can be seen that the event-sampled controller performs nearly iden-

tically to that of the time-sampled controller, in both outputs as well as observer conver-

gence. When considering the control input (Fig. 4.3), it is found that the control effort

is nearly identical. This demonstrates that, with respect to tracking performance and con-

trol effort, it is unnecessary to execute updates and control laws at every available instant,

allowing for fewer computations. When the NN weights are considered (Fig. 4.4) it can

be seen that event-sampled controller results in smaller magnitudes, a result from the fact

that NN weights are not updated as frequently and do not have the opportunity to grow

before repeating their growth/decay cycles. Fig. 4.5 compares the dynamic event-sampling

thresholds with the evolving event-sampling errors. Finally, the primary benefit of event-

sampling can be seen in Fig. 5.8: It is discovered that, out of an available 2500 samples,

the event-sampled controller is able to achieve exceptional tracking performance making
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use of fewer than 1200 samples. Moreover, observe the linear nature of Fig. 5.8, indicating

that the occurence of events is fairly evenly distributed.

4.2 STATE FEEDBACK SIMULATION RESULTS

Control gains of k1 = k2 = 6.5 and NN parameters of F1 = F2 = 0.01, α1 = 140,

and α2 = 40 were selected.

The output results are shown in Fig. 4.7. It can be seen that the event-sampled

controller performs nearly identically to that of the time-sampled controller. This is also

true when the control input to the system is considered (Fig. 4.8). This demonstrates that,

with respect to tracking performance and control effort, it is unnecessary to execute updates

and control laws at every available instant, allowing for fewer computations. When the NN

weights are considered (Fig. 4.9) it can be seen that event-sampled controller results in

smaller magnitudes, a result from the fact that NN weights are not updated as frequently and

do not have the opportunity to grow before repeating their growth/decay cycles. Fig. 4.10

compares the dynamic event-sampling thresholds with the evolving event-sampling errors.

Finally, the primary benefit of event-sampling can be seen in Fig. 4.11: It is discovered

that, out of an available 2500 samples, the event-sampled controller is able to achieve

exceptional tracking performance making use of fewer than 1300 samples.

4.3 EFFECTS OF EVENT-EXECUTION PARAMETER

Table 4.1 shows how the event-execution parameters, σ1 and σ2, effect the number

of events that occur. Observe that, by increasing the execution-parameter, the number of

events decreases; practically, the number of computations is reduced with larger σ1 and

σ2. However, if the execution parameters are taken to be too large and, as a result, the state

vector and the control laws are not updated frequently enough, either the tracking perfor-

mance begins to suffer or the control effort begins to increase. The design challenge thus

becomes selecting parameters that result in a reduction in computations while maintaining

acceptable controller performance.
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Table 4.1 Number of Events out of Total Available Samples

σ1,2 Total Samples
Number of Events

Output-Feedback State-Feedback

0.0008 2500 1110 1235

0.008 2500 919 1188

0.08 2500 370 899

−2

0

2

O
u
tp
u
ts

Desired Event-Sampled Time-Sampled

0 500 1000 1500 2000 2500

−0.04

−0.02

0

0.02

0.04

Samples

y e
−

y

Fig. 4.1 Controller Outputs - Output Feedback
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5 CONCLUSIONS

This work presented the derivation for two NN-based controllers that assume an

event-sampling paradigm: The first was an output-feedback controller that required an

observer to estimate an unknown state vector and the second was a state-feedback con-

troller which, in practice, would require the use of additional sensors in order to obtain full

knowledge of the state vector. In both cases, Lyapunov analysis was used to demonstrate

the input-to-state stability of the controllers as well as to show the boundedness of the er-

rors introduced by event-sampling; moreover, it was also shown how the Lyapunov method

could be used to derive an event-execution law. With these, simulations were conducted and

the performances of the controllers were compared to results given by their time-sampled

counter-parts. It was found that the number of samples could be substantially reduced

without having to sacrifice tracking fidelity or control effort.
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II. EVENT-SAMPLED CONTROL OF QUADROTOR
UNMANNED AERIAL VEHICLE

Abstract

In this paper, an event-sampled output-feedback neural network (NN) controller for

a quadrotor Unmanned Aerial Vehicle (UAV) is considered. First an observer design is

presented, allowing the need for a full knowledge of the state-vector to be avoided. Next, a

kinematic controller is designed in order to find a desired translational velocity; the infor-

mation provided by the kinematic controller will be used in the design of a virtual controller

wherein a desired rotational velocity will be determined such that the UAV’ s orientation

converges to its desired value. Finally, the information from the observer, the kinematic

controller, and the virtual controller are used in the design of a dynamic controller where

NNs will be implemented to approximate uncertainties in the UAV’s dynamics; the signals

generated by the dynamic controller will ensure that the desired lift velocity and the desired

rotational velocities are tracked. In all these designs, the effects of sampling errors are high-

lighted. Using these results, the continuously sampled closed-loop controller is considered

in the presence of bounded measurement errors and it is shown that the system generates a

local ISS-like Lyapunov function. Next, by designing an appropriate event-execution law,

the measurement errors are shown to be bounded for all time. Finally, the effectiveness of

the proposed event-sampled controller will be demonstrated with simulation results.
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1 INTRODUCTION

The emergence of quadrotors as unmanned aerial vehicles (UAVs) has resulted in

a significant amount of research in efforts to develop effective means by which they can

be controlled [1]-[5]. In particular, the work in [1] presented a novel output-feedback

controller with the use of neural networks (NNs). The objectives of the proposed controller

in [1] were to alleviate the need for unnecessary sensors by introducing an observer and to

compensate for unknown nonlinear dynamics by making use of the universal approximation

property of NNs. The effectiveness and robustness of the controller was demonstrated with

simulation results.

The use of NNs has proven to be a very powerful asset in the control for a quadrotor

UAV. By implementing a NN observer, thereby relaxing the need for full-knowledge of the

state-vector, and by using NNs to compensate for uncertainties, a greater degree of flexi-

bility is made available for engineers. Certainly, the works [1]-[5] have provided thorough

approaches to the problem of controlling the underactuated quadrotor system. However,

one aspect of the problem that they did not address was the sampling scheme; since the fo-

cus of the papers was not in exploring different sampling approaches, they simply assumed

the traditional time-based sampling whereby the control law is updated at a fixed frequency.

An alternative to this approach, event-based sampling, was introduced in [6] and explored

at great lengths in following effort [7]-[12] wherein the derivation of an event-execution law

that ensures the boundedness of the measurement errors introduced by the intermittent sam-

pling is shown. Additionally, the benefit of event-sampling is also demonstrated where for

an appropriately designed event-execution law, a reduction in computations can be achieved

without having to significantly compromise the controller’s performance. In other words,

a successful implementation of event-sampling will yield computational efficiency. By and

large, however, the literature [6]-[12] makes developments in event-sampling in the context

of generalized systems.
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In addition to its theoretical aspects, the notion of event-sampling has also been

considered in the context of real-world applications [13] and [14]. In [13], event-sampling

is implemented in a vibration analysis application for pneumatic tires and, in [14], an event-

sampled observer-based design is applied in a networked visual control system. Even still,

the types of applications that are considered in the works [13]-[14] do not take complex

dynamics into account. To our knowledge, the incorporation of event-sampling in complex

robotics applications is not one that has been substantially explored. Specifically, the union

of event-sampling with the control of an underactuated quadrotor UAV is a topic which has

not been given attention.

In this paper, first an observer design is briefly presented, allowing the need for a

full knowledge of the state-vector to be avoided. Next, a kinematic controller is designed

in order to find a desired translational velocity such that the UAV’ s position converges to a

desired trajectory which is selected as an external input; additionally, it is in the kinematic

controller that the quadrotor’ s desired orientation is found. Then, the information provided

by the kinematic controller will be used in the design of a virtual controller wherein a

desired rotational velocity will be determined such that the UAV’ s orientation converges

to its desired value. In these developments, it will be discussed how the effects of event-

sampling can be injected either implicitly through NN approximation errors or explicitly

through an intermittently updated state-vector.

After these, details will be given showing how it is through the kinematic controller

that event-sampling measurement errors are explicitly injected into the system. Finally,

the information from the observer, the kinematic controller, and the virtual controller are

used in the design of a dynamic controller where NNs will be implemented to approximate

uncertainties in the UAV’s dynamics; the signals generated by the dynamic controller will

ensure that the desired lift velocity and the desired rotational velocities are tracked. Here,

too, it will be illustrated how the dynamic controller injects explicit measurement errors

into the system.
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Therefore, the main contribution of this paper is to add an additional degree of

flexibility to the adaptive NN control of a quadrotor UAV by incorporating notions of

event-sampling. For a complex quadrotor UAV system, the benefits of event-sampling

are two-fold: first, computational costs would be reduced due to aperiodic tuning of NN

weights. With fewer computations being performed, battery life and, subsequently, flight

time, could be extended. Secondly, event-sampling may also save in communications costs.

In a quadrotor UAV system, the regular transmission of data from external sensors, such

as GPS and gyro readings, is essential for stable flight and, in these transmissions, packet-

losses are inevitable. A reduction in the number of samples being used would minimize the

effects of these losses and save in communication costs.

In order to accomplish the incorporation of event-sampling in the control of a

quadrotor UAV, first, it will be shown how the system exhibits ISS-like behavior with re-

spect to bounded measurement errors; this result is a necessary requirement in order to

implement the event-sampled controller because it ensures the existence of nonzero inter-

event times. Next, it will be necessary to demonstrate that the measurement errors remain

bounded for all time. This will be demonstrated by considering the dynamics of the system

at event-sampling instants as well as during inter-event periods. The boundedness of the

measurement errors during inter-event periods will be guaranteed by the implementation of

an event-execution law, which will also be derived in this work. Finally, simulation results

will be given to demonstrate the effectiveness of the event-sampled controller as well as to

illustrate how its performance compares to its time-sampled counterpart.

The rest of this paper will be organized as follows: Section 2 will provide back-

ground information and a statement of the problem; Section 3 will present the derivation

for an observer and section 4 will present the derivation of the event-sampled controller as

well as for the design of an event-execution law; Section 5 will present simulation results

showing the effectiveness of the proposed controller as well as preliminary hardware results

for an event-based PID controller; and, finally, conclusions will be given in Section 6.
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2 BACKGROUND AND PROBLEM STATEMENT

In this section, an introduction on the notations used in this paper will be given and

a brief background on the control of a quadrotor UAV will be provided. Then, the control

objectives which will be considered in this paper will be specified.

2.1 NOTATIONS

The measurement errors that result from event-sampling will be denoted byΞ. In or-

der to distinguish event-sampled variables with their time-sampled counterparts, this sym-

bol will appear as a subscript; for example, the event-sampled position of the quadrotor will

be denoted by ρΞ. A formal definition for Ξ will be presented in the background section.

In the analysis that will be presented, ‖·‖ and ‖·‖F will be used as the Euclidean norm for

vectors and the Frobenius norm for matrices, respectively [15].

2.2 BACKGROUND

The states of the quadrotor UAV are given by its measured coordinate position,

ρ =
[
x,y,z

]T ; its orientation Θ =
[
φ,θ,ψ

]T (roll, pitch, yaw), which are measured with

respect to the inertial fixed frame; its translational velocity in the body fixed frame, v =
[
vxb,vyb,vzb

]T
; and its rotational velocity in the body fixed frame, ω =

[
ωxb,ωyb,ωzb

]T
.

With these, the kinematics of the quadrotor can be written as [1]

ρ̇ = Rv (1)

and

Θ̇ = Tω. (2)
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The translational rotation matrix relating a vector in the body fixed frame to the

inertial coordinate frame will be defined by

R (Θ) = R =



cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθ sψ sφsθ sψ − cφcψ cφsθ sψ − sφcψ

−sθ sφcθ cφcθ



where s(•) and c(•) are used as abbreviations for sin (•) and cos (•), respectively. Moreover,

the rotational transformation matrix from the fixed body to the inertial coordinate frame is

defined with its inverse as

T (Θ) = T =



1 sφtθ cφtθ

0 cφ −sφ

0 sφ
cθ

cφ
cθ



T−1 =



1 0 −sθ

0 cφ sφcθ

0 −sφ cφcθ



where t (•) is used as an abbreviation for tan (•). Lastly, define the augmented transforma-

tion matrix A = diag {R, T }. Next, the UAV dynamics will be presented and the control

objective will be given.

2.3 PROBLEM STATEMENT

The dynamics of the quadrotor UAV in the body fixed frame are given by [1]

M



v̇

ω̇


= S̄ (ω)



v

ω


+



N1 (v)

N2 (ω)


+



G (R)

03×1


+ U + τd (3)

where M = diag {mI3×3, J}, with m being a positive scalar representing the total mass of

the UAV and J being a positive definite inertia matrix; S̄ (ω) = diag {−mS (ω) , S (Jω)},

where S (•) is a skew symmetric matrix satisfying hT Sh = 0 for any appropriately dimen-

sioned vector h; N1 (v) and N2 (ω) are nonlinear aerodynamic effects; G (R) = mgRT (Θ) Ez
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is the gravity vector, with g = 9.8 m/s2 and Ez = [0, 0, 1]T ; U = [0, 0, u1, u2]T is an aug-

mented vector containing the control inputs corresponding to the total thrust, u1, and to the

rotational torques, u2 = [u21, u22, u23]T , corresponding to roll, pitch, and yaw, respectively;

and τd =
[
τT

d1, τ
T
d2

]T
represents unknown, bounded disturbances such that ‖τd ‖ ≤ τM for a

known positive constant, τM .

Before giving the control objective, a definition of the measurement errors that re-

sult from event-sampling will be introduced. Define the measurement errors to be

Ξχ (t) = χΞ (tl ) − χ (t) , ∀t ∈ [tl, tl+1) (4)

where, in general, χ (t), represents a time-sampled state variable. Moreover, χΞ (tl ) de-

notes the event-sampled state variable that was measured at the previous event-sampling

instant at time tl ; it is this event-sampled variable that is stored in the controller during the

inter-event period. Finally, Ξχ (t) is the measurement error that results from intermittent

sampling. The introduction of this error will present an additional challenge in the control

objective in that it necessitates additional considerations that will guarantee the controller’s

stable performance. In particular, it will be necessary to design an event-triggering mech-

anism that will ensure that the values that are stored are being updated frequently enough

for the controller to be able to achieve acceptable performance while reducing the number

of computations. With these considerations in mind, the control objective may be stated.

The control objective is to design an event-sampled output-feedback controller for

(3) such that the UAV follows a desired trajectory given by ρd =
[
xd, yd, zd

]T and a de-

sired yaw, ψd , while maintaining stable flight. This requires knowledge of the quadrotor’s

dynamics as well as knowledge of the UAV’s translational and rotational velocities. How-

ever, these requirements will be relaxed by utilizing the universal approximation property

of NNs [15] in order to estimate the uncertainties.
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In order to avoid the measurement of the UAV’s state-vector, a NN observer will

be implemented to estimate the translational and rotational velocity vector, which will be

assumed to be immeasurable. The estimated values will be used in the kinematic controller,

the NN virtual controller, and the NN dynamic controller. With these, it will be possible

to design an event-sampled control law that will achieve the control objective. In order to

ensure that the control law is being updated frequently enough for the UAV to achieve its

tracking objective, an event-execution law will be derived such that the measurement errors

remain bounded for all time.

In the analyses that will be presented, the following assumptions will be made.

Assumptions: The states of the reference trajectory, ρd and ψd , remain bounded

[1]. The state-vector corresponding to the UAV’s velocity is not available whereas the

system (3) is observable [1]. There are no transmission or computation time delays [6].

The dynamics of the system (3) are locally Lipschitz.

With these considerations in mind, the derivation of the event-sampled quadrotor

UAV controller may be presented. The derivation of the event-sampled controller will be

presented as two sections: In the first section, the observer design will be considered and,

in the following section, the controller design will be demonstrated.
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3 OBSERVER DESIGN

In order to relax the need for state-vector measurability, an observer will be de-

signed to estimate unknown values. Subsequently, the estimated values will be used in the

controller. Since the stability of the controller relies on accurate sensor readings, the ob-

server’s quick convergence is imperative. The introduction of event-sampling only adds to

the challenge of designing an observer that performs well enough for the control objectives

to be accomplished. Additionally, the implementation of the event-triggering mechanism

must also be taken into consideration; since the mechanism that will be designed in this

paper relies on continuous sensor data, the observer’s placement must allow for continuous

estimation. For these reasons, the placement of the observer is taken to be at the sensor (see

Fig. 3.1); practically, this means that, even with event-sampling, the observer will estimate

the state-vector continuously, allowing for quicker convergence as well as for sufficient

information for the implementation of the proposed event-execution law.

Controller

NN Observer

Quadrotor UAV

  

 X̂ t+

 X t

 lU t

Event-triggering Mechanism

 V̂ t

 

 

d

d

t

t





  

+

       , , ,
T

d d l d l d lt t v t t   
  

 lX t

 lX t

 X t

Tracking Errors

Measurement 
Errors

  

+

State-Vector 
Updated at Events

ZOH

Figure 3.1 Event-triggered Output Feedback Structure
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Although the NN observer estimates the state-vector continuously, the NN itself

is only updated at event sampled instants. This decision was made in order to further re-

duce the computational effort. With a continuously updated state-vector, it would not be

correct to directly assign measurement errors to the estimated states. However, since the

NN is only being updated intermittently, there will be an approximation error due to the

event-sampling. Using the fact that the inputs of the NN will only be updated at events,

the ideal NN approximation can be manipulated in a manner that allows event-sampling

measurement errors to be extracted from the approximation error that results from inter-

mittent updates. The measurement errors that will be introduced in this section include

ΞSX , Ξ̂SX , and Ξ̌SV , correpsonding to the quadrotor’s measured position and orientation,

estimated position and orientation, and measured and estimated velocity, respectively. It

will be discussed why the uncertainess of the UAV’s measured velocity requires the ve-

locity measurement error to be written in terms of the derivative of the UAV’s measured

position and orientation. Once the measurement errors are extracted, it is not difficult to

account for their effects when the event-execution law is designed.

Begin by defining the augmented vectors X =
[
ρT, ΘT

]T
and V =

[
vT, ωT

]T
.

Using these augmented vectors, the dynamics (1), (2), and (3) can be rewritten with

Ẋ = AV + ξ1

V̇ = fo (xo) + Ḡ + M−1U + τ̄d . (5)

where ξ1 represents bounded sensor measurement noise such that ‖ξ1‖ ≤ ξ1M ; τ̄d =
[
τd1/m,

[
J−1τd1

]T
]

satisfies τ̄d ≤ MMτM with MM =



M−1


F

; Ḡ = M−1G (R); and

UΞ = [0, 0, u1Ξ, u2Ξ]T is the event-sampled control input which will be addressed in later

derivations. Note that there is an explicit measurement error present in UΞ, however, since

this term is canceled out in the observer analysis, it is not considered. Furthermore, by

observation of (3), fo (xo) = M−1
[
S̄ (ω) V + [N1 (v) , N2 (ω)]T

]
are unknown dynamics.
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Next, introduce the change of variable, Z = V and denote the observer estimates

for X and V with hats, specifically X̂ and V̂ , respectively. Finally, the observer estimation

error is denoted with a tilde, X̃ = X − X̂ . With these, the proposed observer takes the form

[1]

˙̂X = AẐ + Ko1 X̃

˙̂Z = f̂o1Ξ + Ḡ + Ko2 A−1 X̃ + M−1UΞ

V̂ = Ẑ + Ko3 A−1 X̃ (6)

where Ko1, Ko2, and Ko3 are positive design constants and A−1 is bounded by 


A−1


F
≤ AI

M

where AI
M is a positive constant. Additionally, f̂o1Ξ is the event-sampled NN estimate of the

unknown function, fo1 (xo) = fo (xo) +
[
AT − Ko3 Ȧ−1

]
X̃ ; the second term of the unknown

function,
[
AT − Ko3 Ȧ−1

]
X̃ , will arise in the derivation for the observer estimation error

dynamics. This work will make use of the universal approximation property of NNs [15]:

For an unknown, smooth function, f N (xN ), its NN approximation will be denoted by

f N (xN ) = WT
Nσ

(
VT

N xN
)

+ εN , where WN are ideal NN weights which are bounded such

that ‖WN ‖F ≤ WM ; σ (•) is the activation function in the hidden layers which, in this work,

is chosen to be the logarithmic sigmoid function and has the property ‖σ‖ ≤
√

N , with

N being the number of hidden layer neurons in the NN; VN consists of randomly selected

constant weights; and εN is the NN reconstruction error which is bounded such that ‖εN ‖ ≤

εM . Since the ideal NN weights are not available, it becomes necessary to introduce NN

weight estimates, ŴN , for which an acceptable tuning law will be derived. Specifically,

the ideal, continuously updated approximation for the unknown function corresponding to

the observer is given by fo1 (xo) = WT
o σ

(
VT

o xo
)

+ εo = WT
o σo + εo where the target

NN weights are bounded by ‖Wo‖F ≤ WMo and the approximation error is bounded by

‖εo‖ ≤ εMo. Moreover, using estimated weights, the approximation for the unknown
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function in (6) is given by f̂o1Ξ = ŴoΞσo
(
VT

o x̂o
)

= ŴoΞσ̂o and its input is given with

x̂o =
[
1, X̂T, V̂T, X̃T

]T
.

In order to account for the effects of intermittent NN updates, begin by adding and

subtracting WT
o σ (xoΞ) = WT

o σoΞ to the ideal approximation

fo1 (xo) =WT
o σoΞ −WT

o σoΞ + WT
o σo + εo

=WT
o σoΞ + WT

o [σo − σoΞ] + εo. (7)

The expression given by (7) can be interpretted as the ideal approximation given by an

intermittently updated NN and WT
o [σo − σoΞ] can be viewed as the approximation error

that results from the intermittent updating. As the frequency of events increases, the values

of the event-sampled variables approach those of their continuously sampled counterparts.

As a result, with a very large number of events, the approximation error caused by event-

sampling begins to vanish and the ideal NN approximation is eventually reverted back to

its original form. With this, the engineering tradeoff is clear: Fewer events will yield more

computational efficiency, however, the efficiency comes at the expense of accuracy. With

regards to its effects on stability, the approximation error that results from intermittent NN

updates will be addressed by designing an event-execution law that will ensure acceptable

behavior in the closed-loop dynamics; the details for this will be shown in Theorem 3, Case

2.

Next, by adding and subtracting
[
AT − Ko3 Ȧ−1

]
X̃ and using the information in (5)

and (6), the estimation error dynamics are found to be

˙̃X = AṼ − [Ko1 − Ko3] X̃ + ξ1

˙̃Z =
[

fo +
[
AT − Ko3 Ȧ−1

]
X̃

]
− f̂o1Ξ − Ko2 A−1 X̃ −

[
AT − Ko3 Ȧ−1

]
X̃ − εoΞ + τ̄d . (8)
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Next, observe that, from (6), Ṽ = V − V̂ = Z̃ − Ko3 A−1 X̃ . The derivative of this expression

can be taken and, by adding and subtracting WT
o σ ( x̂oΞ) = WT

o σ̂oΞ as well as using (7) and

(8), the estimation error dynamics corresponding to V are found to be

˙̃V =
[

fo +
[
AT − Ko3 Ȧ−1

]
X̃

]
−WT

o σ
(
VT

o x̂oΞ
)

+ WT
o σ

(
VT

o x̂oΞ
)
− f̂o1Ξ − Ko2 A−1 X̃

−
[
AT − Ko3 Ȧ−1

]
X̃ + τ̄d − Ko3 Ȧ−1 X̃ − Ko3 A−1

[
AṼ − [Ko1 − Ko3] X̃ + ξ1

]

= − Ko3Ṽ + f̃oΞ − A−1 [Ko2 − Ko3 [Ko1 − Ko3]] X̃ − AT X̃ + εoΞ + ξ2 (9)

where f̃oΞ =
[
WT

o − ŴT
oΞ

]
σ̂oΞ, εoΞ = WT

o [σo − σoΞ] + WT
o [σoΞ − σ̂oΞ] = WT

o [σo − σ̂oΞ]

contains the approximation error due to event-sampling, and ξ2 = εo + τ̄d − Ko3 A−1ξ1 is

bounded such that ‖ξ2‖ ≤ ξ2M where ξ2M = εMo + MMτM + Ko3 AI
Mξ1M . These dynamics

given by 8 and (9) are used in demonstrating the boundedness of the observer subsystem

when the NN is updated intermittently.

Next, the following theorem is given in order to demonstrate that the proposed

observer generates an ISS-like Lyapunov function with respect to bounded measurement

errors. The results for Theorem 1 are needed in order to make conclusions on the inter-event

periods being bounded away from zero.

Theorem 1. (NN Observer Boundedness): Consider the observer given by (6) with

estimation error dynamics described by 8 and (9). Furthermore, let the NN weights be

updated with

˙̂WoΞ = Foσ̂o X̃T − κo1FoŴoΞ (10)

where Fo = FT
o > 0 and κo1 > 0 are constant design parameters, and let the initial weights

be in a compact set. Moreover, let the activation function for the NN be Lipschitz. Finally,

let the event-sampling measurement errors corresponding to X , X̂ , and Ẋ be assumed to be

bounded such that ΞSX ≤ ΞX max, Ξ̂SX ≤ Ξ̂X max, and Ξ̌SV ≤ Ξ̌V max, respectively. Then,

there exist design constants, Ko1, Ko2, and Ko3, such that the observer estimation errors, X̃
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and Ṽ , as well as the observer NN weight estimation errors, W̃oΞ, are locally universally

ultimately bounded (UUB).

Proof. Consider the positive-definite Lyapunov candidate

VoΞ =
1
2

X̃T X̃ +
1
2

ṼT Ṽ +
1
2

tr
{
W̃T

oΞF−1
o W̃oΞ

}
(11)

whose derivative is given by V̇oΞ = X̃T ˙̃X + ṼT ˙̃V + tr
{
W̃T

oΞF−1
o

˙̃WoΞ
}
. The estimation error

dynamics given by (8) and (9), along with the NN weight update law given by (10), can be

substituted to find

V̇oΞ = −X̃T [Ko1 − Ko3] X̃ + X̃T ξ1 − ṼT Ko3Ṽ + ṼT ξ2 + ṼTεoΞ

− tr
{
W̃T

oΞ

[
σ̂o X̃T − σ̂oΞṼ − κo1

[
Wo − W̃oΞ

] ] }
. (12)

Then, by invoking known bounding conditions, and by using properties of the matrix trace

operation, it is discovered that

V̇oΞ ≤ −

[
[Ko1 − Ko3]

2
−

No

κo1

]



X̃




2
−

[
Ko3

2
−

No

κo1
−

1
2

]



Ṽ 




2
−
κo1

4



W̃oΞ





2

F

+ κo1W 2
Mo +

ξ2
1M

2 [Ko1 − Ko3]
+
ξ2

2M

2Ko3
+

1
2
ε2

oΞ (13)

after completion of squares with respect to 


X̃


, 


Ṽ 


, and 


W̃oΞ



F

.

It is at this point that the measurement errors are extracted from the approximation

error caused by intermittent NN updates. In order to do this, the Lipschitz condition on the

NN activation function will need to be invoked. Additionally, observe that the unknown

function that is approximated by the NN is defined in terms of V and X̃ . With these in
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consideration, it is discovered

ε2
oΞ ≤ W 2

Mo [σo − σ̂oΞ]2

≤
1
2

W 4
Mo +

1
2

[σo − σ̂oΞ]4

≤
1
2

W 4
Mo +

1
2

Lσ





[
V − V̂Ξ

]
+

[
X̃ − X̃Ξ

]



4

=
1
2

W 4
Mo +

1
2

Lσ





[
V − V̂Ξ

]
+

[ [
X − X̂

]
−

[
XΞ − X̂Ξ

] ]



4

=
1
2

W 4
Mo +

1
2

Lσ



[X − XΞ] −

[
X̂ − X̂Ξ

]
+

[
Ẋ − V̂Ξ

]



4

=
1
2

W 4
Mo +

1
2

Lσ



ΞSX − Ξ̂SX + Ξ̌SV





4

≤
1
2

W 4
Mo +

1
2

Lσ ‖ΞSX ‖
4 +

1
2

Lσ



Ξ̂SX





4

+
1
2

Lσ



Ξ̌SV





4

(14)

where Lσ is the Lipschitz constant and Ξ̌SV , ΞSX , and Ξ̂SX are the event-sampling measure-

ment errors corresponding to V and V̂ , X , and X̂ , respectively. Note that the measurement

error corresponding to V is rewritten in terms of Ẋ ; this is done because, in practice, the

measured velocity is not available and, therefore, it would not be possible to implement an

execution law directly for V . This problem can be circumvented by placing a differentiator

at the sensor and considering a measurement error in terms of Ẋ . Finally, (13) and (14) are

combined to give

V̇oΞ ≤ −KX̃



X̃




2
− KṼ




Ṽ 



2
− KWo




W̃oΞ





2

F
+ Bo (15)

where Bo = ηo + 1
4 LσΞ4

X max + 1
4 LσΞ̂4

X max + 1
4 LσΞ̌V max with ηo = κo1W 2

Mo + 1
4W 4

Mo +

ξ2
1M/ [2 [Ko1 − Ko3]] + ξ2

2M/ [2Ko3]; KX̃ = [Ko1 − Ko3] /2 − No/κo1; KṼ = [Ko1 − 1] /2 −

No/κo1; and KWo = κo1/4. Finally, (15) is less than zero provided that Ko1 > Ko3 +

[2No] /κo1 and Ko3 > [2No] /κo1 + 1 and the following inequalities hold:




X̃


 >
√

Bo

KX̃
or 


Ṽ 


 >

√
Bo

KṼ
or 


W̃oΞ




F
>

√
Bo

K2
Smax

. (16)
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Therefore, it can be concluded [15] that all signals in the observer are locally UUB.

Remark 1. The results from Theorem 1 can be easily used to demonstrate how the

observer generates an ISS-like Lyapunov function with respect to bounded measurement

errors. This result, along with the assumption that the dynamics (3) are Lipschitz, fulfills

the necessary requirements needed to show the existence of nonzero inter-event periods [6].

However, rather than showing how the observer generates an ISS-like Lyapunov function

by itself, (15) will be used later when the closed-loop dynamics are considered and it will

be demonstrated how the whole system exhibits ISS-like behavior.

In Theorem 1, the measurement errors were assumed to be bounded. However, in

order to implement the event-sampled controller, it must be demonstrated that the measure-

ment errors are, in fact, bounded for all time. This can be done by, first, considering the

system dynamics when event-sampling measurement errors are zero and, second, consid-

ering the system dynamics with nonzero measurement errors. With nonzero measurement

errors, an event-execution law can be designed in order to ensure that the system dynamics

remain stable. In this paper, a single event-execution law will be designed when the closed-

loop dynamics are considered in Theorem 3. However, before proceeding, the following

lemma will be given in order to show that the proposed observer with an intermittently

updated NN is eligible for implementation in the event-sampled controller.

Lemma 1. Consider the observer given by (6) with estimation error dynamics de-

scribed by 8 and (9). Furthermore, let the NN weights be updated with (10) with initial

weights in a compact set. Then, there exist design constants, Ko1, Ko2, and Ko3, such that

the observer estimation errors, X̃ and Ṽ , as well as the observer NN weight estimation

errors, W̃oΞ, are locally UUB for all time.

Proof. Case 1. In this case, the NN weights are updated using (10) and, furthermore,

all approximation and measurement errors that are caused by event-sampling are taken

to be zero. As a result, εoΞ is absent from the observer estimation error dynamics for

˙̃V . Because of this, the coefficient defined in Theorem 1 corresponding to 


Ṽ 



2

needs
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to be changed to KṼ = [Ko1] /2 − No/κo1 and the bounded term needs to be revised to

Bo = κo1W 2
Mo + ξ2

1M/ [2 [Ko1 − Ko3]] + ξ2
2M/ [2Ko3]. Additionally, the event-sampled term

that was previously combined with the approximation error due to intermittent updates no

longer needs to be considered in the presence of measurement errors and, therefore, the

expression for ξ2 becomes ξ2 = εo + τ̄d − Ko3 A−1ξ1 + WT
o [σo − σ̂o] with ‖ξ2‖ ≤ ξ2M

where ξ2M = εMo + MMτM + Ko3 AI
Mξ1M + 2WMo

√
No. With these changes in mind, and by

selecting gains satisfying Ko1 > Ko3+[2No] /κo1 and Ko3 > [2No] /κo1, it can be concluded

[15] that (15) is less than zero and that all signals in the observer are locally UUB.

Case 2. In this case, the NN weights are held and, therefore, the effects of the

third term in (11) vanish when the derivative is taken. However, since the approximation

error caused by event-sampling is injected through the estimation error dynamics, ˙̃V , it

becomes necessary to account for the nonzero measurement errors. Using an approach

similar to what was done for Case 1, the coefficients are updated with Bo = W 4
Mo/4 +

ξ2
1M/ [2 [Ko1 − Ko3]] + ξ2

2M/ [2Ko3]; KX̃ = [Ko1 − Ko3] /2; KṼ = [Ko1 − 2] /2; and KWo =

−No/2. With these changes in mind, the expression for V̇oΞ is rewritten with

V̇oΞ ≤ −KX̃



X̃




2
−KṼ




Ṽ 



2
−KWo




W̃oΞ





2

F
+Bo+

1
4

Lσ ‖ΞSX ‖
4+

1
4

Lσ



Ξ̂SX





4
+

1
4

Lσ



Ξ̌SV





4
.

(17)

In this case, the measurement errors cannot be assumed to be bounded and it becomes

necessary to address their effects. This could be accomplished by designing an event-

execution law that takes the form




Ξχ





4
≤ γχµχ




eχ





2
(18)

where, in general, 0 < γχ, µχ < 1 are design constants and eχ = χd− χ is the tracking error

corresponding to the measurement error. An execution-law bearing strong resemblance to

(18) is what will be designed in this paper, however, the benefits of this design cannot be
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easily seen by considering the observer dynamics alone and (18) is given here only for

illustration purposes. When the tracking errors are addressed in the closed-loop dynamics,

it will be demonstrated how an execution law in the form of (18) can be used to eliminate

the measurement errors from the observer subsystem. Hence, the effects of event-sampling

will be addressed for inter-event periods as well.

The results for Case 1 and Case 2 can be combined in order to make conclusions

which apply for all time. However, since the dynamics in Case 2 can only be fully assessed

in the closed-loop, this final combination will not be done here, but, instead, will be shown

for the entire UAV system. From the results that are presented, however, it can be concluded

that, with an appropriately designed event-execution law, the proposed observer with an

intermittently updated NN qualifies as a candidate for an event-sampled output feedback

controller.

Remark 2. In this paper, a single event-execution law will be designed for the whole

system. In other words, the measurement errors that originate in the observer are combined

with the measurement errors in the controller and a single condition is used as the basis

by which events occur. Moreover, when an event does occur, both the observer NN as

well as the controller are updated with the most recent position and orientation sensor

measurements and velocity observer estimates.

Next, the event-sampled controller design will be presented. First, the virtual con-

troller will be briefly addressed, then the kinematic and dynamic controllers will be de-

signed under the influence of event-sampling, and, lastly, the closed-loop dynamics will be

considered.
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4 EVENT-SAMPLED CONTROL OF QUADROTOR UAV

A natural progression for the derivation of the controller would be to begin with

the design of the kinematic controller, to proceed with the virtual controller, and to con-

clude with an analysis for the dynamic controller. This progression is followed in [1].

However, in order to incorporate the effects of event-sampling, it is, perhaps, easier to first

address the stability of the virtual controller and then consider the kinematic and dynamic

controllers. The reason for this is that the assessment of the virtual controller’ s stability

does not involve any explicit presence of event-sampling measurement errors and its anal-

ysis can be quickly summarized. An important consideration that needs to be made in the

development of event-sampled controllers is in determining how and where the controller

injects measurement errors into the system. In the development for the virtual controller,

only the stability of the virtual control estimates is considered and the injection of any

term into the system is altogether absent. Instead, it is only through the analysis for the

kinematic and dynamic controllers where there is an injection of errors caused by event-

sampling. For this reason, the stability of the virtual control estimates will be considered

first and then the kinematic and dynamic controllers will be considered under the influence

of event-sampling.

4.1 VIRTUAL CONTROLLER DESIGN

In the developments made in this subsection, the stability of the desired virtual

control estimates, Θ̂d and ω̂d , as well as the boundedness of the virtual control NN weight

estimates, ŴΩ, will be considered. Since the desired virtual controls are written in terms

of the UAV’s measured position and orientation, there is an explicit presence of event-

sampling measurement errors. However, the derivations made for the virtual controller

here will only assess the stability of the estimates and not how they are injected into the

system.
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Begin by defining the proposed virtual controller [1]

˙̂
ΘdΞ = TΩ̂dΞ + KΩ1Θ̃dΞ

˙̂
ΩdΞ = f̂Ω1Ξ + KΩ2T−1

Θ̃dΞ

ω̂dΞ = Ω̂dΞ + T−1KΘeΘΞ + KΩ3T−1
Θ̃dΞ (19)

where f̂Ω1Ξ is the event-sampled NN estimation of the unknown function, fΩ1Ξ (xΩ) =

fΩΞ + TT Θ̃dΞ − KΩ3Ṫ−1Θ̃dΞ, where fΩΞ = Ṫ−1Θ̇dΞ + T−1Θ̈dΞ; specifically, its estimation is

given by f̂Ω1Ξ = ŴT
ΩΞ
σ

(
VT
Ω

x̂ΩΞ
)

= ŴT
ΩΞ
σ̂ΩΞ, where its input is

x̂ΩΞ =
[
1, ρd, ρ̇

T
d, ρ̈

T
d,

...
ρT

d, Θ
T
dΞ, Ω̂dΞ, V̂T, Θ̃dΞ

]T
. Here, the subscript Ξ is used to reinforce

the idea that the virtual control NN weight estimates are updated only at event-sampling

instants. Additionally, eΘΞ is the UAV’s event-sampled orientation tracking error which

will be addressed later, and KΩ1, KΩ2, KΩ3, and KΘ are positive design constants.

Next, choose the NN weight update law

˙̂WΩΞ = FΩσ̂ΩΞΘ̃T
dΞ − κΩ1FΩŴΩΞ (20)

where FΩ = FT
Ω
> 0 and κΩ1 > 0 are constant design parameters. Then, using (19) and

(20), the virtual control estimation error dynamics can be determined and the first deriva-

tive of the Lyapunov candidate describing the virtual control system, VΩΞ = 1
2Θ̃

T
dΞΘ̃dΞ +

1
2ω̃

T
dΞω̃dΞ + 1

2 tr
{
W̃T
ΩΞ

F−1
Ω

W̃ΩΞ
}
, can be found to satisfy [1]

V̇ΩΞ ≤ −
[
KΩ1 − KΩ3 −

NΩ
κΩ1

]



Θ̃dΞ





2
−

[
KΩ3

2
−

NΩ
κΩ1

]
‖ω̃dΞ‖

2 −
κΩ1

4



W̃ΩΞ





2

F
+ ηΩ (21)

where ηΩ = κΩ1W 2
MΩ + ξ2

ΩM/ [2KΩ3] and NΩ is the number of hidden layer neurons in the

virtual control NN. By observation of (21), it can be seen that, with appropriate selection

of design parameters, all signals in the virtual controller remain bounded [1]. Next, the
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kinematic control and dynamic control will be considered under the influence of event-

sampling.

4.2 INJECTION OF EVENT-SAMPLED VIRTUAL CONTROL

The tracking errors that correspond to the desired virtual control inputs are with

respect to position and orientation. Begin by defining the position tracking error

eρ = ρd − ρ. (22)

The dynamics of (22) are found to be

ėρ = ρ̇d − Rv. (23)

In order to stabilize (23), the desired velocity is selected to be

vd = RT
[
ρ̇d + Kρeρ

]
(24)

where Kρ = diag
{
kρx, kρy, kρz

}
is a design matrix with all positive constants.

Since the desired velocity is a term that will be injected into the system by the event-

sampled controller, it becomes necessary to consider (24) in the presence of measurement

errors. Observe that the measurement error that is injected into the system can be intro-

duced into the analysis by noting that, from (4), the event-sampled position measurement

is given by ρΞ = ρ + Ξρ, which allows (22) to be rewritten as

eρΞ = ρd −
[
ρ + Ξρ

]
= eρ − Ξρ (25)
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where Ξρ =
[
Ξx,Ξy,Ξz

]T
is the vector of measurement errors corresponding to the quadro-

tor’s measured position. Using (25) in (24) reveals

vdΞ = RT
[
ρ̇d + Kρ

[
eρ − Ξρ

] ]

= RT
[
ρ̇d + Kρeρ

]
− RT KρΞρ. (26)

Next, define ev = vdΞ− v and note that, from this, v = vdΞ− ev. Then, using vdΞ as a virtual

control input in the tracking error dynamics and substituting (26) into (23) gives

ėρΞ = −Kρeρ + Rev + KρΞρ. (27)

Next, the desired virtual control input corresponding to the quadrotor’s orientation

is considered. Begin by defining the orientation tracking error

eΘ = Θd − Θ (28)

where Θd =
[
φd, θd, ψd

]T is the desired orientation. Recall that ψd is an external input to

be selected by the designer. Furthermore, it is shown in [1] how φd and θd can be calculated

in terms of ρ̇d , ρ̈d , ψd , Kρ, and the unknown function fc1 (xc1). The NN approximation

for fc1 is given by

f̂c1 = ŴT
c1σ

(
VT

c1 x̂c1
)

= ŴT
c1σ̂c1 =

[
f̂c11, f̂c12, f̂c13

]T

where the input is x̂c1 =
[
1, ρ̇T

d, ρ̈
T
d, V̂, ΘT, X̃T

]T
. These estimates will be used in the

derivation for the actual dynamic control.

Moving on, the dynamics of (28) are found to be

ėΘ = Θ̇d − Tω. (29)
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In order to stabilize (29), the desired angular velocity is selected to be

ωd = T−1
[
Θ̇d + KΘeΘ

]
(30)

where KΘ = diag {kΘ1, kΘ2, kΘ3} is a design matrix with all positive constants.

Since the desired angular velocity is a term that will be injected into the system

by the event-sampled controller, it becomes necessary to consider (30) in the presence of

measurement errors. This is accomplished by observing that the event-sampled tracking

error can be expressed as

eΘΞ = Θd − [Θ + ΞΘ] = eΘ − ΞΘ (31)

whereΞΘ =
[
Ξφ,Ξθ,Ξψ

]T
is the vector of measurement errors corresponding to the quadro-

tor’s measured orientation. Using (31) in (30) reveals

ωdΞ = T−1
[
Θ̇d + KΘ [eΘ − ΞΘ]

]

= T−1
[
Θ̇d + KΘeΘ − KΘΞΘ

]
(32)

Next, define eω = ωdΞ − ω and note that, from this, ω = ωdΞ − eω. Then, using ωdΞ as a

virtual control input in the tracking error dynamics and substituting (32) into (29) gives

ėΘΞ = −KΘeΘ + Teω + KΘΞΘ. (33)

It is the tracking error dynamics given by (27) and (33) that will be used when the closed-

loop dynamics are considered.

Remark 3. In contrast to the results in [1], the tracking error dynamics, (27) and

(33), contain additional terms, KρΞρ and KΘΞΘ, respectively. These terms are the artifacts

that result from event-sampling.
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4.3 EVENT-SAMPLED OUTPUT FEEDBACK DYNAMIC CONTROL

The actual control input consists of two parts: u1 is a scalar corresponding to the

total thrust and u2 = [u21, u22, u23]T gives the rotational torques corresponding to roll, pitch,

and yaw directions, respectively. These two parts will be considered separately.

TOTAL THRUST. The time-sampled total thrust control input is given by [1]

u1 =mkv3êvz

+ m
[
cφd sθdcψd + sφd sψd

] [
ẍd + kρx ẋd − v̂R1 + f̂c11

]

+ m
[
cφd sθd sψd − sφdcψd

] [
ÿd + kρy ẏd − v̂R2 + f̂c12

]

+ mcφdcθd
[
z̈d + kρz żd − v̂R3 + f̂c13 − g

]
(34)

where the gain, kv3, is an element in the design matrix, Kv = diag {kv1, kv2, kv3}, with all

positive elements; êv =
[
êvx, êvy, êvz

]T
= vd − v̂ with v̂ being the translational velocity

observer estimate; v̂R = [v̂R1, v̂R2, v̂R3]T = KρRv̂; and f̂c1 =
[

f̂c11, f̂c12, f̂c13
]

is the NN

estimate introduced in the previous subsection. Since the estimates from the observer are

being stored in the controller and only being updated intermittently, it becomes necessary

here to consider explicit measurement errors corresponding to the estimated state-vector.

As a result, the terms êv and v̂R both have an explicit presence of measurement errors.

In order to incorporate the measurement errors in the analysis, it becomes necessary

to expand certain computations so that the terms êvz, v̂R1, v̂R2, and v̂R3 can be extracted.

First, in order to be able to consider êvz = vdz− v̂z, it is necessary to consider the desired ve-

locity (26) under the influence of event-sampling. By expanding the matrix multiplications,

the expression for vdzΞ is obtained as

vdzΞ = vdz + R̄3RKρΞρ (35)
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where R̄3R is the third row of RT . Next, a similar procedure is used to find v̂R1, v̂R2, and

v̂R3 under the influence of event-sampling. Using v̂xΞ = v̂x + Ξ̂vx , v̂yΞ = v̂y + Ξ̂vy, and

v̂zΞ = v̂z + Ξ̂vz, it is discovered that

v̂R1Ξ = v̂R1 + kρx R1RΞ̂v v̂R2Ξ = v̂R2 + kρyR2RΞ̂v v̂R3Ξ = v̂R3 + kρz R3RΞ̂v (36)

where R1R, R2R, and R3R are the first, second, and third rows of R, respectively, and

Ξ̂v =
[
Ξ̂vx, Ξ̂vy, Ξ̂vz

]T
is the vector of measurement errors corresponding to the transla-

tional velocity estimates. Finally, using (35) and (36) in (34) reveals

u1Ξ = u fΞ
1 + mkv3

[
RT

3RKρ

]
Ξρ − m

[
kρx R1R + kρyR2R + kρz R3R +

[
0 0 kv3

] ]
Ξ̂v .

(37)

where u fΞ
1 is identical to u1 34, but assumes the event-sampled NN estimates, f̂c1Ξ; the

implicitly affected NN estimation has no effect on further analyses. The control input, u1Ξ,

is designed in order to stabilize the translational velocity tracking error dynamics, which

are given by

ėvΞ = −S (ω) ev −
1
m

G (Rd)− τ̄d1 + RT
d

[
ρ̈d + Kρ ρ̇d − KρRv̂ + fc1 (xc1)

]
−

1
m

u1ΞEz . (38)

Since the event-sampled control input is the sum of the time-sampled control input and the

measurement error terms, the results of substituting the expression for u1Ξ into the tracking

error dynamics (38) can be used to easily find that [1]

ėvΞ = − [S (ω) + Kv] ev − Kv ṽ + RT
d W̃c1Ξσ̂

T
c1Ξ + ξc1

+

[
kv3

[
RT

3RKρ

]
Ξρ −

[
kρx R1R + kρyR2R + kρz R3R +

[
0 0 kv3

] ]
Ξ̂v

]
Ez (39)
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where ξc1 = RT
d WT

c1Ξσ̃
T
c1Ξ + RT

d εc1 − τ̄d1, W̃c1Ξ = Wc1 − Ŵc1Ξ, and σ̃c1Ξ = σc1Ξ − σ̂c1Ξ. In

contrast to [1], the dynamics (39) have the additional measurement error terms that result

from event-sampling.

Later, the tracking error dynamics given by (39) will be combined in an augmented

vector along with the angular velocity tracking error dynamics, where they will both consid-

ered together. Before doing that, however, the event-sampled control inputs corresponding

to the rotational torques and the angular velocity tracking errors must be considered.

ROTATIONAL TORQUES. First, consider the angular velocity tracking error dy-

namics given by

Jėω = fc2 (xc2) − u2 − τd2 − TT eΘ (40)

where fc2 (xc2) is an unknown function whose NN approximation is given by

f̂c2 = ŴT
c2σc2

(
VT

c2 x̂c2
)

= ŴT
c2σ̂c2 with an input x̂c2 =

[
1, ω̂T, ˙̂

ΩT
d, Θ̃

T
d, eT

Θ

]
. Next, the

rotational torque control input is given by [1]

u2 = f̂c2 + Kω êω

where Kω = diag {kω1, kω2, kω3} is a design matrix with all positive constants, and êω =

ω̂d − ω̂. The event-sampled control input u2Ξ injects explicit measurement errors into the

system through the êω term. Observing that

ω̂d = Ω̂d + T−1KΘeΘ + KΩ3T−1
Θ̃d

it can be seen that, here, a measurement error corresponding to the measured orientation

will be injected into the system. Using (31) it is found that

ω̂dΞ = ω̂d − T−1KΘΞΘ.
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Now, noting that ω̂Ξ = ω̂ + Ξ̂ω, it is revealed

u2Ξ = f̂c2Ξ + Kω êω − Kω

[
T−1KΘΞΘ − Ξ̂ω

]
(41)

where f̂c2Ξ is the event-sampled NN estimate given earlier and Ξ̂ω =
[
Ξ̂ωx, Ξ̂ωy, Ξ̂ωz

]T
is

the vector of measurement errors corresponding to the rotational velocity estimates. Next,

making use of the fact that êω = eω − ω̃d + ω̃, as well as adding and subtracting WT
c2σ̂cΞ,

the event sampled tracking error dynamics (40) can be rewritten as

JėωΞ = W̃T
c2Ξσ̂c2Ξ − Kωeω + Kωω̃d − Kωω̃ − TT eΘ + ξc2 − Kω

[
T−1KΘΞΘ − Ξ̂ω

]
(42)

where W̃T
c2Ξ = WT

c2 − ŴT
c2Ξ, ξc2 = εc2 + WT

c2σ̃cΞ − τd2, and σ̃c2Ξ = σc2 − σ̂c2Ξ.

Next, define the augmented vector, eSΞ =
[
eT
vΞ,e

T
ωΞ

]T
, with which the translation

and angular velocities can be considered together. With this, it becomes necessary to also

define J̄ = [I3×3,03×3;03×3,J], a constant matrix; KS = [Kv,03×3;03×3,Kω] > 0, a posi-

tive definite design matrix; SS (ω) = [S (ω) ,03×3;03×3,03×3], where eT
SΞSS (ω) eSΞ = 0;

T̄ = [03×6;03×3,T]; ēΘ =
[
01×3,eT

Θ

]T
; ˜̄ωd =

[
01×3,ω̃

T
d

]T
; ξc =

[
ξT

c1,ξ
T
c2

]T
; and Ad =

diag {Rd,I3×3}, with Rd = R (Θd). Additionally, f̃cΞ = W̃T
cΞσ̂cΞ with W̃cΞ = diag

{
W̃c1Ξ,W̃c2Ξ

}

and σ̂cΞ =
[
σ̂T

c1Ξ,σ̂
T
c2Ξ

]T
and Ṽ is the velocity tracking error vector defined in the observer

development. Finally, in order to make provisions for the effects of event-sampling, define

the augmented measurement error vector, Ξ̂SV =
[
Ξ̂T
v ,Ξ̂

T
ω

]T
. The augmented coefficient

matrix, KVΞ, corresponding to ΞSV can be found in terms of the gain matrices Kρ and Kω

as well as the elements of R and the gain kv3. With these, the tracking error dynamics

described by (39) and (42) can be rewritten with the single expression

J̄ ėSΞ = AT
d f̃cΞ − [KS + SS (ω)] eS − KSṼ − T̄T ēΘ + KS ˜̄ωd + ξc + KVΞΞ̂SV + KV

XΞΞSX (43)
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where ΞSX =

[
ΞT
ρ, Ξ

T
Θ

]T
is the augmented measurement error vector corresponding to

the position and orientation measurements and the coefficient matrix KV
XΞ accounts for the

Ξρ and ΞΘ from (39) and (42); the augmented coffecient matrix KV
XΞ can be found in terms

of gain matrices Kρ, KΘ, and Kω as well as the elements of T−1.

With these results, the final two theorems of this paper may be presented. In The-

orem 2, for the purposes of analysis, the time-sampled controller will be considered and

the explicit measurement errors that would be injected into the system by event-sampling

will be viewed as bounded inputs. In this way, the ISS-like behavior of the system will

be demonstrated. In Theorem 3, the assumption on the boundedness of the measurement

errors will be relaxed and it will be shown that the measurement errors are, in fact, bounded

with the implementation of an appropriately selected event-execution law.

4.4 EVENT-SAMPLED QUADROTOR UAV STABILITY

Theorem 2. (ISS-like Behavior of Quadrotor System): Consider the dynamics de-

scribed by (3). Let the NN observer be defined by (6) and let the observer NN weights

be updated at event-sampling instants with (10) with initial weights in a compact set; ad-

ditionally, let the event-sampled virtual controller be defined by (19) and let the virtual

control NN weights be updated at event-sampling instants with (20) with initial weights

in a compact set. Moreover, consider the event-sampled desired virtual control inputs and

actual control inputs, (26), (32), (37), and (41), respectively, that are designed to stabilize

the event-sampled tracking error dynamics given by (27), (33), and(43). Additionally, let

the NN weights corresponding to the actual control be updated at event-sampling instants

with

˙̂WcΞ = Fcσ̂cΞ [Ad êS]T − κc1FcŴcΞ, (44)

with initial weights in a compact set and where κc1 > 0 and Fc = FT
c > 0 are constant de-

sign parameter. Finally, let the measurement errors that would be injected into the system as

a result of intermittent sampling be bounded such that ‖ΞSX ‖ ≤ ΞX max, 


Ξ̂SX



 ≤ Ξ̂X max,
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Ξ̇SX



 ≤ Ξ̇X max, and 


Ξ̂SV




 ≤ Ξ̂V max. Then, there exist positive design constants Ko1,

Ko2, Ko3, KΩ1, KΩ2, and KΩ3, and positive-definite design matrices Kρ, KΘ, Kv, and Kω,

such that the observer estimation errors, X̃ and Ṽ , the NN weight estimation errors, W̃oΞ,

the desired virtual control estimation errors, Θ̃dΞ and ω̃dΞ, the virtual control NN estimation

errors, W̃ΩΞ, the actual control NN weight estimation errors, W̃cΞ, and the position, orien-

tation, and translational and rotational velocity tracking errors, eρ, eΘ, and eS, respectively,

are all locally UUB.

Proof. The positive-definite Lyapunov candidate that describes the complete system

is given by

VU AV Ξ = K2
S maxVoΞ + K2

S maxVΩΞ + VcΞ

where KS max is the maximum singular value of KS and

Vc =
1
2

eT
ρeρ +

1
2

eT
Θ

eΘ +
1
2

eT
S J̄eS +

1
2

tr
{
W̃T

c F−1
c W̃c

}
(45)

The first derivative of VU AV Ξ is given by V̇U AV Ξ = K2
S maxV̇oΞ + K2

S maxV̇ΩΞ + V̇cΞ. Recall

that V̇ΩΞ has no explicit measurement errors and were found to be upper bounded by (21).

Hence, the effects of event-sampling are considered by evaluating the derivative of (45),

which is given by V̇cΞ = eT
ρΞėρΞ + eT

ΘΞ
ėΘΞ + eT

SΞ J̄ ėSΞ + tr
{
W̃T

cΞF−1
c

˙̃WcΞ
}

and by combining

it with the results found for the observer in Theorem 1. Using the event-sampled tracking

error dynamics (27), (33), and (43), it is discovered that

V̇cΞ = − eT
ρKρeρ + eT

ρRev − eT
Θ

KΘeΘ − eT
S KSeS − eT

S KSṼ + eT
S KS ˜̄ωd + eT

S ξc + eT
ρKρΞρ

+ tr
{
W̃T

cΞ

[
F−1

c
˙̃WcΞ + σ̂cΞ [AdeS]T

] }
+ eT
Θ

KΘΞΘ + eT
S KV

XΞΞSX + eT
S KVΞΞ̂SV (46)

after simplification. Additionally, define eK =
[
eT
ρ,e

T
Θ

]T
, Π = [R,03×3;03×6], and KK =

[
Kρ,03×3;03×3,KΘ

]
. With these, along with the NN weight update law (44), V̇cΞ can be
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rewritten

V̇cΞ = − eT
K KK eK − eT

S KSeS + eT
KΠeS − eT

S KSṼ + eT
S KS ˜̄ωd + eT

S ξc + eT
K KKΞSX

+ tr
{
W̃T

cΞ

[
σ̂cΞ

[
˜̄ωd − Ṽ

]
AT

d + κc1Ŵc1Ξ
] }

+ eT
S KV

XΞΞSX + eT
S KVΞΞ̂SV . (47)

Next, note that ‖Π‖F < Πmax and ‖Wc‖F ≤ WMc for known constants Πmax and WMc,



 ˜̄ωd

 = ‖ω̃d ‖, and tr
{
W̃T

cΞ

[
Wc − W̃cΞ

] }
≤




W̃cΞ



F

WcΩ −



W̃cΞ





2

F
. Then, introduce the

minimum singular values corresponding to KK and KS, KKmin and KSmin, respectively.

Next, observe that ‖Ad ‖F ≤ AdM for a known constant AdM . Additionally, the com-

putable maximum singular values corresponding to KV
XΞ and KVΞ are denoted by KV

XΞmax

and KVΞmax, respectively. With these provisions in mind, by completion of squares with

respect to ‖eK ‖,



W̃cΞ




F
, and ‖eS‖, it is discovered that

V̇cΞ ≤ −
1
2

[KKmin − 1] ‖eK ‖
2 −

1
2

[
KSmin −

Π2
max

KKmin
− 4

]
‖eS‖

2 −
κc1

6



W̃cΞ





2

F

+
1
2


K2

S max + 3

[
AdM
√

Nc
]2

κc1






Ṽ 



2

+
1
2


K2

S max + 3

[
AdM
√

Nc
]2

κc1


‖ω̃dΞ‖

2

+
1
2

[
K2

Kmax +
[
KV

XΞmax

]2
]
‖ΞSX ‖

2 +
1
2

K2
VΞmax ‖ΞSV ‖

2 + ηc (48)

where ηc = κc1W 2
Mc/2 + ξ2

cM/ [2KSmin]. Now, the results from (48) can be combined

with the results found for the observer and virtual controller, (15) and (21), respectively.

Recalling the bounds on the measurement errors, it is revealed

V̇U AV Ξ ≤ −K2
SmaxKX̃




X̃



2
−

K2
Smax

2
KṼ




Ṽ 



2
− K2

SmaxKΘ̃d



Θ̃dΞ





2
−

K2
Smax

2
Kω̃d ‖ω̃dΞ‖

2

−
1
2

Kek ‖eK ‖
2 −

1
2

Kes ‖eS‖
2 − KWc




W̃cΞ





2

F
− K2

SmaxKWo



W̃oΞ





2

F

− K2
SmaxKWΩ




W̃ΩΞ





2

F
+ ηU AV + ΞU AV (49)
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where

KΘ̃d = KΩ1 − KΩ3 −
NΩ
κΩ1

, KX̃ =
[Ko1 − Ko3]

2
−

No

κo1
, Kek = KKmin − 1,

KṼ = Ko3 −
2No

κo1
− 2 −

3
[
AdM
√

Nc
]2

κc1K2
Smax

, Kω̃d = KΩ3 −
2NΩ
κΩ1
− 1 −

3
[
AdM
√

Nc
]2

κc1K2
Smax

,

KWo =
κo1

4
, KWΩ =

κΩ1

4
, KWc =

κc1

6
,

ηU AV = K2
Smaxηo + K2

SmaxηΩ + ηc, Kes = KSmin −
Π2

max

KKmin
− 4,

ΞU AV =
1
2

[
K2

Kmax +
[
KV

XΞmax

]2
]
Ξ

2
X max +

1
2

K2
VΞmaxΞ̂

2
V max

+
1
4

K2
S maxLσΞ4

X max +
1
4

K2
S maxLσΞ̂4

X max +
1
4

K2
S maxLσΞ̇4

X max. (50)

where the bounded term from the observer dynamics, ηo, is defined in Theorem 1. Then,

by choosing controller gains satisfying

Ko1 >Ko3 +
2No

κo1
Ko3 >

2No

κo1
+ 2 +

3
[
AdM
√

Nc
]2

κc1K2
Smax

KΩ1 >KΩ3 +
NΩ
KΩ1

KΩ3 >
2NΩ
κΩ1

+ 1 +
3

[
AdM
√

Nc
]2

κc1K2
Smax

KKmin >1 KSmin >
Π2

max

KKmin
+ 4 (51)

the first nine terms in (49) are discovered to be less than zero. It follows that V̇U AV Ξ is

less than zero when controller gains are selected according to (51) and when the following

inequalities hold:




X̃


 >
√

BU AV

K2
SmaxKX̃

or 


Θ̃dΞ



 >

√
BU AV

K2
SmaxKΘ̃d

or ‖eK ‖ >

√
2BU AV

Kek
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or




Ṽ 


 >
√

2BU AV

K2
SmaxKṼ

or ‖ω̃dΞ‖ >

√
2BU AV

K2
SmaxKω̃d

or ‖eS‖ >

√
2BU AV

Kes

or




W̃oΞ



F

>

√
BU AV

KWoK2
Smax

or 


W̃ΩΞ



F

>

√
BU AV

KWΩK2
Smax

or 


W̃cΞ



F

>

√
BU AV

KWc
(52)

where BU AV = ηU AV + ΞU AV . It can, therefore, be concluded that V̇U AV Ξ is less than zero

[15] and that all signals in the closed-loop are locally UUB.

Remark 4. By defining the augmented vector

ζ =
[


X̃


 ,




Ṽ 


 ,



Θ̃dΞ




 , ‖ω̃dΞ‖ , ‖eK ‖ , ‖eS‖ ,



W̃oΞ




F
,




W̃ΩΞ



F
,




W̃cΞ



F

]T
,

it is easy to see how (49) can be written in the form V̇
(
ζ
)
< −∆

(
‖ζ ‖

)
+Λ

(
‖ηU AV ‖ , ‖ΞU AV ‖

)
,

where the positive part, Λ, is viewed as an input to the closed-loop system and is a function

of bounded measurement and NN reconstruction errors. It can, therefore, be concluded

that the continuously sampled, closed-loop system generates a local ISS-like Lyapunov

function. Together with the assumption that the system (3) is locally Lipschitz, this re-

sult satisfies all conditions necessary to show that there exists positive, nonzero inter-event

periods [6]. This provision is necessary in order to ensure the avoidance of Zeno behavior.

As previously mentioned, the results of Theorem 2 are contingent on the bound-

edness of the event-sampling measurement errors. However, in order to implement the

event-sampled controller, these results, by themselves, are not sufficient. In addition, it is

necessary to demonstrate the boundedness of the measurement errors. The following theo-

rem addresses the boundedness of measurement errors by considering two cases: The first

case analyzes the dynamics and influences ofV̇cΞ and V̇oΞ when the measurement errors are
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zero and the second case considers the system with nonzero measurement errors. It is in

the analysis of the second case where an event-execution law is designed.

Theorem 3. (Boundedness of Measurement Errors): Consider the dynamics de-

scribed by (3). Let the NN observer be defined by (6) and let the observer NN weights

be updated at event-sampling instants with (10) with initial weights in a compact set; ad-

ditionally, let the event-sampled virtual controller be defined by (19) and let the virtual

control NN weights be updated at event-sampling instants with (20) with initial weights

in a compact set. Moreover, consider the event-sampled desired virtual control inputs and

actual control inputs, (26), (32), (37), and (41), respectively, that are designed to stabilize

the event-sampled tracking error dynamics given by (27), (33), and(43). Furthermore, let

the NN weights corresponding to the actual control be updated at event-sampling instants

with (44) with initial weights in a compact set. Finally, let the event-sampling measure-

ment errors satisfy the condition ‖ΞXU AV ‖ + ‖ΞVU AV ‖ ≤ γSX µSX ‖eK ‖
2 + γSV µSV ‖eS‖

2,

where ΞXU AV and ΞVU AV are augmented measurement error vectors corresponding to the

quadrotor’s measured output and its estimated velocity, respectively; eK and eS are the

augmented tracking error vectors corresponding to the quadrotor’s measured output and its

estimated velocity; and 0 < γSX, γSV, µSX, µSV < 1 are all design constants. Then, there ex-

ist positive design constants Ko1, Ko2, Ko3, KΩ1, KΩ2, and KΩ3, and positive-definite design

matrices Kρ, KΘ, Kv, and Kω, such that the observer estimation errors, X̃ and Ṽ , the NN

weight estimation errors, W̃oΞ, the desired virtual control estimation errors, Θ̃dΞ and ω̃dΞ,

the virtual control NN estimation errors, W̃ΩΞ, the actual control NN weight estimation

errors, W̃cΞ, and the position, orientation, and translational and rotational velocity tracking

errors, eρ, eΘ, and eS, respectively, are all locally UUB. Moreover, given an appropriately

designed event-execution law, the measurement errors that result from event-sampling re-

main bounded for all time.

Proof. The two cases for this proof are as follows:
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Case 1. First, consider the definitions given in (50). When the measurement errors

are taken to be zero, only a few modifications need to be made in (50) for this first case.

At the event-sampling instants, the last three terms in (47) are absent and, as a result,

it becomes unnecessary to invoke Young’s inequality to separate the measurement errors

from the tracking errors. As a result, the coefficients corresponding the the tracking errors

become Kek = KKmin and Kes = KSmin −
Π2

max
KKmin

− 2. With these considerations in mind,

observe that

V̇cΞ ≤ −
1
2

Kek ‖eK ‖
2 −

1
2

Kes ‖eS‖
2 − KWc




W̃cΞ





2

F
+

1
2


K2

S max + 3

[
AdM
√

Nc
]2

κc1






Ṽ 



2

+
1
2


K2

S max + 3

[
AdM
√

Nc
]2

κc1


‖ω̃dΞ‖

2 + ηc. (53)

Additionally, incorporating the results from Lemma 1, Case 1, the terms corresponding to

the observer need to be updated with KṼ = Ko3−[2No] /κo1−1−
[
3

[
AdM
√

Nc
]2

]
/

[
κc1K2

S max

]

and ηo = κo1W 2
Mo +ξ2

1M/ [2 [Ko1 − Ko3]]+ξ2
2M/ [2Ko3]. Finally, the third change that needs

to be made is in setting ΞU AV = 0. With the changes in the coefficients (50) that are made

for this case, the closed-loop dynamics can be expressed with the same expression given

by (49). Similarly, the bounds on the control gains remain identical to (51) provided that

the condition on Ko3 as well as the last two conditions are altered, giving a new set of

conditions on the control gains

Ko1 >Ko3 +
2No

κo1
Ko3 >

2No

κo1
+ 1 +

3
[
AdM
√

Nc
]2

κc1K2
Smax

KΩ1 >KΩ3 +
NΩ
KΩ1

KΩ3 >
2NΩ
κΩ1

+ 1 +
3

[
AdM
√

Nc
]2

κc1K2
Smax

KKmin >0 KSmin >
Π2

max

KKmin
+ 2 (54)
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With all of these modifications made, and provided that the inequalities (52) hold, it can

be concluded that V̇U AV Ξ is less than zero and that all signals in the closed-loop are locally

UUB [15].

Case 2. Now, consider the inter-event period, t ∈ [tl, tl+1), during which time there

is a nonzero event-sampling error, but with constant NN weights; in other words, in this

case, Ξ (t) , 0 and ˙̂W = 0 for all NN weights. The analyses corresponding to the observer

and the virtual control stability with constant NN weight estimates are easy to perform. For

the observer dynamics, the results from Lemma 1, Case 2 can be used here. For the virtual

controller dynamics, it is discovered

V̇ΩΞ ≤ − [KΩ1 − KΩ3] 


Θ̃d





2
−

1
2

[KΩ3 − 1] ‖ω̃d ‖
2 +

NΩ
2




W̃Ω





2

F
+ ηΩ (55)

where ηΩ = ξ2
ΩM/ [2KΩ3] is a constant bounded term. Next, revisiting (46) with ˙̃WcΞ = 0,

it is found that

V̇cΞ = − eT
ρKρeρ + eT

ρRev − eT
Θ

KΘeΘ − eT
S KSeS − eT

S KSṼ + eT
S KS ˜̄ωd + eT

ρKρΞρ

+ eT
S ξc + tr

{
W̃T

cΞσ̂cΞ [AdeS]T
}

+ eT
Θ

KΘΞΘ + eT
S KV

XΞΞSX + eT
S KVΞΞ̂SV . (56)

Then, by using properties of the matrix trace operation and completion of squares with

respect to ‖eK ‖ and ‖eS‖, it is revealed

V̇cΞ ≤ −
1
2

[KKmin − 1] ‖eK ‖
2 −

1
2

[
KSmin −

Π2
max

KKmin
−

[
AdM

√
Nc

]2
− 4

]
‖eS‖

2

+
1
2




W̃cΞ





2
+

1
2

K2
S max




Ṽ 



2

+
1
2

K2
S max ‖ω̃dΞ‖

2 +
1
2

[
K2

Kmax +
[
KV

XΞmax

]2
]
‖ΞSX ‖

2

+
1
2

K2
VΞmax




Ξ̂SV





2
+ ηc (57)
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where ηc = ξ2
Mc/ [2KSmin] is a constant bounded term. It is noted here that, since the NN

weight estimates are held constant, 


W̃Ξ



 = ‖W ‖ − 


ŴΞ




 remains bounded subject to the

weight estimates at the previous event, ŴΞ (tl ) for all NN weights.

It is at this point that the event-execution law is derived. Recall that the measure-

ment errors from Lemma 1, Case 2 still need to be addressed. For clarity, the measurement

errors from the observer are shown together with the measurement errors in (57) in the

following expression

ΞU AV =
1
2

[
K2

Kmax +
[
KV

XΞmax

]2
]
‖ΞSX ‖

2 +
1
4

K2
S maxLσ ‖ΞSX ‖

4

+
1
4

K2
S maxLσ




Ξ̂SX





4
+

1
2

K2
VΞmax




Ξ̂SV





2
+

1
4

K2
S maxLσ




Ξ̇SV





4
. (58)

For sake of brevity, (58) will be rearranged so that corresponding measurement errors can

be grouped together. Therefore, define CX =

[
K2

Kmax +
[
KV

XΞmax

]2
]
/2, CV = K2

VΞmax/2,

CL = K2
S maxLσ/4, ΞXU AV =

[
‖ΞSX ‖

2 , ‖ΞSX ‖
4 ,




Ξ̂SX





4
]
, andΞVU AV =

[


Ξ̂SV





2
,




Ξ̇SV





4
]
.

With these, (58) can be rewritten with

ΞU AV ≤ ‖[CX,CL,CL]‖ ‖ΞXU AV ‖ + ‖[CV,CL]‖ ‖ΞVU AV ‖ . (59)

Next, the execution law is designed such that the measurement errors satisfy the condition

‖ΞXU AV ‖ + ‖ΞVU AV ‖ ≤ γSX µSX ‖eK ‖
2 + γSV µSV ‖eS‖

2 (60)

with 0 < γSX, γSV < 1 constant design parameters and the terms µSX and µSV are chosen

such that the number of terms in V̇oΞ + V̇cΞ is reduced. To this effect, observe that

‖[CX,CL,CL]‖ ‖ΞXU AV ‖ + ‖[CV,CL]‖ ‖ΞVU AV ‖

≤ ‖[CX,CL,CL]‖ γSX µSX ‖eK ‖
2 + ‖[CV,CL]‖ γSV µSV ‖eS‖

2 (61)
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Then, selecting

µSX =
1

‖[CX,CL,CL]‖
µSV =

1
‖[CV,CL]‖

(62)

the expression (61) can be rewritten

‖[CX,CL,CL]‖ ‖ΞXU AV ‖ + ‖[CV,CL]‖ ‖ΞVU AV ‖ ≤ γSX ‖eK ‖
2 + γSV ‖eS‖

2 . (63)

Finally, combining (57) and (63) yields

V̇cΞ ≤ −
1
2

[
KKmin − γSX − 1

]
‖eK ‖

2

−
1
2

[
KSmin −

Π2
max

KKmin
−

[
AdM

√
Nc

]2
− γSV − 4

]
‖eS‖

2

+
1
2




W̃cΞ





2
+

1
2

K2
S max




Ṽ 



2

+
1
2

K2
S max ‖ω̃dΞ‖

2 + ηc (64)

Note that, for the expression found in (64), the measurement errors from the observer in

Lemma 1, Case 2 have been incorporated in the design of the event-execution law. As a

final step, the upper bound on V̇cΞ (64) is combined with the upper bounds (17) and (55)

corresponding to the observer and the virtual controller, respectively. In an effort to follow

the approach that was taken previously, begin by updating the parameters (50) with

KΘ̃d = KΩ1 − KΩ3, KX̃ =
[Ko1 − Ko3]

2
, Kek = KKmin − γSX − 1,

Kes = KSmin −
Π2

max

KKmin
−

[
AdM

√
Nc

]2
− γSV − 4, KṼ = Ko3 − 3, Kω̃d = KΩ3 − 2,

KWo = −
No

2
, KWΩ = −

NΩ
2
, KWc = −

1
2
,

ηU AV = K2
Smaxηo + K2

SmaxηΩ + ηc, ΞU AV = 0. (65)
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One important remark that will be made here is that, with KWo = −
No

2 and KWΩ = −
NΩ
2 , the

bounds in (52) corresponding to the observer and virtual controller NN weight estimates

cannot be evaluated and should be disregarded; however, this is not a concern because these

terms are altogether absent from the expression for V̇U AV Ξ in Case 2. Due to the fact that

all NN weight estimates are known to remain bounded during inter-event periods subject

to their values at the previous event-sampling instants, the absence of these terms is of no

concern.

With the updated parameters (65), the closed-loop dynamics of the UAV system

during inter-event periods are described by (49). Then, by selecting controller gains satis-

fying the conditions

Ko1 > Ko3, Ko3 > 3, KΩ1 > KΩ3, KΩ3 > 2,

KKmin > γSX + 1, KSmin >
Π2

max

KKmin
+ γSV + 4, (66)

it can be shown that the first nine terms in V̇U AV Ξ are less then zero when the inequalities

(52) are satisfied, provided that the definitions given by (65) are assumed.

In Case 1, the stability of the system was demonstrated at moments when the mea-

surement errors are zero and when the NN’s are updated and it was shown that all signals

remain bounded. Then, in Case 2, it was shown how all signals in the system remain

bounded during periods of time when there are nonzero measurement errors and when the

NN weight estimates are held. In connecting these two cases, one may consider the dy-

namics that exist at the moments of transition. In other words, the results from Case 1 only

show that the dynamics that exist at a single event-sampling instant are bounded; however,

by considering “jump dynamics” that may exist in the transitions in the dynamics described
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by Cases 1 and 2, it may also be shown that these bounded effects do not accumulate over

time and, ultimately, result in instability.

This can be accomplished by extending the results for Case 2 and by considering,

not only the estimation error and tracking error dynamics, but also the dynamics of the

NN weight estimation errors at event-sampling instants. Since the observer estimation

errors and tracking errors have already been shown to be stable for Case 2, it is sufficient

to consider discritized NN weight update laws and to demonstrate that they, too, remain

bounded in the jump dynamics for all time [16]. As an additional remark, note that, in Case

2, the results were given in terms of the ideal and estimated NN weights; however, with the

results summarized here, it is easy to show that the bounds on the NN weight estimation

errors are decreasing. Hence, the bounds that exist for the observer estimation errors, the

tracking errors, and the NN weight estimation errors are decreasing during the inter-event

periods as well as in the jump dynamics.

Finally, the results from Cases 1 and 2 are combined. By considering the intersec-

tion of the conditions on the controller gains (54) and (66), from Cases 1 and 2, respec-

tively, and by choosing coefficients from Case 1 and Case 2 such that the bounds (52) are

maximized, it can easily be shown that V̇U AV Ξ is less than zero and, hence, all signals in

the closed-loop are locally UUB [15] for all time. Therefore, it can be concluded that,

by designing the event-execution law according to (60) and (62), the measurement errors

introduced by event-sampling remain bounded for all time.

With the derivations complete, simulation results may now be presented. The effec-

tiveness of the proposed event-sampled controller will be illustrated and its performance

will be compared to that of its time-sampled counterpart.
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5 RESULTS AND DISCUSSION

5.1 SIMULATION RESULTS

The objective of the simulations is to illustrate the effects of event-sampling. With

this in mind, simulations were performed using the proposed event-sampled controller as

well as its time-sampled counterpart presented in [1]. For sake of brevity, only figures for

event-sampled results will be presented. In order to evaluate the controller’s performance,

the averages of the control inputs, tracking errors, and observer estimation errors for both

time- and event-sampled controllers will be summarized. Additionally, the effects of var-

rying the parameters γSX and γSV will be considered.

The simulations performed in [1] took into account disturbances such as unknown

aerodynamic effects, blade flapping, and signal noise. Moreover, it introduced a parameter,

α, which describes how thrust is redirected as a result of, in part, wind conditions; by

taking this parameter to be initially zero and then suddenly increasing it to 20◦ at t = 20 s,

the effects of an external influence on the system, such as a gust of wind, can be illustrated.

All of the considerations that were taken in [1] are taken here.

In general, event-triggering mechanisms for strict-feedback systems can be imple-

mented in numerous ways. In this work, the event-sampling scheme employed is one

such that the measurement errors and tracking errors corresponding to the UAV’s po-

sition and velocity are combined and the combinations become the basis by which an

event occurs; specifically, an event takes place when there is a failure in the condition

‖ΞXU AV ‖
2 + ‖ΞVU AV ‖

2 ≤ γSX µSX ‖eK ‖
2 + γSV µSV ‖eS‖

2.

Identical simulation parameters and controller gains were used in both simulations.

The gains selected in [1] were used here with the following exceptions: The orientation

control gains were chosen to be KΘ = diag {40,40,40} and the angular velocity control

gains were selected as Kω = diag {35,35,35}. Additionally, the desired trajectory remained

identical to what was considered in [1], with the only changes being ωx = ωy = 0.06π,



94

rx = ry = 0.1, rz = 0.5, and ωψ = 0.03π. Finally, for the results that are illustrated in the

figures, the event-execution parameters were chosen to be γSX = γSV = 0.95.

The event-sampled quadrotor UAV trajectory is shown in Figure 5.1. The effects of

the sudden disturbance at t = 20 s can be clearly seen in the UAV position error. Although

the effects of the disturbances are clearly visible, the controller’s ability to compensate and

recover is also evident. The recovery, however, is not without expense: Figure 5.2 clearly

shows an increase in the total thrust and the rotational torque control inputs when the value

of α jumps from 0◦ to 20◦.

The results shown in Figures 5.1 and 5.2 demonstrate the stability of the event-

sampled controller. However, with regards to the effects of event-sampling, these results

are not tremendously revealing. In an effort to illustrate these effects, consider the results

shown in Figure 5.3. First, the effectiveness of the event-execution law is demonstrated by

showing that the measurement errors are upper bounded by the adaptive threshold. Note

the restricted range of simulated time that is displayed: Following the initial spike in the

threshold, its magnitude very quickly drops and remains close to zero for the remainder of

the simulation. Next, the occurence of events is shown. By normalizing the total number of

available samples on the x−axis to one and by scaling the number of events with an equiv-

alent factor, it can be seen that about 60% of the total samples are event-sampling instants.

In other words, the remaining 40% of the samples are instants when it was unnecessary to

update the controller. These results can be summarized by stating that the implementation

of the event-sampled controller yielded a 40% reduction in the amount of sampling instants

used by the controller.

EFFECTS OF EVENT-SAMPLING. As a final assessment on the effectiveness of

event-sampling, consider the information provided in Tables 5.1 and 5.2. Firstly, the effects

of changing the event-execution parameters, γSX and γSV , are explored and, secondly, the

relationship between the number of events and controller performance is assessed. Whereas

previous results spoke only to the stability of the controller, the information in Tables 5.1
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and 5.2 will allow the perfomance of the event-sampled controller to be compared to that

of the time-sampled controller.

Before considering the data, a few remarks will be made concerning the notations

in the tables. Firstly, the selection of γSX = γSV = 0 is equivalent to implementing the

time-sampled controller; hence, the first row will serve as a standard to which the event-

sampled cases can be compared. Secondly, the number of events that occur out of the total

available samples is given by Γ =
(
Number o f Events

)
/
(
Total Samples Available

)
;

for the time-sampled case, the value for this parameter is unity. Thirdly, as a basis for com-

parisons, the mean squared errors, MSE (•), are considered for the tracking and observer

estimation errors corresponding to the position, orientation, and translational and angular

velocities. The values summarized in Table 5.1 are calculated with ℵ j =
∑

i=x,y,z
MSE

(
ji
)

for

j = eρ, eΘ, ev, eω, ρ̃, Θ̃, ṽ, ω̃. Finally, in order to analyze control efforts under the influence

of event-sampling, the means of the control inputs, ū, are considered in Table 5.2.

First, observe that the number of events increases as γSX and γSV are increased; in

other words, the number of computations executed by the controller decreases with increas-

ing γ’s. This behaviour is explained by noting that, with smaller γ’s, the upper bounding

threshold on the measurement errors is decreased; with smaller thresholds, it takes less

amount of time for the measurement errors to grow, reach its threshold, and trigger an

event. If the threshold is made zero by selecting γSX = γSV = 0, an event is triggered every

instant that finite measurement errors exist and, practically, the event-sampled controller

exhibits time-sampled behaviour.

Next, concerning tracking errors, there appears to be marginal differences in the

mean squared errors corresponding the position and orientation. With respect to transla-

tional and angular velocities, it is clear that the performance of the time-sampled controller

is better; this, however, is not to say that the event-sampled controller performs poorly in

these areas. As a matter of fact, given the exceptional position and orientation tracking

error performances, it would seem that the effects of event-sampling on the velocities are
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inconsequential. These conclusions can be very easily made for the observer estimation

errors as well. Especially in the case of the observer estimation errors corresponding to

translational velocity, it appears that event-sampling has very little effect. Finally, it can be

seen that, with event-sampling, the amount of control effort that is needed does not change

substantially. It is evident that, especially with the rotational torques, that greater control

effort is required, but the additional amount is insignificant relative to the total.

The effects of event-sampling are summarized by the information in Tables 5.1 and

5.2: The use of event-sampling gives flexibility in the amount of computations executed

by the controller; moreover, while the reduction in computations does come at a cost with

regards to performance, the fidelity of the controller is not significantly compromised.

Table 5.1 Effects of Event-Sampling on Mean Squared Errors

γSX, γSV Γ ℵeρ ℵeΘ ℵev ℵeω ℵρ̃ ℵΘ̃ ℵṽ ℵω̃

0 1 0.0026 0.0019 0.2608 6.094 3.29 × 10−4 0.0029 0.0033 0.3117

0.01 0.8050 0.0293 0.0218 2.936 95.93 2.89 × 10−4 0.0127 0.0040 3.787

0.1 0.7003 0.0249 0.0236 2.448 92.69 3.06 × 10−4 0.0106 0.0040 2.470

0.5 0.6254 0.0152 0.0189 1.516 48.72 3.35 × 10−4 0.0081 0.0042 1.467

0.95 0.5705 0.0155 0.0252 1.630 38.97 3.08 × 10−4 0.0103 0.0042 1.115

Table 5.2 Effects of Event-Sampling on Control Effort Means

γSX, γSV ū1 ū21 ū22 ū23

0 9.430 0.7554 1.014 1.155

0.01 9.430 0.7554 1.015 1.136

0.1 9.426 0.6790 1.005 1.089

0.5 9.425 0.6090 0.9772 1.002

0.95 9.426 0.6618 0.9345 0.9668



97

−15
−10

−5
0

5
10

−20

−10

0

10
0

2

4

6

8

10

12

X(m)

Quadrotor Trajectory

Y(m)

Z
(m

)

Actual Desired Observer Estimate

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (sec)

UAV Position Error

‖e
ρ
‖ Ξ

Fig. 5.1 UAV Trajectory Tracking



98

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

u
1
Ξ
(N

)

Total Thrust Control Input

Time (sec)

0 5 10 15 20 25 30

−20

0

20

u
2
1
Ξ
(N

m
)

Rotational Torque Control Inputs

0 5 10 15 20 25 30

−20

0

20

u
2
2
Ξ
(N

m
)

0 5 10 15 20 25 30

−20

0

20

u
2
3
Ξ
(N

m
)

Time (sec)

Fig. 5.2 Control Inputs



99

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

0.5

1

1.5

Time (sec)

E
v
en
t
E
x
ec
u
ti
o
n
s

Effectiveness of Event-Execution Law

Adaptive Threshold

Measurement Error

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Total Samples Available

O
cc
u
rr
en

ce
o
f
E
v
en
ts

Occurrence of Events out of Available Samples

Fig. 5.3 Effectiveness of Event-Sampling



100

5.2 HARDWARE IMPLEMENTATION

In order to fully evaluate the effects of event-sampling in the control of a quadrotor,

the notions presented in this paper were implemented in hardware. Rather than building a

quadrotor from scratch, an Iris+ quadrotor was purchased from 3D Robotics – this decision

was made in order to save in hardware development time. The Iris+ utilizes a Pixhawk

controller which is an industry standard autopilot that supports the PX4 flight stack and is

used in many UAV applications. The Iris+ can be seen alongside the Pixhawk in Fig. 5.4.

The versatility of the Pixhawk controller allows for minimal hardware development.

The controller’s Inertial Measurement Unit (IMU) comes equipped with a gyroscope, ac-

celerometer, magnetometer, and a barometer; with these sensors, it is possible to measure,

among other things, the quadrotor’s attitude as well as it’s angular velocity. Moreover, the

interfaces supported by the Pixhawk include UART, CAN, I2C, and SPI; these options al-

low for a Global Positioning System (GPS) to provide information on the quadrotor’s coor-

dinate position. Furthermore, the controller’s PWM outputs are used to apply the generated

control inputs to the motors. Additionally, an SD card slot provides an option for easy data

logging during flight. Finally, firmware development for the Pixhawk was expedited by

making use of the Pilot Support Package (PSP) published by the Pilot Engineering Group

from MathWorks. The PSP provides Simulink blocks that access the Pixhawk’s sensors,

interface ports, and PWM outputs. The measurements can be used in custom algorithms,

which are designed using standard Simulink blocks, and then applied to the actuators. Once

the controller is created in a Simulink project, MathWorks’s Embedded Coder toolbox is

utilized to generate code in C and to deploy the firmware onto the Pixhawk. A high-level

view of the Simulink project can be seen in Fig. 5.5.
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Fig. 5.4 Iris+ Quadrotor and Pixhawk Controller
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Fig. 5.5 Simulink Project for Quadrotor

Observing Fig. 5.5, inputs are read on the left, the controller is implemeneted in

the center-block, and outputs are applied and data is logged on the right. The inputs from

the RC controller are 16-bit unsigned integers that range in value from 1000 to 2000; in-

side the main controller block, these values are normalized to be between -1 and +1. The

sensor measurements corresponding to the vehicle’s attitude are given in radians and the

measurements corresponding to its angular velocity are in radians per second. Inside the

controller block, the input data is used to generate control inputs. Then, using a standard

motor-mixing formula, the control inputs are converted to four PWM signals; these PWM

signals are the output of the main controller block and are applied to the motors. With

event-sampling, the rotational torques that are used to calculate the PWM signals which

are applied to the motors are held until there is an event; when an event occurs, the con-

troller is updated with the most recent measurements and, ultimately, the PWM values are

recalculated and applied to the motors until the next event occurs.

For simplicity, instead of implementing the autonomous NN-based controller which

was presented in this paper, an event-based PID controller was evaluated. The approach to
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deriving a suitable event-execution law for the PID controller is identical to what has been

presented in this work. However, since the desired attitude and thrust of the vehicle are

known inputs from the RC transmitter, the derivations became much simpler. Additionally,

the control objective was simplified to only track roll, pitch, and yaw trajectories and not to

track a specified coordinate position trajectory. In order to accomplish this, the only sensor

measurements that are necessary are those corresponding to the quadrotor’s orientation and

rotational velocity; both of these measurements are readily available from the Pixhawk’s

IMU.

Since the controller relies on the vehicle’s orientation and rotational velocity, the in-

troduction of event-sampling introduces measurement errors corresponding to those sensor

readings. Using the Lyapunov-based approach presented in this paper, an event-execution

law was derived in order to address these measurement errors. Begin by defining the

positive-definite proportional, integral, and derivative gain matrices,

KPΘ = diag
{
kPϕ, kPθ, kPψ

}
, KIΘ = diag

{
kIϕ, kIθ, kIψ

}
, and KDΘ = diag

{
kDϕ, kDθ, kDψ

}
,

corresponding to the PID controller used to stabilize the vehicle’s attitude. Moreover, the

gain matrices corresponding to the PID controller which stabilizes the angular rates are

defined as KPω = diag
{
kPωx, kPωy, kPωz

}
, KIω = diag

{
kIωx, kIωy, kIωz

}
, and KDω =

diag
{
kDωx, kDωy, kDωz

}
. Next, define the augmented vectors EΘ =

[
Ξ2
Θ
,

[∫ t
0 ΞΘ dτ

]2
]

and Eω =

[
Ξ2
ω,

[∫ t
0 Ξω dτ

]2
]

corresponding to orientation and rotational velocity measure-

ment errors, respectively. The coefficient vectors corresponding to these measurement error

vectors are CΘ = [TM/ [1 + 2 ‖KDΘ‖ Tm]]2
[
‖KPΘ‖

2 , ‖KIΘ‖
2

]
and

Cω = [1 + 2TM ‖KDω‖]2
[
‖KPω‖

2 , ‖KIω‖
2

]
, where TM and Tm are the maximum and min-

imum singular values of the rotation translational matrix, T , respectively. With these, the

event-execution law is given by

‖EΘ‖ + ‖Eω‖ ≤ γΘµΘ ‖eΘ‖2 + γωµω ‖eω‖2
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where 0 < γΘ, γω < 1 are design parameters and µΘ and µω are chosen to be µΘ = 1/ ‖CΘ‖

and µω = 1/ ‖Cω‖.

In the results that follow, gains were selected as KPΘ = diag {4, 3, 3}, KIΘ =

diag {0.2, 0.8, 0.6}, KDΘ = diag {0.01, 0.01, 0.01}, KPω = diag {0.3, 0.4, 0.2},

KIω = diag {0.1, 0.2, 0.3}, and KDω = diag {0.01, 0.01, 0.02} and the event-execution pa-

rameters were chosen to be γΘ = γω = 0.008. Figure 5.6 shows the measured and desired

roll, pitch, and yaw and it can be seen that the tracking objective was met. Next, Fig. 5.7

illustrates the effectiveness of the proposed event-execution law. Finally, the effectiveness

of event-sampling is shown in Fig. 5.8, where it can be seen that, out of a total of 8,000

samples, the control objectives were accomplished with only 5,500 samples.
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Finally, by averaging the results from several flights, the information comparing the

effects of the event-execution parameters on the number of events and on the mean squared

errors corresponding to the orientation tracking errors can be seen in Table 5.3. It can be

seen that by increasing γΘ and γω, the number of events is reduced; consequently, with

fewer events, in general, the tracking performance suffers. These results coincide with the

simulation results.

Table 5.3 Effects of Event-Sampling on Number of Events and Mean Squared Errors

γΘ, γω Γ ℵeΘ

0.001 0.8403 0.0068

0.008 0.7588 0.0263

0.01 0.6158 0.0105

0.03 0.5487 0.0525

0.05 0.1522 0.0520
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6 CONCLUSIONS

An event-sampled output-feedback NN controller was developed for an underac-

tuated quadrotor UAV system. Additionally, the overall stability of the quadrotor system

was demonstrated in the presence of measurement errors introduced by event-sampling.

Finally, the effectiveness of the event-sampled controller was discussed with simulations.

The event-sampled controller was found to be effective in reducing the number of computa-

tions while maintaining stable performance. Not only was the controller shown to be stable,

it was found to perform comparatively well with respect to its time-sampled counterpart.

Based on the simulation results, the engineering decision involved with the implementa-

tion of event-sampling became apparent: In order to improve the computational efficiency,

it becomes necessary to sacrifice tracking and estimation performance. However, depend-

ing on how critical performance is, this sacrifice may not be one that is substantial. In the

end, the proposed event-sampled controller was found to be effective in providing a greater

degree of engineering flexibility.
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[15] F. Lewis, S. Jagannathan and A. Yeşildirek, Neural Network Control of Robot Manip-
ulators and Nonlinear Systems. London: Taylor & Francis, 1999.

[16] X. Zhong and H. He, "An Event-Triggered ADP Control Approach for Continuous-
Time System With Unknown Internal States," IEEE Trans. Cybern., pp. 1-12, 2016.



110

SECTION

2 CONCLUSIONS AND FUTURE WORK

In this thesis, event-sampling was incorporated in two different contexts. First,

a general strict-feedback system having unknown dynamics was considered and, second,

an output-feedback quadrotor UAV controller that was developed in a previous work was

revisited. In both these scenarios, event-sampling was considered in the context of neural

networks that were implemented in order to compensate for unknown nonlinearities. More-

over, an assumption on full knowledge of the state-vector was relaxed by incorporating NN

observers.

In the first scenario, the standard backstepping approach was used. Each subsystem

was considered separately and NNs were introduced to compensate for nonlinear uncer-

tainties. First, Lyapunov theory was used to show that the system exhibited ISS-like be-

haviour with respect to bounded measurement errors. Then, it was shown how Lyapunov

analysis can be used to design an event-execution law that guarantees the boundedness

of measurement errors introduced by event-sampling. As a corollary, the derivation for

a state-feedback controller was also summarized. The effectivness of both controllers was

demonstrated with simulation results. As an assessment on the effects of periodic sampling,

simulations were performed with the proposed event-sampled controllers as well as their

time-sampled counterparts. It was found that, with appropriately selected control gains and

event-execution parameters, the number of computations could be substantially reduced

without having to sacrifice controller fidelity with respect to tracking performance as well

as control effort.

Subsequently, an output-feedback quadrotor UAV controller was revisited. Similar

to the first case, Lyapunov theory was first used to demonstrate that the system exhibited

ISS-like behavior with respect to bounded measurement errors. Next, the derivation for

an event-execution law was demonstrated. Finally, the effectiveness of the proposed event-

sampled controller was demonstrated with simulations. It was found that the controller was
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able to achieve performance very comparable to that of its time-sampled counterpart all the

while reducing the number of computations. To reinforce the notion of event-sampling in a

quadrotor control application, an event-based PID controller was implemented in hardware

and the results were found to support the theoretical conclusions.

Future work may include the extension of the concepts presented in this work for

several different contexts. With the considerations given to the strict-feedback system pre-

sented in the first chapter, the conclusions on event-sampling will be able to be applied

to a number of applications. Furthermore, the results in this work may extended by con-

sidering multi-agent systems. The incorporation of event-sampling in formation control

applications may present interesting results in the computational reductions with regards to

individual robots as well as to the whole system. Finally, there are still many opportunities

to implement the growing number of theoretical results in hardware and to demonstrate

the effectiveness of event-sampling in real-world applications. In this work, an event-

based quadrotor PID controller was implemented in hardware, however, the implemen-

tation of the proposed NN-based controller has yet to be done and the demonstration of

event-sampled autonomous flight still needs to be accomplished.
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