
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Fall 2016 

Analysis of VA Sacramento Medical Center capacity using Analysis of VA Sacramento Medical Center capacity using 

discrete event simulation discrete event simulation 

Tatiana Alejandra Cardona 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Cardona, Tatiana Alejandra, "Analysis of VA Sacramento Medical Center capacity using discrete event 
simulation" (2016). Masters Theses. 7593. 
https://scholarsmine.mst.edu/masters_theses/7593 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7593&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7593?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7593&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


ANALYSIS OF VA SACRAMENTO MEDICAL CENTER CAPACITY USING 

DISCRETE EVENT SIMULATION 

by 

TATIANA ALEJANDRA CARDONA SEPULVEDA 

A THESIS 

Presented to the Faculty of the Graduate School of the 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

In Partial Fulfillment of the Requirements for the Degree 

MASTER OF SCIENCE IN ENGINEERING MANAGEMENT 

2016 

Approved by 

Dr. Ivan Guardiola, Advisor 

Dr. Elizabeth A. Cudney 

Dr. Ruwen Qin 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

iii 

ABSTRACT 

The development of simulation models continues to provide effective solutions to 

a wide range of problems in healthcare systems. In the research presented within this 

thesis is the development of a representative and validated discrete event simulation 

model for the purpose of evaluating additional capacity. The study consists of a detailed 

exploratory analysis, verification and validation tests of the simulation results, and a 

thorough design of experiments. The exploratory analysis consisted of developing 

simulation models that provide similar characteristics found in the data. The design of 

experiments consisted of generating scenarios of various bed additions in the hospital 

units of care. The evaluation of the scenarios considered the characteristics of the queues 

in the different wards and demonstrate why DES has a substantial advantage in the ability 

to represent non-linear relationships.  

The study used five years of real-world data containing information from 23,019 

patients. The results show that certain units can benefit a reduction in waiting time by 

adding inpatient beds. Thus, decision makers can use the simulation to assess various 

changes and quantify benefits.  
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ABBREVIATIONS  

For Graphical purposes the following abbreviations were used (Table 1.1) 

 

Table 1.1. Abbreviations used on graphics and statistical tests. 

 

 

 

Nomenclature Description Observations

 INW
Ward the patient was admitted to at time 

of admission. 

MICU, SICU, MED, OBS, SURG, TCU-

M, TCU-S.

OUTW Ward the patient was discharged from. 
MICU, SICU, MED, OBS, SURG, TCU-

M, TCU-S.

YearIn Year of the admission. 2009, 2010, 2011, 2012, 2013, 2014

MonthIn Month stamp of the admission. 1, 2, 3, …, 12

DayIn Day stamp of the admission. 1, 2, 3,…., 28/30/31

HourIn Hour stamp of the admission. 1, 2, 3, …, 24

MinIn Minute stamp of the admission. 1, 2, 3, …, 60

YearOut Year stamp of discharge. 2009, 2010, 2011, 2012, 2013, 2014

MonthOut Month stamp of discharge. 1, 2, 3, …, 12

DayOut Day stamp of discharge. 1, 2, 3,…., 7

HourOut Hour stamp of discharge. 1, 2, 3, …, 24

MinOut Minute stamp of discharge. 1, 2, 3, …, 60

HrLOS Length Of Stay (LOS) in hours.

WDIn Weekday patient was admitted.
Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday, Sunday

WDOut Weekday patient was discharged.
Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday, Sunday

ExitTime Continuous measure of time at discharge. ExitTime = HourOut+(1/60)*MinOut

InputTime Continuous measure of time at admission. InputTime = HourIn+(1/60)*MinIn

ICU Intnsive Care Unit

MOS Medical Observation And Surgery

TCU Transitional Care Unit

MICU Medical ICU ward

SICU Surgery ICU  ward

MED Medical ward

OBS Observation ward

SURG Surgery ward

TCU-M TCU Medical ward

TCU-S TCU Surgery ward
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1. INTRODUCTION 

This document describes an application of Discrete Event Simulation (DES) to 

the Veteran Affairs (VA) Sacramento Medical Center which is a system with constrained 

demand. The Medical Center’s operations are comprised of the interaction of non-linear 

parameters, which add known and unknown variation to the outcomes. The model was 

developed as a research contribution to support managerial decisions to reduce waiting 

time, with the aim of increase the quality of the services offered and provide to veterans 

and their families better access to healthcare.  

In the 2014 Access audit of the VA Healthcare system [1] some irregularities 

were found related to the appointment scheduling practices, therefore hospitals pertaining 

to the Veterans Affairs healthcare group were encouraged to improve the operation and in 

this way guarantee quality of service and access. The Veteran Affairs developed an 

initiative to confront the situation and defined wait time as the control factor to track the 

changes in access. The managers of the VA Sacramento Hospital were interested on 

following the initiative in efforts to present reductions in waiting time. This led to the 

decision of using engineering tools to assess the possible improvements.  

The specific objective of this research was to study the actual state of the hospital, 

identifying the patterns that govern its operations, and the impact of adding four beds in 

different combinations to the hospital units. 

A quantitative analysis was completed to identify the current characteristics of the 

principal variables required to model the system, then, patterns and relationships were 

determined to continue with the simulation model. 

In this study, a DES was used to support planning and management capacity. The 

selection of such Operation research technique was based on its ability on modeling the 

variability and dependency between the system variables. These characteristics benefits 

for example, the analysis of changes and identification of bottlenecks. Also DES has been 

an important tool to demonstrate to managers and different medical staff, the importance 

of implementing changes.  

In this investigation, the metrics used for analysis were waiting time, number of 

patients waiting and bed utilization rates. Different scenarios were evaluated, each one 
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representing a different combination of four beds to be implemented in the three different 

units of care of the hospital. The experimental outcomes were analyzed in two parts: 1. 

Analysis of queues to define bottlenecks and benefits from adding beds to each unit. 2. 

Selection of the scenario that represented better opportunities of raising the hospital 

capacity based on the bed utilization rates.  

The results indicated that adding a combination of 3 and 1 beds in TCU and ICU 

respectively, represented more benefits towards the capacity of the hospital.  

 

1.1. MOTIVATION AND SCOPE 

Through an access audit conducted by the Veterans health administration (VHA). 

It was found that the system was being inefficient in the achievement of the access goals. 

Specifically, not accomplishing the waiting time goal, weakness in the systems 

configuration management controls, access controls, and others. 

The audit results determined that one of the reasons for the deficiencies was a 

complex scheduling procedures due to an insufficient allocation of resources, for 

instance, not enough beds, not a good scheduling of medical staff, lack in training to 

operate scheduling software, and manipulation of the data at patient’s 

admission/discharge points. The first efforts for a better organization were concentered in 

the revision of the appointments scheduling procedures [1]. Then, as an intervention, the 

U.S. Department of Veterans stablished the Affairs Accelerating Access to Care 

Initiative, as contingency plan to focus the managerial efforts in the access capacity of the 

hospitals in the system.  

As mentioned in the Accelerating Access to Care Initiative [2] in the key facts, 

the activities being reviewed to maximize our abilities include:  

 Capacity and efficiency assessments. 

 Ensuring Primary Care clinic panels are correctly sized and achieving the 

desired level of productivity. 

 Extending or flexing clinic hours on nights and weekends. 

 Ability for overtime for providers. 
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 Assessing the availability of community providers to provide the care 

being requested o Identification of resources required to provide timely 

care for Veterans. (2, p. 1). 

The measure stablished for monitoring the implementation of the initiative was 

the waiting time. In terms of hospital access, it is a parameter closely connected with 

customer satisfaction and, reflects in some dimensions the patients’ perception of the 

quality of service. 

Therefore, the U.S. Department of Veterans has encouraged the hospitals in the 

VA Healthcare system to apply industrial engineering principles in order to enhance 

capital planning, productivity and improve efficiency of the provision of the services, as 

it is a necessity to offer better conditions of healthcare access to the U.S. Veterans. 

In 2015 improvements in the national average of waiting time were reported, and 

hospitals of the system were more interested on increment reorganization measures by 

hand with engineering approaches.  

For the specific case of VA Sacramento hospital, the annual report of waiting 

times 2014 revealed that the average wait time for specialized care was 17.8% above the 

national average (national average was also above of the set goals). Since then, managers 

have been focused on linking engineering research with the operations of the hospital. 

Their concerns rely on which decisions in relation with allocation of resources, 

scheduling, investment, and administrative process (policies) will have a better impact 

the hospital access capacity.  

In order to address the results of this study as a reliable source to support 

managerial decisions there were two key research questions: 

What are the characteristics of the system? Which patterns govern the operation 

of the system? 

How the current demand is impacting the waiting time? What characteristics can 

be identified in the output parameters from the analysis of the observational data when 

beds are added to the system?  

To mitigate the concerns on waiting time, offering quantifiable responses, this 

study proposes the development of a discrete-event simulation of the VA Sacramento 

hospital to provide solid decision support focused on the impact of the implementation of 
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4 new beds in different combination between the units of care of the hospital: ICU, MOS, 

TCU.  

The development of such model offers a better understanding of the system, 

facilitating the decision making process. It can be used as a training tool, which allows an 

overview of the interaction between the parameters that define the delivery of the 

healthcare services.  

The following section presents a review of the most relevant studies in the bed 

management field using DES, followed by a description of the hospital structure and the 

data that was analyzed. The following sections, fourth and fifth, provide an explanation 

of the study structure and methodology, and an Exploratory Data Analysis where the 

description of the parameters intervening in the research are presented, together with the 

definition of their behavior which was the base for determining the inputs of the 

simulation model. The sixth section, presents the simulation model development and 

navigates through its functioning characteristics. In section seventh the verification and 

validation of the model is explained, where the observational results were compared with 

the original data and in this way identify how the DES model captures the phenomena of 

the data collected from the hospital. Section eight refers to the experimentation phase, 

scenarios for adding different bed combinations were analyzed in conjunction with the 

study of incrementing the demand. To conclude, the model implementation and the 

results were described offering a discussion of the findings. 
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2. LITERATURE REVIEW 

Reid, Compton, Grossman, & Fanjiang [3] researched which engineering tools 

where more appropriate to conduct research in the healthcare field. They found that the 

most used analysis tools were queueing theory and Discrete event simulation. They also 

specified that each approach could be used based on the goals of the projects. Queueing 

theory for more general studies and DES for studies that required detailed outcomes.  

The technology evolution, the increase in the population and the identification of 

new requirements to deliver the healthcare services with more personalized approaches, 

turned the healthcare into more complex systems. The analysis of hospitals operations 

became a necessity [4]. According to Reid et al. [3] Systems Engineering tools have been 

successfully applied to improve “the performance of other large-scale complex systems” 

[3], then it was reasonable to think those tools would offer solutions for the healthcare 

systems issues. Hospitals process, despite of their variate and specialized platform, can be 

described as many other systems under the premise that resources are consider scarce and 

its rationalization must be optimized [5]. Nowadays, the use of Operation research 

approaches has made important contributions in healthcare management. 

Between different Operation Research techniques DES has been of major 

importance in the healthcare field. Several performance comparisons between DES and 

other techniques for investigation and improvement of operations have been studied, 

demonstrating the usefulness of DES approaches. For instance, Harper & Shahani [6] 

showed a comparison between the use of deterministic, and simulation approaches. In 

their study, they demonstrated why planning and management capacity decisions should 

be based on simulation models, which are capable of representing complex systems with 

non-linear structures rather than be based on simple stochastic models. DES surpasses the 

limitations of stochastics methods on modeling the variability and dependency between 

the system variables. In the investigation, the metrics used for comparison were arrivals 

and Length of Stay (LOS). Four different scenarios were analyzed, some of them to 

recreate the stochastic approach to be able to conduct the evaluation: -Using appropriate 

statistical distributions for arrivals and LOS, -Using appropriate demand but only average 

LOS, -Using appropriate demand and LOS average for the different patient categories 
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(elective and emergency), and using average arrivals, and average LOS. The scenarios 

were compared with the data collected and the results indicated that the best forecasting 

was the one obtained by the use of appropriate statistical distributions while the last 

scenario (average arrivals and LOS) totally mislead the behavior of the observed data. 

This study remarked the necessity of including proper distributions of LOS and demand 

in the estimation of hospital bed requirements. Standfield, Comans, & Scuffham, [7] 

prepared a literature research of the studies comparing Markov modeling and DES they 

expressed in the conclusions that the advantages of DES over Markov Models were “the 

ability to model queuing for limited resources, capture individual patient histories, 

accommodate complexity and uncertainty, represent time flexibly, model competing 

risks, and accommodate multiple events simultaneously”.  

The application of Discrete Event Simulation (DES) in healthcare is not new, for 

years it has been considered an important approach to study Healthcare systems. The 

evolution of the technology, availability of information (databases), computerized models 

and software solutions, have captured the interest of more modelers through the years. 

Discrete-event simulation models in past decades (1960/70) showed to be successful, 

what make the difference today is the large availability of electronic datasets that can be 

processed [8]. Simulation techniques have growth in popularity and it can be attained to 

the benefits its use provides, the increase on academic publications and the development 

of simulation software, are clear signals of its promising future as an operation research 

tool used in healthcare [4]. Currently there are in the market several simulation software 

with user friendly interfaces that simplify the adjustments and calibrations of the models 

[9]. 

In the healthcare field, as mentioned above, queueing theory is another operation 

research technique widely used, but is important recognize its limitations for modeling 

some features of the systems as for example, the non-linear relationships between the 

variables. In a review of DES applications, a comparison of its effectiveness to queueing 

theory demonstrate that DES is a more powerful resource in the description of systems 

with dependent events occurring synchronically. The application of queueing theory 

presents some limitations when representing non-linear relationships causing the addition 
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of significant variation to forecasts, and sometimes, an inadequate recreation of the 

system [4]. 

For example, several studies have recognized a non-stationary characteristic of 

the patient arrivals. See for example, Wang, Hare, Vertesi, & Rutherford [10] they 

simulate the arrivals process including the variation of  “time-of-day” and “day-of-week”, 

G. W. Harrison, Shafer, & Macky [11] where the arrival process is considered to have too 

large variation to be described as a stationary Poisson process, Holm, Lurås, & Dahl [12] 

chose a DES because the bursts of arrivals had a different impact in each ward. Another 

example was Mallor & Azcárate [13], in his study the arrival rates were derived 

depending on the pathology and the time of the day. In a comparison of a basic system 

modeled with both DES and queueing theory made by Kolker [14]. In the forecasting 

from the queue model there was an over estimation of almost 3 times in the waiting time 

and almost 4 times in time in the system. Those results led to the conclusion that queuing 

variability was higher than the real arrival variability. Chung, Komashie, & Yorke-Smith 

[15], evaluated how a DES model captures the complexity of healthcare systems, through 

the development of a simulation using waiting time, patient in queues as measuring 

variables, and social network metrics for the analysis of four different complexity levels.  

Other applications of queueing theory acclaim that the effectiveness of the models 

reside on calculations made from a steady state of the system, nevertheless the scope of 

the results is the description of a general pattern rather than a more detailed behavior 

[16]. In conclusion, as demonstrated by Kolker [9, 14, 17] DES is a powerful tool to 

represent a system with subsystems interdependency capable to give more accurate 

results in comparison with analysis of the same type of systems using queueing theory. 

The use of Discrete Event Simulation (DES) in healthcare, has permitted hospital 

management units estimate the state nature of the system (or hospital), evaluate different 

scenarios of interest, and analyze relationships between different model variables. The 

simulation outcomes had allowed to support accurate decisions about reorganization of 

the systems [18]. One of the key advantage from DES models is their capability of 

evaluate ideas of change avoiding the costs and the efforts of physical implementations in 

the real-world for mere analysis [19]. Also, from past literature reviews as the ones 

conducted by Gunal et al. [8] and Jun et al. [18], it can be considered that the importance 
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of applying DES concepts resides in the ability of offer the recognition and better 

understanding of the connection between inputs and output measures. In other words, 

through the use of this technique modelers can identify how variables as scheduling, 

patient flow, sizing and planning (resources allocation), impact in parameters such as 

waiting times, throughput and resources utilization or vice versa. For example, Cao, 

Yoon, Khasawneh, Srihari, Poranki [20] implement a model to determine the staffing 

levels needed to improve service and process flow. The study was analyzed measuring 

the waiting times and the impact of the changes in demand (patient arrivals) in 

throughput. Other examples are Choon, Leng, Ai & Chai [21] and Al-Araidah, Boran & 

wahsheh [22]. 

It is also important to highlight the participation of the stakeholders in the first 

stage of development of a Discrete event simulation, because they are the most adequate 

to express the concerns and problems present in the operation of the system [23, 24].  

DES has been applied in healthcare with successful results in predicting impact of 

different situations based on bed capacity, serving as reliable support in managerial 

decisions [6, 25, 26]. Bed allocation is considered one of the most important hospital 

metrics to be optimized in order to improve quality in hospital operations [6], different 

models have been developed to study this variable focusing on: healthcare access, 

reduction of waiting time, investments and resources allocation. For example, Devapriya 

et al. [25] developed a model to evaluate occupancy rates and wait time. Using the DES 

they recreated different bed capacity configurations and analyzed their impact in access, 

quality of care, capital expenditure and staff satisfaction. Gangadharan & Belpanno [27] 

conducted a study for a tertiary care children’s hospital. Their simulation was used to 

identify the impact in bed requirements from changes in the supply, when it matches the 

demand. Clissold, Filar, Mackay, Qin, & Ward [28] created a DES model to determine 

the impact on the system from increasing the demand on the emergency unit in Flemings 

Medical Center. This study was motivated by the introduction of a copayment policy on 

practitioner services.  

Although the objectives and structure of the models differ between authors, there 

is a common step in the development of DES: the analysis of the preliminary 

information. Exploratory data analysis is considered primordial to ensure accurate 
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modeling. Almost all the time, an exhaustive study of the variables is conducted as a 

preparation of the data before feeding the simulation, to understand if the variables 

present patterns and significant variations in its natural state, and generate statistical 

support for recreating the systems as similar to the reality as it can be possible [4]. The 

simulation modeling of systems is strictly linked to the quality of information available.  

More detailed data allows more accurate results and stronger possibility to 

develop advances in the investigation of healthcare operations field [13]. For example, 

the achievements on accuracy in the interpretation of a hospital Intensive Care Unit 

(ICU) in the model built by Mallor & Azcárate [13] are due to the detailed qualitative and 

quantitative information gathered from the system. In these exploratory analysis of the 

data a recognized phenomenon is very common in the hospitals’ operations: the decrease 

in the rates of several parameters such as admission, occupancy, and discharges during 

the weekends. This pattern has been described in several studies (See for example 

[29,30]). Reid et al. [3] considered that this situation can be attributable to a “highly 

specialized -practitioner- driven, hospital-centered system”, this means that when the 

hospital requires a specialized clinician, it has to adapt the allocation of resources to the 

clinician availability, which explains in some degree the reduction on medical staff 

allocation during the weekends.  

One step further in the use of simulation is the validation of the data, but before a 

simulation is validated, modelers must have in account the time or conditions required for 

the system to reach steady states or at least more stable states: warm -up period [4]. When 

those conditions are not considered, the statistics resulted from the simulation runs will 

have implicit bias from the learning curves (period the system take to reach more stable 

state). Thus when a run starts with an empty system a warm-up period must identified, 

from there the statistics can be calculated with more accuracy. There is not a standardized 

method or specific instruction to calculate the warm-up period [31], it is mostly 

determined visually with the help of graphical techniques. Vasilakis & Marshal [32] 

defined a warm-up period of 2000 days for their simulation using the Welch graphical 

method with data collected from 10 runs. El-Darzi, Vasilakis, Chaussalet, & Millard [33] 

used a time series graph of occupancy to define the stable state of the system, which was 
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reached after 5.5 years in a test run. Mallor et al. [13] define or their experiments 20 year- 

simulation with a warm up period of 3 years.  

Models in the literature also showed that arrivals and LOS are the most important 

input parameters in the study of healthcare systems. Usually arrivals are random but non-

stationary as described before in this section. LOS is a variable that shows a special 

behavior, its distribution is usually highly skewed to the right. Several approaches have 

been used to characterize the LOS. For instance, the multistage approach where the 

expected LOS depend on the probability of discharge based on the complication of the 

patient [34], and other methods employing parametric distributions that can reproduce a 

set of data skewed to the right like Weibull, lognormal, among other well-known 

distributions. In some of the cases not just one distribution was used for the entire set of 

data and longer stays were treated as outliers [35]. Also, the separation of the LOS in 

short and Long terms, has also been proposed by El-Darzi et al. [33] augmenting it on the 

differences in statistical parameters that short terms LOS had, in comparison with long 

stays. The importance of using an appropriate LOS information in the simulation models 

is the dependence it has with other variables, meaning LOS has a quantifiable impact in 

the outcomes. Hillier, Parry, Shannon, & Stack, [36] developed a model where the results 

showed how high occupancy, impacts negatively the throughput of a hospital, because its 

correlation with LOS is directly proportional.  

Following, it is offered the description of several studies developed for capacity 

solutions in healthcare. 

Devapriya et al.[25] This application of DES uses a great amount of information 

that allow the generalization of the model from the hospital to the healthcare system level 

implying few needs of customization. In this study, the wards were included in the 

analysis of the variables and the beds were classified according to the accommodation in 

private or shared rooms. These classification (of wards, and beds) are factors that have 

not been commonly used as part of DES applications due to the detailed information 

requirements the technique depend upon. Prior to the modeling, a deterministic analysis 

of variables was conducted to identify probabilistic distributions and seasonality effects. 

Variables studied an integrated in the model: admissions, patient flow (transfers), 

discharges, waiting times, arrival source (ward of admission), length of stay (LOS), 
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number of beds by unit of care. Principal outputs: arrivals rate by ward, queue 

characteristics and occupancy rates. The model was made to be used for financial 

decisions based on patient volumes and LOS, bed allocation, seasonality, patient 

redistribution between the hospitals in the system, and to describe how discharges time 

impact capacity decisions. The ambiguity on the definition of level of care by the 

physician was described as a limitation for the development of the model. The value of 

this simulation is that it was developed and validated as a large scale patient flow model. 

Gangadharan et al. [27] conducted a study to identify the impact from changes in 

supply, in bed requirements. In the first instance a set of 2 days of hourly day occupancy 

data was extracted from the principal database in order to validate the simulation model 

created as a spreadsheet as the creation of the current state. Second, the simulation was 

applied with a one-year information and established a demand-supply model based on 

arrivals, discharges and occupancy rates. From the simulation it was found that 70% of 

the work in the hospital was performed in 6 hours or less. Then with the supply demand 

model a new scenario was evaluated matching resources to demand. Scenario of interest: 

Distribution of 70% of the work in 12 hours of the day instead of 6 hours and displaced 

transfer activity to an earlier time such as before daily work rounds. The results lead to 

the conclusion that reorganization of discharge and transfer activity prior to management 

rounds, results in a dramatic difference in improving bed availability without increasing 

capacity. As the model was developed in a spreadsheet, patterns in demand and seasonal 

variation were not included which limited the ability of the model to be generalized for 

other hospitals. 

G. Harrison, Zeitz, Adams, & Mackay [37] used simulation to study how 

occupancy rates impact discharges. The development of this model was motivated by the 

pressure that hospitals are experiencing because of the increasing demand from aging and 

acute patients. The input variables for the simulation were: the occupancy rates including 

the classification of over-occupancy when it is greater than capacity, and load levels from 

light to heavy. From the data collected, an occupancy profile was defined, as the current 

state of the hospital. In the modelling, 2 years of data were used with 60-days of warm-up 

period. Statistical analysis was designed to validate the model and to determine the 

discharges in over-occupancy-days and other days. Concluding, there was a greater 
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chance of being discharge in patients with an elapsed stay longer than 10 days (long in 

over-occupancy days. 

Holm et al. [12] studied the improvement of hospital bed utilization through 

simulation and optimization. The simulation was developed as the first step of the 

research. The results obtained from the simulation fed an algorithm used to optimize bed 

allocation in the second step of the research. Input data used for the Simulation was 

patient flow, arrival times and length of stay The input data for the algorithm was the 

simulation matrix of bed utilization resulted from the simulation. Bed utilization was 

classified based on prevalence (number of beds overcrowded) and incidence (number of 

patients using overcrowded beds). The model was validated through the current state of 

the hospital. In their first scenario there were no restrictions in bed capacity (infinite 

number of beds), in this way it as possible to determine the needs in number of beds per 

unit of care based on the arrivals and length of stay. The simulation run with a baseline of 

718 beds to generate overcrowding rates. At the end, the algorithms to optimize 

allocation of beds in terms of prevalence and incidence were applied. The results showed 

that the allocation based on bed prevalence optimization is efficient reducing the 

overcrowding from 6.5% to 4.2% (simulation model validated). The model can be 

applied to other hospitals in the geographical location where the study was conducted 

(Norway). 

Clissold et al. [28] created a DES model with the interest of determine if the 

impact of increasing the demand on the emergency unit in Flemings Medical Center 

which would be the consequence of the introduction of a copayment policy on 

practitioner services. The input variables: arrivals, queues, ward allocation and weekend 

discharge delay were analyzed prior the construction of the model and then verified using 

as base line the occupancy rates. The results showed that from increasing the demand 

(one to four patients by hour), the length of the queue as the LOS increases in a non-

linear basis. The model was purposed to be used in further investigations and, because of 

its animated visual representation, as a tool for a better understanding of the policy 

changes impact between the staff.  

Mallor et al. [13] studied bed occupancy levels in an Intensive Care Unit (ICU). 

The factors of differentiation in this study, are, the implementation in the model of 
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detailed qualitative information such as policies and managerial decisions through 

mathematical techniques to validate the results, the combination of simulation with 

optimization for variables estimation. First, a complete statistical analysis of the collected 

data was done. From there arrival rates and LOS were determined with parametric 

distributions. The validation was made using Occupancy as the parameter compared from 

the original and simulation data. The results showed not significant differences and prove 

the assumption of independency between LOS and workload variables. Validation of the 

results with the medical staff confirmed the assumption of occupancy level influence the 

patients LOS. One of the most important limitations in the study is the subjectivity that 

affect the triage decisions, which couldn’t be studied because of the lack of historical data 

where the variation of the differences in the decisions by the physician in schedule could 

be evidenced. As the model was developed to evaluate capacity, it was used to determine 

the number of beds required when an increase in the ICU demand was present, caused by 

the increasing programmed surgeries. The results showed that to maintain rejection rates 

at 5% 2 extra beds were needed, and to keep it under 1% six more beds were required.  

The application of DES models has brought important assumptions, contributions 

and conclusions for healthcare operations. Nevertheless, in the use of this type of 

simulation, some limitations have also been identified. In the literature review by Jun et 

al. [18], there is a discussion about how simulation modelling was limited for 

generalization purposes. Currently, not so many authors have developed models which 

can be used to support the operation of other hospitals or across healthcare systems. This 

situation is attributable to the information requirements to model DES. Operational data 

defines the system behavior, the more detailed information the better can be represented 

the actual characteristics of the system by simulation models. In other words, the quality 

of historical data, determine the accuracy of the results in the DES [38]. The models 

developed in several studies which present this limitation, also attributed it to the big 

efforts on customization needed to expand the models. Devapriya et al. [25] paper 

presented one of the few simulation developments that can be applied across the system. 

It is a response to the discussion about how simulation modelling has limitations for 

generalization purposes. Riney & Tolk [39] explained in their book that for healthcare 

simulations, the efforts to expand the models to the System of systems (SoS) levels, 
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require the establishment of common goals. They also stated that in many cases the cost 

of generate simulations that represents SoS prevent institutions to model them. In other 

cases, the information collected impact substantially the ability of generalization of the 

models. Sinreich & Marmor [40] explained the modeling expertise a person should have 

to develop simulations depending on different levels of abstraction (generic or fixed 

activities to be modeled). 

The results obtained from the application of DES, most of the time present 

important conclusions that can be implemented in the practice of healthcare systems, 

however just few acclaimed to be implemented, while the others do not specify its future 

implementation [8].  

The application of DES models for the improvement in healthcare operations has 

been demonstrated to be a powerful tool for the identification of the systems behavior and 

for the evaluation of the impact of different changes to increment capacity, access, and 

analyze outputs for dependable variables.  
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3. HOSPITAL CHARACTERISTICS  

The VA Sacramento hospital belongs to the VA Northern California healthcare 

system as an inpatient facility that offers healthcare services including medical, surgical, 

primary, and mental and behavioral care  

The VA Sacramento medical center is comprised of 60 beds distributed in three 

medical care units such as ICU with 10 beds, MOS with 24 beds, transitional care unit 

TCU with 16 beds and 10 beds in BHICU [41]. 

The medical units include different wards or medical departments where the 

patients are allocated according to their acuteness level. ICU offers services for MICU 

and SICU wards, MOS for MED, OBS and SURG wards, and TCU for TCU-M and 

TCU-S. BHICU offers services of mental/behavioral care. Table 3.1 presents the wards 

distribution in the units of care. (Refer to Table 1.1 for a clarification of the nomenclature 

used in this section). 

 

 

Table 3.1. VA Sacramento Units of care and their wards. 
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4. METHODOLOGY 

A data set of 23,019 admissions starting at January 1st, 2009 ending in December 

31st, 2014 from hospital was collected for analysis. The information was extracted from 

the Bed Management System (BMS) which is used by the hospital to register the records 

of patients. The data offers detailed patient information such as ward, date and time of 

admission and ward, date and time of discharge. Length of Stay (LOS), and daily 

occupancy were defined from the given information. 

An Exploratory Data Analysis (EDA) was performed to determine the statistical 

characteristics of the main variables that support the study. For example, patterns and 

distributions were determined directly from the data. The EDA was done to acquire a 

detailed understanding of the parameters behavior required for the DES modeling in its 

initial phase and to support its validation. Minitab17 statistical package was used for 

accomplishing the EDA and some calculations were supported by the use of Excel.  

The DES model was developed using a commercially available discrete event 

simulation package (Arena™, version 15). Arena™ uses SIMAN as core language. and 

provides a platform to build the model with the drag and drop flow chart methodology 

[31]. In the modeling, Arena™ allows the creation of a system logic based on parameters 

defined by the user, which can be attributed from the creation of the entity until its 

disposal, passing through different required processes defined by the modeler. The 

recording features of the program are event-based, and although the software has some 

predetermined statistical reports, the user can establish other elements within the model 

to be documented. In this manner the DES model uses Patients as entities with different 

attributes assigned through the flow of the simulation in order to recreate the behavior of 

the hospital. The attributes of the patients allowed the introduction of the patterns defined 

in the EDA. The logic of the simulation permitted also the collection of different 

variables as outcomes with the statistical features of the software, for instance it was 

possible to obtain the daily average of the patients in the hospital by ward, the queue 

characteristics by ward, and throughput, important parameters used in the 

experimentation phase to identify the impact caused in the system by changes in the 

resources allocation. 
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In the experimentation phase, the Process Analyzer software (included in the 

Arena Package) was used to evaluate the impact of changing the number of beds in the 

different units of care. Four beds were allocated in the different possible combinations 

and the parameters of the queues were studied in order to determine the implications of it.  
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5. EXPLORATORY DATA ANALYSIS 

5.1. ANALYSIS OF THE LENGTH OF STAY (LOS) 

LOS is one of the dependable variables considered across this study, it was defined 

as the difference between discharge date (month/day/year and time) and Admissions date 

(month/day/year and time). 

From the data set it was possible to observe that patients were initially admitted in 

all wards except in BHICU that only showed discharge registers which meant that 

patients were most likely being transferred rather than being admitted in that ward. Thus 

the first step of the analysis was a LOS calculation characterized by the discharge ward in 

order to involve information from all of the units of care. As a result, it was found a 

considerably difference between the LOS in BHICU and its variability compared to the 

other wards (refer to Figure 5.1). Therefore, it was decided to exclude BHICU from the 

analysis as its behavior differed from the other medical wards, for example, 

approximately 90 patients from all admitted were discharged from BHICU, however 

those few patients had the longest LOS in the data. In a way the presence of BHICU ward 

would impact the veracity of modeling techniques to be employed.  

After the information corresponding to BHICU ward was discarded to eliminate 

bias in the study, the data set was comprised of 22,926 patients. The data by ward of 

admission is presented in Figure 5.2.  

Subsequently, it was conducted an analysis of LOS by the year the patient was 

admitted in the hospital (YearIn). A yearly growth was evidenced in the graphical 

comparison (refer to Figure 5.3) where the year 2009 had the lower LOS.  

A one-way ANOVA test was performed to confirm the situation observed in the 

plot. The results led to the conclusion that there was no statistically significant difference 

between the six years of LOS data. Also a Tukey pairwise comparison was done. The 

results of the tests are presented in Table 5.1. 

In the hypothesis tests used, the null hypothesis was defined as N0: All means 

were equal, and as alternative hypothesis Ha: At least one mean was different with a 

significance level of α=0.05. 
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Figure 5.1. LOS by ward of discharge. 

 

 

 

Figure 5.2. Number of data points (patients) by ward of admission. 
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Figure 5.3. LOS Interval plot by year. 

 

Table 5.1. ANOVA test and Tukey Pairwise comparison of LOS by YearIn. 

 

 

 

Statistical differences were not found across the years. Hence, it was natural to 

explore the influence when the ward of admission is considered. The LOS in the data was 

analyzed, graphically and through the ANOVA test and Tukey pairwise comparison for 

each ward. The results are presented in Figure 5.4 and Table 5.2.  

The interval plot (Figure 5.4), showed a considerable difference in the LOS 

distribution and its variability, this situation was confirmed by the statistical test 

employed. The results implied that admission ward influenced the LOS of the patients. 

This deduction could be a reflection of the dependence the patient level of acuteness 

could have with the admission ward, meaning that if every ward offered specific 

treatments, that specification could also influence the time a person was in a medical care 

division. 
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Individual standard deviations were used to calculate the intervals.

Test Results Conslusion

One way ANOVA P-Value =  0.112 Means not significantly different.

Tukey Pairwise Comparisons 

Means from 2009; 2010; 2011; 2012; 

2013; 2014 were grouped in the same 

group.

Means not significantly different.

HrLOS versus YearIn 
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Figure 5.4. Analysis of LOS by ward of admission. 

 

 

Table 5.2. ANOVA test and Tukey pairwise comparison of LOS by ward of admission. 

 

 

 

Hospital managers communicated that the OBS ward’s primary operational 

characteristic was to hold patients for no longer than 24hrs. That is for situations where a 

patient needed to be admitted and would be either transferred to another unit within the 

hospital or was discharged. These decisions are often made by the hospitalist.  

Another observation was found for the LOS behavior: a considerable amount of 

observations were outliers, as it can be seen in Figure 5.5 boxplot of LOS by ward of 

admission. This implied that the distribution of the LOS was skewed to the right. To 

confirm such assumption a p-p plot was drawn (Figure 5.6) and the same situation could 

Test Results Conslusion

One way ANOVA P-Value =   0.000 Means significantly different.
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OBS             E

Means significantly different.
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be evidenced for each ward of admission with the concave shape of the data around the 

normal line. The conclusion was that LOS has a heavy tailed distribution for each ward of 

admission except for OBS. The distribution of LOS for OBS is less skewed, but still do 

not seem to be normal.  

Heavy tailed distributions are characterized by the high probability of find data 

points in the tail. Thus, it is not appropriate to handle the data points located in the tail as 

outliers. For this particular situation he fit of classical distribution models could generate 

bias from the original data.  

 

 

 

Figure 5.5. Boxplot of LOS hours by ward of admission.  

 

 

As the LOS was defined from the differences between discharge and admission 

dates, it was considerably important to identify the patterns of arrivals and discharges, 

which would outline the details that must be considered in the modeling of the LOS. For 

example, if the arrival process has a daily pattern, this tendency must be model for LOS 

also. Then an analysis of those variables was performed as it follows.  
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Figure 5.6. P-P plot of LOS hours by ward of admission.  

 

 

5.2. ANALYSIS OF DISCHARGES 

5.2.1. Analysis of Discharge Time.  The exploratory analysis of the discharges 

 was structured beginning with the search of yearly seasonality and finalizing with the 

day of the week evaluation by ward. 

Analyzing the discharges by the time of the day across the data, it was observed a 

peak between 3:00-4:00 pm (refer to top of Figure 5.7), indicating that most of the 

patients were discharged in the late afternoon. The pattern evidenced was also found in A 

yearly basis (refer to bottom of Figure 5.7), meaning that there were no substantial 

differences in the discharge time of day throughout the years. From this situation can be 

concluded that the discharge policies of the hospital through the period of data collection 

had little changes. 

NOTE: the commas seen in the figure are the equivalent of a period, e.g. 9,75 in 

Figure 5.7 is actually 9.75) 

Continuing with the analysis, a categorization of the discharge time patterns by 

ward of admission preceded. The comparison of the discharge time distribution in the 

different wards was made through a One-way ANOVA test, and to obtain more 

information a Tukey Pairwise comparison was card out (Table 5.3). The results indicated 
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a significant statistical difference in discharge time between wards. For a better 

understanding a boxplot was produced which allowed a visualization of the variation of 

the discharge time for each ward (Figure 5.8). The plot shows similarities in discharge 

peaks for all the wards, however the variance was substantially different. This 

information allows the inference that every ward has unique practices respect to 

discharges. This could be an important conclusion for modeling purposes. 

 

 

Figure 5.7. Exit Time distribution for the data set (top) and Exit time distribution by year 

(bottom). 

 

 

Then, as for LOS, an influence of ward of admission in discharges was found, 

which was congruent with the suggested idea that the ward of admission was a surrogate 
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of the patient level of acuteness. However, more detailed information was necessary to 

give a significant conclusion.  

 

 

 

Figure 5.8. Time of discharge vs Ward of admission. 
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admission (Figure 5.9 bottom) and no statistical significant differences were found for 

discharges between the months each year (see Table 5.4). 

 

 

Table 5.3. ANOVA test and Tukey pairwise comparison to identify differences in 

discharge time by ward of admission. 

 

 

 

When evaluating the ward of admission, a x2 test showed significant differences 

in the discharges by ward of admission by month; however, it was also found that OBS 

presented a small groups of discharges which could be generating a bias that forced the 

rejection of the x2 test, therefore, the data was analyzed once more excluding OBS and 

the results of the new test indicated that there was no significant difference in discharges 

by ward of admission on a monthly basis. (Table 5.5) 

5.2.2. Analysis of the Discharges by Day of the Week.  A similar analysis was 

conducted for discharges by day of the week starting with the search for yearly patterns, 

and after, looking for the behavior of the discharges for the day of the week by ward of 

admission.  

As it is displayed in Figure 5.10, substantial differences between the discharges 

by day of the week were present, indicating that Friday had the highest level of patients 

leaving the hospital and that a decreasing quantity of discharges can be seen on the 

weekends. To confirm the pattern repetition through the years, the data was divided in the 

seven days of the week and compared yearly (see Figure 5.10 top). Year by year the same 

seasonality was observed. However, a statistical test was required to confirm if every day 

has the same behavior for each of the years (refer to Table 5.6). The results of the test 
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indicated a significant difference between the discharges each week day compared by 

year, this phenomenon could be present because the data was still not categorized by 

ward.  

 

 

 

Figure 5.9. Number patients discharged by month (top) and by month by year (bottom). 

 

 

As it had been seen the ward of admission influenced significantly the discharges, 

hence, to confirm its role in the discharges by day, a further analysis was made where the 
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discharges by day of the week were compared yearly for each ward of admission, Table 

5.7 shows the results. 

 

 

Table 5.4. Statistical test for differences in discharges by month by year. 

 

 

 

Table 5.5.Statistical test for differences in discharges by month by ward of admission 

(top) and without include OBS ward (bottom). 

 

 

 

 

The results of the tests confirmed the premise that the differences between the 

years of the discharges by day of the week was related to the admission process, showing 

that categorizing the number of patient going out by the ward of admission and 

comparing them with the days of the week by year did not have significant fluctuations. 

Another implication should be confirmed: did all the wards present the same daily 

pattern?, Had the day of the week the same level of discharges for each ward? In order to 

answer, a x2 squared test was applied to measure if there were significant differences 

between the wards respect the number of patient discharges every day of the week. Table 

5.8 presented the outcomes of the test which identified that between the days of the week 

discharge levels were significantly different by wards of admission. (See also Figure 

5.11) 

 

 

Test Results Conslusion

Pearson Chi-Square P-Value =   0.508
Distributions of the samples were not 

significantly different.

MonthOut; YearIn 

Test Results Conslusion

Pearson Chi-Square P-Value =   0.003
Distributions of the samples 

were significantly different.

MonthOut; INW (OBS  included)

Test Results Conslusion

Pearson Chi-Square P-Value =   0.629
Distributions of the samples 

were not significantly different.

MonthOut; INW (OBS included)
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Figure 5.10. Number of patient discharged by day of the week (top) and by the of the 

week compared by year (bottom)  

 

 

Table 5.6. Number of patient discharged by day of the week by year. 
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Table 5.7. Statistical test for year by year differences in discharges by day of the week by 

ward of admission. 

 

 

 

Table 5.8. Statistical test for differences in discharges by day of the week by ward of 

admission. 

 

 

 

 

Figure 5.11. Discharges by day of the week by ward of admission. 
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5.3. ANALYSIS OF ARRIVALS 

The exploratory analysis of the arrivals was structured in the same form as the 

discharges, beginning with the search of yearly seasonality and finalizing with the day of 

the week evaluation by ward. 

5.3.1. Analysis of Admission Time.  The resulting pattern displayed on top 

of Figure 5.12 shows a peak between 6:00 and 7:00 pm, which was interesting knowing 

that the discharge time peak was right before the admissions peak. This situation suggests 

that the admission time was related to the discharge time. The repetition of this pattern 

across the years and wards would suggest a direct relationship between the peaks of 

admissions and discharges based on the notion that in order to open up capacity, 

discharges must had taken place. To confirm the repetition of the pattern the admission 

time was studied in yearly bases (refer to top of Figure 5.12) and there were no 

significantly differences. 

Categorizing the data by ward of admission, significant differences in the input 

time were found (refer to Figure 5.13) This results confirmed that the ward of admission 

was highly informative. As every ward showed different patterns during the day hours, 

each one must be a model separately  

5.3.2. Analysis of the Month of Arrival.  To continue with the analysis, the  

distribution of number of patients admitted at the hospital was evaluated by month. As 

was evident in Figure 5.14 (top) there were slightly fluctuations in the overall data for 

admissions by month, but those did not represent statistically significant differences.  

From Figure 5.14 (bottom) some seasonality was suggested, thus the possible 

differences between admission month by year were verified using a chi- square test 

(Table 5.9). The test results confirmed that the patterns observed in the graph were not 

statistically significant.  

The same was done by wards, and for discharges, a bias in the results was 

introduced by OBS ward. Once OBS was not included in the test, there were statistically 

significant differences in the number of patients admitted in each ward by month. For a 

better illustration, see Table 5.10 and Figure 5.15. 
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Figure 5.12. Input time distribution for the data set (top) and Input time distribution by 

year (bottom). 

 

 

.  

Figure 5.13. Input time distribution by ward of admission. 
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Figure 5.14. Patient admissions monthly (top) and patient admissions monthly by year 

(bottom). 

 

 

Table 5.9. Chi square test for admissions by month by year. 
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Figure 5.15. Patient admissions monthly by ward. 

 

 

Table 5.10. Chi square test for admissions by month by ward. 

  

 

 

5.3.3. Analysis of the Admission by Day of the Week.  Similar to the monthly  

analysis of the arrivals, an analysis was carried out to determine the existence of 

seasonality caused by the day of the week.  

Across the data a pattern was displayed (Figure 5.16 top), where a lower number 

of admission was located during the weekends. This pattern was in line with the idea that 

during the weekends less of medical staff was allocated. However, information about the 

distribution of the arrivals by ward for the days of the week was necessary to confirm this 

operational behavior was still influencing the outcome. 

Thus, a statistical test was applied to identify the similarity or difference in the 

weekly distribution between the wards Figure 5.17 demonstrated that the pattern was 

repeated, for every ward the lowest admissions were presented during the weekends.  

Test Results Conslusion

Pearson Chi-Square P-Value =   0.002
Distributions of the samples 

were significantly different.

MonthOut; INW (OBS  included)

Test Results Conslusion

Pearson Chi-Square P-Value =   0.553
Distributions of the samples 

were not significantly different.

MonthOut; INW (OBS included)



 

 

35 

It was also important to describe if every admission ward receive the same proportion of 

patients by day of the week. Table 5.11 presents the results of the x2 square test from 

where is recognizable that there were differences by in the admission by day of the week 

for each ward (p-value is cero). In conclusion, the ward of admission was highly 

important to the number of admission on any given day of the week.  

 

 

 

Figure 5.16. Patient admissions monthly (top) and patient admissions monthly by year 

(bottom).  
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Figure 5.17. Patient admissions daily 

 

 

Table 5.11. Chi square test for admissions by day of the week by ward of admission.  

 

 

 

5.4. EDA SUMMARY  

The EDA proportionated the following statements that must be taking in 

consideration in the estimation of accurate statistical models for each of the principal 

parameters that will be used in the structure of the simulation: 

 Because of the differences in the behavior of BHICU (which was not 

considered a medical ward) compared with the other wards, and the 

quantity of data points that represented it, this ward was not considered in 

the analysis. The inclusion of BHICU would generate bias in the 

exploration of the patterns of the variables studied.  

 Neither yearly nor monthly seasonality was determined to be statistically 

significant for the modeling of the LOS. 

Test Results Conslusion

Pearson Chi-Square P-Value =   0.000
Distributions of the samples were 

significantly different.

WDIn; INW 
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 The ward of admission influenced significantly the LOS of the patients. 

This could be a reflection of the dependence the patient level of acuteness 

has with the admission ward, meaning that if every ward offered specific 

treatments, that specification could also influence the time a person was in 

a specific medical care division. This situation was confirmed by the 

dependence of the ward of admission in the discharge time. Abundant 

evidence of the necessity for including the ward categorization for the 

LOS simulation model.  

 The boxplot for LOS by ward of admission (Figure 5.5) showed a 

significant amount of data points were outliers an indication of right 

skewness. A p-p plot confirmed his situation, in other words, LOS 

distribution was intensively skewed to the right. Thus the heavy- tailed 

phenomenon were recognizing in the distribution of the LOS, which 

indicates that an important proportion of the data could be located in the 

tail. The deletion of the data points in the tail (treating them as outliers) 

would reduce validity in the simulation development, because they won’t 

be accurate representations of the real data, but classical distributions 

would not be able to reproduce the situation. Then in the modeling 

purposes the description for the LOS should take in account the 

concentration of the data patients for short periods and also include the 

people who could require longer stays.  

 Yearly or monthly seasonality was no present in discharges across the 

dataset  

 Examining the discharges by time of the day it was found a peak between 

3:00 and 4:00 pm. This pattern was repeated throughout the years. 

 Analyzing the exit time by ward of admission, significantly differences 

were found in the discharges. Meaning that the ward of admission had a 

considerable influence on the exit time. 

 The OBS ward covered a small group of discharges which could be 

generating bias in the analysis. As it was mentioned, OBS presented a 
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different behavior due to small dataset. However, because it is medical 

ward of admission it should be considered in the modeling. 

 A substantial difference in the number of patients discharged by ward of 

admission was determined. This was due to the noticeable influence the 

ward of admission had on admissions and discharges. The data reflected 

the operation of the hospital, where the medical staff released patients on 

Fridays knowing that human resources allocation for the weekend was 

lower than it was for the week days. 

 In the analysis of admission time it was found a peak between 6:00 and 

7:00 pm which was repeated in a yearly basis leading to the conclusion 

that the patients must be discharged in order to free capacity for 

admissions. 

 When categorizing the data by ward of admission, the arrivals pattern 

visualized on a yearly basis changed. This allowed the inference that every 

ward had their own distribution of admission times, which validated the 

premise that the ward of admission was highly informative, hence, it must 

be incorporated in the simulation. 

 No seasonality by month was present. In the data tendencies were not 

presented on a yearly basis.  

 Analyzing the admissions across the data by day of the week contained 

significant differences between the number of people coming in every day 

of the week. The weekends showed lower rates of arrival while Tuesday 

and Thursdays were the days that received the most patients. This pattern 

was present during the years and across all wards.  

 Although for arrivals every ward displayed the same weekly pattern, the 

number of patient each ward received changed significantly from day to 

day. For example, MED and TCU-S were the most populated wards. From 

this observation was possible to deduct the necessary inclusion of 

distributions for each ward in the simulation.  
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In the analysis of discharges and arrivals it was concluded that pattern in the 

weekly basis was found and as LOS is a parameter directly related to those variables the 

modeling of its distribution should be implemented in such a way, it represents the 

assignation of the LOS to the patients by day of the week in each ward.  

 

5.5. THE PREDICTION MODELS 

The conclusions obtained throughout the EDA regarding LOS, arrivals and 

discharges patterns, highlight the most important characteristics of the system to include 

in the simulation.  

5.5.1. Arrivals.  Statistical analysis is presented for arrivals in the following 

subsections. 

5.5.1.1 Daily arrival rates by ward.  As it was stated from the EDA, the 

modeling of the arrivals was separated by ward, and also by day of the week. 

The arrivals were analyzed to determine whether they followed a Poisson process 

or not. Hence, for each day of the week the arrival data for each ward was fitted to a 

Poisson distribution to determine the parameters that would allow the prediction of the 

number of new patients being admitted daily to the hospital in each ward. 

The statistical results of each day (Monday through Friday) for arrivals in each 

confirmed that the data followed a Poisson distribution with an exception on Saturday for 

OBS. The result of that particular test was inconclusive due to the low number of data 

points.  

Figure 5.18 displayed the graphical results for the comparison between the 

observed (real-data) and the Poisson function (expected) for MICU ward, an example of 

the fitting tests. Graphical information for the other wards is presented in the Appendix. 

Table 5.12 presents the summary of the rates resulted from the distribution fitting 

(Poisson means) by ward for each day of the week.  

Note: in Figure 5.18. MICU Observed Vs Expected arrivals by day of the week. 

the x axis corresponds to the number of patients arriving, and the y axis to the frequency. 
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Figure 5.18. MICU Observed Vs Expected arrivals by day of the week. 
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Table 5.12. Summary of fitted arrival distributions Poisson means. 

 

 

 

In summary, it seems for all days and in all wards the Poisson arrival assumption 

was justified. Hence, this statistical distribution could be used to both simulate the 

arrivals per day and ward. 

5.5.1.2 Arrivals by hour of the day.  Since, the data exploration analysis  

states that day of admission and ward of admission were highly relevant and influence the 

LOS. A unique arrival distribution must be derived each day for each ward. The best 

fitting distribution was statistically determined as explained before in subsection 5.3.3. 

Then for time of the day, the percentage of patients arriving per hour in each ward for 

each day was calculated. Figure 5.19.and Table 5.13 listed the resulted values for the 

MED ward as an example of the procedure, the graphical information for the other wards 

is presented in the Appendix. 

With the definition of the proportion of patients arriving per hour, and the mean 

arrival rate by day by ward, it was possible to determine an hourly rate, then the model 

would be able to reproduce the patterns each ward showed during each day of the week. 

5.5.2. LOS.  The EDA brought important conclusions for the modeling of the  

LOS, evidencing that there was intraday variability in the both the arrival and discharge 

process. Therefore, the type of patient (i.e. defined by the type of ward at which the 

patient was allocated after admission) has a strong influence on the LOS and also in the 

distribution of arrival day and discharge day. In this way the distribution of the LOS 

parameter was developed including the ward of admission.  

 

Ward Monday Tuesday Wednesday Thursday Friday Saturday Sunday

MICU 1.4345 1.47284 1.23962 1.23642 0.996805 0.785942 0.872204

SICU 1.01278 0.891374 0.929712 0.948882 0.252396 0.0766773 0.0926518

MED 3.02875 3.3099 3.05112 3.07348 2.85642 1.80511 1.63898

OBS 0.115016 0.115016 0.14377 0.0958466 0.086262 N/A 0.057508

SURG 2.23323 2.57827 2.49201 2.84665 1.20447 0.498403 0.472843

TCU-M 4.30032 4.28435 4.12141 4.21406 4.03834 2.59105 2.54952

TCU-S 0.485623 0.0674121 0.603834 0.827476 0.351438 0.108626 0.124601

Day of the week Poisson Mean Arrivals
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Figure 5.19. MED Arrival distribution by day. 

 

 

The search for distributions that fitted LOS was done carefully, making sure the 

longer stays were included. At first, a distribution was tailored for all the patients and no 

fit was recommendable. Hence, recognizing that 90% of all patients in the data set had a 

LOS of 168 hours or less and only 10% exceeded 168 hours (up to 66 days), the patients 

were separated in the ones short LOS (less or equal to 168 hours or 7 days) and long LOS 

(greater than 168 hours up to 66 days). 

The short-term patient, defined as a patient spending 168 hours or less (7 full 

days) in the hospital, showed a very unique and complex behavior which could be driven 

by the up and downs of arrivals and discharges. Figure 5.20 presented an example of the 

situation for the MED ward (one of the most populated wards) there where up and downs 

in the LOS of patients with 168 hours or less. The peaks showed in the data, were 

induced by the daily discharge distribution (as mentioned in section 5.4 EDA Summary). 

Thus, it was difficult to determine the probability of LOS distribution for any patient 

using parametric distributions. To confirm this, fitting tests were applied, and effectively 

the parametric distributions did not fit well, while empirical distributions offered better 

results. 
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Table 5.13. MED Arrival distribution for the entire week by hour of the day. 

 

 

 

 

 

 

 

         Time

Day 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Total Patients 24 29 13 3 2 1 6 7 7 11 15 23 33 34 65 72 65 93 95 117 69 55 55 54

Proportion 0.025 0.031 0.014 0.003 0.002 0.001 0.006 0.007 0.007 0.012 0.016 0.024 0.035 0.036 0.069 0.076 0.069 0.0981 0.1002 0.1234 0.0728 0.058 0.058 0.057

Total Patients 26 21 25 10 9 5 1 4 13 19 16 21 36 46 46 70 74 103 105 110 112 62 58 44

Proportion 0.025 0.02 0.024 0.01 0.009 0.005 1E-03 0.004 0.013 0.018 0.015 0.02 0.035 0.044 0.044 0.068 0.071 0.0994 0.1014 0.1062 0.1081 0.06 0.056 0.042

Total Patients 0.25 0.23 0.14 0.05 0.05 0.01 0.05 0.02 0.05 0.14 0.16 0.27 0.24 0.39 0.35 0.89 0.79 1.01 0.84 1.14 0.72 0.77 0.58 0.41

Proportion 0.026 0.024 0.015 0.005 0.005 0.001 0.005 0.002 0.005 0.015 0.017 0.028 0.025 0.041 0.037 0.093 0.083 0.1058 0.088 0.1194 0.0754 0.081 0.061 0.043

Total Patients 35 24 15 5 7 3 14 4 8 11 13 20 35 32 55 86 64 94 101 102 76 59 63 36

Proportion 0.036 0.025 0.016 0.005 0.007 0.003 0.015 0.004 0.008 0.011 0.014 0.021 0.036 0.033 0.057 0.089 0.067 0.0977 0.105 0.106 0.079 0.061 0.065 0.037

Total Patients 36 15 16 6 3 4 2 7 10 7 13 20 32 42 60 81 86 77 75 83 78 50 51 41

Proportion 0.04 0.017 0.018 0.007 0.003 0.004 0.002 0.008 0.011 0.008 0.015 0.022 0.036 0.047 0.067 0.091 0.096 0.086 0.0838 0.0927 0.0872 0.056 0.057 0.046

Total Patients 0.33 0.23 0.26 0.05 0.06 0.04 0.03 0.02 0.1 0.1 0.14 0.12 0.3 0.2 0.28 0.33 0.41 0.29 0.39 0.58 0.47 0.41 0.3 0.21

Proportion 0.058 0.041 0.046 0.009 0.011 0.007 0.005 0.004 0.018 0.018 0.025 0.021 0.053 0.035 0.05 0.058 0.073 0.0513 0.069 0.1027 0.0832 0.073 0.053 0.037

Total Patients 29 23 17 8 6 5 4 5 10 7 7 17 13 24 19 37 35 34 43 38 37 23 29 43

Proportion 0.057 0.045 0.033 0.016 0.012 0.01 0.008 0.01 0.019 0.014 0.014 0.033 0.025 0.047 0.037 0.072 0.068 0.0663 0.0838 0.0741 0.0721 0.045 0.057 0.084

Total Patients 208 158 126 42 38 23 35 31 63 79 94 140 203 237 308 468 444 531 542 622 491 367 344 280

Proportion 0.035 0.027 0.021 0.007 0.006 0.004 0.006 0.005 0.011 0.013 0.016 0.024 0.035 0.04 0.052 0.08 0.076 0.0904 0.0923 0.1059 0.0836 0.062 0.059 0.048
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Sun
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Mon

Tue

Wed
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The ups and downs observed in the short LOS were also present in the long LOS 

This situation led to the conclusion that in order to achieve accuracy in the predictions, 

LOS also should be modeled with the empirical distribution, then the second part of the 

hybrid model was composed by the empirical distribution that represented long LOS. In 

the Appendix graphical information for the other wards is presented. 

With the prediction models stablished, it can be said the fundamental parameters 

were ready to start the simulation modeling. The variables were ready to start the study of 

the impact in capacity from the addition of beds in the units.  

The following section offer a detailed description of the development of the DES 

model, since the conceptual model until its verification.  

 

 

 

Figure 5.20. MED LOS by day of the week. 
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6. DES MODEL DEVELOPMENT 

6.1. CONCEPTUAL MODEL  

For simulation purposes the original layout of the hospital was simplified to 

capture the appropriate performance variables. As it was indicated by Kolker (2010) it is 

not necessary to simulate the most complete model but keeping it simple while capturing 

the essential to accomplish the objectives. 

As it was stated at the beginning of section 5 (EDA), the VA Sacramento hospital 

offers inpatient services for seven different levels of acuteness known as wards MICU, 

SICU, MED, OBS, SURG, TCU-M and TCU-S (The model doesn’t include BHICU for 

the reasons exposed in the EDA). The wards were categorized in three different units of 

care where they share a set of beds as was shown in Table 6.1, 50 beds were allocated 

between the units, ICU with 10 beds, MOS with 24 and TCU with 16. 

 

 

Table 6.1. Allocation of beds in the VA Sacramento hospital. 

 

 

 

As the operation of the hospital, the simulation model was proposed as a set of 

three units of care which comprised the wards sharing beds. 

To follow the objective of the simulation which was to conduct experiments on 

different combinations of beds in the medical units, the essential control variables to 

initialize the model were: 

 Arrival rates by each arrival source, day of the week, and hour of the day. In 

section 5 the preliminary analysis of the data displays a detailed description of the 

Unit of care No. of Beds Wards in the Unit

MICU

SICU

MED

OBS

SURG

TCU-M

TCU-S

10ICU

MOS 24

16TCU
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arrival rates performance as an explanation of why arrivals must be model by day 

of the week and hour of the day. 

 Distributions of Length of stay for short and long term for each of the wards, and 

arrival day (day of the week). As for arrivals, the actual performance of LOS 

variable was described in the preliminary analysis section of this document.  

 Number of beds in each medical care unit. 

The design of the model allows the adjusting to the input data to perform the 

different scenarios of interest. The following output parameters were selected to evaluate 

the impact from operational changes in the inputs (e.g. Changing the number of beds in 

one of the units of care)  

 Patient waiting time for a bed after being admitted in the hospital.  

 Average of number of patients waiting for a bed after being admitted in a specific  

 Occupancy: number of beds occupied at the end of the day, bay ward by day 

Having defined the inputs and required outputs of the system, a conceptual model 

was developed for each unit of care (ICU, MOS and TCU), as an example; Figure 6.1 

presents the model for ICU. MOS and TCU units of care followed the same logic.  

 

6.2. LOGIC OF THE SIMULATION MODEL 

The first step in the simulation logic was the creation of the entities (patients). To 

ensure an accurate number of patients in the system, through a decision unit, the patient 

arrival was accepted or declined according to the different arrival rates specified by the 

simulation current day of the week (day one to seven) and hour of the day (hour one to 

24). The arrival rates were modeled as a nonstationary Poisson process. Each would have 

specific rates, within the wards the rates were introduced in the model by day of the week 

and by time of the day. Leaving a set of 168 rates per ward.  

When the patient was accepted in the hospital ward, the initial attributes were 

assigned, for instance, day of arrival, hour of arrival, and ward of admission became 

characteristics of the patients through the system and facilitated their tracing and the 

recording of the statistics in the simulation.
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Figure 6.1. Conceptual model ICU 

 

 
4
7
 



 

 

48 

Once this assignation was complete, a decision element was placed to give the 

patients the LOS type, short or long, based on the proportions of short and long stays 

extracted from the hospital data for each ward. After the LOS characterization, the 

simulation logic gave the LOS time according to the empirical distributions of LOS for 

each ward subtracted from the hospital data. As for the behavior of the original data, the 

model was design to designate a Length of stay according to the patient’s ward and day 

of arrival from the empirical distribution determined from the EDA.  

When the beds were allocated to the patients, LOS time was used as the treatment 

time. The beds were given in a cyclical manner, meaning that an available bed was the 

next to be assign. If there were not available beds, the patient waited in queue until a bed 

was available, and the first patient in queue got the first available bed (FIFO). The patient 

was discharged after the completion of the treatment time. The simulation model used to 

record commands between the different assignations and activities to report the relevant 

statistics: queue characteristics, daily occupancy and throughput. Figure 6.2 presents a 

fragments of the simulation model, it represents ICU, the other two Units of care (MOS 

and TCU) were modeled in the same fashion to complete the operation of the simulated 

system.  
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Figure 6.2. DES model (ICU fragment) 
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7. VALIDATION AND VERIFICATION 

To validate the model, a comparison was conducted between the values of the 

variables generated by the simulation and the operational data collected from January of 

2009 to December of 2014, a total of 313 consecutive weeks.  

The simulation outputs were compared graphically and the similarities/differences 

were confirmed statistically by the application of different hypothesis test like Wilcoxon, 

crustal Wallis, among others. Choosing the statistical test depend on the nature of the data 

collected. Due to the use of empirical probability distributions to describe the LOS 

behavior, and the time-dependent characteristics of the arrival rates, the non-parametric 

Wilcoxon and Kruskal Wallis statistic tests, were used to verify significant difference 

between the sets of data for arrivals and length of stay and Occupancy. The simulation 

run is defined as a sequence of samples of the same size, thus one run may contain 

several samples or replications with the same initial conditions but different numerical 

seed generated randomly by Arena™. This allows each sample to be independent. 

When running the simulation, each replication initiates with an empty system, 

thus a warm-up period (WP) was included in order to guarantee the system had reached a 

stable state before the collection of the information for the run can be done. Control 

variables as arrivals and length of stay were not sensitive to an empty initial system, 

however output parameters as occupancy, waiting time and length of the queue were 

affected by the initial conditions. Welch’s graphical procedure was applied to stablish the 

WP, it consisted in a calculation of the cumulative average which was superimposed to a 

Welch plot to determined when the data was stable, to offer a better visualization, the 

calculation of the growth of the cumulative average was plotted instead. This technique 

was applied to the WP sensitive variables (occupancy and length of the queue) and the 

longest WP identify was chosen to be implemented in the model. For this purpose, a trial 

run of 5 replications (length 313 weeks each) was used. The results observed from the run 

are displayed in Table 7.1, a WP of 200 days (4800 hours) was stablished as it was the 

longest time a variable took to stabilize. The visual representation of the approach is 

presented in Figure 7.1 and Figure 7.2. 
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Table 7.1. WP identification 

 

 

 

 

Figure 7.1. Visual identification of the warm-up period for occupancy. 

Unit of care Variable WP (days) WP(Hours)

Occupancy 63 1512

Time in Queue 62 1488

Occupancy 60 1440

Time in Queue 200 4800

Occupancy 46 1104

Time in Queue 185 4440
TCU

MOS

ICU
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Figure 7.2. Visual identification of the warm-up period for waiting time. 

 

 

With the interest of simplify the graphical comparisons for the model verification, 

the length of the replications was kept equal to the original set of data 313 weeks (52584 

hours) including the warm-up period. The number of replications was defined using the 

half width ratio method as Arena™ automatically compute 95% confidence half width 

for the measured variables. 
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Calculation of the number of replications: 

 Pilot run of 5 replications, 313 weeks long each. 

 The parameter chosen to calculate the sample size (number of replications) was 

the occupancy and its bound, E, (marginal error) was expected to be less than 5% 

of the average occupancy for each unit of care taken from the original set of data. 

Table 7.2 specified the expected E for each unit of care. 

 

 

Table 7.2. Expected error for occupancy. 

 

 

 

As stated in Table 7.3, 6.37 was the optimal size of the sample required to obtain 

the desired error level, then, the appropriate number of replications to validate the model 

was seven.  

 

 

Table 7.3. Sample size to obtain the desired margin error 

 

 

 

All simulation replications started on Monday at midnight (12 Am). The data 

collected at the end of each run was graphically compared with the original data set and 

statistically tested under the following hypothesis: 

 H0: There was no difference between the two groups of data 

  HA: There was a statistically significant difference between the groups. 

Unit of care
Average Occupancy

(Patients)

Expected Error
(5% Of the average Occupancy)

ICU 7.622 0.3811

MOS 18.2928 0.91464

TCU 12.1952 0.60976

Unit of care ICU MOS TCU

Pilot run number of replications (n0)

Initial Half with (h0) 0.43 0.28 0.2

Desired Half width (h) 0.3811 0.91464 0.60976

Requiered sample size 6.3654 0.4686 0.5379

5
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Excel and Minitab 17 were used to perform the statistical tests and the graphical 

comparisons. 

 

7.1. ARRIVALS  

The graphical verification was based on the average number of arrivals each hour 

by day of the week. Original averages were plotted together with the simulation results 

for a visual revision of the similitudes/differences. Figure 7.3, Figure 7.4, and Figure 7.5 

display the arrival rates behavior by ward. The rates were plot by hour and every 24 

hours represent a day of the week; therefore, the peaks are the time of the day were more 

patients arrive to the hospital.  

In conclusion, the data obtained by the simulation behaves accordingly to the data 

collected from the hospital, having that there was not statistically significant difference 

between the behavior of the two groups. (Table 7.4. Arrivals hypothesis tests results.). 

 

 

 

Figure 7.3. Graphic verification of arrivals by ward. MICU, SICU. 
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Figure 7.4. Graphic verification of arrivals by ward. MED, OBS.SURG. 
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Figure 7.5. Graphic verification of arrivals by ward. TCU-M, TCU-S. 

 

 

7.2. LOS 

The graphical verification of LOS was done using the CDF of both original 

dataset and dataset obtained from each replication from the simulation run (seven 

replications). The comparison was presented by ward according to the characteristics of 

LOS (short, long).Figure 7.6, Figure 7.7 and Figure 7.8. 

Table 7.5 displays the results from the statistical tests of each ward. Concluding, 

the data distribution from the simulation and the data distribution from the hospital do not 

present statistical difference, neither for short LOS nor long LOS. 
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Table 7.4. Arrivals hypothesis tests results. 

 

 

 

 

Figure 7.6. Graphical verification of LOS short and long for MICU, SICU. 

 

INW Test Results Conslusion

MICU Wilcoxon P-Value =   0.9996
Distribution of the samples is 

not significantly different.

SICU Wilcoxon P-Value =   0.7595
Distribution of the samples is 

not significantly different.

MED Wilcoxon P-Value =   0.9861
Distribution of the samples is 

not significantly different.

OBS Wilcoxon P-Value =  0.8314
Distribution of the samples is 

not significantly different.

SURG Wilcoxon P-Value =  0.9575
Distribution of the samples is 

not significantly different.

TCU-M Wilcoxon P-Value =   0.9749
Distribution of the samples is 

not significantly different.

TCU-S Wilcoxon P-Value =   0.769
Distribution of the samples is 

not significantly different.
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Figure 7.7. Graphical verification of LOS short and long for MED, SURG, OBS. 
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Figure 7.8. Graphical verification of LOS short and long for TCU-M, TCU-S. 

 

 

 

Table 7.5. LOS verification Hypothesis test results 

 

INW LOS Type Test Results Conslusion

Short Kruskal Willis P-Value =   0.821
Distribution of the samples is not significantly 

different.

Long Kruskal Willis P-Value =   0.206
Distribution of the samples is not significantly 

different.

Short Kruskal Willis P-Value =   0.268
Distribution of the samples is not significantly 

different.

Long Kruskal Willis P-Value =   0.829
Distribution of the samples is not significantly 

different.

Short Kruskal Willis P-Value =   0.318
Distribution of the samples is not significantly 

different.

Long Kruskal Willis P-Value =   0.780
Distribution of the samples is not significantly 

different.

OBS Short Kruskal Willis P-Value =   0.507
Distribution of the samples is not significantly 

different.

Short Kruskal Willis P-Value =   0.984
Distribution of the samples is not significantly 

different.

Long Kruskal Willis P-Value =   0.873
Distribution of the samples is not significantly 

different.

Short Kruskal Willis P-Value =   0.749
Distribution of the samples is not significantly 

different.

Long Kruskal Willis P-Value =   0.274
Distribution of the samples is not significantly 

different.

Short Kruskal Willis P-Value =   0.453
Distribution of the samples is not significantly 

different.

Long Kruskal Willis P-Value =   0.344
Distribution of the samples is not significantly 

different.

TCU-S
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SICU

MICU
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8. MODEL IMPLEMENTATION AND RESULTS 

After the model was verified, it was used to simulate the implementation of four 

beds within the three units of care (ICU, MOS and TCU) to determine in which, the 

addition of beds could be of more benefit. 

The quantity of beds used in this analysis was specified based on the information 

obtained from Hospital managers. They expressed their interest on studies that could 

determine the impact in capacity from of adding beds, which could be an important tool 

to support the decisions about investment in new resources. However, the managers 

explained that, to increase the number of beds in the hospital, it was possible to assign 

various rooms which can house two patients instead of one, but, this distribution of the 

space will allow the implementation of maximum four beds. 

The performance was measured from the outcome variables: Waiting time, 

number of patients waiting, bed utilization rates and throughput.  

The experimental outcomes were analyzed in two parts:  

1. Analysis of queues to define bottlenecks and benefits from adding beds to 

each unit. 

2. Selection of the scenario that represented better opportunities of raising the 

hospital capacity based on the bed utilization rates 

 

8.1. ANALYSIS OF THE QUEUES  

The evaluation of the what if scenarios was done using the process analyzer tool 

from the Arena™ package. The is tool allowing to stablish control and response 

parameters to run the simulation and obtain the results as the design of the experiment 

requires, for example, if from the experimentation it is necessary changing the number of 

beds between the trials, number of beds could be stablished as a control parameter, and if 

the waiting time was the needed outcome for the analysis, it can be defined as a response 

variable. 

The first part of the analysis, an experiment was designed in order to collect the 

necessary outcomes which could help in determining: 1. Queue characteristics and 2. The 

benefits of adding beds based on those queue features. 
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In this way, a total of 15 scenarios were proposed, each one representing a 

possible combination for adding four beds in the three units of care. (refer to Table 8.1.)  

 

 

Table 8.1. Different combinations for adding four beds in the three units of VA 

Sacramento Hospital. 

 

 

 

The simulation was run with 10 replications for each scenario and the length of 

each replication was 313 weeks total (Warm-up period of 200 days included). Table 8.2 

and show the results of the experiments. 

However, to calculate the benefits from adding beds in each ward, the data must 

be organized presenting the outcomes for each unit by number of beds added (Refer to 

Table 8.3 and Figure 8.1). The % of benefit from adding between 1 up to 4 beds in each 

unit, are presented in Table 8.4 and Figure 8.2. 

It could be observed from the results in the figures, that the output measures 

(waiting time and patients waiting) were significantly lower for MOS in comparison with 

the other two units (ICU, TCU) which is confirmed by the benefits curve (Figure 8.2). 

This means that there are more benefits in adding beds to ICU and TCU.  

The reason why more stabilized queues are observed for MOS, is the number of 

beds it has allocated (24 beds) which represent the largest assignation between the units 

(2.4 and 1.5 times the number of beds in ICU and TCU respectively). This distribution 

ICU MOS TCU ICU MOS TCU

Current state 0 0 0 10 24 16

Scenario 1 4 0 0 14 24 16

Scenario 2 3 1 0 13 25 16

Scenario 3 3 0 1 13 24 17

Scenario 4 2 2 0 12 26 16

Scenario 5 2 0 2 12 24 18

Scenario 6 2 1 1 12 25 17

Scenario 7 1 3 0 11 27 16

Scenario 8 1 0 3 11 24 19

Scenario 9 1 1 2 11 25 18

Scenario 10 1 2 1 11 26 17

Scenario 11 0 4 0 10 28 16

Scenario 12 0 0 4 10 24 20

Scenario 13 0 3 1 10 27 17

Scenario 14 0 1 3 10 25 19

Scenario 15 0 2 2 10 26 18

Scenario Name
No. Beds to Add in the scenario Total beds to run the scenario
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can be attributed to several reasons, like internal policies and managerial decisions in the 

day to day operation. For example, the ward of admission is determined according to the 

level of the acuteness of the illness (mentioned in section 3 of this document), from there 

it is recognizable that different wards have different requirements of resources.Also, as 

mentioned by the hospital managers, in some circumstances of high occupancy, wards 

from different units can proportionate beds to other wards. This situation can represent 

implications in the quality of the service, mostly for the Intensive care unit, because of 

the specialized needs for resources. This study aims to contribute in the recognition of 

different implications of bed distributions to support the managers in the identification of 

opportunities for improvement.  

 

 

Table 8.2. Output parameters for each scenario. (Time in Hours). 

 

 

 

Table 8.3. Waiting time and Number of Patients waiting by unit. 

 

ICU MOS TCU ICU MOS TCU ICU MOS TCU

1 Current state 10 10 24 16 2.043 0.085 3.422 13.958 0.433 19.355

2 Scenario 1 10 14 24 16 0.078 0.085 3.422 0.543 0.433 19.355

3 Scenario 2 10 13 25 16 0.167 0.048 3.422 1.141 0.268 19.355

4 Scenario 3 10 13 24 17 0.167 0.085 1.567 1.141 0.433 8.833

5 Scenario 4 10 12 26 16 0.36 0.027 3.422 2.436 0.144 19.355

6 Scenario 5 10 12 24 18 0.36 0.085 0.788 2.436 0.433 4.442

7 Scenario 6 10 12 25 17 0.36 0.048 1.567 2.436 0.268 8.833

8 Scenario 7 10 11 27 16 0.799 0.015 3.422 5.468 0.074 19.355

9 Scenario 8 10 11 24 19 0.799 0.085 0.423 5.468 0.433 2.392

10 Scenario 9 10 11 25 18 0.799 0.048 0.788 5.468 0.268 4.442

11 Scenario 10 10 11 26 17 0.799 0.027 1.567 5.468 0.144 8.833

12 Scenario 11 10 10 28 16 2.043 0.008 3.422 13.958 0.036 19.355

13 Scenario 12 10 10 24 20 2.043 0.085 0.228 13.958 0.433 1.295

14 Scenario 13 10 10 27 17 2.043 0.015 1.567 13.958 0.074 8.833

15 Scenario 14 10 10 25 19 2.043 0.048 0.423 13.958 0.268 2.392

16 Scenario 15 10 10 26 18 2.043 0.027 0.788 13.958 0.144 4.442

Reps.Name
Total beds in the scenario Avg. Patients in Queue Avg. Time in Queue

ICU MOS TCU ICU MOS TCU

0 2.043 0.085 3.422 13.958 0.433 19.355

1 0.799 0.048 1.567 5.468 0.268 8.833

2 0.36 0.027 0.788 2.436 0.144 4.442

3 0.167 0.015 0.423 1.141 0.074 2.392

4 0.078 0.008 0.228 0.543 0.036 1.295

Avg. Patients in QueueNo. Beds 

added

Avg. Time in Queue
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Figure 8.1. Changes in queue characteristics by adding beds to the hospital units. 

 

 

Table 8.4. % Benefit from adding 1 up to 4 beds by unit. 

 

 

When observing the results in waiting times for MOS and the lower benefits this 

unit presented when adding beds, a question raised: Is the current number of beds 

assigned proportionally to the patients that each unit of care attended? 

To answer, it was important to evaluate waiting time and number of patients 

waiting, together with average arrival rates, LOS and % of utilization (Table 8.5). This 

analysis was conducted using the values of the current state (shown before in Table 8.2). 

 

ICU MOS TCU ICU MOS TCU

0 0 0 0 0 0 0

1 63.31% 48.05% 58.08% 63.29% 41.56% 58.26%

2 85.65% 75.32% 82.47% 85.89% 72.80% 82.57%

3 95.47% 90.91% 93.89% 95.54% 90.43% 93.93%

4 100% 100% 100% 100% 100% 100%

No. Beds 

added

% of Benefit

Avg. Patients in Queue Avg. Time in Queue
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Figure 8.2. % of Benefit from adding beds to the Hospital units. 

 

 

Table 8.5. Output parameters vs Arrivals, LOS and Bed utilization rate. 

 

 

 

The data obtained showed that the current distribution of beds between the units 

could be considered inadequate, the observations that lead to this assumption are: 

- Although the queues are more stable for the MOS unit, its bed utilization 

rate is almost 20% below the rates of the other units. 

- The number of beds allocated for MOS is 1.5 times the ones in TCU, but 

the arrival rates are almost the same, also LOS is almost equal, which does 

not justify the difference in quantity of beds. 

- Although the arrival rates for ICU are less than half of the other units, its 

LOS influence the utilization rate until the point it is almost equal as TCU. 

This indicated that ICU still need beds to reduce the waiting times.  

Unit of care
Avg Time in 

Queue

Avg. Num. Patients 

in Queue

Avg. Daily 

Arrival rate
Avg. LOS (Hrs.) % Bed Utilization

ICU 13.958 2.043 12.24 111.23 81.33%

MOS 0.433 0.085 31.70 81.89 64.68%

TCU 19.355 3.422 28.67 78.58 86.09%
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- The benefit of adding beds in MOS is relatively low in comparison with 

the benefits for ICU and TCU.  

It is important to highlight that this assumption was based on the quantitative 

analysis of the results, managerial decisions and hospital policies, unrevealed for this 

study, may add a significant impact in the definition of the best bed allocation, in this 

regard the optimization of beds distribution within the hospital, will be proposed as future 

work with the aim of include in the evaluation the policies and qualitative details. 

Knowing there is some inadequacy in the beds distribution between the units, 

because there is a large assignation of beds in MOS, the analysis of the results (from 

adding beds) was focused on determine in which unit, the addition of beds had a better 

impact, therefore, offer solid arguments to support managerial decisions. 

As it was presented in Figure 8.2, the unit that received more benefits from adding 

1 up to 4 beds was ICU. The reason for this result came from the influence of the LOS 

had on bed utilization. Despite the arrival rates for ICU were lower than the other units, 

its LOS was larger, which influenced directly the % of bed utilization (as shown in Table 

8.5) leading to the conclusion that ICU has a deeper need of implementing beds in order 

to increase the access capacity of the hospital. To confirm this premise, Figure 8.3 

presents the benefits from adding beds in each unit in terms of bed utilization. It was 

observed again that ICU had more benefit when adding beds.  

Figure 8.4 presents the observations of the queue characteristics for each ward. 

Table 8.6 and Figure 8.5 show the benefit each ward has by adding beds. The behavior of 

the wards within the units is very similar to the unit they belong to (e.g. MICU and SICU 

belong to ICU and their queues had similar performance when adding beds). This 

situation is caused by the condition of sharing beds within the wards in the unit. As the 

wards are grouped by specific level of acuteness, the beds are assigned as they become 

available, which is the reason why the queue characteristics are very close one ward to 

another within the unit.  

The data categorized by ward followed the same pattern than before, wards 

pertaining to ICU will have the largest benefit if beds are added. It is observed that MICU 

could be as benefitted as SICU. 
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Figure 8.3. % Utilization by adding beds by Unit. 

 

 

 

Figure 8.4. Changes in queue characteristics by adding beds to each ward. 
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Table 8.6. Benefit rate from adding 1 up to 4 beds by ward. 

 

 

 

 

Figure 8.5. % of Benefit from adding beds to each ward. 

 

 

8.2. SELECTION OF THE BEST SCENARIO 

The analysis of the queues gave important information to determine which units 

could have larger benefit rates from adding beds, based on waiting time and Patients in 

queue. On this basis, it was possible to refine the search for the best combination of 

additional beds, including only ICU and TCU. 

In the first part of the results it was established that, from evaluating each unit of 

care parameters, the benefit in waiting times and number of patients waiting from adding 

beds in MOS was considerably small in comparison with the benefit for ICU and TCU. 

Also it could be observed that the queues of the wards have similar behavior than the 

MICU SICU MED OBS SURG TCU-M TCU-S MICU SICU MED OBS SURG TCU-M TCU-S

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 63.35% 63.17% 48.98% 50.00% 48.15% 58.04% 58.36% 63.24% 63.28% 48.49% 55.33% 48.12% 58.02% 58.51%

2 85.57% 85.93% 75.51% 100% 77.78% 82.44% 82.70% 85.52% 85.89% 75.41% 81.64% 75.81% 82.43% 82.71%

3 95.45% 95.51% 89.80% 100% 92.59% 93.87% 93.84% 95.40% 95.54% 90.72% 94.79% 91.94% 93.87% 93.98%

4 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Avg. Patients in Queue Avg. Time in QueueNo. Beds 

added

% of Benefit
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units they belong to. In this case, it is possible to use the conclusions obtained by the 

analysis of the units to make inferences about the wards. 

One of the advantages of using DES models is the detailed information that can 

be collected. The representations of relationships between parameters allow a more 

complete and accurate analysis than the one that could result from only using queuing 

theory as specify in the literature review. In this point of the study, the inclusion of 

variables, like bed utilization and throughput, was useful to examine the impact 

throughout the system from the reduction in waiting times by adding beds in ICU and 

TCU.  

Thus, to start with this part of the analysis it was necessary return to the initial 

outcomes of the experiment (Table 8.2) and also recall the benefit rates in waiting time 

presented in Table 8.4. From there the scenarios that involved adding beds to ICU and 

TCU were chosen. The summary of the results is presented in Table 8.7and Figure 8.6. 

 

 

Table 8.7. Outcome parameters for Scenarios that involve adding beds to ICU and TCU 

 

 

 

To optimize the implementation of the four beds, it is reasonable to think that the 

best option would be the one that offered the larges benefits to both ICU and TCU at the 

same time. Observing the results, scenario 5 follows the logic of better benefits for both 

units; however, it is difficult to recognize the overall benefit when evaluating separated 

rates. It is noticeable that scenarios 5 and 8 qualified as good options from the benefit 

rates. Still, further analysis was required to confirm such assumption. Then, bed 

utilization rates and throughput were included in the analysis. Their measures will 

capture the impact of the additional beds and reduction in queue time across the system 

as mentioned above.  

ICU MOS TCU ICU MOS TCU ICU MOS TCU ICU MOS TCU

Current state 0 0 0 10 24 16 13.958 0.433 19.355 0% 0% 0%

Scenario 1 4 0 0 14 24 16 0.543 0.433 19.355 100% 0% 0%

Scenario 3 3 0 1 13 24 17 1.141 0.433 8.833 95.54% 0% 58.26%

Scenario 5 2 0 2 12 24 18 2.436 0.433 4.442 85.89% 0% 82.57%

Scenario 8 1 0 3 11 24 19 5.468 0.433 2.392 63.29% 0% 93.93%

Scenario 12 0 0 4 10 24 20 13.958 0.433 1.295 0% 0% 100%

Avg. Time in Queue % of Benefit Time in Queue
Scenario Name

No. Beds to Add in the scenario Total beds to run the scenario
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Figure 8.6. Waiting time by Unit of Care, by scenarios 1,3,5,8 and 12. 

 

 

The identification of the changes in bed utilization and throughput for the selected 

scenarios allowed he identification of the best combination of beds. Increases in bed 

utilization rates and throughput (without considering changes in demand) indicate that the 

hospital has increased its capacity to serve patients. 

Figure 8.7, Figure 8.8, and Table 8.8, present the distribution of daily rates of bed 

utilization and daily throughput for current state, scenario 5 and scenario 8. 

The comparison between scenarios showed that scenario 8 represent the higher 

increase in utilization of beds and throughput, 1.6% and 1.375% respectively. This results 

indicated that adding 1 bed to ICU and 3 beds to TCU represented a larger increase in the 

capacity the hospital had to serve patients. 

 

 

Table 8.8. Bed utilization rates and Throughput. Comparison by scenario. 

 

Mean  % of growth in the mean Mean  % of growth in the mean

Current State 0.7561 13.09

Scenario 5 0.7675 1.508% 13.2 0.840%

Scenario 8 0.7683 1.614% 13.27 1.375%

Scenario 
Daily Bed utilization rate Daily Throughput
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Figure 8.7. Histogram of daily %bed Utilization in the hospital. 

 

 

 

Figure 8.8. Histogram of daily discharges (Throughput) in the hospital. 
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9. CONCLUSIONS 

This thesis described an application of DES for analyzing capacity. This was 

accomplished by testing different combination of beds in the units of care of VA 

Sacramento hospital.  

In the initial phase of the research there is a special focus on stablishing accurate 

models that contemplate the quantitative characteristics of the variables from the original 

data. The arrival rates were defined by ward of admission, considering the admission day 

and time of the day. All wards fit a Poisson processes.  

Since standard statistical models did not fit the LOS actual data, a set of non-

parametric empirical distributions separated by patients with short stays (less or equal 

than 168 hours) and long stays (greater than 168 hours), were used. The LOS was 

classified in short and long with the purpose of constructing an accurate quantitative 

representation that account for the weighted tails showed by the data. In addition, the 

mixture of long and short stays (i.e. 90% of all patients having an LOS of 168 hours or 

less and 10% exceeding 168 hours to 66 days) within the data posed a unique set of 

issues, as a sole LOS statistical model cannot be found that can reproduce such a 

phenomenon.  

The model was thoroughly validated. The comparison of the real data (arrivals 

and LOS) data against the simulation data did not show statistical differences. The 

effective validation provided confidence in the model to deliver accurate results from the 

experimentation phase. It also offers credibility in the hospital administrators to use the 

results for planning decisions that could impact in bed utilization rates and throughput.  

The simulation can quantify the impact of different bed allocations on patient 

waiting times, one of the critical parameters measured in this study.  

The number of beds to be added (1 to 4), used fin this analysis was determined 

from the specifications of space available expressed by the hospital managers. 

The analysis of various configurations for additional 4 beds provided quantitative 

information about: 

1. The benefits offered by adding one up to four beds in each unit of care (ICU, 

MOS, TCU) based on waiting time and number of patients in queue. ICU showed 
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the highest rate of benefit (refer to Table 8.7). It was also found that the highest % 

of benefit, and bed utilization rates in ICU were consequence of the influence of 

the average ICU patients LOS (also the highest measured from the units). 

The analysis of the queues gave important information about the benefit from 

adding beds to each unit of care based on waiting time and Patients in queue. The 

evaluation of the individual queues, allowed to focused the study on ICU and TCU. 

The current distribution of beds in the units is disproportionate in comparison 

with bed utilization.  

2. The inclusion in the analysis of variables, like bed utilization and throughput, was 

useful to examine the impact throughout the system from the reduction in waiting 

times by adding beds in ICU and TCU. Increases in bed utilization rates and 

throughput (without considering changes in demand) indicate that the hospital has 

increased its capacity to serve patients. Based on this premise, it could be 

determined that adding 1 bed to ICU and 3 beds to TCU was the combination of 

beds that represented the most positive impact on hospital capacity This scenario 

showed an increase of 1.6% and 1.4% in bed utilization and throughput 

respectively. 

In the following section it is presented a description of some limitations within the 

development of this DES and recommendations on future work.  
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10. LIMITATIONS AND FUTURE WORK 

10.1. LIMITATIONS 

Across the work, several limitations were found, included: 

 The collection of the data was not made specifically for the development of a 

DES model. From the information available it was possible to obtain general rates 

of patient admissions and discharges, but information about patient transfers 

between the wards was misleading. This data made it difficult to capture desirable 

outcomes. However, it is valuable to highlight that the data obtained from the 

simulation was accurately validated for arrivals and LOS. 

 The model assumes unconstrained waiting times. In reality, there is a limit in the 

time the patients can wait in queue depending on their level of acuteness and 

hospital occupancy rates. The consideration of this parameter would have allowed 

the study of other aspects such as rejection rates. 

 

10.2. FUTURE WORK  

 Currently, it is planned to use the simulation model to forecast Occupancy rates 

within a 24-hour period, based on the time a patient has been in a hospital ward. 

In an effort to determine a patient’s or cohort of patients’ discharge probability 

within the next 24 hours.  

 The inclusion of patient flow rates between the wards would allow the use of the 

model for different purposes. The inclusion of transfer rates between wards can 

reduce the variability of simulation. For example, it will open the possibility to 

study the impact in occupancy from the implementation of changes in the 

discharge policies.  

 The analysis of the current state of the hospital, suggested an inadequate 

distribution of beds between the units of care. Hence, it will be of important use to 

stablish the optimal allocation of beds per unit. For this matter, the inclusion of 

the evaluation of policies, qualitative details, and an optimization algorithm to 

complement the simulation model. 
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The goodness of the implementation of optimization to increase the benefits of the 

simulation results has been describe in publicized studies like Wang et al., [10] and 

Mallor et al. [13]. 
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APPENDIX 

DISTRIBUTION FIT FOR ARRIVALS AND LOS 

VA SACRAMENTO MEDICAL CENTER 

 

ARRIVALS: A histogram with both the observed (real-data) versus the Poisson 

function (expected) by day of the week is provided for each ward. 
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SICU 
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OBS 
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MED 
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SURG 
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TCU-M 
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TCU-S 
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ARRIVAL TIME OF THE DAY: A histogram of arrivals distribution by time of the 

day for each day of the week, is provided for each ward.  
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LOS: A histogram and a survival plot of the LOS by day of the week are provided for 

each ward. Also a table with the summary of the results for the fitting test is presented.  

Notice that in all figures the decimal, which is commonly displayed as “.”, will be 

represented with a “,”. Hence, the number of 2.5 will be displayed in the graphic as 2,5.  
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WDIn Wilcoxon test Conclusion

MICU P-Value =   0.001
Observed data (real-data) and Poisson function 

data are significantly different.

SICU P-Value =   0.000
Observed data (real-data) and Poisson function 

data are significantly different.

OBS P-Value =   0.081
Observed data (real-data) and Poisson function 

data are not significantly different.

MED P-Value =  0.000
Observed data (real-data) and Poisson function 

data are significantly different.

SURG P-Value =   0.000
Observed data (real-data) and Poisson function 

data are  significantly different.

TCU-M P-Value =   0.000
Observed data (real-data) and Poisson function 

data are  significantly different.

TCU-S P-Value =  0.000
Observed data (real-data) and Poisson function 

data are significantly different.

LOS Fitting test results by Ward
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