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ABSTRACT 

Blasting has been widely used as an economical and cheap way of rock breakage 

in mining and civil engineering applications. An optimal blast yields the best 

fragmentation in a safe, economic and environmentally friendly manner. The degree of 

fragmentation is vital as it determines to a large extent the utilization of equipment, 

productivity and mill throughput. Explosive energy, besides rock fragmentation, creates 

health and safety issues such as ground vibration, air blast, fly rock, and back breaks 

among others. As a result, the explosive energy impacts structures and buildings located 

in the vicinity of the blasting operation, and causes human annoyance, as well as exposes 

operators in the field to hazardous conditions. There is therefore a need to develop a 

model to predict blast-induced ground vibration (PPV), airblast (AOp), and rock 

fragmentation. Artificial neural network (ANN) technique is preferred over empirical and 

other statistical predictive methods as it is able to incorporate the numerous factors 

affecting the outcome of a blast. This study seeks to develop a simultaneous integrated 

prediction model for rock fragmentation, ground vibration and air blast using MATLAB-

based artificial neural network system. Training, validation and testing was done with a 

total of 180 monitored blast records taken from a gold mining company in Ghana using a 

three-layer, feed-forward back-propagation ANN.  

Based on the results obtained from the study, ANN model with architecture of    

7-13-3 was found optimum having the least root mean square error (RMSE) of 0.307. 

Artificial neural network (ANN) technique has been compared to empirical and 

conventional statistical methods. Sensitivity analysis has also been conducted to ascertain 

the relative influence of each input parameter on rock fragmentation, PPV and AOp. 
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1. INTRODUCTION 

 

1.1. BACKGROUND 

Rock fragmentation is a fundamental mining activity that affects the downstream 

processes; hence, there is a need of optimizing fragmentation. Optimizing rock 

fragmentation results in (i) maximizing crusher throughput; (ii) improving excavator 

productivity; (iii) minimizing equipment (i.e. excavator and crusher) maintenance and 

repair costs. After the rocks are fragmented, the excess explosive energy creates ill 

effects such as ground vibration, air blast, fly rock, and back breaks among others. Air 

blast and ground vibration are usually potential causes of property damage and human 

annoyance. Effective control of airblast and ground vibration avoids persistent complains 

from affected inhabitants and prevents property damages to surrounding area. 

A number of conventional statistical, empirical equations and artificial neural 

network systems have been employed by various researchers to predict rock 

fragmentation, ground vibration and airblast prior to blasting operations. However, 

artificial neural network (ANN) is preferred over the other predictive techniques due to 

its ability to incorporate the numerous factors affecting the outcome of a blast among 

other advantages. However, the ANN model generated is site specific, the input 

parameters can be expanded to include mechanical and geotechnical rock parameters 

such as rock strength, RQD, rock hardness, number of joints etc. to provide the ANN 

model a wider application. Thus, for this research, the ANN system is used to generate an 

optimum model for predicting blast-induced ground vibration, airblast and rock 

fragmentation. 

Artificial neural networks (ANN) are structures of interconnected neurons and 

usually involve the exchange of signals between neurons. ANN systems are good at non-

linear fittings as well as recognizing patterns after a successful training process and 

outputs can be predicted given new sets of inputs. 
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1.2. STATEMENT OF THE PROBLEM 

Blasting operations often focus on controlling fragmentation while neglecting the 

environmental consequences. An optimal blast yields the desired fragmentation in a safe, 

economic and environmentally friendly manner. On the other hand, a poorly conducted 

blast would typically result in poor fragmentation and ill effects such as fly rocks, ground 

vibration, airblast and back break. Among these nuisances, ground vibration and airblast 

are the potential causes of property damages and noise pollution as noted in a case study 

conducted at an open pit gold mine located in Ghana. The mining company had been in 

successful business until recently. Complaints from inhabitants over noise and cracks 

developed in their buildings comes in the wake of poor excavator productivities, reduced 

crusher throughput, low crusher and excavator availabilities, and overall reduction in 

ounces realized. Results of investigations conducted proved that the blasting operations 

caused the cracks in neighboring structures. Poor fragmentation caused relatively lower 

excavator productivities, wear and damages to crusher and excavator teeth, reduced 

crusher throughput, and overall reduction in ounces produced. There was therefore an 

urgent need for solutions to the blast-related problems. 

An attempt was made to improve the blasts results using empirical models. These 

empirical models were generally unsuccessful due to their inability to address the internal 

complexities in the input parameters. Moreover, they allowed limited inputs and were 

unable to predict multiple outputs. To address the above-mentioned weaknesses of the 

empirical predictors and to resolve the blast-related challenges, artificial neural network 

(ANN) was used. Classical examples of poor fragmentation at the mine are presented in 

Figures 1.1 and 1.2 below. 
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Figure 1.1. Rock formation stationary after blasting 

 

 

 

 

Figure 1.2. Visible rock formation after blasting 
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1.3. PROJECT OBJECTIVES 

 Optimized blasts generate the desired fragmentation and minimize the impact of 

ground vibration and airbast on the neighborhood of the blasting operations. This 

research focuses on four main objectives in order to improve rock fragmentation. These 

objectives are to: 

 Develop an integrated prediction model for rock fragmentation, blast-induced 

ground vibration and airblast using MATLAB-based artificial neural network 

system. 

 Compare artificial neural network (ANN) predictions to conventional statistical 

(multivariate regression analysis) and other empirical methods to define the best 

approach. 

 Carry out sensitivity analysis on all input parameters to ascertain the relative 

influence of each parameter on rock fragmentation, ground vibration (PPV) and 

airblast (AOp). 

 Use optimum ANN model generated to achieve desired fragmentation under 

environmentally acceptable limits. 

 

1.4. MINE BACKGROUND INFORMATION 

 1.4.1. Location and Accessibility. The Mine is located in Ghana, West Africa. It 

is approximately 57 km to the south-west of Obuasi and 195 km north-west of the capital 

Accra on the eastern flank of the prospective Ashanti Belt and 16 km west of Dunkwa, 

near Ayanfuri. The Mine lies between latitude 1°50’00” and 2°00’00’’ and longitude 

5°48’49’’ and 6°00’00”. It can be accessed by a 107 km road from Kumasi, which lies to 

the north of the mine and a 186 km road from the port of Takoradi south of the mine. The 

Dunkwa/Awaso defunct railway line passes 2 km north east of the mine.  

 1.4.2. Mine Geology. The deposits occur near the western flank of the Ashanti 

Greenstone Belt. Numerous small Basin-type or Cape Coast-type granite bodies have 

intruded the sediments along several regional structures. The intrusive shapes vary from 

nearly ovoid plugs 200 m to 400 m long by 40 m to 150 m wide to relatively long 

(+2,000 m) narrow (50 m -100 m) sills or dykes. Gold mineralization has been identified 

in a single granitoid intrusive over an open strike of 2 km between Abnabna and Fobinso 
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pits. Most of the gold mineralization is contained within five (5) zones. These main zones 

range from 30 m to 140 m in width and have a moderate to steep northerly plunge. 

1.4.3. Mine Operations. The gold mine practices open pit mining method to 

extract ore in two main productive pits. Mining is selective with bulk waste stripping on 

5m and 10m benches. Mining operation runs a two-shift system with 10 hours per shift. 

Full capacity commercial production started in 2011 and the mine still has over 10 years 

mine life. The mining operation begins with drilling of holes, loading the holes with 

explosives and blasting. After the rocks are fragmented, they are loaded into haul trucks 

using excavators. Ore is hauled to the stockpile or direct-tipped into crusher while the 

waste rock taken to the waste dump. As mining progresses, it is necessary to dewater the 

mine to ensure that the water level remains below the pit floor. Thousands of gallons of 

water are pumped from the pit each day. Much of the water is reused on site to control 

dust. Surplus water is treated and discharged back into nearby rivers.  

1.4.4. Drilling and Blasting. Sandvik DP1500 hydraulic rigs are used for drilling. 

Blast holes with diameters of 115 mm are drilled vertically to depths of 5m, 7.5m and 

10m. A 3.2 m x 3.7 m and a 3.5 m x 4.1 m staggered drill pattern are used for the ore and 

waste shots respectively. 

Ammonium nitrate fuel oil, ANFO (P100 bulk emulsion) with average density of 

1.13 g/cm3 is used as the main blasting agent and the detonating cord as initiation system. 

Priming is carried out using non-electric (NONEL) detonators and pentolite cartridges. 

The inter hole delays are 17ms or 25ms and the inter row delays are 42ms or 67ms.          

           1.4.5. Material Handling. Loading is done mainly by two Liebherr 9250 and two 

Liebherr 984 excavators in 5 m lifts and 10 m lifts depending on the type of material 

being loaded. Two Liebherr 984 excavators are used to supplement production in times of 

unscheduled breakdowns.  Each excavator is assigned five or six Caterpillar 777D dump 

trucks in a single back-up spotting configuration depending on the haul road distance. 

The haul roads have average grades of 0 to 10% that lead to three main active dumps. 

These main dumps are the oxide and transition waste dump, the Run-of-Mine (ROM) pad 

or the crusher and the tailings embankment dump. Figure 1.3 illustrates one of the 

operational pits in the mine. 
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Figure 1.3. Active pit view 

 

 

 

1.4.6. Ore Processing. A 5.5 Mtpa carbon-in-leach (CIL) plant composed of 

primary gyratory crushers is used in the mineral processing. Once the ore is mined, it is 

fed to crushers and grinding mills to reduce the size of the ore and expose the gold. Water 

is added in the process to form slurry. This slurry is then passed on to leaching tanks 

where cyanide solution is added to leach the gold into the solution. Carbon granules are 

put into solution for gold attachment. The gold is then stripped from the carbon granules 

and the gold bearing solution pumped through electro-winning cells to extract the gold.  

The gold undergoes smelting in a furnace to form the liquid gold that later hardens to 

form bullion bars. These bullion gold bars contain about 60 to 95% gold for this reason 

the gold bars are send to a refinery for further processing into pure gold.  
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1.5. SUMMARY 

         This research work produces an optimum artificial neural network (ANN) model 

that has the ability to optimize blasting operations. Optimized blasts yield desired 

fragmentation leading to maximized crusher throughput, improved excavator 

productivity, and reduced equipment maintenance and repair costs. Optimizing blasting 

operations also prevent or minimize the impact of ground vibration and airbast on the 

neighborhood of the blasting operations preventing property damage and human 

annoyance. Section 2 reviews literature on blasting and ANN.   
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2. LITERATURE REVIEW 

 

2.1. BLASTING 

Blasting in an open pit mine starts by generating a blast design. A number of 

factors should be considered when designing a blast and include fragmentation needs, 

geology, nearby structures, integrity of walls, explosive type, vibration and airblast 

considerations, and type of drilling equipment. Consideration should also be given to 

adequate confinement and availability of enough room for rocks to break into. Blast 

design parameters are estimated based on empirical formulas and experience. The Blast 

parameters are burden, spacing, hole depth, hole diameter, sub-drill, stemming height,                                                         

charge length, and powder factor among others. After designing the blast, it is set out on 

the ground for drilling. Figure 2.1 is an example of a blast design 

 

 

 

Figure 2.1. Blast design 
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Drilling pattern is set out on the field and drilling of holes started. The blast holes 

are drilled to required depths and loaded with appropriate explosives. The surface 

connections done using the right delays and blasting initiated. Best blasting results are 

achieved by paying close attention to the drilling and blasting process. 

When a charge explodes, it generates high-pressure, high-temperature gases 

against the containing borehole thus creating a strain field in the rock. The drill hole 

pressure build-up depends on the physical characteristics of the rock and explosive 

composition. The shockwave initiates the fragmentation process once it contacts the drill 

hole wall. The immediate surrounding rock is crushed when the compressive strength of 

the rock is exceeded. Beyond the crushed zone, surrounding rocks develop radial cracks 

as the shockwave intensity exceeds the tensile strength of rock. The resulting gas pressure 

travels through the cracks extending them further. The shockwaves radiating from the 

drill hole are converted to tensile waves when they encounter a free face. 

Blasting has been the cheapest means of rock breakage in the mining industry. It 

is a vital step to the entire mining operation. Competence of all the subsystems (e.g. 

loading, hauling and crushing) is dependent on the fragmentation quality (Mackenzie 

1966; Monjezi et al., 2010). Optimum size distribution can enhance the overall 

mine/plant economics (Hustrulid, 1999; Michaux and Djordjevic, 2005; Kanchibotla, 

2001; Morin and Francesco 2006; Monjezi et al., 2010). Every blast regardless of the 

design would produce a certain amount of unwanted energy that radiates from the blast 

area in the form of ground vibrations and airblast (Hagan, 1973). Airblast and ground 

vibrations cause objects to rattle making noise, as well as results in vibration of structures 

in the neighboring premises. Excessive ground vibration can also affect the groundwater, 

and ecology of the nearby area (Khandelwal and Singh, 2009). Proper control of blasting 

practices is therefore necessary to ensure both the safety of employees and the protection 

of the community from adverse effects. To prevent and reduce the adverse effect of 

blasting operation, special attention should be given to the generation and propagation 

mechanism of blast-induced ground vibrations (McKenzie, 1990).        

Ground vibration usually reaches structure foundations before airblast pressure 

does because of different wave propagation velocities in geomaterials and in the air. 

Airblast and ground vibrations might act on the structure simultaneously, depending on 
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the distance between the explosion center and the structure. Hence, proper analysis of 

structure response and damage to a nearby surface explosion should take into accounts 

both ground shock and airblast pressure (Wu and Hao, 2007).  

A number of damage criteria have been established to enhance blasting efficiency 

(Duvall et al., 1963; Nicholls eta al., 1971; Siskind et al., 1989; Elseman and Rasoul, 

2000). Adequate airblast and ground vibration standards have been set by many countries 

to avoid structural damages and to reduce human complaints. Thus, blasting activities are 

to be planned and conducted to comply with these standards.  

 

2.2. BLAST-INDUCED GROUND VIBRATION  

An important environmental aspect of mining is the evaluation of blast- induced 

ground vibration transmitted through the ground. Railways, highway traffic and 

machinery in nearby locations are other potential sources of ground vibration. When 

transmitted ground vibrations strike the face of buildings, they impart momentum to the 

exterior components of the building. The kinetic energy of these transmissions are 

converted to strain energy in the structure causing partial damage to the extent of 

complete collapse of structure (Dusenberry, 2010). These Ground vibrations take the 

form of propagating waves that travel in the rock or soil away from the blast zone. 

Ground vibrations are associated with mostly Rayleigh waves, longitudinal waves and 

shear waves propagating through the ground. These wavelengths are influenced by both 

controllable and uncontrollable factors. The controllable factors include the pattern, hole 

depth, stemming length, and the charge column among others. On the other hand, the 

uncontrollable factors are rock conditions, geology and rock properties (Mohamed, 

2009). Ground vibration is directly related to the quantity of explosive used and the 

distance between blast face to the monitoring point (Khandelwal and Singh, 2009).  

A small amount of energy is converted into ground vibration in a properly 

designed blast, with great deal of energy used in fragmenting and throws of rock. 

Immediately surrounding the detonating hole is a crater zone, where the rock has been 

fractured and displaced by the shockwave and by the pressure of the hot gasses produced 

during the combustion process. Outside this crater zone, the shockwave is propagated 

through the medium as elastic waves. The energy transmitted from particle to particle 
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within rocks is termed as ground vibration. These waves radiating outward are 

categorized as body waves traveling through the ground and surface waves traveling on 

the surface of the ground. These body waves travel outwards in a spherical manner until 

they reach a boundary between two materials. At the intersection point, shear and surface 

waves are generated. A common type of the surface wave is the Rayleigh wave and is 

associated with energy flow along the surface. This wave arrives after the compression 

and shear wave as it has a relatively lower phase velocity. The Rayleigh wave is very 

important as it suffers less geometric spreading loss than body waves. In general, the 

amplitude of the vibration decreases with increasing distance away from the center of 

action due to diminishing energy levels. 

          Parameters often used to define the magnitude of ground vibration at any location 

are as follows: 

 Particle displacement: The distance a particle moves before returning to its 

original position (measured in mm). 

 Particle velocity: This is the rate of change of displacement (measured in mm/s). 

 Particle acceleration: This is the rate of change of velocity (measured in mm/s2). 

 Frequency: This is the number of oscillations per second that a particle undergoes 

(measured in Hz).  

Peak particle velocity (PPV) has been used in practice for the measurement of 

blast damage to structures. Some of the proposed damage criteria that are established 

mainly on the peak particle velocity (PPV mm/s) are presented in Table 2.1 (Nateghi, 

2012). These recommendations are based on author experiences for blast-induced 

vibration limits near different types of structures in urban areas and are different for the 

same structures found in different countries (Pal, 2005). 
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Table 2.1. Suggested damage criteria 

 

 

 

 

Predicting the transmission of blast-induced vibration through the ground is 

complex due to lack of complete understanding of rock behavior and the difficulty of 

determining accurate values of rock properties. In spite of these and other difficulties, 

reasonable assessments of blast-induced ground vibration can be achieved with the 

empirical, statistical and artificial intelligent techniques. Several empirical models have 

been developed by various researchers (Duvall and Fogleson, 1962; Duvall et al., 1963; 

Langefors and Kihlstrom, 1963; Birch and Chaffer, 1983; Davies et al., 1964; Ghosh and 

Daemen, 1983; Ambraseys and Hendron, 1968; and Bureau of Indian Standard, 1973) for 

predicting particle peak velocity. For most of these empirical predictors, the peak particle 

velocity (PPV) is the parameter of concern. 

Peak particle velocity (PPV) is a function of the borehole pressure, confinement, 

charge weight, distance from blast area, manner of decay of compressive waves through 

rockmass and the effect of firing sequence of adjacent holes. All the predictors estimate 

the PPV mainly based on the maximum charge per delay and the distance between blast 

face and monitoring point. There is no uniformity in the predicted result since different 
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predictors give different values of PPV for various amount of allowable charge per delays 

in the same operating area. These predictors are not able to predict other important 

parameters such as frequency, air over pressure, and fly rocks (Dowding, 

1985; Khandelwal and Singh, 2007; and Monjezi et al., 2011). Moreover, empirical 

methods are unable to incorporate the numerous factors that affect the PPV and their 

complex interrelationships, paving way for other techniques. Hence, approaches such as 

artificial neural network (ANN), Support Vector machines (SVM), Genetic Algorithm 

(GA) and Maximum likelihood classification are recently in use (Khandelwal, 2010). 

Table 2.2 presents some empirical predictor models. 

 

 

 

Table 2.2. Empirical predictor equations 

 

 

 

Recently, artificial neural network (ANN) has been employed extensively to 

predict blast induced ground vibration. Yong (2005) gave a comprehensive research 

program on the effect of various input variables on ground shock. The ANN technique 

was then applied to identify the system pattern and serve as a function for predicting the 

blast-produced ground vibration. The neural network approach could predict the unseen 

test data consistently with reasonable accuracy, thus deemed successful. He also 

Names Equation 

USBM (1959)              V=K[R/Qmax]-B 

Langefors–Kihlstrom (1963) V=K[(Qmax/R2/3)1/2]B 

Ambraseys–Hendron (1968) v = K[R/(Qmax)1/3]-B 

Bureau of Indian Standard (1973) v = K[(Qmax/R2/3)]B  
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demonstrated that the directional angle, in addition to the scaled distance, is a crucial 

factor influencing the ground shock at a particular target point. 

Khandelwal and Singh (2006) devised a neural network approach for predicting 

ground vibration and frequency by all impelling parameters of rock mass, explosive 

characteristics and blast design. This network was trained by 150 dataset with 458 epochs 

and 20 datasets tested. The suitability of this method was examined by comparing 

artificial neural network (ANN) with a conventional statistical relation. The correlation 

coefficient determined by ANN for peak particle velocity (PPV) and frequency were 

relatively higher than the correlation coefficient determined by statistical analysis. 

Khandelwal and Singh (2007) considered the prediction of blast-induced ground 

vibration level at a Magnesite Mine in tecto-dynamically vulnerable hilly terrain in 

Himalayan region in India. The ground vibrations were observed to calculate the safe 

charge of explosive to avoid continuous complaints from nearby villagers. A total of 150 

blast data sets was considered. Based on this study, it was established that the feed-

forward back-propagation neural network approach seems to be the better option for 

predicting PPV to protect surrounding environment and structures. 

Khandelwal and Singh (2009) investigated and predicted blast-induced ground 

vibration and frequency in a coal mine in india based on some parameters using ANN 

technique. A three-layer, feed-forward back-propagation neural network having 15 

hidden neurons, 10 input parameters and two output parameters were trained using 154 

experimental and monitored blast records. Results were then compared using correlation 

and mean absolute error (MAE) for monitored and predicted values of PPV and 

frequency. They concluded that ANN results for the PPV and frequency were very close 

to the field data sets compared to the conventional predictors and MVRA predictions.  

Monjezi et al. (2010) presented the prediction of blast-induced ground vibration 

using various types of neural networks such as multi-layer perceptron neural network 

(MLPNN), radial basis function neural network (RBFNN) and general regression neural 

network (GRNN) in Sarcheshmeh copper mine, Iran. MLPNN gave the best results with 

root mean square error and coefficient of correlation of 0.03 and 0.954 respectively. 

Furthermore, Sensitivity analysis disclosed that distance from the blast, number of holes 
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per delay and maximum charge per delay are the most effective parameters in blast 

induced ground vibration analysis. 

Artificial neural networks (ANN), Multi-variate regression analysis (MVRA) and 

empirical, analysis have been used by Kamali and Ataei (2010) to predict the blast-

induced PPV in the structures of the Karoun III power plant and dam. The best model 

was the ANN since its outputs were highly correlated to the measured and observed data. 

Monjezi et al. (2011) developed a predictive model for blast-induced ground 

vibration using artificial neural network (ANN) in the Siahbisheh project, Iran. Input 

parameters like maximum charge per delay, distance from blasting face to the monitoring 

point, stemming and hole depth were considered. From the prepared database, 162 

datasets were used for the training and testing of the network, 20 randomly selected 

datasets were used to validate the ANN model. A four-layer feed-forward back-

propagation neural network with architecture 4-10-5-1 was found to be optimum. The 

ANN model was compared with empirical predictors as well as regression analysis for 

performance. The comparison results showed that the ANN model demonstrated a high 

level of performance over the empirical predictors and statistical model. It was also 

realized from sensitivity analysis that the distance from blasting face to the monitoring 

point was the most effective parameter on PPV and stemming the least effective 

parameter on the PPV. 

Application of soft computing to predict blast-induced ground vibration was the 

focus of research by Khandelwal et al. (2011). A Total of 130 experimental and 

monitored blast records from surface coal mines at different locations were trained and 

tested on a three-layer feed-forward back-propagation neural network with 2-5-1 

architecture. Results were compared based on coefficient of determination and mean 

absolute error between monitored and predicted values of PPV. Based on this study, it 

was established that the feed-forward back-propagation neural network approach was the 

best option for close and appropriate prediction of PPV. 

Gao et al. (2012) implemented ANN to develop a predictive model for PPV in a 

blasting operation. A three-layer ANN was found to be optimum with topology 2-5-1. 

Monitored and predicted PPV values were compared using coefficient of determination 
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(CoD) and mean absolute error (MAE). The comparison results showed that the ANN 

model predictions were closer to the actual values. 

Mohamad et al. (2012) used artificial neural networks (ANN) to evaluate and 

predict blast-induced ground vibration by incorporating blast design and rock strength in 

the enquiry. His conclusion was that ANN method produced more accurate prediction 

than the empirical formula. 

Monjezi et al. (2013) directed their research towards the evaluation and prediction 

of blast-induced ground vibration at Shur River Dam in Iran using different empirical 

vibration predictors and ANN model. A total of 20 blast vibration records were 

monitored with 16 out of them used for training of the ANN model. The remaining 4 

blast vibration data sets were used for validation purposes. Performances of the different 

predictor models were assessed using standard statistical evaluation criteria and it was 

established that the ANN model is more accurate compared to the other empirical models 

evaluated. 

Field measurements were carried out and their results were assessed to determine 

blast-induced ground vibrations at the Eti Mine Tülü Boron Mining Facility, Turkey by 

Görgülü et al. (2013). The results presented different field constants for the propagating 

blast vibrations depending on the direction of propagation (K = 211.25–3,671.13 and β = 

1.04–1.90) and the damping behavior of the particle velocity. They also noticed that the 

field constants decrease as the rock mass rating (%) values diminish. A much higher 

correlation coefficient (R 2 = 0. 95) between the predicted and measured peak particle 

velocity (PPV) values was attained for artificial neural networks compared to classical 

evaluation methods. 

 

2.3. BLAST-INDUCED AIRBLAST 

Blast-induced airblast or overpressure is one of the negative effects of blasting 

operations. The resulting noise usually generates a lot of uneasiness and irritation to 

neighbors giving rise to complaints. Blast-induced airblast can be minimized by properly 

designing and implementing blasts. Blast-induced airblast is the shock wave that is 

refracted horizontally by density variations in the atmosphere and dies out gradually with 

time and distance. This pressure wave consists of audible sound and sub-audible sound. 
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The higher frequency portion (>15 Hz) of the pressure wave which emerges in the 

immediate blast premises is audible while the sub-audible is the lower frequency portion 

lying in the infra sound (<15 Hz) region. The sub audible portion usually occurs in the 

region distant from the blast site (Faramarzi et al., 2014). When an explosive charge is 

detonated on a flat surface, where no weather enhancement prevails, the resulting airblast 

overpressure levels attenuate evenly in all directions. The resulting airblast levels may be 

represented schematically by circular contours of decreasing intensity (Richards, 2010). 

Air overpressure (AOp) waves are generally generated from four main sources: 

 Air pressure pulse: displacement of the rock at bench face as the blast progresses 

 Rock pressure pulse: induced by ground vibration 

 Gas release pulse: escape of gases through rock fractures 

 Stemming release pulse: escape of gases from the blasthole when the stemming is 

ejected 

Air pressure pulse and rock pressure pulse are unavoidable airblast sources in 

bench blasting, both gases release pulse and stemming release pulse can be avoided 

through the blast design (Segarra et al., 2010). AOp is directly influenced by the 

maximum charge per delay, the distance from transducer, burden and spacing, stemming, 

direction of initiation and charged depth. AOp is also influenced by other parameters 

such as atmospheric conditions, overcharging, weak strata and conditions resulting from 

secondary blasting (Rodrigues et al., 2007; and Siskid et al., 1980). AOp affects 

structures and can result in conflict between company and those who are affected (Siskid 

et al., 1980; Hopler 1998; Mohanty 1998; Persson et al., 1994; Konya and Walter, 1990; 

and Hajihassani et al., 2014). 

Seven conditions notably cause high over-pressure levels. These conditions 

include the following: 

1. Inadequate stemming 

2. Mud or weak seam venting 

3. Inadequate burden confinement 

4. Poor blasting timing 

5. Focusing by wind or temperature inversions 

6. Uncovered detonation cord 
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7. Overloading 

2.3.1. Empirical Predictors of Airblast (AOp). Several empirical formulae and 

empirical curves are available in literature for the prediction of peak overpressure 

attenuation (Barker 2012; TM-5-855-1, 1986; Bulson, 1997).  

AOp from confined blasthole charges can be obtained from the empirical equation 

as illustrated in Equation (2.1) (National Association of Australian State, 1983) below: 

 

                              P =                                                                  (2.1) 

where, P is overpressure in kPa, E is mass of charge in kg, and d is distance from center 

of blasthole in meter. 

The air blasts or air overpressures at the blast area may be predicted using 

Equation (2.2) (Persson et al., 1994) below: 

 

                                            P=0.7(W1/3/D)                                                                     (2.2) 

 

where P = Air Overpressure, mbar; W = Cooperating Charge, kg; and D = Distance, m 

McKenzine (1990) suggested an equation to describe the decay of overpressure as 

shown in Equation (2.3): 

 

                               dB = 165-24 log(D/W1/3)                                                                 (2.3) 

 

where, dB is the decibel reading, D is distance in meters, W is the maximum charge per 

delay. 
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The cube-root scaled distance factor (SD) is generally used to predict AOp, in the 

absence of monitoring. A relation connecting air overpressure and scaled distance is 

given below in Equation (2.4): 

                                         P=K (D/Q1/3)-β                                                                                                           (2.4) 

where, P is the Air Overpressure in linear decibels (dBL), D is the distance of measuring 

transducer, Q is maximum charge weight per delay, K and β are site constants, and 

(D/Q1/3) is the scaled distance. 

Table 2.3 gives values of site-specific constants (H and β) for different blasting 

conditions (Siskind et al., 1980; Hopler 1998; Hustrulid 1999; Kuzu et al., 2009) 

 

 

Table 2.3. Site factors for different blasting conditions (Hajihassani et al., 2014) 

Source Description H β 

USBM  

Quarry blasts, behind face. 622 0.515 

Quarry blasts, direction of initiation. 19,010 1.12 

Quarry blasts, front of face.  22,182 0.966 

ISEE  
Confined blasts for AOp suppression. 1,906 1.1 

Blasts with average burial of the charge. 19,062 1.1 

Hustrulid  Detonations in air 261.54 0.706 

Kuzu et al. 
Quarry blasts in competent rocks. 1833.8 0.981 

Quarry blasts in weak rocks. 21,014 1.404 

 

 

 

Rodríguez et al. (2007) advanced a semi-empirical model for the prediction of the 

airwave pressure outside a tunnel due to blasting. The practical use of this method has the 

quantitative phase by estimating the sound levels and the qualitative phase by estimating 

the negative effects. Several testing proved that the approach could be used under 

different conditions.  
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Wu and Hao (2007) investigated the influence of simultaneous ground shock and 

airblast forces on structures. It was found that in general, airblast load governs structural 

response and damage when the scaled distance is small.  

Kuzu et al. (2009) used site-specific scaled distances (SD) instead of conservative 

SD values to generate environmentally friendly and technically practicable results. They 

established a new empirical relationship between AOp and two parameters, the distance 

between blast face and the monitoring point, and the weight of explosive materials.  

Rodríguez et al. (2010) reviewed the results of a previous research and pointed 

out that only the magnitude of the blasting airwave at the tunnel portal depends on the 

tunnel and blasting design parameters. Phonometric and iso-attenuation curves were 

proposed in order to represent the phenomenon and to synthesize the solution for a given 

case. For easy solutions to the problem, a charge–distance curve was proposed. 

Segarra et al. (2010) investigated the propagation of airblast or pressure waves in 

air produced by bench blasting (i.e. detonation of the explosive in a row of blastholes, 

breaking the burden of rock towards the free vertical face of the block). A new AOp 

predictive equation based on monitoring data in two quarries was established.  

2.3.2. Artificial Neural Network (ANN) Predictors of Airblast. Many 

investigators have applied soft computing methods like ANN, support vector machine 

(SVM) and fuzzy inference system to predict AOp. Khandelwal and Singh (2005) used 

ANN to predict air blast by incorporating the maximum charge per delay and distance 

between blast face to the monitoring point. The network was trained by 41 datasets with 

50 epochs and tested by 15 dataset. ANN was also compared with generalized equation 

of air overpressure and conventional statistical relations. ANN model was the best 

predictor.  

Mohamed (2011) predicted the AOp using fuzzy inference system and ANN. 

Comparison between the results of fuzzy inference system and ANN with the values 

obtained by regression analysis indicated that the ANN and fuzzy models have accurate 

prediction relative to regression analysis. 

 Mohamad et al. (2012) used ANN to predict AOp datasets obtained from blasting 

operations. Input parameters used were the hole diameter, hole depth, spacing, burden, 
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stemming, powder factor, and number of rows were considered. The results demonstrated 

the proposed model was the right choice for AOp predictions. 

A new approach based on hybrid ANN and particle swarm optimization (PSO) 

algorithm to predict AOp in quarry blasting was investigated by hajihassani et al. (2014). 

AOp and some input parameters were recorded from 62 blast operations in four granite 

quarry sites in Malaysia. Results suggested that the PSO-based ANN model outperformed 

the other predictive models.  

 

2.4. FRAGMENTATION ANALYSIS 

Fragmentation analysis has been proven useful in the mining, construction and 

aggregate industries by helping reduce energy costs, improving efficiency and 

minimizing equipment maintenance costs. Mine-to-Mill optimization is the approach 

usually employed to accomplish the reduction of energy and cost in mining as well as 

processing practices. This approach involves sampling and modeling of blasting and 

processing, followed by computer simulation to optimize the operation and develop 

alternatives (Adel et al., 2006). The entire operation is taken into consideration, from 

blasting to comminution in order to optimize the size reduction process. Mine-to-Mill 

optimization has been successfully applied in gold, copper, and lead/zinc operations 

worldwide. As a result, the throughput increases from 5 – 18% and cost is reduced in the 

neighborhood of 10% (Atasoy et al., 2001; Grundstrom et al., 2001; Paley and Kojovic, 

2001; Valery et al., 2001; and Adel et al., 2006). 

There are several fragmentation measurement methods available. Among the 

methods are oversize boulder count method, sieving, visual analysis, shovel loading rate 

method and image analysis method. The split desktop is an example of image analysis 

method that is used in this research. This method usually comprises of the split software, 

a computer, monitor and a keyboard. The split system should also be capable of 

downloading the images onto the computer. To start, images are taken from muck pile or 

stockpile and downloaded onto a computer. The fragments in each image are delineated 

to determine the fragmentation of the rock fragments. Graphs of the resulting size   

distributions can then be plotted.  
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Rock fragmentation is influenced by controllable and non-controllable factors. 

The controllable factors include the blast design parameters and the explosive type. The 

non-controllable factors on the other hand are the physical and mechanical properties of 

the rock concerned. Certain measures should be taken to reduce the effect of these non-

controllable parameters in order to attain a good rock fragmentation. Available empirical 

models developed have not been able to incorporate the numerous variables and their 

interrelations. To overcome this drawback, the Artificial Neural Network (ANN) in 

recent years has been put to good use. 

Over the past decade, a number of research works have been executed in the area 

of rock fragmentation. Empirical models have been developed by earlier researchers to 

predict Rock fragmentation. Kuznetsov (1973) developed a relationship between mean 

fragment size and specific charge according to the Rosin-Rammler theory. Cunningham 

(1983) later improved the efficiency of this approach. These empirical methods despite 

their comprehensive usage failed to inculcate all the relevant input parameters necessary 

for the best results. 

Many contemporary researchers have used artificial intelligence methods such as 

artificial neural network (ANN) to address effectively the weaknesses presented by these 

empirical methods of prediction. Monjezi et al. (2010) predicted rock fragmentation due 

to blasting in Sarcheshmeh copper mine using ANN. In his research, a model with 

architecture 9-8-5-1 trained by back propagation method was found to be optimum.  

Artificial neural network (ANN) method was implemented to develop a model to 

predict rock fragmentation due to blasting in an iron ore mine (Bahrami et al., 2011). In 

developing the proposed model, eight parameters such as the hole diameter, burden, 

powder factor, blastability index, etc., were incorporated. Training of the model was 

performed by back-propagation algorithm using 220 datasets. A four-layer ANN 

architecture 10-9-7-1 was found to be optimum. Sensitivity analysis revealed that the 

most effective parameters on rock fragmentation are blastability index (G), charge per 

delay (J), burden (C), SMR (F) and powder factor (E). 

The simultaneous prediction of rock fragmentation and backbreak in the blasting 

operation of Tehran Cement Company limestone mines in Iran was conducted by Sayadi 

et al. (2013). Back propagation neural network (BPNN) and radial basis function neural 
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network (RBFNN) are adopted for the simulation. In addition, regression analysis is 

performed between independent and dependent variables. For the BPNN modeling, a 

network with architecture 6-10-2 was declared optimum whereas for the RBFNN, 

architecture 6-36-2 with spread factor of 0.79 provides maximum prediction aptitude. 

Sensitivity analysis shows that inputs burden and stemming are the most effective 

parameters on the outputs fragmentation and backbreak, respectively.  

   Enayatollahi et al. (2014) did a Comparison between Neural Networks and 

Multiple Regression Analysis to Predict Rock Fragmentation in Open-Pit Mines. It was 

concluded that the ANN results possess a greater degree of accuracy, are robust, and 

more fault tolerant than any other analysis technique.  

 

2.5. ARTIFICIAL NEURAL NETWORK (ANN) 

Artificial neural networks have been the subject of an active field of research that 

has developed greatly over the past years. ANN is a computational model based on the 

structure and functions of biological neural networks. These networks are good at fitting 

non-linear functions and recognizing patterns. Hence ANN are used in mining and civil 

departments, military target recognition, aerospace, detection of manufacturing defects, 

machine monitoring and machine diagnosis, robotics, as well as Agriculture, control 

systems, automotive, banking, insurance, oil and gas, and telecommunications industries. 

Success in the mining sector is being confirmed in the areas of blast-induced ground 

vibration prediction, blast-produced aiblast predictions, prediction of ground 

fragmentation, fly rock prediction, prediction of subsidence due to underground mining 

and back break prediction just to mention a few. 

ANNs are a form of artificial intelligence that try to mimic the actions of the 

human brain and nervous system. They are computational models inspired by biological 

neural networks, and are used to approximate functions that are generally unknown.  A 

particular ANN has three fundamental components; transfer function, network 

architecture and learning law (Simpson, 1990). A typical ANN system has three layers; 

the input layer, the hidden layer(s) and the output layer. These three layers are 

interconnected and each layer consists of one or more nodes. Neurons in the input layer 

send data onto the hidden layer, which in turn transmit data to the output layer. ANNs 
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learn from data examples presented to them and use these data to adjust their weights in 

an attempt to capture the relationship between the historical set of model inputs and 

corresponding outputs. For this reason, ANNs do not need any prior knowledge about the 

nature of the relationship between the input/output variables (Shahin et al., 2001). 

Neurons can use transfer functions such as logsig, tansig or purelin to generate their 

outputs.  

The neural network is first trained by processing a large number of datasets. 

Different algorithms are available for training, but backpropagation algorithm is the most 

proficient as it is able to accommodate large input data and able to solve problems with 

vast complexities. Sufficient number of experimental datasets is required to train the 

network. For a given set of inputs, we decide on a set of desired outputs. Using random 

weights, the network calculates some outputs. The calculated outputs are compared with 

the desired output to obtain the network error. The connecting weights are adjusted to 

reduce the errors in a process known as back propagation using the same learning rule. 

Based on the training process, a pattern is presented to the network. The new weights are 

calculated using equation (2.11) based on the old weights, the node input values, errors 

and the learning rate.  This process goes on until the error is converged to a level defined 

by a cost function such as mean square error (MSE). Once the training phase of the 

model has been successfully accomplished, the performance of the trained model has to 

be validated using an independent testing set. Unsatisfactory network performance can be 

improved by retraining, increasing the number of neurons or using a larger training 

dataset. 

         The neural network after a successful training, validation and testing can be used to 

predict datasets outputs for given inputs based on the learning pattern. Neural network 

simulation often provides faster and accurate prediction compared to other methods of 

data analysis. Figure 2.2 demonstrates a typical ANN procedure. 
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Figure 2.2. Typical ANN process 

 

 

 

From Figure 2.2 above, a set of training data is fed through the system in a 

forward direction. Random weights are assigned to the data set and fed to the hidden 

layer in a forward direction the net input in the hidden layer is given by Equation (2.5). 

The net input values in the hidden layer will be: 

                                    Pj=               (2.5)                                                           

where xi represent the inputs, wij are the weights connecting layer i with layer j and n is 

the number of input units. 

The net output from hidden layer is calculated using an activation function called 

the sigmoid function generally expressed in Equation (2.6). 

                                  bj =                                                               (2.6) 
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The total input to layer k (the output layer) is expressed as:  

 

                            Uk=                                 (2.7) 

 

where wjk is the weight connecting layer j with layer k and bj stands for the activation of a 

particular function receiving neuron in layer j.  

Error is generated by comparing the actual output to the desired output. The error 

term in a given output, k is presented in Equation (2.8):  

                                 δ=dk-ak                                                                        (2.8)                                     

where δ is the error term, dk is the desired output and ak is the actual output. 

 

The total error function for the training pattern is given by Equation (2.9): 

 

                                                                                        (2.9)   

where dk is the desired output and ak is the actual output. 

Changes in weights are calculated using the learning rate, the error term and the 

input units as illustrated in Equation (2.10). 

 

                                         ∇Wjk=ηδkxjk                                                                              (2.10)  

 

where ∇Wjk   is the change in weight, η is the learning rate, the error term is expressed as 

δk  and xjk    is the input unit.   

The calculated weight changes are then used together with the old weights to 

calculate new weights as shown in Equation (2.11). 

 

      WN
jk=Wjk+∇Wjk             (2.11) 
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where the new weight is WN
jk , Wjk  is the old weight and ∇Wjk   is the change in weight.   

The calculated weights are then implemented throughout the network and the 

entire process is repeated as many epochs(cycles) as needed until the error is within the 

user specified goal (Khandelwal and Singh, 2009). 

          The first computational, trainable neural networks were developed by Rosenblatt 

(1958). Rosenblatt’s approach was limited to solutions of linear problems. Werbos (1975) 

expanded the capabilities of neural networks from linear to nonlinear domains in what is 

known as the backpropagation algorithm. Artificial neural networks were popularized by 

Rumelhart and McClelland (1986). 

Application of artificial neural networks in mining is growing consequently many 

researchers have applied the ANN system to predict blast-induced rock fragmentation, 

airblast and ground vibration (Khandelwal and Singh, 2005; Monjezi et al., 2010; 

Bahrami et al., 2011; Enayatollahi et al., 2014; hajihassani et al., 2014). ANN have also 

gain use in other mining and civil related works. 

Maulenkamp and Grima (1999) applied neural network for the prediction of the 

UCS from hardness tests on rock samples based on input parameters hardness, porosity, 

density, grain size and rock type information of a rock sample. The results of the network 

were compared to predictions obtained by conventional statistical relations to examine 

the suitability of this technique. A dataset containing 194 rock sample records, ranging 

from weak sandstones to very strong granodiorites, was used to train the network with the 

Levenberg–Marquardt training algorithm. The conclusion was that predictions of uniaxial 

compressive strength by artificial neural network (ANN) were closer to the measured 

values. 

A data mining approach to the prediction of tunnel support stability using ANN 

was employed by Leu et al. (2001). Rock mechanical and construction-related parameters 

with significant influences on support stability were filtered to train and test the ANN. It 

outperformed the discriminant analysis and the multiple non-linear regression method in 

predicting tunnel support stability. 

Tawadrous (2006) used backpropagation neural network to predict the burden and 

spacing of the blast pattern using input parameters such as rock type, stratification, 

blasthole diameter, bench height, type of explosive, priming position, powder factor and 
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fragmentation size. He trained the network using 43 case histories collected from the 

various literatures and validated it with 16 cases from operational quarries. He found very 

high correlation for the prediction of burden and spacing by ANN. 

Neaupane and Adhikari (2006) predicted ground movement around tunnels with 

artificial neural networks. A MATLAB® based multi-layer backpropagation neural 

network model was developed, trained and tested with parameters obtained from the 

detailed investigation of different tunnel projects published in literature. The output 

parameters were settlement and trough width. Diameter to depth ratio (D/Z), unit weight 

of soil and cohesion were among the input parameters considered for the prediction of 

horizontal ground movement. The neural network predicted the desired goal effectively. 

Sarkar et al. (2010) reports the use of an artificial neural network to predict the 

deformation properties of Coal Measure rocks using dynamic wave velocity, point load 

index, density and slake durability index. The study confirmed that ANN is a useful tool 

for predicting rock strengths that are not clearly established using empirical relationships. 

The conclusion was that artificial neural network (ANN) is fast and cost effective. 

Evaluation and prediction of the airflow rate in triaxial conditions at various 

confining pressures incorporating cell pressure, air inlet pressure, and air outlet pressure 

using ANN technique was investigated by Ranjith and Khandelwal (2012). A three-layer 

feed forward back propagation neural network having 3-7-1 architecture network was 

trained using 37 data sets measured from laboratory investigation. Based on coefficient of 

determination (CoD) and mean absolute error (MAE) ANN model was compared with 

multi-variate regression analysis (MVRA). ANN proved to be a better predictor. 

Rezaei et al. (2012) developed an ANN model to predict burden in the blasting 

operation of Mouteh gold mine, using geomechanical properties of rocks as input 

parameters. Blastability index (BI), rock quality designation (RQD), unconfined 

compressive strength (UCS), density, and cohesive strength were among the input 

parameters used. It was observed that the ANN prediction capability is better than that of 

MVRA. Further, a sensitivity analysis shows that while BI and RQD were the most 

sensitive parameters, cohesive strength was considered as the least sensitive input 

parameters on the ANN model output. 
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Monjezi et al. (2013) applied ANN method to predict the flyrock in the blasting 

operations of Sungun copper mine, Iran. Architecture 9-5-2-1 was found to be optimum 

after training with back-propagation algorithm. Flyrock were also computed from various 

available empirical and statistical models. ANN was then compared with the statistical 

and empirical methods for superiority in prediction capabilities. Comparison of the 

results showed absolute superiority of the ANN modeling over the empirical, as well as, 

statistical models. It was also observed that the powder factor, hole diameter, stemming 

and charge per delay are the most effective parameters on the flyrock. 

Monjezi et al. (2013) utilized artificial neural networks (ANNs) for predicting 

backbreak in the blasting operation of the Chadormalu iron mine (Iran). After trying 

various hidden layers and neurons, network with topology 10-7-7-1 was deemed 

optimum. ANN model proved superior over the conventional regression analysis using 

Mean Square Error (MSE), Variance Account for (VAF) and coefficient of determination 

(R 2) as the means of comparison. Sensitivity analysis revealed that burden is the most 

influencing parameter on the backbreak, whereas water content is the least effective 

parameter in the research. 

Majdi and Rezaei (2013) developed an ANN and multivariable regression 

analysis (MVRA) models in order to predict Uniaxial Compressive Strength (UCS) of 

rock surrounding a roadway. Rock type, Schmidt hardness, density and porosity were the 

input parameters and UCS the output parameter used for the study. It was concluded that 

performance of the ANN model is considerably better than the MVRA model with rock 

density and Schmidt hardness being the most effective input parameters. 

ANN was used to predict backbreak in blasting operation of the Sangan iron 

mine, Iran by Monjezi et al. (2014). Network with two hidden layers was found to be 

optimum after trying different types of networks. Predictions by the ANN model 

demonstrated a higher correlation (R2 = 0.868) and lesser error (RMSE = 0.495) 

compared to the regression model. Rock factor was the most sensitive and number of 

rows was the least sensitive parameter on the back break. 

Trivedi et al. (2014) focused on predicting the distance covered by the flyrock 

induced by blasting using artificial neural network (ANN) and multi-variate regression 

analysis (MVRA). Blast design and geotechnical parameters, such as linear charge 
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concentration, burden, stemming length, specific charge, unconfined compressive 

strength (UCS), and rock quality designation (RQD) were used as input parameters and 

flyrock distance used as output parameter. Comparison of predicted results by ANN and 

MVRA showed that Back propagation neural network (BPNN) has been proven to be a 

superior predictive tool when compared with MVRA.  

 

2.6. SUMMARY 

          Numerous empirical and artificial neural network (ANN) predictors are available in 

literature to help predict ground vibration, airblast and rock fragmentation. Empirical 

equations for predicting ground vibration and airblast are based on the maximum charge 

per delay and the distance from blast face to monitoring point. These empirical equations 

are unable to concurrently predict more than one output and are restricted to just two 

input parameters. To address the above weaknesses of empirical predictors, ANN models 

have been used. ANN models have the ability to consider all relevant input parameters 

and more than one output can be predicted using ANN models.  The methodology of the 

research is captured in section 3.  
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3. METHODOLOGY 

 Input and output data needed for the exercise were extracted from the blast 

records of the mining company spanning a three-year period. Seven input and three 

output parameters were used for the ANN processing. The inputs considered for the 

research are those that are most sensitive to the outputs from literature. The inputs are 

inter-related, i.e. changing one parameter affects the other. The inputs are maximum 

charge per delay, distance from blast to monitoring point, hole depth, stemming length, 

hole diameter, powder factor and spacing to burden ratio. The output parameters on the 

other hand are rock fragmentation, ground vibration and airblast. These inputs and 

outputs are fed into a MATLAB-based ANN system to establish an optimum model. The 

optimum model generated is applied to series of blasts with the view to optimizing the 

fragmentation while minimizing the ground vibration and airblast. 

 

3.1. DATA COLLECTION 

Ground vibrations and airblasts were recorded using Minimate Plus Base Unit 

configured with triaxial geophones and Linear Microphones (2-250Hz). This instrument 

was chosen because of its flexibility, reliability and ease of use. Prior to blasting, the 

microphone and geophone are connected to the unit and located at selected points in blast 

catchment areas. The setup is placed firmly on a strong and levelled ground to allow 

accurate and reliable readings. The unit is turned on and the sensors are checked to make 

sure they are in good state and functional. Trigger level is set and the instrument begins 

recording automatically when the trigger level is exceeded. Recording stops after blasting 

when readings fall below the trigger level. The geophone measure ground vibrations 

while the sound pressure (airblast) is measured by the microphone. After blasting, the 

unit is taken to the office and the results downloaded onto the computer for further 

analysis. Fragmentation analysis is then conducted on blasted material using split 

technology. 

Fragmentation analysis allows the quantification and size estimation of the 

fragmented ore, and provides a size distribution of rocks by taking sample images from a 

muck pile, a truck tipper or a conveyor belt. Knowledge of results from such analysis is 
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used to predict the fragmentation outputs of subsequent blasts in a comparable geological 

area. Rock fragmentation begins with the drilling and blasting process. 

Drilling is done by Sandvik DP1500 hydraulic rigs. Blast holes diameters of 115 

mm are drilled vertically with staggered drill-hole pattern to different depths (5m, 7.5m 

and 10m). Priming is carried out using non-electric (NONEL) detonators and pentolite 

cartridges. Drilled holes are checked for correct depths and filled with ANFO (P100 bulk 

emulsion) of average density 1.13 g/cm3. The holes are then stemmed with appropriately 

sized gravels. The inter hole delays are 17ms or 25ms and the inter row delays are 42ms 

or 67ms. Averagely 50 to 300 holes are blasted in a round.  

Split digital technology was used for the particle size distribution examination. 

This technology was adapted because it is more economical and accurate compared to 

other techniques. After blasting, an excavator spreads the muck pile to create a wider 

surface area and quality images of blasted material taken. The images from muck piles 

are uploaded unto a computer equipped with the split digital technology and particle sizes 

analyzed. Particle sizes falling within 0.1m – 0.9m are considered to be in range, below 

0.1m are undersize and above 0.9m deemed oversized. Percentages passing through the 

in-range category were used to represent fragmentation. Figures 3.1 and 3.2 are the 

sample image, and size distribution curve respectively. 

 

 

 

Figure 3.1. Image prepared for fragmentation analysis 
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A grid system size 0.2m is superimposed on the sample image to ascertain the 

individual particle sizes as indicated in Figure 3.1 above. Figure 3.2 shows the particle 

size distribution curve generated based on the percentage of rock particle sizes passsing 

through the mesh. The Majority of the particle sizes for this particular sample were 

within the range of 0.1 to 0.9m. 

 

 

 

 

Figure 3.2. Particle size distribution curve 

 

 

 

3.2. INPUT AND OUTPUT DATA SETS 

A Total of 180 different blast data taken from the mine was used for the ANN 

analysis. The input parameters used for the experiment are (i) Maximum charge per 

delay, (ii) Distance from blast to monitoring point, (iii) Hole depth, (iv) Stemming length, 

(v) Hole diameter, (vi) Powder factor and (vii) Spacing to burden ratio. Among several 

parameters, the seven (7) chosen inputs parameters are those known from literature to 

significantly influence the rock fragmentation, ground vibration and airblast. Thus, the 
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analysis for the experiment was carried out with the seven input parameters and their 

corresponding outputs for the 180 different blast data sets. These inputs are enumerated 

in Table 3.1 as follows. 

 

 

 

Table 3.1. Input parameters and their ranges 

Parameter Symbol Range 

Charge per delay (kg) Q 30 - 105 

Distance from blast to monitoring point (m) D   700 - 2,529 

Hole depth (m) H     3 - 10.8 

Stemming length (m) L 1.0 - 4.0 

Hole diameter (mm) T 115 - 140 

Powder factor (kg/m3) P 0.3 - 1.0 

Spacing to burden ratio B 0.95 – 1.22 

 

 

 

  The range of corresponding output parameters (i.e. rock fragmentation, ground 

vibration and airblast) are also captured in Table 3.2. 

 

 

 

Table 3.2. Output parameters and their ranges 

Parameter Symbol Range 

Rock fragmentation (%) A 65 - 95 

Ground vibration (PPV),mm/s C 0.13 – 0.95 

Airblast (Air Overpressures), dBL K 76 - 123 
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From Table 3.2, rock fragmentation is represented by the percentage of particle 

sizes that are within 0.1m to 0.9m range. The Peak Particle Velocity (PPV) and Air 

Overpressure (AOp) respectively quantify ground vibration and airblast. 

 

3.3. ARTIFICIAL NEURAL NETWORK (ANN) ARCHITECTURE 

A three-layer, defined by an input layer, a hidden layer and an output layer feed-

forward back-propagation neural network was developed. This three-layer neural network 

is used to predict rock fragmentation, ground vibration and airblast due to its ability to 

accommodate large input data and its capabilities to solve problems with vast 

complexities. The term “feed-forward back-propagation” indicates a forward activation 

flow of inputs and the backwards error propagation of weight adjustments. The artificial 

neural network (ANN) model was generated by (i) importing blast data in csv format into 

MATLAB® (ii) creating network using nntool function (iii) training, validation and 

testing.  

A total of 180 data sets were used for the study. The data was divided into 

training (70%), testing (15%) and data validation (15%). The data was then imported to 

MATLAB® and network formed using the nntool function. NNTOOL opens the 

Network window, which allows you to import, create, use, and export neural networks 

and data. The network type selected for the training was feed-forward back-propagation 

because it is good for non-linear fittings. Trainlm was the training function adopted 

because it is the fastest backpropagation algorithm in the toolbox. Trainlm function 

updates weight and bias values according to Levenberg-Marquardt optimization. The 

learning functionality used was the Learngdm and this function takes several inputs. 

Learngdm is the gradient descent with momentum weight and bias learning function. The 

performance function e.g. Mean square error (MSE), the number of layers, the number of 

neutrons and the transfer function e.g. tansig are all selected accordingly in order to 

create the network. After successfully creating a network, the next step is to train the 

network. Figures 3.3 and 3.4 are examples of ANN network window and ANN network 

architecture respectively. 
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Figure 3.3. Typical ANN network window 

 

 

 

 

Figure 3.4. Typical ANN network architecture 
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 Training of the network was performed using the Levenberg-Marquardt 

backpropagation algorithm as it is very fast.  For the given set of inputs, a set of targets 

are decided. Using the random weights, the network calculates some outputs using 

transfer functions (i.e. tansig and logsig). The calculated outputs are compared with the 

targets to obtain the network error. The connecting weights are adjusted to reduce the 

errors using the same learning rule. Based on the training process, a pattern is presented 

to the network. The new weights are calculated using Equation (2.11) based on the old 

weights, the node input values, errors and the learning rate. This iterative process is 

repeated until the error is below a specified value/level. Validation and testing are 

conducted to estimate the accuracy of the network/model. 

After a successful training, validation and testing using different network 

architectures, the optimum network architecture is chosen. A comparison is carried out 

for the different network architectures created as indicated in Table 3.3 using the 

coefficient of determination (R2) and the root mean square error (RMSE), network with 

architecture 7-13-3 (i.e. seven neurons in input layer, thirteen neurons in hidden layer and 

three neurons in the output layer) was deemed optimum because it had the least RMSE.  

Equation (3.1) (Pearson et al. 1995; Neaupane and Adhikari 2006; Enayatollahi et 

al., 2014) below was used in computing the root mean square error (RMSE) for the 

various models presented in Table 3.3. 

 

                RMSE=                                                               (3.1) 

where, ypred, ymeas, and N represent the predicted output, measured output, and the number 

of input–output data pairs, respectively.  
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Table 3.3. Comparison of different network architectures 

Model Transfer function Number of  Neurons RMSE R2 

1 tansig 8  0.418  0.99953 

2 tansig 10  0.556  0.99958 

3 tansig 13  0.307  0.99963 

4 tansig 18  0.535  0.99924 

5 logsig 8  0.354  0.99934 

6 logsig 10  0.711  0.99953 

7 logsig 12  0.982  0.99948 

 

 

 

Notice in Table 3.3 above, model 3 with network architecture 7-13-3 has the 

lowest RMSE, thus it is considered the optimum predictive model. The training, 

validation and testing curves for the different artificial neural network (ANN) models are 

detailed in Appendixes A and B.  

The optimum network architecture and regression curves are illustrated in Figures 

3.5 and 3.6 respectively.  

 

 

 

Figure 3.5. Optimum network architecture 
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Figure 3.5, represents the optimum network architecture with seven (7) neurons in 

the input layer, thirteen (13) neurons in the hidden layer and three (3) neurons contained 

in the output layer as already discussed. 

 

 

 

 

Figure 3.6. Optimum network regression curves 

 

 

 

Figure 3.6 above represents a regression curve showing the relationship between 

the outputs and targets for training, validation and testing stages. There is an excellent 

correlation between the output and target datasets for the training, validation and testing 

stages. Therefore, the combined curve demonstrates a strong relationship between the 
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output and the target considering the R2.The regression curves, performance graphs and 

training plots for the different ANN models tested are listed in Appendixes A and B. 

The optimum network developed was then used to predict thirty (30) new data 

sets with known outputs as illustrated in Table 3.4. Results of the predictions were then 

compared with the known outputs to estimate the accuracy of the optimum model. 

Figures 3.7, 3.8 and 3.9 are graphs comparing the predicted and measured PPVs, 

AOps and rock fragmentations respectively. 

 

 

Table 3.4. Measured and predicted outputs 

Measured 

PPV (mm/s)

Predicted 

PPV (mm/s)

Measured 

AOp(dBL)

Predicted 

AOp(dBL)

Measured 

Fragmentation (%)

 Predicted 

Fragmentation(%) 

0.33 0.31              102 102.3              86 85.6

0.26 0.26              101 101.2              69 69.1

0.26 0.26              100 100.2              70 69.5

0.3 0.28              102 101.9              68 67.7

0.27 0.27              93 93.2                69 68.6

0.28 0.26              101 101.0              66 66.1

0.28 0.26              102 101.9              66 66.1

0.32 0.30              100 100.4              78 77.5

0.26 0.28              90 89.9                79 78.8

0.27 0.28              94 93.9                83 82.7

0.27 0.28              95 95.0                82 82.4

0.26 0.28              92 92.3                83 83.1

0.26 0.28              93 93.4                83 82.8

0.27 0.27              100 100.2              78 78.2

0.26 0.27              96 95.7                82 81.9

0.75 0.71              85 85.3                93 92.3

0.26 0.26              99 98.9                71 70.6

0.26 0.26              100 99.7                70 70.3

0.27 0.27              98 98.5                78 78.2

0.29 0.32              96 95.8                91 91.0

0.29 0.32              96 96.5                91 92.9

0.39 0.40              106 106.0              91 91.1

0.27 0.27              100 100.2              74 73.8

0.25 0.27              95 95.0                76 76.6

0.36 0.35              102 101.7              90 90.3

0.29 0.33              92 92.1                91 90.8

0.31 0.30              98 97.8                84 84.0

0.3 0.30              96 96.4                84 84.2

0.56 0.55              109 108.3              89 89.2

0.46 0.49              103 103.4              90 89.7  
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Figure 3.7. Relation between predicted and measured PPV by ANN 

 

 

 

 

Figure 3.8. Relation between Predicted and Measured Airblast by ANN 
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Figure 3.9. Relation between predicted and measured fragmentation by ANN 

 

 

 

The coefficient of determination (R2) for Figures 3.7, 3.8 and 3.9 above are very 

close to one (1) indicating a strong correlation between the predicted and measured 

values for the output parameters using the optimum artificial neural network (ANN) tool. 

A strong correlation between the predicted and measured outputs show that the optimum 

ANN model predicts the actual physical field behavior thus the ANN model can be used 

to predict outputs in the field based on known input data set.  

 

3.4. REGRESSION ANALYSIS 

Multivariate regression analysis (MVRA) predictors have the ability to predict 

outputs given multiple inputs. Multivariate regression analysis (MVRA) was developed 

using the same input-independent variables and output-dependent variables used for the 

ANN processing. Using the MVRA tool, a variable (dependent variable) is predicted 

using known values (independent variables). 
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In general, the multiple regression equation of ẑ on X 1, X2, …, Xk is given by: 

ẑ= b0 + b1 X1 + b2 X2 + …………………… + bk Xk                        (3.2) 

where the term ẑ is the predicted value estimated from Xi, b0 is the intercept, and bi are 

the partial regression coefficients. The coefficient of determination (R2) is usually used to 

test the predictive ability of a multiple regression equation. A closer value of R2 to unity 

implies an accurate predictive model. The multiple regression presents two different 

overlaps: the overlap for the combined effect and the overlap for the individual effect 

(Enayatollahi et al., 2014). 

Based on Equation (3.2) above, equivalent equations are derived relating rock 

fragmentation, ground vibration (PPV) and airblast (AOp) to their respective input 

parameters. The multiple regression equations for the various outputs are defined as 

follows: 

 

Ground vibration (mm/s) = 0.0002[D]+0.0080[Q]-0.0561[H]-

0.5604[B]+0.0070[T]+0.0667[P]+0.0511[L]-0.3705                                                    (3.3)                       

                                

Airblast(dBl) = 0.0174[D]+0.0126[Q]-0.4164[H]+28.2977[B]-0.2298[T]- 23.4536[P]–

0.5281[L]+93.2605                                                                                                        (3.4)                         

                                                                

Fragmentation (%) =   0.0009[D]-0.1718[Q]+0.0317[H]-29.2185[B]-0.0366[T] – 

70.1293[P]+3.3022[L]+156.8241                                                                                  (3.5) 

 

Parameters in Equations (3.3), (3.4) and (3.5) are defined in Table 3.3.  

The multiple regression model generated was also used to predict ground 

vibrations, airblast and rock fragmentation using the same thirty (30) data set used for the 

ANN analysis previously. Results of the predictions were compared to measured 

outcomes for correlation. Figures 3.10, 3.11 and 3.12 illustrate the relationship between 

predicted and measured PPV, AOp and rock fragmentation respectively using 

multivariate regression analysis (MVRA).  
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Figure 3.10. Relation between predicted and measured PPV by MVRA 

 

 

 

  

Figure 3.11 Relation between predicted and measured airblast by MVRA 
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Figure 3.12. Relation between predicted and measured fragmentation by MVR 

 

 

 

Predictions made using the MVRA tool were mostly poor as demonstrated by 

Figures 3.10, 3.11 and 3.12 with the strongest relationship occurring for comparison 

between the predicted and measured fragmentation in Figure 3.10. The weak correlation 

is because the MVRA tool is not able to account for the inherent complexities in the input 

parameters, hence the need for the ANN model. 

 

3.5. EMPIRICAL PREDICTORS FOR GROUND VIBRATION (PPV) 

Various researchers proposed different equations for the prediction of PPV such 

as Duvall and Fogelson (1962), Langefors and Kihlström (1963), Ambraseys and 

Hendron (1968), Bureau of Indian Standards, BIS (1973). These predictor equations are 

summarized in Table 3.5. The blasts are scaled to equivalent distances using the 

maximum charge per delay and distance from blast to monitoring point. The equations 

are generally non-linear but can be expressed in linear by logarithmic transformation of 

variables. The site-specific constants (K and B) are generated by plotting the log 
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transformed PPV against the log transformed scaled distances. Figures 3.13, 3.14, 3.15, 

and 3.16 illustrate the square-root-scaled distance and PPV on log–log scale. The 

different empirical predictors are presented in Table 3.5.  

 

 

Table 3.5. Predictor equations 

Names Equation 

USBM (1959)              V=K[R/Qmax]
-B 

Langefors–Kihlstrom (1963) V=K[(Qmax/
R2/3)1/2]B 

Ambraseys–Hendron (1968) v = K[R/(Qmax)
1/3]-B 

Bureau of Indian Standard (1973) v = K[(Qmax/R
2/3)]B  

 

 

 

 

 

Figure 3.13. PPV and Scaled distance on log–log scale for USBM 
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Figure 3.14. PPV and Scaled Distance on log–log scale for Ambrasey-Hendron 

 

 

 

 

Figure 3.15. PPV and Scaled Distance on log–log scale for Langefors–Kihlstrom 
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Figure 3.16. PPV and scaled distance on log–log scale for Indian standard predictors 

 

 

 

The connection between PPV and scaled distance is established in Figures, 3.13, 

3.14, 3.15 and 3.16 above using empirical predictors. The above graphs generally 

indicate a weak link between PPV and scaled distance as shown by the relatively smaller 

R2 values.  

Table 3.6 represents the site constants for the different empirical predictors 

derived from the plots above. 

   

 

Table 3.6. Calculated values of site constants 

PREDICTORS 
SITE CONSTANT 

K B 

USBM 1.834 -0.336 

AMBRASEY-HENDRON 1.841 -0.298 

LANGEFORS–KIHLSTROM 0.446 0.697 

INDIAN STANDARD PREDICTORS 0.446 0.348 
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The empirical equations have been utilized for the prediction of PPV using 30 

data sets. Figures 3.17, 3.18, 3.19 and 3.20 highlight the measured and predicted PPV by 

the different predictor equations. 

 

 

 

 

Figure 3.17. Measured and predicted PPV by USBM Equation 

 

 

 

 

Figure 3.18. Measured and predicted PPV by Ambraseys–Hendron equation 
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Figure 3.19. Measured and Predicted PPV by Langefors–Kihlstrom equation 

 

 

 

 

Figure 3.20. Measured and predicted PPV by Indian Standard Institute 
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Figures 3.17, 3.18, 3.19 and 3.20 above try establishing the relationship between 

measured and predicted PPV using empirical predictors. The graphs however have 

relatively low R2 values signifying a weak relationship between the measured and 

predicted PPVs. The poor relationship is due to the inability of the empirical equations 

used to account for the inherent complexities present in the input parameters, hence the 

need for the ANN model. 

 

3.6. EMPIRICAL PREDICTOR FOR AIRBLAST (AOp) 

            The cube-root scaled distance factor (SD) is generally used to predict AOp, in the 

absence of monitoring. The blasts are scaled to equivalent distances using the maximum 

charge per delay and the distance from blast to monitoring the point. The site-specific 

constants (K and B) are generated by plotting the log transformed air overpressures 

against the log transformed scaled distances. To evaluate performance of the empirical 

predictors, the same datasets used for testing and validating the ANN and regression 

models were applied. Figure 3.21 shows the cube-root scaled distance and air 

overpressure on log–log scale. The site-specific constants K=139.86 and B=-0.0559 are 

generated from Figure 3.21. 

 

 

 

Figure 3.21. Airblast and scaled distance on log–log scale  
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There is a poor correlation between the airblast and the scaled distance as 

revealed by Figure 3.21 above.  

The cube-root scaled distance empirical equation has been employed for the 

prediction of 30 data sets. Figure 3.22 below, illustrates the relationship between 

measured and predicted airblast using the cube-root scaled distance empirical predictor 

equation. 

 

 

 

 

Figure 3.22. Measured and predicted Airblast 

 

 

 

Airblast predictions by the cube-root empirical equation are not convincing with 

low R2 of 0.0955 shown in Figure 3.22. This is due to the following (i) The cube-root 

empirical equation assumes just two input parameters (i.e. Maximum charge per delay 

and the distance from blast location to the monitoring point) and (ii) The cube-root 

empirical equation is not able to address the internal complexities present in the inputs. 

The ANN tool is therefore necessary to address the above flaws. 
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3.7. SENSITIVIY ANALYSIS 

          Sensitivity analysis was conducted on all the input parameters to ascertain the 

relative influence of each input parameter on rock fragmentation, ground vibration (PPV) 

and airblast (air over pressures). The sensitivity analysis was executed separately for the 

(i) rock fragmentation, (ii) ground vibration (PPV) and (iii) airblast (AOp). The cosine 

amplitude method (CAM) (Yang and Zang, 1997) was used to determine the strength of 

the connections between the input parameters and the output parameters under 

consideration. To apply this method, all the data pairs were expressed in common X-

space. The data pairs were used to construct a data array X defined as: 

 

                        X={x1, x2, x3,…xi,…xn}                                                                 (3.6) 

Each of the elements, xi, in the data array X is a vector of lengths, that is: 

 

            xi={xi1,xi2,xi3,…,xim}                                                                            (3.7) 

 

Each of the data set can be thought of as a point in m-dimensional space, where each 

point requires m-coordinates for a full description. Thus, all points in the space have a 

relation with results pair wise. The strength of the relation (rij) between the dataset X i 

and X j is represented by the following equation: 

 

 

                                                                      (3.8) 

   

  The results of the sensitivity analyses for Peak particle velocity (PPV) is 

presented in Figure 3.23. 
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Figure 3.23. Sensitivity analysis of input parameters 

 

 

 

From Figure 3.23 above, distance from blast face to monitoring point and the 

charge per delay are the most effective input parameters on the PPV, whereas, depth of 

hole is the least effective parameter. Practically, the impact of PPV on neighboring 

premises decreases with decreasing charge per hole and increasing distance from the 

center of action.   

The results of the sensitivity analyses for airblast is illustrated in Figure 3.24. 
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Figure 3.24. Sensitivity analysis of input parameters 

 

 

 

While charge per delay influences airblast the most as presented in Figure 3.24 

above, the ratio of spacing to burden has the least influence on airblast. The Diameter 

also bears an unusually high influence on the airblast. 

The results of the sensitivity analyses for rock fragmentation is presented in 

Figure 3.25. 

 

 

 

 

Figure 3.25. Sensitivity analysis of input parameter 
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  As illustrated by Figure 3.25 above, the most influential factors on fragmentation 

are the diameter and spacing to burden ratio whiles the distance from the blast point to 

the monitoring area is the least sensitive factor. 

 

3.8. SUMMARY 

          Dataset of inputs and their corresponding outputs are imported into the artificial 

neural network (ANN) system in MATLAB®. The ANN network is designed by defining 

the training function, the learning function, the transfer function and specifying the 

number of neurons in the hidden layer. The network is then trained, tested and validated. 

The performance of the ANN model can be improved by retraining or increasing the 

number of datasets. The network with the least RMSE is chosen as the optimum ANN 

model. This optimum ANN model is used to predict thirty (30) new dataset and the 

predicted outputs are compared with the real measured outputs to estimate the accuracy 

of the model. The results obtained from ANN model are much closer to reality, thus the 

ANN model is suitable for predicting new datasets in the field. 

         Multivariate regression analysis (MVRA) equations are also used to predict the 

same thirty (30) dataset and the predicted results are compared with the measured/actual 

outputs. Multivariate regression analysis (MVRA) predictors did not attain the desired 

level of accuracy. Ground vibrations (PPVs) and airblasts (AOps) are predicted using 

empirical equations based on the same dataset and the predicted outputs are compared 

with the measured outputs. Results demonstrate that the predicted outputs are not close to 

the actual outputs, thus not recommended for field predictions. 

 Linear curve fittings are used for comparing the predicted and actual outputs for 

the various predictive models in this section. This is due to the fact that most plots of 

actual and predicted datasets available in literature show a linear relationship. Moreover, 

linear curves make the analysis of uncertainty in dataset tractable and easy to interpret. 

Finally, sensitivity analysis using the proposed ANN model is performed to 

ascertain the influence of each input parameter on rock fragmentation, ground vibration 

and airblast. Section 4 delves into the data analysis and discussions. 
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4. DATA ANALYSIS AND DISCUSSION 

4.1. ANN AND MVRA ANALYSIS 

         Multivariate Regression Analysis (MVRA) tool used to predict PPV, airblast and 

fragmentation were mostly poor as demonstrated by Figures 3.10, 3.11 and 3.12 with the 

strongest relationship occurring for comparison between the predicted and measured 

fragmentation in Figure 3.11. RMSE and R2 were used for comparing the artificial neural 

network (ANN) and the MVRA models. The indexes were calculated for the different 

output parameters belonging to the ANN and the MVRA models as shown in Table 4.1 

below.  

 

 

Table 4.1. Computed RMSE and R2 for comparing ANN and MVRA models 

 

 

 

           As observed from Table 4.1 above, the ANN model is more accurate than the 

MVRA model since the root mean square error (RMSE) for the different parameters in 

the ANN model are relatively smaller compared to those of the MVRA model for the 

same parameters. In addition, the coefficient of determination (R2) for the parameters in 

Model  Parameter    RMSE R2 

ANN                           

 Ground vibration 0.018 0.970 

Airblast 0.290 0.996 

  Rock fragmentation  0.316 0.997 

MVR 

Ground vibration 0.185 0.058 

Airblast 14.476 0.157 

Rock fragmentation 5.968 0.799 
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the ANN model is closer to unity compared to those of the MVRA. Hence, ANN model 

predicts outputs with suitable accuracy compared to MVRA model. Fragmentation 

prediction by the ANN model as seen in Table 4.1 is the best with R2 of 0.997. MVR 

model also predicted rock fragmentation better than it did for airblast and ground 

vibration.  

 

4.2. ARTIFICIAL NEURAL NETWORK AND EMPIRICAL PREDICTORS  

Empirical equations were used to predict peak particle velocity (PPV) and air 

overpressure (AOp). R2 was used for comparing artificial neural network (ANN) and 

empirical models. The R2 index was calculated for the different output parameters 

belonging to ANN and empirical models as shown in Tables 4.2 and 4.3 below.           

 

 

Table 4.2. R2 for comparing predicted PPV using ANN and empirical models 

Predictors 
R2 

ANN 
0.970 

USBM 0.320 

AMBRASEY-HENDRON 0.257 

LANGEFORS–KIHLSTROM 0.452 

INDIAN STANDARD PREDICTORS 0.452 

 

 

 

Table 4.2 shows higher coefficient of determination (R2) for the ANN predictor 

compared to the other empirical predictors. This is an indication that PPV is best-

predicted using ANN predictors than employing the other empirical techniques. 
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Table 4.3. R2 for comparing AOP using ANN and empirical model 

Predictors 
R2 

ANN 
0.996 

Cube-root scaled distance 0.096 

 

 

 

Moreover, the ANN model in Table 4.3 above has a relatively high R2 of 0.996. 

Thus, the ANN model is a better predictive model compared to the cube-root scaled 

distance empirical predictor. 

 

4.3. BLAST OPTIMIZATION USING ARTIFICIAL NEURAL NETWORK 

         In order to improve the efficiency and quality of the blasting operations, the 

optimum ANN model developed was used to optimize ten (10) experimental blasts 

carried out at the mine and the results compared to ten (10) non-optimized blasts. Table 

4.4 represents blast outputs and equipment statistics without ANN application.  

 

 

Table 4.4. Blast outputs and equipment stats without ANN application 
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Blast outputs and equipment statistics in Table 4.4 did not meet company 

requirements. The PPVs and AOps recorded were above the company set limits of 

0.7mm/s and 115dB respectively. Crusher productivities were below the company’s 

target of 23,000tonnes/day. Most rock fragments were outside the desired range with D80 

around 0.7m following Split-Desktop analysis. Excavator productivities were poor 

compared to the company’s target of 464bcm/hr. Excavator and crusher availabilities 

were lower than the company’s target of 85% for both equipment. 

Prior to blasting, the ANN model was used to simulate the input blast parameters 

until desired rock fragmentation, airblast and ground vibration were attained. This was 

done for ten (10) different blasts and the results illustrated in Figure 4.5. Table 4.5 shows 

blast outputs and equipment statistics following ANN analysis.  

 

 

 

Table 4.5. Blast outputs and equipment stats following ANN analysis 

Airblast(Db) PPV(mm/s)

Fragmentation

(%)

Crusher 

Prdtivity 

(tonnes/day)

Ex. 

Prdtivity

(bcm/hr)

Crusher 

Availabilities

(%)

Exc. 

Availabilities 

(%)

105 0.32 83 24,156            480 86 85

84 0.44 83 23,896            476 85 87

109 0.54 82 25,489            520 85 86

98 0.51 85 25,444            493 87 87

100 0.23 82 24,363            486 86 87

99 0.57 84 23,879            497 87 88

104 0.44 84 23,589            500 85 86

101 0.64 81 24,015            470 88 86

87 0.23 83 25,326            488 85 87

101 0.67 82 23,698            469 86 85
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 Blast outputs and equipment statistics presented in Table 4.5 is an indication of  

immense improvement following simulation on the input blast parameters using the 

optimum ANN model prior to blasting. The PPVs and AOps were within the confines of 

the company limits. Rock fragments were within desired range with D80 reduced from 

0.7m to 0.45m. Improvements were made in the equipment productivities and 

availabilities as well. The crusher availabilities and productivities were improved by 11% 

and 31% respectively.  There was also a 10% and 37% gain in the excavator availabilities 

and productivities respectively as illustrated by Table 4.6. Comparison of equipment 

statistics before and after the ANN model application is presented in Table 4.6.  

 

 

 Table 4.6. Comparison of equipment stats before and after ANN application 

Before After 
Percentage 

Increase (%) 

Availability(%) 77 86 11

Productivity(bcm/hr) 16,776       24,386       31

Availability(%) 78 86 10

Productivity(bcm/hr) 309 488 37

Crusher

Excavator

Equipment Statistics

 

 

 

 

Sample improved fragmentation and uniform pit floor after implementing 

optimum ANN model are displayed by Figures 4.1 and 4.2 respectively. 
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Figure 4.1. Improved fragmentation 

 

 

 

 

Figure 4.2. Uniform pit floor 
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Figure 4.1 shows improved rock fragmentation following ANN application. 

Improved fragmentation reflected in the uniformity of the pit floor as indicated by Figure 

4.2. 

 

4.4. SENSITIVITY ANALYSIS 

          Sensitivity analysis was conducted on all the input parameters to determine the 

relative influence of each input parameter on rock fragmentation, ground vibration (PPV) 

and airblast (AOps). From Figure 3.21, distance from the blast face to the monitoring 

point and the charge per delay are the most effective input parameters for the PPV, 

whereas the depth of hole is the least effective parameter. Practically, the impact of PPV 

on neighboring premises decreases with decreasing the charge per hole and increasing the 

distance from the center of action. While charge per delay influences airblast the most as 

presented by Figure 3.22, the ratio of spacing to burden has the least influence on airblast. 

The Diameter also bears an unusually high influence on the airblast. As illustrated by 

Figure 3.23, the most influential factors on fragmentation are diameter and spacing to 

burden ratio whiles the distance from the blast point to the monitoring area is the least 

influencing factor. 

 

4.5. SUMMARY 

         Artificial neural network (ANN) model proved to be more effective compared to 

the multivariate regression analysis (MVRA) and empirical equations. The optimum 

ANN model improved the efficiency of the blast operation by reducing the ground 

vibration and airblast values below company threshold limits of 0.7mm/s and 115dB 

respectively. Most of the rock fragments were within desired range with D80 reduced 

from 0.7m to 0.45m. The distance from blast face to monitoring point and the maximum 

charge per hole proved the most effective parameters whiles depth the least effective 

parameter on PPV following sensitivity analysis. The maximum charge per delay was the 

most sensitive parameter on AOp whiles the spacing to burden ratio was the least 

sensitive parameter. The most influential input parameters on fragmentation were 

diameter and the ratio of spacing to burden. Distance had the least influence on 
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fragmentation. Conclusions and recommendations for future work are presented in 

section 5. 
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5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

 

5.1. CONCLUSIONS 

         The study was geared towards improving fragmentation, minimizing blast impacts 

and protecting communities within the immediate premises of the blasting operations. An 

optimum ANN model was developed and used at Perseus Mines. The results of ANN 

predictions were then compared to empirical techniques and MVRA predictors. The 

ANN model generated was again used to optimize a set of blasts and the results 

compared to a set of non-optimized blasts and the equipment availabilities and 

productivities were captured. The ANN model improved fragmentation and minimized 

blast impacts. Results obtained from the study and their validations are summarized 

below: 

1. Optimum artificial neural network (ANN) model is generated with:                       

(i) Architecture 7-13-3. 

(ii) RMSE (0.307) and R2 (0. 999). 

2. Optimum ANN model improved the efficiency of the blast operation by reducing 

ground vibration and airblast values below company limits of 0.7mm/s and 115dB 

respectively. Rock fragments were within the desired range with D80 reduced 

from 0.7m to 0.45m. There was a 31% and 37% improvement in crusher and 

excavator productivities respectively. Crusher availability went up by 11% while 

excavator availability increased by 10% following the application of the ANN 

model. 

3. Artificial neural network (ANN) model proved to be more effective compared to 

empirical equations and multivariate regression (MVR) matching their respective 

RMSE and R2.  

4. The distance from blast face to monitoring point and the maximum charge per 

delay proved the most effective parameters whiles depth the least effective 

parameter on PPV following sensitivity analysis. 

5. The maximum charge per delay was the most sensitive parameter on AOp whiles 

the spacing to burden ratio was the least sensitive parameter on AOp. 
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6. The most influential input parameters on fragmentation were diameter and the 

ratio of spacing to burden. Distance had the least influence on fragmentation. 

7. In addition to using the optimum ANN model, it is recommended that best 

blasting practices including proper planning, close supervision, correct delay 

times and initiation pattern selection, properly selected stemming material and 

accurate drilling among others should be considered for best results.  

 

5.2. RECOMMENDATIONS FOR FUTURE WORK 

        This research has produced significant evidence that ANN models are best for 

predicting fragmentation and blast impacts. Further studies are required to enhance work 

carried out in this study as discussed below:  

1. The input parameters could be expanded to include mechanical and geotechnical 

rock parameters such as rock strength, RQD, rock hardness, number of joints etc. 

to provide the ANN model a wider platform to operate. 

2. Other ill effects resulting from poor blasts such as fly rocks and back breakes 

among others could be considered in the outputs since their impacts on production 

and immediate communities are significant. 

3. Optimum ANN performance could be enhanced by combining ANN model with 

other algorithms such as particle swarm optimization algorithm, imperialist 

competitive algorithm (ICA) etc. 
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APPENDIX A 

ARTIFICIAL NEURAL NETWORK (ANN) ARCHITECTURE 
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Typical ANN network creation interface 

 

The network type, the training function, the learning function, and transfer function 

among others are properly defined here before training begins.  
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Typical ANN network data manager for nntool 

 

The different networks created are available here for selection and further processing. All 

data imported into system are displayed here. 
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Neural network training tool 

 

Regression plot can be displayed for correlation between output data and      target data. 

Retraining can be conducted to improve performance. 
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Weight adjustment tab 

 

Weights can be modified to improve performance. 
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 APPENDIX B 

TRANSFER FUNCTIONS TESTED 
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Custom Logsin view (Ten neurons) 

 

The transfer function used above is the Logsin with architecture 7-12-3 

 

 

  

Custom Logsin view (twelve neurons) 

 

 

The transfer function used above is the Logsin with architecture 7-12-3 
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Neural network training regression plot for Logsin (Ten neurons) 

 

Correlations between output and target data for training data, validation data, testing and 

the entire data set are displayed in the plot above. 
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 Neural network training regression plot for Logsin (Twelve neurons) 
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Custom Tansig view (eighteen neurons) 

 

 

 

Neural network training regression plot for Tansig (eighteen neurons) 
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Custom Tansig view (Thirteen neurons) 

 

 

 

Neural network training regression plot for Tansig (Thirteen neurons) 
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Tansig performance plot (Thirteen neurons) 
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Tansig training state plot (Thirteen neurons) 
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Tansig performance plot (Ten neurons) 
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Tansig training state plot (Ten neurons) 
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