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ABSTRACT 

The effects of sample area and automated SEM/EDS feature analysis parameters 

(step size, magnification and threshold) on nonmetallic inclusion characterization results 

has been investigated and optimized. A post-processing program was developed to 

automatically determine average inclusion chemistry, total element concentrations within 

inclusions, and for generating joint ternary diagrams with size visualization for 

representing nonmetallic inclusion populations. Using these tools the evolution of 

nonmetallic inclusions was examined for 4320 steel at a participating industrial steel 

foundry. The steel was sampled throughout electric arc furnace melting through ladle 

refining to the final casting where an in-mold sampling procedure was developed to 

procure numerous test samples representative of final heavy section castings in effort to 

further understand the effect of different metallurgical factors on impact toughness for 

slow solidification rate high strength cast steel. Nonmetallic inclusion nucleation, growth, 

and flotation were monitored through liquid steel processing by size-classified area 

fraction. The use of zirconium as an addition for nitrogen/oxygen removal was found to 

lead to a large number of ZrO2 inclusions, which resulted in insufficient flotation due to 

the higher density of zirconia and, less effective calcium treatment. No ZrN formation 

was observed owing to the high FeO acid slag practice used. Argon stirring was found to 

mitigate the flotation problems associated with the zirconium addition and significantly 

contribute to the removal of large size (>5µm) inclusions. In-mold heavy section samples 

were tested at -40°C and 25°C to examine how different microstructural features such as 

nonmetallic inclusions, porosity, and hardness influence the impact energy of the steel for 

brittle and ductile fracture modes. SEM fractography was used to characterize failures 

modes: brittle, ductile, and quasi-ductile at energies ranging from 14-40 ft-lbs. For brittle 

fracture, hardness had an adverse influence on impact energy absorbed, while increasing 

the average area fraction and diameter of nonmetallic inclusions led to improved 

toughness. The opposite trends were observed for ductile fracture in specimens tested at 

room temperature, where area fraction of nonmetallic inclusions and porosity were 

detrimental to the impact energy absorbed. 
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1. INTRODUCTION 

1.1 AUTOMATED SEM/EDS SYSTEM 

There is a growing need for time efficient, effective methods of characterizing 

vast numbers of inclusions for the modern day steel producers. Although there are a vast 

number of techniques available for characterization of inclusions, automated SEM/EDS 

systems often fill this role providing the means to rapidly characterize thousands of 

nonmetallic inclusions in a few hours while providing information about size, chemical 

composition, and positions [1-12]. These have become popular among steel mills and 

have proven applicable to steel foundries but procedures will differ greatly as there are 

large differences in process and cleanliness requirements. Care must be taken in data 

collection and any conclusions drawn from such a highly automated system. Often, small 

polished sections from samples taken during liquid steel processing are analyzed and 

represent only a small fraction of the melt volume but are treated as representative. In 

addition, the collected liquid steel in the sampler is subjected to different cooling rates 

during solidification that can alter the inclusion characteristics[13,14]. Ruby-Meyer et al 

performed CFD Fluent calculations that showed the last section to solidify in an 

immersion sampler is at the center[5]. Ola Ericsson investigated the solidification rate for 

a 12 mm thick stainless steel immersion sample and discovered that solidification rates 

could differ by as much as 10 °C/s [9]. In addition to sample representativeness, the 

automated SEM/EDS system settings and the methods used to post process the acquired 

data can also lead to misinterpretations [11].  

A methodology has been developed that allows for accurate, repeatable inclusion 

analysis using an automated feature analysis SEM/EDS system. This was done using the 

ASPEX Pica 1020 SEM/EDS system, the basic functionality of which was examined. 

Industrial steel foundry samples were collected from liquid processing steps with the aim 

of developing repeatable methods of in-depth nonmetallic inclusion analysis. 

 

1.2 NUCLEATION, GROWTH, & FLOTATION 

Nonmetallic inclusions can be formed as a result of solubility limits in classic 

nucleation theory (indigenous), or be a result of some external contamination event 



 

 

2

(exogenous). The most common source of nonmetallic inclusions is from reactions with 

dissolved active elements such as oxygen, nitrogen, or carbon forming oxides, nitrides, 

and carbides respectively. Typically for steel castings, porosity is considered highly 

undesirable and the most common method to eliminate gas (CO) formation upon 

solidification is the use of deoxidizers (usually aluminum or silicon). This is an effective 

method of deoxidation but results in the generation of a numerous oxide population. 

These oxides can be highly problematic for certain steel grades with stringent 

specifications and can have negative effects on castability, mechanical properties, or even 

complying with cleanliness requirements[14-22].  

The current understanding of the evolution of nonmetallic inclusions is composed 

of three stages: (i) nucleation, (ii) growth/agglomeration, and (iii) flotation[14,15]. 

Nucleation is largely understood as competing reactions of surface energy minimization 

and bulk free energy minimization such that above some critical radius a nucleus is 

successfully formed and spontaneously grows. Growth of a nonmetallic inclusion can 

occur through a variety of mechanisms driven by diffusion, local thermodynamics, 

Ostwald ripening, or physical agglomeration. For sub-micron sized inclusions, 

agglomeration is thought to be the result of Brownian collision whereas larger inclusions 

are more affected by macroscopic melt flow and can be greatly influenced by differential 

flotation velocities in accordance with Stoke’s Law[14,15]. This agglomeration process 

can be made more efficient if the inclusions are in a liquid state which is one goal of CaSi 

modification of Al2O3. The calcium in this case leads to the formation of a CaO·Al2O3 

liquid state inclusion that is both spherical and has increased tendency to agglomerate to 

other solid Al2O3 inclusions which increases flotation velocity by increasing the 

radius[14-18].  

Shown below is Stokes’ Law for unstirred systems with low Reynolds numbers 

where the velocity of a particle is dependent on the density differential and its size 

according to Equation 1: 

௦ݒ ൌ
ଶሺఘ೛ିఘ೑ሻ

ଽఓ
ܴ݃ଶ                                               (1) 

where: vs is the particle velocity, ρp is the particle density, ρf is the fluid density, g is the 

gravitational constant, and R is the particle radius. Stirring increases net flotation by both 
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increasing overall fluid velocity, and through inclusion wetting and attachment to the 

bubble itself. The gas used is typically argon and enters through an eccentrically located 

porous plug in the ladle bottom[23]. Reynolds numbers for stirred cases are typically too 

large for Stokes’ Law to be the dominant flotation mechanism, rather than macroscopic 

flow.  

Recent work on the evolution of inclusions in continuous casting steelmaking 

processes has employed automated SEM-EDS systems [1-4,6,7,24]. When attempting to 

apply a similar approach for industrial foundry settings it is important to remember the 

formation of inclusions in a steel mill can be more controlled with limited oxygen 

exposure, narrow ranges of alloying, and consistent product geometry and size. These 

types of restrictions are often infeasible for foundries where castings are complex and 

variable. Work by Singh et al. examined the effectiveness of calcium treatments on the 

nonmetallic inclusion population while discussing optimum treatments by using an 

automated SEM/EDS[6,7]. Here a similar approach was used to evaluate the deoxidation 

practice, calcium treatment effectiveness, and the effect of argon stirring in an effort to 

understand the overall evolution of inclusions in the steel foundry processing route for 

carbon and low alloy steel castings. 

 

1.3 MECHANICAL PROPERTY RELATIONSHIPS 

Several microstructural parameters (nonmetallic inclusions, porosity, 

microstructure and hardness) are critical in terms of mechanical properties, especially 

impact properties of steel. The number density of inclusions, the volume fraction, and the 

average spacing of the inclusions have been shown to have a strong correlation with 

impact energy absorbed at room temperature[25-30]. Increasing volume fraction and 

number density have been found to negatively impact the dynamic fracture toughness 

while a smaller inclusion spacing lowers the energy absorbed[25]. The previous work 

relating these variables has been done at room temperature (25°C) where ductile fracture 

is the predominant fracture mode for the steels considered; however, the majority of the 

studies performed impact tests using specially rolled or cast specimens that did not 

necessarily reflect the properties actual heavy section castings[25-30].  
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Studies from Peaslee et al. and Bartlett et al. have used automated SEM/EDS 

systems for nonmetallic inclusion analysis for impact test analysis[24,25]. The large 

number of inclusions analyzed via automated SEM/EDS in these studies has allowed 

more repeatable and statistically significant information to be gathered about the behavior 

of ductile fracture in the presence of nonmetallic inclusions. This work will expand on 

the earlier observed relationships considering the effects of different microstructural 

features in heavy section castings on absorbed impact energy for different fracture 

modes. Samples were tested at -40°C and 25°C with the goal of linking characteristics of 

nonmetallic inclusions, porosity, and hardness to impact toughness while keeping the 

fracture mode consistent for each test temperature. Fracture modes are of course related 

to the heat treatment process and specifically the microstructure of the steel[30]. Effort 

was done to collect specimens for testing directly in the mold, which represent the real 

heavy section castings without the necessity of destroying the final product. 
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PAPER 

I. Improved Methodology for Automated SEM/EDS Non-Metallic Inclusion 

Analysis of Mini-Mill and Foundry Steels 

Marc L. Harris, Obinna Adaba, Von L. Richards, Simon Lekakh, Ronald 

O’Malley 

 

 

Metallurgical Engineering 
Missouri University of Science and Technology 

223 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409-0330, USA 
Tel.: 573-341-4717 

Email: vonlr@mst.edu 
 

Abstract 

 

Automated Feature Analysis (AFA) provides the means to rapidly characterize large 

inclusion populations. System settings must be optimized to properly detect and interpret 

the important inclusion characteristics. The effects of sample area and AFA parameter 

settings (step size, magnification and threshold) on inclusion characterization results has 

been investigated and optimized. Methodologies for determining average inclusion 

chemistry, total element concentrations within inclusions, and for using joint ternary 

diagrams with size visualization to represent inclusion populations are presented. These 

methodologies were applied to samples collected from industrial steel mill and steel 

foundries and demonstrated in this study.  

  

Introduction 

 

Non-metallic inclusions are an inevitable consequence of steelmaking and are undesirable 

for the most part. Mechanical properties are largely affected by them and some inclusions 

promote clogging of submerged entry nozzles (SEN) 1-4. Complete removal however is 

not necessary and cleanliness requirements are determined by various thresholds on 

inclusion characteristics such as amount, size, composition, and distribution1,5. These 
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thresholds vary by grade and requirements are increasingly more stringent.  Much 

research has been conducted on methods of inclusion control to minimize the potentially 

detrimental effects on final properties and there are a vast number of techniques available 

for characterization of inclusions1-12. There is however, a growing need for a time 

efficient, effective method of characterizing vast numbers of inclusions for the modern 

day steel producers.  

 

Automated SEM/EDS provides the means to rapidly characterize large inclusion 

populations providing information about amount size, composition and distribution of 

inclusions. With the growing computational power available, post-processing of the vast 

quantities of data output by such a system has also become more efficient. These devices 

have become popular among steel mills and have proven to be applicable to steel 

foundries, although, procedures will differ greatly owing to the large difference in 

process and cleanliness requirements. Precautions also need to be taken in data collection 

and analysis. Small polished sections from samples taken during liquid steel processing 

are analyzed and represent only a small fraction of the melt volume while typically being 

assumed as representative. In addition, collected liquid steel in the sampler is subject to 

different cooling rates during solidification that can alter the inclusion characteristics13-14. 

Ruby-Meyer et al 5showed using CFD Fluent calculations that the last section to solidify 

in a lollipop sampler is at the center. Ola Ericsson9 investigated the solidification rate for 

a 12 mm thick stainless steel lollipop sample and observed that the solidification rate 

could differ by as much as 10 °C/s. System parameter settings and the methods used to 

post process the typically large quantity of data obtained in an SEM/EDS scan can also 

lead to misinterpretations. 

 

A methodology has been developed and presented here for accurate, repeatable inclusion 

analysis using an automated feature analysis SEM/EDS system. This is based on 

experiments conducted at the Peaslee Steel Manufacturing Research Center (PSMRC), 

Missouri University of Science and Technology. The ASPEX Pica 1020 SEM/EDS 

system was used in this study, the basic functionality of which was examined. Both 
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foundry and mill samples were collected from liquid processing steps with the aim of 

developing accurate and repeatable methods of in-depth inclusion analysis. 

 

Experimental Procedure 

 

Sample Collection & Preparation. Industrial samples were taken during liquid 

steel processing using un-killed sampler types in order to prevent non-representative 

inclusion populations from forming. Steel chilled immersion samplers were chosen for 

their wide applicability and common use in industry. For this reason both center and 

surface sections were considered for analysis: representing different cooling rates in the 

sampler. Figure 1 is a schematic of both section locations in the sampler. Grinding was 

done using SiC media (180, 400, 600, 1200 grits), polished using 3µm diamond paste, 

and finished using a 0.1µm diamond paste. Metallographic preparation was done in 

accordance to ASTM E3-11 for all samples.  

 

 

Figure 1. Schematic of immersion samplers with a) center sectioning region highlighted 

and b) surface sectioned area highlighted (approximately 0.35 mm below surface after 

sample grinding and polishing). 

 

Automated SEM/EDS Analysis. After preparation, samples were scanned using 

an automated SEM/EDS system (ASPEX PICA 1020), the simplified procedure of which 

can be broken down into four steps: 1) SEM location of a feature of high z-contrast; 2) 

EDS spectrum analysis of the located high z-contrast feature; 3) check of spectrum 

counts to exclude porosity; 4) recording of all relevant data. Consideration of only a 

limited number of elements aided in minimizing error in compositional data obtained 

from EDS spectra. Elements considered included: Mg, Al, Si, Zr, S, Ca, Ti, and Mn. Fe 



 

 

8

was not considered in the EDS spectra as the interaction volume of the electron beam 

would affect compositional results in favor of Fe. Scans were performed with varied 

minimum diameter thresholds, step sizes, and magnification and the effect of these 

parameters on detection capabilities considered. Approximately 15-30% dead time was 

used, 20 kV accelerating voltage, and a nominal EDS detection time of 1 second (optimal 

settings for the instrument and elements of interest). Porosity was excluded from 

consideration using an EDS count threshold of 1000, an example of which can be seen in 

Figure 2. A Monte-Carlo simulation of randomly distributed inclusions showed that 500-

700 counted inclusions from each specimen is enough to accurately represent the 

inclusion population. In this study, an average of 2500 inclusions were experimentally 

counted for improved statistical analysis 

 

 

Figure 2. Large region of porosity with low counts per second (CPS) that leads to 

exclusion from analysis.  

 

Results 

 

ASPEX Settings. Figure 3 is a schematic of how detection and measurement is 

done using the ASPEX. The electron beam moves in steps (bold black dots) which are 

determined by the SEM step size setting used. Once a feature is detected a much finer 

resolution is used (smaller dots) for the measurement of the inclusion. With increasing 

step size, the possibility of detecting small features decreases, and as the magnification 

increases, the separation of the smaller dots decreases thus, increasing the accuracy of 
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measurement. Before the start of an AFA, a minimum diameter threshold is set that 

determines the minimum size of an inclusion that will be characterized. It is therefore 

important that the selected step size is less than the minimum diameter threshold setting 

to detect the maximum number of inclusions. 

 

 

Figure 3. ASPEX feature detection method and area measurement methods.  

 

 

Figure 4. Effect of (a) step size and (b) magnification on number of inclusions detected 

per area and inclusion area fraction. 

 

Figure 4 shows how the experimentally measured number density and area fraction vary 

with both step size and magnification for the same analyzed area. The counted values of 

both number density and area fraction decrease with increasing step size and increase 

with increasing magnification. Step size was found to have a larger effect on number 

density while area fraction is affected more by the magnification. 
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The analyzed area fraction and number of detected inclusions was found to be heavily 

dependent on the minimum diameter threshold chosen (see Figure 5). The behavior of 

this curve suggests that a minimum diameter threshold of approximately 0.75 µm should 

be the largest chosen for an encompassing analysis. As the threshold increases beyond 

0.75 µm the resulting area fraction and number of detected inclusions drops significantly, 

as large numbers of inclusions are going undetected. The variation of the number of 

detected inclusions below 0.75 µm is reduced but still increases continuously, evidence 

that there is a population of sub micron (< 0.5 µm) sized inclusions that were not 

detected. The minimum diameter threshold could not be reduced below 0.5 µm as it was 

the limit of accurate detection of the instrument; however the area fraction contribution of 

such small inclusions was determined to be insignificant. Below 0.75 µm in diameter the 

variation for the resulting area fraction is minimal indicating the true value of the sample 

area fraction has been obtained since detection of smaller inclusions has no observable 

effect.  

 

Figure 5. Effect of minimum size setting on reported area fraction and population 

density.  
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It was found that scans performed using a 0.5 µm minimum diameter threshold (limit of 

instrument) were optimal for determining an accurate inclusion area fraction. A search 

grid step size of 0.16 µm was determined to be more than sufficient for 100% detection 

of inclusions as small as 0.5 µm in diameter (≤0.35 µm according to Equation 1). The 

optimal step size is related to the minimum diameter threshold as: 

ݏ ൑ √ଶ

ଶ
 ௠௜௡                                               (1)ܦ

where: s is the search grid step size, and Dmin is the minimum diameter threshold. This 

relationship holds for a square search grid pattern and is based on the worst case scenario 

of an infinitesimally thin inclusion extending from one corner of the search grid to the 

other. The result is the maximum step size for 100% detection of inclusions as small as 

Dmin.  

To further understand the effect of settings on the measured number density and area 

fraction of inclusions a test was carried out using the SEM calibration standard (Figure 

6). The standard is composed of different sized spherical particles and Figure 7 shows the 

change in measured aspect ratio and size of the detected features for different 

magnifications. It can be seen that as the magnification increases the measured aspect 

ratio decreases and the diameters approach the actual values (1, 2, 3..10 µm). 

Additionally, the variation in both aspect ratio and the diameter from the known value 

decreases. This is due to increased accuracy of measurement, as a larger pixel density 

from high magnification gives more accurate measures of area, diameter, and aspect 

ratio.  
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Figure 6. SEM image of calibration standard with known size distribution and aspect 

ratio of 1.  

 

 

Figure 7. Effect of magnification on the measured particle size and aspect ratio.  
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Figure 8. Fraction of undetected small particles below 2 µm diameter for varied step 

sizes and magnification where 0 denotes no missed particles and 1 denotes total loss.  

 

A quantitative example of the effect of step size and magnification on the fraction of 

detected particles can be seen most prominently in Figure 8. For small sized inclusions 

the larger step sizes result in no detection (>80% loss), and for magnifications that are too 

low the same occurs (differences of 20-50% in detection).  

Mass Balance Calculations. A method of calculating a mass balance from SEM-

EDS data was developed that allows the study of elemental content contained within 

inclusions. The areal average elemental composition of inclusions is calculated for each 

element as follows: 

%݉ ൌ
∑ሺ%௫ሻሺ஺೔೙೎೗ೠೞ೔೚೙ሻ

஺೟೚೟ೌ೗
                                               (2) 

where: %m is the areal average mass percent of a given element, %x is the amount of 

respective element in an individual inclusion, Ainclusion is the area of the individual 

inclusion, and Atotal is the total area of all measured inclusions. The mass balance 

calculation was performed using the compositional data obtained from the SEM-EDS 

inclusion analysis and Equation 3: 
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௣௣௠ܯ ൌ 	
%௠	஺೑	ఘ೔	௪೔

ଵ଴଴ఘ೘
                                                    (3) 

 

where: Mppm is the mass fraction in ppm of a given element in a sample contained within 

inclusions, %m is the areal average mass percent of a given element, Af is the total 

inclusion area fraction, ρi is the density of the inclusion associated with the given 

element, ρm is the density of the matrix (taken to be iron), and wi is the mass fraction of 

the given element in the associated inclusion compound.  

The results of these mass balance calculations were extended to calculate the approximate 

amount of total oxygen in the samples through the assumption of most-stable compound. 

This was done as a means to meter the accuracy of the mass balance calculations as 

oxygen is a low solubility element in iron, almost entirely present in the steel in the form 

of oxide inclusions. In order to calculate the oxygen content, sulfides were filtered via a 

sulfur threshold and the remaining inclusions assumed to be stable oxides with the 

appropriate stoichiometry. The accuracy of varied sulfide thresholds on the total oxygen 

calculation was compared to an inert gas fusion analysis of total oxygen (see Figure 9). A 

30% threshold of sulfur was found to be in closest agreement with the inert gas fusion 

analysis results. A direct comparison of total oxygen is shown in Figure 10 as a function 

of process time for two industrial trials. The accuracy of the calculated results is close or 

inside the 95% confidence interval for most of the inert gas fusion analysis method 

results and is consistent enough to represent the same trends, indicating the mass balance 

results are reasonable. Additionally the calculated results are largely within less than 50 

ppm of the reported inert gas fusion results with few exceptions.  
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Figure 9. Mean percent error of calculated total oxygen from SEM/EDS data compared 

to inert gas fusion method versus sulfur threshold used in analysis.  

 

 

Figure 10. Total oxygen content measured by two methods (calculated with a 30% sulfur 

threshold and inert gas fusion) in samples taken throughout liquid processing at a) 

Foundry A and b) Foundry B.  

 

The optimal sulfur threshold was applied in a mass balance calculation of manganese rich 

inclusions and the results can be seen in Figure 11 for both unfiltered and only oxide 

inclusions. This method allows examination of mass quantities associated with specific 

inclusion populations, in this case manganese oxide.  
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Figure 11. Manganese content within a) all inclusions scanned and b) only oxides < 30% 

sulfur. 

 

Analyzed Section Area. Comparing the results for the two sectioning methods, it 

was found that the center sectioned immersion samples had a larger measured inclusion 

area fraction than the surface method (see Figure 12). This has been attributed in large 

part to inclusions formed at low temperatures such as manganese sulfide, which depend 

largely on cooling rate. The surface ground region of the immersion sample is the closest 

to steel chill plates resulting in much faster cooling rates compared to the central region 

of the sample. That is, the slower cooling rate in the center allows more time for 

inclusions such as manganese sulfide to form while the faster cooled surface does not. 

Inclusions such as manganese sulfide, which form during solidification or upon cooling, 

can alter primary inclusions: those that are present in the liquid steel. These primary 

inclusions often serve as sites for preferential nucleation which affects the measured 

composition and size. It is important that areas selected for analysis be representative of 

primary inclusions when trying to study liquid steel processing. Thus, the most 

representative section of the immersion sampler is the surface (fastest cooling) but is also 

the most prone to contamination via slag entrainment and flotation effects. In some cases 

center sectioning is a superior alternative, especially when contamination issues are 

prevalent.  

 



 

 

17

 

Figure 12. Elemental content within all scanned inclusions in specimens prepared by two 

sectioning methods: a) minor elements and b) major elements present in inclusions. 

 

Discussion 

 

Inclusion compositions are typically represented using single ternary diagrams. The 

problem with this form of representation is that the inclusion populations present contain 

more than three elements (often 6 or 7 depending on the composition of the steel). 

Normalization is therefore implicit in these representations and can lead to large errors in 

interpretation. A system was developed for representing different inclusion classes by 

combining six different ternaries allowing for the representation of up to 7 elements. 

Each ternary represents a distinct inclusion population with each individual inclusion 

counted only once and shown in the respective ternary section it belongs. The technique 

considers the three most abundant elements of a particular inclusion in assigning ternary 

sections and these elements typically account for more than 80% of the inclusion 

composition, thus errors associated with normalization are greatly reduced. In addition to 

minimizing normalization errors, ternaries seldom have morphological factors such as 

size included which can mislead interpretation (e.g. large exogenous inclusions of 

differing composition). Therefore, inclusion diameter is also represented in the joint 

ternaries developed in this study and displayed through different colors and marker size. 
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Figure 13 is an example of a joint ternary showing the advantage of this method of 

representation where different types of inclusions can be examined in a continuous plot.  

 

 

Figure 13. Joint ternary showing different classes of inclusions and their respective sizes 

(depicted through different colors and sizes of markers). 

 

The evolution of inclusions throughout liquid processing has been studied for both 

foundry and mill samples using joint ternaries yielding a more comprehensive 

understanding of inclusion development. Figure 14 shows one such analysis for samples 

taken at different stages of LMF processing in a mini mill with the phase boundaries 

overlaid on the diagram. The heat studied was aluminum killed, calcium treated, and was 

the second heat of a four heat sequence. The ternaries shown represent samples taken 

after de-oxidation, before de-sulfurization, after de-sulfurization, and after calcium 

treatment. After de-oxidation, the inclusion population is seen to be aluminum rich 

(Figure 14a). With time, coarsening is observed in the aluminum oxide inclusion 

population (Figure 14b). After de-sulfurization there is a shift in the inclusion population 

towards spinel formation (Figure 14c). After calcium treatment, modification of alumina 

and spinel inclusions is observed as well as the formation of large calcium sulfide (CaS) 

population (Figure 14d).  
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Figure 14. Joint ternaries for samples taken in a steel mini mill (a) after de-oxidation, (b) 

before de-sulfurization, (c) after de-sulfurization, and (d) after calcium treatment. 

 

Conclusions 

 

The effect of AFA settings: step size and magnification, on the number density and area 

fraction of inclusions was investigated using an automated SEM/EDS system along with 

sampling technique. Both the number density and area fraction increased with increasing 

magnification and decreased with increasing step size. The magnification was found to 

have a greater effect on the measured area fraction and diameter, while the step size had a 

more pronounced effect on the number of inclusions detected. For accurate analysis, the 

selected step size should be less than the minimum diameter threshold selected for 

inclusion analysis in accordance with Equation 3. It was also found that analysis of a 

rapidly cooled sample resulted in a more accurate representation of inclusion populations 

present in liquid steel; however the surface was found to be more likely to be 

contaminated with entrained slag.  
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New post processing methods and representation techniques for inclusion data acquired 

from SEM/EDS systems have been developed. These included: areal average 

compositions, mass balance calculations yielding the mass of an element in a sample 

present in the form of inclusions, and joint compositional ternaries with size data 

included. The mass balance correlation accuracy was measured through an oxygen result 

comparison with the more established inert gas fusion analysis technique and found to be 

largely within the 95% confidence intervals. This mass balance technique was used in the 

sample sectioning representativeness study. In addition to a mass balance calculation 

technique, a method of qualitatively displaying inclusion compositions and morphologies 

for highly varied inclusion populations was established as an expansion of more 

traditional single ternaries in the form of a joint ternary system.  
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Abstract 

 

The evolution of nonmetallic inclusions was examined for 4320 steel at an industrial steel 

foundry. The steel was followed from electric arc furnace melting through ladle refining 

to final casting. Timed sampling was performed at all stages of the process. Samples were 

analyzed using an automated SEM/EDS system. The overall evolution of oxide 

inclusions in terms of nucleation, growth, and flotation during liquid processing was 

studied using area fraction and average diameter. Chemical composition evolution was 

observed using a joint ternary plotting tool developed under this program. It was found 

that the use of zirconium as an addition for nitrogen/oxygen removal leads to a large 

number of ZrO2 inclusions, which is related to insufficient flotation due to the higher 

density of zirconia and in turn less effective calcium treatment. In addition, no ZrN 

formation was observed, likely due to the high FeO acid slag practice used. Argon 

stirring was found to reduce the flotation problems associated with the zirconium addition 

somewhat and significantly contribute to the removal of large size (>5µm) inclusions.  

 

Introduction 

 

Steel cleanliness is of increasing interest as demand increases for high quality, clean steel 

castings. Mechanical properties are affected by inclusion size, number, and morphology. 

Therefore research is being conducted to improve inclusion control thus minimizing the 

detrimental effects of inclusions on final properties. The evolution of nonmetallic 
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inclusions throughout the production process must first be understood and controlled in 

order to control the final inclusion population.  

Nonmetallic inclusions can be formed in the melt and upon solidification (indigenous) by 

exceeding the solubility limits of inclusion forming reactants in the liquid or can be 

introduced by external contamination events (exogenous). The most common source of 

nonmetallic inclusions is from melt reactions with dissolved oxygen. Typically, for steel 

castings, porosity is considered highly detrimental and the most common method to 

eliminate gas (CO) porosity is the use of deoxidizers (usually aluminum or silicon). This 

is an effective method of deoxidation, but it results in the generation of a large oxide 

inclusion population. These oxides can be highly problematic for certain steel grades 

where there are stringent specifications, having negative effects on castability, 

mechanical properties, and compliance with cleanliness requirements[1-8].  

Current theories about the evolution of nonmetallic inclusions normally include the 

following stages: (i) nucleation, (ii) growth/agglomeration, and (iii) flotation[1-2]. A 

review of state-of-the-art theories of liquid steel refining in large scale metallurgical 

ladles was recently published by Zhang and Thomas[1]. Inclusion nucleation requires 

chemical supersaturation which is affected by the chemical affinity of active elements to 

non-metal impurities (S, O, N) in solution in the melt, as well as alloy composition, 

temperature, and other factors[1]. Nucleation is understood to be the superposition of 

surface energy increase and bulk free energy decrease. Above some critical radius a 

stable nucleus is successfully formed and subsequently grows, spontaneously occurring 

when the critical radii of the nuclei are exceeded. Inclusion nucleation requires chemical 

supersaturation which is affected by alloy composition, additions, temperature, and other 

factors[1].  

After nucleation, growth of a nonmetallic inclusion occurs through a variety of 

mechanisms, with the key phenomenon being Ostwald ripening driven by diffusion of 

elements and local thermodynamics. Growth by agglomeration has also been considered. 

For sub-micron particles the contacting mechanism for agglomeration is currently 

thought to be the result of Brownian collision. Somewhat larger particles however, are 

more affected by melt flow such as turbulent collision or differential flotation velocities 

according to Stoke’s Law[1-2]. This agglomeration process, in the case of Al2O3, is more 
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efficient when the inclusions are in the liquid state which is one goal of CaSi 

modification treatments. The calcium in this case leads to the formation of a CaO·Al2O3 

liquid state inclusion that is both spherical and has increased tendency to agglomerate, 

increasing flotation velocity[1-4].  

Flotation is best described by Stokes’ Law for unstirred systems with low Reynolds 

numbers where the velocity of a particle is dependent on the density differential and its 

size according to Equation 1: 

௦ݒ ൌ
ଶሺఘ೛ିఘ೑ሻ

ଽఓ
ܴ݃ଶ                                               (1) 

where: vs is the particle velocity, ρp is the particle density, ρf is the fluid density, g is the 

gravitational constant, and R is the particle radius. Stirring with argon gas is used to aid in 

inclusion flotation in the ladle. The gas enters through an eccentrically located porous 

plug in the ladle bottom. The stirring results in reduced content of large sized inclusions. 

The stirring increases net flotation by both increasing overall fluid velocity, and through 

inclusion wetting and attachment to the bubble itself, which typically results in reduced 

content of large sized inclusions[9]. Reynolds numbers for stirred cases are typically 

invalid for Stokes’ Law to be the dominant flotation mechanism, rather than macroscopic 

flow. 

The theories discussed here are well known and supported through countless 

experiments, but all three basic phenomena (nucleation-growth-flotation) occur 

simultaneously in liquid steel processing which complicates the study of nonmetallic 

inclusions[1-2]. It is important to consider that these mechanisms are interrelated and 

occurring the entire time the steel is in the liquid state. As time progresses the nucleated 

inclusion populations in the melt are expected to grow in size according to the prevailing 

growth mechanism, and enlarged particles have increased flotation velocity. 

Understanding the overall evolution of inclusions throughout liquid steel refining 

processes is critical in order to control final product cleanliness[6-7]. Recently, work has 

been done on the evolution of inclusions in continuous casting steelmaking processes 

applying an automated SEM-EDS system. This method allows for one to obtain 

important compositional data with statistical significance when examining such large 

volumes of production[10-18]. The formation of inclusions in a steel mill can be more 
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controlled with limited oxygen exposure, narrow ranges of alloying, and consistent 

product geometry and size. These restrictions are often infeasible for foundries where 

castings are complex and variable. Work by Singh et al. examined four foundry processes 

using an automated SEM-EDS system and reviewed the effectiveness of calcium 

treatments on the inclusion population as well as discussing optimum treatments[13]. In 

the present study, a similar approach is used to both evaluate the deoxidation practice, the 

calcium treatment effectiveness in relation to the deoxidation practice, the effect of argon 

stirring, and to understand the overall evolution of inclusions in the steel foundry 

processing route for carbon and low alloy steel castings.  

 

Experimental 

 

Industrial Process Sampling 

A comprehensive study of steel melt processing at an industrial foundry was performed 

for three heats (melt through casting). Sampling points for the foundry can be seen in 

Figure 1 along with an outline of the processing steps at each sampling point, a schematic 

overview of the process including ladle design, as well as the time at which the samples 

were taken. The three heats which were sampled include: an aluminum/zirconium 

deoxidized heat (Heat AA), an aluminum deoxidized heat (Heat B), and an 

aluminum/zirconium deoxidized heat that employed argon stirring (Heat C). Heats AA 

and B were not argon stirred. The foundry melts were produced in a 5 ton EAF and 

poured using a stopper rod bottom-pour ladle. The steel was deoxidized with aluminum 

or aluminum and zirconium and a calcium treatment was performed using wire injection 

with steel jacketed CaSi wire. The calcium levels obtained in each heat after the CaSi 

wire treatment is given in Table 1. The reported final chemistries (via arc spectroscopy) 

for each heat can is presented in Table 2.  
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Figure 1. Schematic of three sampled heats (designated AA, B, and C) with process 

variations and sample locations shown. 

 

Table 1. Calcium content (wt%) after CaSi wire injection. 

 Ca (wt%) 
Heat AA 0.019 
Heat B 0.025 
Heat C 0.024 

 

Table 2. Steel chemistry (wt %) measured via arc spectroscopy.  

C Si Mn P Cr Mo Ni Al Co Cu V Fe 

0.25 ± 
.043 

0.52 ± 
.011 

0.80 ± 
.028 

0.025 ± 
.00005 

0.76 ± 
.040 

0.37 ± 
.011 

1.11 ± 
.037 

0.064 ± 
.013 

0.013 ± 
.00055 

0.093 ± 
.011 

0.055 ± 
.008 

bal. 

 

Samples taken in the EAF and ladle prior to casting were unkilled steel chilled immersion 

samples taken from the top of the melt. The in-stream specimens were acquired from the 

liquid stream during the casting process (bottom of the ladle). The shape and sectioning 

method of the samples can be seen in Figure 2. The center sectioning method was used in 

order to minimize contamination effects, such as scale or slag entrainment that can occur 

at the surface. Specimens were ground using SiC media (180, 400, 600, 1200 grits), 

polished using 3µm diamond paste, and finished using a 0.1µm diamond paste. 

Metallographic preparation was done in accordance to ASTM E3-11 for all samples. 
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Figure 2. Sample sectioning method used for automated SEM/EDS scans.  

 

Inclusion Analysis 

After preparation, samples were scanned using an automated ASPEX SEM/EDS system. 

Scans were performed using a 0.5µm minimum inclusion diameter threshold (limit of 

instrument), medium scan speed, 20 keV accelerating voltage, and a nominal EDS 

detection time of 1 second (Table 3). The step size of the search grid was 0.16µm which 

allows 100% detection of inclusions as small as 0.5µm in diameter[19]. Porosity was 

excluded from consideration using an EDS minimum count threshold of 1000, an 

example of which is shown in Figure 3 where a large region of porosity has been 

excluded from the analysis due to low counts. 

 

Table 3. ASPEX SEM/EDS settings used in the analysis. 

Accelerating 
Voltage 

Emission 
Current 

Nominal 
EDS 

Duration 

Elements 
Considered 

Exclusion 
Rules 

Mag. 
Step 
Size 

Minimum 
Diameter 
Threshold 

Max 
Particle 
Count 

Reported 
Precision 

20 keV 40-50 µA 1 second 
Mg, Al, Si, Zr, S, 

Ca, Ti, Mn 
> 1000 
counts 

2000x 
0.16 
µm 

0.5 µm 2500 8% 

 

 

Figure 3. Large region of porosity with low counts per second (CPS) that leads to 

exclusion from analysis.  
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Automated analysis provides an averaged EDS spectrum near the inclusion center. In the 

case of complex or agglomerated inclusion types an additional post-processing filter was 

applied. The goal of this filtering was de-selection of sulfides from oxides through 

applying a sulfur concentration threshold (greater than 30% S). The statistical basis of 

this procedure is given in Harris et al[19]. This technique allows the monitoring of Al2O3 

modification as well as general oxide modification.  

A method of calculating a mass balance from SEM-EDS data was used that allows the 

study of elemental content contained within inclusions. The areal average elemental 

composition of inclusions is calculated for each element as follows: 

%݉ ൌ
∑ሺ%௫ሻሺ஺೔೙೎೗ೠೞ೔೚೙ሻ

஺೟೚೟ೌ೗
                                               (2) 

where: %m is the areal average mass percent of a given element, %x is the amount of 

respective element in an individual inclusion, Ainclusion and Atotal are the area of the 

individual inclusion and total area of all measured inclusions. The mass balance 

calculation was performed using the compositional data obtained from the SEM-EDS 

inclusion analysis and Equation 3: 

௣௣௠ܯ ൌ 	
%௠	஺೑	ఘ೔	௪೔

ଵ଴଴ఘ೘
                                                    (3) 

where: Mppm is the mass fraction in ppm of a given element in a sample contained within 

inclusions, %m is the areal average mass percent of a given element, Af is the total 

inclusion area fraction, ρi and ρm are the density of the inclusion associated with the given 

element and the density of the matrix respectively (taken to be iron), and wi is the mass 

fraction of the given element in the associated inclusion compound. 

 

Results 

 

The oxide area fraction was examined closely for Heat AA, Heat B, and Heat C and is 

summarized in Figure 4. The behavior of three size classes of inclusions is shown for 

each liquid processing stage where these heats were compared for the purpose of 

determining the effectiveness of argon stirring practice and zirconium additions as a 

nitrogen/oxygen gettering treatment. A cut-off of 5 µm was arbitrarily used for the 

“large” size fraction. It was observed that with the addition of zirconium, the total oxide 
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area fraction of inclusions grows with time in the ladle and that, concurrently, the 

inclusion size distribution shifts to larger diameters. The opposite is true when only 

aluminum is used. In this case, the inclusion population shifts from large area fraction 

with coarse particles to a finer size distribution and a lower area fraction with time in the 

ladle. 

 

 

Figure 4. Oxide area fraction for three size ranges across a) Heat AA, b) Heat B, and c) 

Heat C. 

 

The difference in behavior of the inclusion population with time in Heat AA and Heat B 

(Figure 5) appears to result from the difference in deoxidation practice used and its effect 

on inclusion flotation. Each melt was poured into 7 molds of known weight while in-

(a) (b) 

(c) 
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stream sampling was performed from the pouring stream below the bottom of the ladle. 

Different molds in the sequence represent different melt levels in the ladle, where the first 

mold is from the bottom region of the ladle, and the last mold is near the top region. In 

Heat B (Al killed), the oxide area fraction was found to decrease going from the bottom 

of the ladle to the top over a time interval of eight minutes. In the case of Heat AA 

(Al+Zr killed), the opposite was found to be true: the oxide area fraction increased going 

from the bottom of the melt to the top. The upper quarter of the ladle appeared to 

accumulate an increased area fraction of inclusions compared to the bottom quarter of the 

ladle (500 ppm compared to 250 ppm) over a time interval of twelve minutes.  By 

comparison, Heat B showed a drop from 700 ppm to 400 ppm oxide area fraction. Heat 

C, which was argon stirred, retained a uniform low level of oxide area fraction (450-420 

ppm) throughout the ladle. 

 

 

Figure 5. Oxide area fraction as a function of melt level for each heat. 

 

In order to better understand the difference in treatment practice a mass balance 

calculation based on Eq. 2 was performed for four elements: aluminum, silicon, 

zirconium, and calcium (Figure 6). It was also found that the content (mass ppm) of 

aluminum in the samples in the form of inclusions increased immediately after 
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deoxidation in all heats before decreasing as a result of inclusion removal. The content of 

silicon in inclusions decreased after deoxidation indicating that the population of silicates 

was reduced by the more thermodynamically stable Al2O3 and/or ZrO2 according to Eq. 4 

and Eq. 5:  

 

3SiO2 + 4[Al] = 2Al2O3 + 3[Si]   (4) 

[Zr] + SiO2 = ZrO2 + [Si]   (5) 

 

The mass of zirconium reacted to form inclusions increased only after deoxidation in 

Heat AA and Heat C where zirconium was actually added.  

 

 

Figure 6. Changing total concentration of active elements within inclusions during ladle 

processing of analyzed heats: a) Al, b) Si, c) Zr, and d) Ca.  

(a) (b) 

(c) (d) 
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Calcium levels for each heat after CaSi treatment are presented in Table 1. The calcium 

content of inclusions increased in all heats after the treatment. However, Heat AA 

retained a lower mass ppm of calcium in the modified inclusions and had a lower final 

calcium to aluminum ratio (approx. 0.16) than that of Heat B (approx. 0.28). The slag 

compositions for each sampling are presented in Table 4 and an overview of the 

composition of the inclusion population (Figure 7) shows the progression of the 

inclusions for the different deoxidation practices. The composition of the oxide inclusion 

population after calcium addition for Heat AA can be seen to include a large number of 

ZrO2 rich inclusions containing some calcium. In Heat B, very little ZrO2 is present and 

most of the population is close to the liquid phase field of the CaO·Al2O3 binary system.  

 

Table 4. Slag chemistries in wt. % of all heats at various liquid process stages.  

   %SiO2 %CaO %MgO %Al2O3 %TiO2 %Fe2O3 %MnO2 %ZrO2 %C 

Heat 
AA 

EAF 
After Melt Down 50.29 2.91 0.19 8.89 0.39 8.40 29.67 0.82 0.03 

After 1st O2 Blow 50.11 2.14 0.14 7.31 0.34 10.71 28.69 0.60 0.06 
After Block 48.83 2.03 0.16 6.93 0.33 9.30 33.31 0.53 0.17 

Ladle 
After Tap/Kill 52.04 1.86 0.18 8.16 0.33 6.81 31.13 0.69 0.00 

After CaSi 49.25 2.13 0.18 9.28 0.36 6.66 32.71 0.86 0.02 

Heat 
B 

EAF 
After Melt Down 51.72 2.20 0.26 6.27 0.31 18.21 20.13 0.21 0.06 

After Block 52.91 1.43 0.15 5.85 0.34 11.30 28.38 0.16 0.00 

Ladle 
After Tap/Kill 51.80 1.41 0.18 8.01 0.34 8.45 30.50 0.18 0.05 

After CaSi 51.48 1.71 0.17 8.92 0.35 7.78 30.47 0.20 0.02 

Heat 
C 

EAF 

After Melt Down 58.67 3.68 0.17 4.59 0.34 10.67 21.34 0.12 0.03 
After 1st O2 Blow 54.98 3.16 0.21 4.82 0.35 11.73 24.39 0.11 0.03 
After 2nd O2 Blow 54.42 2.69 0.16 4.79 0.33 13.42 23.04 0.11 0.04 

After Block 55.04 2.15 0.18 5.26 0.36 12.34 24.72 0.09 0.03 

Ladle 
After Tap/Kill 52.69 2.05 0.19 8.21 0.36 8.73 28.69 0.26 0.06 

After CaSi 52.05 2.34 0.18 8.71 0.38 7.74 28.93 0.61 0.00 
After Ar Stop 52.08 2.30 0.18 8.92 0.38 7.58 29.11 0.59 0.04 

 

 

 

Figure 7. Joint ternary diagrams for a) Heat AA after deoxidation, b) Heat B after 

deoxidation, c) Heat AA after calcium treatment, d) Heat B after calcium treatment. 

(a) (b) 
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Figure 7. Joint ternary diagrams for a) Heat AA after deoxidation, b) Heat B after 

deoxidation, c) Heat AA after calcium treatment, d) Heat B after calcium treatment 

(cont.). 

 

Discussion 

 

Measurements of total oxygen obtained by the inert gas fusion method were compared to 

calculated mass ppm of oxygen in the oxide inclusions that was obtained from SEM/EDS 

data. A linear relationship was found (Figure 8), which suggests that most of the oxygen 

in the steel is present in the form of oxide inclusions. Figure 9, where t=0 is directly after 

melt down, shows that total oxygen decreases with time after the completion of oxygen 

blowing in the melt. This indicates that oxygen is being removed from the system. This 

suggests that the inclusions are being removed by flotation[1-2].  

 

 

Figure 8. Linear relationship between oxide area fraction and total oxygen measured via 

inert gas fusion. 

(c) (d) 
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Figure 9. Decreasing total oxygen as a function of liquid processing time for aluminum 

and aluminum/zirconium treated heats.  

 

The oxide inclusion area fraction decreased with ladle processing time after initial 

deoxidizing additions, which is also consistent with flotation as the mechanism for 

oxygen removal (Figure 10). The flotation velocity is well understood from Stoke’s Law 

to be a function of the particle size and density. Thus inclusion growth plays a key role in 

the removal process. The growth of inclusions can be seen more directly by examining 

the average inclusion diameter in Figure 11 where the zero time is just before tapping and 

deoxidation. An initial decrease in size as a result of ladle deoxidation additions that 

nucleate large populations of small (<2 µm) sized inclusions occurred. A growth period 

follows where no ladle treatments are made and the melt is held for several minutes.  
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Figure 10. Consistent decrease observed in oxide area fraction with ladle holding time 

for the heats studied.  

 

 

Figure 11. Reduction in inclusion size during deoxidation stages (nucleation) followed 

by a growth stage. 

 

Deoxidation practice has a large effect on non-metallic inclusion evolution during 

processing. The composition change of the oxide inclusion population with time in the 

joint ternary plot (Figure 7) shows the effectiveness of deoxidizing method and 

modification clearly. The density of the type of oxide formed affects flotation. In the case 
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of the aluminum deoxidized system, Al2O3 was formed which has a density of 

approximately 4 g/cm³ while the aluminum-zirconium treated heat formed ZrO2 with a 

density of approximately 5.7 g/cm³. This density difference leads to a slower flotation 

rate for ZrO2 rich inclusions which results in an increase in oxide area fraction at the top 

region of the ladle when compared to the aluminum killed heat. The Al2O3 is more 

quickly removed from the system as a result of its low density and the effect of calcium 

treatment aimed at forming liquid CaO·Al2O3 which speeds flotation further. This faster 

removal rate leads to a more homogenous melt and a decrease in oxide area fraction over 

the time span from treatment through pouring the last production casting from the ladle. 

The use of argon stirring in the aluminum-zirconium treated heat (Heat C) aided the 

homogenization of the heat and helped mitigate the build-up of oxides in the top region 

of the melt by assisting inclusion flotation. It is important to note that the addition of 

zirconium was also expected to act as a nitrogen getter but no ZrN was observed in any 

samples. This may only be true because of the high oxygen potential of the 7-8% FeO 

and 29-32% MnO content of the ladle slag (Table 4) that was employed. The nitrogen 

content for Heat AA was notably high at approximately 500 ppm but still no ZrN formed 

(Figure 12). 

 

 

Figure 12. Total nitrogen content measured using inert gas fusion at each sampling point 

for all heats. 
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Conclusions 

 

Three industrial 4320 steel heats were followed from melting to ladle pouring in an effort 

to develop an understanding of the evolution of nonmetallic inclusions through a typical 

steel foundry process. Immersion sampling was performed at various stages during liquid 

steel processing in an operating industrial foundry. Three heats with different steelmaking 

practices were compared: (1) aluminum deoxidized, calcium treated; (2) 

aluminum/zirconium deoxidized, calcium treated; and (3) aluminum/zirconium 

deoxidized, calcium treated, argon stirred (Heats AA, B, and C respectively). In order to 

effectively analyze the evolution of large populations of inclusions, an automated SEM-

EDS system was used which enabled a statistically significant number of nonmetallic 

inclusions to be analyzed.  

The aluminum-zirconium treated heats had a lower calcium recovery and exhibited a 

slower rate of inclusion flotation because of the higher density of ZrO2 inclusions 

compared to the Al2O3 inclusions generated in an aluminum killed heat. Argon stirring 

was found to aid in the removal of large sized (> 5µm) inclusions in an aluminum-

zirconium treated heat, but had little effect on the inclusion composition. It was noted that 

using argon stirring in conjunction with an aluminum-zirconium killing practice helped to 

increase the inclusion flotation rate compared to aluminum-zirconium killing without 

argon stirring.  
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Abstract 

 

An in-mold sampling procedure was developed to procure numerous test samples 

representative of final heavy section castings in effort to further understand the effect of 

different metallurgical factors on impact toughness for slow solidification rate high 

strength cast steel. Samples were tested at -40°C and 25°C to examine how different 

microstructural features such as nonmetallic inclusions, porosity, and hardness influence 

the impact energy of the steel for brittle and quasi-ductile fracture modes respectively. 

SEM fractography was used to characterize failures modes: brittle and quasi-ductile at 

energies ranging from 14-40 ft-lbs. For brittle fracture, hardness had an adverse influence 

on impact energy absorbed, while increasing the average area fraction and diameter of 

nonmetallic inclusions led to slight increases. The opposite trends were observed for 

quasi-ductile fracture in specimens tested at room temperature. In this case, area fraction 

of nonmetallic inclusions and porosity decreased the impact energy absorbed.  

 

Introduction 

 

It has been shown by many studies that several microstructural parameters (nonmetallic 

inclusions, porosity, microstructure and hardness) are critical in terms of mechanical 

properties, especially impact properties of steel1-8. The number density of inclusions, the 

volume fraction, and the average spacing of the inclusions have all been shown to have 

strong correlation with impact energy absorbed at room temperature. Increases in volume 
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fraction and number density have been found to be inversely related to the dynamic 

fracture toughness and the smaller the inclusion spacing the lower the energy absorbed. 

Much of this work has been done using CVN impact tests where room temperature 

(25°C) quasi-ductile fracture is the subject of study; however, the majority of the referred 

studies were done using specially rolled or cast specimens, such as keel blocks, and did 

not reflect the properties of the actual heavy section casting.  

The use of automated SEM/EDS systems to analyze inclusions is becoming more 

common for everything from process control to understanding failure mechanisms1-15. 

This is in large part due to the ease of use and large quantities of data obtainable from 

such an instrument in rather short time. Studies from Peaslee et al. and Bartlett et al. have 

used these instruments for inclusion analysis in relation to impact properties where they 

have shown strong correlations exist between parameters such as area fraction and impact 

energy absorbed1-2. The large number of inclusions analyzed in these studies has allowed 

more repeatable and statistically significant information to be gathered about the behavior 

of quasi-ductile fracture in the presence of nonmetallic inclusions.  

This work will expand the earlier observed relationships considering the effects of 

different microstructural features in heavy section castings on absorbed impact energy for 

different fracture modes. Samples were tested at -40°C and 25°C with the goal of linking 

characteristics of nonmetallic inclusions, porosity, and hardness to impact toughness 

while keeping the fracture mode consistent for each test temperature. Fracture modes are 

of course related to the heat treatment process and specifically the microstructure of the 

steel3-7. Effort was done to collect specimens directly in the mold, which represent the 

real heavy section castings without the necessity of destroying the final product.  

 

Experimental 

 

Samples were taken directly from the molds used to cast heavy section large industrial 

castings. To collect representative samples without destroying the final casting, sampling 

was performed using a special hollow core insert (Figure 1) into the no-bake sand mold 

and connected to the gating system or casting at different heights (Figure 2). MAGMA 

software was used to simulate solidification in the standalone core insert as well as 
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together with the whole mold (casting + sampler). The Niyama criterion critical number 

used for the standalone core insert was 0.7 which is typical for moderately fed heavy 

section castings (Figure 3). Two 4320 steel heats were investigated: an aluminum killed 

heat designated as “Heat B” and an aluminum-zirconium killed, argon stirred heat 

designated as “Heat C,” The base chemistries of the steel were similar (Table 1). Samples 

collected from both the cope and drag of all the molds sampled were used in this study.  

 

 

Figure 1. Design of hollow core insert (green) and sampler (yellow)for use inside 

industrial no-bake sand mold. 

 

 

Figure 2. In-mold locations of the hollow core inserts attached to the cope and drag of 

the casting used to acquire product samples.  
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Figure 3. MAGMA solidification model of the standalone sampler with Niyama values 

below 0.7 highlighted. 

 

 

Table 1. Steel chemistry (wt %) measured via arc spectroscopy. 

 

 

The sampler was used to examine the effect of different features on the impact toughness 

of the cast steel after heat treatment in accordance with ASTM E-23. A diagram outlining 

how the samples were sectioned is shown in Figure 4 and all samples were for the 

analysis. After sectioning, samples were then heat treated following the methods used at 

the participating foundry which include: hydrogen baking for 15 hours at 232°C, 

normalization for 1 hour at 926°C, austenitizing for 1 hour at 926°C and quenching in 

water, and a final temper for 1 hour at 580°C with a water quench. The samples were 

then machined to within standard and wire EDM was used to notch the specimens.  
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Figure 4. Sectioning method for CVN samples taken from corebox sampler.  

 

Samples were tested on a U-type pendulum impact tester with a non-instrumented 

hammer at -40°C and 25°C. Each specimen orientation was tested four times to provide a 

standard deviation and this repeated for every core insert in each heat. The fracture 

surfaces were examined and four hardness measurements taken for each tested specimen. 

Samples with brittle fracture having impact energies below 20 ft-lbs were excluded from 

analysis in the 25°C test where only quasi-ductile fracture modes were being examined. 

Likewise, brittle fracture mode specimens tested at -40°C with impact energies above 30 

ft-lbs were also excluded. This was done to study the effect of microstructural features on 

impact energy at specific fracture modes. After these selection criteria, the specimens 

were then sectioned just beneath the fracture surface, polished, and automated SEM/EDS 

analysis performed on that surface (Figure 5).  

Automated SEM/EDS scans were performed using a 0.5µm minimum inclusion diameter 

threshold (limit of instrument), medium scan speed, 20 keV accelerating voltage, and a 

nominal EDS detection time of 1 second (Table 2). The step size of the search grid was 

0.16µm which allows 100% detection of inclusions as small as 0.5µm in diameter8.  
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Figure 5. Location of surface used for measuring inclusion content after CVN tests. 

 

Table 2. ASPEX SEM/EDS settings used in the automated analysis. 

Accelerating 
Voltage 

Emission 
Current 

Nominal 
EDS 

Duration 

Elements 
Considered 

Exclusion 
Rules 

Mag. 
Step 
Size 

Minimum 
Diameter 
Threshold 

Max 
Particle 
Count 

Reported 
Precision 

20 keV 40-50 µA 1 second 
Mg, Al, Si, Zr, S, 

Ca, Ti, Mn 
> 1000 
counts 

2000x 
0.16 
µm 

0.5 µm 2500 8% 

 

Post processing of SEM/EDS data was performed for specific categorization of 

nonmetallic inclusions and micro porosity with the respective areas, diameters, and 

coordinates. A method was used to report an average nearest neighboring distance where 

each center-to-center distance for a nonmetallic inclusion was measured and the 

minimum value considered a nearest neighbor. This was then repeated for every inclusion 

in the scanned area and an average reported. A schematic of this process in Figure 6 

shows how a single nonmetallic inclusion nearest neighboring distance is measured.  

 

Figure 6. Nearest neighboring distance evaluation technique where the black line denotes 

the smallest distance. 
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Results & Discussion 

 

The typical microstructure of a quenched and tempered 4320 steel near the fracture 

surface contained a lath martensitic structure (Figure 7). However, the similar chemistry 

and heat treated samples from both heats had a variation in hardness from 33-37 HRC 

which could be attributed to segregation in the heavy section casting during 

solidification. Fracture surfaces of -40°C tests showed transgranular cleavage (Figure 8a-

8c) as the predominant fracture mode and 25°C tests were dominated by void nucleation 

(Figure 8d-8e). It is important to note that quasi-ductile fracture surfaces contained 

regions of nucleated voids, a ductile behavior, while other areas are predominantly 

transgranular cleavage. The low energy samples have very few regions of ductile fracture 

whereas at energies between 14-40 ft-lbs the mode can become quasi-ductile with both 

regions of cleavage and void nucleation. At approximately 50 ft-lbs the entire fracture 

surface would be considered ductile in nature with no discernible regions of cleavage. 

This was found to be true for both Heat B and Heat C. It is worthy to note that the 

especially low impact energies at -40°C may be due to the >0.02 phosphorus content in 

both heats or the relatively high aluminum used for deoxidation.  

 

Figure 7. Typical microstructure of CVN sample taken near fracture surface etched with 

2% nital for 10s.  

 



 

 

47

 

Figure 8. Secondary electron images of CVN fracture surfaces at a) 4.7 ft-lbs, b) 7.2 ft-

lbs, c) 14.4 ft-lbs, d) 39.5 ft-lbs, and e) 48.1 ft-lbs.  

 

Table 3 outlines the range of values in impact energies, hardness, area fraction, and 

average diameter for both heats and testing temperatures. An overview of the nonmetallic 

inclusion size and chemistry data can be seen in the joint ternaries in Figure 9. Heat B 

was predominantly Al2O3·MnS complexes, while Heat C contained both Al2O3·MnS 

complexes and ZrO2 rich inclusions due to the addition of zirconium during deoxidation.  
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Table 3. Range of values measured of various microstructural parameters and impact 

energy absorbed for each heat at each testing temperature. 

 

 

 

(a) 

 

 (b) 

Figure 9. Size classified joint ternary diagrams for a) Heat B and b) Heat C.  

 

A comparison of impact energy absorbed and the Rockwell C hardness for -40°C 

specimens shows that increasing hardness greatly reduces the impact energy absorbed for 

brittle fracture modes in both heats (Figure 10). No such effect was observed for samples 

tested at 25°C in the quasi-ductile fracture regime for either heat. This could be due to a 

higher effect of other variables discussed.  
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The impact energy absorbed depended on the inclusion area fraction in different ways for 

specimens tested in different fracture modes (Figure 11). An increase in nonmetallic 

inclusion area fraction led to increased energy absorbed at -40°C, but decreased the 

energy absorbed at 25°C for both heats. Results for the quasi-ductile fracture mode tests 

at 25°C agree with what has been reported in literature by Bartlett et al and several 

others: where increased inclusion content decreased toughness. The brittle fracture mode 

in the -40°C test results contradict what might be expected from literature maybe since 

previous tests were typically performed at room temperature1-5. It is possible that when 

the material is already in a transgranular brittle fracture mode, that second phase particles 

actually impede crack motion through deflection, slightly improving toughness. 

 

 

(a)      (b) 

Figure 10. Average impact energy absorbed compared with average Rockwell C 

hardness of the samples for a) Heat B and b) Heat C. 
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(a)        (b) 

  

(c)        (d) 

Figure 11. Effect of inclusion area fraction on impact energy absorbed for a) Heat B and 

b) Heat C at -40°C and c) Heat B and d) Heat C at 25°C.  

 

Inclusion average diameter was plotted against impact energy absorbed in Figure 12a and 

the toughness was found to increase with inclusion size for brittle -40°C tests. The 

reverse was noted for ductile 25°C tests in Figure 12b, where increases in inclusion size 

decreased the toughness.  
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(a)        (b) 

  

(c)        (d) 

Figure 12. Behavior of impact energy absorbed with average inclusion diameter for a) 

Heat B and b) Heat C at -40°C and c) Heat B and d) Heat C at 25°C.  

 

It has been shown by a number of studies including Sunday et al. that inclusion spacing 

plays a large role in fracture, specifically toughness2,4,8. Here inclusion spacing was 

measured directly in the form of nearest neighboring distance and its effect on impact 

energy absorbed is shown in Figure 13. For both tests, it was found that nearest 

neighboring distance did not correlate well with impact energy absorbed. This weak 
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relationship runs counter to previous studies and may be the result of other factors such 

as average inclusion diameter or area fraction.  

Micro-porosity is another important feature for heavy section castings and is often highly 

unpredictable, seldom considered in addition to other microstructural imperfections. In 

this study an EDS count threshold of 1000 was applied in post processing of the 

automated SEM/EDS data to distinguish between nonmetallic inclusions and micro-

porosity. In heavy section castings, the variance in porosity can be a detrimental source of 

error when trying to examine effects of nonmetallic inclusions on impact energy 

absorbed. The effect of porosity area fraction on impact energy for the quasi-ductile 

fracture mode 25°C tests can be seen in Figure 14. Naturally the presence of porosity 

convolutes the study of how inclusions affect toughness. In this case an increasing 

porosity area fraction ranging from 200-600 ppm reduced the impact energy.  

 

 

(a)        (b) 

Figure 13. Average inclusion nearest neighboring distance measured with automated 

SEM/EDS analysis near CVN fracture surfaces for a) -40°C tests and b) 25°C tests.  
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(a)      (b) 

Figure 14. Porosity area fraction effect on impact energy absorbed at 25°C for a) Heat B 

and b) Heat C.  

 

The addition of porosity and inclusion area fraction into a “defect” area fraction was 

found to reveal that for aluminum killed steels an increase in defect area fraction greatly 

increases impact energy absorbed at -40 C (Figure 15) when the fracture mode is 

transgranular. Conversely, for aluminum-zirconium killed steels increasing the defect 

area fraction reduces the toughness (Figure 16) when the fracture is quasi-ductile.  

 

 

Figure 15. Linear relationship between defect area fraction and impact energy absorbed 

for Heat B at -40 C.  
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Figure 16. Effect of defect area fraction on impact energy absorbed for Heat C at 25 C.  

 

Conclusions 

 

An in-mold sampling procedure was developed that allowed the collection of large 

numbers of samples that were truly representative of the final heavy section castings in 

effort to further understand effects of different factors on impact toughness for low 

solidification rate high strength cast steel. Samples were tested at -40°C and 25°C to 

examine how these metallurgical factors influence the impact energy of steel at brittle 

and quasi-ductile fracture modes respectively.  

The effects of inclusion area fraction, average diameter, and nearest neighboring distance 

on the impact energy absorbed were studied for different fracture modes. It was found 

that increasing inclusion area fraction and diameter increased impact energy absorbed for 

brittle fracture modes, likely due to crack deflection by second phase particles. For quasi-

ductile fracture increased area fraction and diameter decreased the impact energy 

absorbed as reported previously by numerous studies. The nearest neighboring distance 

of inclusions was expected to have a strong correlation with impact energy from previous 

research, where larger spacing leads to increased toughness. Here a weak correlation was 

found when using direct measurement of center-to-center spacings. It was determined 

that this is likely related to other variables such as average diameter increases in 

conjunction with larger spacing. It was also found that small increases in hardness led to 
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much lower impact energy absorbed for the brittle fracture mode, while no such effect 

was observed for quasi-ductile modes. Micro-porosity was found to be unpredictable and 

to have detrimental effects on impact energy for quasi-ductile fracture mode 25°C tests.  

 

References 

 

1. Peaslee, Kent, Vintee Singh, and Simon Lekakh. "Inclusion Engineering for 

Improved Properties in Steel Casting." TMS (2011). Print. 

2. Bartlett, L., A. Dash, D. Van Aken, V. Richards, and K. Peaslee. "DYNAMIC 

FRACTURE TOUGHNESS OF HIGH STRENGTH CAST STEELS." 

International Journal of Metalcasting 7.4 (2013): 17-33. Print. 

3. Li, Jie, Feng Guo, Zhi Li, Jun-Li Wang, and Ming-Gao Yan. "Influence of Sizes 

of Inclusions and Voids on Fracture Toughness of Ultra-High Strength Steel 

AerMet100." Journal of Iron and Steel Research, International: 254-58. Print. 

4. Garrison, Warren M., and Andrzej L. Wojcieszynski. "A Discussion of the 

Spacing of Inclusions in the Volume and of the Spacing of Inclusion Nucleated 

Voids on Fracture Surfaces of Steels." Materials Science and Engineering: A: 52-

61. Print. 

5. Garrison, Warren M., and Andrzej L. Wojcieszynski. "A Discussion of the Effect 

of Inclusion Volume Fraction on the Toughness of Steel."Materials Science and 

Engineering: A: 321-29. Print. 

6. Choudhary, Pranay, and Warren M. Garrison. "The Effect of Inclusion Type on 

the Toughness of 4340 Steel." Materials and Manufacturing Processes (2010): 

180-84. Print. 

7. Hahn, G. T. "The Influence of Microstructure on Brittle Fracture 

Toughness." MTA Metallurgical Transactions A: 947-59. Print. 

8. Abraham, Sunday, Justin Raines, and Rick Bodnar. "Development of an Inclusion 

Characterization Methodology for Improving Steel Product Cleanliness."2013. 

1069-1083.  

 



 

 

56

9. Harris, Marc, Obinna Adaba, Simon Lekakh, Ron O'Malley, and Von Richards. 

"Improved Methodology for Automated SEM/EDS Non-Metallic Inclusion 

Analysis of Mini-Mill and Foundry Steels." AISTech 2015 Proceedings 2015 

(2015). Print. 

10. Holappa, L.. "On Physico-Chemical and Technical Limits in Clean Steel 

Production." Steel Research International 81: 869-874.  

11. Michelic, Susanne, Gerhard Wieser, and Christian Bernhard. "On the 

Representativeness of Automated SEM/EDS Analyses for Inclusion 

Characterisation with Special Regard to the Measured Sample Area." ISIJ 

International 51: 769-775.  

12. Kawakami, Masahiro, Eiji Nakamura, Shuzou Matsumoto, and Seiji Yokoyama. 

"Morphological Classification of Inclusions in Steel by Image Processing of 

Micrograph."ISIJ International 36: 113-116.  

13. Yang, Wen, Lifeng Zhang, Xinhua Wang, Ying Ren, Xuefeng Liu, and Qinglin 

Shan. "Characteristics of Inclusions in Low Carbon Al-Killed Steel during Ladle 

Furnace Refining and Calcium Treatment." ISIJ International 53: 1401-1410.  

14. Van Ende, Marie-Aline, Muxing Guo, Joris Proost, Bart Blanpain, and Patrick 

Wollants. "Formation and Morphology of Al2O3 Inclusions at the Onset of 

Liquid Fe Deoxidation by Al Addition." ISIJ International 51: 27-34. 

15. Singh, Vintee, Kent Peaslee, and Simon Lekakh. "Use of Automated Inclusion 

Analysis to Evaluate the Effects of Ladle Treatment on Steel Cleanliness."63rd 

SFSA T&O. 

 

  



 

 

57

SECTION 

 

2. CONCLUSIONS 

 

The effect of step size and magnification settings on the number density and area 

fraction of nonmetallic inclusions measured by an automated SEM/EDS system was 

investigated. Magnification was found to have greater effect on the measured area 

fraction and diameter while the step size had affected the number of inclusions detected. 

It was determined that step size must be less than the minimum diameter threshold for 

successful detection of nonmetallic inclusions. By using optimal settings for these 

parameters it was found that rapidly cooled samples (near the surface of the immersion 

sample) resulted in more accurate representations of nonmetallic inclusion populations in 

liquid steel; however the surface was more likely to be contaminated with entrained slag. 

Post-processing methods and representation techniques for data acquired from SEM/EDS 

systems were developed that include: areal average compositions, mass balance 

calculations, and joint ternaries with color coded size data.  

Immersion sampling was performed at every liquid process stage that was feasible 

in the industrial setting for the participating foundry considered for three heats with 

varied deoxidation and stirring practice. The zirconium treated heats resulted in less 

effective calcium treatment and slower flotation as a result of the higher density of ZrO2 

inclusions compared to Al2O3. The use of argon stirring aided in the removal of large 

sized (> 5µm) inclusions with little effect on the overall inclusion chemistry.  

Novel in-mold sampling was performed that allowed sample collection truly 

representative of the final heavy section castings. CVN tests were performed at -40°C and 

25°C to examine how metallurgical factors influence the impact energy of steel at brittle 

and quasi-ductile fracture modes. It was found that increasing inclusion area fraction and 

diameter increased impact energy absorbed for brittle fracture modes, likely due to crack 

deflection by second phase particles. Quasi-ductile fracture modes showed the reverse, 

increased area fraction and diameter decreased the impact energy absorbed which agrees 

with previous work. The nearest neighboring distance of inclusions was expected to have 

a strong correlation with impact energy from literature, where larger spacing leads to 
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increased toughness. A weak correlation was found when using direct measurement of 

center-to-center spacings where increasing the spacing actually led to reduced impact 

energy absorbed. It was determined that this is likely related to other variables such as 

average diameter increases in conjunction with larger spacing. It was also found that 

small increases in hardness led to much lower impact energy absorbed for brittle fracture, 

while no such effect was observed for quasi-ductile fracture modes. Micro-porosity was 

found to be unpredictable and to have detrimental effects on impact energy for quasi-

ductile fracture in 25°C tests. It was therefore determined that the sorting micro-porosity 

from nonmetallic inclusions is critical in determining impact toughness behavior.  
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DATA EDITOR MODULE 

 

  



 

 

60

Upon clicking start in the data editor tab of the software the data module menu 

will open. An image of what the data editor module in the post-processing software can 

be seen in Figure A.1. The input file field is the file to be analyzed (.csv or .xlsx), while 

the output file field is user-defined (standard file naming convention) and will be the 

edited .csv file produced. There are three functionalities of the data editor: filtering by a 

single user-defined rule, exclusion of particular elements, and combining two data files. 

The original file (input file) is never altered by this module or any other.  

 

 

Figure A.1. Data editor module in the SEM/EDS data post-processing software 

developed. 
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Applying a custom rule requires an input file, a name for an output file, and 

inputting the parameter of interest into the left-most text box with the correct character 

capitalization. The middle text box has a drop down menu containing less than, greater 

than, and equals to operators. The last text box is the comparator. After these are entered 

and a name selected for the output file, the program will automatically filter all features 

in a data file saved as the name input in the output file text box. The location of this file 

will be in the same folder as the input file.  

Eliminating an element requires an input file, a name for an output file, and the 

selection of 1 element (the list automatically populates). The eliminate element button 

will then create a file with that element deleted and all other elements normalized to 

100%.  

Combining data files requires first that an input file be selected, and an output 

name be chosen before selecting the combine data files button. Upon activation, a file 

browser will appear where a user-defined .csv or .xlsx file can be selected. After selected 

a new file with combined data from both will be created.  
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APPENDIX B. 

SEARCHER MODULE & NEAREST NEIGHBORING DISTANCE MODULE 
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The searcher module is used for getting an overview of the data in terms of 

population density, area fraction, average diameter, and more. After selecting start, the 

menu shown in Figure B.1 will appear. The data filename text box is the input data file 

and the progress.txt file is a file produced by the SEM/EDS software used for the ASPEX 

Pica 1020. Each of these are selected from a browser after clicking the file box nearby. 

The progress.txt file step can be skipped and the scan area entered manually into cell A10 

under “Scan Area.”  

After a file is selected, there are 5 possible user-defined filters, with the default 

being “Part# > 0” which will yield information about every feature in the data file 

(nonmetallic inclusion or porosity). This can be changed to anything by the user. The left 

most text boxes are the parameters of interest, the middle text boxes can be “<”, “>”, or 

“=,” and the last text box is the value being compared against. The software will apply up 

to 5 user defined filters drawing on the full data if nothing else is selected. This can lead 

to a feature being displayed for two filters at once (e.g. a single inclusion has both “Part# 

> 0” and “X_POS < 10” so is displayed for both). The user can then check the 

“exclusive” box and each filter will be applied in ascending order, removing features that 

match each criteria from the pool of considered data. If more than one filter is required at 

the same time, the combine check boxes can be selected in any combination and the 

fields above and below will be combined (e.g. an inclusion must have “Part# > 0” and 

“X_POS < 10” for it to be displayed). The critical information text boxes denote what 

information is to be displayed with the defaults being “X_ABS,” “Y_ABS,” “AREA,” 

and “DAVE.”  

After the desired filters are input, the start search button will initiate the searcher 

function and return the requested information. On the left of the searcher tab a summary 

table shows general information about the displayed data.  

Nearest neighboring distance can be calculated using the “NND” module. After 

selecting the “NND” tab, the top of the page contains the table and button shown in 

Figure B.2. Clicking the button will automatically pull the filtered data from the searcher 

module and calculate the nearest neighboring distance for every feature matching the 

previously defined criteria (in searcher module). The average nearest neighboring 

distance will be displayed along with standard deviation and 95% confidence interval 
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values in the table shown in Figure B.2. This calculation is intensive for both Microsoft 

Excel and the working memory so it is suggested that all other programs are not running.  

 

 

 

Figure B.1. Post-processing software searcher module menu and output. 

 

  

 

 

 

 

Figure B.2. Nearest neighboring distance module summary table and start button.  
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APPENDIX C. 

AVERAGE CHEMISTRY CALCULATOR 
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 The average chemistry calculator can be activated by going to the average 

chemistry calculator tab. The starting screen is shown in Figure C.1. Activating the 

inclusion chemistry importer will bring up the menu shown in Figure C.2. Progress.txt 

and filename are the same as previously described. Again, the progress.txt can be skipped 

and the scan area manually input into the scan area cell. A data file must still be opened. 

Once start is activated the areal average chemistry will be displayed along with the 

calculated mass of elements within inclusions (displayed as “Total Inclusion Content”).  

 

 

Figure C.1. Overview of the starting screen for the average chemistry calculator module.  

 

 The average chemistry and mass balance of elemental content can also be 

calculated for user defined size ranges by inputting the desired filters into the 

“Diameters” table shown in Figure C.1. The “Diameter Filter” button will start the 

process and display chemistries for the input filters. Additionally, the software can 

approximate the total oxygen in the sample based on the elemental mass balance by 

selecting the “Calculate T.O.” button.  
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Figure C.2. Inclusion chemistry importer menu next to the button used to activate it.  
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APPENDIX D. 

TERNARY PLOTTER MODULE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

69

The starting screen for the ternary plotter module can be found in Figure D.1. The 

ternary plotter module will plot each inclusion in a data file in the most representative 

ternary automatically and show up to 3 user-defined size ranges as different colored and 

sized points. The file name text box is the input data file to be plotted. A diagram will be 

shown with the menu that indicates where each user-defined element will appear in the 

plot. The default elements will be those last plotted while selecting the default button will 

show an author recommended arrangement. Selecting the “Size Information” checkbox 

enables size color-coded points on the plot. Once plot is selected the diagram should 

automatically populate as long as the elements input exist in the data file.  

 

 

 

Figure D.1. Data post processing ternary plotter module for generating joint 

ternary diagrams.  
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APPENDIX E. 

CLUSTER DETECTOR MODULE 
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 If clustered features exist in an analyzed SEM/EDS data file the cluster detector 

module is ideal for finding and quantitatively measuring them. The cluster detector will 

automatically detect based on x and y coordinates if a feature is clustered and measure 

important statistics such as the number of features in a cluster, cluster diameter, area of 

each cluster, the area fraction occupied by clusters, and more. The criteria used for 

distinguishing a clustered feature is schematically shown in Figure E.1 where the 

maximum diameter of each feature is extended along the perimeter and any intersecting 

feature is considered within range to be a cluster. To use the cluster detector, selecting the 

“Cluster Detector” button will activate the menu as shown in Figure E.2 where an input 

data file must be selected. After pressing start the software requires several minutes to 

complete and will automatically display the results. Once completed, mapping may be 

performed by selecting the mapping button immediately after the cluster detector has 

finished. This will display the color coded clustered features with the respective 

ellipsoidal shapes and orientations. Note that the resulting map may appear difficult to 

see in the case of large scan areas with very small features.  

 

 

 

 

 

Figure E.1. Criteria used for what is considered a cluster and the method used to measure 

the effective diameter of a cluster employing maximum neighboring distance within a 

cluster.  
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Figure E.1. Starting screen for cluster detector module in the data post-processing 

software along with output summary table.  
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APPENDIX F. 

IMPACT TEST RESULTS 
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The results of CVN tests, automated SEM-EDS scans of the sub-fracture surfaces, and 

hardness are shown in Table F.1.  

Table F.1. Raw data from CVN impact tests, SEM-EDS analysis, and hardness 

testing. 

  Heat C 25 C 

 

Pore Area 
Fraction 
(ppm) 

Inclusion Area 
Fraction (ppm) 

# of 
Inclusions 
per mm² 

Average 
Nearest 

Neighboring 
Distance 
(µm) 

Avg 
Diameter 
(µm) 

Impact (ft‐
lbs) 

HRC 

 
Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Avg 

Big 
Avg 

1st Cope 
horizontal 

382 

286.8 

827 

738.8 

208 

241.8 

23.97 

24.4 

1.59 

1.5 

30.8 

36.6 

34.0 

34.3 
147  477  303  23.85  1.12  44.6  34.5 

362  934  256  23.78  1.59  33.2  ‐ 

256  717  200  26.13  1.52  37.7  ‐ 

1st Cope 
vertical 

‐ 

219.5 

‐ 

585.0 

‐ 

248.5 

‐ 

24.2 

‐ 

1.3 

44.6 

44.7 

35.1 

35.0 
318  588  189  25.12  1.47  22.5  34.6 

121  582  308  23.27  1.20  44.7  35.3 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

1st Drag 
horizontal 

528 

356.3 

647 

603.3 

155 

170.3 

28.99 

26.4 

1.62 

1.6 

31.0 

31.4 

35.0 

34.9 
254  505  157  28.17  1.52  35.3  35.6 

‐  ‐  ‐  ‐  ‐  27.9  34.1 

287  658  199  22.07  1.52  30.2  34.9 

1st Drag 
vertical 

442 

533.8 

560 

631.0 

195 

210.5 

25.96 

27.4 

1.44 

1.4 

36.8 

38.8 

35.5 

34.9 
872  881  282  24.82  1.43  39.5  34.4 

388  551  140  33.19  1.59  37.8  35.1 

433  532  225  25.47  1.30  40.2  34.8 

Last Cope 
horizontal 

306 

243.5 

571 

610.5 

150 

153.5 

28.19 

29.1 

1.56 

1.6 

31.1 

31.4 

34.8 

34.8 
181  650  157  29.91  1.59  31.6  34.9 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Last Cope 
vertical 

445 

233.3 

579 

564.8 

166 

181.8 

31.23 

29.3 

1.53 

1.5 

37.1 

37.3 

34.8 

34.9 
205  497  157  29.55  1.58  33.0  34.9 

159  636  201  28.79  1.48  43.3  ‐ 

124  547  203  27.53  1.40  35.7  35.1 

Last Drag 
horizontal 

177 

454.7 

685 

812.0 

172 

184.0 

28.50 

28.5 

1.60 

1.6 

17.1 

20.1 

‐ 

34.8 359  799  208  28.21  1.57  23.6  34.8 

828  952  172  28.87  1.78  19.5  ‐ 
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‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Last Drag 
vertical 

306 

358.7 

551 

608.0 

138 

178.0 

33.91 

30.2 

1.67 

1.5 

28.5 

30.5 

33.8 

34.3 
305  618  219  27.25  1.38  29.4  ‐ 

465  655  177  29.56  1.53  31.5  34.8 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

  Heat B 25 C 

 

Pore Area 
Fraction 
(ppm) 

Inclusion Area 
Fraction (ppm) 

# of 
Inclusions 
per mm² 

Average 
Nearest 

Neighboring 
Distance 
(µm) 

Average 
Diameter 
(µm) 

Impact (ft‐
lbs) 

HRC 

 
Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Avg 

Big 
Avg 

1st Cope 
horizontal 

‐ 

345.3 

‐ 

761.0 

‐ 

149.3 

‐ 

39.8 

‐ 

2.0 

23.2 

20.2 

35.5 

35.9 324  722  127  42.78  2.01 
13.3 

36.6 

311  705  156  39.17  1.87  21.4  36.0 

401  856  165  37.50  1.98  26.0  35.0 

1st Cope 
vertical 

112 

288.3 

713 

783.8 

286 

209.5 

28.78 

35.7 

1.45 

1.7 

41.1 

38.6 

36.3 

36.0 
281  913  253  30.57  1.55  45.2  36.1 

529  769  141  45.70  1.98  33.3  36.0 

231  740  158  37.82  1.84  34.6  35.6 

1st Drag 
horizontal 

1119 

465.0 

1418 

946.3 

191 

142.7 

34.44 

40.0 

2.40 

2.2 

27.8 

25.3 

35.8 

35.9 
200  826  113  43.71  2.21  25.8  35.6 

76  595  124  41.85  1.93  22.2  36.3 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

1st Drag 
vertical 

209 

209.0 

1019 

1019.0 

142 

142.0 

40.42 

40.4 

2.09 

2.0 

25.9 

25.9 

35.5 

35.5 
‐  ‐  ‐  ‐  1.94  ‐  36.3 

‐  ‐  ‐  ‐  ‐  ‐  35.4 

‐  ‐  ‐  ‐  ‐  ‐    

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 
‐  ‐  ‐  ‐  ‐  ‐  ‐ 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Last Cope 
vertical 

105 

171.8 

716 

748.5 

142 

167.8 

39.78 

38.7 

1.93 

1.8 

37.7 

33.4 

35.8 

35.1 
238  733  148  39.26  1.83  11.0  35.0 

203  785  220  34.56  1.75  48.1  34.8 

141  760  161  41.08  1.86  36.7  34.9 

Last Drag 
horizontal 

422 

426.3 

726 

860.0 

111 

137.0 

48.81 

45.3 

2.18 

2.1 

30.7 

31.3 

35.3 

35.4 
670  866  170  39.39  1.79  27.8  35.8 

187  988  130  47.69  2.24  35.5  35.3 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 
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Last Drag 
vertical 

199 

202.5 

681 

818.0 

160 

167.5 

40.15 

38.7 

1.81 

1.9 

32.8 

41.9 

34.9 

35.4 
‐  ‐  ‐  ‐  ‐  37.8  35.8 

206  955  175  37.23  1.98  50.9  35.5 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

  Heat B ‐40 C 

 

Pore Area 
Fraction 
(ppm) 

Inclusion Area 
Fraction (ppm) 

# of 
Inclusions 
per mm² 

Average 
Nearest 

Neighboring 
Distance 
(µm) 

Average 
Diameter 
(µm) 

Impact (ft‐
lbs) 

HRC 

 
Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Avg 

Big 
Avg 

1st Cope 
horizontal 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 

‐ 
‐  ‐  ‐  ‐  ‐  ‐  ‐ 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

1st Cope 
vertical 

156 

238.3 

893 

779.8 

256 

189.3 

31.19 

36.5 

1.63 

1.8 

18.6 

13.1 

33.8 

35.1 
266  772  149  42.03  1.97  11.1  35.8 

279  764  176  36.63  1.83  12.1  36.0 

252  690  176  36.30  1.73 
10.7 

34.8 

1st Drag 
horizontal 

313 

284.7 

775 

785.3 

133 

129.7 

40.77 

40.6 

2.09 

2.1 

7.2 

9.7 

35.8 

35.5 
136  704  120  42.18  2.10  12.8  35.0 

405  877  136  38.82  2.10  9.0  35.8 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

1st Drag 
vertical 

114 

334.0 

756 

825.7 

242 

211.3 

32.88 

34.9 

1.62 

1.8 

18.3 

15.0 

34.5 

34.8 
350  892  241  32.34  1.69  18.9  34.3 

538  829  151  39.61  1.98  7.9  35.5 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Last Cope 
horizontal 

128 

128.0 

721 

721.0 

130 

130.0 

42.54 

42.5 

1.97 

2.0 

3.0 

3.0 

36.3 

36.3 
‐  ‐  ‐  ‐  ‐  ‐  ‐ 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Last Cope 
vertical 

254 

251.5 

683 

743.0 

147 

160.3 

41.21 

40.1 

1.84 

1.9 

9.5 

9.4 

34.8 

35.4 
241  676  128  44.22  1.98  6.2  36.6 

307  709  145  39.39  1.89  15.1  34.0 

204  904  221  35.79  1.76  7.0  36.1 

Last Drag 
horizontal 

488 

485.0 

688 

746.3 

114 

127.3 

41.02 

44.4 

2.09 

2.0 

11.5 

14.8 

35.4 

35.5 
677  866  126  49.25  2.15  14.4  36.0 

290  685  142  42.94  1.88  18.4  35.0 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

140  332.0  670  1067.3  232  192.3  33.41  36.8  1.59  1.9  20.3  13.7  36.3  35.3 
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Last Drag 
vertical 

705  1763  205  35.74  2.25  11.3  35.6 

151  769  140  41.25  1.98  9.5  34.1 

‐  ‐  ‐  ‐  ‐  ‐  ‐ 

  Heat C ‐40 C 

 

Pore Area 
Fraction 
(ppm) 

Inclusion Area 
Fraction (ppm) 

# of 
Inclusions 
per mm² 

Average 
Nearest 

Neighboring 
Distance 
(µm) 

Average 
Diameter 
(µm) 

Impact (ft‐
lbs) 

HRC 

 
Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Ind.  Avg  Avg 

Big 
Avg 

1st Cope 
horizontal 

  

275.4 

698 

807.1 

189 

185.7 

24.89 

27.1 

1.58 

1.7 

3.6 

3.4 

36.4 

36.6 
   771  178  25.15  1.66  3.3  36.9 

400  879  203  27.75  1.72  3.5  36.8 

151  881  172  30.52  1.87  3.3  36.4 

1st Cope 
vertical 

‐ 

‐ 

613 

744.4 

174 

204.9 

24.29 

23.9 

1.53 

1.5 

8.5 

7.0 

36.9 

36.2 
‐  552  170  25.23  1.49  3.0  36.1 

‐  1178  266  21.26  1.65  9.4  35.5 

‐  635  209  24.64  1.38  7.1  36.3 

1st Drag 
horizontal 

‐ 

129.8 

1101 

1103.4 

147 

180.1 

28.79 

25.8 

2.05 

1.8 

10.4 

11.2 

34.3 

34.7 
56  937  206  24.75  1.59  9.7  34.6 

203  1272  188  23.76  1.88 
13.5 

34.6 

‐  ‐  ‐  ‐  ‐  ‐  35.3 

1st Drag 
vertical 

57 

107.3 

837 

1180.5 

198 

211.4 

28.58 

26.6 

1.60 

1.8 

17.8 

13.8 

34.4 

35.3 
‐  959  275  24.88  1.52  17.9  35.4 

129  1239  176  27.30  1.94  6.3  35.9 

137  1687  197  25.66  2.06  13.0  35.5 

Last Cope 
horizontal 

99 

124.3 

1182 

808.5 

208 

207.5 

26.01 

28.4 

1.90 

1.7 

3.5 

3.7 

36.6 

36.3 
‐  747  147  32.11  1.89  3.9  36.1 

138  621  172  30.40  1.62  4.1  36.6 

136  683  303  25.10  1.24  3.4  35.9 

Last Cope 
vertical 

26 

43.3 

619 

701.9 

201 

178.8 

29.64 

30.9 

1.56 

1.7 

12.5 

7.9 

35.5 

36.1 
‐  671  168  29.29  1.66  4.7  37.0 

91  717  161  32.47  1.67  4.1  36.3 

13  801  185  32.37  1.81  10.2  35.6 

Last Drag 
horizontal 

139 

178.3 

870 

995.5 

142 

159.5 

33.26 

30.3 

1.98 

1.9 

9.9 

9.9 

35.9 

35.6 
118  832  151  31.58  1.89  9.9  35.4 

288  1188  169  28.54  1.97  13.4  35.3 

168  1092  176  27.83  1.92  6.3  36.0 

Last Drag 
vertical 

154 
153.8 

979 
840.0 

199 
193.6 

23.28 
27.2 

1.72 
1.7 

8.7 
14.9 

35.1 
34.1 

‐  803  222  27.02  1.58  20.6  34.5 
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‐  760  200  28.47  1.56  16.5  32.9 

‐  818  154  30.14  1.90  14.0  34.0 
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