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ABSTRACT

Modern society gives rise to complex problems which sometimes lend them-

selves to being transformed into Boolean satisfiability (SAT) decision problems; this

thesis presents an example from the program understanding domain. Current conflict-

driven clause learning (CDCL) SAT solvers employ all-purpose heuristics for making

decisions when finding truth assignments for arbitrary logical expressions called SAT

instances. The instances derived from a particular problem class exhibit a unique

underlying structure which impacts a solver’s effectiveness. Thus, tailoring the solver

heuristics to a particular problem class can significantly enhance the solver’s per-

formance; however, manual specialization is very labor intensive. Automated devel-

opment may apply hyper-heuristics to search program space by utilizing problem-

derived building blocks. This thesis demonstrates the potential for genetic program-

ming (GP) powered hyper-heuristic driven automated design of algorithms to create

tailored CDCL solvers, in this case through custom variable scoring and learnt clause

scoring heuristics, with significantly better performance on targeted classes of SAT

problem instances. As the run-time of GP is often dominated by fitness evaluation,

evaluating multiple offspring in parallel typically reduces the time incurred by fitness

evaluation proportional to the number of parallel processing units. The naive syn-

chronous approach requires an entire generation to be evaluated before progressing to

the next generation; as such, heterogeneity in the evaluation times will degrade the

performance gain, as parallel processing units will have to idle until the longest evalu-

ation has completed. This thesis shows empirical evidence justifying the employment

of an asynchronous parallel model for GP powered hyper-heuristics applied to SAT

solver space, rather than the generational synchronous alternative, for gaining speed-

ups in evolution time. Additionally, this thesis explores the use of a multi-objective

GP to reveal the trade-off surface between multiple CDCL attributes.
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1 INTRODUCTION

In some cases, real-world problems can be modelled as assertions on inter-

actions between components in a defined domain; when these assertions are found

to be correct, the assertions have been satisfied. Boolean satisfiability (SAT) in-

stances – the subset of assertion problems that can be represented with Boolean

components and associations – are typically divided further into three distinct sets

determined by the method used to generate each instance. The less restrictive being

random generation, with hand crafted and hard combinatorial instances meeting a

few more criteria, and the industrial (or application) class being a direct mapping of

real-world problems. Industrial SAT instances inherit associations from their parent

problems. Whether the instance is derived from mathematical applications, such as

graph coloring or solving Polarium puzzles, or computing-related fields (e.g., cryptog-

raphy and scheduling) [1], will determine the “structure” of the Boolean expressions

and their respective variables. Figure 1.1 illustrates the variable dependency graphs

constructed by the DPvis tool∗ on several application instances. The top-left, top-

right, and bottom-left are program understanding propositional formulas from the

bounded model checker, BMC†. These particular instances are barrel2, longmult2,

and queueinvar2 respectively. The fourth formula, called flat30-1, was taken from

the graph coloring dataset flat30-60‡. There are very few pairs of nodes connected by

multiple edges in the graph coloring figure, while every edge in the other structures

is accompanied by at least one other edge. The higher collocations in the program

understanding instances suggest that variable assignments are much more dependent

on the assignment of other variables than in other applications. The relationship

∗http://www-sr.informatik.uni-tuebingen.de/~sinz/DPvis/
†http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html
‡http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

http://www-sr.informatik.uni-tuebingen.de/~sinz/DPvis/
http://www.cs.cmu.edu/~modelcheck/bmc/bmc-benchmarks.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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becomes more apparent when considering the domain from which program under-

standing instances are derived.

Figure 1.1 DPvis Structure of Application SAT Instances

Digital systems store integers as binary values and interpret arithmetic and

comparison operations on these values with logic gates. Occasionally, the values

are presented as variables, rather than constants, that depend on the outcome of

previously performed operations. The logic gates establish a bit-wise relationship

between the given integer values and/or variables and the resultant value. While

the result of an arithmetic operation is another n-bit integer, comparison operators
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produce a 1-bit status (i.e., 1 for true and 0 for false). All assignments, arithmetic

operations, and comparisons with a status that is true can be represented as boolean

expressions that are satisfied by at least one set of bits. A path through a program

is simply the conjunction of multiple expressions. Given that any boolean expression

can be transformed into AND, OR, and NOT gates, a program path can be translated into

a SAT instance. Many SAT-solvers have been developed to scale to large instances

with low complexity. SAT solvers can be employed to verify paths with predetermined

values. Also, if solutions can be found to paths that contain variables with unknown

values, then the solution will contain a possible value for that variable.

If no solution is found for a given SAT instance, then the instance can be

either undetermined or unsatisfiable. A solution can be proven unsatisfiable if a

contradiction is found or if all possible variable assignments have been attempted. In

this case, the path through the program will never be executed. However, if the SAT

solver has not performed an exhaustive search and cannot find a contradiction, then

nothing can be stated about the path through the program.

As previously mentioned, classes of structured SAT instances are created by

encoding a specific problem class in SAT. The variable interactions or associations

in each instance in a class define a distinct structure. Empirical evidence shows that

each SAT solver has an ideal underlying instance structure and that each class of

structured instances has an optimal solver [2, 3, 4]. Efficiently solving instances in

a specific class requires finding the solver and parameter configuration that perform

best for that class.

SAT instances are often structured in the conjunctive normal form (CNF),

where clauses are the disjunctive components [5]. Each clause is composed of literals,

and each literal can be either a variable or the negation of a variable (e.g., x or ¬x).

As SAT solvers attempt to find a solution to an instance or prove that the instance is

unsatisfiable, the solver must make decisions for the assignment of Boolean variables –

often determined by a variable scoring heuristic – in the logical expression. A simple
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example of variable assignments is illustrated by Figure 1.2. When many of the

decisions cause conflicts in the Boolean statement, a conflict-driven clause learning

(CDCL) solver determines that a restart is necessary. Restart heuristics dictate how

frequently the solver backtracks to either the beginning of the search or to some

stored decision. Static heuristics will restart a search after a set number of conflicts

have occurred; smaller limits have been shown to be effective for certain satisfiable

problem classes [6]. However, an empirical analysis comparing static to dynamic

heuristics indicates that restarts dependent on detailed state-related information are

much more effective [6]. Evolving heuristics that borrow primitives from both types

may improve the performance for a targeted class.

(x ∨ ¬a)︸ ︷︷ ︸
clause

∧( ¬x︸︷︷︸
literal

∨b) = T

a = T and b = F (x ∨ F) ∧ (¬x ∨ F) CONFLICT (x 6= T/F)

a = F and b = F (x ∨T) ∧ (¬x ∨ F) NO CONFLICT (x = F)

Figure 1.2 The conflict shows that under those assignments of a and b the expression
cannot be true.

When a CDCL solver encounters a conflict, a “reason” for the conflict is

constructed and stored. These “reasons” are called learnt clauses [7]; and, learnt

clauses are employed to help make decisions. CDCL solvers can reach millions of

conflicts in a run and cannot afford to keep all the learnt clauses. As such, some

learnt clauses must be discarded. The clauses that are the most useful are kept and

the rest are forgotten. The usefulness of a learnt clause is computed through a scoring

heuristic. Generating novel learnt clause scoring heuristics will ensure that the most

important clauses are not removed. Developing primitives from CDCL state-related

values can make evolving these heuristics possible.
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While evolving CDCL heuristics in a population, each solver containing a gen-

erated heuristic must be evaluated against several instances from the target problem

classes to measure the overall effectiveness of the new heuristic. When dealing with

sampled fitness, some instances may take significantly more computational time to

evaluate than others. This often leads to large variations in the computational time

needed to evaluate the fitness of a trial solution. Additionally, this occurs when the

complexity of the representation in a population can significantly vary, such as is often

the case in Genetic Programming (GP), where typically limits are placed on genotype

size (tree depth in Koza style GP) and larger genotypes are penalized to create par-

simony pressure to combat bloat [8, 9]. Hyper-heuristics are a type of meta-heuristic

which search program space for the purpose of automating the design of algorithms.

They typically employ GP and their fitness evaluation relies on a sample consisting

of multiple test cases [10, 11]. With hyper-heuristics, especially in the case of evolv-

ing CDCL heuristics, the evaluation time varies drastically with the difficulty of the

datasets, the sample size, and the quality of the heuristic. Additionally, these factors

can also result in lengthy evolution times.

Given a distributed computing resource, such as a multi-core machine, or

parallel cluster, hyper-heuristics implemented as Evolutionary Algorithms (EAs) are

often able to reduce overall runtime by distributing individuals in the population to be

evaluated concurrently. Synchronous Parallel EAs (SPEAs) maintain the generational

step that is typical to most EAs; however, this approach suffers from idle CPU

cycles when the fitness evaluation times vary. Asynchronous Parallel EAs (APEAs)

eliminate this wasted time by producing offspring as slave nodes in the distributed

computing resource become idle.

This thesis demonstrates how structure is introduced into a particular problem

class, namely program understanding. In the interest of targeting solvers to particular

problem classes, the design and modifications of the ADSSEC (Automated Design

of SAT Solvers employing Evolutionary Computation) system is discussed in detail.
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Empirical studies are included supporting the performance gain of APEAs when

compared to SPEAs on global populations of CDCL SAT solver variable scoring

heuristics, as opposed to distributed populations such as in island-model EAs and

diffusion EAs [12, 13, 14, 15]. Additionally, this thesis investigates the quality of

the heuristics produced by the ADSSEC system as well as the effectiveness of its

approach. Possible directions for this research are presented to address the limitations

and expansion of automatically designing CDCL SAT solvers.

This thesis makes the following contributions:

• Provides empirical evidence of the substantial performance gains of the asyn-

chronous hyper-heuristics approach over the synchronous alternative.

• Introduces a generative hyper-heuristic approach employing genetic program-

ming to automatically construct variable scoring heuristics and learnt clause

scoring heuristics for a CDCL solver.

• Significantly decreases CDCL SAT solver heuristic evolution time using an asyn-

chronous parallel evolutionary algorithm.

• Evolves novel variable scoring heuristics that target classes of structured SAT

instances.

• Demonstrates the potential of the hyper-heuristic approach to create efficient

solver portfolios targeting particular problem classes.

• Discusses the automated design of CDCL SAT solver restart schemes as well as

combining multiple components during evolution.



7

2 RELATED WORK

Populations within a parallel evolutionary algorithm (PEA) can either be

structured as a single, centralized population or as multiple decentralized subpopula-

tions [15]. Distributing subpopulations over available machines achieves near-linear

scalability, with the sole overhead due to inter-population communication through

interchange of select individuals at typically fixed time intervals called epochs. This

allows for each subpopulation to evolve semi-independently, while slowly diffusing

genetic material throughout all populations. Alba et al. have reported on the effec-

tiveness of various behaviors, particularly distributed and cellular reproduction, in

distributed PEAs [12, 13, 14].

Durillo et al. have shown empirical evidence supporting the significant im-

provement in terms of various quality metrics when employing APEAs rather than

SPEAs for NSGA-II [16]. The APEA master process creates and sends individuals

to be evaluated as the slave processors become idle. In the generational version, the

population is replaced when enough offspring have been generated. With the steady-

state alternative, the offspring are considered as each is received. The researchers

employed homogeneous populations as the test cases during experimentation. While

these results still apply to heterogeneous populations, an in-depth runtime analysis

should be completed to measure performance.

Those that have specifically addressed heterogeneous populations note that

APEAs are biased toward individuals with shorter evaluation times [17, 18, 19]. This

is a result of the master process receiving those individuals sooner and more often,

flooding the population. This potentially reduces the search space that can be reached

within the runtime. Yagoubi and Schoenauer attempt to circumvent this with a

duration-based selection on the received offspring [18]. This supposed defect can be

taken advantage of in various situations, one of which is evolving genetic programs,
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which must use a mechanism such as parsimony pressure or must minimize a size-

related objective value to prevent any individual from becoming too large. If the

size of the individual is proportionate to the evaluation time, then the bias provided

by heterogeneous evaluation times can be used to produce an implicit parsimony

pressure [20, 21]. This characteristic may not necessarily be present in some hyper-

heuristics if the size of the genotype has little effect on the evaluation time, as is

noted in the present application.

This research applies generative hyper-heuristics [22], approaches to automat-

ically develop heuristics or algorithms, to generate CDCL SAT solvers tailored for an

arbitrary, but particular, problem class, to populate solver portfolios. Alternatively

to a generative approach, selective hyper-heuristics are provided with pre-existing

heuristics from which to choose the best option [22]. While not quite as flexible as

generating new heuristics, selecting heuristics can be beneficial if multiple compo-

nents need to be matched together and effective heuristics are known. In this case,

only a single heuristic is being modified during evolution and the generative approach

can explore more of the search space. As is typical, the hyper-heuristic employs ge-

netic programming (GP) to automatically reorganize and manipulate the algorithmic

primitives constituting the heuristic [11, 23]. These primitives can be as general as

state- related variables and binary operations or as specific as carefully constructed

functions with tunable inputs. ADSSEC is a hyper-heuristics framework that uses

CDCL state-based information and binary operations to automate the development

of new restart or learnt clause scoring heuristics. ADSSEC’s primitives are more

granular than statements in source code and are therefore much more versatile in

developing new solver components than the line substitution approach proposed by

Petke et al. designed to optimize entire SAT solvers [24, 25].

Ideally, a single solver would be able to adapt to an application at runtime.

Tools such as ParamILS [26], SMAC [27], and − most recently − SpySMAC [28]

automatically tailor the parameter configurations of reasonably versatile solvers to
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particular datasets. While the parameter configurations are adjustable, most of the

internal methods of solvers remain the same. The effectiveness of adapting a solver

to a problem class solely through parameter optimization is limited by the appropri-

ateness of the solver’s architecture for that problem class.

Running all computable solvers with all configurations simultaneously would

guarantee the shortest possible time to solve a given instance. However, obtainable

resources restrict this parallel procedure to a subset of existing solvers with carefully

selected parameters. This method is referred to as a portfolio approach. Xu et

al. were able to predict which solvers in a portfolio were able to perform well in

particular domains [29, 30]. They did this by calculating values for a set of instances,

testing the portfolio on the instances, and using machine learning to relate solvers

to a given instance. This pairing of solvers with instance classes allowed Xu et al.

to reduce the portfolio to the best suited solvers. Hutter et al. expanded on this

work by employing these calculated values to predict the runtime of SAT solvers [31].

Portfolios of algorithms provide high flexibility in discovering the right existing solver

for the job assuming that the right solver is in the portfolio to begin with.

Previous work has automatically evolved variable selection techniques for

stochastic local search (SLS) solvers [32, 33, 34, 35, 36]. However, CDCL solvers

are still the most efficient SAT solvers, and although Biere and Fröhlich demon-

strated that restart and variable selection schemes drastically impact CDCL solver

efficiency for specific problem classes [6, 37], no known work focuses on automatically

evolving CDCL heuristic functions. It is believed that appropriate CDCL operations

will increase the effectiveness of a CDCL SAT solver in targeting classes of instances

with unique structure. The diagram in Figure 2.1 illustrates how ADSSEC-generated

SAT solvers relate to the entire SAT solver space.
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Figure 2.1 Search space of ADSSEC (not to scale)
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3 MOTIVATIONAL STUDY OF STRUCTURE IN SAT INSTANCES

As a motivational study of the structure in SAT instances, the following sec-

tions describe a brief working example that investigates an encoding of the program

understanding program class. This transformation is merely a demonstration of in-

teractions of clauses and variables in application-based instances. The encoding is

not a novel contribution of this thesis. Clarke et al. provide a much more expansive

and detailed explanation of this problem class [38, 39].

3.1 TRANSFORMING PROGRAM UNDERSTANDING PROBLEMS

In order to illuminate the encapsulation of structure in SAT instances, a tool

for converting rudimentary pseudocode into the CNF format poses an introduction to

the program understanding SAT problem class. At the current state of the framework,

src2sat (read as source-to-SAT) is attempting to answer what possible inputs to a

program will follow the path defined by the pseudocode.

3.1.1 Specifications. The steps that src2sat needs to take to discover the

possible pseudocode inputs are as follows:

1. Parse the pseudocode representing a path through a program. This includes

storing variables to be represented as n-bit integers.

2. Translate each arithmetic, comparison, and assignment operation into equiv-

alent logic gate operations. These resulting boolean expressions will all be

combined as a logical conjunction.

3. The conjunction will be converted to the DIMACS CNF to be used later as a

SAT instance.

4. Solving this SAT instance will provide an input that will follow this path in a

program.
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3.1.2 Design. The first step in designing src2sat was to develop a simple

pseudocode language that could represent the same operations that might be seen in

very basic C programs. When following a path through a program, certain conditions

must be met in order for the program to enter specific branches. These conditions

along the path can be asserted as being true in this particular application. In this sec-

tion, the following pseudocode will be employed as a working example during src2sat’s

conversion process. To keep the example simple, the integers will be represented with

3-bits.

input x

z = 2

s = x + 1

assert(s < 2)

y = s - z

assert(y > -2)

Both positive and negative values are supported by src2sat. There are a few

differences when including negative values. Negative values require the use of two’s

complement; in that situation, arithmetic operators must allow the most significant

carry bit − or borrow bit − to be either a 0 or a 1. If only positive values are used,

that bit can be set to 0. Also, when comparing a positive to negative value, the most

significant bit must be checked. If that bit is not checked, then negative values will

register as being greater. Allowing for both will add additional clauses to the SAT

instance.

Floating-point values, or floats, have not been incorporated into src2sat. In

addition to needing support for multiple types, these numbers would require different

logical representations for each operation. Floats often consist of three components

and are structured as a significand multiplied by some base to a given exponent.

Operations would need to consider that operands may not necessarily have the same

type, and, more importantly, the same structure.
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3.1.3 Pseudocode Parsing. Each program will contain at least one line

that starts with the keyword input. These are the only commands that will not

produce a boolean expression. The instruction simply indicates that the program

needs to store that variable in the symbol table as an n-bit integer. In the example,

the input variable will be stored as

x = x2x1x0

All other instructions will produce boolean expressions that were designed from logic

gates that at some level can be represented with just ANDs, ORs, and NOTs. However,

to make things easier and less verbose, other more complex boolean operations were

used, and the translation takes place in the next step.

The symbol table stores each variable name with their respective number of

assignments. Given that the result of each assignment to a specific variable is inde-

pendent, additional instances of that variable are needed to store each assignment’s

result. For example, the first time x is assigned in the pseudocode, the boolean rela-

tion will use x0. The second assignment to x will use x1 in the expression, the third

x2, and so on.

3.1.3.1 Assignment operation. In src2sat’s current state, the assignment

operation always has a single variable on the left-hand side. The right-hand side can

be another variable, an integer, or an expression. To ensure that the value of bit

a on the left-hand side is equivalent to bit b on the right-hand side, the following

expression will be generated

a XNOR b or a⊕ b

In the example, the line z = 2 would be interpreted as

(z2 ⊕ 0)(z1 ⊕ 1)(z0 ⊕ 0)

3.1.3.2 Comparison operations. All comparison operators will appear as

an assert statement (i.e., assert(condition )). The comparison operations imple-

mented so far are equivalence, not equal, greater than, greater than or equal to, less



14

than, and less than or equal to. Each allow for both sides of the operator to be either

an integer or a variable. The logical disjunction of the equal operator and the greater

than and less than operators allows the formations of the greater than or equal to

and less than or equal to operators respectively.

3.1.3.2.1 Equal. Asserting that two values are equal is the same as assigning

one value to the other. This is handled in exactly the same manner as the assign-

ment operation previously described. To define the not equal operator, the resulting

expression for equal is simply negated.

3.1.3.2.2 Greater than. In deciding whether one value is greater than an-

other, the boolean expression must rely on the relation between several bits in the

two values. The logical statement that defines a > b for three bit integers is

((a2 ⊕ 0) · (b2 ⊕ 1)) +

((a2 ⊕ b2) · (a2b2 + (x2a1b1) + (x2x1a0b0))); where xi = (ai ⊕ bi)

The statement assert(y > -2) would have the following translation

((y2 ⊕ 0) · (1⊕ 1)) +

((y2 ⊕ 1) · (y21 + (y2 ⊕ 1)y11 + (y2 ⊕ 1)(y1 ⊕ 1)y00)))

3.1.3.2.3 Less than. The representation for a < b is as follows (assuming

three bit integers)

((a2 ⊕ 1) · (b2 ⊕ 0)) +

((a2 ⊕ b2) · (a2b2 + (x2a1b1) + (x2x1a0b0))); where xi = (ai ⊕ bi)

The statement assert(s < 2) would be translated to the following expression

((s2 ⊕ 1) · (0⊕ 0)) +

((s2 ⊕ 0) · (s20 + (s2 ⊕ 0)s11 + (s2 ⊕ 0)(s1 ⊕ 1)s00)))
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3.1.3.3 Arithmetic operations. Similar to the comparison operators, both

sides of an arithmetic operator must be either an integer or a variable. Both addi-

tion and subtraction introduce new variables to handle the carry and borrow bits.

Currently src2sat only allows for integer values.

3.1.3.3.1 Addition. The boolean expression for addition is based on the

logic gates that construct a full adder. Two expressions are needed with the addition

of the carry bits (c). The solution is represented by the variable s.

(s⊕ (a⊕ b⊕ cin)) · (cout ⊕ (ab + acin + bcin))

The expression associated with the solution, s, in the example s = x + 1 is defined

as

(s2 ⊕ (x2 ⊕ 0⊕ c2)) · (s1 ⊕ (x1 ⊕ 0⊕ c1)) · (s0 ⊕ (x0 ⊕ 1⊕ 0))

and the carry bits are handled by

(c3 ⊕ (x20 + x2c2 + 0c2)) · (c2 ⊕ (x10 + x1c1 + 0c1))·

(c1 ⊕ (x01 + x00 + 1 · 0))

3.1.3.3.2 Subtraction. The subtraction operator is similar to the addition

operator; however, the operation relies on the outcome of the borrow bits (d).

(s⊕ (a⊕ b⊕ din)) · (dout ⊕ (¬ab + ¬adin + bdin))

The statement y = s - z is interpreted with the following two expressions

(y2 ⊕ (s2 ⊕ z2 ⊕ d2)) · (y1 ⊕ (s1 ⊕ z1 ⊕ d1)) · (y0 ⊕ (s0 ⊕ z0 ⊕ 0))

(d3 ⊕ (¬s2z2 + ¬s2d2 + z2d2))·

(d2 ⊕ (¬s1z1 + ¬s1d1 + z1d1))·

(d1 ⊕ (¬s0z0 + ¬s00 + z00))

3.1.4 Resultant DIMACS SAT Instance. The src2sat program is de-

pendent upon the PyEDA library (version 0.25)∗. This library can take the boolean

∗https://pyeda.readthedocs.org/en/latest/

https://pyeda.readthedocs.org/en/latest/
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expressions as input and produce a DIMACS SAT instance. This library can also

solve the generated instance. With the example pseudocode above, the SAT instance

produced contains 18 variables in 59 clauses when assuming 3-bit integers. The num-

ber of clauses and variables is dependent on the number of bits needed to represent

the values (Table 3.1). Also, three possible inputs would follow this path through a

program. When solving the SAT instance, x is found to be 0, 7, and -8. The last two

results are the boundary conditions when arithmetic operations can cause the values

to wrap around from positive to negative and negative to positive.

Table 3.1 Clauses and Variables needed to represent example using n-bit values

n-bits Clauses Variables

3 18 59
4 24 83
5 30 107
6 36 131
7 42 155
8 48 179
9 54 203
10 60 227
...

...
...

32 192 755

The clause-to-variable ratio relies on varying aspects of the program path

being analyzed. More variables, rather than values, used throughout the path requires

that more bits be solved for in the SAT instance. In the example, if the variable,

z, had been replaced by the value 2 along the path, then there would have only

been 15 clauses and 40 variables. The bloat introduced by using z could potentially

be mitigated by employing some preprocessing techniques on the path before the

conversion.
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Table 3.2 shows extended versions of the earlier example. These cases indicate

that each operation has a different cost with regard to the number of clauses in the

SAT instance. Additionally, the use of variables and values in the source code have

an influence over the number of variables in the SAT instance. In the left extended

version, the 3-bit conversion results in a SAT instance with 30 clauses and 79 variables.

On the right side, the result contains 30 variables and 113 variables. A positive linear

relationship exists between the number of lines and variable references in the source

code and the number of clauses and variables in the SAT instance, respectively.

Table 3.2 Extended Examples

input x input x

z = 2 z = 2

s = x + 1 s = x + 1

assert(s < 2) assert(s < 2)

y = s - z y = s - z

assert(y > -2) assert(y > -2)

m = 0 + 0 m = x + x

n = 0 - 0 n = m - x

assert(1 == 1) assert(x == n)

3.2 CONDITIONAL CODE EXECUTION

While not implemented in src2sat, branching and looping are instrumental in

representing most common languages. The following sections provide a brief overview

how these affect the encoding of program understanding to SAT instances.

3.2.1 Branching. Branching in programs requires that some subset of state-

ments are associated with, or implied by, one or more conditions. Each branch may

make certain assertions or produce assignments to variables that determine future
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code execution. The outcome of a set of branches can be represented with a disjunc-

tion of implications. Below is a simple example of a ternary operation:

a = b ? 0 : 1

In this case, if b is true (1), then a becomes 0; and, if b is false (0), then a becomes

1. This can be converted to the following disjunction:

(¬b · a) + (b · ¬a)

A more general scenario would be to see the ternary structured as an if-else branch.

See the following pseudocode:

...

if (c )

x = 1

else

x = 3

assert(x > 2)

...

In order to determine if there is a solution to the SAT instance − or a path

through the program − where x > 2, the statements in both branches must first

be associated with their respective conditions. Given that the logic operations be-

hind the assignment operator and greater than operator are discussed above, these

operators will be used in the boolean representation. Also as previously mentioned,

each assignment to the same variable must be tied to a unique identifier. The pseu-

docode will be reinterpreted such that x0 = 1, x1 = 3, and x2 > z. With these new

symbols, the relationship can be expressed as

((c · (x2 = x0)) + (¬c · (x2 = x1))) · (x2 > 2)

With the inclusion of elseif conditions and the increase in scope complexity, these

expressions become more difficult to represent. The dependencies of variables and

conditions are more manageable when stored as edges in a tree or graph.
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3.2.2 Looping. Loops provide additional complexity in that the number of

iterations is linearly related to the number of clauses needed to represent the loop

in the SAT instance. If the number of iterations is known, then the loop can be

“unrolled” before generating clauses. Other cases cannot be addressed with such

simplicity.

One approach to loops with an unknown number of iterations is to generate

multiple SAT instances. Initially, develop a boolean expression when the loop is not

executed. If a solution cannot be found for the instance, then iterate through the

loop once in the expression. Continue to increase the number of iterations until the

instance can be satisfied. If some prior knowledge about the loop is known (e.g.,

do-while loops), then this method may be modified.

The greatest common denominator (gcd) problem will be used as an example

to show how this process would take place. The pseudocode is structured as follows:

function gcd(a, b)

while b != 0

t := b

b := a mod b

a := t

return a

In this example, assume that a and b will have known values. This initial

boolean expression would attempt to solve for:

0 iterations

b0 == 0

If b does not equal zero, then no solution can be found for the generated SAT

instance; and, another iteration of the loop will need to be included.

1 iteration

t0 = b0

b1 = a0 mod b0
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a1 = t0

b1 == 0

This process will continue until the expression is satisfied.

2 iterations

t0 = b0

b1 = a0 mod b0

a1 = t0

t1 = b1

b2 = a1 mod b1

a2 = t1

b2 == 0

...

This may require a maximum number of iterations or maximum solver wall

time to determine when a SAT instance is no longer feasible to generate and solve

for the given problem.

3.2.3 Remarks on Program Understanding Structure. The pseudocode

language serves as a proof-of-concept. The src2sat tool is still far from encapsulating

more commonly used languages. The pseudocode would better represent the pro-

gram understanding problem class by incorporating conditional code execution and

memory addressing. A possible starting point would be to use an assembly language

(e.g., x86, ARM) as a reference. Also, specific paths will need to be extracted from

the program to answer the question of possible inputs. While verification was the

focus in this example, other questions may be answered with this conversion. More

general than program understanding, the above working example demonstrates how

structure is introduced in industrial SAT instances. In attempting to take advantage

of that structure, there is certainly potential to discover or develop SAT solvers specif-

ically tailored for this class of SAT instances. The remainder of this thesis details an

approach to automate the design of problem-specific SAT solvers.
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4 METHODOLOGY

The ADSSEC (Automated Design of SAT Solvers employing Evolutionary

Computation) system is a hyper-heuristics framework designed to automate the de-

velopment of SAT solvers. The SAT solvers generated by ADSSEC are trained

against specific sets of instances that represent a particular encoding or problem

class. ADSSEC aims at discovering solver heuristics that perform well on datasets of

interest, not necessarily produce a solver that is better in general. The following two

sections feature the initial and updated implementations of the system, as well as fur-

ther discussion on the integration of potential heuristic representations and existing

CDCL SAT solver mechanisms.

4.1 ADSSEC VERSION 1.0

Influenced by the success of Fukunaga in improving SLS runtimes by evolv-

ing specific heuristics [34], ADSSEC uses GP to evolve variable scoring heuristics

to automatically target CDCL solvers to specific classes of structured instances. In

particular, the system employs Koza-style GP [40] as it is well suited to representing

the parse trees of variable scoring heuristics. These heuristics assign high scores to

more important variables leading CDCL solvers to select influential variables when

making a decision. Biere and Fröhlich demonstrated that the current best variable

scoring heuristics are roughly equal in runtime performance when evaluated across

many instance classes [37]. While no one heuristic function is best in all cases, each

instance class has at least one heuristic that provides the best average runtime. Biere

and Fröhlich’s work motivated the choice to adapt CDCL solver variable scoring

heuristics. ADSSEC creates an initial population of variable scoring heuristics and

evolves the population through mutation and recombination. ADSSEC evaluates
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these heuristics by replacing the variable selection heuristic in MiniSat [7], a com-

monly used efficient and deterministic CDCL solver with dense source code. While

ADSSEC employs a standard parent selection before producing offspring, its unique

survival selection was specifically constructed for use by APEAs. ADSSEC returns

the heuristics from the final population after reaching the termination criteria.

4.1.1 Heuristic Representation. Mapping variable scoring heuristic func-

tions to objects easily manipulated in a GP is fairly straight-forward. Each scoring

heuristic is represented as a parse tree where non-terminal nodes are operators and

terminal nodes are state-related values.

Derived from currently implemented variable scoring heuristics [37], ADSSEC defines

the following terminal nodes:

• Score (s): The previous score of the variable.

• Conflict Index (i): The current number of conflicts encountered.

• MiniSat Variable Decay Amount (f): Initially used as the rate of variable score

decay in MiniSat. Now f is just used to derive MiniSat’s Variable Increment

Value (MiniSat Default: 0.95 ).

• MiniSat’s Variable Increment Amount (g = (1/f)i): The amount MiniSat in-

creases the score of a variable.

• Constant (C): A constant value in {1, 2, 3, . . . , 10} ∪ {0.0, 0.1, 0.2, . . . , 0.9}.

• Special Component (H):

hmi =


0.5 · s if m divides i evenly

s otherwise

(4.1)

where m is a power of 2: {2, 4, 8, . . . , 1024}.

ADSSEC defines the following non-terminal (binary) operator nodes: Addi-

tion (+), Subtraction (−), Multiplication (∗), and Division (/). These arithmetic
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operators may be applied because all the terminal nodes relate to either integer or

floating-point values.

These nodes permit the evolution of novel schemes while still representing

current schemes. For example, consider MiniSat’s current variable scoring heuristic:

s′ = s+ g .

In ADSSEC, the following parse tree represents this heuristic:

+

gs

Put into words, the updated score of the variable is the sum of the previous score

and the variable increment value maintained by MiniSat.

Again, ADSSEC evolves the parse tree genetic encodings. To evaluate each

variable scoring heuristic, the parse tree is converted into a C++ statement. The

original variable scoring heuristic is replaced in a pre-built MiniSat 2.2 by compiling

and linking in the new variable scoring heuristic (C++ statement). The resulting

solver is executed on test instances to evaluate the effectiveness of the heuristic.

This method takes advantage of MiniSat and the performance derived from being

implemented in C++ while reducing development time.

4.1.2 Objective. The objective score represents how well an evolved version

of MiniSat performs on a provided training set of instances. The true objective score

is a function (e.g., average) over all instances in the problem class being targeted.

However, as it is infeasible to compute over a potentially infinite set of instances,

instead a small sampling of instances provides an approximation as is discussed later.

Determining the best performance measure to use in ADSSEC is difficult. Tradi-

tionally the intent is to reduce the runtime needed to either find a solution or prove

unsatisfiability. However, because ADSSEC evaluates several instances in parallel on

the same hardware, runtimes for individual instances are inconsistent even with a

deterministic solver. Therefore, runtime is substituted with the number of variable
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decisions, which is a more consistent metric. An improved variable scoring heuristic

should reduce this value. The per-instance sub-score for an evolved variant is the

ratio of the number of decisions needed by the variant to that needed by the original

selection scheme.

The objective score is then simply the average of all the instance sub-scores.

Given that all the sub-scores are expressed relative to the original MiniSat, any

evolved individual that performs identically to MiniSat’s variable scoring heuristic

will end up with an objective score of 1.0. Lower scores indicate better schemes.

Occasionally, the EA will construct inadequate heuristics that cause the solver

to require an inordinate number of decisions to reach a conclusion. The limiting func-

tions are defined to prevent wasting evaluation time on such heuristics. ADSSEC

relies on default MiniSat’s performance to approximate reasonable limits for any

given SAT instance. Initially, ADSSEC limits an evolved MiniSat to three times

the number of decisions the original MiniSat needed to solve that instance. While

the multiplier of three is user-configurable, manual tuning indicated that this limit

was fairly generous without wasting an excessive amount of evaluation time. These

generous limits are required to collect decent heuristics in the population – decent

heuristics provide complex genetic material for later optimization; they do not time

out on all tested instances, but are generally worse than the original MiniSat. How-

ever, as ADSSEC progresses through the evolutionary process, the interest shifts to

exploiting the heuristics that are strictly better than the original. As such, the deci-

sion limit linearly decreases down to the exact number of decisions MiniSat needed

for a specific instance or the average number of decisions for the sample set. For

example, if ADSSEC is to complete 5000 evaluations throughout the run and the

decision limit multiplier decreases from 3.0 to 1.0, then the multiplier is decremented

by ((3.0− 1.0)/5000 = 0.0004 after each evaluation.

Ideally, an accurate objective score would be determined by executing the

evolved variable scoring heuristic against the entire dataset of interest. Because this is
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generally too costly, ADSSEC utilizes strike-based sampling to gauge the effectiveness

of a MiniSat variant. ADSSEC randomly selects a user-defined number of instances

from the given training set to evaluate a variant. At the start of evolution, there is

a bias toward selecting easier instances. The initial population contains mostly low-

quality heuristics and evaluating these heuristics against difficult instances wastes

evaluation time. As such, a bias is placed in favor of selecting easier instances in

early evolution. This bias linearly transforms to a uniform selection at the end of

the evolutionary process. For each instance in this selection, ADSSEC executes the

evolved variant and assigns a sub-score ratio as described before. If that variant

reaches the decision limit for that instance, then the variant receives a strike and

a sub-score of the current decision-limit multiplier. After a variant reaches a user-

defined number of strikes, all remaining sub-scores are assigned the current decision-

limit multiplier.

4.1.3 Evolutionary Algorithm. The following sections define the evolu-

tionary operations implemented within ADSSEC.

4.1.3.1 Population initialization. To create each individual in the initial

population of variable scoring heuristics, ADSSEC randomly generates a parse tree

from the primitives, or nodes, described previously (Section 4.1.1). First, as experi-

mentation shows that no single terminal node produces an effective scoring scheme,

ADSSEC assigns a random operator node to the root of the tree. ADSSEC then

assigns two random nodes to the left and right branches of the operator node. There

is a 50% chance that each node will be terminal (versus non-terminal). If the node

is non-terminal, then ADSSEC repeats the process and assigns a random operator

node. If the node is terminal, then there is a 50% chance that the node will be the

previously assigned score, s; if not s, ADSSEC randomly assigns one of the other ter-

minal node options. This bias was introduced because most current schemes appear

to rely on the previous variable score. The maximum depth of a tree generated for

the initial population was manually tuned to eight. Smaller depths contained much
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less genetic diversity while larger trees produced complex heuristics that rarely solved

instances in the decision limits.

4.1.3.2 Parent selection and variation operators. ADSSEC uses one

of two methods to develop a single offspring (variant): mutation or recombination.

For mutation, ADSSEC simply randomly selects a subtree in a random individual’s

parse tree and replaces it with a new branch generated using the rules established

in population initialization (Section 4.1.3.1) – without a depth limitation. Typically,

APEAs mitigate tree growth by promoting an implicit parsimony pressure. This is

under the assumption that smaller trees have shorter evaluation times and return to

the population sooner. However, the strike-based sampling terminated bad heuristics

quickly, which partially eliminated the implicit pressure. Fortunately, most overly-

complicated heuristics receive poor objective scores and are removed during survival

selection. For recombination, ADSSEC implements a sub-tree crossover: the system

randomly selects two individuals in the population and replaces a random branch

from the first parent with a random branch from the second parent. Again, this

procedure only produces a single child.

4.1.3.3 Survival selection. The survival selection chooses which individ-

uals in the population continue into the next generation. In ADSSEC, genetically

diverse selection is encouraged so that smaller parse trees (which are generated more

easily) do not flood the population. Certain small heuristics have adequate perfor-

mance and, had one been discovered early on in evolution, could be spread throughout

the population if diversity was not maintained.

Crowding functions are selection functions that excel at promoting genetic

diversity in the population [41]. In a standard crowding function, an offspring com-

petes with its closest parent, either replacing the parent or being dropped from the

population in favor of the parent. In an APEA, however, generations are not clearly

delineated and a parent can have multiple offspring being evaluated simultaneously.

An asynchronous crowding function was developed that allows offspring to compete
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with either their parents or any ‘siblings’ – or potentially descendants of siblings

– that replaced the parents. A computationally cheap distance function compares

histograms of node types (e.g., addition, constant, conflicts, etc.) to determine the

closest remaining relative in the current population. To provide a fair comparison be-

tween the models, the SPEA version of ADSSEC employs the same crowding selection

method.

Parents have to be uniformly selected at random to ensure that each individual

has an equal chance of providing genetic material to the pool. Additionally, uniform

selection allows an equal chance of producing offspring, which can eliminate less fit

parents from the population with the employed survival selection.

4.1.3.4 Termination. ADSSEC terminates the evolutionary cycle after com-

pleting a user-defined number of evaluations. However, throughout the run individu-

als may be replaced by randomly generated parse trees if the population has become

stale or has converged. If the best individual has not been improved in a user-defined

number of evaluations, ADSSEC introduces new material to the gene pool. Cur-

rently, all variants whose performance is worse than that of the original MiniSat

are replaced. This mechanism is useful in restarting the exploration of the variable

scoring heuristics search space.

4.2 ADSSEC VERSION 2.0

The second version of ADSSEC attempts to address the limitations of the

previous version. Also, ADSSEC Version 2.0 introduces a representation for learnt

clause scoring heuristics and discusses the potential for incorporating restart schemes.

4.2.1 Heuristic Representations. Similar to the representation in evolv-

ing CDCL variable scoring heuristics, the primitives for the restart and learnt clause

scoring heuristics need to be derived from modern CDCL solvers. Recently, these two

heuristics of several solvers have adopted an attribute of learnt clauses as a metric
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of interest. This measurement, labeled as the Literal Block Distance (LBD), essen-

tially indicates how many decisions were made that contributed to the creation of a

learnt clause. Audemard and Simon describe the significance of this value as well as

how LBDs can be applied to restart schemes [42, 43]. Their solver, Glucose, stores

the previous W LBDs and, if the average of the LBDs in that window multiplied

by a constant (K) exceeds a calculated threshold, then a restart is triggered. Biere

and Fröhlich attempt to replace this window with an exponential moving average

where the more recent LBDs are more influential [6]. This function still contains the

constant (K), but substitutes the window size (W ) with an exponential smoothing

parameter (α). Currently, the MiniSat restart simply backtracks to the start when

a set number of conflicts (C) has been reached. Evolving this heuristic will require

selecting both the approach and the values of the associated parameters. Recom-

bination of individuals in the population will require that the selected approaches

share parameters. Audemard and Simon conclude that solvers with successful restart

schemes will still perform poorly without useful learnt clauses [43]. As such, effec-

tive learnt clause scoring heuristics will need to be discovered before evolving restart

schemes, which are not currently implemented in ADSSEC Version 2.0.

The MiniSat default learnt clause scoring heuristic determines the usefulness

of a learnt clause by how active the clause is [7]. If a learnt clause is employed

when a decision is made, then the activity score of that clause is bumped. The

more active clauses are assumed to be more useful. Less active clauses are removed

to allow for more learnt clauses to be stored. The Glucose solver takes a different

approach to determining the usefulness of a learnt clause. When a solver makes a

decision for the assignment of a variable, this can propagate to assigning values for

other variables without needing to make a decision. The decisions that propagate

through many variables tend to be important and present themselves as low LBD

scores in learnt clauses. Glucose assumes that the useful learnt clauses will have

smaller LDB scores [42]. ADSSEC manipulates primitives derived from both of these
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assumptions to evolve novel learnt clause scoring heuristics. In particular, the system

uses Koza-style GP [40] as it is well suited to represent the parse trees representing

the heuristics. ADSSEC defines the following terminal nodes:

• Score (s): The previous score of the learnt clause.

• Conflict Index (i): The current number of conflicts encountered.

• Minisat’s Clause Increment (gi): The amount MiniSat increases the score of

a clause. As this value grows exponentially, ADSSEC only allows for g to be

selected from the continuous range of [1.0− 1.1].

• LBD (lbd): The LBD of the learnt clause.

• LBD Inverse (lbdI): Computed as (1/lbd). The higher learnt clause scores are

kept and, therefore, low LBDs are more useful.

• Number of Literals (n): ADSSEC Version 2.0 promotes solvers that use minimal

memory, so smaller learnt clauses are preferred.

• Constant (C): A constant value in {1, 2, 3, . . . , 10} ∪ {0.0, 0.1, 0.2, . . . , 0.9}.

ADSSEC also defines the following non-terminal (binary) operator nodes for the

learnt clause scoring heuristics: Addition (+), Subtraction (−), Multiplication (∗),

and Division (/). Similar to the operators in the variable scoring heuristics, these

arithmetic operators may be applied because all the terminal nodes relate to either

integer or floating-point values.

Similar to the variable scoring heuristic, the learnt clause scoring heuristic is

translated to C++ and then replaces the original heuristic. Also, a few additional

lines are added for maintaining the values of nodes with type gi. Due to the varying

complexity of the heuristics, a design decision had to be made when addressing the

reduction of learnt clauses. MiniSat considers two conditions when selecting which

learnt clauses to remove. After the learnt clauses are sorted, MiniSat removes the

clauses with the lowest scores until the count is half of the stored learnt clauses.

MiniSat will continue to remove clauses with scores less than a set threshold: gi

divided by the number of learnt clauses. The magnitude of scores when employing
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evolved heuristics may no longer be consistent with this threshold and, as such, this

particular threshold cannot be used. However, ADSSEC may benefit from having

a mechanism for eliminating useless learnt clauses, so the threshold was set at one

divided by the number of learnt clauses. Any clauses with small or negative scores will

be removed from the set. This allows much of the MiniSat code to remain unchanged

and for ADSSEC to utilize existing functionality with the new heuristics.

4.2.2 Objective. While measuring SAT solver performance is typically de-

pendent solely on runtime, concurrently executing multiple solvers heavily skews

these results. Using the number of decisions the solver needed to find a solution is

a more consistent metric. However, this value alone is not always proportionate to

the runtime of a solver and cannot be the only objective score. As supported by the

results obtained using Version 1.0, ADSSEC Version 2.0 includes the total number of

learnt clause literals (i.e., conflict literals) as a second objective. This promotes solver

variants that can solve instances in as few decisions as possible while also minimizing

memory allocation.

The previous version of the ADSSEC system suffered from an inadequate

“timeout” technique. For a given instance being executed by an evolved MiniSat

variant, the solver was set to terminate if a solution had not been discovered in a

calculated number of decisions relative to the default MiniSat’s performance. Unfor-

tunately, these limitations could be unreasonable for the evolved variant if MiniSat

quickly solved the instance. Version 2.0 loosens these bounds to be dependent on the

maximum of either the average number decisions for the sample set of instances or

the number of decisions MiniSat needed. This modified method should allow each

heuristic a fair comparison against the original MiniSat heuristic on the entire sample

set rather than a single instance. Additionally, the objective sub-scores were modi-

fied to be ratios relative to the average number of decisions and conflict literals for

the entire sample set rather than just the same instance. This promotes an overall

improvement rather than an improvement on an instance-by-instance basis. Also,
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should a heuristic be re-discovered and evaluated multiple times, the objective scores

will be averaged over the number of occurrences. Such a check verifies or corrects the

previous evaluations and prevents a single heuristic from flooding the population.

4.2.3 Selection. The crowding survivor selection could no longer be used

with the addition of the second objective. Instead, a multi-objective approach similar

to the NSGA-II algorithm is employed [44]. This allows individuals in the popula-

tion to be removed without requiring that direct offspring be the replacement. The

uniform parent selection was altered to a k -tournament selection.
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5 EXPERIMENTATION

In the following three experiments, ADSSEC is employed to collect results, and

an analysis of these results offers a discussion on the design of such a system. The first

aims to more clearly understand the potential for asynchronous parallel approaches

in hyper-heuristics, particularly in the case of ADSSEC Version 1.0. Utilizing the

same version of ADSSEC, the second experiment considers the effectiveness of auto-

matically constructing SAT solvers for specific sets of instances. Finally, the third

explores and empirically analyzes the performance of an expanded multi-objective

version of ADSSEC (Version 2.0).

5.1 ASYNCHRONOUS VERSUS SYNCHRONOUS APPROACHES

This section empirically evaluates the performance of asynchronous parallel

evolutionary algorithms (APEAs) when compared to synchronous parallel evolution-

ary algorithms (SPEAs) on global populations of CDCL SAT solver variable scoring

heuristics.

5.1.1 Experimental Setup. Ideally, one would want to construct entire

solvers for a given problem, and ADSSEC demonstrates the obstacles and, more

importantly, the potential of adapting a single component of a CDCL solver. The

experiments with the prototype ADSSEC system require datasets that have:

• instances that ADSSEC can feasibly train on in a short period of time (each

instance should require at most a few seconds for the original MiniSat to solve)

• enough instances to sufficiently represent a distinct instance class for both train-

ing and testing

• instances that are difficult enough that the instance can benefit from a fitted

heuristic
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Unfortunately, these requirements make many of the usual SAT datasets inappropri-

ate for the initial prototype experiments. Instances from previous SAT competitions

attempt to challenge the capabilities of the solvers, so many require too significant an

amount of time to solve. Many publicly available datasets contain too few instances

to sufficiently represent the distinct problem class or the instances are so simple that

nothing is gained by creating a fitted heuristic. The idea behind generating datasets

for ADSSEC is that generators provide enough control to meet these criteria while

preventing bias by hand-selecting specific instances.

A modularity-based generator developed by Jesús Giráldez Cru∗ was used to

create 80 instances for the datasets. These instances simulate an underlying structure

that may be found in an industrial class of instances. Each CNF contained 5000

variables in 19000 clauses. The generator allows the user to specify the structure of

each instance; the tool generated 90 communities with 3 literals per clause. The seeds

1 through 40 were used. Half of the instances were configured with a modularity of

0.85 and the other 40 with 0.9. A majority of the instances were satisfiable while 32

were unsatisfiable. ADSSEC was trained on select subsets of 32 instances where the

sample size was 15 allowing up to 5 strikes per evaluation. To obtain the subsets,

the 80 instances were first sorted by the number of decisions default MiniSat needed

to solve each. Then, the instances were divided into five groups of sixteen instances,

where Group 0 needed the least number of decisions and Group 4 needed the most

decisions. The final subsets used for training were constructed as follows:

• Dataset A: combined Group 0 and Group 1

• Dataset B: combined Group 0 and Group 2

• Dataset C: combined Group 0 and Group 3

• Dataset D: combined Group 0 and Group 4

∗http://www.iiia.csic.es/~jgiraldez/

http://www.iiia.csic.es/~jgiraldez/
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Dataset A has the least variation in evaluation time and Dataset D has the most.

Some instances can be solved in less than a thousandth of a second while the longer

ones can take several seconds.

The computationally extensive search made automated tuning of ADSSEC’s

parameters infeasible; thus, manual tuning was used to discover the configuration in

Table 5.1. ADSSEC created an initial population of 20 random individuals. The

master process used 20 slaves processes for evaluating offspring, either synchronously

producing offspring at each generation or asynchronously creating new offspring as

each node became available.

ADSSEC selected parents uniformly for either recombination or mutation –

with a mutation probability of 0.10 and, subsequently, a recombination rate of 0.90

– and used a shared crowding method for survival selection. ADSSEC was config-

ured to terminate after 1000 evaluations and restart after 100 evaluations without

improvement.

Table 5.1 ADSSEC EA parameter settings

Population Offspring Mutation Crossover
(µ) (λ) Rate Rate
20 20 0.10 0.90

Termination Restart Dec. Limit Sample
Evaluations Evaluations Multiplier Size

1000 100 3.0 → 1.0 15 (5 strikes)

ADSSEC was executed on a machine with dual Intel Xeon E5-2630 v3 2.4 GHz

octa-core processors and 128 GB 2133 MHz DDR4 RDIMM ECC RAM running

Ubuntu 14.04. Both the synchronous and asynchronous models were run 8 times on

Datasets A, B, C, and D.
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5.1.2 Results and Discussion. The aggregate user time across all pro-

cesses was collected from each run of ADSSEC for both the synchronous model and

asynchronous model on the datasets. The variance in the number of decisions needed

to solve the instances in each dataset directly influences the variation in evaluation

time for each heuristic. Increased variation in evaluation times allows for greater

speed-ups in the asynchronous model over the synchronous approach. As illustrated

in Figure 5.1, the growth in variance of MiniSat decisions in each dataset results in

more evident speed-ups for the asynchronous evolution times. Additionally, there

may be a proportional increase in variation of evolution time for both models.

(a) Dataset A (b) Dataset B (c) Dataset C (d) Dataset D

Figure 5.1 Boxplots of evolution time relative to the mean of the evolution time for
the asynchronous runs on each respective dataset. The average relative
asynchronous evolution time will always be at 1.0 for each plot. Using
default MiniSat, Dataset A had an average of 7,441 decisions and stan-
dard deviation of 11,798 decisions. Dataset B had an average of 99,313
decisions and standard deviation of 118,761 decisions. Dataset C had an
average of 297,925 decisions and standard deviation of 309,996 decisions.
Dataset D had an average of 522,668 decisions and standard deviation of
565,955 decisions. The average and standard deviation of the decisions
needed by MiniSat to solve the instances used in each dataset describe
the difficulty and variation that can be expected to influence evaluation
times.
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The results from ANOVA tests confirm the improvement provided by the

asynchronous method (see Table 5.2); as the p-values are all approximately zero, there

is very high confidence in this conclusion. In Dataset D, the synchronous method

needed an average of 5.24 hours to complete the same number of evaluations that

asynchronous finished in an average of 3.19 hours. These results were obtained where

the longest time to solve an instance is approximately five seconds. In the read-world,

industrial instances can require several minutes to hours to complete. Employing

the asynchronous evolution when training ADSSEC on datasets containing those

instances would measure speed-ups in CPU days or weeks.

Table 5.2 ANOVA results of evolution time in seconds comparing both models of
ADSSEC

Synchronous Asynchronous
Dataset A

Mean 515.1038 435.1900
Variance 35.4130 33.4400
P-value 0.0000

Dataset B
Mean 1,647.6300 1,198.9300
Variance 11,554.0380 1,455.4835
P-value 0.0000

Dataset C
Mean 15,453.0900 9,260.6925
Variance 493,279.9961 112,446.0049
P-value 0.0000

Dataset D
Mean 18,865.0775 11,470.6363
Variance 3,539,070.1957 230,474.1322
P-value 0.0000
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5.2 ADSSEC VERSION 1.0 EXPERIMENT

This section investigates the quality of the heuristics produced by the initial

single-objective version of the ADSSEC system as well as the effectiveness of its

approach.

5.2.1 Experimental Setup. Ideally, one would want to construct entire

solvers for a given problem, and ADSSEC demonstrates the obstacles and, more

importantly, the potential of adapting a single component of a CDCL solver. The

experiments with the prototype ADSSEC system require datasets that have:

• instances that ADSSEC can feasibly train on in a short period of time (each

instance should require seconds to minutes for the original MiniSat to solve)

• enough instances to sufficiently represent a distinct instance class for both train-

ing and testing

• instances that are difficult enough that the instance can benefit from a fitted

heuristic

Unfortunately, these requirements make many of the usual SAT datasets inappropri-

ate for the initial prototype experiments. Many publicly available datasets contain

too few instances to sufficiently represent the distinct problem class or the instances

are so simple that nothing is gained by creating a fitted heuristic. Also, instances

from previous SAT competitions attempt to challenge the capabilities of the solvers,

so many require too significant an amount of time to solve. The time needed for a

single evaluation is the product of two numbers: (1) the amount of time needed by a

solver to find a solution to the average instance in the dataset and (2) the number of

instances needed for a representative sample. Additionally, one must consider approx-

imately how many evaluations are needed to discover an improved heuristic and how

many physical machines are available to ADSSEC. Applying ADSSEC to hard prob-

lems becomes more feasible with smaller samples, fewer evaluations, and more/faster

CPUs. The idea behind generating datasets for ADSSEC is that generators provide
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enough control to meet these criteria while preventing bias by hand-selecting specific

instances.

A k-colorable graph generation tool† – developed by Joseph Culberson, Adam

Beacham, and Denis Papp – was used to create 66 satisfiable instances for the first

dataset. These graphs each had 5000 vertices with an average degree of 4.31. A SAT

conversion tool from the same source was employed to transform each graph into an

instance. Each instance contained 52324 variables in 15000 clauses. All instances

were solved with default MiniSat, and the ten instances with the highest number

of decisions served as ADSSEC’s training set. These ten instances encapsulated the

shared structure of the class that the original heuristic could not exploit, focusing

the evolved heuristic on the structure that gave the most room for improvement.

A modularity-based generator developed by Jesús Giráldez-Cru‡ was used to

create 40 satisfiable instances for the second dataset. These instances simulate an

underlying structure that may be found in an industrial class of instances. Each

instance contained 5000 variables in 19000 clauses. The generator allows the user to

specify the structure of each instance. The tool generated 90 communities with a

modularity of 0.8 and 3 literals per clause. The seeds 1 through 40 were used. Again,

ADSSEC trained on MiniSat’s worst ten from this dataset.

An identical configuration was employed for ADSSEC on both datasets (Ta-

ble 5.3); manual tuning was used to discover this configuration. The computationally

extensive search makes automated tuning of ADSSEC’s parameters infeasible. Evolu-

tion of variable scoring heuristics is very time consuming. ADSSEC created an initial

population of 30 random individuals. The master process used 63 slaves processes

for evaluating offspring, asynchronously creating new offspring as each node became

available. ADSSEC selected parents uniformly for either recombination or mutation

– with a mutation probability of 0.10 and, subsequently, a recombination rate of

†https://webdocs.cs.ualberta.ca/~joe/Coloring/Generators/generate.html
‡http://www.iiia.csic.es/~jgiraldez/

https://webdocs.cs.ualberta.ca/~joe/Coloring/Generators/generate.html
http://www.iiia.csic.es/~jgiraldez/
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0.90 – and used an asynchronous crowding method for survival selection. Although

ADSSEC terminated after 5000 evaluations, if the best individual objective score had

not improved in 250 evaluations, ADSSEC replaced the worst part of the population

with randomly generated parse trees. ADSSEC evaluated each individual on the ten

SAT instances in the training set (randomly ordered); each individual was limited to

four strikes against the decision limit described previously.

Table 5.3 ADSSEC EA parameter settings

Population Offspring Mutation Crossover
(µ) (λ) Rate Rate
30 63 0.10 0.90

Termination Restart Dec. Limit Sample
Evaluations Evaluations Multiplier Size

5000 250 3.0 → 1.0 10 (4 strikes)

ADSSEC was executed on several locally networked machines of varying loads

all running Ubuntu. Solvers were then compiled with the best heuristics produced by

those runs. In hopes of obtaining more accurate runtimes, Amazon EC2 m3.medium

instances were used to collect the runtimes of the original MiniSat and the evolved

solvers on both datasets. MiniSat was executed serially on all instances – including

those trained on – from both the k-colorable graph and modularity datasets, but the

evolved solvers were only executed on the datasets on which they were trained.

5.2.2 Results. Cactus plots are employed to compare the effectiveness of

the solvers containing the evolved heuristics against the default MiniSat solver. To

construct these plots, the metric of interest (e.g., decisions or runtime) is collected

on all the instances of a given dataset for both solvers; the values are then sorted

independent of the order of values for the other solver. While this representation
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does not provide a direct instance-by-instance comparison, cactus plots illustrate the

general effectiveness of the solvers over the entire dataset. Given that the solvers

attempt to minimize the metrics in this experiment, the instances that each solver

performed best on will be on the left of the plot and the worst performance at the

right.

Figure 5.2 compares the number of decisions of the original MiniSat solver

against that of the evolved solver for the k-colorable graph dataset. While the in-

stances requiring fewer decisions are fairly close, there is a marked improvement with

the new heuristic in the maximum number of decisions needed to solve the k-colorable

graph dataset.

Figure 5.2 k-colorable graph cactus plot comparing number of decisions to solve

The new heuristic for the modularity dataset presented a much more signif-

icant difference (in some cases, an order of magnitude fewer decisions). The worst
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instance for the evolved solver needed less than half the number of decisions MiniSat

accrued at its worst (see Figure 5.3).

Figure 5.3 Modularity cactus plot comparing number of decisions to solve

Table 5.4 shows that the improvement for the k-colorable graph dataset seems

to be reflected in CPU time as well as the number of decisions. Because both the

original MiniSat and the evolved solver were executed on the same instances, the

runtimes could be compared to determine whether the evolved solver is actually

more efficient. With a p-value of 0.3562, the results cannot conclusively state that

these values definitely reflect an improvement in terms of runtime.

Table 5.4 provides evidence of an improved performance with the evolved

heuristic for the modularity dataset. The average and median CPU times were lower

for the new heuristic, and the p-value is significant enough to state that the evolved

heuristic is more efficient than the default MiniSat heuristic.
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Table 5.4 Statistical Comparison on mean CPU time

k-colorable Graph Modularity
MiniSat Evolved MiniSat Evolved

Mean 52.21 28.31 64.74 57.83
Variance 9144.35 2120.67 16845.47 25008.72
Median 14.7317 12.9167 24.9044 11.9451
Observations 66 40
Number Evolved Improved 35 26
P(X ≥ # Improved) 0.3562 0.0403

As expected, the number of decisions seemed to be proportionate to the CPU

time for the k-colorable graph dataset (Figure 5.4); however, this was not true for

the modularity dataset (Figure 5.5). While the decisions were significantly lower, the

evolved modularity heuristic performed similarly to the original heuristic and even

had a higher maximum solve time.

To explore whether the two solvers for each dataset perform well (or poorly)

on the same instances, the lower runtime for each instance was kept; these times are

labeled “Minimum” in Figure 5.4 and Figure 5.5. Interestingly, the evolved solvers

seem to complement the performance of the original MiniSat. For the modularity

dataset, while the worst runtimes for MiniSat and Evolved were 690.62 seconds and

860.702 seconds respectively, the worst minimum runtime was less than 44 seconds.

The k-colorable graph dataset showed a similar complementary improvement: 592.816

seconds, 317.763 seconds, and a minimum of 96.9906 seconds. As portfolios of two,

each pair provides very significant speed-ups for their respective datasets.

As seen here, ADSSEC cannot depend solely on the number of decisions in

evaluating an instance. To discover what other metric(s) that should be used, the

final state metrics were compared between the worst modularity instances for the

original MiniSat and the evolved solver (Table 5.5). Evolved has fewer restarts,

conflicts, decisions, and propagations, but as different instances are being compared,
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Figure 5.4 k-colorable graph cactus plot comparing CPU time needed to solve

Figure 5.5 Modularity cactus plot comparing CPU time needed to solve
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Table 5.5 Metrics of worst modularity instances for MiniSat and the evolved variant

MiniSat’s Worst Evolved’s Worst
restarts 11,771 8,190
conflicts 7,163,905 4,729,239
decisions 49,310,829 22,325,993
propagations 1,835,833,635 1,373,888,853
conflict literals 274,729,206 854,679,218
Memory used (MB) 115.00 183.00
CPU time (sec) 690.62 860.70

meaningful conclusions cannot be drawn from this comparison. However, the evolved

solver used more conflict literals, significantly more memory, and more CPU time.

In the evolved solver’s worst instance, each conflict resulted in more conflict literals

(and less of the search space excised) than in MiniSat’s worst case. Since the number

of conflict literals can be seen to affect runtime, this suggests that in subsequent work

the objective function should take the number of conflict literals into consideration

as well. For example, the components related to the management of conflict clauses

could be adapted alongside the variable selection heuristic.

5.2.3 Discussion. Figure 5.6 shows the heuristic evolved for the k-colorable

graph dataset. Arithmetic simplification in a standard optimizing compiler should

easily reduce some of the branches in this particular tree. However, a pruning function

that simplifies complicated heuristics before termination removes valuable genetic

structures from further evolution. If a pruning function were added in ADSSEC, the

final heuristic would only be pruned after termination.

Figure 5.7 shows the heuristic evolved for the modularity dataset. This heuris-

tic was much more complex and employed every type of node available. However, the

best heuristic discovered may not be the most efficient heuristic discovered in run-

time; some components in this heuristic may be less useful or influential. In future
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Figure 5.6 Evolved heuristic for k-colorable graph instances

work, looking back through the ancestors of the individual could assist in discover-

ing which components or combinations are most influential and which components

hinder performance and should be pruned. Additionally, ADSSEC might find even

better heuristics using new node types that preserve pre-existing node structure or

new nodes that represent other solver state-based information.

5.3 ADSSEC VERSION 2.0 EXPERIMENT

This section investigates the quality of the heuristics produced by the ex-

panded multi-objective version of the ADSSEC system as well as the effectiveness of

its approach.

5.3.1 Experimental Setup. The same two datasets used in the ADSSEC

Version 1.0 Experiment were employed in analyzing the performance of the second

version. With the more generous decision limits placed on executing the easier in-

stances in a given dataset, the training set was expanded to include all instances rather

than the ten instances that MiniSat performed worst on. Additionally, ADSSEC was

evolved on the variable scoring heuristic and learnt clause scoring heuristic separately.

Evolving both heuristics simultaneously introduces additional complexity. The qual-

ity of the heuristics would have to be measured as a pair; as such, if one of the
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Figure 5.7 Evolved heuristic for modularity instances

heuristics performs poorly, the other will have receive a low fitness. Until ADSSEC

can be modified to handle that, the heuristics will be evolved and evaluated indepen-

dently.

An identical configuration was employed for ADSSEC on both datasets (Ta-

ble 5.6); manual tuning was used to discover this configuration. ADSSEC created an

initial population of 20 random individuals. The master process used 63 slave pro-

cesses for evaluating offspring, asynchronously creating new offspring as each node

became available. ADSSEC selected parents with a tournament size of 2 for either

recombination or mutation – with a mutation probability of 0.10 and, subsequently, a

recombination rate of 0.90 – and used an asynchronous crowding method for survival

selection. Although ADSSEC terminated after 2000 evaluations, if the best individ-

ual objective score had not improved in 100 evaluations, ADSSEC replaced the worst
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part of the population with randomly generated parse trees. ADSSEC evaluated each

individual on a sample of 12 SAT instances in the training set; each individual was

limited to four strikes against the decision limit described previously.

Table 5.6 ADSSEC EA parameter settings

Population Offspring Mutation Crossover
(µ) (λ) Rate Rate
20 63 0.10 0.90

Termination Restart Dec. Limit Sample
Evaluations Evaluations Multiplier Size

2000 100 3.0 → 1.0 12 (4 strikes)

In multi-objective EAs, the final population typically consists of sets, or fronts,

of individuals that do not outperform each other on all – in this case, both – of the

objectives. The front that contains individuals that outperform all other individuals

except those in the same set is called the non-dominated front. For ADSSEC, the

non-dominated front encapsulates the best heuristics found for a given run. In this

experiment, the non-dominated fronts only contained a single best heuristic at the

end of each run.

ADSSEC was executed on two locally networked machines of varying loads

both running Ubuntu. The machines have dual Intel Xeon E5-2630 v3 2.4 GHz octa-

core processors and 128 GB 2133 MHz DDR4 RDIMM ECC RAM. Solvers were then

compiled with the best heuristics produced by those runs. MiniSat was executed

serially on all instances – including those trained on – from both the k-colorable

graph and modularity datasets, but the evolved solvers were only executed on the

datasets on which they were trained.
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5.3.2 Results and Discussion. Figure 5.8 and Figure 5.9 depict the objec-

tive scores – numbers of decisions and conflict literals needed to solve each instance

– for the modularity dataset when employing MiniSat and the evolved variants; one

variant included the evolved variable scoring heuristic and the other contained the

evolved learnt clause scoring heuristic. While ADSSEC aimed to reduce these objec-

tive values, the plots suggest that very little improvement, if any, was provided by

the evolved learnt clause scoring heuristic. This may be the effect of a number of

possible factors. For example, unrepresentative sampling with primarily improved in-

stances may bias toward less effective heuristics. Early termination of evolution may

also play a part in not finding an effective heuristic. Additionally, the mechanisms

and primitives available to ADSSEC shape the search space of the generated learnt

clause scoring heuristics. Just as the developers of CDCL SAT solvers take careful

consideration in their designs, ADSSEC must automate the process of intertwining

the intricate implementations of CDCL heuristics.

Interestingly, the evolved variable scoring heuristic for the modularity dataset

provided a substantial improvement over the default MiniSat heuristic on both of

the objectives as well as the runtime, as can be seen in Figure 5.10. This evolved

solver was also compared against two top solvers, Lingeling sr15bal [45] and Glucose-

Syrup [46], as shown in Figure 5.11. Given that these solvers were executed on

the same instances, a Wilcoxon Signed-Rank Test was employed to evaluate the

performance gain of the evolved modularity variable scoring heuristics. The small

p-values in Table 5.7 confirm that the evolved solver with the novel variable scoring

heuristic is more efficient than MiniSat as well as several top CDCL SAT solvers.

The results for the evolved k-colorable graph heuristics provide additional

insight into the relation between the objective values and the actual runtime of the

CDCL SAT solvers. Consider the objective values of the worst instances for both

evolved variants and default MiniSat in Figure 5.12 and Figure 5.13. While the

evolved learnt clause scoring heuristics appear to have the lowest objective scores,
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Figure 5.8 Modularity cactus plot comparing number of decisions to solve (VS: Vari-
able Scoring, LCS: Learnt Clause Scoring)

Figure 5.9 Modularity cactus plot comparing number of conflict literals to solve
(VS: Variable Scoring, LCS: Learnt Clause Scoring)
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Figure 5.10 Modularity cactus plot comparing runtime to solve (VS: Variable Scor-
ing, LCS: Learnt Clause Scoring)

Figure 5.11 Modularity cactus plot comparing runtime to solve with top solvers
(VS: Variable Scoring)



51

Table 5.7 Wilcoxon Signed-Ranks Test for Paired Samples comparing CPU time of
evolved modularity variable scoring heuristic against other solvers

Evolved VS MiniSat Lingeling sr15bal Glucose-Syrup
Mean 1.8401 29.0480 64.5425 24.8163
Variance 3.6014 3519.8687 1478.0364 755.0245
Median 1.1610 10.8205 59.2000 15.4022
P-Value 0.0000 0.0000 0.0000

the associated runtime in Figure 5.14 is clearly worse. This suggests that the solving

time may not necessarily be bound strictly by decisions and conflict literals, and that

further investigation is needed to determine the solver attributes that have the most

significant influence on runtime.

Figure 5.12 k-colorable graph cactus plot comparing number of decisions to solve
(VS: Variable Scoring, LCS: Learnt Clause Scoring)
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Figure 5.13 k-colorable graph cactus plot comparing number of conflict literals to
solve (VS: Variable Scoring, LCS: Learnt Clause Scoring)

ADSSEC is attempting to specialize the solvers to the given datasets; there-

fore, an evolved heuristic for one application is not guaranteed to be more efficient for

another problem class. While the evolved modularity variable scoring heuristic was

more efficient for the modularity instances, this was not found to be the case when

executed on all instances from the k-colorable graph dataset. Figure 5.15 shows that

the performance of the modularity variable scoring heuristic is comparable to that

evolved for the k-colorable dataset and the heuristic in default MiniSat.



53

Figure 5.14 k-colorable graph cactus plot comparing runtime to solve (VS: Variable
Scoring, LCS: Learnt Clause Scoring)

Figure 5.15 k-colorable graph cactus plot comparing runtime to solve with evolved
variable scoring (VS) heuristics of both datasets
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6 CONCLUSION

For EAs where the fitness evaluation times can vary drastically, especially

in the case of hyper-heuristics, just parallelizing the evaluations to minimize evolu-

tion time is not always sufficient. The asynchronous approach to modelling hyper-

heuristics will certainly provide a significant speed-up in evolution time over the

synchronous alternative. As the variation in evaluation time increases, so does the

speed-up. Instances from the SAT competitions and within industrial problem classes

often have large variations in solving times. The asynchronous approach is necessary

for addressing training systems similar to ADSSEC on the industrial instances. This

paper has provided empirical evidence of the substantial performance gains of the

asynchronous approach demonstrating that APEAs are the future of hyper-heuristics.

Even with the sole objective of reducing the number of decisions, ADSSEC

Version 1.0 is capable of evolving variable scoring heuristics that are able to out-

perform the default MiniSat on a specific problem class. Even better, the evolved

heuristics seem to complement the performance of the original MiniSat – even when

the evolved solver is not strictly better than the default MiniSat. A portfolio approach

using the two solvers provides great speed-ups over using a single solver.

ADSSEC Version 2.0 supported the employment of a multi-objective approach

by producing a variable scoring heuristic that significantly outperformed MiniSat as

well as top CDCL SAT solvers. Interestingly, lower number of decisions and conflict

literals do not always guarantee faster performance. Other metrics may need to be

considered when automatically modifying components of an existing solver to target

specific problem classes. The learnt clause scoring heuristics and k-colorable graph

variable scoring heuristic had much smaller impacts on the potential effectiveness of

ADSSEC. This may result from inaccurate objective scores if the samples are not

representative of the problem class, or possibly from early termination of evolution.
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Also, in the case that these heuristics are constrained by the available genetic mate-

rial, additional CDCL variables and mechanisms may need to be made available to

ADSSEC. Another limiting factor may be that ADSSEC is only evolving one heuristic

of the solver during evolution. ADSSEC is still in an early stage of development, but

this proof-of-concept framework has shown sufficient evidence that the automated

design of SAT solvers can target problem classes of instances.
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7 FUTURE WORK

ADSSEC offers many possible areas of exploration:

• Measuring the rate of convergence between the models may conclude whether

asynchronous or synchronous approaches produce superior heuristics in less

time. While asynchronous evolution completed the same number of evaluations

in less time, more evidence is needed to conclude that the quality of heuris-

tics produced will match the synchronous counterpart at any set number of

evaluations.

• Use either different datasets or larger sample sizes to determine how the gener-

ated heuristic quality varies with the training instances.

• While hyper-heuristics can be computationally expensive, providing some level

of automated parameter tuning may further reduce the evolution time. This is

dependent on the sensitivity of the parameters or inputs selected for automa-

tion.

• Developing a more accurate objective function using other metrics should pro-

vide better evaluations and ultimately better variants. This may require run-

ning an executable profiler on MiniSat and the evolved solvers to discover the

most influential metrics.

• Allowing different data structures to store the variable scores may speed up the

execution time of ADSSEC [37].

• Adjusting bounds on maximum variable / learnt clause scores or preventing

exponential growth of scores would reduce the number of times the scores need

to be scaled down.

• Tuning MiniSat’s external parameters, either in the final evolved solver or dur-

ing evolution, could result in more effective CDCL solver components.
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• Harris et al demonstrated the significance of choice of GP type for the perfor-

mance of the algorithms evolved by a GP powered hyper-heuristic [47]; exploring

heuristic representation through alternative GP types may improve ADSSEC’s

performance.

• Training ADSSEC on an appropriately selected cross-section of a dataset might

result in a single solver that performs reasonably on the entire dataset. Al-

though the solvers were targeted to the worst or a random sample of instances

in a dataset, it would be interesting to explore potential selection schemes to

target evolving a single solver.

• Re-purposing ADSSEC to develop full portfolios of complementing MiniSat

variants could result in extremely effective portfolios in which each solver targets

a subset of the instance class.

• Exploring the runtime trade-off between the complexity of a heuristic function

and the effectiveness of that heuristic could provide an interesting guideline for

limiting the heuristics introduced into the population.

• Combining learnt clause reduction mechanisms with learnt clause scoring heuris-

tics may allow for the design of more flexible clause management components.

• Evolving the variable scoring heuristic alongside the restart schemes or conflict

clause management components could create an effective targeted solver. For

example, a cooperative EA might have one population handle variable scoring

heuristics while the other handles learnt clause scoring heuristics, and the pop-

ulations would periodically share the best heuristics found so far. Interesting

work here might include tinkering with the multi-objective objective scores.

• Currently, ADSSEC assumes that the targeted solver will take a serial approach

to solving each problem. However, parallel CDCL solvers may also be targeted

to problem classes by evolving unique heuristics for each process in the solver

and allowing the processes to share learned information.
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• Providing a sensitivity analysis on the arrangement and order of variables and

clauses in instances from a dataset may better define the bounds of a class of

instances.
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[14] Enrique Alba and José M Troya. Analyzing Synchronous and Asynchronous
Parallel Distributed Genetic Algorithms. Future Generation Computer Systems,
17(4):451–465, 2001.

[15] Mouloud Oussaidene, Bastien Chopard, Olivier V Pictet, and Marco Tomassini.
Parallel Genetic Programming and its application to trading model induction.
Parallel Computing, 23(8):1183–1198, 1997.
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