
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Spring 2016 

Silicone hollow fiber membrane bioreactors for mixed aerobic and Silicone hollow fiber membrane bioreactors for mixed aerobic and 

anaerobic treatment of gas phase toluene and trichloroethylene anaerobic treatment of gas phase toluene and trichloroethylene 

Alexander Lee Korff 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Environmental Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Korff, Alexander Lee, "Silicone hollow fiber membrane bioreactors for mixed aerobic and anaerobic 
treatment of gas phase toluene and trichloroethylene" (2016). Masters Theses. 7510. 
https://scholarsmine.mst.edu/masters_theses/7510 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/254?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7510?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


i 

 

  

 

 

 

SILICONE HOLLOW FIBER MEMBRANE BIOREACTORS FOR MIXED AEROBIC 

AND ANAEROBIC TREATMENT OF GAS PHASE TOLUENE AND 

TRICHLOROETHYLENE 

 
by 
 
 

ALEXANDER LEE KORFF 
 
 

A THESIS 
 

Presented to the Faculty of the Graduate School of the 
 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 
 

In Partial Fulfillment of the Requirements for the Degree 
 
 

MASTER OF SCIENCE IN ENVIRONMENTAL ENGINEERING 
 

2016 
 

Approved by 
 

Mark W. Fitch, Advisor 
Joel G. Burken 

Glenn C. Morrison 
 
 

 

 



ii 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2016 

Alexander Lee Korff 

All Rights Reserved 



iii 

  

ABSTRACT 

Volatile Organic Compounds (VOCs) are common in effluent waste streams from 

many sectors of industry and low-cost emission control technologies have the potential to 

mitigate long-term impacts on the environment. Federal Regulations, such as the Clean 

Air Act and National Emission Standards for Hazardous Air Pollutants (NESHAPS), as 

well as state regulations are imposing stricter requirements on point-source emissions, 

with an emphasis on toxic VOCs. Trichloroethylene (TCE) and tetrachloroethylene 

(PCE), which are toxic VOCs, have been used since the 1920’s for a variety of industrial 

applications like: degreasing, paint and printing operations, as extraction solvents, and for 

cleaning and drying cleaning. Microbial degradation of many VOC can be facilitated 

using hollow fiber membrane bioreactors for a fraction of the cost of traditional control 

methods. Hollow fiber membrane bioreactors can provide mixed aerobic and anaerobic 

zones necessary for complete mineralization of alkene chlorinated solvents and allow for 

greater removal capacity for hydrophobic compounds than typical biological processes. 

In this work, two silicone hollow fiber membrane bioreactors were operated in parallel to 

develop loading curves for toluene removal and develop biomass for the subsequent 

degradation of TCE aerobically and anaerobically. The optimal toluene elimination 

capacity measured for each reactor varied from 55-60 mg m-2 hr-1 and no biotic TCE 

removal was observed.  
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1. INTRODUCTION 

Volatile Organic Compounds (VOCs) are common in waste streams in nearly all 

sectors of industry and long-term use and misuse has resulted in lasting damage to the 

environment. Common sources of VOCs include dry cleaners, wastewater treatment 

facilities, petroleum production, landfill or recycling facilities, and painting or coating 

operations. Stricter regulations are being developed to reduce VOC emissions, with an 

emphasis on toxic VOCs, like chlorinated solvents and carcinogenic aromatic compounds 

[1, 2]. Federal Regulations, such as the Clean Air Act and National Emission Standards 

for Hazardous Air Pollutants (NESHAPS), as well as, state regulations are imposing 

stricter requirements on point-source emissions. Chlorinated solvents, like 

trichloroethylene (TCE) and tetrachloroethylene (PCE) have been used since the 1920’s 

for a variety of industrial applications; this has resulted in widespread subsurface plumes 

which require remediation [3]. Globally, chlorinated solvents are still being used for 

degreasing, paint and printing operations, as extraction solvents, and for cleaning and 

drying cleaning. Widespread usage and improper storage and disposal results in 

thousands of tons of VOC releases into the environment each year.  

Most effluent gas or liquid streams contain a mixture of VOCs which can make 

treatment difficult or expensive. Common methods for controlling VOC emissions can be 

broken into 3 categories: biochemical, chemical, and physical treatment [2, 4]. 

Biochemical processes, or biological processes, include biofilters, bioscrubbers, 

biotrickling filters, and membrane bioreactors. Chemical treatment processes include 

chemical scrubbers, thermal oxidation, catalytic oxidation, and ozonation. Physical 

processes are separated into adsorption and absorption treatment options. Biological 
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process offer many advantages over conventional treatment such as: capital and 

operational costs, low pressure drop, ability to treat high volumes of air with low 

concentrations of VOCs, and complete mineralization of pollutants. Biological treatment 

is often considered more environmentally friendly than other traditional control options 

[2, 4]. Biological processes use suspended or attached microorganisms to degrade 

pollutants and the metabolites of degradation. Biofilters, biotrickling filters, and 

bioscrubbers have been used in industry to treat VOCs and odors emissions for decades 

and recent research projects have been focused on membrane bioreactors (MBR). Most 

simple or semi-complex aromatic compounds are readily biodegradable in biological 

reactors or through in situ remediation, but chlorinated solvents are more difficult to 

biodegrade [3]. 

 TCE and PCE can be degraded by microorganisms both aerobically and 

anaerobically under certain conditions [3, 5, 6]. Microbial degradation provides a cost 

effective and an environmentally friendly method for the treatment of chlorinated 

solvents. TCE and PCE can be degraded by microorganisms through co-metabolism in 

the presence of a primary substrate [3, 6, 7]. Such aerobic co-metabolism is possible if a 

substrate is present to provide carbon and energy required for growth of bacteria. Aerobic 

degradation of PCE or TCE does not provide sufficient energy to support microbial 

growth and is generally thought to not be a suitable carbon source [5]. Monooxygenase 

enzymes used during aerobic degradation of a primary substrate also have the potential to 

metabolize TCE and PCE with no benefit to the microorganism. Many monooxygenases 

have nonspecific binding sites that allow multiple non-growth substrates to be degraded 

with no cellular benefit. This differs for anaerobic treatment of halogenated species; 
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under anaerobic conditions, alkene and some complex and chlorinated hydrocarbons can 

act as an electron acceptor for microbial metabolism resulting in degradation, this is 

called reductive dehalogenation or dechlorination [6, 8, 9]. According to estimation of 

Gibbs free energy, the anaerobic reduction of a chlorinated hydrocarbon will result in 

130-180 Kj/mol per chlorine removed, allowing for biomass generation [10]. A mixture 

of aerobic and anaerobic conditions, and the bacteria able to degrade contaminants, create 

branched degradation pathways that can result in complete mineralization of TCE [7, 11]. 

Current research on reductive dehalogenation is focused on in situ bioremediation of 

subsurface chlorinated or brominated hydrocarbon plumes, but this thesis project instead  

focused on  facilitating aerobic co-metabolism and reductive dehalogenation of TCE in 

two parallel hollow fiber membrane bioreactors (HFMR) [3, 6].  

HFMRs consist of a set of fibers or tubular membranes within a liquid filled rigid 

outside shell, resembling a shell and tube heat exchanger. Gas or liquids with 

contaminants flow through the inside, or lumen, of the membrane and the contaminants 

diffuse into a biofilm attached to the outside of the membrane. The outer shell is filled 

with a liquid mineral salt medium with a variety of nutrients and trace metals that allow 

for development of a healthy biofilm. The gas and liquid phases in HFMRs are physically 

separated, which limits mass transfer but allows for high reactor surface area to volume 

ratios with low pressure drops. The membrane acts as a structure for the biofilm, can 

allow for compound selectivity, and can limit toxic effects on microorganisms [12, 13]. 

Membranes are ideal for waste streams containing hydrophobic target compounds due to 

limitations in cross-phase mass transfer for typical biological reactors [1]. 
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From fall 2015 until spring 2016, two single-tube HFMRs were operated in 

parallel to investigate the potential for biofilms on silicone membranes to effectively 

degrade toluene and co-metabolize or reductively dehalogenate TCE over a range of 

loading rates. The HFMRs were inoculated with an activated sludge-derived culture, and 

biofilm formed on the membrane under steady operation for about a month. The loading 

rate and gas residence time (GRT) were varied over a range of low concentrations to 

develop a loading curve for toluene. The co-metabolic ability of the bioreactors was 

tested in the winter of 2015, and then the reactors were seeded with two established 

reductive dehalogenating bacteria (RDB) communities. TCE degradation was tracked for 

105 days during co-metabolic and facilitated anaerobic dehalogenation operation. The 

HFMRs were operated for 215 days to establish long-term operation and to observe shifts 

in performance or operating parameters.  
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2. LITERATURE REVIEW 

2.1. INTRODUCTION   

The Intergovernmental Panel on Climate Change (IPCC) estimates that globally 

210 million metric tons of volatile organic compounds (VOCs) are released into the 

atmosphere each year. Typical VOC pollution control technologies include; air stripping, 

combustion, sorption, and biological treatment. Biological reactors can effectively 

remove highly soluble and low molecular weight VOCs such as: methanol, ethanol, 

aldehydes, acetates, ketones, and many aromatic hydrocarbons [4]. Large volumes of air 

with low concentrations make conventional treatment uneconomical, but are ideal for 

biological treatment. Biological reactors rely on the diffusion of contaminates from air to 

water phase for subsequent microbial degradation. Depending on the system, the rate of 

diffusion or kinetic degradation rate limits removal. Biological reactors often have lower 

operating costs but typically have a larger footprint then chemical or physical treatment 

options. Many chemicals can be biologically degraded through traditional aerobic 

treatment with common microorganisms, but chlorinated solvents often require a specific 

microbial culture to facilitate biodegradation. Trichloroethylene (TCE) and 

tetrachloroethylene (PCE) are chlorinated hydrocarbons that are often used in industry as 

a degreaser or solvent. For decades chlorinated solvents were used in dry cleaning and 

industrial processes with little to no restriction or regulation. Global, long-term misuse of 

TCE and PCE has created many plumes with potential to contaminate ground water and 

soil for decades. [14-17] Remediation efforts as well as current pollution controls are 

often focused on chlorinated solvents like TCE.  
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2.2. BIOLOGICAL REACTORS 

Traditional biological reactors for air pollution control (bioscrubbers, biofilters, 

biotrickling filters) can effectively remove water soluble and low molecular weight 

VOC’s. Large or complex molecules can be difficult to degrade and thus are less suited 

for biological degradation. Many industrial processes produce high flow waste gas 

streams that have low gas concentrations that make chemical or physical treatment 

difficult but are ideal for biological reactors [18]. Conventional biological reactors can 

have clogging, pH, and nutrient control issues that hollow fiber membrane reactors 

(HFMRs) can control more readily. HFMRs can provide higher surface area to volume 

ratios than flat membranes and often have lower pressure drops than other biological 

systems. Figure 2.1, adapted from Devinny et al. [18], shows the relationship between gas 

flow and contaminant concentration and which treatment process is best equipped to 

handle specific waste stream parameters.  

 Biofilters.  Biofilters are bioreactors with a mixed community of fixed-film 

microorganisms inside a porous-packed bed. The packing media is typically organic 

material, like wood chips or mulch, which acts as a source of slow-release macro-

nutrients, and as a surface for biofilm growth. A gas waste stream is humidified and 

blown through the packed bed, where the water soluble pollutants partition to the biofilm  

and are degraded.  Biofilms are ideal for treating large volumes of air with low 

concentrations of VOCs. Biofilters have low operating costs, low capital costs, low 

pressure drops, and have the capability to treat a wide range and mixture of pollutants.   
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Figure 2.1 Applicability of various air pollution control technologies, adapted from [18]. 

 
 

 

The main disadvantages of biofilters are clogging due to excessive biomass development,  

very large footprints, limited degradation of low water soluble compounds, humidity and 

pH control, and the deterioration of the packing medium.   

 Biotrickling Filters.  Biotrickling filters are similar to biofilters except that 

instead of humidifying the gas waste stream, a liquid phase is circulated through an 

inorganic packed bed. The packing media is made of inert substances, like ceramic or 

plastic, that allow for large surface area to volume ratios with long life spans. The large 

surface areas allow for larger biofilms to grow, which can lead to higher loading rates 

than biofilters. Biotrickling filters also have low operating and capital costs, low pressure 

drops, and the ability to degrade a wide variety of compounds. Biotrickling filters can be 
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complex to construct and optimal operation can be difficult; excess biomass can form 

which leads to clogging and increased cost.  

 Bioscrubbers.  Bioscrubbers are typically a two-staged process in which 

contaminated air is stripped in a wetted packed bed or spray scrubber, and then the liquid 

is fed into an activated sludge bioreactor. There are many variations on bioscrubbers that 

try to remove specific pollutants or to increase operating efficiencies. The two-phase 

system allows the operator better control of functional parameters which often leads to 

more stable operation. The system has relatively low pressure drop and a smaller 

footprint than a comparable biofilter or biotrickling filter. The main disadvantages of 

bioscrubbers are the excess sludge generated and the cost associated with the creation of 

a secondary liquid waste stream.  

 Membrane Bioreactors.  Over the last 35 years, membrane bioreactors 

(MBRs) have been used in industry to treat wastewater, and in the last 20 years, research 

has been focused on using MBRs at the bench scale to treat gas phase VOC emissions 

[19-22]. Several different configurations of MBRs have been tested including hollow 

fiber (HFMR), flat sheet, and spiral round reactors. HFMRs are separated into units that 

use capillary (ID <10mm) fibers and tubular units (ID>10mm) [19]. MBRs create a 

physical barrier between a contaminated gas phase and a controlled nutrient-rich liquid 

phase. In the lumen of the bioreactor, gaseous VOCs and oxygen diffuse through the  

membrane into the liquid phase. Mass transfer in the reactor is driven by concentration 

gradients and is often the limiting factor in reactor elimination capacity. The membrane 

acts as a support structure for biofilm growth and suspended microorganisms can grow in 
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the liquid phase. If complete mineralization occurs, microorganisms degrade the VOCs 

into CO2, H2O, and inert compounds.  

 Mass transfer in membranes.  Mass transfer from the gas phase into the 

liquid phase can be described by Equation 2-1, which can be written over the gas or 

liquid phase. The overall mass transfer coefficient (Kov) is dependent on the resistance to 

transfer over each phase in the reactor (Equation 2-2). The regions and boundary layers 

that limit mass transfer in a MBR are highlighted in . Chemicals in the bulk gas phase 

must first cross a boundary layer near the surface of the membrane and adsorb to the 

surface. The diffusion across the membrane is dependent on the membrane material 

matrix and will be summarized in the next sections. After permeating through the 

membrane, the chemical has to diffuse through the liquid boundary layer into the bulk 

liquid phase. Liquid and gas phase mass transfer coefficients can be measured 

empirically or estimated using correlations.  

F = KovA �Cg
H
− Cl�    

Kov = 1
KgH

+ 1
KmH 

+ 1
Kb

+ 1
Kl

 

Where: 

 F is the mass flux though the membrane (g/s) 

Kov is the overall mass transfer coefficient (m/s) 

A is the membrane area (m2) 

Cg is the bulk gas phase concentration (g/m3) 

H is the dimensionless gas-liquid partitioning coefficient (g/m3)/(g/m3) 

Cl is the bulk liquid phase concentration (g/m3) 

Kg is the gas phase mass transfer coefficient (m/s) 

(2-1) 

(2-2) 
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Km is the membrane dependent mass transfer coefficient (m/s) 

Kb is the biofilm mass transfer coefficient (m/s) 

Kl is the liquid phase mass transfer coefficient (m/s) 

 
 
 
 

 

Figure 2.2 Illustration of a cross section of half a hollow fiber membrane bioreactor with 
mass transfer boundary layers shown layers. 

 
 
 
 
 

 Membrane materials.  Membrane material and structure determine the 

biofouling and govern mass transfer in a MBR. Typically, membrane production 

processes are proprietary and can vary greatly depending on the supplier. Membranes can 
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be separated into three categories based on the material matrix: dense phase, porous, and 

composite. Porous membranes have low-permeable, hydrophobic matrix structures with 

gas filled pores that allow diffusion. Dense phase membranes have a solid material matrix 

that relies on permeation of a compound into and out of the membrane. Composite 

membranes have a porous layer for structure with a thin dense phase layer to help reduce 

biofouling [23]. 

 Porous membrane.  Porous membranes have a low-permeability matrix 

structure with pores of diameter between 0.01-1 µm. The small pore size and 

hydrophobic material prevent water from filling the pores unless critical pressure is 

reached on the liquid side. Mass transfer in porous membranes is related to the gas 

diffusivity of a compound in air and can be estimated using equation 2-3. The diffusivity 

of the chemical in the pores, D (m2/s), is typically measured, but can be estimated using 

correlations based on the gas diffusivity. The tortuosity, τm, corrects for the pore size and 

shape. The mass transfer rates in porous membranes are higher than dense membranes 

but the pores can become clogged by biomass accumulation.  

Km = Dε
τmδ

 

Where: 

Km is the membrane mass transfer coefficient (m/s) 

D is the diffusivity of the compound in the pores (m2/s) 

ε is the porosity of the membrane (dimensionless) 

τm is the tortuosity (dimensionless) 

δ is the membrane thickness (m) 

 

(2-3) 
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 Dense membranes.  Mass transfer in dense phase membranes is 

dependent on the solubility and diffusivity of chemicals in the membrane matrix. The 

membrane mass transfer coefficient, Km, for a dense phase membrane can be estimated 

using equation 2-4. Fick’s first law can be used to estimate mass transfer in a dense 

membrane. Dense phase membranes have a lower capital cost and lower chance of 

biofouling than porous membranes, but also have lower mass transfer rates.  

Km = S𝐷𝐷𝑚𝑚
δ

 

Where: 

Km is the membrane mass transfer coefficient (m/s) 

Dm is the diffusivity of the compound in the membrane (m2/s) 

S is the solubility coefficient 

δ is the membrane thickness (m) 

 Composite membranes.  Composite membranes have both a dense phase 

and porous phase layer to prevent biofouling and to achieve greater mass transfer rate 

than a traditional dense phase membrane [19]. A thicker porous layer is used as a support 

structure for a thin dense phase layer on the liquid side of the reactor. The mass transfer 

coefficient can be estimated by combining equations 2-3 and 2-4 over the respective 

phases with a retardation coefficient to account for the interactions where the two layers 

meet. Composite membranes can have higher surface area to volume ratios than other 

biological reactors, but the initial construction cost can be as much as 10 times greater 

[24].  

 Silicone hollow fiber membrane bioreactor.  At the bench scale, 

silicone hollow fiber membrane bioreactors have been used to treat gas phase emissions 

(2-4) 
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of benzene, toluene, ethylbenzene, xylene, 1-butanol, organic sulfur, nitrate, and other 

VOCs [25-29]. Common VOCs and oxygen have a high permeability in silicone rubber 

that allows for high mass transfer rates to the biofilm and liquid phase. Work conducted 

by Attaway et al. [25]  on a mixture of BTEX was able to produce elimination capacities 

similar to porous membrane bioreactors. Low cost silicone tubing can be used to 

dramatically reduce the cost of HFMR construction and operation.  

 

2.3. MICROBIAL DEGRADATION OF TOLUENE 

Toluene pollution is a global issue involving water, land, and air, and microbial 

degradation is a key factor in the mitigation of emissions. Aerobic degradation of mono-

aromatics has been well documented for decades, but anaerobic degradation research is a 

relatively new field, spanning around 30 years of research. Significant investigation has 

been conducted to examine the degradation of aromatics, BTEX, and poly-aromatics 

under low redox conditions. Aerobic degradation of toluene is dependent on a series of 

oxidase catalyzed reactions for complete degradation and integration into cellular life. 

Anaerobic degradation of mono-aromatics is often more complex and can be facilitated 

by multiple metabolic pathways [30].  

 Aerobic Degradation of Toluene.  Aromatic hydrocarbons have a very 

stable ring structure that require enzyme catalyzed reactions to form more readily 

degradable central intermediates, like catechol or benzoate, that are more susceptible to 

ring cleavage. Depending on the location of substituents on the benzene ring, central 

intermediates are degraded to acetyl CoA, succinyl-CoA, and/or pyruvate.  

 Under aerobic conditions, toluene is transformed to benzoate by dehydrogenase 

reactions or to catechol by oxygenase-driven reactions. Figure 2.3, adapted from Fuchs et 



14 

  

al. [30], shows the multiple pathways identified from  central intermediates to form 

useful end products. The direction and rate of degradation is dependent on enzymatic 

capability of indigenous microorganisms and redox conditions.  

 Anaerobic Degradation of Toluene.  Anaerobic degradation of aromatics 

is catalyzed by a series of enzymatic reactions to overcome energy barriers [31-35]. The 

degradation pathways can be separated into four main categories: (1) glycyl radical 

enzyme catalyzation of fumarate resulting in aromatic-substituted succinates, (2) 

methylation, (3) dehydrogenase driven hydroxylation of an alkyl species, and (4) direct 

carboxylation [35]. These reactions can lead to the production of biomass by feeding 

main metabolic pathways that cause ring saturation, β-oxidation, and/or ring cleavage.  

Anaerobic degradation of toluene is the most well studied and understood 

degradation process of the BTEX compounds [31-33, 35]. Terminal electron acceptors 

like nitrate, iron (III), manganese, sulfate, and carbon dioxide have all been shown to  

facilitate degradation of toluene in pure and mixed communities [35]. Anaerobic toluene 

degradation has been reviewed extensively and all research to date agrees that the first 

step in degradation is the addition of fumarate on the methyl group of toluene [30-35]. 

This is a glycyl radical enzyme catalyzed reaction resulting in the formation of 

benzylsuccinate. The subsequent steps of degradation vary depending on bacterial strain; 

Figure 2.4 is an example of degradation by denitrifying bacteria [32]. Benzylsuccinate 

transformation is often completed by the benzoyl-CoA pathway, which leads to ring 

cleavage and the formation of CO2, and has been reviewed by Harwood et al. [34]. 

Intermediates of toluene metabolism can form through the partial breakdown of the 
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benzene ring resulting in the formation of acids and alcohols [35]. The anaerobic 

degradation of toluene leads to the release of hydrogen ions and a shift in pH.  

 

 

 

 

Figure 2.3 Aerobic Transformation Pathways for Toluene. Adapted from [30]. 
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Figure 2.4 Pathway of anaerobic degradation of toluene from [32]) 1) Toluene 2) fumrate 
3) benzylsuccinate 4) succinate 5) phenylitaconate 6) 2-carboxylmethyl-3-

hydroxyphenylpropionyl-CoA 7) succinyl-CoA 8) benzyol-CoA. 
 

 

2.4. AEROBIC CO-METABOLISM OF TRICHLOROETHYLENE  

TCE can be degraded by microorganisms both aerobically and anaerobically. 

Microbial degradation provides a cost effective and an environmentally-friendly method 

of TCE and other VOC emission reductions. In recent years, focus has been placed on 

aerobic co-metabolism as a means to initiate in-situ and ex-situ bioremediation of 

recalcitrant chlorinated hydrocarbons [3, 36]. It has been theorized that a mixture of 

aerobic and anaerobic bacteria and conditions create branched degradation pathways that 

can result in complete mineralization of TCE [7, 11].  
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Under aerobic conditions, many aliphatic and aromatic hydrocarbon-degrading 

microorganisms have the capability of degrading select halogenated compounds with 

non-specific oxygenases. This transformation process is classified as co-metabolism and 

is dependent on the presence of a primary substrate. Primary substrates are necessary for 

energy generation and often as a carbon source and include: propane, butane, methane, 

methanol, nitrate, benzene, phenol, and toluene. The co-metabolized substrate, TCE, does 

not enter catabolic or anabolic pathways in the cell, but metabolites may. Non-specific 

mono- or dioxygenases used for primary metabolism attack the TCE carbon double bond 

forming TCE epoxide. This epoxide is very unstable and can be transformed by abiotic or 

biotic reactions to dichloroacetate, glyoxylate, formate, and CO2 [5]. Figure 2.5, from 

Suttinun et al. [5], highlights the relationship between primary substrate metabolism, 

toluene, and co-metabolism of TCE by toluene monooxygenase.  

Limitations for co-metabolism have been reviewed extensively, but can be 

summarized by briefly examining inhibition, inactivation, and cytotoxicity [5, 16, 17, 37-

39]. Co-metabolism of TCE is dependent on a primary substrate for energy; this can 

result in competitive inhibition for enzyme activity between the two substrates. 

Competitive inhibition results in the reduction in substrate utilization rates and can 

greatly reduce the energy generation in the cells and overall growth. Enzyme inactivation 

was witnessed in several studies due to damage caused by TCE or metabolites. Varying 

levels of cytotoxicity were witnessed and seemed to depend on primary substrate and 

bacterial strain. Toxicity processes like the reduction in cellular respiration, viability, and 

damage to cellular structure have been related to toxicity induced by TCE degradation 

[5].  
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Figure 2.5 TCE co-metabolism pathway by toluene degrading bacteria. Adapted from [5]. 

 

 

Understanding the limiting effects of TCE and other chlorinated hydrocarbons on 

microbial systems is important for design and implementation of remediation and 

emission control systems. The capability of substrate specific bacteria to co-metabolize 

TCE is a relatively new method for treating chlorinated solvents in industry. Modeling 

specific rates and degradation capacities of microorganisms are integral for selection and 

design of biological of reactors. In general, TCE had little to no observable acute toxicity 



19 

  

on co-metabolizing microorganisms, but intermediate products can cause structural and 

enzymatic damage to cells. Chlorinated solvents and intermediate metabolites inhibit 

and/or inactive enzyme activity for all bacteria communities found in literature. The 

recovery period varied based upon the strain of bacteria studied and could be mitigated 

by shifting to steady state operation.  

 Co-metabolism of TCE in HFMRs with Toluene as a Substrate.  There 

are many reviews on co-metabolism of chlorinated hydrocarbons and this work will 

summarize the main projects focused on co-metabolism with toluene as a primary 

substrate in HFMRs [3, 5, 40]. Several different reactor configurations and loading 

schemes have been tested over the years, all with varying levels of success. HFMRs 

allow for large surface area-to-volume ratios and membrane selectivity that can optimize 

co-metabolism [11, 13, 20, 41-43].  

In 1995, Parvatiyar et al. [11], operated a HFMR to treat gas phase toluene and 

TCE. This study was one of the first to investigate the co-metabolism of TCE in a HFMR 

and the first to explore the potential for mixed aerobic and anaerobic degradation in a 

single biofilm. The authors grew the biofilm on a gradually increasing toluene load until 

steady-state was achieved, then added low TCE load to the gas phase. During co-

metabolic operations, the HFMR was able to achieve a maximum of 50% removal of 

TCE relating to an elimination capacity of 0.0092 g m-2hr-1. The corresponding toluene 

elimination capacity was 0.032 g m-2hr-1, which was reduced approximately 10% by the 

addition of TCE. This project led to additional testing with several different 

configurations and membrane materials, but was an early attempt at microbial 

degradation of TCE in a bioreactor.  
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In 2000, Dolasa and Ergas [41] tested 3 different operating systems for co-

metabolism in HFMR to treat gas phase TCE. The authors operated the membrane under 

mixed TCE and toluene gas phase operation, pulse toluene gas feed, and liquid toluene 

feed. It was theorized that pulsating toluene load in the gas stream or switching toluene 

feed to the liquid phase could help to prevent competitive inhibition by separating the 

substrates and allowing for greater enzyme activity for TCE degradation. The TCE and 

toluene in gas phase operating system was able to achieve the highest, sustained TCE 

removal at 36%, a TCE elimination capacity of 0.031 g m-2hr-1. The related toluene 

elimination capacity was 0.187 g m-2hr-1. The HFMR was able to overcome TCE 

inhibition within 5 days of steady state operation. The alternative loading schemes were 

unable to achieve higher removal and increased the difficultly in operation.  

Zhao et al. [43] investigated the ability of a porous membrane to treat gaseous 

TCE and toluene emissions over a 9 month study with an anaerobic liquid phase. The 

reactor was seeded with microorganisms collected from activated sludge that were 

enriched on toluene. The reactor was operated over a range of loading rates and GRT, but 

maximum TCE removal was observed with a GRT of 15.7 seconds. The elimination 

capacity of the reactor for TCE was 0.0016 g m-2hr-1 relating to a toluene elimination 

capacity of 0.0116 g m-2hr-1. The molar toluene to TCE ratio for maximum TCE removal 

was calculated to be 20:1 under these operating conditions. Co-metabolism could have 

been limited by the availability of oxygen in this study by decreasing oxygenase activity. 

The authors reported a continuous increase in pH that seems counter to most other reports 

in the literature. Competitive inhibition was exhibited by a decrease in toluene 
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degradation during the initial addition of TCE, but this was overcome within two weeks 

of operation.  

 

2.5. ANAEROBIC REDUCTIVE DEHALOGENATION 

Microorganisms have evolved the capability to dehalogenate aliphatic and 

aromatic compounds through several different fundamental metabolic pathways [6, 8, 

10]. Co-metabolic reactions, catalyzed by either mono- or dioxygenase, can result in the 

dehalogenation of organohalides in the presence of a primary substrate and oxygen. 

Under anaerobic conditions, reductive dehalogenase-catalyzed reactions can cause a step 

cleavage of halogenated species, or the spontaneous cleavage of two halogenated species 

and the subsequent formation of a double carbon bond. These last two anaerobic 

processes are classified as substitutive dehalogenation and dehydrohalogenation, 

respectively. Anaerobic reductive dehalogenation is a dissimulating metabolic process, or 

energy generating, whereby halogenated species are used as terminal electron acceptors 

for metabolic electron transfer. The movement of electrons from an electron source, 

typically hydrogen or acetate, to a halogenated compound results in a net gain in cellular 

energy through enzymatic metabolism. In works summarized by Fetzner [6], it was found 

that anaerobic reductive dehalogenation can achieve higher rates of dechlorination than 

co-metabolic processes.   

 Evolution of Anaerobic Dehalogenation.  Naturally produced and 

anthropogenic halogenated species present in the environment have caused the evolution 

of respiratory dehalogenation, as well as oxidative and fermentative mechanisms, to  

remove organohalides from anoxic areas in the environment [6, 10]. It is known that 

more than 3500 organohalides are produced naturally, and these natural organohalides 
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combined with variety of household or industrial products, like solvents and degreasers, 

have led to a wide spread distribution of persistent halogenated compounds. Complex 

halogenated compounds like polychlorinated dibenzofurans (PCDF) and polychlorinated 

dibenzodioxins (PCDD) are formed through natural abiotic events like forest fires and 

volcanic activity. Many bacteria, fungi, mammals, marine organisms, and higher plants 

all release a variety of halogenated compounds; chlorinated or brominated alkanes, 

alkenes, alcohols, ketones, acids, aldehydes, and epoxides have all been found in marine 

algae. Organisms likely form organohalides to act as chemical defense mechanisms. 

Biotic halogenated compounds have been shown to act as antibacterial, antifungal, 

insecticidal, and herbicidal compounds. Even though many halogenated species have an 

associated toxicity, compounds like chlorinated alkanes, chlorinated alkenes, halogenated 

benzenes, halogenated phenols, polychlorinated biphenyls, and dioxins have all been 

degraded by pure or mixed communities of microorganisms. Initially, it was believed that 

the genes responsible for reductive dehalogenation were a product of modern natural 

selection due to anthropogenic release of halogenated species, but recent sequencing and 

the global prevalence of these bacteria has led to a rise in theories regarding ancient 

evolution related to naturally occurring halogenated species. This shift in thought has 

occurred mostly within the last two decades [6, 8, 10]. 

 Reductive Dehalogenating Enzymes.  Dehydrohalogenase enzymes form 

double bonds on specific carbon atoms and release HCl through the metabolism of 

chlorinated alkanes or aromatics [6]. On some polychlorinated aromatics,  

dehydrohalogenase can catalyze multiple dehalogenating actions, forming multiple  

carbon double bonds and releasing multiple HCl molecules. Reductive dehalogenases are  
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enzymes with the capability to facilitate the respiration of halorespiring microorganisms 

and are associated with substitutive dehalogenation [10]. Multiple studies have found that 

dehalogenase activity is strongly associated with the cytoplasmic membrane; this can be 

seen in Figure 2.6 from Hollinger and Schumacher  [6, 9]. Figure 2.6 is the proposed 

dehalogenating respiratory pathway for Dehalobacter restrictus. In this pathway, two 

electrons from hydrogen are transported across the membrane and used by dehalogenase 

to reduce PCE to cis-DCE. 

Chlorine reduction requires one cellular proton which creates a proton motive 

force that drives ATP synthesis in the cell. The direction of electron flow and location of 

the dehalogenase varies from strain to strain, but dehalogenation is typically centralized 

around the cell membrane [6, 10]. Nearly all reductive dehalogenases are monomeric 

coronoid-dependent enzymes; cobalt, iron, and B12 are all necessary for the generation of 

dehalogenase and the anaerobic reductive dehalogenation process [6, 44]. 

 Gibbs Free Energy.  Research summarized by Smidt and de Vos [10] 

shows that Gibbs free energy estimates for the cleavage of halogenated species from 

aliphatic or aromatic compounds can yield between -130 and -180 kJ/mol of energy per 

halogenated species removed. This means that halogenated compounds are excellent 

electron acceptors and dehalogenation can occur in a redox range of 260 – 480 mV, 

which can be more favorable than sulfate reduction and similar in redox potential to 

nitrate (NO3/NO2) reduction , Figure 2.7 [45]. These estimates also predict that reductive 

dehalogenation is possible under low aerobic conditions, but rates and prevalence would 

be low. Modeled growth yields based on these estimates are always well above growth 
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Figure 2.6 Dehalobacter restrictus specific reductive dehalogenation of PCE cellular 
interactions, adapted from [9]. 

 
 

 

yields observed. This is likely caused by inefficient energy collection due to the slow 

evolution of existing metabolic pathways involved in dehalogenation.  

Gibbs free energy estimates predict that reductive dehalogenating organisms 

should out-compete other hydrogenotropic bacteria like sulfate reducers, acetogens, and 

methanogens when hydrogen is the primary electron source [10, 46, 47]. This means that 

in mixed communities of hydrogenotropic microorganisms, reductive dehalogenating 

organisms should dominate, especially under low hydrogen concentrations [10, 47, 48]. If 
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excess hydrogenotropic bacteria are already present in an environment, the growth of 

dehalogenating bacteria can be severely restricted [48]. 

 Electron Donors.  Acetate has also been shown to be a viable source of 

electrons for some strains of dehalogenating microorganisms [6, 8, 10, 48]. Acetate is 

formed during the fermentation of organic matter, and this can lead to the net ability of a 

mixed community to degrade halogenated compounds. Closed electron loops within a 

microcosm can shift specific microbial populations into syntrophic communities that 

dehalogenate as an end-product. Work performed by He et al. [48] examined the ability  

of pure and mixed cultures to use acetate or hydrogen as electron donors for the 

degradation of PCE, TCE, cis-DCE, and VC[48]. Several strains of dehalogenating 

bacteria have been isolated that grow on acetate exclusively or as a co-factor in mixed 

systems [48-50]. All of the acetate-based batch experiments performed by He et al. [48], 

resulted in the complete mineralization of all chlorinated ethenes in under 14 days. These 

findings were counterintuitive to previous thoughts on electron donors and helped push 

further research into the investigation of electron donors on simple and complex 

halogenated species. He et al. [48] also investigated the mixture of pure strains of 

acetogenic bacteria and acetate-specific dehalogenating bacteria on the dechlorination of 

PCE. No acetate accumulation was observed in the system until all electron acceptors 

were depleted signifying acetogens were directly feeding the dehalogenating bacteria and 

that acetate-producing bacteria were rate limiting in overall metabolism of chlorinated 

ethenes. Research has been conducted to investigate the use of mixed, syntrophic 

organisms and the degradation of chlorinated compounds. 
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Figure 2.7 Electron Tower adapted from [45]. 

 

 Anaerobic Reductive Dehalogenation in HFMRs.  Typically, 

bioremediation of chlorinated solvents is limited to in-situ bioaugmentation and 

biostimulation, however, a variety of bench-scale bioreactors have been tested to allow 

for ex-situ remediation or source control. Bioreactors designed to treat chlorinated  

solvents can be broken into three categories: aerobic co-metabolic, anaerobic reductive 

dehalogenating, and mixed or staged bioreactors. Biotrickling filters, up-flow bioreactors, 

packed bed, batch, and MBRs have all been used to reductively dehalogenate chlorinated 

solvents with varying success [13, 20, 50-56]. This review will primarily focus on 

reductive dehalogenation in HFMRs, including configuration and removal capabilities.  
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Most reported HFMRs designed to facilitate reductive dehalogenation used a 

similar setup focused on the direct delivery of an electron donor, hydrogen, to a biofilm 

in the liquid phase of a reactor [46, 49, 57-62]. Typically, HFMRs were designed with 

non-porous membranes filled with a constant pressure of H2; this configuration was able 

to overcome the low solubility of H2 and has been used successfully for denitrification 

and sulfate reduction [46, 49, 50]. The pressure of H2 in the membranes was used to 

control H2 flux, which could control the formation of hydrotropic bacteria and regulate 

dehalogenation.  

Chung et al. [49] used a premade denitrifying HFMR to dehalogenate TCE to 

ethene from a continuous liquid stream. The reactor consisted of 32 dense phase 

membranes with a total surface area of 72.6 cm2 and volume of 0.52 cm3. The HFMR was 

seeded with biomass from an existing HFMR that had originally been fed PCE and 

nitrate, but never TCE. During the first 20 days of continuous operation, the biofilm was 

fed with nitrate as a primary electron acceptor. From day 20 to day 182, the reactor was 

also fed TCE at a liquid concentration of 7.6 µM. By day 150 the reactor was able to 

convert 93% of the TCE to ethene with no detectible cis-DCE or VC in the effluent. The 

TCE loading rate was approximately 8.3 mg m-2 hr-1 and the elimination capacity of the 

reactor was 7.7 mg m-2 hr-1. By analyzing electron fluxes, Chung et al. [49] determined 

that the conversion of TCE to DCE was rate limiting and most likely caused by the 

limited bioavailability of H2 or inhibition from denitrification. These findings were 

unique due to the fact that most bioreactors were limited by DCE to VC or VC to ethene 

[50, 51]. DNA and RNA sequencing was used over several intervals in biofilm 

development to identify the present microorganisms and to quantify gene expression. 
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DNA sequencing revealed two sets of Dehalococcoide bacteria that, when coupled, were 

able to completely degrade TCE to ethene. DNA and RNA sequencing revealed that these 

strains were similar to previously identified cultures but not identical. Research suggests 

that Dehalococcoide bacteria strictly use acetate as an electron donor for dehalogenation 

but not H2 as a substrate. This means that either Dehalococcoide species can use a wider 

range of electron donors than previously thought, or that the biofilm contained a group of 

homoacetogens that were capable of producing significant acetate to facilitate 

dehalogenation. This substrate relationship is a good example of autotrophic and 

syntrophic communities capable of reductively dehalogenating TCE.  

Many bioreactors or bioremediation projects suffered from inhibition when a 

mixture of chlorinated compounds and daughter products are present. Chung and 

Rittmann [58] used the same HFMR from the previous experiment to examine the 

simultaneous reduction of TCE, trichloroethane (TCA), and chloroform (CF). Until a 

steady state was achieved (~20 days) biomass in the reactors was grown on a mixture of 

nitrate and sulfate, then the chlorinated species were added to the liquid influent. By day 

120 the HFMR was able to degrade all three chlorinated compounds to a fraction of inlet 

concentrations. The degradation of TCE and TCA greatly increased as effluent CF 

concentrations decreased. This means that CF or an intermediate metabolite caused some 

level of inhibition at high concentrations in the reactor. The bioreactor elimination 

capacity for TCE, TCA, and CF were 7.2 mg m-2 hr-1, 7.9 mg m-2 hr-1, and 8.2 mg m-2 hr-1, 

respectively. On day 133, the chlorinated solvent load was increased 2.5 times; this 

resulted in a dramatic increase in intermediate metabolite concentrations from all 

chlorinated solvents in the effluent.  
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Karatas et al. [50] studied membrane bioreactors with a similar set-up as Chung et 

al. [49, 58] with three separate chlorinated solvents as electron acceptors. Each reactor 

was operated under denitrifying conditions and then fed PCE, TCE, or DCE after biofilm 

formation. The DCE HFMR was unable to establish any level of dehalogenation and the 

TCE membrane was limited to TCE to DCE conversion. After 175 days of continuous 

operation, the PCE HFMR was able to reduce 15% of the PCE to ethene and after 188 

days, 95% was reduced to ethene. The effective elimination capacity of the PCE HFMR 

was 12.8 mg m-2 hr-1 during optimal operation. During the experiment, the hydraulic 

retention time (HRT) and H2 pressure in the reactors were adjusted to reduce intermediate 

accumulation and to maximize downstream dehalogenation. Karatas et al. [50] found 

evidence of strictly acetate utilizing bacteria during the molecular investigation of all 

biofilms. This means that homoacetogenic bacteria were also likely present in their 

bioreactors. The PCE dehalogenating membrane, from Karatas et al. [50], is another 

example of a mixed bacterial community facilitating dehalogenation to harmless ethene 

under anaerobic conditions.  

Parvatiyar et al. [11] were the first to attempt to facilitate combined aerobic and 

anaerobic degradation of TCE in a HFMR. A micro-porous HFMR module was used as 

the support structure for a heterogeneous biofilm, which allowed for the development of 

aerobic and anaerobic zones within the reactor. Oxygen was allowed to diffuse through 

the membrane and oxygenate the biofilm near the surface of the membrane. Acetate, at 7 

g/L, was recycled in the liquid phase to stimulate reductive dehalogenation and to create 

large anaerobic zones in the biofilm and liquid phase. In theory, the anaerobic zone 

would stimulate the degradation of TCE to cis-DCE and the aerobic zone would allow for 
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the degradation of DCE to ethene. The reactor was initially run under co-metabolic 

conditions with toluene as a substrate; this resulted in TCE removal of 50% which 

equates to a TCE elimination capacity of 9.23 mg m-2 hr-1. The authors then removed the 

toluene from the gas phase and reported 35% TCE removal with an elimination capacity 

of 2.4 mg m-2 hr-1. These results are interesting because the authors seeded the reactors 

with activated sludge, which had no reported exposure to chlorinated solvents, and failed 

to report the addition of the required trace metals or vitamins vital for reductive 

dehalogenating bacteria (RDB). No batch assays or subsequent biofilm characterization 

were reported that could prove the presence of RDBs during or following the study. 

There were also no reports of intermediate metabolite or end product detections during 

operation, which is unique for the microbial degradation of chlorinated solvents. 

Complete abiotic mass closure was not established in the bioreactor before operation. The 

authors assumed less than 1% of the TCE would be lost in the liquid phase due to the low 

solubility of TCE, but the low liquid-to-gas flowrate ratio in the system would allow for 

126% of the gaseous TCE to diffuse into the liquid phase. No liquid TCE concentrations 

were reported and a net loss of 15% from the liquid recycle, which is within the range 

reported by other projects, could be used to explain the entirety of the loss from the 

system.  

To date, there have been no complete reports of reductive dehalogenating biofilms 

in HFMRs to treat aerobic gas streams. Reductive dehalogenating HFMRs have been 

focused on treating anaerobic liquid waste streams that are contaminated with a variety of 

chlorinated solvents. This is a useful technology for treating contaminated drinking water 

or for ex-situ remediation of groundwater. Only one previous project has attempted to 
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facilitate complete mineralization of chlorinated solvents from an aerobic gas stream, and 

that work failed to fully establish mass closure or show the presence RDBs. This thesis 

project is an attempt to facilitate reductive dehalogenation in a mixed biofilm in a HFMR 

designed to treat a mixture of VOCs from an aerobic gas stream.  

 

2.6. AEROBIC AND ANAEROBIC ZONES FOR BIOGREDATION 

Anaerobic reductive dehalogenation of PCE and TCE is more energetically 

favorable then DCE or VC and some organisms lack the ability to degrade DCE or VC. 

These issues often lead to a bottle-neck, or limiting, effect for the complete 

mineralization of highly chlorinated solvents in  biological reactors or during in-situ 

bioremediation [6, 48, 49, 58]. To combat this issue, stage reactors have been tested and 

used in the field to completely degrade PCE and TCE to ethene by separating anaerobic 

and aerobic bacteria [6, 55, 63-67]. In anaerobic reactors, accumulation of VC results in 

toxic inhibition on microorganisms and even results in complete reactor failure, but 

coupled aerobic reactors allow for complete conversion of TCE, DCE, and VC. Many 

authors found that the transformation of DCE and VC were still rate limiting within the 

reactors due to slow conversion rates by aerobic bacteria [6, 63, 64, 66]. Staged 

bioreactors have higher initial capital cost than a single reactor and added a complexity to 

design, so coupled aerobic and anaerobic degradation in a single reactor or biofilm would 

be the ideal treatment option for chlorinated solvents [7, 11].  

The limited diffusive transport and complex heterogeneity in biofilms can lead to 

steep substrate and nutrient gradients that allow for mixed transformation of compounds 

by different, but often syntrophic pathways [68-70]. Heterogeneous biofilms are often 

filled with channels or voids that can create microcosms of chemical/nutrient pockets due 
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to increased or decreased mass transfer [71]. The general heterogeneity of biofilms makes 

modeling difficult and often leads to the assumption of homogeneity in stratified layers 

within the biofilm, perpendicular to the surface. Chemical gradients in biofilms are 

formed by limited mass transfer rates coupled with high substrate utilization rates and 

have been well documented in many nitrifying and denitrifying biofilm studies [72-74]. 

Schramm et al. [73] used microsensors and fluorescence in situ hybridization (FISH) to 

track substrate gradients and identify microorganisms in a coupled nitrifying-denitrifying 

membrane bioreactor. The microsensors allowed the authors to track O2, NO3, NO2, and 

NH4 in the biofilm and bulk liquid phase over several weeks of operation. High rates of 

ammonia conversion in the biofilm near the membrane led to a steep oxygen gradient 

resulting in the formation of an anoxic zone within the biofilm, ranging from 200-600 µm 

from the membrane surface, Figure 2.8. The anoxic zone near the bulk liquid allowed for 

conversion of nitrate and nitrite and the aerobic zone allowed for the transformation of 

NH4 and NH3. Stratified layers of microorganism were identified within the biofilm using 

FISH that further illustrate the competitive advantage of some organisms. Mass transfer 

models coupled with substrate and co-substrate models can be used to estimate aerobic 

and anaerobic zones, as well as, reactor elimination capacity.  
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Figure 2.8 Biofilm Substrate and pH gradients from [73]. 
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3. GOALS AND OBJECTIVES 

The goal of this research project was to investigate the potential for VOC control 

using silicone hollow fiber membrane bioreactors. This project also tried to investigate 

the ability of a single biofilm to facilitate mixed aerobic and anaerobic zones for the 

complete biodegradation of chlorinated solvents from aerobic gas streams. To achieve 

these goals, the following objectives were formulated: 

• Objective: Operate two single tube hollow fiber membrane bioreactors over a 

range of loading rates and gas residence times (GRTs) to develop loading-

elimination capacity (EC) curves for the biodegradation of a single stream of 

toluene.  

o Hypothesis tested: The HFMRs will be able to treat toluene over a range 

of loading rates. Adjusting the GRT will affect the driving force into the 

membranes, which will affect the EC.  

• Objective: Quantify TCE co-metabolism in the HFMR over a range of loading 

rates and primary and secondary substrate molar ratios. Track shifts in toluene 

degradation during this phase and compare to single substrate operation.  

o Hypothesis tested: The toluene-degrading biofilm will be able to co-

metabolize TCE at a low rate. Increasing the molar ratio of toluene to TCE 

will increase TCE removal in the reactors. The addition of TCE to the 

system will decrease the toluene EC in the reactors.  

• Objective: Measure TCE and toluene removal with the addition of aeration to the 

liquid phase of a reactor.  
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o Hypothesis tested: Oxygen-limiting conditions exist in the liquid phase 

and outer biofilm so that the addition of aeration in the liquid phase will 

increase toluene and co-metabolic TCE removal.  

• Objective: Use batch experiments with indigenous biofilm bacteria to confirm 

aerobic toluene and TCE degradation. Deoxygenate a portion of the indigenous 

bacteria and test the anaerobic degradation of TCE with the addition of acetate as 

an electron donor.  

o Hypothesis tested: The biofilm bacteria are able to degrade toluene and 

co-metabolize TCE under aerobic conditions. It was theorized that no 

dehalogenating bacteria (RDB) would be present in the biofilm and 

therefore no anaerobic TCE degradation will occur.  

• Objective: Investigate the possibility of reductive dehalogenation in a 

heterogeneous biofilm used to treat an aerobic gas stream.  

o Hypothesis tested: The high oxygen mass transfer into the biofilm will 

prevent anaerobic conditions in the biofilm or liquid phase. Because RDBs 

require anaerobic or microaerophilic conditions to survive, RDB activity 

will not be present. The buffering capacity of the liquid media will be 

sufficient to maintain the proper pH range for RDBs.  

• Objective: Investigate the addition of acetate as an electron donor to increase the 

anaerobic regions in the biofilms and as a source of electrons for reductive 

dehalogenation.  Add established RDB to the liquid phase of the reactor and 

measure TCE removal.  
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o Hypothesis tested: Increased BOD has the potential to increase overall 

anaerobic zones in the biofilm and decrease the ambient dissolved oxygen 

concentration in the liquid phase, thus promoting the activity of RDB. The 

addition of a secondary primary substrate (acetate) will reduce the toluene 

degradation in the reactors. The addition of a secondary primary substrate 

(acetate) will reduce the toluene degradation in the reactors but enhance 

TCE reductive dehalogenation by RDB added to the system. 
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4. METHODOLOGY 

4.1. OVERVIEW 

Two single tube hollow fiber membrane bioreactors (HFMRs) were operated in 

parallel to develop loading curves for toluene degradation and to investigate 

trichloroethylene (TCE) degradation. The reactors were operated to test co-metabolism of 

TCE in the presence of toluene and to test the ability of reductive dehalogenating bacteria 

(RDB) to function in a partially aerobic biofilm. The project was also designed to test the 

ability of mixed biofilms to facilitate simultaneous aerobic/anaerobic degradation of TCE 

and the by-products of degradation (DCE and VC), which are often rate limiting. 

Furthermore, the addition of acetate as an electron donor and source of biochemical 

oxygen demand (BOD) was studied in an attempt to increase anaerobic zones in the 

biofilm and increase reductive dehalogenation potential. The bench-scale bioreactors 

each consisted of one silicone tube submerged in a nutrient rich liquid phase under low 

flow recirculating conditions. Inlet and outlet gas and liquid samples were measured 

using gas chromatography during biotic operation and to determine abiotic mass closure. 

During the enhanced anaerobic operation (phase III), chemical oxygen demand (COD) 

was measured to estimate the degradation rate of the aqueous acetate. Throughout the 

growth and initial operating phases the tubular membranes were projected onto a nearby 

white screen to estimate in situ biofilm thickness. Temperature, dissolved oxygen, pH, 

and gas and liquid flowrates were all monitored during operation.  
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4.2. BIOREACTORS 

Each HFMR, illustrated in Figure 4.1 and Figure 4.2,  consisted of a Pyrex glass 

cylinder with twist-off rubber stoppers, from Plasticoid Company (part # L9M669), 

capping each end. Steel tubing with outer diameter of ¼ inch was inserted through the 

rubber stoppers and used to secure the membrane and to provide inlet and outlet liquid 

sampling ports for the reactors. Peroxide-cured silicone, ¼ inch ID x ⅜ inch OD, from 

Cole-Parmer (item# WU-06411-71) was used as the tubular membrane in each reactor. 

The membrane was secured by Swagelok ferrules that were press fit onto the steel 

tubing pieces which had been inserted into the rubber stoppers. The ferrules acted as a 

hose barb for the membranes that allowed easy assembly and kept the membranes taut 

during installation and operation. Teflon-lined silicone rubber septa were placed inside 

¼ inch Swagelok caps and used to seal the liquid sample ports on the top and bottom of 

the reactors. 

 Figure 4.1 is a schematic of the gas phase for the bioreactor system. Compressed 

air was supplied from the university’s gas system, a Bellofram Corporation regulator 

(part# 241-980-066) maintained the pressure at a constant 16 psi, and the total flow was 

controlled by a Cole-Parmer Valved Acrylic Rotameter (Item# EW-32461-50). The flow 

then split into 3 parallel lines, each controlled by a 316 Stainless steel needle-valve with 

Yor-Lok tube fittings from McMaster-Carr (part # 45585K85). Two of the three lines, 

were forced through separate flasks, sealed with rubber stoppers, each containing a 40 

mL vials of the pure, liquid VOC, TCE or toluene. Once steady state was achieved in the 

flask, the VOC vials had a constant emission rate that allowed for very controlled loading 

over an extended period of time. Aluminum foil, with a set number of tiny holes, was 
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secured to the vials containing the VOCs and used to control the emission rate. After each 

flask, a 316 stainless steel ball-valve from Swagelok (part # 463836001) was placed 

inline; this gave the operator the ability to completely remove a VOC with very little 

effort. Following the ball-valve, each contaminated line had a low flow Cole-Parmer 

Valved Acrylic Rotameter (Item# EW-32461-40), which allowed for rough control of the 

loading during operation.  

 

 

 

Figure 4.1 Gas phase schematic for bioreactor system. 
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All three lines were then rejoined and sent to a Bimba stainless steel (mixing) 

chamber to improve mixing by increasing the volume and dramatically reducing gas 

phase velocity. After the mixing chamber, the flow was split and piped to the top of each 

bioreactor and controlled by two Cole-Parmer Valved Acrylic Rotameters (Item # WU-

32460-42). Teflon-lined silicone rubber septa were placed inside ¼-inch Swagelok 

caps and placed inline before and after the bioreactors as gas phase sampling ports.  

Figure 4.2 is the liquid phase schematic for the two membrane bioreactors. Liquid 

flow was a constant 10 mL/min entering from the bottom and exiting the top of each 

reactor. The liquid was pumped through the bottom and exited the top of the reactors to 

allow for removal of all air bubbles from the system, to allow for easier draining of the 

reactors, and to limit the potential for clogging in the recycle lines. Having the liquid 

phase enter through the bottom instead of top prevented setting suspended solids from 

clogging the exit, and allowed gravity to help filter the recirculating liquid. The recycle 

lines were flexible, clear, Tygon tubing, and Cole-Parmer MasterFlex tubing was used 

inside of the pump. That pump was a multi-head peristaltic pump (Cole Parmer 

Instrument Company, Model 7553-85) with Masterflex speed controller (Cole Parmer 

Instrument Company, Model 7553-71, 50/60 Hz, 115 V, and 3 Amp), which was used to 

circulate the liquid phase in both reactors. The reservoir, tubing, and reactor combined to 

a liquid phase volume of 750 mL.  

 

 

 

 

http://www.coleparmer.com/Product/Cole_Parmer_Valved_Acrylic_Flowmeter_50_mm_Scale_for_Air_0_1_1_LPM/WU-32460-42
http://www.coleparmer.com/Product/Cole_Parmer_Valved_Acrylic_Flowmeter_50_mm_Scale_for_Air_0_1_1_LPM/WU-32460-42
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Figure 4.2 Liquid Phase Schematic for Bioreactors.  

 

 

4.3. BACTERIAL INOCULUM 

 Aerobic Bacteria.   During the spring of 2015, an Erlenmeyer flask was 

seeded with return activated sludge from the Rolla, MO southeast wastewater treatment 

plant and placed on an orbital shaker. The flask was fed a mixture of glucose and toluene 

to a concentration of 15 mg/L each. This was done to provide a ready carbon sources and  

promote growth of toluene-oxidizing bacteria. Aluminum foil was used to cover each 

flask and the headspace was routinely analyzed for toluene to determine the dosing 
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schedule. After initial biomass accumulation, a subculture was seeded with 1% by 

volume of the culture and supplied with nutrients adapted from England et al. [75]  

The subcultures were then placed on the same orbital shaker with only toluene as a 

carbon source. The nutrient solution, shown in Table 4.1, was adjusted using ratios found 

in Kim et al. [76] and Sui et al. [15] to allow for greater buffering capacity and to supply 

a wider range of trace nutrients. The trace-elements were stored in a separate solution at a 

concentration requiring 1 mL/ L of primary solution and mixed following method 7.5.9 

from Methods for General and Molecular Microbiology 2nd edition [77]. 

 Anaerobic Bacteria.  Several attempts to culture new or subculture 

existing dehalogentating bacteria failed in the spring and summer 2015. In fall 2015, two 

different dehalogenating samples were obtained and subcultured and shown to degrade 

PCE in batch cultures before inoculation into the HFMRs. A sample of Dehalococcoide 

mccartyii from Terra systems and a mixed dehalogenating consortium from TSI were  

subcultured using methods from Loffler et al  [78]. A100-fold salt solution was prepared 

with 100 g/L NaCl, 50 g/L MgCl2 X 6H2O, 20 g/L NH4Cl, 30 g/L KCl, and 1.5 g/L CaCl2 

X 2 H2O. A vitamin solution was substituted with a concentrated yeast extract solution of 

1 g/L. A 2-L Erlenmeyer flask with 900 mL of distilled water was placed on a stir/heating 

plate and 10 mL of the 100-fold solution was added. One mL of the trace metal and 

vitamin solutions were added followed by a resazurin solution. Acetate was added as the 

electron donor to a concentration of 30 mM. The solution was filled to 1 L with more 

distilled water and brought to a boil for 10 minutes. The solution was then cooled in an 

ice bath and placed inside an anaerobic glovebag. All remaining dissolved oxygen was 

eliminated by bubbling pure N2 through the media for approximately an hour, and then 
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Table 4.1 Nutrient and trace metal solution. 

Aerobic Media  Trace Metals  1:100 
Chemical mg/L Chemical mg/L 
(NH4)2SO4 2000 ZnSO4 100 
K2HPO4 750 H3BO3 50 
KH2PO4 750 CuSO4*6H2O 40 
  CoCl2*6H2O 50 
  MnCl2*4H2O 500 
  NiCl2*6H2O 45 
  Na2MoO4*2H2O 1000 
  MgSO4 1500 
  FeSO4*7H2O 500 
  CaCl2*2H2O 1500 

 

 

 

Na2S to a concentration of 0.2 mM was added as a free-oxygen scavenger. The pH was 

adjusted using 1 M NaOH to 7.25. While in the glovebag, 100mL of media was placed in 

two 260 mL amber glass bottles with Mininert® caps. A 1% by volume solution of each 

of the dehalogenating communities was used to start two subcultures. A 90% N2 and 10% 

H2 gas stream was used to bring the bottle headspace to approximately 5% H2. The 

bottles were placed on an orbital shaker and PCE degradation was measured over two 

weeks. Once significant biomass had accumulated, the HFMRs were seeded with both 

subcultures with a 1% by volume inoculant. 

 

4.4. ABIOTIC OPERATION  

Abiotic mass closure and the steady state equilibrium time were measured for 

TCE, toluene, and the mixture of TCE and toluene during stagnant and recirculating 
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conditions for both bioreactors. Inlet gas, outlet gas, and liquid sample concentrations 

were checked periodically and mass closure was estimated for each system using 

equation 4-1. Under stagnant conditions mass closure was approximately 97% for TCE, 

toluene and a mixture of the two and occurred after approximately 11 hours. Under 

recirculating conditions, mass closure was estimated at 94-95 ±7% with some increased 

loss in the liquid phase most likely through the permeable liquid recirculation lines. The 

time to apparent steady state under recirculating conditions, 2-3 days, was significantly 

longer than under stagnant conditions. During abiotic operation, flow through the VOC 

flasks was shut off and the outlet concentration was measured while pure air passed 

through the membranes. After approximately 11 hours the concentration in both reactors 

dropped below the quantifiable level but was above detection level, and after 18 hours the 

air was considered free of VOCs. 

Mass Closure (%) =
QAirCAirOut + QLiquidCLiquidOut

QAirCAirIn + QLiquidCLiquidIn
X100 

 

4.5. BIOTIC OPERATION 

After abiotic experimentation was completed, the bioreactors and reservoirs were 

filled with the nutrient media used during initial enrichment of the aerobic bacteria and 

recirculation was started. A low toluene load was introduced to each bioreactor and the 

system was allowed to reach quasi-steady. This allowed for the accumulation of toluene 

in the liquid phase, which agreed with Henry’s law estimates. The reactors were then 

each seeded with a 1:100 mL ratio of aerobic biomass subculture, through the liquid 

sample port directly into the shell side of the reactors.  
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The bioreactors were operated through three phases: Phase I-toluene degradation, 

Phase II-aerobic co-metabolism of TCE, and phase III enhanced anaerobic degradation 

with acetate addition in the liquid phase. The toluene phase started with a growth phase to 

create the initial biomass on the membranes and then to establish loading curves for the 

bioreactors under very low loading conditions. After an initial quasi-steady state was 

reached (30 days); the loading rate and gas resident time (GRT) were varied and 

elimination capacities were determined. During the second phase, TCE was added to the 

air phase and co-metabolic removal was measured for a variety of loading rates. During 

phase II the liquid phase in reactor two was aerated using an aeration stone to saturation 

(~8.4 mg/L) in the reservoir to correct for the limited oxygen availability. During the 

final phase of operation, acetate and dehalogenating bacteria were added to the reactors in 

an attempt to improve anaerobic degradation of TCE.  

 

4.6. MEASUREMENTS 

 Biofilm Thickness.   The biofilm thickness was measured using a 

BESELERTM PS 360 projector and gridded screen located one meter away, Figure 4.3. A  

piece of membrane was submerged in water for an extended period of time to mimic the 

swelling of the membrane in the bioreactor during operation. The swelled membrane 

piece was measured and used to scale the measurements of the biofilm on the screen with 

the measured projected biofilm. Measurements for the biofilm were taken at twelve 

equidistant heights along on the membranes. During the initial growth phase, biofilm 

measurements were taken routinely for both bioreactors. After significant biomass was 

established, biofilm thickness was measured for reactor two to quantify biomass with 

different load rates and GRTs and during the last two phases of operation.  
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Figure 4.3 Picture of biofilm measurements. 

 

 

 Gaseous Standard Preparation.  Toluene and TCE standards for use with 

the gas chromatograph (GC) were prepared with distilled water and certified HPLC grade 

chemicals. Saturated water stock solutions of TCE and toluene were used to make all 

standards. Measured amounts of TCE- and toluene-saturated water solution were added 

to 100 mL of distilled water in 260-mL bottles with Mininert® caps to create a range of  

standards with the desired headspace and liquid phase concentrations. Standards were 

shaken vigorously and then placed on an orbital shaker for a minimum of an hour to  

allow for equilibrium. Solubility constants, from Amoore and Hautala [79], were used for 

all calculations and reported for TCE and toluene as 1.1 g/L and 0.54 g/L, respectively. 

Headspace concentrations were calculated for standards using temperature corrected 

Henry’s law constants from Staudinger and Roberts [80] and equation 4-2 and 4-3. The 

dimensionless Henry’s law constant, at a temperature of 21°C, for TCE and toluene were 

found to be 0.347 and 0.229, respectively. Standards were analyzed, plotted, and fitted 
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with a liner curve. Figure 4.4 is an example of a standard curve used to estimate inlet and 

outlet gas and liquid concentrations.  

𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇=𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴+𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  

𝐾𝐾𝐻𝐻 = 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

 

 

 

 

 

Figure 4.4 Toluene Standard Curve. 

 

 

 Gaseous and Liquid Samples. Gas samples were collected using a 250-µL 

HamiltonTM 1700 series GasTightTM SampleLockTM syringe (part# 14-815-564.) Liquid  

samples were collected using a 10-mL HamiltonTM model 1010 GasTightTM syringe with 

Luer Lock (part# 81601.) The 10-mL liquid samples were placed in a 40-mL glass vial, 
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capped with Mininert® caps, and biological activity was neutralized with 20 µL of 5N 

H2SO4, then samples were placed on an orbital shaker and allowed to equilibrate. After 

equilibration, headspace over the liquid samples was analyzed and the liquid phase 

concentration was calculated using the appropriate Henry’s law constant.  

During most of phase I and III, a Hewlett Packard 5890 Series II Gas 

Chromatograph with Flame Ionization Detector and a J&W Scientific HP-5 (30 m, 0.32 

mm ID, and a 0.25 µm film thickness) was used to analyze headspace and gas samples. 

The GC-FID was operated under a split-less mode with a nitrogen flow of 18 mL/min 

and isothermally at a temperature of 50 oC. Toluene and TCE eluted at 2.2 and 1.7 

minutes, respectively. The inlet and detector were held at 250 oC during all runs.  

During parts of phases I, II, and III, an Agilent 5793 Network Mass Selective 

Detector (GC-MS) was used to analyze gaseous samples. The GC-MS was operated with 

direct headspace injections and a gas 1:40 split. The column flow rate was 1.4 mL/min of 

helium and the oven ran isothermally at 40 oC for 2.4 minutes, ramped to 80 oC at 40 

oC/min, and held at 80 oC for 0.25 minutes. The solvent delay lasted for 2.3 minutes and 

TCE and toluene eluted at 2.6 and 3.1 minutes, respectively. The inlet was set at 280 oC 

and the detector was set at 250 oC.  

 Confidence interval.  A 95% confidence interval was established for each 

sampling event for the inlet and outlet gas streams. The data from each calibration curve 

performed during the first phase of operation was pooled and the average response was 

related to the concentration-dependent standard deviation. Variance was not directly 

related to response in a linear fashion, but fit the collected data by normalizing with a 

function of the response. Equation 4-4 shows the model fitted standard deviation to 
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response relationship developed for the pooled data. The pooled standard deviation was 

compared with individual sample deviations and used to calculate a 95% confidence 

interval for each sampling event. Equation 4-5 was used to calculate the confidence 

intervals for each sampling event with the GC-FID. A similar relationship was 

established for the pooled GC-MS data and used to calculate confidence intervals.  

σpooled = 3.6205 ∗ X�0.6416 

𝑋𝑋� ± 𝑍𝑍1−𝛼𝛼2
∗
𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
√𝑁𝑁

 

Where: 
 

X  is the sample mean. 

2
1 α
−

Z  is the critical value of the standard normal distribution. 

pooledσ  is the average normalized deviation from the standard curve times the 

sample response. 

N is the sample size. 

 Method detection limit and limit of quantification.  The method 

detection limit (MDL) and limit of quantification (LOQ) for the GC-FID and the GC-MS 

were established using the Environmental Protection Agency’s (EPA) methods from 40 

CFR Part 136. APPENDIX B, revision 1.11 for toluene and TCE. Fours identical 

standards of toluene with a headspace concentration of 5.5 µg/L were analyzed in 

duplicate. For the GC-FID, equation 4-6 was used to calculate a MDL for toluene of less 

than 0.004 mg/L in the liquid phase with a signal to noise ratio of less than 10 but greater 

than 2.5. A set of four TCE samples, with duplicate injections, and a set of eight TCE 

samples with concentration of 9.9 µg/L, were analyzed to compare instrument variance 

(4-4) 

(4-5) 
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with variance in standard preparation. The instrument MDL for TCE was calculated to be 

less than 0.07 mg/L in the liquid phase and the MDL associated with standard preparation 

was estimated to be less than 0.08 mg/L in the liquid phase. The comparison showed that 

the inherent error associated with standard preparation is similar to the variance in typical 

machine operation. The variance from the two TCE MDLs were then used to calculate 

the pooled MDL (Equation 4-7), less than 0.03 mg/L in the liquid phase. The GC-FID 

LOQs for TCE and toluene were calculated using equation 4-8. The MDL and LOQ 

values for the GC-MS were found using spiked 1.1 mg/L samples using the same 

procedure outlined by the EPA. A summary of MDL and LOQ values can be found in 

Table 4.2.  

MDL = T(n−1) ∗ σ 

    𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (�6∗𝜎𝜎𝑎𝑎
2+6∗𝜎𝜎𝑏𝑏

2�
12

)1/2 

LOQ = 10 ∗ σ 

 Other Analytical Methods.  Chemical oxygen demand, pH, dissolved 

oxygen, water flowrate, and air flowrate were tracked during the entirety of the 

experiment.  

 pH.  From July 2015 through August 2015 an Oakton pH 5+ Handheld 

Meter with pH probe was used to measure reservoir pH. The meter was calibrated using a 

two-point calibration method with standards of pH 4 and 7, from Fisher Science. The  

meter has an accuracy of 0.01 pH and a range from 0.00 – 14 pH. From September 2015 

until the conclusion of the project, a Thermo Scientific Orion 3 Star Benchtop pH meter 

was used. The meter was calibrated using the same procedures as outlined above and had 

an accuracy of 0.002 pH over the range of 0.0 – 14. The pH meter from Thermo 

(4-7) 

(4-8) 

(4-6) 
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Scientific was used to verify the results obtained using the Oakton pH meter, and was 

then used during the remainder of the experiment due to improved accuracy. 

 

 

Table 4.2 MDL and LOQ values for GC-FID and GC-MS. 

  GC-FID GC-MS 

Chemical MDL  (mg/L) LOQ (mg/L) MDL  (mg/L) LOQ (mg/L) 

Toluene 0.004 0.013 0.0015 0.0050 

TCE 0.07 0.231 0.0010 0.0033 

TCE (standard) 0.08 0.291 N/A N/A 

TCE (pooled) 0.03 0.096 N/A N/A 

 

 

 

 Dissolved oxygen. From July 2015 through October of 2015 dissolved 

oxygen (DO) was measured in the reservoirs using a YSI model 68 dissolved oxygen 

probe and meter. The probe and meter have a range of 0 – 20 mg/L with a resolution of 

0.01 mg/L and accuracy of 0.03 mg/L. The meter was calibrated daily according to local 

altitude and barometric pressure. A 0 mg/L DO standard and a saturated standard were 

used for a two-point calibration method. The saturated standard was prepared by  

bubbling compressed air in a flask filled with water for an extended period of time. The 0 

mg/L standard was prepared by adding CoCl2 and NaSO2 to a flask containing 100 mL of 

water.  
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From October 2015until the conclusion of the project, a YSI model 5000 

dissolved oxygen probe and meter was used to check reservoir DO concentrations. The 

YSI 5000 probe had a propeller that increased the superficial velocity near the probe 

membrane that allowed for more precise readings. Very little difference was found 

between the measurements made with the 68 and 5000 model.  

 Chemical oxygen demand.  During stimulated anaerobic operation of the 

membrane biological reactors the chemical oxygen demand (COD) was routinely 

measured to determine the rate of acetate degradation in each reactor. COD was 

measured using Method 8000 from HACH and the HACH DR 2000 Spectrophotometer. 

While holding a HACH COD digestion vial at a 45 degree angle, 2 mL of homogenized 

sample were pipetted into the vial. A blank was prepared in a similar fashion, but the 

homogenized sample was replaced by 2 mL of demineralized water. The vials were 

inverted several times to mix then placed in a 150 ºC preheated COD digester and 

allowed to heat for 2 hours. After 2 hours the vials were allowed to cool for 

approximately 20 minutes, inverted to mix while still warm, and then placed in a rack to 

cool to room temperature. The blank was placed in the HACH DR 2000 

Spectrophotometer and allowed to zero the instrument. The vials containing the sample 

were then placed in the instrument. The outside of each vial was cleaned with a damp and 

then dry cloth to remove any blemishes. COD standards were prepared using methods 

outlined in Method 8000 from HACH. 

 Water flowrate.  The water flowrate was determined using a stopwatch 

and a graduated cylinder. The flow from the reactors was diverted to the graduated 



53 

  

cylinder (mL) for a period of time (min). The flowrate is determined by the measured 

volume over time, mL/min. The pump speed and pump fitting tightness were adjusted to 

get both reactors to a liquid-flowrate of 10 mL/min.  

 Air flowrate. A series of Cole-Parmer rotameters were used to control 

and measure the flowrate for various points in the system. A 3-point calibration curve 

was fitted for each rotameter using a TSI 4100 series flow meter and checked periodically 

during operation. 
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5.    RESULTS AND DISCUSSION 

In this experiment two hollow fiber membrane bioreactors (HFMR) were operated 

in parallel to treat gas phase VOCs for 215 days. A variety of loading rates and operating 

conditions were tested during that time. A loading curve for toluene degradation was 

established at low gas phase VOC concentrations. Batch experiments were conducted to 

test the ability of indigenous bacteria to treat toluene and TCE under aerobic and 

anaerobic conditions. Reductive dehalogenating bacteria (RDB) were subcultured and 

used to inoculate the reactors for the final phase of the project.  

 

5.1. MASS TRANFER ESTIMATES 

Before bioreactor start-up oxygen and toluene mass transfer was modeled to 

estimate steady-state dissolved oxygen concentration and to determine the necessary 

biochemical oxygen demand (BOD) needed to form anaerobic zones. The molar flux of 

oxygen and toluene were estimated using equation 2-1 and 2-2. The liquid phase mass 

transfer coefficient was estimated using an empirical correlation, equation 5-1. The gas 

phase mass transfer coefficient was assumed to be negligible for this situation and the 

biofilm mass transfer coefficient was assumed to be similar to the liquid phase. The 

membrane mass transfer coefficient was calculated using equation 2-2 and values from 

Table 5.1, adapted from England [75]. These calculations relied on a number of 

assumptions: 

1. Steady state conditions in the reactor. 

2. Diffusion dominates all mass transfer in the reactor. 
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3. The mass of oxygen in the gas phase did not decrease significantly due to the 

transfer through the membrane. This relationship was shown by relating the mass 

flowrate through the membrane to the mass flowrate in the air phase. It was found 

that less than 0.0009% of the mass of oxygen in the gas phase was lost through 

transfer into the reactor.  

4. The mass of toluene in the gas phase does decrease over the length of the 

membrane. The total membrane mass transfer of toluene can be assumed by 

averaging inlet and outlet instantaneous flux over the length of the membrane. 

The inlet and outlet concentrations were estimated using values from England et 

al. [75] and then calibrated using system data. 

5. Oxygen utilization in the reactor is stoichiometrically related to the toluene 

utilization, equation 5-2. Biomass is constant and toluene metabolism is used to 

maintain cellular function, this gives a conservative or “worst-case” scenario 

approximation.  

A wide range of oxygen and toluene permeabilities in silicon rubber can be found 

in the literature. This wide range in measured and fitted values can make the estimated 

dissolved oxygen concentration vary from oxygen saturation (~8.5mg/L) to as low as 5.7 

mg/L. This modeled DO is still well above the values measured during the 200+ day 

operation of the HFMRs. A corresponding BOD loading rate was estimated to account 

for the surplus oxygen mass transfer into the reactor.  
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Where: 

 kl  = Mass transfer coefficient in the liquid phase (cm s-1) 

 do  = Fiber outer diameter (cm) 

 Re  = Reynolds number (dimensionless) 

 Sc  = Schmidt number (dimensionless) 

 µ  = Shear viscosity (g cm-1 s-1) 

 ρ  = Density of water (g cm-3) 

 vw  = Water velocity (cm s-1) 

 Dw  = Diffusion coefficient of substrate in water (cm2 s-1) 

 
5.2. PHASE I: TOLUENE DEGRADATION AND LOADING 

During phase I the reactors were seeded with toluene degrading bacteria from 

enriched activated sludge. Each HFMR was then operated for 110 days under a variety of 

toluene loading rates and GRTs and the resulting elimination capacities were measured. 

Dissolved oxygen, pH, biofilm thickness, and biofilm appearance were all recorded.     

 Biofilm Growth and Development.  On July 22, 2015 both bioreactors 

were seeded with a culture that had been subcultured and grown on toluene exclusively 

for over 8 weeks. Initial biomass was collected from the southeast Rolla wastewater 

treatment plant in the spring of 2015. For the first several weeks, the microorganisms 

were fed a mixture of glucose and toluene. The headspace in the Erlenmeyer flask was 

tested routinely for toluene, and this was then used to determine the dosing schedule. 

After several weeks, significant biomass had accumulated and the sample was  

subcultured into a mineral media and exclusively given toluene as a substrate. After three 

weeks the community was again subcultured and dosed with toluene. A 1:100 mL/mL 
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Table 5.1 Mass transfer coefficients adapted from [75]. 

PARAMETER Value 

P(Oxygen in Silicone)  1.63*10-13 mol m-1 s-1 Pa-1 

P(Toluene in Silicone) = DmS .000082- 0.003 cm2 s-1 
D(Oxygen in Water) 2.26*10-5 cm2 s-1 
D(Oxygen in Air) 0.219 cm2 s-1 
D(Toluene in Water) 9*10-6 cm2 s-1 
D(Toluene in Air) 0.0849 cm2 s-1 
H(Oxygen 20

o
C) 73,800 Pa m3 mol-1 

µ(water 20
o
C) 0.01002 g cm-1 s-1 

µair20
o
C 0.000182 g cm-1 s-1 

ρair20
o
C 0.001205 g cm-3 

ρ(water 20
o
C) 998.2 kg m-3 

Length  21 cm 
ri 0.47625 cm 
ro 0.635 cm 

 

 

 
ratio of seed to reactor volume was injected directly into the shell side of the reactors 

from the liquid sample port using biomass from this second subculture. After 24 hours, 

tiny clumps of white organisms were observed on the surface of the membranes and after 

5 days a thin layer of biofilm had accumulated on both reactors. On day 6, suspended 

clumps of organisms were found in the liquid phase of the shell and reservoir of each 

reactor. The biofilm in both reactors started to have sparse green clusters, and by day 21 

the entire biofilm had changed to a greenish-brown color. Pictures of biofilm 

development can be found in the A. 

 Measuring biofilm thickness is often a difficult task that either requires expensive 

cameras and microscopes or requires sacrificing the biofilm. This project used a projector 

to allow for in situ measuring of the biofilm by projecting light through the glass modules 
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and magnifying the membrane and surrounding biofilm on a nearby screen. This method 

was adopted from techniques outlined by Freitas dos Santos and Livingston [81]. Biofilm 

thickness was measured on two sides of the reactor at 12 equidistant lengths covering 

approximately two-fifths of the reactor length, Figure 5.1. For the first several days the 

biofilm consisted of heterogeneous clumps that made measuring impossible, but by day 7 

biofilm thickness could be measured for the length of the membrane. The left and right 

thicknesses were then combined and used to estimate the overall area of biofilm at 

heights along the membrane. The area was estimated by assuming a circular biofilm 

offset from the membrane. The volume was then calculated by summing each area over a 

length of membrane, Figure 5.2. During the growth phase the biofilm thickness and 

volume seemed to plateau on day 10 and then fluctuate slightly until day 23.   

 

 

 

Figure 5.1 Measured biofilm thickness in the growth phase. 
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Figure 5.2 Estimated biofilm volume during growth phase. 

 

 

Prior to inoculation, the liquid mineral media had reached equilibrium with the 

gas phase toluene stream; this caused the liquid phase concentration in the reactors to be 

64-67 mg/m3, which was proportionate to the estimates from Henry’s law constant. As 

the biofilm and suspended microorganisms developed, a steady decline in liquid phase 

toluene was observed, Figure 5.3. During the growth phase, the liquid concentration of 

toluene seemed to be independent of the membrane loading rate, but an increase in 

observed suspended organisms did correlate to the decrease in total mass of soluble 

toluene.  

The pH for each system was measured routinely from the reservoir during the 

entirety of the experiment. As the biofilm and suspended growth developed, a constant 

decline in pH was observed, Figure 5.4. The slow pH drop was initially attributed to the 
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Figure 5.3 Reactor loading rates and liquid phase toluene concentration during the growth 

period. 
 

 

production of CO2 through toluene metabolism. The mineral media had been designed to 

have buffering capacity, so the steady decline in pH was surprising. During the growth 

phase the rate of acidification was fairly slow, with pH dropping from 6.64 to 

approximately 5.7 in 23 days. The DO in both reactors was measured as less than 1 mg/L 

which is below a quantifiable level for most DO probes and meters. The estimated DO 

was significantly higher than the observed DO, which was likely caused by a reduction in 

mass transfer due to variations in silicone tubing production.  The steady decline in pH 

and the low measured DO led to the assumption of partial anaerobic metabolism leading 

to the production of fatty acids. 
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Figure 5.4 Dissolved oxygen concentration and pH during growth period. 

 

 

During the growth period the gas phase inlet and outlet concentrations were 

tracked daily for both reactors, Figure 5.5. During the first 8 days, little to no removal 

could be attributed to microbial degradation which correlated with biomass development. 

During the growth period the average toluene air concentration was 195 mg/m3 (LCL 183 

mg/m3, UCL 207 mg/m3) and the final outlet concentrations in reactors 1 and 2 were 140 

and 145 mg/m3, respectively. After 23 days, the elimination capacity (EC) of each reactor 

had stabilized to approximately 50 mg m-2 hr-1 and 45 mg m-2 hr-1 for reactors one and  

two, respectively. Very small variances in EC and biomass growth for several sampling 

events lead to an assumption of quasi steady state removal in each reactor.  

 Steady-State Toluene Removal.  From day 23 through day 110 the toluene 

load and GRT were varied to determine optimal operating conditions and to develop a 
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Figure 5.5 Reactor inlet and outlet toluene gas concentrations in the growth period. 

 

 

loading curve, Figure 5.6. For each GRT examined, multiple loading rates were tested to 

compare the degradation potential with varying driving forces. At each loading rate 

several sampling events, over a minimum of 48 hours, were conducted to assure quasi-

steady state. After this steady-state was achieved, the load or GRT could be adjusted. The 

pH continued to decrease steadily and the biofilm thickness was measured until excess 

growth made it impossible. The excess growth prevented the light from penetrating the 

modules, so no measurements could be made on the nearby screen.  
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Figure 5.6 Toluene elimination capacity in reactor 1 and 2. GRT in seconds. 

 

 

The GRT seemed to have some effect on each reactor’s EC over the small range 

tested in this experiment. When the gas flow was increased to 1 LPM and the GRT was 

reduced to 1.01 seconds, an approximately 30% reduced in the EC was observed 

compared to the EC for a GRT of 2.03 seconds. The reduction in EC at lower GRTs is 

likely related to a reduction in the concentration gradient, driving force, at similar same 

loading rates; a lower GRT is a higher flow rate and thus the concentration is lower at the 

same mass loading rate. Little to no increase in removal was observed when the gas 

flowrate was reduced to 0.3 LPM and the GRT increased to 3.38 seconds, this resulted in 

a gas flowrate of 0.5 LPM to be used for the duration of the experiment.  

Under very low toluene loading rates, 0-200 mg m-2 hr-1, a significant reduction in 

removal was observed in both reactors. The EC of each reactor seemed to peak between 

50-60 mg m-2 hr-1 for loading rates between 200 and 400 mg m-2 hr-1. These observations 
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lead to a hypothesis that the reactors were operating under mass transfer limiting 

conditions from 0-300 mg m-2 hr-1 but transitioned to kinetic limitation above 300 mg m-2 

hr-1. In the literature, ECs were reported an order of magnitude higher than values 

observed in this study, so it seemed unlikely the reactors were kinetically limited. [25-27, 

75]. It is more plausible that the reactors were mass transfer limited with low chemical 

driving force at these low loading rates.  

During the entirety of the toluene degradation phase (phase I) the DO in both 

reactors was never measured above 1 mg/L, Figure 5.7. The DO was checked with 

multiple meters and calibrations were performed using anoxic and saturated solutions. 

From day 48 through 74 more noise in DO measurements was observed. This was likely 

due to the addition of small amounts of liquid phase into the reservoirs to balance out 

liquid losses. On day 37 a sodium bicarbonate solution was added in an attempt to 

increase the buffer capacity of the liquid phase. From day 45-109, no attempts to control 

pH were implemented and all increases in pH are due to replacing losses from the liquid 

phase with fresh media. During phase I, a steady decrease in pH was measured from 6.64 

to approximately 3.8 in each reactor. It was theorized that the drop in pH was caused by 

anaerobic metabolism and by the production of fatty acids.  

No significant correlation between pH and EC was observed in either reactor 

during the duration of the experiment, Figure 5.8. Over a pH range of 6.6-3.8, no pH 

dependent fluctuation in EC was observed, but this is a relatively small range pH range. 

At a pH below 3 the reactors would likely experience a significant decline in performance 

due to increased hydrogen concentration gradients and potential toxic effects on the  
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Figure 5.7 Dissolved oxygen concentration and pH during phase I. 

 

 

microorganisms. At a pH of approximately 3.8 the reservoir was drained and replaced 

with fresh mineral media which raised the reactor pH to 5.9 

For the first 76 days the biofilm thickness in reactor two was measured and used 

to estimate biofilm volume, Figure 5.9. On day 76 the suspended organisms in the liquid 

phase and biofilm became too thick too allow sufficient light through the system to 

measure the biofilm. A large increase in biofilm was observed from day 27- 40 which 

was likely caused by the addition of concentrated phosphate buffer solution. That buffer 

solution was added on day 26 to try and control the decrease in pH. A large increase in 

biomass was observed which means the reactor was likely nutrient limited. Around day 

40 the biofilm thickness and volume seems to have plateaued again. 
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Figure 5.8 Elimination capacity and pH relationship in phase I. 

 

 

After 28 days of operation the biofilm shifted in color from green to black and 

after 47 days the outer biofilm started to turn yellow. From day 69-110 the biofilm was a 

relatively homogeneous black color. The formation of metallic sulfides by sulfate-

reducing bacteria could potentially explain the shifts in biofilm color to black. Under 

anaerobic conditions, sulfate-reducing bacteria form H2S from the SO4 species in the 

mineral media. The H2S can dissociate and form metallic sulfides with the macro and 

micro metals in the system, leading to a dark brown or black color. The yellow or orange 

color could be due to speciation of iron or the presence of methanotrophic bacteria [82]. 

On day 110, one-third of the liquid media was replaced with fresh mineral media which 

led to a dramatic increase in biomass in the system. The used liquid media was separated 
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Figure 5.9 Reactor two biofilm thickness and volume. 

 

 

and used to test toluene degradation, co-metabolism, and reductive dehalogenation of 

indigenous bacteria in a batch experiment.  

 Indigenous Batch Experiments.  Before TCE was added to the gas phase 

in the HFMRs a set of batch experiments were conducted to test the ability of the 

indigenous bacteria to degrade toluene and TCE. The liquid from both reservoirs was 

collected and gently homogenized in an attempt to standardize each bottle and each test 

was done in duplicate. Two 260-mL bottles were each filled with 50 mL of distilled water 

and approximately 7 µg of toluene to act as controls. Four 260-mL bottles were filled  

with 50 mL of the aerated liquid phase from the reactors. All four of the bottles were then 

dosed with 7 µg of toluene and two of those were also dosed with approximately 50 µg of 
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TCE. The last two bottles were filled with 50 mL of the liquid phase from the reactors 

which had been deoxygenated under a 99.9 % pure stream of N2 for approximately 45 

minutes. The deoxygenated liquid was then dosed to 30 mM of acetate and 50 µg of  

TCE. All eight bottles were then placed on an orbital shaker at 250 rpm for 72 hours. The 

headspace of each bottle was analyzed routinely using the GC-MS and the total mass of 

each compound was estimated using the temperature dependent Henry’s law constant, 

Figure 5.10.  

 

 

 

Figure 5.10 Aerobic and anaerobic batch experiments with indigenous bioreactor 
bacteria. 
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The toluene controls varied over the course of the experiment but the starting 

mass and ending mass measurements were less than 1% apart. The large fluctuation 

observed near the end of the first day is likely due to a shift in temperature or caused by 

residual toluene in the syringe prior to injection in the GC. The mass of toluene in the 

headspace of these experiments made traditional syringe cleaning insufficient to prevent 

carryover. In the toluene degradation experiments and co-metabolism experiments the 

toluene mass dropped slowly during the initial 8 hours, then more quickly until toluene 

was no longer detected. Toluene 1 had a much slower rate of degradation than toluene 2, 

and took 16 hours longer to achieve complete removal. Prior to the first round of 

injections (2.5 hours after dosing), toluene 2 mass had already dropped to 64% of the 

mass of the controls. This result could be explained by losses from the bottle but the 

negligible loss in mass from the controls makes it unlikely. The initial loss and more 

rapid rate of degradation in toluene 2 could be caused by a higher mass of more active 

bacteria than in toluene 1. The toluene and TCE masses in the co-metabolism bottles 

were near the MDL level after 24 hours but no loss in TCE was observed within the first 

8 hours. This lag in TCE removal is likely linked to enzymatic preference and by the lack 

of mono or dioxygenase activity within the first several hours of the experiment. TCE 

and toluene were undetectable after 48 hours in all aerobic tests. During the anaerobic 

TCE and acetate experiments no quantifiable TCE removal was observed. These results 

were not surprising because the initial seed lacked exposure to chlorinated hydrocarbons 

and likely lacked reductive dehalogenating bacteria (RDB). These batch experiments 

showed that the indigenous bacteria in each HFMR were capable of toluene and TCE co-

metabolism but were likely incapable of anaerobic reductive dehalogenation.  
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5.3. PHASE II: CO-METABOLISM OF TOLUENE AND TCE 

On day 110 of operation, November 9, 2015, TCE was added to the air phase in 

both reactors at a low loading rate. Phase II investigated the possibility of co-metabolism 

of TCE in silicone HFMRs. Excess biomass made measuring the biofilm impossible but 

the biofilm thickness and color seemed to remain constant during phase II of the 

experiment. The DO concentration remained below 1 mg/L and the pH was controlled 

using NaOH.  

During the entirety of phase II operation no TCE removal above the mass closure 

rate was observed in either reactor, Figure 5-11. Low TCE removal was observed in the 

first week, but this was likely due to accumulation in the system (water, tubing, rubber 

stoppers.) On day 10 of phase II aeration was added to the reservoir of reactor two to 

investigate if oxygen limitations were limiting toluene degradation and TCE co-

metabolism. No increase in toluene or TCE removal was observed in reactor two after the 

addition of aeration, Figure 5.12. From day twenty to the conclusion of phase II the 

toluene load was dramatically increased in an attempt to facilitate co-metabolism of TCE. 

The molar toluene to TCE ratio was raised from 4:1 to 6:1, which aligned with molar 

ratios used in literature [21, 41]. The increase in substrate molar ratio had no observable 

effect on toluene or TCE elimination capacity. The measured TCE-EC was never above 5 

mg m-2 hr-1, which is below the abiotic loss measured prior to biotic operation.  

Starting November 13th the pH was controlled using 1 M NaOH to a small range 

of 7-7.5. This was done to test the effect of pH on TCE and toluene removal and to 

prepare for the addition of RDBs. From day 70-136 both biofilms were a relatively 

homogeneous black color, but on day 137, reactor one started to shift to a yellow color. 
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Figure 5.11 Toluene and TCE inlet and outlet concentrations in phase II. 

 
 
 
 

By day 139 that reactor had shifted to a uniform golden-brown color, Figure 5.13. The 

shift in color was prior to the addition of acetate and 30 days after TCE was added to the 

system. Reactor two maintained a black, fluffy biofilm during the aeration portion of the 

experiment. On day 148, the aeration was removed from the system and by day 152 both 

reactors were the same fluffy, golden-brown color, Figure 5.14. 

On December 7th sodium acetate (55 mg/L/day) was added to the liquid phase in 

order to stimulate RDB and to provide an additional source of BOD. Controlling the pH 

and the addition of acetate to the system had no observable effect on the elimination 

capacity of either reactor, Figure 5.15. It was surprising that the addition of acetate in the 

liquid phase didn’t have an inhibitory effect on toluene degradation. The acetate loading 

was related to TCE load and was kept to a minimum to try to limit negative interactions. 
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Figure 5.12 Toluene elimination capacity in reactors one and two during phase II. 

 

 

 

Figure 5.13 Reactor two (aerated) (left) and reactor one (right) (12/6/15). 
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Figure 5.14 Reactor two (left) Reactor one (right) (12/20/15). 

 

 

The COD of each reactor was checked regularly and no accumulation of COD (BOD) 

was observed. The acetate likely was consumed before diffusing into biofilm zones near 

the membrane where the majority of toluene degradation occurred.  

Phase II of this experiment attempted to facilitate co-metabolism of TCE in 

parallel silicone HFMRs with a variety of operating parameters. No TCE degradation was 

observed during the entirety of phase II. Adjusting the substrate molar ratio, pH, DO 

concentration, and the addition of BOD all failed to affect the toluene or TCE removal in 

these reactors. In December of 2015 two communities of RDBs were obtained and 

subcultured. Dehalogenation was confirmed for both cultures and then samples were used 

to inoculate both rectors. 
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Figure 5.15 Phase I and II toluene elimination capacities in both reactors.   

  

 

5.4. PHASE III: ADDITION OF REDUCTIVE DEHALOGENATING BACTERIA  

A large objective of this experiment was to investigate the potential for anaerobic 

reductive dehalogenation to degrade chlorinated solvents from an aerobic gas phase. To 

achieve this goal, particularly after no TCE removal in phase II, RDB bacteria needed to 

be added to the HFMRs and sufficient electron donors needed to be present. Phase III 

included the sub-culturing of established RDB communities, inoculation, and the long-

term operation of both HFMRs.  

 Subculture Development.  In December 2015 the two RDB communities 

were subcultured, biomass was developed, and dehalogentation was investigated.  
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Subcultures were established using a 1:100 ratio of seed to media in 255-mL amber glass 

bottles with Mininert® caps. The anaerobic mineral media was produced following 

established techniques outlined in Loffler et al. [78]. Each bottle was filled with 100 mL 

of anaerobic media inside of an anaerobic glovebag. The headspace of each bottle was 

adjusted to approximately 5% H2 and acetate was added to a concentration of 30 mM. 

Each bottle was then dosed with 50 µg of tetrachloroethylene (PCE) and placed on an 

orbital shaker at 150 RPM. The headspace was routinely analyzed for chlorinated 

solvents to look for evidence of dehalogenation. After 48 hours PCE and TCE levels had 

fallen below the MDL and fragments associated with ethene were measured. The 

anaerobic media was then replenished with acetate to a concentration of 100 mM and the 

headspace was adjusted with H2. Each bottle was then dosed with 100 µg of PCE and 

placed on an orbital shaker. The headspace was routinely analyzed and the liquid phase 

was checked for biomass development. After all chlorinated solvents had been degraded 

and sufficient biomass was observed, 7 mL of each subculture was injected into the liquid 

port of each reactor. The aeration had been shut off previously and the liquid phase in 

each reactor was anaerobic.  

 Operation.  No TCE removal above the mass closure estimates was 

observed after inoculating the reactors with RDBs, Figure 5.16. Reductive 

dehalogenating bacteria are typically slow growing, so the experiment was operated for 

an extended period of time to allow for growth [49, 78]. On day 45 of phase III, yeast  

was added to the liquid phase to act as a source of vitamin B12, which is a required 

micronutrient for most dehalogenate enzymes[6, 78]. The percent removal of TCE varied  
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Figure 5.16 Toluene and TCE inlet and outlet concentrations in phase III. 
1 
1 
1 
1 
from -3 to 4 %, and the calculated EC was below 5 mg m-2 hr-1. These values are all 

below the mass closure estimates conducted during abiotic operation. 

During phase III operation, a declining trend in toluene EC was observed, Figure 

5.17. The average removal at the same loading rate saw a 10-50% reduction in EC during 

the final phase of this experiment. There are several theories to explain this decline in 

toluene removal: (1) a reduction in mass transfer, (2) inhibition caused by acetate or 

intermediate metabolism, and (3) aging of the biofilm.  
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Figure 5.17 Toluene elimination capacity in phase I, II, and III. 
 

 

 

(1) From December 22-26th both membranes stretched out inside of the reactors, 

Figure 5.18. The tensile change in each membrane could have reduced the mass 

transfer in the system and could account for the decrease in toluene removal. The 

stretched membranes have significantly more contact with the wall of the reactor, 

which could negatively impact the biofilm.  

(2) Shortly after the start of phase III the pH stabilized and addition of NaOH was 

ceased. Two weeks after the addition of RDB, the pH began to steadily increase 

from 7.2 to 7.8, Figure 5.19. The pH was then adjusted using 1 N HCL to stay 

within the recommended pH window for RDBs [48, 78]. The increase in pH could 

be related to an inhibitory metabolism of some intermediate.  
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Figure 5.18 Membranes before and after membrane stretching. 

 

 

(3) The reduction in toluene removal could be related to the aging of the biofilm and 

the buildup of toxins or inactive mass. Over the course of the experiment several 

shifts in mass and color have occurred that could be used to indicate shifts in 

population and dominate species.  
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Figure 5.19 Phase III pH shift over time.  
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6. CONCLUSION AND RECOMMENDATIONS 

Experiments using two HFMRs in parallel were conducted over a variety of 

operating conditions for a total of 215 days to investigate the use of silicone HFMR to 

treat VOCs. In that time, toluene degradation, TCE co-metabolism, and TCE 

dehalogenation were tested using batch experiments and quasi-steady state HFMR 

operation. The silicone HFMRs were able to remove toluene over a range of loading 

conditions, but were unable to degrade TCE during operation.  

 

6.1. OBJECTIVE 1: TOLUENE LOAD AND ELIMINATION CAPACITY 

The first objective was to operate two toluene degrading silicone HFMRs over a 

range of loading rates and operating conditions to determine optimal operating 

parameters and to develop a loading-elimination capacity curve. During fall 2015, both 

HFMRs were used to treat gas phase toluene over GRTs ranging from 1-3 seconds and 

loading rates ranging from 50-450 mg m-2 hr-1. The collected data was used to construct a 

toluene loading-elimination capacity curve, Figure 5.6. Elimination capacities were also 

related to the shift in pH but no correlation was observed.  The biofilm thickness was 

measured and used to calculate a biofilm volume during the first phase of the experiment.  

The range of loading tested in this experiment are very low and much higher loads 

should be tested in the future to construct a larger curve.  The pH values tested in this 

phase of the experiment ranged from 6.4-3.8 and it’s possible a decline in removal could 

be observed outside of this range.  The toluene degradation phase lasted for 110 days 

which could demonstrate long-term removal, but around day 155 the membranes began 

to stretch out and a decline in removal was observed. Many variables were changed from 
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day 110 to 155 so it cannot be concluded that toluene degradation caused this issue. A 

long-term toluene degradation experiment to estimate membrane lifetime would be useful 

to establish membrane lifespan. 

 

6.2. OBJECTIVE 2: AEROBIC TCE CO-METABOLISM 

In November 2015 TCE was added to the gas phase at a low loading rate and co-

metabolism was investigated for 40 days. In the literature, the addition of TCE to the 

system nearly always resulted in a reduction of toluene removal, but no decline was 

observed in this experiment, Figure 5-12.  No TCE removal was observed in the first 20 

days at a molar ratio of 4:1 toluene to TCE, so the ratio was adjusted to 6:1 and operated 

for an additional 20 days.  During the entirety of this phase no TCE removal was 

measured above the rate of mass closure. 

During this experiment very low loading rates and only two molar ratios of 

toluene and TCE were tested. Future projects should investigate a wider range of loading 

rates, including significantly higher toluene rates. The molar ratios of toluene to TCE 

were lower than many investigated in the literature and rates as high as 50:1 should be 

tested in silicone HFMRs.  

 

6.3. OBJECTIVE 3: AEARATION 

Mass transfer estimates and previous experiments led to predictions of oxygen 

limiting conditions in the liquid phase and the biofilm. The addition of aeration to the 

liquid phase in the reservoir was investigated to overcome oxygen limitations and to 

attempt to increase oxygenase activity. On day 10 of phase II (day 121), aeration was 

added to the reservoir of reactor two and elimination capacities were measured for 30 
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days, Figure 5.12.  The DO concentration in reactor two quickly increased to saturation, 

but no effect on TCE or toluene removal was observed. During the aeration phase the pH 

stopped gradually dropping and a large increase in suspended biomass was observed. 

During the aeration phase, clogging of tubing became an issue and excess biomass was 

removed several times to prevent complete system failure.  

Aeration might be more beneficial under significantly higher VOC loading rates. 

Future research should investigate the addition of aeration under kinetic limiting 

conditions rather than mass transfer limited conditions to see if aeration can significantly 

increase the kinetic limitation.  Future projects should also consider using the nutrient 

media C/N/P concentrations and ratios to control biomass in the membrane and to 

prevent clogging.  

 

6.4. OBJECTIVE 4: BATCH TCE AND TOLUENE DEGRADATION 

Prior to phase II or III operation it was necessary to test the ability of the 

indigenous microorganisms in the bioreactors to degrade toluene and TCE both 

aerobically and anaerobically.  Approximately 300 mL of the liquid phase from each 

reactor was collected and homogenized to use in batch experiments. Duplicate 

experiments were run to test toluene degradation, TCE co-metabolism, and anaerobic 

reductive dehalogenation against controls.  Complete removal of toluene and TCE was 

observed under aerobic conditions but no TCE removal was measured under anaerobic 

conditions. The batch results were unsurprising, but it seemed to contradict the lack of 

TCE removal measured in the reactors. TCE removal in the batch experiments was 

observed after several hours and the operating conditions in the HFMRs were likely not 

optimal to mimic the removal measured in the batch experiments.  
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In future batch experiments, the removal and biomass could be more closely 

monitored to fit kinetic parameters for modeling.  Several batch experiments could be 

performed over the course of HFMR operation to measure kinetic shifts in bioreactor 

bacteria composition. More batch experiments at a variety of substrate molar ratios 

should be performed to explain HFMR results and to find optimal operating conditions.  

 

6.5. OBJECTIVE 5: ANAEROBIC TCE DEGRADATION  

During existing operating conditions, the viability of facilitating reductive 

dehalogenation in the existing anaerobic zones in the biofilm was investigated prior to the 

addition of established RDBs or acetate.  Even though mass transfer estimates predicted 

DO concentrations of 5.7-8.5 mg/L, the measured DO never surpassed 0.7 mg/L.  This 

means it was plausible that anaerobic conditions existed within the bioreactor and biofilm 

that could allow for the development of RDBs.  

Future experiments should use additional sensors to better measure redox 

potential in the reactor and in the biofilm. Microsensors could be used to measure oxygen 

gradients in µm increments within the biofilm, but significant modifications to reactor 

configuration would be required.    

 

6.6. OBJECTIVE 6: RDB AND ACETATE ADDITION 

A goal of this project was to investigate the addition of acetate loading on the 

system. It was theorized that acetate would act as a source of BOD to increase anaerobic 

zones and act as a ready electron donor for RDB, but the acetate could also reduce the 

removal of toluene due to inhibition. Beginning on day 139 an acetate loading rate of 55 

mg/day was added to the liquid phase of both reactors in an attempt to facilitate reductive 
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dehalogenation of indigenous biofilm bacteria.  During phase II operation no reduction in 

toluene removal was observed due to the addition of acetate, Figure 5.12. The addition of 

acetate in the liquid phase at a molar ratio necessary to completely degrade TCE to 

ethene did not lead to any TCE removal in either bioreactor and no change in DO was 

observed.   

Other dehalogenating bioreactors use an electron donor loading rate significantly 

higher than the one used in this experiment. Future works should use established loading 

rates and track the BOD/COD in the system to find optimal operating parameters.  Excess 

acetate could lead to biomass accumulation and higher operating costs.  
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APPENDIX 

Pictures of Biofilm Development and Biofilm Projection 

 

Bioreactor Overview 

 

 

 

July 22, 2015 Day Zero. No biofilm development 

 

July 24, 2015. Day 2. Flakes of biofilm on membrane surface 
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July 26, 2015. Day 4. Membrane surface appears fuzzy, and clumps begin to form 

 

 

 

July 27, 2015. Day 5. More biofilm develops and suspended growth is observed 
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August 3, 2015. Day 13. Biofilm becomes more clumpy and starts to shift to a green 

color 

 

 

 

August 3, 2015. Day 13. Image of biofilm with projector on 
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August 4, 2015. Day 14. Biofilm has thicker, fluffy mass 

 

 

 

August 27, 2015. Day 37. View of projection on the screen for biofilm thickness 

measurements 
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September 28, 2015. Day 69. Shift in biofilm color to black 

 

 

November 11, 2015. Day 113. Projector behind biofilm that shows very thick biofilm 

with some suspended growth 
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November 11, 2015. Day 113. Black inner biofilm with fluffy outer white layer  

 

 

 

November 19, 2015. Day 121. Biofilm before the addition of TCE  
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December 7, 2015. Day 139. Biofilm before the addition of acetate. Reactor two (left) is 

aerated. Reactor one (right) is not aerated 

 

December 8, 2015. Day 140. Close up of biofilm in reactor two. 
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December 8, 2015. Day 140. Close up of biofilm in reactor one. 
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December 20, 2015. Day 152. After aeration in reactor two was shut off and RDB added 

 

 

 

 

December 22, 2015. Day 154. Observed reactor one membrane begin to stretch out 

 

 

 

 

December 28, 2015. Day 160. Both membranes stretched out  
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