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ABSTRACT 
 
 

The incidence of melanoma in situ (MIS) is growing significantly. Detection at the 

MIS stage provides the highest cure rate for melanoma, but reliable detection of MIS with 

dermoscopy alone is not yet possible. Adjunct dermoscopic instrumentation using digital 

image analysis may allow more accurate detection of MIS. Gray areas are a critical 

component of MIS diagnosis, but automatic detection of these areas remains difficult 

because similar gray areas are also found in benign lesions. This paper proposes a novel 

adaptive thresholding technique for automatically detecting gray areas specific to MIS. The 

proposed model uses only MIS dermoscopic images to precisely determine gray area 

characteristics specific to MIS. To this aim, statistical histogram analysis is employed in 

multiple color spaces. It is demonstrated that skew deviation due to an asymmetric 

histogram distorts the color detection process. We introduce a skew estimation technique 

that enables histogram asymmetry correction facilitating improved adaptive thresholding 

results. These histogram statistical methods may be extended to detect any local image area 

defined by histograms. 
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SECTION 
 

1.  INTRODUCTION 
 
 

The research presented in this thesis will aid in the diagnosing of melanoma in situ 

(MIS), the earliest stage of melanoma. Accurate detection of MIS yields the greatest chance 

of preventing melanoma from advancing.  

To this end, the research primarily focused on the identification of gray areas in the 

dermoscopic image of suspected lesions. There is a correlation between lesions with 

observable gray areas and lesion being diagnosed as MIS. This detection of gray area alone 

is not a definitive method of diagnosing MIS as gray areas are also observed to a lesser 

extent in benign lesions. The detection of gray area first involved developing a method that 

was accurate despite the difference in extrinsic and intrinsic features of the dermoscopic 

image.   

The method developed is based on a histogram analysis and identifying its skew. 

By using this information the lesion was adjusted so that an automatic thresholding 

algorithm could be applied resulting in segmented observable gray area from the 

dermoscopic image. 
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PAPER 

Using Adaptive Thresholding And Skewness Correction To Detect Gray Areas In 

Melanoma In Situ Images 

 

Gianluca Sforza, Giovanna Castellano, Sai Krishna Arika, Robert W. 

LeAnder, R. Joe Stanley, Senior Member, IEEE, William V. Stoecker, 

and Jason R. Hagerty 

 

 

Abstract—The incidence of melanoma in situ (MIS) is growing significantly. Detection 

at the MIS stage provides the highest cure rate for melanoma, but reliable detection 

of MIS with dermoscopy alone is not yet possible. Adjunct dermoscopic 

instrumentation using digital image analysis may allow more accurate detection of 

MIS. Gray areas are a critical component of MIS diagnosis, but automatic detection 

of these areas remains difficult because similar gray areas are also found in benign 

lesions. This paper proposes a novel adaptive thresholding technique for 

automatically detecting gray areas specific to MIS. The proposed model uses only 

MIS dermoscopic images to precisely determine gray area characteristics specific to 

MIS. To this aim, statistical histogram analysis is employed in multiple color spaces. 

It is demonstrated that skew deviation due to an asymmetric histogram distorts the 

color detection process. We introduce a skew estimation technique that enables 

histogram asymmetry correction facilitating improved adaptive thresholding results. 

These histogram statistical methods may be extended to detect any local image area 

defined by histograms.  

 

Index Terms—Estimation techniques, image analysis, medical imaging, melanoma in 

situ (MIS), segmentation, skewed histogram. 
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I. INTRODUCTION 

INVASIVE and in situ malignant melanoma together have one of the most rapidly 

increasing incidence rates of all cancers. Invasive melanoma alone has an estimated 

incidence of 70 230 and an estimated total of 8790 deaths in the United States for 2011 

[1].  53 360 additional cases of melanoma in situ (MIS) are estimated for 2011 in the 

United States [1]. Early diagnosis at the MIS stage is of fundamental importance. MIS, 

unlike melanoma in the invasive stage, does not affect life expectancy [2]. 

One of the main diagnostic techniques is dermoscopy, a non-invasive magnification 

technique that enables observation of subsurface structures, improving in vivo diagnosis of 

pigmented skin lesions, as well as other diagnoses [3], [4]. In particular, contact 

nonpolarized dermoscopy, a variant of dermoscopy that combines optical magnification and 

liquid immersion to make subsurface lesion features visible, is widely used in melanoma 

diagnosis. With unaided dermoscopy, even in the hands of experts, diagnosis of MIS 

is difficult [5]. Accordingly, there is anticipation for advances in technology to allow 

improved detection of melanoma at the early MIS stage. 

Toward this aim, image analysis techniques have been combined with contact 

nonpolarized dermoscopy to detect MIS structures including granularity [6], white areas 

[7], atypical pigment network [8], blotches [9], and solid pigment [10], among others. 

The standard approach for structure analysis is to extract the lesion area using 

segmentation, followed by segmentation of the region of interest (ROI) containing the 

desired structure. Therefore, segmentation of both lesion and individual structures 

represents the most important stage of image analysis as it affects the accuracy of the 

subsequent steps. However, segmentation of dermoscopic images is difficult owing to the 

great variety of lesion and structure shapes, sizes, and colors, along with different skin 

types and textures. 

To address this problem, several algorithms and techniques have been proposed for 

image segmentation. Thresholding, the most suitable segmentation technique, is based 

on a simple concept for segmenting a digital image — either grayscale or color image 

— into mutually exclusive regions. It is based on the assumption that adjacent pixels 

whose value (gray level or color value) lies within a certain range belong to the same class. 
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Thus, a thresholding algorithm determines a cutoff value, i.e., “threshold,” chosen so that 

a given grayscale or color image can be binarized into a map of background and foreground 

pixels. The primary advantage of using thresholding techniques is that they are a 

computationally inexpensive method and therefore do not require a large apportionment 

of computational time and power. For a review of thresholding algorithms, readers are 

referred to [11] and [12]. 

Thresholding techniques have been widely investigated for segmenting lesion 

images.  A comparison among main techniques can be found in [13]. These methods 

include fusion, exploiting synergy of multiple techniques for more robust final contours 

[14], morphology functions, and active contours (snakes) [15], gradient vector flow active 

contour methods [16], [17], simple thresholding followed by a wavelet packet transform 

[18], thresholding by the hue component of hue saturation value (HSV) color space and 

segmentation in red green blue (RGB) color space  [19], and fuzzy  C-means 

segmentation using an iterative-reducing mean shift algorithm [20], [21]. 

One main problem with thresholding algorithms is the determination of the 

optimal threshold, particularly if there are a large number of regions (classes) to be 

segmented in the image. For this reason, adaptive thresholding algorithms have been 

proposed to make the threshold values adaptive to the images’ varied statistics. One of 

the pioneering algorithms for adaptive thresholding is the Otsu algorithm [22] that 

selects an optimal threshold using the discriminant criterion to maximize the separability 

of the resultant classes in gray levels. In [23], a spatially adaptive wavelet thresholding 

method was examined, based on context modeling, a common technique used in image 

compression to adapt the code to changing image characteristics. In [24], the authors 

used the maximization of the between-class variance and entropy as criterion functions 

to determine an optimal threshold for segmenting color images into nearly homogeneous 

regions. A combination of adaptive global thresholding segmentation and adaptive local 

thresholding segmentation on a multiresolution representation of mammogram color 

images was investigated in [25]. In [26], a method was implemented which adaptively 

chooses thresholds to segment objects of interest from their backgrounds using a 

multiscale analysis of the image probability density function. A segmentation method 

for detecting masses in digitized mammograms was developed in [27] using adaptive 
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thresholding and fuzzy entropy. Many other segmentation approaches have been proved 

to be useful in processing medical images [28]–[31]. 

In this paper, we extend dermoscopy analysis techniques by introducing a 

segmentation algorithm based on adaptive thresholding to detect gray areas, which are an 

important feature of MIS [32]. 

Gray color in dermoscopy images of melanocytic lesions represents melanin pigment 

in the upper (reticular) dermis, most frequently found in melanophages [33], [34]. Gray 

and gray blue areas are known to be critical structures in dermoscopic diagnosis of MIS. 

Gray blue areas may be most common in MIS, because they were found to be present 

in 76% of 37 MIS [35], but only 42% in a series that included 50% invasive melanomas 

contained gray areas [36]. However, gray areas are also fairly common in benign acquired 

nevi, particularly of the Clark (dysplastic) type [37]. 

The form of the gray structures is important. Gray distributed regularly in the form 

of a perifollicular network is commonly observed in four benign lesions: areas of solar 

lentigo/initial seborrheic keratosis, lichen planuslike keratosis, and pigmented actinic 

keratosis, all of which are more common than MIS [38]. Gray or blue gray is distributed as 

pepperlike granules in MIS [34]. Dark gray distributed in rhomboidal structures is also 

present in MIS [39]. Blue structures, because of the Tyndall effect, are found deeper in the 

skin than the gray areas. However, there is considerable overlap; as a result, gray and blue 

gray are often referred to as a single class. Additionally, the malignant gray areas are of 

different sizes, hues, and distribution while also mimicked by any of the aforementioned 

classes of benign lesions. 

Because of the challenge of identification of gray area without instrumentation, 

automatic color analysis may afford earlier detection of these gray areas and consequently 

earlier detection of MIS. To the authors’ knowledge, the detection of gray areas using image 

analysis techniques has not been explored so far. 

In our pilot study [40], we proposed an approach for automatic thresholding of 

gray areas to be used in conjunction with contact dermoscopy. Specifically, we proposed a 

statistical histogram analysis approach using the hue saturation brightness (HSB) color 

space to derive the relationship between the skewness and the mean of the brightness color 

plane histogram. This relationship leads to a mean shift rule that enables histogram 
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asymmetry correction facilitating improved adaptive thresholding of gray area regions 

within a skin lesion image. Segmentation of skin lesion images using mean shift has been 

proposed in the previous literature (see, for example, [17]). 

In this paper, the skewness correction method presented in [40] is employed in 

multiple color spaces and applied to a larger image set. Through a quantitative 

comparison between the proposed skew-corrected thresholding and a compendium of 

state-of-the-art basic adaptive thresholding methods, it is demonstrated that skew 

deviation due to an asymmetric histogram distorts the color detection process, leading 

to great errors in final segmentation. Application of skew correction greatly improves 

segmentation of gray areas. 

 

 

 

 

Fig 1. (a and b) Two examples of skin images, (c and d) their brightness planes with 
ROIs outlined, and (e and f) the corresponding histograms and (g and h) ROIs 
manually extracted from the two images with their brightness histograms.
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II. BASIC ADAPTIVE THRESHOLDING AND INACCURACY DEFINED FOR 

OPTIMAL ROI DETECTION 

Given a set of MIS color dermoscopy images, we considered three commonly used 

color spaces: RGB, La*b*, and HSB [41]. For each color space, all planes were analyzed for 

a total of nine color planes. In the following section, we take the brightness (B) plane in 

the HSB color space as an example. 

To perform basic adaptive thresholding, we determine the average M and the 

standard deviation over the brightness histogram of the entire lesion area, shown in Fig. 

1(e) and (f). The goal is to find a sufficient threshold range, namely, a subset of the given 

entire ROI range = Range, which is adaptable, meaning that it is proportional to the 

standard deviation of pixels in the B plane within a given lesion and is centered on M 

for that lesion. Since Range varies from image to image, it is best represented as the least 

multiple of standard deviations that maximizes the inclusion of pixels within all ROIs 

(Fig. 2) within the image set. 

 

 

 

 

 

 

 

 

Fig 2. Segmentation results of images in Fig. 1(a) and (b) using the interval [80, 180] 
for thresholding. 
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A series of k equal threshold intervals is determined1 over Range. The ith 

thresholding interval, for i = 1, . . ., k, is given formally by 

 

�������� � =  ��
1

2
����� +

� 1

�
����� , �

1
2

����� +
�
�

������ (1) 

 

For each threshold interval i in a given color plane, thresholding is applied to generate binary 

masks. All pixels in the masks generated are counted. Counts are made for the following 

four classes of pixels [42]: 

������ ��� �� ��� = ���� �������� (��) 

������ ������ ��� �� ��� = ���� �������� (��) 

������ ������� ��� = ����� �������� (��) 

������ ������ ������� ��� = ���� �������� (��). 

(2) 

 

A simple signal-to-noise ratio would be TP/FP, considering the ratio of pixels 

inside the desired ROI to be signal and those outside the ROI to be noise [43]. This 

metric has the disadvantage of scoring masks having few false positives too high and 

masks having few false negatives too low. Our real goal is to find the highest fraction 

of the ROI possible and, at the same time, the lowest fraction of the area outside the 

ROI possible, which is equivalent to minimizing the sum of two errors: 

1) the error within the ROI, namely, FN/(FN + TP ); 

2) the error outside the ROI, namely, FP/(FP + TN ). 

Thus, we introduce a new error measure termed INACCURACY, defined as 

 

  ���������� =
��

�� + ��
+

��

�� + ��
 (3) 

 

                                                           
1 A value of k large enough to obtain optimization, as shown in Fig. 7, is chosen. For 

this study, the number of threshold intervals is fixed to k = 10.  
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INACCURACY is totaled over all images and measured over all thresholds and all 

planes. 

One main difficulty using basic adaptive thresholding was to decide the upper and 

lower bounds of Range, which varied widely among images. Accordingly, the basic 

adaptive thresholding method was modified as described in the following section. 

 

III. OPTIMIZATION OF BASIC ADAPTIVE THRESHOLDING USING 

SKEWNESS CORRECTION 

The principal idea underlying our approach is to adjust the limits of a given gray 

area thresholding interval and modify these limits using the skewness information 

associated with gray area histograms in order to improve thresholding results. 

We consider the color information represented in the HSB color space as an 

example. In particular, we focus on the brightness component (B plane) that carries most 

of the information for the color gray [44], [45]. Fig. 1(a) and (b) shows two examples of the 

dermoscopy images under study. On each image, the contour of the ROI inside the MIS 

has been drawn by a dermatologist. The aim of our work is to find a way to automatically 

detect the ROI inside the MIS image. 

We started from an analysis of the brightness histogram of the ROI. For 49 

images, using a mask previously sketched by the dermatologist, we selected the 

melanoma area from the entire skin image [Fig. 1(c) and (d)], together with the ROI 

[bordered region in Fig. 1(c) and (d)], and we observed the corresponding brightness 

histograms [Fig. 1(e) and (f)]. It can be noted that, in most cases, the brightness values 

of the melanoma ROI covers the interval [80, 180]. Therefore, one straightforward rule 

for performing thresholding is to consider such an interval. Nevertheless, performing a 

segmentation process by simply using this interval for thresholding may generate a 

large false positive area, as shown in Fig. 2(b). 

It is therefore necessary to reduce the size of the interval so as to capture only 

the most significant values from the brightness histogram, which are useful to identify 

the lesion’s ROI. To this aim, in [40], we proposed a statistical approach to better determine 

the Range by automatically selecting a proper interval of brightness values starting from the 
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entire interval [0, 255]. In the following, we report the details of our approach. 

Formally, the problem is to determine two variables a and c, such that the brightness 

values of the ROI lie in an interval that is shared by all the images in the considered data set 

 

[LB, UB] = [M  a(S), M + c(S)] (4) 

 

where LB and UB are the lower bound and the upper bound of the interval, respectively, 

M is the mean of the histogram for the ROI, and S is the standard deviation. To estimate 

the values of a and c for all the available images, we examine their brightness 

information. Each one of the 256 bins in the brightness histogram is a tabulation of how 

many pixels correspond to that gray level, so the area of the image can be found by adding 

all the bins. Therefore, subsequent sums of the bins identify subareas of the whole image 

(i.e., how much area is caught by a given subset of bins). The successive sums of the pixels  

in the bins constitute the so-called cumulative histogram of the gray area. Let gi and bi 

denote the histogram values of bin i for each gray area and the entire lesion, respectively. 

To evaluate the weight that each gray area’s cumulative histogram at bin gi has relative to 

the entire image, we calculate the ratios between gray-level subareas and the lesion’s area 

as 

�� =
∑ ��

�
���

∑ ��
���
���

 , i=0,….,255. (5) 

 

 

Fig 3. Cumulative histograms. It can be seen that LB and UB depend on the distance 
between actual and AVGM values. 
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We found it useful to calculate the set of relative values for the ratios as the 

differences (���� ��)/ ∑ ��
���
��� , where r256=0, to represent the gain of gray area 

between a weighted partial sum of bins and the successive sum of bins. This helps to 

find the values of the bins that limit a given quantity of gray area, namely, the lower and 

upper bounds. 

The next step is to calculate the intersection between all possible values for LB 

and UB extracted from all images in the set, in order to find a common set of values for 

thresholding the gray area that is present in a dermoscopy image. Hence, we statistically 

model the variables a and c. The whole process is summarized as follows. 

First, we collect the mean for every gray area histogram; then, the average of 

all these values is found. We indicate this value with AVGM   (see Fig. 3). Second, 

selecting the point AVGM as a midrange for the desired LB and UB and going one step 

forward and one step backward from it, we consider those bins that bound 30%, 50%, 

and 90% of the gray area. The ideal position for a histogram is to have its mean M at 

the point AVGM, because, then, the interval [LB, UB] surrounding AVGM will be 

sufficiently narrow and close to the main bins, thereby detecting a gray area. On the 

contrary, we observed that the value of the actual mean M is far from AVGM and that the 

interval becomes larger. The intersection of these intervals over the image set yields a 

restricted region which will not threshold a sufficient amount of gray area for the histograms, 

with means far from its expected value AVGM. 

Therefore, the problem becomes finding a common thresholding interval that 

evaluates, for each image, the amount that the point AVGM should be shifted to yield the 

actual mean M. To do this, we consider the skewness of the histogram distribution, 

because of its statistical relevance in describing a distribution. By measuring the skewness 

of the distributions, we empirically evaluated the trend of these curves [46], [47]. We 

found that left/right skewed curves of a histogram generate two different curves for the 

relative ratios. 
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In Fig. 4, one can observe that the relative ratio corresponding to the mean of the 

original histogram (marked by a star) has different values, in the case of a left- or a 

right-skewed curve. This means that the amount of gray area detected at a given threshold 

varies with the skewness. This is particularly true in the case of very skewed histograms: 

In such a case, the difference between the actual mean M and the AVGM is so consistent 

that the shared interval [LB, UB] could not detect any gray area from those images. 

Particularly for those cases, it is essential to find the relationship between the difference 

M  AVGM and the skewness of the gray area’s histogram. Using the well-known formula 

for skewness [48] 

�� =
� ����

�
 (6) 

 

 we observe that M equals AVGM when the following conditions hold. 

1) ���� = ����.   

2)  �� = 0. 

3) � = ��� �����.  

 

Fig 4. Relative ratios for differently skewed histograms: The mean case. 
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Of course, this condition is satisfied by any symmetric distribution, including all 

Gaussian distributions with the mean centered at AVGM. 

Let AVGM be the ideal point to be shifted. It may be considered as the axial center 

of a Cartesian plane with the ordinate axes shifted from the origin toward AVGM (see Fig. 

5). Then, for a generic distribution lying over such a new plane, we can find new statistics 

that are relative to the original plane. Its relative mean is 

 

���� = � ���� (7) 

and its relative mode is 

������� = ���� ����. (8) 

Thus, we have a value also for the relative skewness skrel, which is the skewness 

calculated with respect to the symmetric histogram centered at AVGM 

 

                      ����� = �� ������
 

=
(� ����) (���� ����)

�
 

(9) 

Now, we observe that �� = 0 if (� = ����), as it is the skewness of a symmetric 

distribution. Accordingly, we have 

Fig 5. Locating the mean of a skewed distribution. The difference M AVGM is critical 
as it determines skew. 
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� ���� = ��(�) + (���� ����). (10) 

Equation (10) calculates the shifting value for AVGM to be moved to find the actual mean 

M of a histogram distribution. 

 

IV. SEGMENTATION ALGORITHM USING SKEW TECHNIQUE 

The shifting quantity derived from the approach described in Section III can be 

applied to perform an adaptive thresholding useful in identifying a ROI in dermoscopy 

images. First, a common interval for thresholding all the image set is identified. Then, 

such interval is adapted to each image to achieve improved results. 

The segmentation algorithm is described as follows using the brightness image of 

the whole skin. 

1) Determine the lesion histogram and the distance of its average from the central 

bin (128), denoted by DIFF. 

2) Shift the gray area histogram by DIFF; find its cumulative histogram, and 

weight its bins using the total area of the lesion; save the differences between 

these values, namely, the relative area ratios—as the gain of gray area that is 

between one weighted partial sum and the successive partial sum. 

3) From the relative ratios of the entire image set, find a common range of 

values that catch the X% of gray area (X = 30, 60, or 90); shift this range by 

the result of (10), and find the appropriate thresholds for a specific image in the 

brightness plane. 

The image in Fig. 1(b) has been taken as an example to show how 

INACCURACY improves using the skew correction. The first line in Fig. 6 is an 

illustration of Fig. 1(b) processed with this algorithm. In particular, the second image in 

line represents the thresholding result before the shift (INACCURACY = 0.969), and 

the third image in the line represents the thresholding result after the shift 

(INACCURACY = 0.819). 
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Summarizing, we found the mean of a gray area distribution to be the best parameter 

for localizing the core of the gray area. This process therefore generates an interval for 

thresholding the core of gray area that is present inside a dermoscopy image of a MIS. 

 

V. EXPERIMENTS AND RESULTS 

The segmentation algorithm and error measure described in the previous sections 

were used to improve the automatic detection of the gray ROI inside the melanoma image. 

 

A. Instrumentation and Images 

The contact dermoscopy instrumentation used in this study is the 3Gen DermLite 

Fluid attachment (3Gen LLC, San Juan Capistrano, CA). It employs ten-power 

magnification with bright white LED lighting and a gel interface. All images were acquired 

with a Sony DSC-W70 7.2-megapixel digital camera with dermoscopic adapter. 

A set of 121 MIS images was obtained in the study SBIR R44 CA-101639-02A2 

of the National Institutes of Health and approved by the Phelps County Regional Medical 

Center Institutional Review Board, Rolla, MO, under the guidelines of the Belmont Report. 

Among the 121 images of the data set, 49 were found to have gray regions and 

considered as MIS for segmentation. Gray regions were manually extracted by a 

dermatologist. Specifically, the border contour of each MIS and the contour of the most 

identifiable gray ROI inside each MIS were drawn by the dermatologist using a second-

order spline technique [5]. 

 

B. Segmentation Results 

In this section, we show examples of segmentation results by applying both a 

thresholding with a fixed interval and an adaptive thresholding with the skew correction 

given in (10). For experiments, we used JavaScript supported by the ImageJ software 

environment v.1.4.2 [49] for converting images in different color spaces and Matlab 

R2009b to implement the thresholding algorithm. 
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Fig. 6 compares the segmentation result of five images using a fixed thresholding 

interval and using the adaptive thresholding interval with skew correction. It can be seen 

that no gray area is detected by applying a thresholding with a fixed interval. Conversely, 

a gray area centered in the ROI is detected by applying the skew-corrected thresholding 

interval. 

 

 

 

Fig 6. (a)  Zoom on original color images with ROI manually drawn. (b) Segmentation 
result with fixed thresholding interval. (c) Segmentation result with adaptive skew-
corrected interval. 
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To better evaluate the effect of the proposed skew correction technique, thresholding 

was performed on six color planes taken from different color spaces, namely, the planes  

a , b , L, green, blue, and B (brightness). Using the basic adaptive thresholding, the 

per-lesion average INACCURACY taken over the 49 images was determined for 

each of ten threshold intervals (channels) and for each of the six color planes. Results 

are shown in Fig. 7. It can be seen that the best average INACCURACY = 0.432 was 

obtained for the b  plane. With the skew-corrected thresholding, the average 

INACCURACY for the 30% brightness plane was 0.670, while the best 

INACCURACY (0.302) was obtained at 90% brightness. 

We noted that the basic adaptive thresholding results are fairly close across 

threshold intervals and across color planes. In contrast, the skew-corrected thresholding 

clearly obtained the best INACCURACY results. This is because skew correction is not 

automatically applied to all images. It optimizes the thresholding interval for each image, 

rather than finding an optimum interval for all images, as the basic adaptive thresholding 

technique does. The skew correction thus yields an estimate for the minimum error 

achievable by histogram correction. 

Finally, our thresholding method was compared against the basic adaptive version, 

as well as a compendium of 16 thresholding methods [50] applied to the five images 

shown in Fig. 6. Comparative results in terms of INACCURACY are shown in Table I. 

It can be seen that the proposed skew-corrected thresholding provides, in most cases, 

lower INACCURACY values than the other methods. In terms of average INACCURACY 

computed on the considered images (last column in the table), our method compares very 

favorably with all the other methods. 
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VI. CONCLUSION 

This paper has demonstrated that adaptive threshold determination using skewness 

correction can provide more accurate gray area detection. Based on the metric 

INACCURACY, correction of the estimated histogram asymmetry deviation allows 

significant improvement of gray area segmentation. Even though the technique reported 

here has been applied only to dermoscopic images, the derived statistical framework is 

independent of the chosen domain. Consequently, it may be used to perform 

segmentation of any kind of digital medical images. 

This study was motivated by the discovery that the histograms of gray areas are 

heterogeneous, with a minority having a blue “tail” skewed primarily to the right. These 

blue tails likely represent dermatologists’ assessment that gray and blue-gray have the same 

physiology. This assessment includes gray with blue-gray because the gray is at a deeper 

level in the skin, resulting in more blue due to the Tyndall effect. Consequently, a set of 

images having gray is heterogeneous, with the gray areas in some images having a 

histogram skewed toward brighter blue. We conclude that both gray and blue gray are seen 

in these early melanomas with some images having greater amounts of blue, resulting in a 

rightward skew [34]. 

Fig 7. INACCURACY versus threshold interval channel, using basic adaptive 
thresholding on six color planes. 
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Results from this study were determined for only a small number of images. The 

proposed methods will be applied to a larger set, again using adaptive thresholding and 

comparing skew-corrected segmentation with uncorrected segmentation. 

The presented comparative results show that thresholding without the proposed 

skew correction can lead to great errors in final segmentation. One possible explanation is 

that existing thresholding methods are primarily designed for segmentation of easily 

visible and detectable structures, whereas our method can yield accurate segmentation of 

small ROI that is not clearly delineated. Correct segmentation of these regions depends 

entirely upon histogram analysis, and it is therefore quite sensitive to skew distortion of the 

image histograms. Further research could combine the proposed histogram analysis with 

one or more existing thresholding methods to provide further improvements in existing 

segmentation results. 

The challenging task of gray area segmentation comprises another step toward 

the development of an automatic diagnostic system capable of detecting the early stages of 

melanoma from a set of features extracted from dermoscopic images. 

Finally, we emphasize that reliable identification of MIS in the clinic has not yet 

been demonstrated. Particularly for critical objects which are only approximately 

determined by humans, such as location on the gray-to-blue-gray spectrum, new analytic 

techniques may be employed using instrumentation to effect more precise early melanoma 

discrimination. As Lucas et al. noted, up to 36% of MIS might be overlooked and not 

detected until a subsequent follow-up visit. This might be the case, even when 

dermoscopy, clinical information, and monitoring for change with total body photography 

are combined [5]. As Lucas et al. predicted, “possibly, future technologies will be 

developed that will be able to discriminate aberrant growth patterns even in these early 

in situ lesions” [5]. 
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SECTION 
 

2.  CONCLUSION 
 
 

The work presented in this thesis demonstrates that adaptive threshold 

determination using skewness correction can provide more accurate gray area detection. 

Based on the metric INACCURACY, correction of the estimated histogram 

asymmetry deviation allows significant improvement of gray area segmentation.  

Histograms of gray areas are heterogeneous, with a minority having a blue “tail” 

skewed primarily to the right. These blue tails likely represent dermatologists’ 

assessment that gray and blue-gray have the same physiology. This assessment includes 

gray with blue-gray because the gray is at a deeper level in the skin, resulting in appearing 

bluer in color due to the Tyndall effect. Consequently, a set of images having gray is 

heterogeneous, with the gray areas in some images having a histogram skewed toward 

brighter blue. It was concluded that both gray and blue gray are seen in these early 

melanomas with some images having greater amounts of blue, resulting in a rightward 

skew. 

The presented comparative results show that thresholding without the proposed 

skew correction can lead to great errors in final segmentation. Correct segmentation of 

these regions depends entirely upon histogram analysis, and it is therefore quite sensitive 

to skew distortion of the image histograms. Further research could combine the 

presented histogram analysis with one or more existing thresholding methods and or 

machine learning algorithms to provide further improvements in existing segmentation 

results and possible diagnosing of MIS. 
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The task of gray area segmentation comprises a n  incremental step toward the 

development of an automatic diagnostic system capable of detecting the early stages of 

melanoma from a set of features extracted from dermoscopic images. 
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