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ABSTRACT 

One of the main weaknesses in long term performance of conventional lithium 

batteries is the growth of lithium microstructures on the electrode surface due to an 

electrochemical process, which can eventually lead to failure of these batteries. 

Suppressing this microstructure growth is a key in developing new generations of lithium 

metal batteries (LMBs). In this study, a two-dimensional (2D) phase field model is 

constructed to understand and determine the parameters controlling formation and 

evolution of microstructures in LMBs. A Ginzburg-Landau free energy functional, which 

is a function of concentration of Li+ and applied voltage, and a system consisting of a pure 

lithium metal electrode and an electrolyte made of lithium hexafluorophosphate in a binary 

organic solvent of 1:1 ratio of ethylene carbonate and dimethyl carbonate. The evolution 

equations consist of a Cahn-Hilliard fourth-order partial differential equation (PDE) for 

evolution of Li+ concentration in the domain, and a Laplace’s equation for charge 

conservation. Using COMSOL, the growth thickness and growth rate from the anode 

surface are simulated by applying different boundary conditions of concentration and 

different potentials. The proposed model is compared to existing electrodeposition models 

and results show that the Laplace’s equation can be used in different forms proposed in 

literature. Assuming this battery to be a strongly anisotropic system, the Cahn-Hilliard 

equation is modified to include anisotropy and the simulations reveal a strong directional 

growth from the anode surface. The results of the developed model suggested that this 

phase field model is capable of quantitatively predicting the formation and growth of 

microstructures in LMBs and may be used to improve their life time in the future. This 

model can also be applied to study electrodeposition process in other material systems.  
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1. LITHIUM BATTERIES

1.1. BACKGROUND 

Fossil fuels play a major role in today’s world economy since automobiles, trains, 

airplanes and a majority of the power plants use oil, natural gas or coal for their fuel. The 

continued demand for fossil fuels and their depletion leads to serious problems like 

environmental pollution, environmental change and economic dependence on other 

nations. Renewable energy sources like wind energy, solar energy, geothermal energy and 

hydroelectric energy alleviate this problem to a certain extent but they are not capable of 

generating large quantities of electricity required to run the aforementioned applications 

and their supply can be unpredictable and inconsistent. Hence, there is a need to develop 

new technologies which are consistent, have high energy density while having almost 

negligible effects on the environment. Different battery technologies have emerged to 

answer the problems of renewable and non-renewable energy sources as they can store and 

release energy on demand and significant strides have been made in the field of lithium 

battery technology. 

Lithium batteries are the primary sources of power in modern day applications, 

such as in portable consumer electronics, hybrid electric vehicles (HEVs), implantable 

electronic medical devices or space vehicles [1-6]. Lithium is the first choice of metals for 

batteries in modern-day applications because it possesses many key attributes of an energy 

storage device. Lithium is the lightest metal (density = 534 kg/m3), high energy density 

(theoretically 3860 mAh/g), highest standard reduction potential (-3.04 V vs. S.H.E), no 

memory effect (i.e. the battery does not have to be completely discharged to be charged 

again), high volumetric and gravimetric energy densities, good cyclability and low self-
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discharge when not in use enable its use as a battery with large specific energy. Figure 1.1. 

Comparison of different battery technologies in terms of energy densities [4] shows the 

comparison of different battery technologies, from which it can be observed that lithium 

battery technologies provide the highest energy density to weight ratios. 

Figure 1.1. Comparison of different battery technologies in terms of energy densities [4] 

1.2. CURRENT STATE OF THE ART IN LITHIUM BATTERY RESEARCH 

Though the commercial production of lithium batteries began only two decades 

ago, the potential of lithium as an energy source had been identified well over a century 
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back. The experimentation on lithium batteries began as early as 1912 under Gilbert .N. 

Lewis, who first set up a lithium cell consisting of a pure Li metal anode, a lithium amalgam 

cathode and an electrolyte of propyl amine saturated with lithium iodide, with its operation 

carried out in vacuum. The normal electrode potential was found to be 3.3044 V, when 

compared to other alkali metals, sodium (2.9981 V) and potassium (3.2084 V) [7]. 

Since the standard reduction potential of lithium is less than -3V, it is highly 

unstable in protic solvents i.e. solvents displaying hydrogen bonding, such as water. Hence, 

the realization of practical lithium cells had to await the development of appropriate non-

aqueous electrolytes. Subsequently, it was only in the 1950s and 1960s that it was observed 

that Li-metal was stable in non-aqueous electrolytes such as fused salts, liquid SO2 or 

lithium perchlorate (LiClO4) in organic solvents. One of the earliest known work on 

organic electrolytes in lithium batteries came from the PhD thesis of W. Harris, 

Electrochemistry in Cyclic Esters, at University of California, Berkeley. Most of the work 

during this period was in the form of patent literature, primarily funded by government 

organizations like NASA and the Department of Defense (DOD) and these patents have 

been reviewed by Jasinski [8], in which he highlighted the importance of using organic 

electrolytes in lithium batteries. 

Commercialization of primary (non-rechargeable) lithium batteries began in the 

late 1960s following this discovery. Many such primary lithium batteries include Li/SO2, 

Li/MnO2, etc. which are still being manufactured today. These primary, non-rechargeable, 

batteries are used in watches, calculators and medical implants, to name a few. Li/MnO2 is 

the most manufactured primary lithium battery and constitutes roughly about 80% of the 

lithium battery market [9]. The reasons for this are that these batteries are useful for low-



4 

cost, long-life applications and can operate over a wide range of temperatures (-300C to 

600C). 

In 1972, Whittingham at Exxon used a lithium cell with a metallic lithium anode, 

titanium disulphide (TiS2) cathode and lithium perchlorate (LiClO4) in dioxalane as the 

electrolyte. TiS2 was the best intercalation compound available at the time because of its 

favorable layered structure. Although the cathode worked flawlessly and the cell showed 

increased cycling efficiency, the shortcomings at the lithium anode/electrolyte interface 

became rather evident. Microstructure growth of Li metal was observed during each 

charge-discharge cycle of operation, which led to short circuit and fire hazards [10]. One 

of the most significant breakthroughs in the research of primary lithium batteries during 

the 1970s upto the mid-1980s was the discovery of a passivating film on lithium metal 

when it came in contact with the organic solvents, which was the main reason for stability 

of these batteries. The success of primary cells based on organic solvents with insoluble 

(SOCl2 or SO2Cl2) and soluble (SO2) cathodes, especially their long shelf-lives at elevated 

temperatures are entirely due to this film [11]. It was first Peled [12] who coined the term 

‘solid electrolyte interface’ (SEI) and highlighted that the rate determining step was 

actually the migration of lithium ions through this interface, rather than charge migration 

which was previously assumed. 

To overcome the issue of microstructure growth and explosions, alternate 

approaches involving the modification of the negative electrode were followed. This 

involved using an intercalated compound at the negative electrode as well, as shown in 

Figure 1.2. Due to the presence of Li in ionic rather than metallic state, the problem of 

microstructure growth was solved to a large extent, thereby making these Li ion cells much 
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safer than Li metal cells. This was the next step in the progress of lithium batteries and they 

were called secondary (rechargeable) lithium batteries. These were lithium batteries which 

could be recharged after draining all the stored energy. In 1980, John Goodenough et al. 

proposed the idea of a battery with an intercalated lithium anode and cobalt oxide as the 

cathode material [13]. To compensate for the increase in potential of the negative electrode, 

high-potential insertion compounds are needed for the positive electrode, and emphasis 

shifted from the layered-type transition-metal disulphides to layered or three-dimensional-

type transition-metal oxides [14]. Metal oxides are more oxidizing than disulphides (for 

example, they have a higher insertion potential) owing to the more pronounced ionic 

character of ‘M–O’ bonds compared with ‘M–S’ bonds [15]. Though it took over ten years 

to implement this concept, this LiCoO2 battery created a revolution in the electronics 

industry, with SONY first commercializing this battery in 1991. These are the Li-ion 

batteries. They can undergo 400 – 1200 cycles of charge-discharge before slow 

deterioration of the battery. Theoretically, the primary lithium metal battery can store 

almost 10 times the amount of energy stored in a conventional lithium-ion battery [16]. 

This can be attributed to the metallic Li anode in primary lithium batteries. These lithium 

ion batteries exhibit the same characteristics exhibited by lithium metal batteries, except 

for the fact that they have a higher safety when compared to lithium metal batteries, as 

observed in Figure 1.2. Dendrite growth on the anode surface of Li metal battery (top) and 

Li-ion battery (bottom)[4], which makes it a very popular source of energy in many 

modern-day applications. 
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Figure 1.2. Dendrite growth on the anode surface of Li metal battery (top) and Li-ion 
battery (bottom)[4] 

Both lithium-ion batteries (LIBs) and lithium metal batteries (LMBs) consist of 

the same arrangement – an anode and a cathode, separated by an electrolyte. The major 

difference between the two is the material of the anode. Lithium metal batteries use pure 

Li metal as the anode material, while lithium-ion batteries use an intercalated compound 

of lithium as the anode material i.e. a compound of lithium and graphite (a carbonaceous 

anode). The electrolyte used in both batteries is a Li salt in a binary organic solvent. The 

selection of electrolyte salts and solvents for LIBs and LMBs will be made in the next 

chapter. The cathode can generally be represented as Lix(MO2)y, where M is a transition 

metal and the most commonly used ones are cobalt (Co), manganese (Mn), nickel (Ni) 

and vanadium (V). 
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1.3. CURRENT STATUS AND FUTURE PROSPECTS 

Secondary lithium batteries rule the market in terms of its applications. Even if the 

Li-ion battery technology is completely developed, its low energy density cannot meet the 

demands of the key markets such as automotive and aerospace, in the long term. This factor 

is propelling the focus of research in lithium battery technology away from conventional 

Li-ion batteries, in search of a viable alternative which satisfies both criteria of having high 

energy density as well as having similar safety levels as Li-ion batteries. However, devising 

Li battery technologies that answer all the shortcomings of the presently used Li battery 

technologies is a great challenge and would require scientists to explore newer materials 

and newer electrochemistry. Research conducted over the last few years has yielded the 

solution to this problem in terms of two new rechargeable Li battery technologies – the 

Li/air (Li-O2) battery and the Li-S battery. These technologies are still rudimentary and 

there are many challenges to be overcome before they can be commercially produced. 

1.3.1. Lithium Sulfur Batteries. Sulfur is inexpensive and one of the most 

abundant elements found on the earth. It can accept up to 2 electrons per atom at ~2.1 V vs 

Li/Li+. Therefore, sulfur cathode materials have a high theoretical capacity of 1675 mAh/g 

and Li-S batteries have an energy density of around 2600 Wh/kg [17], which is about 6 

times higher than the conventional Li-ion battery. 

Though this technology sounds promising theoretically, there are many problems 

with its commercial implementation. On the sulfur cathode side, both the charge product 

(sulfur) and the discharge product (lithium sulfide) are insulating in nature, resulting in 

poor material utilization. During cycling, they form a series of long chain lithium 

polysulfide species which dissolve into the electrolyte, leading to continual loss of active 

material and rapid capacity decay [18]. Sulfur undergoes a large volumetric expansion of 
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about 80% upon full lithiation to lithium sulfide, which causes structural damage at the 

anode [19]. On the anode, along with dendrite growth, the long chain lithium polysulfides 

(PS) that dissolve into the electrolyte can diffuse to the lithium anode and become reduced 

to form short chain PS on the surface, resulting in low Coulombic efficiency, which is a 

major issue in Li-S batteries [19]. 

1.3.2. Lithium Air Batteries. Li-air batteries are those with Li metal anode and an 

air cathode, which constantly extracts oxygen from the ambient air. The theoretical energy 

density is around 5200 Wh/kg. Since oxygen is constantly drawn from air, the specific 

energy should include the oxygen content. This theoretical specific energy is calculated to 

be 11140 Wh/kg including oxygen, or equivalently 40.1 MJ/kg, which is comparable to 

that of gasoline, 46 MJ/kg [20, 21]. 

During their operation, as oxygen is extracted from ambient air, the moisture 

content in air is also transported into the battery and reacts with the lithium anode. Lithium 

oxides form during discharge cycle and are transferred to the cathode, where they react 

with incoming oxygen. These lithium oxides clogs the entire volume of the cathode and 

prevents transport of both lithium ions and oxygen molecules, hence not preventing it from 

participating in reversible reactions [22]. This reduces its efficiency and lifespan.  The 

commercial difficulties in implementation is due to difficulties in achieving multiple 

discharge cycles without losing capacity [23]. Although these batteries provide promising 

prospects for the future of lithium battery technology, various limitations exist and remain 

as major hurdles for their transition from a prospect to a commercial technology. 
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1.4. SAFETY ISSUES 

Since the commercialization of the lithium-ion battery by SONY, primary lithium 

and lithium-ion batteries have become the first choice power sources for consumer 

electronics, aerospace, military, automotive applications to name a few. Although the 

energy density of lithium cells is two times higher compared to nickel based cells and four 

times that of lead acid cells, they come with certain limitations as well. The batteries 

developed in the 1970s and 1980s were predominantly primary lithium batteries, which 

offer very high energy densities. All the attempts to commercialize lithium metal batteries 

during this time period have been unsuccessful, largely because of the poor cycling 

efficiency and safety issues caused by Li electrodeposits that form on the Li metal anode 

during the charging process [24]. The behavior of Li metal within a cell can pose hazards 

as the surface of the negative electrode changes with cycling, forming dendrites that 

penetrate the separator. Li ions keep accumulating on these dendrites, causing them to 

grow. As the dendrites grow, there is a strong likelihood that they will come in contact with 

the surface of the cathode, thereby causing short circuits, as shown in Figure 1.3. Short 

circuiting in lithium cells [25]. Another safety issue arises from dead lithium. These are 

structures which have become electrically isolated from the anode surface due to non-

uniform dissolution rates of the dendrite microstructure. Their high chemical reactivity can 

result in short circuits, thermal runaway and eventually fire hazards. Due to these inherent 

risks posed by primary lithium batteries, a lot of the research shifted towards batteries using 

lithium ions. Though the lithium ion batteries have lower energy density compared to the 

lithium metal batteries, they offer a higher safety and provide certain precautions during 

the charging and discharging process. Despite the high safety standards used during 



10 

manufacture of lithium batteries, there have been several reported incidents, which raise 

the question of safety of this technology and this has raised a large interest among the 

public in recent years.  Since long battery runtimes and more stored energy are ideal in 

many applications, research has continued in the field of lithium metal batteries. 

Figure 1.3. Short circuiting in lithium cells [25] 

Lithium batteries can provide high currents and discharge rapidly when short-

circuited. Although this is beneficial in application that require high currents, a rapid 

discharge of the battery can lead to overheating of the battery and consequently, fire 

hazards. To overcome this issue and prevent the possibility of explosions, consumer 

batteries incorporate either vents, overcurrent or thermal protection. 
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1.5. APPLICATIONS OF LITHIUM BATTERIES 

High energy density, low weight and long cycle life have enabled the use of lithium 

batteries in many modern day applications. These applications, to name a few, encompass 

both primary and secondary lithium battery technologies – 

• Implantable medical devices (Pacemakers)

• Portable electronics (laptops, cell phones, digital cameras, watches etc.)

• Hybrid electric vehicles (Toyota Prius, Chevrolet Volt, BMW i8, etc.)

• Fully electric vehicles (Tesla cars, Nissan Leaf, etc.)

• Space Vehicles (Mars Opportunity rover, etc.)

• Unmanned aerial vehicles (UAVs)

• Satellites

• Weapons systems (Ballistic missiles, etc.)

• Oceanographic instrumentation

Though lithium batteries serve a plethora of applications, not all of them can be 

beneficial to society. Lithium batteries provide a convenient source of lithium metal, which 

is used as a reducing agent in the production of methamphetamine. From 2003 to 2014, 

Missouri was infamously known as the ‘Meth Capital of the World’ because it had the most 

meth lab raids and busts. Many attempts were made to curb this issue and in 2004, Walmart 

was even told to limit the sale of lithium battery packages to three in Missouri and four in 

other states. 
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1.6. SUMMARY 

This chapter highlights the importance of lithium as an energy source in not only 

today’s world, but also in the future. Efforts are continuously being made to increase the 

operating safety levels in these batteries. Research has also begun beyond Li-sulphur and 

Li-air batteries. The incorporation of silicon and germanium nanowires at the electrode 

surface to reduce this electrodeposit formation is one of them. However, the biggest 

challenge is reducing the trade-off between energy density and safety levels.  
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2. COMPONENTS OF THE LITHIUM BATTERY 

2.1. ELECTROLYTES 

  Electrolytes are vital constituents of electrochemical devices. Electrolyte is a 

substance which ionizes when dissolved in suitable ionizing solvents. The majority of 

electrolytes consist of salts dissolved in either an aqueous (water) or non-aqueous (organic 

solvents) media. When voltage is passed through the electrolyte, the ions diffuse from one 

electrode to another through the electrolyte, thereby converting chemical energy to 

electrical energy. In a typical lithium rechargeable battery, during the charging process, the 

electrons flow from the cathode to the anode externally, whereas the Li+ ions flow through 

the electrolyte. During the charging process, Li+ ions move from cathode to the anode and 

in the opposite direction during the discharge process. Li+ ions and electrons are generated 

from the following chemical reaction: 

Li                   Li+ + e- 

The selection of the electrolyte in lithium batteries is a complicated task since it has 

to comply with many contrasting requirements such as high conductivity, high transference 

number, good chemical and thermal stability, low viscosity and toxicity, good dielectric 

constant, ability to form a stable solid electrolyte interface (SEI), should remain a liquid 

over a wide temperature range, commercially inexpensive and readily available [26-29]. 

Since an ‘ideal solvent’ is yet to be found (high dielectric constant and low 

viscosity), practical lithium batteries use mixed solvents i.e. a main solvent with high 

dielectric constant and viscosity and a secondary solvent with low values of dielectric 

constant and viscosity. Many lithium salts and organic solvents have been identified as 

electrolytes for lithium batteries. Some common lithium salts are lithium perchlorate 
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(LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6) and 

lithium bis (trifluoromethanesulfonyl)mide (LiTFSI). The organic solvents used are 

ethylene carbonate (EC), propylene carbonate (PC), ethyl methyl carbonate (EMC), 

dimethyl carbonate (DMC) and diethyl carbonate (DEC). From various studies conducted 

on selection of electrolyte for lithium batteries, it has been found that LiPF6 in binary 

organic mixture of a cyclic (EC) and non-cyclic (DMC) organic compounds satisfies (all 

the aforementioned properties of the required electrolyte [30, 31]. 

In this study, the system consists of an anode made of pure lithium, a cathode made 

of LiCoO2, separated by LiPF6 electrolyte, mixed in a 1:1 ratio of ethylene carbonate (EC) 

and dimethyl carbonate (DMC). 

It has been predicted theoretically [32], and several authors have reported that, 

when depositing a metal from a binary electrolyte, dendritic growth starts when the 

concentration of metal ions approaches 0 at the negative electrode [33]. 

2.1.1. Organic Solvents. The organic solvent should be a polar solvent not 

having an active proton because the material for the organic electrolyte coexists with the 

anode and cathode materials within the cell. The ideal solvents used in lithium batteries 

must meet the following minimum requirements [34]: 

• They must be able to dissolve sufficient amounts of lithium salt concentration i.e.

they should have a high dielectric constant

• They should have low viscosity to facilitate ion transfer

• They should remain inert towards materials of cell components i.e. anode, cathode,

separator and cell packaging materials
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• They should remain liquid over a wide temperature range i.e. it must have a low 

melting point and high boiling point  

• They should be non-toxic and economical. 

Cyclic organic solvents have high viscosity and high dielectric constant. Non-cyclic 

organic solvents have low viscosity and low dielectric constant. Hence, a mixture of these 

two types of organic solvents would produce the desired properties of solvent in lithium 

batteries i.e. low viscosity and high dielectric constant.  Figure 2.1 and Figure 2.2 represent 

the ring and chain structures respectively, of different organic compounds. Table 2.1 and 

Table 2.2  show the physical properties of the different organic compounds that can be used 

in commercial lithium batteries as solvents and the differences in properties between them 

can be seen. 

 

 

     

(a)                        (b) 

Figure 2.1. Ring structures of cyclic organic compounds used in lithium batteries          
(a) Ethylene carbonate - EC and (b) Propylene carbonate - PC 

 

. 
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(a) (b)    (c) 

Figure 2.2. Chain structures of non-cyclic (linear) organic solvents used in lithium 
batteries (a) Dimethyl carbonate - DMC (b) Diethyl carbonate – DEC and (c) Ethyl 

Methyl carbonate - EMC 

Table 2.1. Physical Properties of Cyclic Organic Solvents 

Polymer Melting 
point 
(0C) 

Boiling 
point 
(0C) 

Viscosity 
(Pas) 

Density 
(g/mL) 

Vapor 
pressure 
(mmHg) 

Dielectric 
constant 

Dipole 
moment 
(D) 

Ethylene 
carbonate 
(EC) – 
C3H4O3 

35-38 260.7 0.480 1.321 0.02 90 5.68 

Propylene 
carbonate 
(PC) – 
C4H6O3 

-48.8 241.7 0.0025 1.2006 0.045 64.9 4.54 

Table 2.2. Physical Properties of Non-Cyclic (Chain) Organic Solvents 

Polymer Melting 
point 
(0C) 

Boiling 
point 
(0C) 

Viscosity 
(Pas) 

Density 
(g/mL) 

Vapor 
pressure 
(mmHg) 

Dielectric 
constant 

Dipole 
moment 
(D) 

Dimethyl 
carbonate 
(DMC) – 
C3H6O3 

2-4 90 0.000625 1.069 18 3 0.76 
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Table 2.2. Physical Properties of Non-Cyclic (Chain) Organic Solvents (contd.) 
 
Diethyl 
carbonate 
(DEC) – 
C5H10O3 

-43 126-
128 

0.000749 0.9752 10.8 2.82 0.96 

Ethyl 
methyl 
carbonate 
(EMC) – 
C4H8O3 

-53 107 0.00065 1.01 14.7 2.95 0.89 

 

 

2.1.2. Lithium Salts. The solute selected  for the electrolyte in lithium batteries 

must ideally meet the following requirements [34]: 

• It should be able to completely dissolve in the non-aqueous media and the Li+ cation 

must be able to move around with high mobility  

• The anion must be stable against oxidative decomposition  

• The anion should be inert towards the organic solvents  

• The anion must be non-toxic and thermally stable against chemical reactions that 

occur  

• The anion and cation must remain inert towards other materials in the cell such as 

separator, cell packaging materials and electrode surfaces.   

Aravindan et al [35] presented the following advantages and limitations of using 

certain lithium salts: 
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2.1.2.1. Lithium perchlorate (LiClO4). LiClO4 is very acidic in nature, has high 

ionic conductivity in non-aqueous solvents, high solubility and high anodic stability. It is 

strongly involved in the solid electrolyte interface (SEI) formation and exhibits an ionic 

conductivity of 9 mS/cm in EC/DMC at room temperature [36]. The high oxidation state 

of chlorine makes it a strong oxidizing agent, which readily reacts with organic solvents at 

higher temperatures potentially leading to explosions. 

+
4 2 3 2LiClO +ne-+2nLi Li O+LiClO ,LiClO +LiCl→  

The by-product of this reaction, LiClO3, is hygroscopic in nature i.e. it absorbs the moisture 

and leads to explosions during cycling of the battery. Hence, it cannot be used in practical 

lithium batteries. 

2.1.2.2. Lithium tetrafluoroborate (LiBF4). LiBF4 exhibits high solubility in non-

polar solvents. It has greater thermal stability and exhibits greater moisture tolerance when 

compared to that of LiPF6 [37] However, it shows only a moderate ionic conductivity of 

4.9 mS/cm. LiBF4 absorbs even with trace amounts (in ppm level) of moisture and 

undergoes hydrolysis to form hydrogen fluoride (HF), which can destroy the d-block metal 

present in the cathode as well as the Li+ ion. The BF4- ion is too stable and cannot participate 

in the formation of a stable SEI. 

+ 4-
3Li +BF LiF BF→ ↓ + ↑

3 2BF +H O BOF +2HF→ ↑  

These disadvantages make LiBF4 unsafe to use in practical lithium batteries, but 

they are extensively used in testing of lithium secondary batteries. 



19 
 

 

2.1.2.3. Lithium hexafluoroarsenate (LiAsF6). LiAsF6 has a very high ionic 

conductivity of 11.1 mS/cm [38]. It is soluble in low dielectric constant solvents i.e. non-

cyclic organic solvents in lithium batteries, and its average cycling efficiency is found to 

be greater than 95%. The anodic stability of LiAsF6 is very high, 6.3 V vs Li/Li+ and 4.5 V 

at the cathode. Although LiAsF6 has so many desirable properties, its toxicity is the major 

concern in implementation and hence, this salt has never been used in any commercial 

battery. Moisture is again an issue with LiAsF6 as it produces HF during chemical reaction. 

6 2 5

- +
6 3

- + +
3 n 3-n

LiAsF + H O  HF+ AsF + LiOH

LiAsF + 2e + 2Li  AsF + 3LiF

AsF + 2ne + 2nLi  Li AsF + nLi

→

→

→
 

The strong nature of the -
6AsF ion results in decomposition of the salt. The by-products of 

reaction HF, AsF5 and AsF3 can react with the SEI and break it. 

2.1.2.4. Lithium hexafluorophosphate (LiPF6). This is the most widely used 

lithium salt in lithium batteries since it satisfies most of the desired qualities of a salt. It has 

good ionic conductivity of 10.7 mS/cm. It is highly soluble in low dielectric media. Its 

thermal and anodic stabilities are comparable to most other lithium salts used in lithium 

batteries. It forms a stable solid electrolyte interface (SEI). At elevated temperatures, 

operation with LiPF6 is a problem due to its poor thermal stability. LiPF6 absorbs even 

trace amounts (in ppm level) of moisture present in the electrolyte and undergoes 

hydrolysis to form dangerous products like HF. 

6 2 3LiPF +H O POF +LiF+2HF→   
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2.1.2.5. Lithium bis (trifluoromethanesulfonyl) mide – Li[N(CF3SO2)2] or 

LiTFSI. LiTFSI is thermally stable at its melting temperature of 2360C and does not 

decompose until 3600C. It has a slightly lower conductivity when compared to LiPF6 and 

LiAsF6. It dissociates well in lower dielectric constant media. Hence, solution viscosity 

increases and mobility tends to decrease, favoring higher ionic conductivity. The oxidation 

potential of LiTFSI is found to be 4.3V vs Li/Li+ and this value is very high compared to 

other salts, apart from LiAsF6. Though LiTFSI has so many desirable properties, it has not 

been used in any commercial battery because of corrosion problems.  

A comparison of properties among the aforementioned lithium salts is shown below -

Dissociation constant - LiBF4 < LiClO4 < LiPF6 < LiAsF6 < LiTFSI 

Average ion mobility - LiBF4 > LiClO4 > LiPF6 > LiAsF6 > LiTFSI 

Anodic stability – 
- - - -
4 4 6 6ClO <BF <PF <AsF

2.2. SOLID ELECTROLYTE INTERFACE (SEI) 

It is well known that cyclic life and stability of lithium batteries are dependent on 

the formation of an organic/inorganic layer at the electrode face, called the solid electrolyte 

interface (SEI). According to Peled [12], the SEI must have the following properties – the 

electron transference number must be zero, high ion conductivity, uniform morphology 

and chemical composition for homogeneous current distribution, good adhesion to the 

anode surface, good mechanical strength and flexibility and low solubility in electrolytes. 

The SEI prevents anode lattice structure from exfoliation of atoms on the anode 

surface and allows charging of battery without major capacity fades [39]. The SEI film 

formation differs significantly among the various organic solvents. For example, the SEI 
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film is formed in ethylene carbonate (EC) based electrolyte, whereas SEI film is not formed 

in propylene carbonate (PC), unless it has an additive like vinylene carbonate (VC) added 

to it. The SEI formation depends on a number of factors like reactivity of the solvent, 

physical properties of the film, interaction of the film with the electrode surface, taking the 

same lithium salt. It has been reported that EC gets decomposed in a battery electrolyte of 

EC/DMC and that DMC mainly contributes in improving the viscosity and conductivity 

[40]. On repeated charge/discharge cycles, the SEI breaks down and formation of dendrites 

takes place in those areas. It has been reported through an in situ spectroscopic ellipsometry 

study that the average thickness of the SEI layer is ~27 nm [41]. 

 

2.3. ELECTRODES 

As mentioned earlier, any battery system consists of three components – an anode, 

a cathode and an electrolyte. A battery is a transducer which converts chemical energy into 

electrical energy. The materials to be used for the anode and cathode are instrumental in 

determining the electric potential difference. The electric potential is measured as a 

difference between the chemical potentials of lithium in the anode and the cathode and is 

given by ΔG = -nFE (on simplification from the Nernst equation), where ΔG is the change 

in Gibbs free energy, n is the number of moles of electrons, F is the Faraday’s constant (F 

= 96485.33 C/mol) and E is the cell potential in volts. 

In the case of direct current (DC), electrodes come in pairs – an anode and a 

cathode. The anode is the electrode at which the electrons leave the cell and oxidation 

occurs. The cathode is the electrode at which the electrons enter the cell and reduction 

occurs. In a primary cell, the identities of the electrodes remain fixed. The anode is always 
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the negative electrode and the cathode is always the positive electrode. Such cells can be 

discharged but not recharged. However, in secondary cells, the chemical reactions are 

reversible. When the cell is being charged, the cathode loses electrons and they flow 

towards these anode. When the cell is being discharged, the secondary cell behaves like a 

primary cell. Hence, secondary cells are rechargeable. For an overall perspective, only the 

commonly used electrode materials are presented (both anode and cathode) in the 

following sections. 
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2.3.1. Anode in Lithium Batteries. The material used in the anode is the major 

difference between lithium metal batteries and lithium ion batteries. The properties 

exhibited by these batteries are contingent on the material of the anode. In lithium metal 

batteries, the anode is made of pure metallic lithium, while it is made of a lithiated 

compound intercalated with either carbon or silicon (LixCy or LixSiy) in lithium-ion 

batteries.  

2.3.1.1. Lithium metal anode. The research in the field of lithium batteries began 

with a battery having a pure metallic lithium anode. The main reason for this being that 

lithium metal batteries are able to provide a very high specific capacity (3860 mAh/g) [42]. 

Though metallic lithium offers several advantages over intercalated lithium anodes, its 

main drawback is safety, which prevents its commercial implementation for larger 

applications. 

2.3.1.2. Intercalated lithium compound anode. These type of anodes are 

extensively used in rechargeable lithium batteries i.e. lithium-ion batteries. The anode is 

made of a lithiated compound intercalated with either carbon or silicon (LixCy or LixSiy) in 

lithium-ion batteries. The more extensively used or standard anode materials in lithium-

ion batteries are carbonaceous anodes, either graphite or coke. During the charging cycle, 

the reaction at the anode is:  

Li + 6C             LiC6 

Lithium-ion batteries provide a significantly smaller specific capacity of 372 

mAh/g for graphite anode [43]. The benefit of using anodes are low cost and good energy 

density. Since graphite can accommodate one lithium atom per 6 carbon atoms, it cannot 

produce a high energy capacity. To increase the energy capacity i.e. how long a battery can 
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retain its charge before discharge cycle begins, there have been efforts to replace grapheme 

sheets with Silicon (Si). Si can hold one lithium atom per 4.4 Si atoms, thus producing a 

higher energy capacity. Despite this advantage, Si contracts and expands erratically during 

the charging cycle, causing fragmentation and losing its energy capacity rapidly [44]. 

Though lithium metal batteries produce almost 10 times the capacities produced by 

lithium-ion batteries, they are not feasible due to onset of failure during the first few cycles 

of charging itself, whereas lithium-ion batteries only begin failing after 400-1200 cycles of 

charge, as discussed in the previous chapter. 

2.3.2. Cathode in Lithium Batteries. The choice of material to be used for the 

cathode depends whether we are dealing with rechargeable lithium metal batteries or Li-

ion (secondary) batteries. For the case of lithium metal batteries, owing to the pure metallic 

nature of the lithium anode, the cathode does not need to be lithiated with any 

elements/compounds before cell assembly. However, in Li-ion batteries, since there in no 

lithium in the carbonaceous anode, the cathode must act as a source of Li and it must 

therefore use a Li based intercalation compound to facilitate cell assembly [45]. 

For materials to be used as cathodes in lithium batteries, they must meet the following 

requirements [46]: 

• The material must contain a readily reducible or oxidizable ion i.e. a transition 

metal preferably  

• The material must be able to react with lithium in a reversible manner (if it is a 

rechargeable lithium metal battery)  

• High capacity, preferably one Li per transition metal atom, leading to high energy 

storage  
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• The material reacts rapidly with lithium on insertion and removal, leading to a high

power density

• Must be a good electronic conductor, preferably a metal

• The material must be stable i.e. it must not overcharge or overdischarge

• The material must be economical

• The material should be environmentally benign

The cathode materials in lithium batteries are typically oxides of transition metals

and can be generically denoted as Lix(MO2)y, where M is a transition metal like cobalt 

(Co), manganese (Mn), vanadium (V), nickel (Ni) etc. While oxidation of a transition metal 

can maintain charge neutrality in the compound, large compositional changes lead to phase 

changes. Therefore, crystal structures which are stable over a wide composition range must 

be used. This is a challenge during the charging process when most of the lithium is 

removed from the cathode. The rates of charging and discharging, control the amount of 

discharge current. The performance of the cathode depends on movement of lithium ions 

from electrolyte to the electrode, electrode surface morphology, as well as the inherent 

electrochemical properties of the cathode material [47]. During charging, the lithium at the 

cathode dissolutes to form lithium ions and free electrons. The reaction at the cathode is 

represented as: 

Li                 Li+ + e- 

Fergus [47] mentions the following commonly used cathode materials in lithium 

batteries today and some of their advantages and limitations: 
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2.3.2.1. Lithium cobalt oxide (LiCoO2). This is the most commonly used and 

commercially produced cathode material in lithium batteries [48]. The first proposed 

lithium-ion battery by John Goodenough in 1980 was constructed using a LiCoO2 cathode. 

However, certain problems associated with LiCoO2 are that it is quite unstable and can 

deteriorate when it is overcharged, liberate oxygen into the electrolyte, which can cause a 

violent reaction when heated above its flash point i.e. they have poor thermal stability [49]. 

2.3.2.2. Lithium manganese oxide (LiMn2O4). Since manganese (Mn) is 

inexpensive, these cathodes are suitable in applications which require a long life, but are 

low cost. They have a relatively high energy density per mass (280 Wh/kg) and per volume 

(580 Wh/L). This is the most common consumer-grade battery cathode material and forms 

about 80% of the lithium battery market. When the battery is not in use for long periods, 

loss of capacity has been observed due to dissolution of manganese in the electrolyte. One 

method of overcoming this limitation is to add iron (Fe) or cobalt (Co) to LiMn2O4.  

2.3.2.3. Lithium nickel oxide (LiNiO2). It is lower in cost and has a higher energy 

density (20% by weight and 15% by volume), but is less stable when compared to LiCoO2. 

It is very similar to LiCoO2 in structure and has been pursued because of the less availability 

of cobalt.  

2.3.2.4. Lithium iron phosphate (LiFePO4). These are a class of LiMPO4 

cathodes, where M is a transition metal and this is the most commonly used phosphate 

cathode. Other phosphates which are used as cathodes in lithium batteries are LiMnPO4, 

LiCoPO4 and LiV2(PO4)3.` 
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2.3.2.5. Composite cathodes. Composite cathodes, as the name suggests, is a 

combination of two electrode materials to form a new one. This is done to improve 

performance of a battery during charge and discharge cycles, increase energy retention and 

improve battery life. For example, addition of LiFePO4 to LiCoO2 or LiNiO2. Rather than 

addition of different particles to a particular cathode, composite cathodes can also be 

prepared by coating an active material to the surface of a cathode material. 

2.4. SUMMARY 

A detailed description of all the different types of electrolytes and electrodes used 

in lithium batteries is mentioned. The advantages and disadvantages of using different 

electrolytes and electrodes can be seen. With these factors in mind, the selection of the 

most optimum electrolyte and electrode components for a lithium battery for a particular 

application can be made appropriately. 
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3. COMPUTATIONAL MODELING TECHNIQUES FOR MICROSTRUCTURE 
EVOLUTION 

3.1. UNDERSTANDING THE EVOLUTION OF MICROSTRUCTURES 

Microstructures are compositional and structural inhomogeneities that arise during 

processing of materials. Microstructures mainly evolve to lower the free energy of a system 

and bring the system to a state of equilibrium. These structural features usually have an 

intermediate mesoscopic length scale in the range of nanometers to microns. The size, 

shape, and spatial arrangement of the local structural features in a microstructure play a 

critical role in determining the physical properties and performance of a material [50]. The 

formation of different microstructures are affected by the processes and the conditions 

through which they are evolved. In order to develop engineering materials and enable 

design of newer multifunctional materials, it is essential to predict the microstructural 

patterns such as size, shape and spacing of observed microstructures in materials. For 

example, in structural applications where high strength is crucial, the steels contain a mix 

of refined crystal grains and a dispersion of soft and hard phases throughout their 

microstructure. In aerospace and automotive applications, where high strength-to-weight 

ratios are of utmost importance, lighter alloys are strengthened by precipitating second-

phase particles in the original grain structure. So, understanding microstructure evolution 

helps us to understand the properties and behavior of materials and vice-versa. 

Microstructures are thermodynamically unstable structures that form in a material 

that form due to various processing techniques. Their formation is governed by a 

thermodynamic driving force and this driving force varies as the process varies. For 

example, processes like solidification and electrodeposition are driven by minimization of 

free energy, while phase transformation would include elastic effects and driven by 
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changes in surface energy and anisotropy. There are several experimental methods to 

observe the transformed morphology in a material like optical microscopy, electron 

microscopy, X-ray diffraction, to name a few. But there has been a need to observe the 

growth of microstructures without utilizing too many resources and eliminating the 

possibilities of human error during experimentation. Hence, the focus of research shifted 

from studying the growth of these materials experimentally to predicting the growth of 

these materials computationally. Modeling the formation of these microstructures is 

important as it gives insight into factors like growth rate and also the effect of different 

parameters on their evolution. The ability to model and predict the evolution of material 

microstructures has vastly been due to the invention of better numerical and computing 

tools. Phase field and sharp interface techniques have made it possible to model free surface 

kinetics which are responsible for evolution of microstructures [51]. Each computational 

model is governed by a set of governing partial differential equations and a series of 

boundary conditions to describe the system under study. These mathematical relations, in 

theory, contain the physics that leads to evolution of these microstructures. However, each 

technique is accompanied by its own advantages and limitations. 

3.2. SHARP INTERFACE MODEL 

In the conventional modeling technique for phase transformations and 

microstructural evolution i.e. the sharp interface approach, the interfaces between different 

domains are considered to be infinitely sharp, and a multi-domain structure is described by 

the position of the interfacial boundaries. The kinetics of microstructure formation is then 

modeled by a set of partial differential equations that describe the release and diffusion of 
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heat, the transport of impurities, and the complex boundary conditions that govern the 

thermodynamics at the interface for each domain. In a sharp-interface model [52], the 

regions separating the compositional fields are considered as mathematically sharp 

interfaces so one or more variables and/or their derivatives are typically discontinuous 

across the interface. Tracking of the interface will be required at each and every step of 

computation. This method of tracking the interface is simple in one-dimensional studies, 

but becomes numerically complex and impractical for two-dimensional and three-

dimensional cases. Here, the order parameter is a discontinuous function and it only takes 

2 values, 0 (liquid phase) and 1 (solid phase) and does not define the phases in between. 

 

3.3. PHASE FIELD MODEL 

Compositional and structural inhomogeneities that occur during processing of 

metals may consist of phases of dissimilar compositions and crystal structures, grains with 

different orientations or metals with some defects in them. The phase field method has 

emerged as one of the most versatile techniques to simulate microstructure evolution 

during many complex phenomena like solidification [53-58], solid state phase 

transformation [59-61], electrodeposition [62-65], crack propagation [66], dislocation 

dynamics [67] and various other phenomena. 

In the phase field model, the order parameter is a continuous function which 

transitions smoothly from liquid to solid phase. The order parameter, η, assumes values 

between 0 (in the liquid phase) and 1 (in the solid phase) respectively. This gives rise to a 

small interface between them, where the meta-stable phases are described as 0<η<1, as 

illustrated in Figure 3.1. This interface is not a physical entity, but a mathematical entity 
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assumed for convenience of modeling. It assumes constant values in the bulk of each phase, 

continuously interpolating between its bulk values across this thin boundary/interface. The 

interface thickness is controlled by surface energy and height of the double well potential 

function. The concept of a diffuse interface was first analyzed by van der Waals, who 

examined the density change between a liquid and its vapor [68], who concluded that 

diffuse interface between stable phases in a material is more natural than the assumption 

of a sharp interface in the properties of the material. 

3.4. SHARP INTERFACE MODEL VS. DIFFUSE INTERFACE (PHASE FIELD) 
MODEL 

A limitation encountered in modeling sharp interface models is that it cannot be 

used to describe many physical phenomena like effect of mobile dislocations on particle 

coarsening. A similar situation is encountered when solute trapping is considered. 

Another drawback associated with sharp interface models is that their numerical 

simulation also turns out to be extremely difficult. The most challenging aspect is the 

complex interactions between topologically complex interfaces that undergo merging and 

pinch-off during the course of a phase transformation. Such situations are often addressed 

by applying somewhat arbitrary criteria for describing when interface merging occurs and 

by manually adjusting the interface topology. The numerical codes for sharp interface 

models are very lengthy and complex, particularly in three-dimensional systems. The sharp 

interface model would require two equations to describe the phases and one more to track 

the interface, whereas phase field models require only a single equation to describe phase 

transformation. This is mainly because meshing the domain using the finite element 

method allows easy tracking of the interface. 
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Along with these two drawbacks of sharp interface models, one would not be able 

to completely appreciate the diffuse interface approach if the most important advantage of 

the latter over former is not mentioned here. Main advantage gained by using phase-field 

method to model phase transitions, compared to the sharp-interface method, is that the 

explicit tracking of the moving surface, the liquid and solid interface, is completely 

avoided. Instead, the phase of each point in the simulated volume is computed at each time 

step. In classical sharp interface formulation, the basic equations have to be written for 

each medium and the interface boundary conditions must be explicitly tracked. In diffuse-

interface theory the basic equations, with supplementary phase field terms, are deduced 

from a free energy functional for the whole system and interface conditions do not occur. 

In fact, they are replaced by a partial differential equation for the phase field. 

 

 

 

(a)                                                               (b) 

Figure 3.1. Graphical representations of (a) Sharp Interface Model and (b) Diffuse 
Interface (Phase Field) Model 

 

 



33 

3.5. LIMITATIONS OF PHASE FIELD MODELS 

While phase field models might offer a deeper connection to fundamental 

thermodynamics than larger-scale engineering or sharp interface models, they come with 

several problems that have traditionally stood in the way of making models amenable to 

quantitative modeling of experimentally relevant situations. For example, the emergence 

of a mesoscopic interface renders phase field equations very stiff. This requires multi-scale 

numerical methods to resolve both the thin interfaces that are inherent in phase field models 

while at the same time capturing microstructures on larger (millimeter-centimeter) scales. 

Moreover, the numerical time steps inherent in phase field theory (limited by the interface 

kinetics) makes it impossible to model realistic time scale. As a result new mathematical 

techniques (thin-interface asymptotic analysis methods) have to be developed that make it 

possible to accelerate numerical time scales without compromising solution quality. 

Luckily, advances on both these fronts (and others) have recently become possible to 

overcome some of these challenges in selected problems. 

3.6. SUMMARY 

Computational modeling holds the edge over experimentation as the first step since 

it requires lesser resources to predict many different phenomena and understand the 

parameters controlling them. Using this knowledge, one can conduct experiments to 

corroborate the results of the simulations. Two modeling techniques – sharp interface 

modeling and phase field modeling are presented and the differences between them have 

also been highlighted. Since the focus of this work is phase field modeling, its uses, 

advantages and limitations over sharp interface modeling have also been made. 
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4. CURRENT PHASE FIELD MODELS OF ELECTRODEPOSITION PROCESS

The importance of lithium batteries to the energy sector and phase field modeling 

as a computational tool for predicting microstructures have been made in Chapters 1 and 3 

respectively. The growth of microstructures from the anode surface during 

electrodeposition is not present only in lithium batteries, but is present in every 

electrochemical system and there have been many phase field modeling studies of the 

parameters responsible for this phenomenon, through many different methods. Guyer et al. 

[69, 70] presented a generalized phase field model for aqueous electrochemical systems, 

which placed emphasis only on the critical details about the thermodynamics of the 

interface in general and the electrochemical double layer in particular. For this reason, they 

considered all the components in the system i.e. cations of the metal under consideration, 

anions and cations of the salt present and electrons produced during the charging process 

as well. These reasons render this model is extremely complicated for practical purposes 

and to model macroscopic systems. Shibuta et al. [64] developed a phase field model for 

the electrodeposition of Cu from CuSO4, where the evolution equations were derived 

considering a dilute solution approximation, as done in the KKS model [54] and a 

simplified charge conservation equation (a Laplace’s equation). The same group [63] 

developed another phase field model for the electrodeposition of Cu2+ ions by considering 

Butler-Volmer kinetics by applying a non-linear diffusivity term and used the Poisson-

Nernst-Planck equation to define the charge conservation equation. While not exactly a 

phase field model, Akolkar [62] developed a mathematical model for the growth of 

dendrites in Li batteries. The evolution equation was derived using Fick’s second law and 

the effects of growth of dendrites as a function of tip current density and overpotentials 
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were studied. This model used a concentration dependent diffusivity term and mainly 

pointed out that the propagation of the electrodeposits are due to the tip of the initial 

electrodeposit as its tip is thermodynamically very unstable. Liang et al.[65, 71], using 

Butler-Volmer kinetics and a time dependent evolution source term for both concentration 

and electric potential, studied the effects of electrodeposition in a Li-ion battery. They 

showed the effects of charging density and overpotential on the microstructure growth rate. 

Cogswell [72] studied the electrodeposition of Zn2+ from ZnSO4 using Marcus kinetics 

instead of the traditional Butler-Volmer kinetics. Transfer of a charge species can be 

modeled in two ways – the phenomenological, macroscopic Butler-Volmer model and the 

microscopic Marcus-Hush model [73]. The Butler-Volmer method offers a simple way to 

model electrochemical systems while the Marcus model concentrates more on the kinetics 

at the electrode of different species, while trying to maintain computational simplicity of 

modeling macroscopic systems. 

The aspects of phase field modeling that will be used are discussed below, first in 

a generalized form and those aspects will then be applied to derive the governing equations 

for the present model. 

4.1.   PHASE FIELDS AND THEIR EVOLUTIONS 

The phase field variable distinguishes between different states of a material that 

may be identical in all other state variables such as temperature, concentration, pressure, 

etc. Therefore, the phase-field variable is an independent state variable. In their theory of 

phase transitions, Ginzburg and Landau used this observation to expand the 

thermodynamic state functions, which they called ‘order parameter, shown in Figure 4.1. 
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Figure 4.1. Variation of order parameter interpolating function p(ξ) [52] 

In a two-phase system, the order parameter, η, assumes values of 0 and 1 in the 

phases respectively, as shown in Figure 4.1. In general, for an N-phase system, the value 

of order parameter at any point in the system can be represented as 

N

i
i=1

η =1∑

The order parameter defines the state of phase of a system during phase 

transformation. In other words, it describes the change of symmetry from a disordered 

phase to an ordered phase. For example, a crystal has fewer rotational and translational 

symmetries compared to a liquid. The order parameter takes on a finite value in the ordered 

state but vanishes completely in the disordered state. But for some phase changes, like 

vapor to vapor + liquid, there is no change in the structural symmetry groups of the parent 

and daughter phases. In such cases, effective order parameters can often be defined in terms 

of density differences relative to the parent phase. 
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The order parameter may be of two types – conserved and non-conserved. 

Conserved order parameters are order parameters whose value does not change during a 

phase transformation. Non-conserved order parameters are those whose value changes 

during the course of a phase transformation. 

4.1.1. Conserved Order Parameter. Conserved order parameters are order 

parameters whose values do not change during a phase transformation. From the Ginzburg-

Landau theory, a local chemical potential must be derived as a functional of concentration. 

A description of the free energy functional will be made in the coming sections. If F 

represents the free energy functional and C represents the concentration, then the chemical 

potential can be represented as a variational derivative as 

δFμ=
δC

(1) 

In the equilibrium state, the chemical potentials of the two phases will be equal to each 

other. Since concentration, C, is a conserved field, it must satisfy the mass conservation 

equation 

C . J
t

→∂
= −∇

∂
(2) 

The flux is defined as 

J M .μ
→

= − ∇ (3) 

where M is the diffusional mobility. By combining equations (2) and (3), we obtain the 

following equation of motion for the concentration field 

C δF. M
t δC

∂  = ∇ ∇ ∂  
(4) 
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This is the Cahn-Hilliard equation which represents the mass conservation equation and 

this equation is used to derive the governing equation for concentration in this work. 

4.1.2. Non-Conserved Order Parameter. Non-conserved order parameters are 

those whose value changes during the course of a phase transformation. In an irreversible 

process, to satisfy the equilibrium condition, the dissipation of free energy vs. time must 

follow the inequality 

 δF 0
δt

≤  (5) 

The driving force for the rate of change of non-conserved order parameter is defined as 

δF
δη

, where η  represents the phase field order parameter. 

Since there is no conservation imposed onξ , the dynamic evolution of non-conserved order 

parameter is given by 

 
p

η δF-L
t δη

∂
=

∂
 (6) 

(6) is the Allen-Cahn equation, where Lp is the phase field mobility. This equation 

is used to derive the governing equation for phase field order parameter if the free energy 

density is a function of order parameter as well. Though this equation has not been used in 

this work, it has to be noted that if a free energy density function is formulated such that it 

is a function of both order parameter and concentration, then the governing equation for 

the phase field order is derived using the Allen-Cahn equation. 
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4.1.3. The Ginzburg-Landau Free Energy Functional. The Ginzburg-Landau 

free energy functional, F, forms the base of the work of this thesis. It is a combination of 

chemical free energy density and gradient free energy of the system. The state of a system 

can be represented by the order parameter, η , in the phase field model. The entire phase 

field can be represented as: η =1 represents the electrode and η =0 represents the electrolyte 

and 0< η <1 represents the interface between these two phases. The changes in time of the 

phase field and concentration of Li+ ions are assumed to be proportional to the variation of 

the Ginzburg-Landau free energy functional. In all other phase field models for 

electrodeposition [64, 65, 69, 71, 72], the functional, Fc, which is a function of both order 

parameter, η , and molar concentration, C, is defined as:  

( ) ( )2
c

V

1F f η,C k η ρ dV
2

φ = + ∇ + 
 ∫ (7) 

where the f(η,C) is the chemical free energy density, k is the coefficient of gradient energy, 

ρ is the electrical charge density and ϕ is the electric potential. 
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5. PROPOSED PHASE FIELD MODEL FOR ELECTRODEPOSITION IN
LITHIUM METAL BATTERIES 

5.1. PROPOSED PHASE FIELD MODEL 

The definition of free energy for a system depends on the thermodynamic state of 

that system. Entropy is appropriate for a system which is not isothermal, Gibbs free energy 

is appropriate for an isothermal system at constant pressure, and Helmholtz free energy is 

appropriate when temperature and volume are kept constant [74]. In this work, Gibbs free 

energy is utilized. The free energy density functions defined in all other phase field models 

for electrodeposition [64, 69, 72] are a function of both order parameter, η , and molar 

concentration, C, which are all based on the KKS model [54]. In this work, since the free 

energy density is a function of concentration only, so will the Ginzburg-Landau free energy 

functional. If β is the gradient free energy, then it is defined as –  

( ) ( )2

V

1F f C β C ρ dV
2

φ = + ∇ + 
 ∫ (8) 

Where f(C) is the free energy density. The equation for free energy density equation 

developed for this work is a function of molar concentration, C, only and defined as –  

( )
2 2

sl

s l l s

C-CC-Cf C =W
C -C C -C

    
    
     

(9) 

Where Cl and Cs represent the concentration of Li+ in the electrolyte and electrode 

respectively in terms of mole fractions, and W represents the height of the double well 

potential function, shown in Figure 5.1. The height of the double well represents the 

amount of energy that is required for one phase to transform into another. The Gibbs free 
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energy is a function of electric potential, ϕ, i.e. the driving force for the electrodeposition 

process, which is 

ρ = zFC  (10) 

Where z is the charge number of the lithium ion, F is the Faraday’s constant and C is the 

concentration of Li+ ions in the system. 

Figure 5.1. Free energy density without applied potential (blue curve) and with applied 
potential (red curve) of 0.1V vs. concentration 

The liquid phase is assumed to be more dilute than the solid phase. The mole 

fractions of the components is employed here, given by: 



42 

n

i
i=1

X =1∑ (11) 

Where n represents the number of constituents in the system (n=2). As the mole fractions 

varies from solid to liquid phase, so does the molar volume, Vm. 

n

m i i
i=1

V = V X∑ (12) 

iV represents the partial molar volume of each phase. The molar concentrations for each 

phase is defined by Ci = Xi/Vm. Therefore, 

n

i i
i=1

C V =1∑ (13) 

This is very similar to the summation of order parameter is equal to one at any point 

in the system, as presented in Section 4.1. Since the free energy density defined for this 

work is only a function of concentration, the summation of concentrations of all species at 

any point in the system will be equal to one. 

It is common knowledge that all systems would ideally want to be stable. For a 

system to be thermodynamically stable, it is driven by minimization of its free energy. 

Figure 5.1 shows a double well potential function and the effect of a driving force. The 

function, f, plotted as the blue curve in Figure 5.1, indicates that the system has a minimum 

at both the electrolyte (liquid phase, Cl = 0.1) and the electrode (solid phase, Cs = 0.9), 

which means that both phases are stable when there is no applied voltage. For the Li+ ions 

in the liquid move towards the anode, they require sufficient energy to cross over the 

barrier, as shown, and settle into the more stable solid phase and form electrodeposits. The 

height of this barrier is the amount of energy required for transformation from liquid phase 

to solid phase. When a small voltage of 0.1V is applied to the system, the red curve in 
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Figure 5.1 shows that the minimum for the solid phase falls below that of liquid. This 

indicates that the solid phase is more stable than the liquid phase and has a lower free 

energy value when there is an applied voltage. This promotes the growth of solid phase i.e. 

electrodeposits in the system. The difference between free energies of the solid phase and 

liquid phase is the Gibbs free energy of the system. 

5.2. GOVERNING EQUATIONS 

The governing equation for concentration follows the fourth order Cahn-Hilliard 

equation since the concentration of Li+ ions is conserved in the system at any point of time. 

Using (4) and (9), the governing equation for concentration is derived and represented as 

( )2 2C fM β C
t C

∂ ∂ = ∇ − ∇ ∂ ∂ 
(14) 

Here M represents the diffusional mobility of Li+ ions and s lΔC=C -C is the difference 

between the concentrations in the electrode and electrolyte and is equal to 0.8 (Cs = 0.9 and 

Cl = 0.1). A term, ( )-100 C+0.00510000. C.e∇ is added inside (14) to ensure that the concentration 

does not drop below zero.  

Since applied electric potential is the driving force for the electrodeposition 

process, an electroneutrality condition must be applied to indicate charge conservation in 

the system. 

.i = 0∇  (15) 

 given by the Laplace’s equation, is defined to represent the distribution of electric potential 

in the entire domain, as given in [64]. 

( )ε C φ∇. ∇ = 0   (16) 
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Where ε(C) is the electrical conductivity of the system as a function of molar concentration 

and ϕ is the electric potential in the domain. The electrical conductivity of the system is a 

combination of electrical conductivities in electrode and electrolyte phases. It has been 

defined as:  

( ) ( )
( )

( )
( )

2 2
l s

l s2 2
s l l s

C-C C-C
ε C =ε +ε

C -C C -C
(17) 

Where 
lε is the electrical conductivity in the electrolyte and 

sε is the electrical 

conductivity in the electrode. The discussion of their values will be made in the Section 

5.3. 

Equations (14) and (16) are the governing equations used in this work. For ease of 

computation, the non-dimensionalized forms of these equations are used and the non-

dimensionalization procedure is established in Appendix A. 

5.2.1. Anisotropy in Cahn-Hilliard Equation. For sufficiently strong anisotropic 

systems using the Cahn-Hilliard equation, a method of solving for anisotropy has been 

presented in [75, 76]. This method is a modification of the Kobayashi model method. It 

can not only predict microstructure growth for a four-fold (BCC) symmetry, but it can also 

predict six-fold (HCP) and eight-fold symmetries as well. If the gradient of C can be 

represented as C= ∇p , then the normal to this vector is given by
pn =
p

, provided that

0≠p . The tangential projection matrix is given by 

⊗P = I - n n  (18) 

For four-fold symmetry, the surface energy is given by 
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( )
d

4
i

i=1
γ θ  = 1+δ 4 n -3 

 
 
∑

(19) 

Where δ is the strength of anisotropy and d=2, 3 indicates the dimensional space defined. 

In 2D, (19) is equivalent to 

( )γ θ  = 1+δcos4θ (20) 

whereθ  is the angle is made by the normal vector with the crystallographic axis. Since 

lithium has a BCC structure, the mode of anisotropy is equal to 4, meaning it has a four-

fold symmetry. The value of δ is chosen to be 0.3. since we consider a strongly anisotropic 

system. The crystallographic orientation is given by 

y-1

x

C
θ = tan

C
 
 
 

 (21) 

Where Cx and Cy are the partial derivatives of concentration with respect to the x-axis 

and y-axis respectively. Therefore, the governing equation for concentration can be 

rewritten as 

( )( )C .M . f' C -β .
t

∂
= ∇ ∇ ∇

∂
m (22) 

Where ( ) ( )θγ θ γ θ= − ∇m p p P (23) 

Substituting (23) in (22), we get 

( ) ( )( )( )'C M f (C) β γ θ C γ' θ
t

C∂
= ∇ ⋅ ∇ ⋅ − ∇ ⋅  ∇ + ∇  ∂

P (24) 

Equations (24) and (16) serve as the governing equations for the system now. 

5.3. SIMULATION PARAMETERS AND BOUNDARY CONDITIONS 

The boundary conditions employed in the simulation are zero-flux boundary 

conditions for the concentration equation. Since a small portion of the battery is being 
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simulated, periodic boundary conditions are applied to top and bottom side of the domain 

to denote that the same profile trends will be followed in the vertical direction. For the 

potential, a Dirichlet boundary condition is applied at the left and right boundaries and 

ensure they are maintained at a constant value throughout the simulation. The system is 

isothermal and set at room temperature of 298 K. The simulations have been run using 

COMSOL Multiphysics 5.0 and 5.1. 

From the equations provided in [72], the surface energy (γ) and thickness (2λ) of 

the interface are calculated. These equations are similar to those put forth by Kim et al. 

for the solidification process. 

βWγ = 
18

(25) 

8β2λ = 
W

(26) 

Substituting the appropriate values given in Table 5.1 in the above two equations, 

the surface energy is 0.001 J/m2 and the thickness of the interface between the two phases 

is 0.569 µm. Table 5.2 mentions the constants used in the simulations. 

Table 5.1 Values of Parameters used in the Simulations 

Parameter Representation Value 

Gradient energy 
coefficient 

β 1x10-9 J/m 

Height of the double 
well 

W 2.475x104 J/m3 

Electrical conductivity 
in electrode 

sε 1.1x107 S/m 
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Table 5.1. Values of Parameters used in the Simulations (contd.) 

Electrical conductivity 
in electrolyte 

lε 1.07 S/m 

Table 5.2 Values of Constants used in the Simulations 

Parameter Representation Value 

Gas constant R 8.314 J/mol.K 

Temperature T 298 K 

Faraday’s constant F 96500 C/mol 

Charge number of lithium z 1 

Diffusion coefficient of Li+ 
in the electrolyte 

D 1x10-10 m2/s 
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6. RESULTS AND DISCUSSIONS

6.1. CONVERGENCE STUDY 

In computational modeling involving partial differential equations (PDEs), 

discretizing the domain is the important step in obtaining an accurate solution. 

Discretization divides the domain into small elements and the PDEs are computed at every 

element in the domain and provides us a solution of the PDEs at each and every element in 

the domain. 

The shapes of mesh to be used depends on the types of equations being solved i.e. 

a two-dimensional or a three-dimensional equation. The common element shapes for a 2D 

problem are triangle and quadrilateral. The common element shapes for a 3D problem are 

tetrahedron, pyramid, triangular prism and hexahedron. They are shown in Figure 6.1 and 

Figure 6.2 respectively. 

Figure 6.1. Element shapes used in 2D analysis 
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Figure 6.2. Element shapes used in 3D analysis. 

 

 

The factors to be considered for selection of an optimum mesh size are: 

• High convergence rate – The mesh size chosen should help in faster convergence 

of solution. There is a linear dependence on using a mesh of better quality and 

obtaining faster convergence solution. 

• High accuracy of solution – Using a mesh with a smaller grid size will give a higher 

accuracy of solution than compared to a mesh with larger grid size. In a mesh, the 

partial differential equations are solved at each and every element in the domain. 

Higher the number of elements, greater will be the accuracy. 

• Low computation time – Selecting a very fine mesh is not always desirable because 

it makes the computation time very long, which then requires a large amount of 

memory to run and store the solution on the computer. There is a trade-off involved 

in selecting a very fine mesh and computation time. 
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With knowledge of these factors, a mesh convergence study is performed to identify 

the optimum mesh size which would produce the most accurate solution without taking too 

much computational time and computer memory. 

For the mesh convergence study, a 2D rectangular domain of 158.9µm x 6.356µm 

(50x2 in non-dimensionalized scale) is used to represent the lithium anode and electrolyte. 

A small layer is used to represent the anode and the rest of the domain represents the 

electrolyte. The mesh created is a mapped mesh with quadrilateral elements since there are 

no irregular boundaries present in the domain. Some of the advantages of using a mapped 

mesh are that it divides the whole domain into equal number of elements and has a regular 

pattern. 

The use of a domain with a larger width will produce the same results as the one 

with 50x2 since periodic boundary conditions have been applied at the top and bottom 

edges of the domain. Periodicity along the top and bottom edges ensures same thickness of 

growth of electrodeposited Li along the vertical direction. The main advantage of using a 

smaller width domain is decrease in computational time. 

Modeling was started using a coarse mapped mesh of size 0.25 and worked down 

to a fine mapped mesh of size 0.04. It can be seen that the elements in the domain with 

mesh size 0.25 can be distinguished whereas the elements in the domain of mesh size 0.04 

are so close to each other that individual elements cannot be discerned. The properties of 

the different mesh sizes are given in Table 6.1. Properties of different mesh sizes Note that 

mesh sizes are given in the non-dimensionalized scale. 
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Table 6.1. Properties of different mesh sizes. 
 

Mesh size Domain 
Elements 

Boundary 
Elements 

Degrees of 
Freedom 

0.25 1,600 424 27,268 
0.125 6,400 848 105,732 
0.1 10,000 1,060 164,164 
0.07 20,735 1,517 337,716 

0.0625 25,600 1,696 416,260 
0.05 40,000 2,120 648,324 
0.04 62,500 2,650 1,010,404 

 

 

Simulations are performed for each case for time of 3.03s (30s in non-

dimensionalized scale). The thicknesses of the layer formed due to deposition of Li+ ions 

are plotted after 2.02s (20s in non-dimensionalized scale) against the inverse of the mesh 

density and is shown in Figure 6.3. While performing these simulations, it is important to 

know that anisotropy was not applied to the system and hence, there was no microstructure 

growth but just the growth of a homogeneous layer from the surface of the lithium metal 

anode. Each case was run with a constant potential of 0.2V applied at the right boundary 

of the system, a constant electrolyte mole fraction of 0.1 and zero flux boundary conditions 

for concentration. The governing equations used for the convergence study are (14) and 

(16). 
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Figure 6.3. Thickness vs. (1/Mesh). 

 

 

From the above graph, it can be concluded that convergence occurs when the 

inverse of mesh density is 4.49 (1/µm). Therefore, the optimum mesh size is (1/4.49519) 

= 0.22 µm, which is 0.07 in non-dimensionalized scale. 

 

6.2. EFFECT OF DIFFERENT ELECTRICAL CONDUCTIVITY RATIOS 

From the results of the mesh convergence study, the mesh size of 0.07 has been 

employed for all further simulations in this work. Firstly, the effect of growth from the 

anode surface by using different electrical conductivity ratios is measured. It is common 

knowledge that the electrical conductivity of pure lithium is 1.1x107 S/m, which is that of 

the electrode. The electrolyte is a mixture of lithium hexafluorophosphate (LiPF6) in a 

binary organic electrolyte. 
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      As discussed in Chapter 2, organic electrolytes have very low electrical conductivities 

and hence, the conductivity of the electrolyte is the conductivity of the Li salt present. In 

this study, the electrical conductivity of the electrolyte in the Li metal battery is 1.07 S/m, 

which is the electrical conductivity of lithium hexafluorophosphate (LiPF6) and this has 

been discussed in Chapter 2. Hence, the ratio of electrical conductivity of electrode to that 

of the electrolyte is 1x107. 

 S

l

εElectrical Conductivity Ratio = 
ε

 (27) 

 Where 
Sε is the electrical conductivity of the electrode and 

lε  is the electrical conductivity 

of the electrolyte. Since the computation using the value of 1e7 in the simulations becomes 

too cumbersome, the effects of 6 electrical conductivity ratios – 1x102, 1x103, 1x104, 

1x105, 1x106 and 1x107 – have been studied and the thicknesses obtained using each ratio 

has been recorded and plotted in a graph below as a function of time. The thickness for 

each case is measured after 2.02s and recorded and plotted in Figure 6.4. The simulations 

were performed for zero flux of concentration and applied voltage of 0.2V. 
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Figure 6.4. Thickness vs different electrical conductivity ratios. 

 

 

The thickness is plotted as a function of electrical conductivity ratio on a 

logarithmic scale. From Figure 6.4, it can be seen that from a conductivity ratio of 1e4, all 

higher conductivity ratios produced same or similar thicknesses. Hence, all subsequent 

simulations are carried out using a conductivity ratio of 1e4. 

 

6.3. EFFECT OF DIFFERENT BOUNDARY CONDITIONS FOR 
CONCENTRATION FIELD  

Although the simulations were carried out using a zero flux boundary condition for 

concentration for the mesh convergence and testing of effects of different ratios of 

electrical conductivity, we now want to test the effects of changing the boundary condition 

for concentration on the right edge of the domain, on the growth thickness. The effects of 

three different boundary conditions are studied – zero flux boundary condition, Dirichlet 
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boundary condition and a constant flux (Neumann) boundary condition. These conditions 

are simulated for three values of constant applied voltage – 0.1V, 0.2V and 0.3V. An 

applied voltage at the cathode not only dissociates lithium cations, but also creates an 

electric field which pushes these dissociated cations in a particular direction, in this case 

towards the anode. The Li salt in the electrolyte is also broken up into anions and cations 

on application of a voltage. Three increasing voltages are applied to study the effects of an 

increasing electric field on the electrodeposition process. The source term of potential is 

zero, as mentioned in the governing equation. Comparisons are made by plotting growth 

thickness vs. time and growth rate vs. applied potential for different cases. 

6.3.1. Zero Flux Boundary Condition for Concentration and Applied 

Voltages of 0.1V, 0.2V and 0.3V. Figure 6.5 shows that the growth thickness is directly 

proportional to applied voltage. 
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Figure 6.5. Growth thickness vs. time for different applied voltages and zero flux of 
concentration 

 

 

However, the growth trend for 0.1V is different from that of 0.2V and 0.3V. For 

the duration of 3.03s, the applied voltage of 0.1V is a small driving force i.e. creates a small 

electric field for Li+ ions to dissociate in the electrolyte and flow towards the electrode. 

Hence, fewer Li+ ions dissociate and get slowly deposited and this is shown by the curve 

which linearly increases at first and slowly starts becoming parabolic. It is seen that at 

3.03s, the thickness for an applied potential is 23.36 µm and some cations are still 

depositing on the electrode surface. 

For an applied voltage of 0.2V, more number of Li+ ions dissociate but the driving 

force is quite large that all the dissociated Li+ ions deposit on the electrode faster until there 
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constant value at 2.02s i.e. all free Li+ ions get deposited on the electrode surface after 

2.02s itself, unlike the case for 0.1V. 

For an applied potential of 0.3V, even more number of Li+ ions dissociate from the 

cathode surface and the driving force and hence, electric field, is so large that all the 

dissociated Li+ ions deposit on the electrode faster until there are no free Li+ ions left in the 

system. Hence, this curve increases linearly, has a higher slope and approaches a constant 

value at 1.616s, faster than the case with applied voltage of 0.2V. The differences between 

thicknesses after 1.616s for 0.1V, 0.2V and 0.3V applied voltages are 23.36 µm, 26.74 µm 

and 27.68 µm. 

 

 

 
Figure 6.6. Thickness vs. applied voltage for zero flux of concentration 
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Figure 6.7 shows how the growth thickness varies as a function of applied voltage 

after 1.616s. The difference in growth thickness is much larger between 0.1V and 0.2V 

when compared to that between 0.2V and 0.3V. As explained previously, as the driving 

force increases, so does the thickness. But a limiting value is reached as the applied 

voltages are increased because the system only has finite number of Li+ ions. To get a better 

idea of the variation in thicknesses, the values of growth rate for different applied potentials 

after 1.616s are plotted in Figure 6.7. Growth rate vs. applied voltage for zero flux of 

concentration7. 

Figure 6.7. Growth rate vs. applied voltage for zero flux of concentration 
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There is a very high increase in growth rate from 0.1V to 0.2V, as seen in Figure 

6.7, and as the case with thickness, the difference in growth rate between two consecutive 

values of applied voltage deteriorates as the applied potentials increase. 

 All the profiles for potential can be divided into three regimes – (a) Due to the high 

conductivity of the electrode, a uniform potential distribution is observed in the electrode, 

(b) The low conductivity of the electrolyte results in a gradient change in the distribution 

of electric potential and (c) At the interface, a step is observed, which signifies a potential 

drop due to the reaction that occurs at the interface caused by the Li+ ions that accumulate 

at the interface over time. All the profiles for electric potential follow this trend i.e. Figure 

6.10, Figure 6.13 and Figure 6.16 show the potential profiles for applied voltages of 0.1V, 

0.2V and 0.3V respectively. 

 The thicknesses in the domains have also been illustrated to observe how the 

electrodeposits grow as time passes. They have been plotted to show the variation of 

growth thicknesses in the concentration and potential domains. Figure 6.8, Figure 6.11 and 

Figure 6.14 show the variation of growth thicknesses in the concentration field for applied 

voltages of 0.1V, 0.2V and 0.3V respectively. Figure 6.9, Figure 6.12 and Figure 6.15 show 

the variation of growth thicknesses in the potential field for applied voltages of 0.1V, 0.2V 

and 0.3V respectively. 
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Figure 6.8. Concentration profiles at t=0 (top), t=0.808s (middle) and t=1.616s (bottom) 

for zero flux boundary condition for ϕ=0.1V 
 

 

 

Figure 6.9. Potential profiles at t=0 (top), t=0.808s (middle) and t=1.616s (bottom) for 
zero flux boundary condition for ϕ=0.1V 
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Figure 6.10. Potential profiles at t=0 and t=1.616s for zero flux boundary condition for 

ϕ=0.1V 
 

 

 
Figure 6.11. Concentration profiles at t=0 (top), t=0.808s (middle) and t=1.616s (bottom) 

for zero flux boundary condition for ϕ=0.2V 
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Figure 6.12. Potential profiles at t=0 (top), t=0.808s (middle) and t=1.616s (bottom) for 
zero flux boundary condition for ϕ=0.2V 

Figure 6.13. Potential profiles at t=0 and t=1.616s for zero flux boundary condition for 
ϕ=0.2V 
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Figure 6.14. Concentration profiles at t=0 (top), t=0.808s (middle) and t=1.616s 
(bottom) for zero flux boundary condition for ϕ=0.3V 

\

Figure 6.15. Potential profiles at t=0 (top), t=0.808s (middle) and t=1.616s (bottom) for 
zero flux boundary condition for ϕ=0.3V 
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Figure 6.16. Potential profiles at t=0 and t=1.616s for zero flux boundary condition for 
ϕ=0.3V 

6.3.2. Dirichlet Boundary Condition for Concentration and Applied Voltages 

of 0.1V, 0.2V and 0.3V. The application of a Dirichlet boundary condition at the right 

boundary for concentration implies that the concentration is maintained fixed a constant 

number of Li+ ions will always flow from the cathode towards the anode at the specified 

value without decrease over time. In this case, the Dirichlet boundary condition was 

maintained at the same value as the concentration of the electrolyte i.e. 0.1 and it is plotted 

in Figure 6.17. 
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Figure 6.17. Growth thickness vs time for different applied potentials for Dirichlet 
boundary condition of concentration. 

Figure 6.17 clearly defines a Dirichlet boundary condition. It can be seen that the 

growth thickness is directly proportional to time and the curves are always increasing 

linearly since there is constant flow of Li+ ions from the cathode to the anode. However, 

this is not a practical scenario as the electrolyte is not infinitely stocked with lithium, but 

will get depleted of all its lithium over time. There is also no distinction between 

differences in thicknesses between the 3 voltages, as seen in the case with zero flux 

boundary condition. Figure 6.18 shows the values and trend of growth thicknesses for 

different values of applied potentials after 3.03s. 
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Figure 6.18. Growth thickness vs applied voltage for Dirichlet boundary of concentration 
 

 

Since the growth thickness varies linearly with respect to time, so will the growth 

rate, whose values are plotted in Figure 6.19. 
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Figure 6.19. Growth rate vs applied potentials for Dirichlet boundary of concentration 
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6.3.3. Constant Flux (Neumann) Boundary Condition for Concentration and 

Applied Voltages of 0.1V, 0.2V and 0.3V. Flux is rate of flow of a certain quantity per 

unit time. In this case, a flux of concentration is considered and a magnitude of 

concentration is applied as a boundary condition instead of a zero flux or Dirichlet 

boundary condition. To test the effect on thickness by adding a flux to the right boundary 

of concentration, three different flux magnitudes of 0.01 mol/m2s (low), 0.05 mol/m2s 

(medium) and 0.1 mol/m2s (high) are applied to gain a more accurate idea of the effects of 

a concentration flux. The simulations are performed for the aforementioned values of 

concentration flux and for the three different applied voltages – 0.1V, 0.2V and 0.3V. This 

is mainly done to see the effect of different fluxes on potential and vice-versa. The 

thicknesses are recorded after 3.03s. The concentration and potential profiles obtained from 

COMSOL Multiphysics are not included here since their trend matches the trend of the 

profiles provided for the zero flux boundary condition case. However, the plots of thickness 

vs. time for different applied voltages and fluxes are given from Figure 6.20 to Figure 6.25. 
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Figure 6.20. Thickness vs time for different fluxes at 0.1V 
 

 

\ 

Figure 6.21. Thickness vs time for different fluxes at 0.2V 
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Figure 6.22. Thickness vs time for different fluxes at 0.3V 

 

 

 
Figure 6.23. Thickness vs time for different voltages at 0.01 mol/m2s flux. 
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Figure 6.24. Thickness vs time for different voltages at 0.05 mol/m2s flux 

 

 

 
Figure 6.25. Thickness vs time for different voltages at 0.1 mol/m2s flux 
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The values of growth thicknesses obtained after 3.03s for different applied 

voltages and different fluxes of concentration have been summarized in Table 6.2. 

Growth thickness for different values of applied voltage and flux of concentration below: 

 

 

Table 6.2. Growth thickness for different values of applied voltage and flux of 
concentration 

 

 Values of Flux 

Applied voltage (V) 0.01 mol/m2s 0.05 mol/m2s 0.1 mol/m2s 

0.1 25.43 µm 28.07 µm 29.42 µm 

0.2 27.78 µm 31.82 µm 36.77 µm 

0.3 28.74 µm 32.92 µm 38.12 µm 

 

6.4. COMPARISON WITH OTHER WORKS 

In this work, the Laplace’s equation is used as the governing equation for potential 

i.e. equation (16), which is 

( ). 0Cε φ∇ ∇ =    

By maintaining the same governing equation for concentration, the governing 

equation for distribution of electric potential is varied as given in other works of phase field 

modeling for the electrodeposition process, to observe if there are any significant 

differences. A popular method that has been used to model the electrodeposition process 

is through the use of Butler-Volmer kinetics. This method was developed to include the 
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effects of reactions taking place at the electrode surfaces. Through basics of 

electrochemistry, it is understood that differences between activation energies of oxidation 

and reduction reactions cause variation in flow of current through an electrochemical 

system. The electrical current, taking into account the difference in activation energy 

between oxidation and reduction reactions using the Butler-Volmer kinetics can be 

described, as given in [63]: 

 
ox redi = i - i  (28) 

 ( )sym Msym M0 0
ox red

1-α Fz ηα Fz η
i = i exp  - i -

RT RT

  
       

 (29) 

Where 0
oxi and 0

redi are the exchange current densities of the oxidant and the reductant 

respectively, η is the overpotential and symα is the asymmetric parameter (i.e. transfer 

coefficient). A charge conservation equation is defined to solve for electric potential in the 

entire domain. 

 .i = 0∇  (30) 

The governing equation for distribution of electric potential as given by [63] is 

 
( )-

-

-

β
βA
M A

A

σ
. RTlnC  - Fz 0

Fz
φ

 
∇ ∇ = 
  

 (31) 

Where -
β
A

σ is the electrical conductivity of the domain and a function of phase field order 

parameter, -A
z is the charge number of the species and β

MC is the concentration in the 

electrolyte. This is called the Poisson-Nernst-Planck (PNP) equation. A complete 

derivation of this equation can be found in [77]. For this study, (31) becomes  
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 ( ) ( )ε C
. RTlnC - Fz 0

Fz
φ

 
∇ ∇ = 
 

 (32) 

Using equations (14) and (32) as the governing equations to represent this model, the 

simulations are run for all cases as they were in Section 6.3. A comparison of growth 

thicknesses for different boundary conditions of concentration at different applied 

potentials, for different governing equations of electric potential is given in Table 6.3, 

Table 6.4 and Table 6.6. 

Another method to describe the distribution of electric potential is by the use of a 

source term in the governing equation for potential to describe the change of charge 

density, which is a result of the reaction that takes place at the electrode face and this has 

been used in [65, 71]. It has been deliberated that this source term can describe the flow of 

current in the system due to cation motion in the electrolyte, electron motion in the 

electrode and electrochemical reaction at the electrode/electrolyte interface [65, 71]. The 

source term is a time dependent derivative of the evolution equation variable. 

 ( ) 0

p

i ξ. σ ξ
λL t

φ ∂
∇ ∇ =   ∂

 (33) 

Where σ(ξ) is the phase parameter dependent electrical conductivity, given by 

( ) ( ) ( )( )S Lσ ξ  = σ p ξ  + σ 1-p ξ , 
Sσ  and 

Lσ are the electrical conductivities of the electrode 

and electrolyte respectively, i0 is the exchange current density, Lp is the phase field 

mobility. The coefficient of the time dependent evolution term is a constant and varies only 

if the exchange current density,
0i , varies. Since the evolution equation in this study is a 

function of concentration, equation (33) is modified and written as  
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 ( ) ( ) C. ε C  = B
t

φ ∂
∇ ∇   ∂

 (34) 

Where B is a constant equal to 0.01 in the non-dimensionalized space. Using (14) and (34) 

as governing equations, all the simulations were performed as done in Section 6.3. The 

following tables show comparison of growth thicknesses between each method for 

different boundary conditions of concentration and at different applied voltages. 

 

 

Table 6.3. Comparison of growth thicknesses by using different forms of charge 
conservation equation for different boundary conditions and 0.1V applied voltage 

 
Boundary Conditions & Time Thickness (µm) 

Boundary Condition 
Of C 

Time 
(s) 

Laplace’s 
equation 

Poisson-Nernst-
Planck equation 

Time dependent 
evolution source 

term 
Zero flux 1.616 23.36 23.37 23.39 

Dirichlet 3.03 29.35 29.358 29.35 

Flux of 0.01 mol/m2s  3.03 25.43 25.43 25.44 

Flux of 0.05 mol/ m2s 3.03 28.07 28.06 28.07 

Flux of 0.1 mol/ m2s 3.03 29.42 29.43 29.45 
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Table 6.4. Comparison of growth thicknesses by using different forms of charge 
conservation equation for different boundary conditions and 0.2V applied voltage 

 
Boundary Conditions & Time Thickness (µm) 

Boundary Condition 
Of C 

Time 
(s) 

Laplace’s 
equation 

Poisson-Nernst-
Planck equation 

Time dependent 
evolution source 

term 
Zero flux 1.616 26.74 26.73 26.74 

Dirichlet 3.03 44.46 44.46 44.46 

Flux of 0.01 mol/ m2s 3.03 27.78 27.78 27.78 

Flux of 0.05 mol/ m2s 3.03 31.82 31.82 31.82 

Flux of 0.1 mol/ m2s 3.03 36.77 36.77 36.77 

 

 

Table 6.5. Comparison of growth thicknesses by using different forms of charge 
conservation equation for different boundary conditions and 0.3V applied voltage 

 

Boundary Conditions & Time Thickness (µm) 

Boundary Condition 
Of C 

Time 
(s) 

Laplace’s 
equation 

Poisson-Nernst-
Planck equation 

Time dependent 
evolution source 

term 
Zero flux 1.616 27.68 27.68 27.68 

Dirichlet 3.03 61.92 61.92 61.93 

Flux of 0.01 mol/ m2s 3.03 28.74 28.75 28.75 

Flux of 0.05 mol/ m2s 3.03 32.92 32.92 32.92 

Flux of 0.1 mol/ m2s 3.03 38.12 38.12 38.12 
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As seen in the above three tables, the values of growth thicknesses are almost the 

same even by using three different equations for the governing equation of electric 

potential. When plotted against each other, their values overlapped, giving no clear 

distinction between them since their values are almost the same. Although a macroscopic 

model has been used without closely studying the kinetics at the different surfaces in this 

work, this model gives almost the same growth thicknesses for different conditions as 

observed in the other models. This validates the use of the Laplace’s equation in this work 

as a charge conservation equation, instead of the Poisson-Nernst-Planck equation or the 

time dependent evolution source term describing the current generated as the governing 

equation for electric potential. 

 

6.5. EFFECT OF ANISOTROPY 

By considering a domain of 63.56µm x 25.42µm a single square seed of side length 

1.589µm on the surface of the electrode, simulations are performed a zero flux boundary 

condition for concentration and an applied voltage of 0.3V on the right boundary of the 

domain. This seed represents a thermodynamically unstable region on the electrode 

surface. Figure 6.26 shows the concentration profile of a single seed on the surface of the 

anode when there is no applied voltage in the system. Physically, the seed represents a 

weak region of the solid electrolyte interface which has not adhered well to the anode 

surface and is more prone to phase changes compared to the other regions of the solid 

electrolyte interface. It should be noted that the figure mentions the time and length scales 

in the non-dimensionalized space. However, all the discussions will be made using real 
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values. Appendix C shows the difference of inputs in COMSOL Multiphysics for the case 

of anisotropy. 

 

 
                               Figure 6.26. Single seed on the anode surface 
 

 

It has been observed by Ely and Garcia [16] that the initial electrodeposits on the 

surface of a lithium anode takes place in the form of a spherical electrodeposit. The growth 

of this corresponding electrodeposit would depend on its critical radius and directional 

growth and microstructures can be observed only when the radius of the electrodeposit is 

larger than the critical radius of the electrodeposit. Though this work does not study the 

thermodynamics and kinetics of nucleation of these electrodeposits in detail, it can be seen 

from Figure 6.27 that this, in fact, occurs in lithium batteries. As time passes, the tip of the 

electrodeposit will be the most thermodynamically unstable region of the electrodeposit 

and growth rate is accelerated. As expected, the growth thicknesses and growth rates are 

very high at the end of the simulation. From an initial value of 1.59µm at time t=0s, the 

growth thickness after just 0.19s is 15.37µm, which is almost 10 times the initial size. The 

growth rate at the end of the simulation is 80.11µm/s. When compared with the growth 
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rates obtained in Section 6.3 for the same case of 0.3V applied voltage and zero flux of 

concentration (17.13 µm/s), this value is extremely large, thereby showing the propensity 

of the system to minimize its free energy faster in strongly anisotropic systems. 

Correspondingly, the current tip density will also be maximum at the tip of the lithium 

electrodeposit, in accordance with Ohm’s law. If tipv is the growth rate and Vm is the partial 

molar volume, then the tip current density is given by tip tip mi =v zF/V [71]. Using this 

relation, tip current density at various time steps in the simulation can be calculated. 

Another factor for such rapid growth may also be due to the large concentration gradient 

present at the tip of the electrodeposit. A simpler way of looking at it is, since the Li+ ions 

flow towards the electrodeposit, the tip will first encounter highest concentration gradient, 

aiding in faster growth of the tip compared to other regions of the electrodeposit.  

As discussed previously, the potential profile will still maintain three regimes. As 

the lithium electrodeposit i.e. solid phase grows, it will maintain the same uniform potential 

distribution as that of the electrode since both are made of lithium. The second region is at 

the interface where a gradient exists due to the accumulation of Li+ ions. The last region is 

at the right boundary where electrical conductivity of the system is the least. The potential 

profiles change according to the growth of the lithium electrodeposit and this is illustrated 

for different time steps in Figure 6.28. 
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Figure 6.27. Anisotropic concentration profiles for t=0s and t=0.5s (top) and t=1s and 

t=1.9s (bottom) for zero flux of concentration and ϕ=0.3V 
 

 

 
Figure 6.28. Anisotropic potential profiles for t=0s and t=0.5s (top) and t=1s and t=1.9s 

(bottom) for zero flux of concentration and ϕ=0.3V 
 

 



81 
 

 

A comparison with microstructure evolution in Li-ion batteries, presented in [71], 

is shown in Figure 6.29. This model uses an applied voltage of 0.2V in the system, whereas 

the model in this work uses 0.3V. Applied voltage does not affect any other parameter other 

than growth thickness. Higher the applied voltage, higher will be the growth thickness. The 

Li-ion battery model uses the order parameter as well, hence their model is a function of 

order parameter, concentration and distribution of electric potential, whereas our model 

uses only concentration and distribution of electric potential to define the free energy 

functional. Hence, the first row of figures in Figure 6.29 should be ignored while drawing 

a comparison between the two models. It can be seen that the concentration and potential 

profiles are very similar to those reported in Figure 6.27 and Figure 6.28. 

 

 

 
Figure 6.29. Snapshot of phase parameter (top), Li+ concentration (middle) and electric 

potential (bottom) profiles 
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6.6. DISCUSSIONS 

Though the primary aspect of this work is microstructure simulations in lithium 

metal batteries using phase field modeling, it is worth noting that this work encompasses 

all the aspects related to lithium batteries, be it lithium metal or lithium-ion batteries. The 

detailed descriptions of emergence of lithium batteries as a major source of energy, not 

only in the present day, but also its prospects in the future has been reviewed. The transition 

of lithium battery technology from lithium metal batteries to lithium-ion batteries was the 

biggest measure taken to commercialize these batteries in 1991 and exploit the advantages 

of lithium as an energy storing material. However, as technologies advanced, there was an 

increasing need to revert back to lithium metal batteries as they provided over 10 times the 

energy density produced by Li-ion batteries. But the major roadblock has been the trade-

off between energy density and operational safety, both of which should be high in a 

conventional battery. As the case with many technologies, the progress of research in this 

field has gone to the nanoscale to try and find solutions to this existing roadblock. 

As the next step, a brief overview of different components of a lithium battery i.e. 

electrode, electrolyte components and solid electrolyte interface. Their advantages and 

limitations have also been highlighted so that optimum selection of components for the 

battery can be made based on the application. With this knowledge, the system chosen to 

model this work is a lithium metal anode, a LiCoO2 cathode immersed in a solution 

containing LiPF6 and a 1:1 ratio of a binary organic electrolyte consisting of ethylene 

chloride (EC) and dimethyl chloride (DMC). It should be noted that the components of the 

binary organic electrolyte are chosen such that the system has the most ideal values for 

operation. Also, the transition metal of the cathode, Co, is chosen such that the lithium cell 
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under consideration has the least drawbacks when compared to incorporation of other 

transition metals. It is again important to know that the selection of these components will 

depend on the application. 

The importance of computational tools, not just for prediction of microstructures or 

materials science, but in all areas of science and engineering in today’s world, is known. 

Computational techniques have taken over the modern world of research and industries 

since they provides a very cost-efficient way of understanding and developing a process. 

It is not only important for studying effects of certain parameters on a process, but CAD 

tools have made it possible to model even complex machine parts and then manufacture 

them. Another advantage of computational tools is the reduction of human error during 

initial experimentation. With knowledge of the outputs obtained from computation, one 

can easily perform experiments knowing the final result that needs to be obtained. This is 

also the case with Phase Field Modeling (PFM). It is a modification of the Finite Element 

Method (FEM), but is capable of simulating real-world processes at the mesoscopic length 

scale, unlike FEM. A comparison has been drawn between Phase Field Modeling and Sharp 

Interface Modeling techniques. Their advantages and drawbacks have been highlighted and 

it has also been shown that PFM requires lesser computational resources and time to model 

and simulate the growth of any microstructures, in that it would require only a single 

equation to define all the phases of a system without defining another equation to explicitly 

track the interface. 

Since PFM has emerged as one of the strongest tools to compute and predict 

microstructures, it has been used in this work to model a lithium metal battery to understand 

the microstructure formation at the anode during charging process, which hinders safety 
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levels in these batteries. The aspects of PFM that have been used are described generally 

at first and then used to derive the governing equations used in this study. The free energy 

density and hence, the Ginzburg-Landau free energy functional have been defined as 

functions of concentration and electric potential only, whereas all the other works on PFM 

of electrodeposition process have been studied as functions of phase field order parameter, 

concentration and electric potential. Omitting the phase field order parameter does not 

make a difference to the output of the concentration and potential profiles. The order 

parameter is incorporated to show which part of the domain is in solid phase (η = 1) and 

which part is in liquid phase (η = 0). The variables in other studies have defined all 

functions such as electrical conductivity and diffusivity in terms of the order parameter, 

but all these functions have been defined as functions of concentration, as shown in 

Appendix B. All the electrochemical systems are driven by minimization of Gibbs free 

energy, where Gibbs free energy is a function of distribution of applied potential since the 

applied potential is the driving force for electrochemical reactions to occur in the battery. 

Figure 5.1 clearly shows that the growth of solid phase is preferred even when there is a 

small applied voltage of 0.1V. 

The start of any phase field modeling work involves determining an optimum mesh 

size to discretize the domain into several grids. Simulations were performed for 7 different 

mesh sizes, starting from a coarse mesh of 0.25 and eventually using a very fine mesh of 

0.04. The non-dimensionalized mesh size of 0.07 was determined to be most ideal and all 

further simulations were performed with a grid size of 0.07. Since the ratio of electrical 

conductivities of electrode and electrolyte in a lithium metal battery are extremely high 

(1x107), the computation was cumbersome and extremely long. Through simulations for 6 
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different electrical conductivity ratios between electrode and electrolyte, it has been shown 

that similar growth thicknesses were observed from a ratio of 1x104 upto 1x107. It should 

be noted that using a conductivity ratio of 1x104 instead of the original 1x107 will not affect 

the profiles of any variable. It eases computation time to a certain extent, which is one of 

the main goals of all computational studies. 

The behavior of the battery for different applied voltages and different conditions 

of concentration are studied and their results have been plotted and tabulated. To study the 

effect of applying 0.1V, 0.2V and 0.3V to a system with zero flux, Dirichlet and Neumann 

(3 cases) boundary conditions of concentration, a total of 45 cases were simulated. While 

some of these cases are impractical in real-world situations, the operational safety levels 

for different cases can be gauged from the growth thicknesses and the growth rates. A 

thorough linear dependence of higher applied voltage and high fluxes of concentration on 

the growth thickness of lithium electrodeposits has been established. 

Different PFMs of electrodeposition mainly vary in the definition of the charge 

conservation equation i.e. the governing equation for distribution of electric potential. 

During modeling of electrochemical systems, one should bear in mind that if too much 

emphasis is laid on studying the thermodynamics and kinetics of the interfacial layer, then 

modeling of macroscopic systems (real-world systems) will be compromised as the 

equations are defined such that they capture the behavior of each and every component in 

the system and this is computationally very complex. Hence, many studies use Butler-

Volmer kinetics, dilute solution approximation (use of a Laplace’s equation) and Marcus-

Hush kinetics to model macroscopic systems and study the behavior of major components 

in the system and the behavior of the interface. A comparison has been drawn to two other 
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popular PFMs of electrodeposition which use different source terms to define their charge 

conservation equation. Since this has been done for all the conditions mentioned in Section 

6.3, a total of 45 cases were simulated. Comparison between the models yielded almost 

similar growth thicknesses. Hence, any of the three charge conservation equations can be 

used in the model presented in this work. 

It is important to note that all the simulations until this point were run assuming 

that the system was isotropic in nature, which is an ideal case. Hence, the growth 

thicknesses obtained have been homogeneous and no microstructure formation is observed. 

But real-world systems are anisotropic in nature and the strength of anisotropy in each 

system can vary and most of them are strongly anisotropic. The surface energy defined is 

now a function of the strength of anisotropy and the crystallographic axis. This makes the 

electrodeposition process highly directional, thereby enabling growth in a particular 

direction which would result in different microstructures. Section 6.5 shows a detailed 

definition of the equations used and how the governing equation for concentration gets 

modified due to the inclusion of anisotropy. 

6.7. FUTURE WORK 

Research in the field of lithium batteries is not only popular, but motivation to 

achieve further advances in it is gaining momentum every day. Such is the potential of pure 

lithium batteries. The future prospects of these batteries are immense. Since natural 

resources are depleting at such a rapid rate, the dependence on such energy technologies 

can only grow. The driving force behind this is the advancement in the field of materials 

science coupled with the development of more powerful computational tools. Chapter 1 

gives descriptions of the future prospects of these batteries. 
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Unlike other phase field models that use a pure material as the anode, it should be 

observed that the electrolyte concentration used in this work is comparatively large. To 

give an example, in the electrodeposition of copper on a pure copper electrode presented 

in [64], the mole fractions of the electrode and electrolyte are considered to be 0.98 and 

0.018 respectively. But in this work, the mole fractions used for the solid and liquid phases 

are 0.9 and 0.1 respectively, which are more tangible to real world applications. 

Though so many cases of working of lithium metal batteries have been presented 

in this work, accelerated growth rates of the electrodeposits during the charging process, 

as seen in Section 6.5, coupled with high reactivity of pure lithium still render the use of 

these conventional lithium metal batteries as unsafe if the application necessitates its use 

over a long time. Hence, exploiting the high energy density of pure lithium metal still 

stands as a challenge even after a century of research in this field. Eliminating 

microstructure growth in any lithium battery technology is perhaps impossible at this point 

of time and all the studies are directed towards suppressing this growth from the anode 

surface. With the knowledge of some parameters like electrolyte concentration, free energy 

of formation, applied voltage that control evolution and fast growth of electrodeposits 

presented here, further advances in nanotechnology by using pure lithium with nanowires 

should be the next stage in reviving lithium metal battery technology and limiting 

microstructure growth. 

.
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APPENDIX A  

NON-DIMENSIONALIZATION PROCEDURE 
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The technique of non-dimensionalization is particularly useful in systems that are 

defined by a set of partial differential equations. The equations in the coupled phase field 

model is complex to solve in real dimensions. They are converted to the dimensionless 

form enables us to simplify the problem and apply the appropriate techniques to solve them 

and gives us insight into the parameters that are important and those that can be treated 

approximately. In this phase field model, the parameters are non-dimensionalized during 

computation and then converted back to real units upon solving them. 

The non-dimensional position, r , and time, t , are given by 

*

rr=
r

, where * 1

1

βr =
W

*

tt=
t

, where * 1

1

βt =
DW

The values are * -6r = 3.178x10 m = 3.178μm and *t =0.101s

Using the above two equations, governing equation for concentration can be written as 

( )2 2C fM β C
Ct

 ∂ ∂
= ∇ − ∇ ∂∂  

Where 

ff =
RTΔC

;  *( )r∇ = ∇ and DM=
RT C∆

M=1 

-7
1β =500*β=5x10 J/m , where X = 500 

3 3W=12.5*(RTΔC)=24.75x10 J/m , where Z = 12.5 
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3 3
1W =2W=49.5x10 J/m , where Y = 2 

Hence, Y*Zβ= =0.05
X

 

The governing equation for potential can be written as –  

( )
( )2*

1 . 0C
r

ε φ ∇ ∇ = 
 

 Therefore,  
( ). 0Cε φ ∇ ∇ =   
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APPENDIX B 

INPUTS IN COMSOL MULTIPHYSICS 
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1. Parameters used in the simulation –
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2. Variables used in the simulation – 
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3. Governing equations –

a) Governing equation for concentration

( ) ( )-100 C+0.0052 2C fM 10000C.e  + β C
t C

∂ ∂ = ∇ − ∇ ∂ ∂ 
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b) Governing equation for p –

2

2

Cp = 
x
∂
∂



96 

c) Governing equation for q –

2

2

Cq = 
y
∂
∂
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d) Governing equation for distribution of electric potential –

( )ε C φ∇. ∇ = 0  
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4. Solver type used –
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APPENDIX C 

INPUTS IN COMSOL MULTIPHYSICS FOR ANISOTROPY 
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The main changes in the inputs for the case of anisotropy is the variables and the 

governing equation for concentration, which are presented below: 

1. Variables –
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2. Governing equation for concentration (C)
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