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The first paper, pages 2-40, “Long-term Bone Regeneration, Mineralization and 

Angiogenesis in Rat Calvarial Defects Implanted with Strong Porous Bioactive Glass (13-

93) Scaffolds,” was accepted for publication in Journal of Non-Crystalline Solids in 2015. 
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 ABSTRACT  

          The main objective of this project was to evaluate the capacity of strong porous 

silicate (13-93) bioactive glass scaffolds prepared by a robocasting technique to regenerate 

bone and stimulate angiogenesis in a rat calvarial defect model. The scaffolds were created 

with the same grid-like microstructure but in a variety of formulations: (i) as-fabricated, 

(ii) pretreated in an aqueous phosphate solution to convert the glass surface to 

hydroxyapatite, (iii) loaded with bone morphogenetic protein-2 (BMP2) (1 µg per 

scaffold), and (iv) doped with copper (0.42.0 wt. % CuO). When compared to the as-

fabricated scaffolds, the pretreated scaffolds enhanced bone regeneration at 6 weeks but 

not at 12 or 24 weeks. In comparison, the BMP2-loaded scaffolds enhanced bone 

regeneration at all three implantation times and they were almost completely infiltrated 

with lamellar bone within 12 weeks. Doping the as-fabricated scaffolds with 0.4 and 0.8 

wt. % CuO did not affect the response of preosteoblastic MC3T3-E1 cells in vitro and bone 

regeneration in vivo. In comparison, the scaffolds doped with 2.0 wt. % CuO were toxic to 

the cells in vitro and significantly inhibited bone regeneration at 6 weeks post-implantation. 

The area of new blood vessels in the new bone that infiltrated the scaffolds at 6 weeks post-

implantation was significantly enhanced by the BMP2 loading but not by CuO dopant 

concentrations of 0.4 and 0.8 wt. %. The fibrous tissue that infiltrated the scaffolds doped 

with 2.0 wt. % CuO showed a significantly higher blood vessel area than the as-fabricated 

scaffolds. Loading silicate 13-93 bioactive glass scaffolds with BMP2 significantly 

improved their capacity to regenerate bone in rat calvarial defects at 6 weeks post-

implantation when compared to doping the glass with copper.  
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1. PURPOSE OF THIS THESIS 

The main purpose of this research was to create and evaluate strong porous 13-93 

scaffolds of bioactive glass with grid-like architectures for potential applications in loaded 

bone repair. 

Bioactive glass and ceramics have been widely investigated for healing bone 

defects, because of their ability to enhance bone formation and to bond with surrounding 

tissue. The glass designated 13-93 (53 SiO2, 6 Na2O, 12 K2O; 5 MgO, 20 CaO and 4 P2O5, 

wt%) is a silicate-based bioactive glass with a modified 45S5 composition, which has better 

processing characteristics by viscous flow sintering than the 45S5 bioactive glass. When 

fabricated into 3D scaffolds, the 13-93 bioactive glass can be sintered to high density 

without crystallization, which leads to optimum scaffold strength. Previous research in our 

research group (Xin et al) showed that the 13-93 bioactive scaffolds with a grid-like 

microstructure, prepared by a robocasting technique, had higher mechanical properties than 

scaffolds prepared by more conventional methods, such as the polymer foam replication 

technique, which make them potential candidates for loaded bone repair. 

In this work, the grid-like 13-93 bioactive glass scaffolds were fabricated by a 

robocasting method and their ability to support bone regeneration and angiogenesis were 

evaluated in osseous defects over a long-term duration. The ability to support bone 

regeneration of the scaffolds doped with various amount of CuO were studied and 

compared with un-doped 13-93 scaffolds. 
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PAPER  

I. Long-term bone regeneration, mineralization and angiogenesis in rat calvarial 

defects implanted with strong porous bioactive glass (13-93) scaffolds 

 

Yinan Lin1, Wei Xiao1, Xin Liu1, B. Sonny Bal2, Lynda F. Bonewald3, Mohamed N. 

Rahaman1,* 

1Department of Materials Science and Engineering Missouri University of Science and 

Technology, Rolla, MO 65409, USA  

2Department of Orthopaedic Surgery, School of Medicine, University of 

Missouri−Columbia, MO 65212, USA 

3Department of Oral and Craniofacial Sciences, School of Dentistry, University of 

Missouri– Kansas City, Kansas City, MO 64108, USA 

ABSTRACT 

There is growing interest in the use of bioactive glass scaffolds for repairing 

structural bone defects but data on the capacity of the scaffolds to regenerate bone in vivo, 

particularly over a long-term duration, are limited. In this study, bone regeneration in rat 

calvarial defects implanted with strong porous scaffolds of silicate 13-93 glass (porosity = 

47  1%) was investigated at 12 and 24 weeks post-implantation and compared with 

previous results from a similar study at 6 weeks. Three groups of implants, composed of 

as-fabricated scaffolds, scaffolds pretreated in a phosphate solution to convert a thin 

surface layer (5 µm) to hydroxyapatite (HA) and pretreated scaffolds loaded with bone 

morphogenetic protein-2 (BMP2) (1 µg/defect) were used. Bone regeneration, bioactive 

glass conversion to HA and blood vessel formation in the defects implanted with the three 

groups of scaffolds were evaluated using histology, histomorphometric analysis and 

scanning electron microscopy. When compared to the as-fabricated scaffolds, the 
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pretreated scaffolds enhanced bone regeneration at 6 weeks but not at 12 or 24 weeks. In 

comparison, the BMP2-loaded scaffolds showed a significantly better capacity to 

regenerate bone at all three implantation times and they were almost completely infiltrated 

with lamellar bone within 12 weeks. The amount of glass conversion to HA at 24 weeks 

(30−33%) was not significantly different among the three groups of scaffolds. The area 

and number of blood vessels in the new bone that infiltrated the BMP2-loaded scaffolds at 

6 and 12 weeks post-implantation were significantly greater than those for the as-fabricated 

and pretreated scaffolds. However, there was no significant difference in blood vessel area 

and number among the three groups of scaffolds at 24 weeks. The results indicate that these 

strong porous bioactive glass (13-93) scaffolds loaded with BMP2 are promising candidate 

implants for structural bone repair. 
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1. Introduction 

 There is growing interest in the development of bioactive glass scaffolds for healing 

large (critical size) bone defects, particularly defects in structural bone. The attractive 

properties of bioactive glasses as a scaffold material for bone repair, such as their ability 

to stimulate osteogenesis, convert to hydroxyapatite (HA) (the mineral constituent of bone) 

and bond strongly to bone, have been well documented for 30−40 years [1−4]. However, 

most previous studies have targeted bioactive glass in the form of particles, granules or low 

strength porous scaffolds that have inadequate mechanical properties for structural bone 

repair [5]. Furthermore, while several investigations have been performed to study the 

capacity of bioactive glass scaffolds to regenerate bone in osseous defects in vivo, the 

available data covering longer-term implantation times, such as times longer than 6−12 

weeks, are limited.    

Recent studies have shown the ability to create strong porous scaffolds of silicate 

13-93 or 6P53B bioactive glass by robotic deposition techniques such as freeze extrusion 

fabrication [6] and robocasting [7, 8]. Scaffolds with a grid-like microstructure (porosity 

50%; pore width 300 µm) showed compressive strengths (~140 MPa) that were 

comparable to human cortical bone (100−150 MPa) [5]. Strong porous scaffolds of 13-93 

glass created by robocasting also showed excellent fatigue resistance in vitro under 

compressive stresses that were higher than normal physiologic stresses on the femur of 

humans [9].  

When implanted for 6 weeks in rat calvarial defects (4.6 mm in diameter), strong 

porous scaffolds of 13-93 bioactive glass were infiltrated with new bone and they 

integrated with host bone [10]. Pretreating the as-fabricated scaffolds in an aqueous 
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phosphate solution to convert a thin surface layer (5 µm) of the glass to HA prior to 

implantation significantly improved their capacity to regenerate bone. Loading the 

pretreated scaffolds with bone morphogenetic protein-2 (BMP2) (1 µg/defect) prior to 

implantation further enhanced their capacity to regenerate bone. Approximately 65% of 

the pore volume of the BMP2-loaded scaffolds was infiltrated with new bone at 6 weeks. 

More recent studies have shown promising results for the use of strong porous 13-

93 bioactive glass scaffolds in healing structural bone defects in small animals [11]. When 

implanted for 12 weeks in rat femoral segmental defects (6 mm long) using intramedullary 

pin fixation, the ends of the 13-93 scaffolds were infiltrated with new bone, resulting in 

integration. The percent new bone in the defects implanted with the 13-93 scaffolds (25%) 

was not significantly different from that in the defects implanted with autografts (38%) (n 

= 6; p < 0.05).  In another study, cylindrical scaffolds of 13-93 glass (porosity = 55−67%; 

compressive strength = 40 MPa) were prepared by selective laser sintering and evaluated 

in rat femoral segmental defects (5 mm long) [12]. The scaffolds contained drill holes in 

the sides of the cylinder that were either filled with dicalcium phosphate dihydrate (DCPD) 

used as a carrier for BMP2 (10 µg/defect) or left unfilled (control group). X-ray 

radiography and micro-computed tomography (micro-CT) showed the formation of 

bridging calluses around both groups of implants but faster healing and better callus 

formation were found for the BMP2-loaded scaffolds. 

In view of the capacity of strong porous bioactive glass (13-93) scaffolds to 

regenerate bone in rat calvarial defects at 6 weeks and to heal segmental bone defects in 

rodents at 12 weeks, this study was undertaken to evaluate longer term bone regeneration 

in osseous defects implanted with those strong porous 13-93 scaffolds. Implantation times 
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longer than 6−12 weeks are necessary for better evaluating the capacity of the scaffolds to 

heal the defect, maintain healthy bone growth and convert to HA. Two groups of scaffolds, 

pretreated for three days in an aqueous phosphate solution or loaded with BMP2, were 

implanted in rat calvarial defects for 12 and 24 weeks. The as-fabricated scaffolds (no 

pretreatment or BMP2) were used as the control group. Bone regeneration, glass 

conversion to HA and blood vessel formation in the defects implanted with the scaffolds 

were evaluated using histology, histomorphometric analysis and scanning electron 

microscopy. The results were compared with those obtained in a previous study for similar 

scaffolds implanted for 6 weeks in the same animal model [10].           

2. Materials and methods 

2.1 Preparation of scaffolds 

 Scaffolds with a grid-like microstructure were prepared using a robotic deposition 

(robocasting) method, as described in detail elsewhere [9, 10]. Briefly, the as-received 13-

93 glass (Mo-Sci Corp., Rolla, MO) was ground to form particles (1 µm), mixed with a 

20 wt% Pluronic-127 binder solution to form a paste (40 vol% glass particles) and extruded 

using a robocasting machine (RoboCAD 3.0; 3-D Inks, Stillwater, OK). After drying at 

room temperature, the scaffolds were heated in O2 at a rate of 0.5 C/min to 600 C to burn 

out the processing additives, and sintered for 1 h at 700 C (heating rate = 5 C/min) to 

densify the glass filaments. The as-fabricated scaffolds were sectioned and ground to form 

thin discs (4.6 mm in diameter  1.5 mm), washed twice with deionized water and twice 

with anhydrous ethanol, dried in air and sterilized by heating for 12 h at 250 C. For 

reference, images of the as-fabricated scaffolds are shown in Fig. 1. 
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Twenty-eight of the as-fabricated scaffolds were reacted for 3 days in an aqueous 

phosphate solution (0.25 M K2HPO4 solution) at 60 C and a starting pH of 12.0 to convert 

a thin surface layer of the glass to HA (or amorphous calcium phosphate, ACP), as 

described previously [10]. The mass of the glass scaffolds to the volume of the K2HPO4 

solution was kept constant at 1 g per 200 ml and the solution was stirred gently each day. 

Fourteen of the pretreated scaffolds were loaded with BMP2 prior to implantation using a 

procedure described previously [10]. Briefly, a solution of BMP2 (Shenandoah 

Biotechnology Inc., PA, USA) in citric acid was prepared by dissolving 10 µg of BMP2 in 

100 µl sterile citric acid (pH = 3.0). Then 10 µl of the BMP2 solution was pipetted on to 

each bioactive glass scaffold. The BMP2 solution was completely absorbed within the 

converted surface layer of the scaffolds and there was no visible evidence for any of the 

solution flowing out of the scaffolds. After loading with BMP2, the scaffolds were kept for 

24 h in a refrigerator at 4 C to dry them prior to implantation. The release profile of the 

BMP2 from the scaffolds into a solution composed of equal volumes of fetal bovine serum 

(FBS) and phosphate-buffered saline (PBS) plus 1 vol. % penicillin was measured 

previously as a function of time in vitro [10]. 

 

2.2 Animals and surgical procedure 

All animal experimental procedures were approved by the Animal Care and Use 

Committee, Missouri University of Science and Technology, in compliance with the NIH 

Guide for Care and Use of Laboratory Animals (1985). The three groups of scaffolds 

(described as as-fabricated, pretreated and BMP2-loaded) were implanted in rat calvarial 

defects for 12 and 24 weeks. Seven scaffolds from each group were implanted for each 
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implantation time. This sample size (n = 7) was selected on the basis of the results of a 

previous study for an implantation time of 6 weeks [10] and a power analysis. The implants 

were assigned randomly to the defects, but scaffolds with and without BMP2 were not 

mixed in the same animal.  

Twenty-two male Sprague Dawley rats (3 months old; weight = 350–400 g, Harlan 

Laboratories Inc., USA) were maintained in the animal facility for 2 weeks to become 

acclimated to diet, water and housing. The rats were anesthetized with a combination of 

ketamine (72 mg/kg) and xylazine (6 mg/kg) and maintained under anesthesia with ether 

gas in oxygen. The surgical site was shaved, scrubbed with iodine and draped. Using sterile 

instruments and aseptic technique, a cranial skin incision was sharply made in an anterior 

to posterior direction along the midline. The subcutaneous tissue, musculature and 

periosteum were dissected and reflected to expose the calvarium. Bilateral full-thickness 

defects 4.6 mm in diameter were created in the central area of each parietal bone using a 

saline-cooled trephine drill. The dura mater was not disturbed.  The sites were constantly 

irrigated with sterile PBS to prevent overheating of the bone margins and to remove the 

bone debris. After the bilateral defect was implanted with the scaffold, the periosteum and 

skin were repositioned and closed using wound clips. Post-surgery, the animals were given 

a dose of ketoprofen (3 mg/kg) intramuscularly and ~200 µl penicillin subcutaneously. The 

animals were monitored daily for the condition of the surgical wound, food intake, activity 

and clinical signs of infection. After 12 and 24 weeks, the animals were sacrificed by CO2 

inhalation, and the calvarial defect sites with surrounding bone and soft tissue were 

harvested for evaluation. 
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2.3 Histologic processing 

The calvarial samples, including the surgical sites with surrounding bone and tissue, 

were fixed in 10% buffered formaldehyde for 3 days, then transferred into 70% ethanol 

and cut in half. Half of each sample was for paraffin embedding and the other half for 

methyl methacrylate embedding. The samples for paraffin embedding were de-siliconized 

by immersion for 2 h in 10% hydrofluoric acid, decalcified in 14% 

ethylenediaminetetraacetic acid (EDTA) for 4 weeks, dehydrated in a series of graded 

ethanol and embedded in paraffin using routine histological techniques. Then the 

specimens were sectioned to 5 µm using a microtome and stained with hematoxylin and 

eosin (H&E) and by the periodic acid-Schiff (PAS) technique. The un-decalcified samples 

were dehydrated in ethanol and embedded in PMMA. Sections were affixed to acrylic 

slides, ground down to 40 µm using a surface grinder (EXAKT 400CS, Norderstedt, 

Germany) and stained using the von Kossa method. Transmitted light images of the stained 

sections were taken with an Olympus BX 50 microscope connected to a CCD camera 

(DP70, Olympus, Japan). 

 

2.4 Histomorphometric analysis 

Histomorphometric analysis was carried out using optical images of the stained 

sections and the ImageJ software (National Institutes of Health, USA). One section across 

the diameter of each defect was analyzed. The percent new bone formed in the defects was 

evaluated from the H&E stained sections. The entire defect area was determined as the area 

between the two defect margins, including the entire glass scaffold and the tissue within. 

The available pore area within the scaffold was determined by subtracting the area of the 
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bioactive glass scaffold from the total defect area. The newly formed bone, fibrous tissue 

and bone marrow-like tissue within the defect area were then outlined and measured. The 

area of each tissue was expressed as a percentage of the available pore area of the scaffolds 

and total defect area. 

The von Kossa-positive area in the defects implanted with the scaffolds was 

analyzed using the von Kossa stained sections and ImageJ. One section across the diameter 

of each defect was analyzed. Images were adjusted to measure only the black-stained areas 

of the image, which yielded the black area fraction as a percentage of the total defect area. 

As mineralized bone and HA both bound the silver nitrate, in order to determine the percent 

area due to the conversion of the glass scaffold, the von Kossa-positive percentage was 

averaged for each sample and the percent new bone determined for each sample from the 

H&E stained images was subtracted. 

Quantitation of blood vessels within the defect was performed using the sections 

stained by the PAS technique, which results in purple-stained blood vessels with 

counterstaining yielding green red blood cells. Viewed at 20x field, each scaffold was 

scanned to acquire six regions of interest within the new bone and the blood vessels were 

outlined. All six areas were combined using ImageJ to determine the total blood vessel 

area, which was expressed as a percentage of the area of the selected regions. The total 

number of blood vessels in the six areas was determined and normalized to unit area (1 

mm2) of the new bone.  
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2.5 Scanning electron microscopy 

Unstained sections of the implants in poly(methyl methacrylate) (PMMA) were 

coated with carbon and examined in a field-emission scanning electron microscope 

(FESEM) (S-4700; Hitachi, Tokyo, Japan) fitted with an energy-dispersive X-ray (EDS) 

spectrometer. The specimens were examined at an accelerating voltage of 15 kV and a 

working distance of 12 mm. The calcium to phosphorus (Ca/P) atomic ratio of the glass 

converted to HA, new bone and unconverted glass were measured using the as-received 

glass and a reference HA as standards. The thickness of the converted layer on the filaments 

of the scaffolds was determined as the average from three randomly selected regions. 

 

2.6 Statistical analysis 

The data are presented as a mean ± standard deviation (SD). Analysis for 

differences in new bone, mineralized tissue, and blood capillary area and number between 

groups was performed using one-way analysis of variance (ANOVA) with Tukey’s post 

hoc test. Differences were considered significant for p < 0.05. 

3. Results 

The three groups of 13-93 bioactive glass scaffolds used in this study were similar 

to those implanted previously for 6 weeks in the same animal model [10]. The as-fabricated 

scaffold had a grid-like microstructure (Fig. 1), composed of almost fully dense 13-93 glass 

filaments of diameter 330 ± 10 µm and pores of width 300 ± 10 µm in the plane of 

deposition (xy plane) and 150 ± 10 µm in the direction perpendicular to the deposition 

plane (z direction). The porosity of the scaffolds was 47 ± 1%, as measured using the 

Archimedes method. Pretreatment of the as-fabricated scaffolds in an aqueous phosphate 
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(K2HPO4) solution resulted in a porous HA surface layer on the glass filaments of thickness 

= 5  2 µm and surface area = 30  3 m2/g.     

 

3.1 Assessment of bone regeneration  

Transmitted light images of H&E stained sections of the rat calvarial defects 

implanted for 12 and 24 weeks with the as-fabricated, pretreated and BMP2-loaded 

scaffolds are shown in Fig. 2. Stained sections of defects implanted for 6 weeks with the 

three groups of scaffolds, obtained in a previous study [10], are included for comparison. 

New bone infiltrated all three groups of scaffolds, into the edges (periphery) adjacent to 

the host bone and into the pores, indicating good integration of the scaffolds with the 

surrounding calvarial bone. The amount of new bone formed in the defects was dependent 

on the implantation time and on the scaffold group. 

At 6 weeks, the amount of new bone in the as-fabricated scaffolds was limited to 

the periphery of the scaffolds and to “islands” within the pores of the scaffolds (Fig. 2a1). 

Bone regeneration was considerably greater in the defects implanted with pretreated and 

the BMP2-loaded scaffolds, with the new bone bridging the edges of the defect (Fig. 2a2, 

2a3).  The amount of new bone in the defects implanted with the pretreated scaffolds was 

not significantly different from that for the BMP2-loaded scaffolds. The as-fabricated and 

pretreated scaffolds contained a significantly higher amount of fibrous tissue than the 

BMP2-loaded scaffolds whereas the BMP2-loaded scaffolds had a significantly higher 

fraction of bone marrow-like tissue than the as-fabricated and pretreated scaffolds.  

As the implantation time increased to 12 and 24 weeks, the stained sections (Fig. 

2b1-2c3) consistently showed an increase in new bone in the defects implanted with the 
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as-fabricated and BMP2-loaded scaffolds while the amount of new bone varied over a wide 

range for the pretreated scaffolds. The new bone almost completely infiltrated the pores of 

the BMP2-loaded scaffolds within 12 weeks.  The amount of marrow-like tissue observed 

at 6 weeks in the defects implanted with the BMP2-loaded scaffolds decreased markedly 

with the increase in implantation time. Higher magnification images of the stained sections 

at 24 weeks (Fig. 2d1-2d3) showed that for all three groups of scaffolds, the new bone was 

composed of lamellar bone, similar to host bone, and that it adhered tightly to the surface 

of the scaffolds. 

Since all the scaffolds had the same microstructure, their capacity to regenerate 

bone in the defects was compared by normalizing the amount of new bone to the total pore 

space (area) of the scaffolds (Fig. 3). The amount of new bone in the as-fabricated scaffolds 

increased significantly from 45  11% at 6 weeks to 58  6% at 24 weeks. While the amount 

of new bone in the pretreated scaffolds at 6 weeks (64  9%) was significantly higher than 

that in the as-fabricated scaffolds, there was little increase with longer implantation time. 

The amount of new bone in the pretreated scaffolds at 24 weeks (67  9%) was not 

significantly higher than that in the as-fabricated scaffolds at the same implantation time. 

In comparison, the amount of new bone in the BMP2-loaded scaffolds increased 

significantly from 73  8% at 6 weeks to 95  3% at 24 weeks and was significantly greater 

than that in the as-fabricated scaffolds at all three implantation times. The amount of new 

bone in the BMP2-loaded scaffolds was also significantly greater than that in the pretreated 

scaffolds at 12 and 24 weeks. 
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3.2 Assessment of bone marrow and fibrous tissue             

 Previously, at 6 weeks post-implantation, it was found that for the as-fabricated and 

pretreated scaffolds, the pore space that was not infiltrated with new bone was filled mainly 

with fibrous (soft) tissue [10]. In comparison, the BMP2-loaded scaffolds contained a 

significantly greater amount of bone marrow-like tissue but a significantly smaller amount 

of fibrous tissue. Although the mechanism is not clear, marrow-rich bone is observed to be 

a typical outcome of BMP2-induced bone growth [13−15]. In the present study, the amount 

of bone marrow-like tissue in the BMP2-loaded scaffolds at 6 weeks post-implantation (22 

 8% of the pore space of the scaffolds) decreased significantly at 12 and 24 weeks post-

implantation (Fig. 4a). At 12 and 24 weeks, the pore space was almost completely filled 

with lamellar bone (Fig. 2c3), indicating that the marrow-like tissue had converted to 

mature bone. The amount of fibrous tissue in the as-fabricated and pretreated scaffolds 

decreased more slowly as the implantation time increased from 6 weeks to 24 weeks (Fig. 

4b).   

 

3.3 Assessment of mineralized tissue and bioactive glass conversion 

Transmitted light images of von Kossa stained sections of the rat calvarial defects 

implanted for 12 and 24 weeks with the as-fabricated, pretreated and BMP2-loaded 

scaffolds are shown in Fig. 5. Images of the defects implanted for 6 weeks with the three 

groups of scaffolds [10] are included for comparison. The von Kossa staining detects a 

combination of bone and glass converted to HA (or phosphate material). For all three 

groups of scaffolds, the total von Kossa-positive area increased as the implantation time 

increased from 6 weeks to 24 weeks. The increase was particularly noticeable for the 
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defects implanted with the BMP2-loaded scaffolds which showed a considerable amount 

of von Kossa-positive area (Fig. 5c3).  

The total von Kossa-positive area, evaluated as a fraction of the total defect area, 

was 38  9%, 56  4% and 59  5%, respectively for the as-fabricated, pretreated and 

BMP2-loaded scaffolds at 6 weeks post-implantation (Fig. 6a). At 24 weeks, the total von 

Kossa-positive area increased to 57 ± 6%, 64 ± 5% and 81 ± 4%, respectively, for the as-

fabricated, pretreated, and BMP2-loaded scaffolds. The increase in the total von Kossa-

positive area from 6 to 24 weeks was significant for each group of scaffolds but the 

magnitude of the increase was smaller for the pretreated scaffolds. 

To evaluate how much of the von Kossa-positive area was attributed to the 

converted glass alone, the percent new bone determined from the H&E stained sections (as 

a fraction of the total defect area) was subtracted from the total von Kossa-positive area. 

The percent von Kossa-positive area due to the glass conversion to HA (evaluated as a 

fraction of the total defect area) was 17  3%, 24  2% and 24  3%, respectively for the 

as-fabricated, pretreated and BMP2-loaded scaffolds at 6 weeks post-implantation (Fig. 

6b). At 24 weeks, the von Kossa-positive area due to the glass conversion increased to 29 

± 3%, 31 ± 2% and 34 ± 4%, respectively, for the as-fabricated, pretreated and BMP2-

loaded scaffolds. The increase in the von Kossa-positive area due to the glass conversion 

from 6 weeks to 24 weeks was significant for each group of scaffolds but at 24 weeks, there 

was no significant difference among the von Kossa-positive area due to the glass 

conversion for the three groups of scaffolds.  
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3.4. SEM evaluation of implants 

Figure 7 shows backscattered SEM images of the rat calvarial defects implanted 

with the bioactive glass scaffolds at 24 weeks. Images of the defects implanted with the 

scaffolds at 12 weeks showed similar features and they are omitted for brevity. The cracks 

in the sections and the delamination of the converted glass layer from the scaffolds are 

presumably due to mechanical stresses resulting from grinding to attain a flat surface and 

capillary stresses during the preparation (drying) of the sections for SEM analysis. The 

contrast in the grayscale images is an indication of differences in the calcium content. The 

unconverted glass, the converted surface layer and the new bone, all with higher calcium 

content, had a light gray color. In comparison, the silica-rich layer, formed in the early 

stage of the glass conversion process, was dark gray. Lacunae within the bone, fibrous 

tissue and bone marrow-like tissue were almost black. The filaments in the scaffolds 

showed a considerable amount of unconverted glass even at 24 weeks post-implantation, 

due to the well-known slow conversion of 13-93 bioactive glass [2].  

New bone appeared to bond tightly to the surface of the converted layer for all three 

groups of scaffolds at 24 weeks post-implantation. This was also found at 12 weeks for all 

three groups of scaffolds (results not included), and for the pretreated and BMP2-loaded 

scaffolds at 6 weeks [10]. New bone did not appear to bond to the as-fabricated scaffolds 

at 6 weeks. Instead, the new bone formed “islands” within the pores of the scaffolds and 

there were large gaps between the newly formed bone and the converted surface of the 

scaffold. 

The average thickness of the converted layer of the three groups of scaffolds at 24 

weeks post-implantation, determined from the SEM images (Fig. 7), was approximately 
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30, 20 and 20 µm, respectively, for the as-fabricated, pretreated, and BMP2-loaded 

scaffolds. The Ca/P atomic ratio of the converted layer, silica-rich layer and unconverted 

glass of the scaffolds and the Ca/P atomic ratio of the new bone in the defects at 12 weeks 

and 24 week post-implantation, determined using EDS analysis, are summarized in Table 

I. The Ca/P atomic ratio of the converted layer for the three groups of scaffolds did not 

show a significant change as the implantation time increased from 12 to 24 weeks. At 24 

weeks, the Ca/P atomic ratio of the converted layer was 1.62 and 1.66, respectively, 

respectively, for the as-fabricated, and BMP2-loaded scaffolds which were not 

significantly different from the value (1.67) for a stoichiometric HA. However, the Ca/P 

atomic ratio for the converted layer of the pretreated scaffolds at 24 weeks (1.54) was 

smaller than that for stoichiometric HA. 

 

3.5 Assessment of angiogenesis 

Transmitted light images of H&E and PAS stained sections showed that blood 

vessels infiltrated the defects implanted with all three groups of scaffolds. Because they 

provided more definitive detection of the micro-vessels, the PAS stained images were used 

to assess the area and number of blood vessels in the defects. Blood vessels were observed 

in the new bone, fibrous (soft) tissue and marrow-like tissue. As described earlier, the 

defects implanted for 6 weeks with the as-fabricated and pretreated scaffolds were also 

infiltrated with a considerable amount of fibrous (soft) tissue whereas the defects implanted 

with the BMP2-loaded scaffolds also contained a considerable amount of marrow-like 

tissue. A large number of blood vessels was observed in the marrow-like tissue at 6 weeks. 

Because of the difference in the amount of fibrous and marrow-like tissue in the three 
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groups of scaffolds, the blood vessel area and the number of blood vessels were evaluated 

in the new bone only.  

Figure 8 shows images of PAS stained sections of the defects implanted with the 

three groups of scaffolds at 12 weeks post-implantation. Images for implantation times of 

6 weeks and 24 weeks are omitted for brevity. At 6 weeks post-implantation, sparse 

capillary vessels were observed within the new bone in the as-fabricated scaffolds but a 

larger number of capillaries were found in the pretreated scaffolds and particularly in the 

BMP2-loaded scaffolds. At 12 weeks, along with the increase in new bone described 

earlier, there was an increase in the number of capillaries in the defects implanted with the 

BMP2-loaded scaffolds (Fig. 8c1). With an increase in the implantation time to 24 weeks, 

the morphology and color of the bone in the scaffolds were comparable to host bone, 

indicating good maturity of the infiltrated bone. The number and size of the blood vessels 

appeared to be similar to those in the host bone. 

The percent blood vessel area in the defects implanted with the three groups of 

scaffolds, determined as a fraction of the new bone area, is shown in Fig. 9a at 6, 12, and 

24 weeks post-implantation. At 6 weeks, the BMP2-loaded scaffolds had the highest 

percentage of blood vessel area within the defect (4.6  0.5%) which was significantly 

higher than the values for the as-fabricated scaffolds (2.4 ± 0.3%) and the pretreated 

scaffolds (2.7  0.3%).  The percent blood vessel area in the BMP2-loaded scaffolds 

decreased significantly to 3.1  0.5% at 12 weeks but it was still significantly higher than 

the value for the as-fabricated scaffolds (2.0  0.4%) and higher than that for the pretreated 

scaffolds (2.3 ± 0.4%). The blood vessel area in those two groups was comparable to the 

value (2%) observed in scaffolds of 13-93 glass with a fibrous microstructure implanted 
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for 12 weeks in the same animal model [16]. The percent blood vessel area at 24 weeks 

was 2.0 ± 0.2%, 2.0 ± 0.3% and 2.1 ± 0.3%, respectively, for the as-fabricated, pretreated 

and BMP2-loaded scaffolds which was approximately the same as the value in host bone 

(1.9  0.3%).  

The number of blood vessels per unit area (mm2) of the new bone in the defects 

implanted with the three groups of scaffolds was also determined (Fig. 9b). At 6 weeks, 

the number of blood vessels in the BMP2-loaded scaffolds (34  10) was significantly 

higher than in the as-fabricated scaffolds (20  4) and higher than in the pretreated scaffolds 

(29  9).  The blood vessel number in the BMP2-loaded scaffolds increased to 44  12 at 

12 weeks, whereas the vessel number in the as-fabricated scaffolds (18 ± 6) and the 

pretreated scaffolds (25 ± 6) were comparable to the values at 6 weeks. At 24 weeks, the 

blood vessel number within the new bone was 16 ± 5, 19 ± 4 and 25 ± 7, respectively, for 

the as-fabricated, pretreated and BMP2-loaded scaffolds. The differences among the 

groups were not significant. 

4. Discussion 

There is growing interest in the use of bioactive glass to heal bone defects. 

However, most previous in vivo studies have utilized bioactive glasses in the form of 

particles or weak porous 3D scaffolds and implantation times of 12 weeks or shorter. The 

significant features of the present study included the use of strong porous scaffolds that 

may have potential in healing large (critical size) defects in loaded or non-loaded bone and 

longer implantation times (12 and 24 weeks). Previously, we found that that pretreating as-

fabricated 13-93 bioactive glass scaffolds of in an aqueous phosphate solution to convert a 

thin surface layer to HA or loading the pretreated scaffolds with BMP2 significantly 
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enhanced their capacity to regenerate bone at 6 weeks. A key objective of the present study 

was to determine whether the promising bone regeneration observed at 6 weeks continued 

to longer implantation periods and to understand the processes that influence the long-term 

healing of bone defects implanted with 13-93 glass scaffolds.  

The amount of new bone in the rat calvarial defects implanted with the as-fabricated 

scaffolds increased with time and, at 24 weeks, the amount of new bone was significantly 

greater than that at 6 weeks (Fig. 3). In comparison, the significant enhancement in bone 

regeneration observed previously at 6 weeks in the defects implanted with the pretreated 

scaffolds appeared to be a short-term effect. There was little increase in the amount of new 

bone in the defects implanted with the pretreated scaffolds at 12 and 24 weeks. The 

significant difference between the as-fabricated and pretreated scaffolds to regenerate bone 

at 6 weeks was previously discussed in terms of their different surface characteristics [10]. 

Upon implantation, the surface of the pretreated scaffolds was composed of a high-surface-

area mesoporous ACP or HA material whereas the as-fabricated scaffolds was composed 

of a dense silicate glass. This difference in surface characteristics could initially influence 

the response of cells. Subsequently, the as-fabricated scaffolds converted faster to ACP or 

HA when compared to the pretreated scaffolds. After the formation of the ACP or HA 

surface layer, presumably the faster conversion of the as-fabricated scaffolds served to 

improve their capacity to regenerate bone. Thus, by 24 weeks, there was no significant 

difference in bone regeneration between the as-fabricated and pretreated scaffolds.  

The BMP2-loaded scaffolds showed the best capacity to regenerate bone. The pore 

space within the scaffolds was almost completely infiltrated with lamellar bone within 12 

weeks. Loading the 13-93 bioactive glass scaffolds with BMP2 could provide a promising 
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method for enhancing their capacity to regenerate sufficient bone within a clinically 

relevant time. The amount of BMP2 loaded into each scaffold (1 µg per defect or 60 ng per 

mm3) was well below the value (>120 ng/mm3) required for bridging 5 mm defects using 

3D poly(lactic-co-glycolic acid) scaffolds [17] and the value (250 ng/mm3) observed to 

cause adverse biological effects in the same animal model [18]. In the present study, no 

adverse biological effects were observed in the H&E stained sections of the defects 

implanted with the three groups of scaffolds for the three implantation times used. 

 The defect size (4.6 mm) used in the present study is not a critical size defect in the 

rat calvarial model. However, a defect size of 5 mm in this animal model has been used 

often to evaluate the response of biomaterials in osseous defects. The defect size in the 

present study was based on the diameter of a commercially available trephine drill and the 

use of bilateral defects (one defect in the central area of each parietal bone of the calvaria). 

For an unfilled defect of that size, our previous study showed that only a thin layer of new 

bone was formed at the defect margin at 12 weeks and most of the defect was filled with 

compressed fibrous connective tissue [19]. The thin layer of bone formed after 12 weeks 

failed to bridge the defect at after 24 weeks. Thus the healing of the defects observed in the 

present study can be attributed mainly to the capacity of the BMP2-loaded scaffolds to 

stimulate osteogenesis.     

The release profile of BMP2 from the scaffolds into a medium composed of fetal 

bovine serum and phosphate-buffered saline, measured previously [10], showed that 10% 

of the BMP2 loaded into the scaffolds was released over the first 3−4 days and that the 

release of BMP2 almost ceased thereafter. Despite this limited short-term release of BMP2 

observed in vitro, the results of the present study showed a significant capacity of the 
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BMP2-loaded scaffolds to enhance bone regeneration for up to 24 weeks in vivo. A thin 

surface layer of the scaffolds was converted to a high-surface-area hydroxyapatite (30  3 

m2/g) that served as a substrate for the BMP2. Because of the high affinity of BMP2 for 

HA, its release rate from HA in vitro is often low. The adsorbed BMP2 is reported to be 

strongly immobilized on the surface of the HA by electrostatic and other interactions, such 

as hydrogen bonding [20]. This strong interaction makes it difficult for the BMP2 to be 

displaced from the HA surface by competitive adsorption from other proteins [21]. 

However, a greater release of BMP2 from the scaffolds can be expected in vivo because of 

a higher degradation rate of the HA surface layer due to cell-mediated degradation in 

addition to dissolution-mediated degradation [22, 23] and the higher solubility of proteins 

in vivo. Presumably the BMP2 release in vivo was above the threshold required to stimulate 

bone regeneration over a period that was much longer than the release time observed in 

vitro. 

 An attractive property of bioactive glasses is their ability to convert to HA which 

leads to a strong bond with bone. The rate of conversion to HA depends primarily on the 

bioactive glass composition, the medium (in vitro versus in vivo) and the architecture of 

the glass (porosity, pore size and pore interconnectivity) [16, 19, 24−27]. As the bioactive 

glass scaffold converts to HA, its strength decreases [9, 19]. Consequently, the application 

of bioactive glass scaffolds in structural or loaded bone repair depends not only on the 

strength of the as-fabricated scaffold but also on the relative rates of conversion 

(degradation in strength) and new bone infiltration (enhancement in strength). A 

requirement for structural bone repair is to avoid rapid degradation in the strength prior to 

sufficient new bone infiltration. The slow conversion rate of silicate 13-93 bioactive glass 
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scaffolds to HA is an advantage for the retention of strength. The amount of glass 

conversion at 24 weeks, determined by subtracting the percent new bone in the defects 

from the total von Kossa-positive area was 30−33% for the three groups which showed 

that the pretreatment or BMP2 loading had little long-term effect on conversion of the 

scaffolds in the defects. If required, more rapid conversion of the 13-93 scaffolds to HA 

can be achieved by reducing the diameter of the glass filaments in the grid-like architecture 

(Fig. 1). 

Angiogenesis is essential for bone formation and growth, and it plays a critical role 

in bone defect repair [28]. Blood vessels provide a means for tissues to receive oxygen and 

various nutrients. The relationship between angiogenesis and osteogenesis is well 

recognized [29]. The vasculature penetrates into the bioactive glass scaffold and enables 

numerous cells and tissues to receive nourishment. The enhancement of angiogenesis 

increases bone regeneration [30]. In the present study, the area and number blood vessels 

in the new bone that infiltrated the BMP2-loaded scaffolds at 6 and 12 weeks were 

significantly greater than those for the as-fabricated or pretreated scaffolds, showing the 

capacity of the BMP2-loaded scaffolds to enhance angiogenesis. The blood vessel area and 

number showed a decreasing trend with time and became comparable to the values in host 

bone within 24 weeks. 

Together, the results of the present study showed that loading the 13-93 bioactive 

glass scaffolds with a moderate amount of BMP2 (1 g per defect) resulted in their ability 

to stimulate osteogenesis and angiogenesis in a rat calvarial defect model, particularly at 

shorter implantation times (<12 weeks). Extensive data have shown that BMPs, 

particularly BMP2, can initiate the complete cascade of bone formation, including the 
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migration of mesenchymal stem cells and their differentiation into pre-osteoblasts and then 

into osteoblasts [31, 32]. While several growth factors can play a role in angiogenesis, 

vascular endothelial growth factor (VEGF) is considered to be a key regulator of 

angiogenesis during bone regeneration [33]. Studies have shown that BMP-induced 

differentiation of pre-osteoblast-like cells can enhance the production of VEGF by the 

resulting osteoblasts [34, 35]. The simultaneous delivery or expression of BMP and VEGF 

has been shown to result in enhanced bone formation in vivo [3638]. In the present study, 

presumably enhanced production of VEGF by the osteoblasts stimulated angiogenesis and 

this, coupled with the continuous release of BMP2 from the scaffolds, served to enhance 

new bone formation in the defects.  

5. Conclusions 

Bone regeneration in rat calvarial defects implanted with strong porous bioactive 

glass (13-93) scaffolds was studied at implantation times of 12 and 24 weeks and compared 

with a similar study at 6 weeks. Bone regeneration in the defects implanted with the as-

fabricated scaffolds increased significantly with increase in the implantation time from 6 

to 24 weeks. Pretreating the scaffolds to convert a thin surface layer to hydroxyapatite 

enhanced bone regeneration at 6 weeks but not at 12 or 24 weeks. Scaffolds loaded with 

BMP2 (1 µg/defect) significantly enhanced bone regeneration at all three implantation 

times. The pore space of the BMP2-loaded scaffolds was almost completely infiltrated with 

lamellar bone within 12 weeks. The pretreatment or BMP2 loading did not affect the 

amount of bioactive glass converted to hydroxyapatite at 24 weeks (30%). While blood 

vessels were present in the new bone that infiltrated all three groups of scaffolds, the 

BMP2-loaded scaffolds had a significantly higher number of blood vessels and blood 
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vessel area at 6 and 12 weeks post-implantation. Strong porous bioactive glass (13-93) 

scaffolds loaded with clinically acceptable levels of BMP2 could provide promising 

implants for healing structural (loaded) bone defects within a clinically relevant time.  
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Fig. 1. (a) Optical image of 13-93 bioactive glass scaffold prepared by robocasting for 

implantation in rat calvarial defects [10]. (b) Higher-magnification SEM image of the 

scaffold showing dense glass filaments and porous grid-like architecture in the plane of 

deposition (xy plane). Inset: SEM image in z direction. The scaffolds had a porosity of 47 

± 1%, a pore width of 300 ± 10 µm in the xy plane and 150 ± 10 µm in z direction. 
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Fig. 2. Transmitted light images of H&E-stained sections of rat calvarial defects implanted 

for 6 weeks (a1−a3), 12 weeks (b1−b3) and 24 weeks (c1−c3) with the three groups of 

bioactive glass scaffolds: as-fabricated (a1−c1), pretreated (a2−c2) and BMP2-loaded 

(a3−c3). Higher magnification images of the boxed areas in (c1−c3) are shown in (d1−d3).  

N = new bone; O = host bone; * = bony island; G = bioactive glass; arrowheads indicate 

the edges of host bone. 

 

  



31 

 

 

Fig. 3. Percent new bone in rat calvarial defects implanted with the three groups of 

scaffolds for 6, 12 and 24 weeks. The amount of new bone is shown as a percent of the 

available pore space (area) of the scaffolds. (*significant difference within each group; 

**significant difference when compared to as-fabricated scaffold at the same implantation 

time; p<0.05)   
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Fig. 4. Percent bone marrow-like tissue (a) and fibrous tissue (b) in rate calvarial defects 

implanted with the three groups of scaffolds for 6, 12 and 24 weeks. (*significant 

difference within each group; **significant difference when compared to as-fabricated 

scaffold at the same implantation time; p<0.05)  
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Fig. 5. Transmitted light images of von Kossa stained sections of rat calvarial defects 

implanted for 6 weeks (a1−a3), 12 weeks (b1−b3) and 24 weeks (c1−c3) with the three 

groups of bioactive glass scaffolds: as-fabricated (a1−c1), pretreated (a2−c2) and BMP2-

loaded (a3−c3).   N = new bone; O = host bone; G = bioactive glass; arrowheads indicate 

the edges of host bone. 
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Fig. 6. Percent total von Kossa positive (vK+) area (a) and vK+ area due to the bioactive 

glass conversion (b), determined as a fraction of the total defect area, for rat calvarial 

defects implanted with the three groups of scaffolds at 6, 12 and 24 weeks post-

implantation. (*significant difference within each group; **significant difference when 

compared to as-fabricated scaffold at the same implantation time; p<0.05) 
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Fig. 7. Backscattered SEM images of rat calvarial defects implanted with bioactive glass 

scaffolds at 24 weeks post-implantation: (a1, a2) as-fabricated scaffolds; (b1, b2) pretreated 

scaffolds; (c1, c2) BMP2-loaded. N = new bone; G = bioactive glass. The approximate 

thickness of the converted surface layer on the glass filaments are shown in (a2) – (c2). 
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Fig. 8. Transmitted light images of PAS stained sections of rat calvarial defects implanted 

with the three groups of bioactive glass scaffolds at 12 weeks post-implantation: (a1, a2) 

as-fabricated scaffolds; (b1, b2) pretreated scaffolds; (c1, c2) BMP2-loaded scaffolds. 

(arrows indicate blood vessels) 
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Fig. 9. (a) Percent blood vessel area and (b) number of blood vessels per unit area (mm2) 

of new bone in rat calvarial defects implanted with the three groups of scaffolds at 6, 12 

and 24 weeks post-implantation. (*significant difference within each group; **significant 

difference when compared to as-fabricated scaffold at the same implantation time; p<0.05) 
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Table I. Calcium to phosphorus (Ca/P) atomic ratio for new bone, converted glass layer, 

silica-rich layer and unconverted glass in rat calvarial defects implanted with as-fabricated, 

pretreated and BMP2-loaded scaffolds at 12 and 24 weeks post-implantation. 

Scaffold 

groups 

Duration 

times 

(weeks) 

Ca/P atomic ratio 

New bone 
Converted 

glass layer 

Silica-rich 

layer 

Unconverte

d glass 

As-fabricated 
12 1.72 ± 0.06 1.59 ± 0.04 2.6 ± 0.2 5.8 ± 0.3 

24 1.68 ± 0.08 1.62 ± 0.06 2.3 ± 0.1 5.4 ± 0.3 

Pretreated 
12 1.73 ± 0.06 1.50 ± 0.05 2.3 ± 0.2 5.6 ± 0.4 

24 1.70 ± 0.05 1.54 ± 0.07 2.2 ± 0.3 5.6 ± 0.2 

 

BMP2-loaded 
12 1.71 ± 0.06 1.61 ± 0.05 2.5 ± 0.3 5.8 ± 0.3 

24 1.69 ± 0.04 1.66 ± 0.07 2.2 ± 0.2 5.5 ± 0.4 
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ABSTRACT 

Copper ions are known to stimulate angiogenesis, a process that is essential for 

tissue regeneration, but high Cu ion concentration is toxic to cells and tissues. In the present 

study, porous scaffolds of silicate 13-93 bioactive glass doped with varying concentrations 

of Cu (02.0 wt. % CuO) were created by robotic deposition and their effect on the 

response of mouse preosteoblastic MC3T3-E1 cells in vitro and bone regeneration and 

angiogenesis in rat calvarial defects in vivo was investigated. When immersed in simulated 

body fluid (SBF) in vitro, the Cu-doped scaffolds released Cu ions into the medium in a 

dose-dependent manner and converted partially to hydroxyapatite. The number and 

alkaline phosphatase activity of MC3T3-E1 cells cultured on the scaffolds were not 

affected by CuO concentrations of 0.4 and 0.8 wt. % in the glass but they were significantly 

reduced by 2.0 wt. % CuO. Bone infiltration of the 13-93 scaffolds implanted for 6 weeks 

in rat calvarial defects (46 ± 8 % of the total pore area or volume) was not significantly 

affected by 0.4 or 0.8 wt. % CuO in the glass. In comparison, bone formation (0.8 ± 0.7 %) 

was significantly inhibited while fibrous (soft) tissue was significantly enhanced in the 

scaffolds doped with 2.0 wt. % CuO. The area of new blood vessels in the fibrous tissue 

that infiltrated the scaffolds increased with CuO content of the glass and was significantly 

higher for the scaffolds doped with 2.0 wt. % CuO. Loading the scaffolds with bone 
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morphogenetic protein-2 (BMP2) (1 µg/defect) significantly enhanced bone infiltration 

and reduced fibrous tissue in the scaffolds. Collectively, these results indicate that doping 

13-93 bioactive glass scaffolds with up to 0.8 wt. % CuO had no significant benefit on 

MC3T3-E1 cell proliferation in vitro and bone regeneration in vivo whereas a CuO dopant 

concentration of 2.0 wt. % was toxic to cells and detrimental to bone regeneration. 

1. Introduction 

There is a clinical need for synthetic bioactive implants that can reliably repair large 

(critical size) bone defects, particularly segmental defects in load-bearing bones. Whereas 

contained bone defects are repairable with commercially-available, osteoconductive and 

osteoinductive filler materials [1, 2], the repair of large defects in structural bone is a 

challenging clinical problem. The available treatments such as bone allografts, autografts 

and porous metals are limited by costs, availability, durability, infection risk, donor site 

morbidity, and uncertain healing.  

Ideally, synthetic implants for bone regeneration should have a combination of 

desirable properties [3]. They should be biocompatible, osteoconductive and 

osteoinductive, and they should have a porous three-dimensional (3D) architecture with 

interconnected porosity for tissue ingrowth and formation of capillaries [4]. Synthetic 

implants should also be bioactive and they should degrade or resorb at a controllable rate, 

comparable to the rate of bone regeneration. While the target mechanical properties are not 

well established, an often-used guideline is that the mechanical properties of the scaffold 

should match those of the host bone. Synthetic biomaterials for bone repair should also 

have the ability to be formed into anatomically relevant shapes by commercial methods 

and to be sterilized according to international standards for clinical use.  
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Synthetic biomaterials generally lack the osteoinductivity and osteogenicity of 

autogenous bone grafts, functioning mainly as osteoconductive implants. Consequently, 

the performance of synthetic biomaterials in vivo is inferior to that of autogeneous bone 

grafts (the gold standard for bone repair). The use of synthetic biomaterials by themselves 

commonly fails to produce clinically significant bone formation in a clinically relevant 

time [5, 6]. In practice, the addition of osteogenic growth factors to synthetic biomaterials 

is often needed to achieve reliable reconstruction of bone [7, 8]. Bone morphogenetic 

proteins (BMPs) such as BMP2, delivered typically by osteoconductive biomaterials, can 

induce robust bone formation and they have been used successfully in bone repair [79]. 

However, BMPs are commonly effective only when used in supra-physiological doses and 

this has resulted in heightened concerns about adverse biological effects in vivo [10, 11].   

Angiogenesis is essential for bone formation and growth and plays a critical role in 

bone defect repair [12]. The relationship between angiogenesis and osteogenesis has been 

well established [13]. The vasculature transports oxygen, nutrients, soluble factors and 

numerous cell types to all tissues in the body. The enhancement of angiogenesis should 

increase osteogenesis [14]. While a variety of approaches have been developed to enhance 

angiogenesis by synthetic implants, a commonly-used approach is the incorporation of 

angiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast 

growth factor (bFGF) and platelet-derived growth factor [15, 16]. However, the use of 

growth factors typically suffers from disadvantages such as high cost, potential adverse 

biological effects in vivo when used in supra-physiological doses and loss of bioactivity 

[10, 11, 17, 18]. 
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Inorganic angiogenic factors such as Cu2＋ ions are of interest because of their low 

cost, high stability and potentially better clinical safety when compared to growth factors 

[1921]. Copper ions have been reported to enhance angiogenesis by stabilizing the 

expression of hypoxia-inducible factor (HIF-1α), thus mimicking hypoxia, which plays a 

critical role in the recruitment and differentiation of cells and in blood vessel formation 

[19, 20]. The release of Cu2+ ions has been shown to stimulate the expression of 

proangiogenic factors such as VEGF and transforming growth factor-β (TGF-β) in wounds 

created in diabetic mice [22, 23]. Subcutaneous implantation of Cu-containing borate 

bioactive glass microfibers in rats significantly enhanced the growth of capillaries and 

small blood vessels when compared to silicate 45S5 bioactive glass microfibers and sham 

implant controls [24]. The ionic dissolution product of Cu-doped borate bioactive glass 

microfibers has been shown to stimulate the expression of angiogenic genes of fibroblasts 

in vitro and angiogenesis in full thickness skin wounds in rodents in vivo [25].  Scaffolds 

of a Cu-doped borosilicate bioactive glass have been shown to enhance blood vessel 

formation and bone regeneration in rat calvarial defects in vivo [26]. 

The attractive properties of bioactive glasses as a scaffold material for bone repair 

have been well described and reviewed in the literature [27, 28]. Bioactive glasses can be 

doped with inorganic ions such as Cu, Zn, Sr and Fe that have been reported to stimulate 

angiogenesis and/or osteogenesis. As the glass degrades, those ions are released at a 

therapeutically appropriate concentration. As described above, the release of Cu and other 

ions from borate and borosilicate bioactive glasses has been reported to enhance 

angiogenesis in soft tissue repair and both angiogenesis and osteogenesis in rat calvarial 

defects in vivo. However, borate-based bioactive glasses are not currently approved by the 
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US Food and Drug Administration for in vivo use in humans and some borate-based glasses 

may degrade too rapidly for applications in structural bone repair. While silicate bioactive 

glasses such as 45S5 and 13-93 have been used in bone repair applications for several years 

[28], the effects of Cu doping on their ability to stimulate angiogenesis and osteogenesis 

has received little attention. 

The objective of the present study was to create porous scaffolds of silicate 13-93 

glass doped with varying concentrations of Cu (02.0 wt. % CuO) and evaluate the ability 

of the Cu dopant to stimulate the proliferation and function of pre-osteoblastic MC3T3-E1 

cells in vitro and bone regeneration and angiogenesis in osseous defects in vivo.  The effect 

of the Cu doping on bone regeneration and angiogenesis was compared with an alternative 

approach based on loading the scaffolds with BMP2.  

2. Materials and methods 

2.1 Preparation of scaffolds 

Scaffolds of the parent 13-93 glass (composition 53SiO2, 6Na2O, 12K2O, 5MgO, 

20CaO, 4P2O5; wt. %) and the 13-93 glass doped with 0.4, 0.8 and 2.0 wt. % CuO were 

created with a grid-like microstructure using a robotic deposition (robocasting) method 

described in detail elsewhere [29]. Briefly, each glass was prepared by melting the requisite 

amount of chemicals (Cu(NO3)2·21 2⁄ H2O, SiO2, Na2O, CaO, MgO, K2O, P2O5) for 30 min 

in a platinum crucible at 1350 C and quenching the molten glass between cold stainless 

steel plates. The crushed glass was grounded in a hardened steel container (8500 

Shatterbox®, Spex SamplePrep LLC., Metuchen, NJ) to give particles of size <50 µm. Then 

the particles were milled for 2 h in an attrition mill (Union Process, Inc., Akron, OH) using 

water as the liquid medium and ZrO2 grinding media (3 mm in diameter) to give particles 
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of size 1.0 ± 0.5 µm, as measured by a laser diffraction particle size analyzer (Model LS, 

Beckman Coulter Inc., CA). The glass was mixed with a 20 wt. % Pluronic-127 binder 

solution to form a paste (40 vol. % glass particles) and extruded using a robocasting 

machine (RoboCAD 4.1; 3-D Inks, Stillwater, OK). After drying at room temperature, the 

scaffolds were heated in O2 at a rate of 0.5 C/min to burn out the processing additives, and 

sintered for 1 h at 700 C (heating rate = 5 C/min) to densify the glass filaments. The as-

fabricated scaffolds were sectioned and grounded to form thin discs (4.6 mm in diameter 

 1.5 mm), washed twice with deionized water and twice with anhydrous ethanol, dried in 

air and sterilized by heating for 12 h at 250 C.  

Thirty-two as-fabricated scaffolds were loaded with BMP2 at a concentration of 1 

µg per scaffold prior to implantation in vivo using a method described previously [30]. 

Briefly, the scaffolds were reacted for 3 days in an aqueous phosphate solution (0.25 M 

K2HPO4 solution) at 60 C and a starting pH of 12.0 to convert a thin surface layer (5 µm) 

of the glass to HA (or amorphous calcium phosphate, ACP). The mass of the glass scaffolds 

to the volume of the K2HPO4 solution was kept constant at 1 g per 200 ml and the solution 

was stirred gently each day. The reacted scaffolds were removed from the solution, washed 

twice with deionized water, and twice with anhydrous ethanol to displace residual water 

from the scaffolds. Then the scaffolds were dried for at least 24 h at room temperature and 

stored in desiccator.  

In the BMP2 loading process, a solution of BMP2 (Shenandoah Biotechnology Inc., 

PA) in citric acid was prepared by dissolving 10 µg of BMP2 in 100 µl sterile citric acid 

(pH = 3.0). Then 10 µl of the BMP2 solution was pipetted on to each scaffold (4.6 mm in 

diameter × 1.5 mm). The amount of BMP2 loaded into the scaffolds was equivalent to 1 
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µg per bone defect (or per scaffold) in the animal model. The BMP2 solution was totally 

incorporated in the converted surface layer of the scaffolds and there was no visible 

evidence for any of the solution flowing out of the scaffolds. After loading with BMP2, the 

scaffolds were kept for 24 h in a refrigerator at 4 C to dry them prior to implantation.   

 

2.2 Degradation and conversion of scaffolds in simulated body fluid (SBF) in vitro 

The degradation of the bioactive glass scaffolds (4.6 mm in diameter  1.5 mm) 

and their conversion to HA were studied as a function of immersion time in SBF [31] with 

a starting pH of 7.4. The concentration of Cu ions released from the scaffolds into the SBF 

during the degradation and conversion process was determined using inductively-coupled 

plasma optical emission spectrometry (ICP-OES). The weight loss of the scaffolds was 

measured as a function of time and used as a measure of the conversion of the glass to HA 

while the pH of the medium was measured using a pH meter, as described previously [32, 

33]. A ratio of 1 g of scaffold to 100 ml of SBF was used in all of the conversion 

experiments. The weight loss and pH measurements at each time point were measured in 

triplicate and the data were expressed as a mean ± standard deviation (SD). The formation 

of HA on the surface of the scaffolds was characterized using scanning electron 

microscopy, SEM (S-4700; Hitachi, Tokyo, Japan) and Raman spectroscopy (Horiba-Jobin 

Yvon, Inc., Edison, NJ). The samples were coated with Au/Pd and examined in the SEM 

at an accelerating voltage of 15 kV and a working distance of 12 mm. The Raman spectra 

of the samples were compared with a standard hydroxyapatite. 
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2.3 Cell culture  

This in vitro study was performed to evaluate the effect of the Cu ions released 

from the scaffolds on the ability of the scaffolds to support the growth and differentiation 

of an established osteogenic cell line. The established MC3T3-E1 line of mouse pre-

osteoblastic cells was obtained from ATCC (CRL-2593) and cultured in minimum essential 

medium (alpha modification; α-MEM) supplemented with 10% fetal bovine serum plus 5 

µg ml-1 gentamicin. This cell line has been used extensively in previous in vitro 

investigations to test the response of biomaterials to cells. Prior to cell seeding, the 

sterilized scaffolds were subjected to a 1 h preconditioning soak in normal medium. The 

conditioned scaffolds were blotted dry, rinsed twice with phosphate-buffered saline (PBS), 

placed on a 6 cm diameter Teflon disk, and seeded with 5 × 104 MC3T3-E1 cells suspended 

in 35 µl of complete medium, as in our previous studies using this cell line and bioactive 

glass scaffolds [34]. Following a 4 h incubation to permit cell attachment, the scaffolds 

with attached cells were transferred to a 24-well untreated plate with 2 ml of complete 

medium per well. The control group consisted of the same number of cells seeded in wells 

containing 2 ml of complete medium. All cell cultures were maintained at 37 C in a 

humidified atmosphere of 5% CO2, with the media changed every 2 days.  

 

2.3.1 Cell morphology 

SEM (Hitachi S-4700) was used to examine the morphology of cells adhered to the 

scaffolds. At culture intervals of 2, 7 and 14 days, the glass scaffolds with attached cells 

were removed, washed twice with warm PBS and soaked overnight in 2.5% glutaraldehyde 

in PBS. The fixed samples were washed 3 times with PBS, post-fixed with 1% osmium 
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tetroxide in PBS for 1 h, washed 3 times with PBS, dehydrated with a graded ethanol series 

and soaked for 10 min in hexamethyldisilazane (HMDS). Then the samples were dried in 

air to allow the liquid to fully evaporate, sputter-coated with Au/Pd and examined in the 

SEM at an accelerating voltage of 15 kV and a working distance of 12 mm. 

 

2.3.2 Cell viability and proliferation 

The proliferation of MC3T3-E1 cells on the scaffolds was assessed using a cell 

viability assay (Cell Counting Kit-8 (CCK-8), Dojindo Molecular Technologies, Inc., 

Japan). Briefly, MC3T3-E1 cells were cultured on the scaffolds (n = 3) using the procedure 

described above at an initial density of 5 × 103 cells per scaffold (as recommended in the 

CCK-8 assay protocol) for 2, 4, 7 and 14 days. An unseeded scaffold was used as a control. 

Subsequently, 360 µl of serum-free α-MEM and 40 µl of CCK-8 solution were added to 

each well at each time point and the system was incubated for 3 h at 37 C in a humidified 

5% CO2 atmosphere. The formazan solution in the wells was extracted by pipetting gently 

several times and aliquots (100 µl) from each well were transferred to a fresh 96-well plate. 

The absorbance of the colored formazan solution in the samples was measured using a 

microplate reader (FLUOstar Omega; BMG Labtech, Offenburg, Germany) at 450 nm. The 

results were expressed as the optical density of the aliquots minus the absorbance of the 

blank wells. 

The effect of Cu ions released from the glass scaffolds on the viability of the 

MC3T3-E1 cells was evaluated using a live cell/dead cell assay. After culturing for 2, 7, 

14 and 21 days using the procedure described above, the scaffolds were rinsed with warm 

PBS and incubated for an additional 30 min in 10 ml sterile tissue culture-grade Dulbecco’s 
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PBS (DPBS) containing 2 µM calcein AM and 4 µM ethidium homodimer-1 (EthD-1; Life 

Technologies, Grand Island, NY). Images were collected under an epifluorescent 

microscope fitted with appropriate exciter and emitter filters to detect live (green 

fluorescent) and dead (red fluorescent) cells. 

 

2.3.3 Alkaline phosphatase (ALP) activity 

After culturing for 3, 7 and 14 days, the grid-like scaffolds with attached cells were 

removed, rinsed twice with PBS, subjected to three freeze/thaw cycles at 80 C/37 C, 

lysed in 500 µl of 0.5% Triton X-100 in PBS, and homogenized by sonication for 30 s on 

ice. The lysed cell suspension was spun at 3000 rpm for 10 min in a refrigerated 

microcentrifuge to sediment particulate debris. The ALP activity was assayed using a 

colorimetric p-NPP method. The absorbance was measured on a microplate reader 

(FLUOstar Omega; BMG Labtech, Offenburg, Germany) at 405 nm after 30 min 

incubation at 37 C. ALP specific activity levels were quantified with a standard curve and 

normalized to the amount of total cellular dsDNA from the same sample. The dsDNA 

content was determined using a Pico Green assay (Molecular Probes). A 50 µl volume of 

working reagent was added to the 50 µl cell lysate of the sample and the sample was read 

at 485/528 nm (excitation/emission) on a fluorescence spectrophotometer (FLUOstar 

Omega, BMG Labtech, Offenburg, Germany). The amount of dsDNA was calculated by 

comparing the standard curves of the known dsDNA sample according to the protocol 

supplied by the manufacturer. 
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2.4. Evaluation of scaffolds in rat calvarial defects in vivo 

All animal experimental procedures were approved by the Animal Care and Use 

Committee, Missouri University of Science and Technology, in compliance with the NIH 

Guide for Care and Use of Laboratory Animals (1985). Eight groups of scaffolds, 

composed of the parent 13-93 glass and the 13-93 glass doped with 0.4, 0.8 and 2.0 wt. % 

CuO without BMP2 plus these four groups of scaffolds loaded with BMP2 (1 µg per 

scaffold or defect), were implanted in bilateral defects in rat calvaria for 6 weeks. This 

animal model was used because it is a standard assay for evaluating the response of 

biomaterials in osseous defects. Eight scaffolds from each group were implanted randomly 

in the defects but scaffolds with and without BMP2 were not mixed in the same animal. 

The sample size (number of replicates per group, n = 8) was based on the results of a 

previous study for 13-93 glass scaffolds implanted for the same time in the same animal 

model [30] and a power analysis.  

 

2.4.1 Animals and surgical procedure 

Thirty-two male Sprague Dawley rats (3 months old; weight = 350–400 g, Harlan 

Laboratories Inc., USA) were maintained in the animal facility for 2 weeks to become 

acclimated to diet, water and housing. The rats were anesthetized with a combination of 

ketamine (72 mg/kg) and xylazine (6 mg/kg) and maintained under anesthesia with ether 

gas in oxygen. The surgical site was shaved, scrubbed with iodine and draped. Using sterile 

instruments and aseptic technique, a cranial skin incision was sharply made in an anterior 

to posterior direction along the midline. The subcutaneous tissue, musculature and 

periosteum were dissected and reflected to expose the calvarium. Bilateral full-thickness 
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defects 4.6 mm in diameter were created in the central area of each parietal bone using a 

saline-cooled trephine drill. The dura mater was not disturbed.  The sites were constantly 

irrigated with sterile PBS to prevent overheating of the bone margins and to remove the 

bone debris. After the bilateral defect was implanted with the scaffold, the periosteum and 

skin were repositioned and closed using wound clips. The animals were given a dose of 

ketoprofen (3 mg/kg) intramuscularly and ~200 µl penicillin subcutaneously post-surgery, 

and monitored daily for the condition of the surgical wound, food intake, activity and 

clinical signs of infection. After 6 weeks, the animals were sacrificed by CO2 inhalation, 

and the calvarial defect sites with surrounding bone and soft tissue were harvested for 

subsequent evaluation. 

 

2.4.2 Histologic processing 

The calvarial samples, including the surgical sites with surrounding bone and tissue, 

were fixed in 10% buffered formaldehyde for 3 days, then transferred into 70% ethanol 

and cut in half. Half of each sample was for paraffin embedding and the other half for 

methyl methacrylate embedding. The samples for paraffin embedding were de-siliconized 

by immersion for 2 h in 10% hydrofluoric acid, decalcified in 14% 

ethylenediaminetetraacetic acid (EDTA) for 4 weeks, dehydrated in a series of graded 

ethanol and embedded in paraffin using routine histological techniques. Then the 

specimens were sectioned to 5 µm using a microtome and stained with hematoxylin and 

eosin (H&E) and periodic acid-Schiff (PAS) staining technique. The un-decalcified 

samples were dehydrated in ethanol and embedded in PMMA. Sections were affixed to 

acrylic slides, ground down to 40 µm using a surface grinder (EXAKT 400CS, Norderstedt, 
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Germany) and stained using the von Kossa method. Transmitted light images of the stained 

sections were taken with an Olympus BX 50 microscope connected to a CCD camera 

(DP70, Olympus, Japan). 

 

2.4.3 Histomorphometric analysis 

Histomorphometric analysis was carried out using optical images of the stained 

sections and the ImageJ software (National Institutes of Health, USA). One section across 

the diameter of each defect was analyzed. The percent new bone formed in the defects was 

evaluated from the H&E stained sections. The entire defect area was determined as the area 

between the two defect margins, including the entire glass scaffold and the tissue within. 

The available pore area within the scaffold was determined by subtracting the area of the 

bioactive glass scaffold from the total defect area. The newly formed bone, fibrous tissue 

and bone marrow-like tissue within the defect area were then outlined and measured. The 

area of each tissue was expressed as a percentage of the available pore area of the scaffolds 

and total defect area. 

The von Kossa-positive area in the defects implanted with the scaffolds was 

analyzed using the von Kossa stained sections and ImageJ. One section across the diameter 

of each defect was analyzed. Images were adjusted to measure only the black-stained areas 

of the image, which yielded the black area as a percentage of the total defect area. As 

mineralized bone and hydroxyapatite due to the glass conversion both bound the silver 

nitrate, in order to determine the percent area due to the conversion of the glass scaffold, 

the von Kossa-positive percentage was averaged for each sample and the percent new bone 

determined for each sample from the H&E stained images was subtracted. 
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Quantitation of blood vessels within the defect was performed using sections 

stained by the PAS technique, which results in purple-stained blood vessels with 

counterstaining yielding green-colored red blood cells. Viewed at 20x, each scaffold was 

scanned to acquire six regions of interest each within the fibrous tissue and new bone, and 

the blood vessels were outlined. All six areas were combined using ImageJ to determine 

the total blood vessel area, which was expressed as a percentage of the total area of the 

respective tissue (fibrous tissue or new bone).  

 

2.5 Statistical analysis 

All cell culture experiments (4 samples in each group) were run in triplicate. The 

data are presented as mean ± SD. Analysis for differences between groups was performed 

using one-way ANOVA with Tukey’s post hoc test. Differences were considered 

significant for p < 0.05. Statistical calculations were performed using the software package 

SigmaStat for Windows Version 2.03. 

3. Results 

3.1 Characteristics of as-fabricated scaffolds 

 The as-fabricated Cu-doped scaffolds (Fig. 1a) appeared blue, an indication that 

the Cu in the glass was present as Cu2+ ions, and the intensity of the blue color increased 

with the Cu concentration in the glass. The Cu dopant did not have any observable effect 

on the microstructure of the scaffolds, presumably because of the low Cu concentration in 

the glass and the use of a robocasting method to create the scaffolds which allowed precise 

control of the scaffold architecture. The scaffolds had a grid-like microstructure, composed 

of dense glass filaments (330 µm in diameter) and pores of size 300 µm in the plane of 
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deposition (xy plane) (Fig.1b) and 150 µm in the direction at right angles to the plane of 

deposition (z direction). 

 

3.2 Degradation and conversion of scaffolds to hydroxyapatite in SBF 

Immersion of the scaffolds in SBF resulted in the formation of a needle-like product 

on the surface of the glass filaments (Fig. 1c) which is typical of hydroxyapatite (HA) 

formed on the surface of bioactive glasses reacted in an aqueous phosphate solution [33]. 

Raman spectroscopy of the reacted scaffolds showed that the major resonance line 

corresponded to HA (Fig. S1).  

Immersion of the scaffolds in SBF also resulted in a weight loss of the scaffolds 

(Fig. 2a) and an increase in pH of the solution (results nor shown), as observed previously 

for 13-93 glass and other bioactive glasses [33]. The weight loss and pH curves of the four 

groups of scaffolds showed trends similar to those observed in previous studies [33]. A 

more rapid increase at earlier times (up to ~7 days was followed by a slower increase 

thereafter and to a nearly constant value at longer times (longer than ~14 days). The Cu 

dopant concentrations used in the present study had no measurable effect on the weight 

loss of the 13-93 scaffolds. In addition, CuO dopant concentrations of 0.4 and 0.8 wt. % in 

the glass had no significant effect on the pH of the medium but the scaffolds doped with 

2.0 wt. % CuO produced an increase in the pH. When the reaction was terminated at 28 

days, the final weight loss and pH were 5.5 ± 0.5% and 7.80 ± 0.08, respectively, which 

are consistent with previous results for the conversion of 13-93 glass in an aqueous 

phosphate solution [33, 35].  
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Figure 2b shows that the release of Cu ions from the glass into SBF was faster at 

earlier immersion times and it decreased continuously with time. At any immersion time, 

the cumulative amount of Cu ions released into the medium increased with increasing CuO 

in as-fabricated glass. When the experiments were terminated at 28 days, the total amount 

of Cu ions released was 2.3, 4.6, and 13.8 ppm, respectively, for the scaffolds doped with 

0.4. 0.8 and 2.0 wt. % CuO. 

 

3.3 Assessment of MC3T3-E1 cell proliferation and ALP activity in vitro 

Quantitative measurement of MC3T3-E1 cell proliferation on the bioactive glass 

scaffolds showed a significant increase in cell number with incubation time for all four 

groups of scaffolds (Fig. 3). At each incubation time, the number of cells on the scaffolds 

doped with 0.4 and 0.8 wt. % CuO was not significant different from the undoped scaffolds. 

In comparison, the cell number for the scaffolds doped with 2.0 wt. % CuO was 

significantly lower than the undoped 13-93 scaffolds, showing that the scaffolds doped 

with 2.0 wt. % CuO had a lower ability to support the proliferation of MC3T3-E1 cells. 

The results of live cell/dead cell assays for MC3T3-E1 cells cultured on the four 

groups of scaffolds are shown in Fig. 4. The fluorochrome labeling of the cells cultured for 

up to 21 days on the 13-93 scaffolds and the 13-93 scaffolds doped with 0.4 or 0.8 wt. % 

CuO showed very few dead cells. The cells visible in the micrographs of these three groups 

were elongated and appeared to align along the long axis of the dense glass struts of the 

scaffold. The cells were well spread at all four culture intervals with numerous cytoplastic 

projections and they appeared to be well attached to the surface of the glass. In comparison, 
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fewer live cells and a larger number of dead cells were found in the images for the 13-93 

scaffolds doped with 2.0 wt. % CuO.  

SEM images in Fig. 5 show the morphology of MC3T3-E1 cells incubated on the 

surface of the four groups of scaffolds for 2, 7, and 14 days. The cells appeared to adhere 

to the surface of the scaffolds, presenting a well-spread morphology and maintaining their 

phenotype. The number of cells on the scaffolds increased with culture time. After an 

incubation time of 7 days, almost the whole surface of the scaffolds was covered with cells 

and cell spreading on the glass filaments was visible. The cells began to aggregate and the 

neighboring cells appeared to maintain physical contact with each other by multiple 

extensions. The cells incubated on the 13-93 scaffold and the 13-93 scaffold doped with 

0.4 and 0.8 wt. % CuO grew into the pores of scaffolds and showed the formation of 

numerous cell projections, features that indicated firm cell attachment to the surface. While 

the cells grew on the surface of the 13-93 scaffolds doped with 2.0 wt. % CuO, they showed 

little tendency to infiltrate into the pores. In general, the results of the live cell/dead cell 

assays and the SEM images of the cell morphology were consistent with the results of the 

CCK-8 cell proliferation assays. 

The results of spectrophotometric measurements of the ALP activity of MC3T3-E1 

cells cultured on the four groups of scaffolds for 3, 7, and 14 days are presented in Fig. 6. 

The ALP activity increased significantly with incubation time for the cells cultured on the 

13-93 scaffolds and the 13-93 scaffolds doped with 0.4 and 0.8 wt. % CuO, indicating that 

the cells were able to carry out an osteogenic function on these three groups of scaffolds. 

The significantly lower and almost constant ALP activity of the cells on the 13-93 scaffolds 

doped with 2.0 wt. % CuO indicated poor cytocompatibility for this scaffold group.  
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3.4 Assessment of new bone formation in rat calvarial defects in vivo 

Transmitted light images of H&E stained sections of the rat calvarial defects 

implanted for 6 weeks with the four groups of scaffolds, as fabricated (without BMP2) or 

loaded with BMP2 (1 µg/defect), are shown in Fig. 7. For the as-fabricated scaffolds 

composed of 13-93 glass and 13-93 glass doped with 0.4 and 0.8 wt. % CuO, new bone 

infiltrated into the edges (periphery) adjacent to the host bone, indicating good integration 

of the scaffolds with the surrounding calvarial bone, and also formed islands within the 

pores of the scaffolds (Fig. 7a1c1). Loading those three groups of scaffolds with BMP2 

enhanced their capacity to regenerate bone considerably, with new bone almost completely 

infiltrating the pores of the scaffold and bridging the edges of the defect (Fig. 7a2c2). In 

comparison, little new bone infiltrated the as-fabricated scaffolds composed of 13-93 glass 

doped with 2.0 wt. % CuO (Fig. 7d1). Loading those scaffolds with BMP2 improved their 

capacity to regenerate bone (Fig. 7d2). While new bone infiltrated the edges of the scaffold 

and also formed islands within the pores of the scaffold, the amount of new bone appeared 

to be significantly lower when compared to the other three groups of scaffolds.  

Since all the scaffolds had the same microstructure, their capacity to regenerate 

bone in the defects was compared by normalizing the amount of new bone to the total pore 

space (area) of the scaffolds (Fig. 8). The amount of new bone in the defects implanted 

with the as-fabricated 13-93 bioactive glass scaffolds was 46  8%, a value that was 

comparable to those in previous studies [30, 36]. Doping the 13-93 glass with 0.4 or 0.8 

wt. % CuO had no measurable effect on the capacity of the scaffolds to regenerate bone. 

The amount of new bone in the scaffolds doped with 0.4 wt. % CuO (49 ± 11%) and 0.8 

wt. % CuO (43 ± 9%) was not significantly different from the 13-93 scaffolds. Loading 
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those three groups of scaffolds with BMP2 significantly enhanced their ability to 

regenerate bone. The enhancement found for the undoped 13-93 scaffolds was comparable 

to the results of a previous study [30]. In comparison, doping the 13-93 scaffolds with 2.0 

wt. % CuO was significantly inhibited their capacity to regenerate bone (new bone = 0.8 ± 

0.7%). While the addition of BMP2 also improved the capacity of this scaffold group to 

regenerate bone, the amount of new bone was still significantly lower than the undoped 

13-93 scaffolds without BMP2. These results indicate a significant capacity of the scaffolds 

doped with 2.0 wt. % CuO to inhibit bone regeneration and the ability of BMP2 to stimulate 

robust bone regeneration in all four groups of scaffolds. 

 

3.5 Assessment of mineralized tissue and bioactive glass conversion 

 Transmitted light images of von Kossa stained sections of the rat calvarial defects 

implanted for 6 weeks with the four groups of bioactive glass scaffolds, as-fabricated or 

loaded with BMP2,  are shown in Fig. 9. The von Kossa staining detects a combination of 

bone and glass converted to HA (or phosphate material). The total von Kossa-positive area, 

39 ± 6%, 41 ± 7% and 40 ± 9%, respectively, for the defects implanted with the 13-93 

scaffolds, 13-93 scaffolds doped with 0.4 wt. % CuO and 13-93 scaffolds doped with 0.8 

wt. % CuO, showed no significant effect of the Cu doping (Fig. 10a). However, the total 

von Kossa-positive area for the defects implanted with the 13-93 scaffolds doped with 2.0 

wt. % CuO (18 ± 5%) was significantly lower. Loading the scaffolds with BMP2 

significantly enhanced the total von Kossa-positive area for all four groups of scaffolds. 

The von Kossa-positive area due to the glass conversion to HA showed no significant 

dependence on the amount of Cu doping used in this study (Fig. 10b).  The results showed 
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an increase for all four groups of scaffolds loaded with BMP2 but the increase was not 

significant. 

 

3.6 Assessment of fibrous tissue and marrow-like tissue 

In addition to new bone infiltration, scaffolds implanted in the rat calvarial defects 

were infiltrated with fibrous (soft) tissue and marrow-like tissue. The results of the 

assessment of bone marrow-like and fibrous tissue in the four groups of scaffolds, as-

fabricated or loaded with BMP2, are shown in Fig. 11. For the as-fabricated scaffolds, the 

pore space that was not infiltrated with new bone was filled mainly with fibrous tissue. In 

comparison, loading scaffolds with BMP2 reduced the amount of fibrous tissue but 

increased with amount of marrow-like tissue. The changes in fibrous and marrow-like 

tissue in all four groups of scaffolds due to the BMP2 loading were significant. In general, 

the results in Fig. 11 show that when combined with BMP2 loading, doping the 13-93 

scaffolds with increasing amount of Cu produced a decrease in marrow-like tissue and an 

increase in fibrous tissue. 

 

3.7 Assessment of angiogenesis 

Transmitted light images of PAS stained sections showed that blood vessels 

infiltrated the defects implanted with all four groups of scaffolds. As described earlier, in 

addition to the infiltration of new bone, the defects implanted with the as-fabricated 

scaffolds were also infiltrated with a considerable amount of fibrous tissue whereas the 

defects implanted with the BMP2-loaded scaffolds also contained a considerable amount 

of marrow-like tissue. Blood vessels were observed in the fibrous tissue while a 
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considerable amount of blood vessels was observed in the marrow-like tissue. Because the 

scaffolds doped with 2.0 wt. % CuO were infiltrated almost totally with fibrous tissue, the 

blood vessel area was evaluated separately in the fibrous tissue and in the new bone.  

Figure 12 shows images of PAS stained sections of the defects implanted with the 

four groups of scaffolds at 6 weeks post-implantation. Sparse capillary vessels were 

observed in the fibrous tissue within the as-fabricated 13-93 scaffolds but a larger number 

of capillaries were found in the Cu-doped 13-93 scaffolds, particularly the scaffolds doped 

with 2.0 wt. % CuO. The percent blood vessel area in the defects implanted with the four 

groups of scaffolds, determined as a fraction of the total amount of fibrous tissue that 

infiltrated the scaffolds (Fig. 13), showed an increase in the average blood vessel area with 

increasing CuO in the glass. The scaffolds doped with 2.0 wt. % CuO had the highest blood 

vessel area within the fibrous tissue (8 ± 1%) which was significantly higher than the values 

for the as-fabricated 13-93 scaffolds (4 ± 1%), the scaffolds doped with 0.4 wt. % CuO (5 

± 1%) and the scaffolds doped with 0.8 wt. % CuO (6 ± 1%). 

4. Discussion 

Angiogenesis is essential for the healing of bone defects, particularly large (critical-

size) defects. As the vasculature transports oxygen and nutrients to maintain healthy bone 

growth, the enhancement of angiogenesis should increase osteogenesis. Copper ions have 

been shown to play a direct role in stimulating angiogenesis [22, 23] and the delivery of 

Cu ions by borate-based bioactive glass scaffolds has been shown to enhance angiogenesis 

in subcutaneous sites and full thickness skin wounds in rodents [24, 25] and both 

angiogenesis and osteogenesis in rat calvarial defects [26]. In the present study, doping 

silicate 13-93 bioactive glass scaffolds with 0.4 and 0.8 wt. % CuO did not have a 
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significant effect on the response of MC3T3-E1 cells in vitro and on angiogenesis and 

osteogenesis in rat calvarial defects at 6 weeks postimplantation. In comparison, a dopant 

concentration of 2.0 wt. % CuO significantly enhanced angiogenesis in the fibrous tissue 

that infiltrated the scaffolds and significantly reduced osteogenesis. The addition of BMP2 

(1 µg/defect) to the undoped or Cu-doped scaffolds significantly improved their ability to 

stimulate osteogenesis in vivo.  

 

4.1 Release of Cu ions from scaffolds into SBF in vitro 

Doping the parent 13-93 glass with 0.4–2.0 wt. % CuO did not have a significant 

effect on the degradation and conversion of the scaffolds to HA in SBF, as measured by 

the weight loss of the scaffolds. Cu ions generally function as a network modifier in the 

glass whereas the conversion reaction of the glass is dependent mainly on the chemical 

degradation of the glass network itself. As the glass degraded and converted to HA, Cu 

ions were released into the SBF. Consequently, the release profile of the Cu ions as a 

function of time showed a trend that was approximately similar to the weight loss of the 

scaffolds (Fig. 1). Whereas the release profile is dependent on the degradation and 

conversion rate of the glass, the amount of Cu ions released from the glass at any time 

scaled as the amount of CuO originally incorporated into the as-fabricated glass.  

Theoretically, if all the Cu ions in glass dissolved into the medium, the 

concentration of Cu ions in the SBF would be 32, 64 and 160 ppm, respectively, for the 

scaffolds doped with 0.4, 0.8 and 2.0 wt. % CuO. The measured amount of Cu ions in the 

SBF when the experiments were terminated at 28 days was only 2.3, 4.6 and 13.8 ppm, 

respectively, for those three groups of scaffolds. The difference between the measured and 
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theoretical values could be accounted for in of the limited conversion of the 13-93 glass. 

Experimentally, the total weight loss of the three groups of scaffolds was 5.5 ± 0.5 wt. %. 

Assuming that the glass reacted completely and all the CaO in the glass reacted with 

phosphate ions from the medium to form HA, the theoretical weight loss would be 64%. If 

the Cu ions were released only from the fraction of the glass that reacted and converted to 

HA, the amount of Cu ions in the SBF is predicted to be 2.8, 5.5 and 13.7 ppm, respectively 

for the scaffolds doped with 0.4, 0.8 and 2.0 wt. % CuO. As these values are in good 

agreement with the measured values, the results indicate that Cu ions are released into the 

SBF almost exclusively from the reacted region of the glass.  

 

4.2 Effect of Cu-doped scaffolds on MC3T3-E1 cell proliferation and function in vitro 

The results of the present study showed that scaffolds of the parent (undoped) 13-

93 glass supported the proliferation and ALP activity of preosteoblastic MC3T3-E1 cells 

in vitro, which is compatible with the results of previous studies using 13-93 glass in the 

form of porous or fibrous scaffolds and osteoblastic cells [34, 37]. Doping the 13-93 glass 

with 0.4 and 0.8 wt. % CuO did not change the ability of the scaffolds to support MC3T3-

E1 cell proliferation on the surface and into the pores of the scaffolds (Fig. 3, 5). The ALP 

activity of the cells incubated for 7 and 14 days on the scaffolds doped with 0.4 and 0.8 

wt. % CuO was higher than the cells cultured on the parent 13-93 scaffolds, indicating that 

the Cu ions could stimulate the ability of the cells to carry out an osteogenic function.   

Doping the glass with 2.0 wt. % CuO significantly lowered the ability of the 

scaffolds to support the proliferation and ALP activity of the MC3T3-E1 cells. Live-

cell/dead cell assays showed that the scaffolds doped with 2.0 wt. % CuO were toxic to the 
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cells (Fig. 4).  The amount of Cu ions released from those scaffolds into the medium at day 

1 was sufficient to cause a significant reduction in the number of MC3T3-E1 cells on those 

scaffolds. Thereafter, as the Cu ion release rate decreased with time, the cell number 

increased but it was still significantly lower than the undoped 13-93 scaffolds at each 

incubation time. 

In the present study, the degradation of the scaffolds and release of ions were 

measured in SBF (1 g scaffold per 100 ml SBF) whereas the medium used in the cell culture 

experiments was α-MEM (1 scaffold of mass 50 mg in 2 ml medium). A previous study 

showed approximately the same degradation rate of 13-93 glass in SBF and in Dulbecco’s 

modified Eagle’s medium (DMEM) for the same mass to volume ratio of glass to 

immersion medium [38]. Consequently, it can be assume that for the same mass to volume 

ratio, the Cu ion release into α-MEM was approximately the same as in SBF. At day 1, the 

amount of Cu ions released from the scaffolds doped with 2.0 wt. % CuO into SBF was 3 

ppm. When compensated for the different mass to volume ratio, the amount of Cu ions 

released into the cell culture medium was 7 ppm and 10 ppm, respectively, at day 1 and 

day 2. Since the medium was replaced by fresh medium every 2 days, the concentration of 

Cu ions in the medium was highest and lowest, respectively, at the end of a two-day interval 

and at the beginning of the subsequent two-day interval. Furthermore, because the 

degradation rate of the glass decreased with time, the amount of Cu ions released into the 

medium during each successive two-day interval decreased with an increase in the total 

incubation time.     

A previous study showed that scaffolds of a borate-based bioactive glass (porosity 

= 85%) doped with up to 3.0 wt. % CuO, with a much faster degradation rate than the 13-
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93 glass used in the present study and, thus, a much faster Cu ion release rate, were not 

toxic to human bone marrow-derived stem cells (hBMSCs) in vitro [26]. The proliferation 

and ALP activity of hBMSCs incubated in the ionic dissolution product of silicate-based 

mesoporous bioactive glass that contained up to 5% Cu (molar fraction) did not show a 

significant dependence on the Cu content of the glass [39]. Mouse L929 fibroblasts, when 

incubated in the ionic dissolution product of Cu-containing intra-uterine devices, showed 

a decreasing viability with increasing Cu ion concentration in the range 0100 ppm, 

reaching 50% viability and zero viability, respectively, when exposed to 46 ppm and 100 

ppm for 24 h [40].    

Metals such as Ni, Co, Ag, Cu and Pd are common components of orthopedic and 

dental implants and the effects of their metal ion toxicity to cells in vitro have been widely 

studied. It is well established that above some threshold concentration, those metal ions are 

toxic to cells and that the threshold concentrations depends on both the composition of the 

metal and the cell line [41, 42]. Copper ions have been reported to catalyze the interaction 

between superoxide and hydrogen peroxide by the Haber-Weiss reaction, resulting in the 

reduction of Cu2+ to Cu+ and the formation of toxic hydroxyl radicals [43]. Consequently, 

above a certain concentration, Cu ions can be toxic to cells due to the formation of an 

abundance of hydroxyl radicals.  

In the present study, the toxicity of the scaffolds doped with 2.0 wt. % CuO 

appeared to result from a lower average Cu ion concentration in the medium when 

compared to the studies mentioned above. The difference may reside in a variety of factors. 

As described above, the threshold metal ion concentration for toxicity is known to depend 

on the cell line [42]. Another factor is the concentration gradient of the Cu ions in the 
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medium. Cells cultured in medium containing dissolved Cu ions experience a more 

uniform concentration of ions. In comparison, there is a gradient in Cu ion concentration 

when cells are incubated on the surface of a Cu-releasing bioactive glass scaffold, as done 

in the present study. The Cu ion concentration at the surface of the scaffold is typically 

much higher than the average concentration of the medium. In the present study, although 

the average Cu ion concentration in the medium was 7 and 10 ppm, respectively, at days 

1 and 2, the concentration was expected to be considerably higher at the surface of the 

scaffolds in contact with the cells and within the pores of the scaffolds. The composition 

of the glass scaffold can also have an effect on the threshold Cu ion concentration for 

toxicity because other ions such as Ca, Na, K, B and Si can be released (depending on the 

glass composition) and there is typically an increase in pH of the medium.    

 

4.3 Effect of Cu-doped scaffolds on bone regeneration and angiogenesis in vivo 

Bone regeneration at 6 weeks in rat calvarial defects implanted with the four groups 

of scaffolds showed trends similar to the MC3T3-E1 cell proliferation results described 

above. Doping the parent 13-93 glass with 0.4 and 0.8 wt. % CuO did not affect the capacity 

of the scaffolds to regenerate bone (Fig. 8). In comparison, bone regeneration in the defects 

implanted with the scaffolds doped with 2.0 wt. % was significantly inhibited and the 

amount of new bone was almost negligible (0.8 ± 0.7% of the available pore volume). The 

lack of ability to support new bone infiltration by these scaffolds is presumably related to 

a high concentration of Cu ions at the surface (periphery) of the scaffolds and within the 

pores of the scaffolds (discussed above) which was presumably toxic to osteoblastic cells 

in vitro.   
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As bone regeneration in the defects implanted with scaffolds of 13-93 glass doped 

with 2.0 wt. % CuO was very limited, the formation of blood vessels was evaluated 

separately in the new bone and in the fibrous tissue that infiltrated the pores of the scaffolds 

[Fig. 13]. The blood vessel area in the new bone was not affected by doping the parent 13-

93 glass with 0.4 and 0.8 wt. % CuO. In comparison, the blood vessel area in the fibrous 

tissue increased with increasing CuO in the glass. The blood vessel area in the fibrous tissue 

that infiltrated the scaffolds doped with 2.0 wt. % CuO was significantly higher than the 

parent 13-93 scaffolds, with a value that was approximately twice that for the parent 13-93 

scaffolds.  

The significant increase in blood vessel area in the soft tissue that infiltrated the 

scaffolds doped with 2.0 wt. % CuO is compatible with the observations of previous studies 

which showed the capacity of Cu ion release from borate-based bioactive glass and calcium 

phosphate-based scaffolds to enhance angiogenesis in animal models of soft tissue repair. 

Fibrous scaffolds of a borate bioactive glass doped with 0.1–2.0 wt. % CuO were found to 

be biocompatible while the scaffolds doped with 0.4 wt. % CuO significantly enhanced 

blood vessel formation in rat subcutaneous sites at 6 weeks post-implantation [44]. Copper 

ion release from calcium phosphate-based scaffolds was found to enhance angiogenesis in 

the peritoneal cavity of mice [21].  

The effect of Cu ion release from borate-based bioactive glass scaffolds on bone 

regeneration and angiogenesis in osseous defects has been investigated in a rodent model. 

The borate-based bioactive glass had a much faster degradation and conversion rate to HA. 

In one study, borate bioactive glass doped with 0.4 wt. % CuO were formed into different 

porous architectures, referred to as trabecular, oriented and fibrous, and implanted for 12 
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weeks in rat calvarial defects. The Cu doping had no significant effect on bone regeneration 

and blood vessel area in the defects implanted with the trabecular and oriented scaffolds 

but it enhanced bone regeneration by the fibrous scaffolds [45]. A recent study found that 

a borate-based bioactive glass doped with 3.0 wt. % CuO enhanced both blood vessel 

formation and bone regeneration in rat calvarial defects at 8 weeks postimplantation [26].  

While important, angiogenesis is a transitory event in bone regeneration, typically 

more prominent at an earlier stage of defect healing. Presumably the angiogenesis event 

had considerably diminished by the six-week implantation time used in the present study. 

However, doping the 13-93 glass with 0.4 and 0.8 wt. % CuO had no significant effect on 

bone regeneration at 6 weeks postimplantation.  

 Loading scaffolds composed of the parent 13-93 glass with BMP2 (1 µg/defect), 

significantly enhanced bone regeneration in the rat calvarial defects at 6 weeks 

postimplantation (Fig. 8), in agreement with the results of recent studies [30, 36]. Loading 

the 13-93 scaffolds doped with 0.4 and 0.8 wt. % CuO also enhanced bone regeneration 

significantly but the enhancement was comparable to the 13-93 scaffolds. The combination 

of BMP2 loading and Cu doping produced no significant benefit over the BMP2 loading 

alone, indicating no synergistic effects between the BMP2 loading and the Cu doping at 

the concentrations used in the present study. Although there are concerns about the safety 

of supra-physiological doses of BMP2 in vivo, loading silicate-based bioactive glass 

scaffolds with clinically safe doses of BMP2 appears to considerably more effective than 

Cu doping in regenerating sufficient bone within a clinically relevant time.  
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5. Conclusion 

Scaffolds with a grid-like microstructure composed of silicate 13-93 bioactive glass 

doped with varying amounts of Cu (0-2.0 wt. % CuO) were created by robotic deposition 

and evaluated in vitro and in vivo. When immersed in simulated body fluid (SBF), the 

scaffolds released Cu ions in a dose-dependent manner but the Cu doping had no significant 

effect on the degradation and conversion of the scaffolds to hydroxyapatite. CuO dopant 

concentrations of 0.4 and 0.8 wt. % had no significant effect on the number and alkaline 

phosphatase activity of MC3T3-E1 cells cultured on the scaffolds in vitro and on bone 

regeneration and angiogenesis in rat calvarial defects at 6 weeks postimplantation. CuO 

dopant concentration of 2.0 wt. % significantly reduced the number and ALP activity of 

MC3T3-E1 cells in vitro and bone regeneration in vivo but significantly enhanced blood 

vessel area in the fibrous tissue that infiltrated the scaffolds. Loading the undoped or Cu-

doped scaffolds with BMP2 (1 µg/defect) significantly enhanced their capacity to 

regenerate bone. Doping 13-93 bioactive glass scaffolds with 0.4 and 0.8 wt. % CuO had 

no significant effect on the response of MC3T3-E1 cells in vitro and bone regeneration in 

rat calvarial defects in vivo but a CuO concentration of 2.0 wt. % was toxic to the MC3T3-

E1 cells and severely inhibited bone regeneration.  
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Fig. 1. (a) Optical image of the four groups of as-fabricated scaffolds prepared by 

robocasting, composed of (left to right) 13-93 glass and 13-93 glass doped with 0.4, 0.8 

and 2.0 wt. % CuO; (b) SEM image of the top surface of a 13-93 scaffold doped with 0.8 

wt. % CuO; (c) SEM image of the surface of a glass filament (0.8 wt. % CuO) after 

immersion of the scaffold in SBF at 37 C for 7 days. 
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Fig. 2. (a) Weight loss of 13-93 scaffolds and scaffolds doped with 0.4, 0.8 and 2.0 wt. % 

CuO and (b) cumulative amount of Cu ions released from 13-93 scaffolds doped with 0.4, 

0.8 and 2.0 wt. % CuO as a function of immersion time in SBF.  
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Fig. 3. Cell proliferation, as measured by CCK-8 assay, of MC3T3-E1 cells cultured on 

the four groups of bioactive glass scaffolds for the times shown. (Average ± SD, n = 3; 

*significant difference when compared to 13-93 scaffold at the same incubation time; 

#significant difference when compared to same group at different incubation times, 

p<0.05) 
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Fig. 4. Fluorescent images of MC3T3-E1cells incubated for 2, 7, 14 and 21 days on the 

four groups of bioactive glass scaffolds. Double staining was used to detect live cells as 

green fluorescent and dead cells as red fluorescent. 
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Fig. 5. SEM images of the four groups of bioactive glass scaffolds seeded with MC3T3-

E1 cells and incubated for 2, 7 and 14 days. (C1: cells on surface filaments; C2: cells on 

filaments below the surface; G: bioactive glass filament below surface.) 
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Fig. 6. Alkaline phosphatase (ALP) activity of MC3T3-E1 cells cultured on 13-93 

scaffolds and on 13-93 scaffolds doped with 0.4, 0.8 and 2.0 wt. % CuO for the times 

shown. Enzyme activity is expressed as ng of pNP formed per µg dsDNA per 30 min. 

(Average ± SD, n = 3; *significant difference when compared to 13-93 scaffold at the same 

incubation time; #significant difference when compared to same group at different 

incubation times; p < 0.05). 
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Fig. 7. Transmitted light images of H&E-stained sections of rat calvarial defects implanted 

with the four groups of bioactive glass scaffolds, as fabricated (left) or loaded with BMP2 

(right), at 6 weeks postimplantation. N = new bone; O = host bone; * = bony island; G = 

bioactive glass; arrowheads indicate the edges of host bone. 
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Fig. 8. Percent new bone in rat calvarial defects implanted with the four groups of scaffolds, 

13-93 and 13-93 doped with 0.4, 0.8 and 2.0 wt. % CuO, as-fabricated or loaded with 

BMP2, at 6 weeks postimplantation. The amount of new bone is shown as a percent of the 

available pore space (area) of the scaffolds. (*significant difference between groups; 

#significant difference when compared to as-fabricated 13-93 scaffolds; p < 0.05) 

  



80 

 

 

Fig. 9. Transmitted light images of von Kossa stained sections of rat calvarial defects 

implanted with the four groups of scaffolds, as-fabricated (left) or loaded with BMP2 

(right), at 6 weeks postimplantation. N = new bone; O = host bone; G = bioactive glass; 

arrowheads indicate the edges of host bone. 
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Fig. 10. Percent total von Kossa positive (vK+) area (a) and vK+ area due to the bioactive 

glass conversion (b), determined as a fraction of the total defect area, for rat calvarial 

defects implanted with the four groups of scaffolds, as fabricated or loaded with BMP2, at 

6 weeks post-implantation. (average ± SD; *significant difference between groups; 

#significant difference when compared to the same 13-93 scaffold group; p < 0.05) 
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Fig. 11. Percent bone marrow-like tissue (a) and fibrous tissue (b) in rat calvarial defects 

implanted with the four groups of scaffolds, as fabricated or loaded with BMP2, at 6 weeks 

post-implantation (*significant difference between groups; #significant difference when 

compared to the same 13-93 scaffold group; p < 0.05) 
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Fig. 12. (Left): Transmitted light images of PAS stained sections of rat calvarial defects 

implanted with the four groups of scaffolds (without BMP2) at 6 weeks postimplantation; 

(Right): magnified images of the boxed areas in the corresponding images on the left. (N 

= new bone; G = bioactive glass; Arrows indicate some of the blood vessels.) 
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Fig. 13. Percent blood vessel area in rat calvarial defects implanted with the four groups of 

scaffolds at 6 weeks postimplantation. The blood vessel area in the fibrous tissue and in 

the new bone are shown (as a percentage of the total fibrous tissue and total new bone, 

respectively). (*significant difference between groups; #significant difference when 

compared to 13-93 group; p<0.05) 
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Fig. S1. Raman spectra of the un-doped 13-93 scaffold and the 13-93 bioactive glass 

scaffolds doped with 0.4 wt.% CuO, 0.8 wt.% CuO and 2 wt.% CuO after immersion in 

SBF for 28 days. For comparison, the pattern of a reference hydroxyapatite (A027249-1) 

is also shown. 
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SECTION 

2. CONCLUSIONS 

Bone regeneration in rat calvarial defects implanted with strong porous bioactive 

glass (13-93) scaffolds was studied at implantation times of 12 and 24 weeks and compared 

with a similar study at 6 weeks. Bone regeneration in the defects implanted with the as-

fabricated scaffolds increased significantly with increase in the implantation time from 6 

to 24 weeks. Pretreating the scaffolds to convert a thin surface layer to hydroxyapatite 

enhanced bone regeneration at 6 weeks but not at 12 or 24 weeks. Scaffolds loaded with 

BMP2 (1 µg/defect) significantly enhanced bone regeneration at all three implantation 

times. The pore space of the BMP2-loaded scaffolds was almost completely infiltrated with 

lamellar bone within 12 weeks. The pretreatment or BMP2 loading did not affect the 

amount of bioactive glass converted to hydroxyapatite at 24 weeks (30%). While blood 

vessels were present in the new bone that infiltrated all three groups of scaffolds, the 

BMP2-loaded scaffolds had a significantly higher number of blood vessels and blood 

vessel area at 6 and 12 weeks post-implantation. Strong porous bioactive glass (13-93) 

scaffolds loaded with clinically acceptable levels of BMP2 could provide promising 

implants for healing structural (loaded) bone defects within a clinically relevant time. 

Scaffolds with a grid-like microstructure composed of silicate 13-93 bioactive glass 

doped with varying amounts of Cu (0-2.0 wt. % CuO) were created by robotic deposition 

and evaluated in vitro and in vivo. When immersed in simulated body fluid (SBF), the 

scaffolds released Cu ions in a dose-dependent manner but the Cu doping had no significant 

effect on the degradation and conversion of the scaffolds to hydroxyapatite. CuO dopant 

concentrations of 0.4 and 0.8 wt. % had no significant effect on the number and alkaline 

phosphatase activity of MC3T3-E1 cells cultured on the scaffolds in vitro and on bone 
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regeneration and angiogenesis in rat calvarial defects at 6 weeks postimplantation. CuO 

dopant concentration of 2.0 wt. % significantly reduced the number and ALP activity of 

MC3T3-E1 cells in vitro and bone regeneration in vivo but significantly enhanced blood 

vessel area in the fibrous tissue that infiltrated the scaffolds. Loading the undoped or Cu-

doped scaffolds with BMP2 (1 µg/defect) significantly enhanced their capacity to 

regenerate bone. Doping 13-93 bioactive glass scaffolds with 0.4 and 0.8 wt. % CuO had 

no significant effect on the response of MC3T3-E1 cells in vitro and bone regeneration in 

rat calvarial defects in vivo but a CuO concentration of 2.0 wt. % was toxic to the MC3T3-

E1 cells and severely inhibited bone regeneration. 
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